Programmer’s Utilities Guide

For the
CP/M® Family of
Operating Systems

10
DIGITAL
RESEARCH"

Programmer’s Utilities Guide

For the
CP/M® Family of
Operating Systems

COPYRIGHT

Copyright © 1982 by Digital Research. All rights reserved. No part of this publica-
tion may be reproduced, transmitted, transcribed, stored in a retrieval system, or
translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Digital Research, Post Office Box 579, Pacific Grove,
California, 93950.

This manual is, however, tutorial in nature. Thus, the reader is granted permission
to include the example programs, either in whole or in part, in his own programs.

DISCLAIMER

Digital Research makes no representations or warranties with respect to the contents
hereof and specifically disclaims any implied warranties of merchantability or fitness
for any particular purpose. Further, Digital Research reserves the right to revise this
publication and to make changes from time to time in the content hereof without
obligation of Digital Research to notify any person of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of Digital Research. ASM, DDT, LIB-80, LINK-80,
MAC, MP/M 11, PL/I-80, RMAC, and SID are trademarks of Digital Research. XREF
is a utility of Digital Research. Intel is a registered trademark of Intel Corporation.
Microsoft is a registered trademark of Microsoft Corporation. Z80 is a registered
trademark of Zilog, Inc.

The Programmer’s Utilities Guide for the CP/M Family of Operating Systems was
prepared using the Digital Research TEX Text Formatter and printed in the United
States of America.

First Edition: September 1982

Foreword

This manual describes several utility programs that aid the programmer and system
designer in the software development process. Collectively, these utilities allow you
to assemble 8080 assembly language modules, link them together to form an execut-
able program, and generate a cross-reference listing of the variables used in a pro-
gram. With these utilities, you can also create and manage your own libraries of
object modules, as well as create large programs by breaking them into separate
overlays.

The Programmer’s Utilities Guide assumes you are familiar with the CP/M® or
MP/M II™ Operating System environment. It also assumes you are familiar with the
basic elements of assembly language programming as described in the 8080 Assembly
Language Programming Manual, published by Intel®,

MAC™, the CP/M macro assembler, translates 8080 assembly language statements
and produces a hex format object file suitable for processing in the CP/M environ-
ment. MAC is upward compatible with the standard CP/M nonmacro assembler,
ASM™. (See the CP/M documentation published by Digital Research.)

MAC facilities include assembly of Intel 8080 microcomputer mnemonics, along with
assembly-time expressions, conditional assembly, page formatting features, and a pow-
erful macro processor compatible with the standard Intel definition. MAC also accepts
most programs prepared for the Processor Technology Software #1 assembler, requiring
only minor modifications. This revision is not compatible with previous versions.

MAC is supplied on a standard disk, along with a number of library files. MAC
requires about 12K of machine code and table space, along with an additional 2.5K
of I/O buffer space. Because the BDOS portion of CP/M is coresident with MAC, the
minimum usable memory size for MAC is about 20K. Any additional memory adds
to the available Symbol Table area, allowing larger programs to be assembled.

Sections 1 through 5 describe the simple assembler facilities of MAC: 8080 mne-
monic forms, expressions, and conditional assembly. These facilities are similar to
those of the CP/M assembler (ASM). If you are familiar with ASM, you might want
to skip Sections 1 through § and begin with Section 6.

Sections 6 through 8 describe MAC macro facilities in detail. Section 7 describes
inline macros, and Section 8 explains the definition and evaluation of stored macros.
If you are familiar with macros, briefly skim these sections, referring primarily to the
examples. Section 9 explains macro applications, common macro forms, and pro-
gramming practices. Skim the examples and refer back to the explanations for a
detailed discussion of each program.

Sections 10 through 13 describe other features of macro assembler operation. Sec-
tion 10 details assembly parameters. Section 11 introduces iterative improvement, a
common debugging practice used in developing macros and macro libraries. Section
12 defines MAC’s symbol storage requirements.

Section 13 explains the differences between MAC and RMAC™, the CP/M Relo-
cating Macro Assembler.

Section 14 details XREF, an assembly language cross-reference program used with
MAC and RMAC.

Section 16 describes LINK-80™, the linkage editor that combines relocatable object
modules into an absolute file ready to run under CP/M or MP/M II. Section 17
describes how to use LINK-80, in conjunction with the PL/I-80™ compiler, to pro-
duce overlays. Section 18 explains how to use LIB-80™, the software librarian for
creating and manipulating library files containing object modules.

The appendixes contain a complete list of error messages output by each of the
utility programs.

iv

5

Table of Contents

Macro Assembler Operationc.oveiiieiiiiiiiiiinniiinnnnn.
Program Format.cuiiniiuiiniintniieeeeneenenesnsnennanns

Forming the Operand

70 N 717 (A
3.2 Numeric CoNnStantsoevereeneneeneneeneaneneseeneannns
3.3 Reserved Wordsovviiiiiiii i e
3.4 String CoONStantsooeueeuneeneeeneeneenneesossoessasans
3.5 Arithmetic, Logical, and Relational Operators
3.6 Precedence of Operatorsv.oeeeeviueeeennneeeennnneennn

Assembler Directives

4.1 The ORG Directive ...ivviiiiiiiiiiiiiiiiiiiiiieeeeeeeinnns
4.2 The END Dir€Ctive . ..uuviiiriiiiieeeteeeiiiiinaneeennnns
4.3 The EQU Dir€Ctive'uutrunrrreeeeeeeeeeeenennnninnnnnnns
4.4 The SET DIrective . ..uviittiriiiiiiieeeeeereninnneennn.
4.5 The IF, ELSE, and ENDIF Directivescovvuuuuunennn..
4.6 The DB DireCtive . .uvvnviiiiiiiiiiieneeeeeeeeeaaannnnns
4.7 The DW DIr€CtiVe .. .vvvieeeeetrriiianeeeeeeennennnnnnnns
4.8 The DS DIreCtIVE v vuviieetttetii ittt ettt iiiianeeeeens
4.9 The PAGE and TITLE Directivesvvvvieeeeeiennnnnnns
4.10 A Sample Program Using Pseudo Operations

Operation Codes

5.1 Jumps, Calls, and Returnscoviiiiieiiinneennnnnnnn.
5.2 Immediate Operand Instructionscovvveeennnnnnn.

Table of Contents (continued)

5.3 Increment and Decrement Instructionscccevveennenn
5.4 Data Movement Instructionsc.ceveueeneenenennencens
5.5 Arithmetic Logic Unit Operationscoeeeeeeeeeeeeenns
5.6 Control INStrUCtIONS . .vvvvvttiieerieeerineeennneeeennnanens

An Introduction to Macro Facilities

Inline Macros

7.1 The REPT-ENDM Groupccoutuiiiiineeeeeeeeeennnnnnns
7.2 The IRPC-ENDM GIOUP +.vvvvtreeeeeerenenennnnnnnneeeeeens
7.3 The IRP-ENDM GIOUDP . .vvviiiittititiiiiinaaaeneeeeenennnns
7.4 The EXITM Statementeeeeeeeeeeeeeennennnnnnnneeens
7.5 The LOCAL Statementeveerunineennneeensneeennnaanns

Definition and Evaluation of Stored Macros

8.1 The MACRO-ENDM GIoupuvvieiiuuerennneeenannneeens
8.2 Calling a Macrovviiiiitieteeennnnneeannanneeeeeeens
8.3 Testing Empty Parametersccoiiiiiiiiiiiiiiiinnnn,
8.4 Nested Macro Definitionscoiiiiiiiiiiinreneeeeeenns
8.5 Redefinition of Macrosevieiiiiiinnnnnnnnnnneeeeens
8.6 Recursive Macro Invocationciiiiiiiieiiiienniennnn
8.7 Parameter Evaluation Conventionscovveeuieeeeennns
8.8 The MACLIB Statementeevveieennnnnneneeeeeeeenns

Macro Applications

9.1 Special Purpose Languagesccoviiiiiiiiiiiirieiaiiaaas
9.2 Machine Emulation ...ttt

10

11

12

13

14

15

Table of Contents (continued)

9.3 Program Control Structuresccciiiiiiiiiiieinnaann
9.4 Operating System Interfaceooiiiiiiiiiiiiiient,

Assembly Parameters
Debugging Macros
Symbol Storage Requirements

RMAC, Relocating Macro Assembler

13.1 RMAC Operationcc.oeeeiuuineeeunnecenneeeenieeennnes

13.2 EXPIESSIONS . .uvvvvuuuunnneneeeseetaennnnseseeeeeeensnnnnnns

13.3 Assembler DIrectivesovivieerriieeenieneernneeennnaennns
13.3.1 The ASEG DIrectivevvvvrririiiieneeeeeennanns
13.3.2 The CSEG DIirective . ..vvvverrrrriiiinnnneeeennnnnns
13.3.3 The DSEG Directiveovvviiinnneeeeeennnnnns
13.3.4 The COMMON Directiveovviiiiiieniieenennnas
13.3.5 The PUBLIC Dir€ctiveccevvurrereeeeeeneennnns
13.3.6 The EXTRN DireCtive ...vvvvrerereeeeennnnnnnnnnnns
13.3.7 The NAME Dir€ctivecviviriiirrireeeeeeeeennnns

XREF

LINK-80

15.1 IntroduCtion . .vvviiiiit ettt

15.2 LINK-80 Operationcvveeieeeenneeeeonesssansesanns

15.3 Multiline Commandscciiiiiiiiii e

vii

Table of Contents (continued)

15.4 LINK-80 Switchesc.ooiiiiiiiiiiiiiiiiiiiiii s 239
15.4.1 The Additional Memory (A) Switch 239

“ 15.4.2 The Data Origin (D) Switch 240
15.4.3 The Go (G) Switch ..., 240
15.4.4 The Load Address (L) Switch 240
15.4.5 The Memory Size (M) Switchcoat. 241
15.4.6 The No List (NL) Switchccoooiiiinn.... 241
15.4.7 The No Recording of Symbols (NR) Switch 241
15.4.8 The Output COM File (OC) Switch 241
15.4.9 The Output PRL File (OP) Switch 241
15.4.10 The Program Origin (P) Switch 241
15.4.11 The ? Symbol (Q) Switch, 242
15.4.12 The Search (S) Switcho, 242

15.5 The $ Switch ... i i i, 242
15.5.1 $Cd—Consoleviiiiiiiiiiiiii i 243
15.5.2 S$ld—Intermediatecciiiiiiiiiiiiiiiia, 243
15.5.3 SLd—Libraryciiiiiiii i i e 243
15.5.4 $Od—Objectiiiiiiiii e e e e 243
15.5.5 $Sd—Symbol ... e 243
15.5.6 Command Line Specificationccovvivinunnnn. 244

15.6 Creating MP/M II PRL Filescccvviiiiiiiiiniennnnnn.. 244
15.7 The Request Itemoiiiiiiiniiiii it iiiieanennns 245
15.8 REL File Formatoiviiiiteiiiiiiiiiiieeiiinaeannns 246
15.9 IRL File Formatoouvtiiiiiieiiiiieeeneineeennnnaneenns 248

16 Overlays

16.1 Introductionovviiiineeeeeiineerenioeeeeniaesenannnaonns 251
16.2 Using Overlays in PL/I Programsccevveeeeeenannnns 252
16.221 Overlay Method 1 ... 252
16.2.2 Overlay Method 2ciiiiiiiiiiiii ittt iiiiieninin, 254

16.3 Specifying Overlays in the Command Line 255
16.4 Sample LINK-80 EXecutionceeeeeviuuerrnninnceennns 256

+ 15.4.2 The BIOS Link Switch - all following got 15.4.(n+1) numbering

fritz
Textfeld
*

fritz
Textfeld

fritz
Textfeld

fritz
Textfeld
*

17

Table of Contents (continued)

16.5 Other Overlay Systemsc.cuuiienireieinirerannnenreeeenns 259
LIB-80

17.1 Introductioniiieiiiiiiiii e e 261
17.2 LIB-80 Operationceuereennerenoeseeeoasstoooassonnnes 261
17.3 LIB-80 SWItChes . .vvvtttttetteriieennnnannnennoasoesesaanns 263

ix

m m O 0O % »

Table of Contents (continued)

Appendixes
MAC/RMAC Error Messages . v.oovvueerennnneennneeeanneenennnaans 265
XREF Error MeSSageSvvvvrneteeneeoneenneeneenneennesnnennnns 269
LINK-80 Error Messagesc.ciieiiieiennrennnnneennnneeannnns 271
Overlay Manager Run-time Error Messagesccccovnvenn.. 275
LIB-80 Error Messagesc.couuiinnneneeeeenronnnnnnnaanenns 277
8080 CPU INStruCtiONSuuvtetiennuterennueeeronueesennnnenns 279

Table of Contents (continued)

List of Tables

8080 Registers and Valuesciiiiiiiiiineeerreeeinnnns 7
() 0= 1o - 9
Equivalent Forms of Relational Operatorsccocvivinn. 12
Pseudo OPerationseeveeeeenurrorsseceerosiossesnnees 13
KDF-11 Operation Codesccvviiniiiiiiieiiiieeennnne, 120
Assembly Parameterscciiiiiiiiiiei ittt 221
LIB-80 Switchesiiviiiiiiiiiiiiiiiiiiineenneonnocanenes 263
MAC/RMAC Error Messagescccveviienseeenenceenensens 265
Terminal Error Conditionsevviiiitivinreeeennnneeecnnnss 267
XREF Error Messagesoveveeenreeneeneeonetosoanssasssansas 269
LINK-80 Error Messagescveveviieierornnennnneasianoees 271
Run-time Error Messagescuueiiiiiiiiinnneeeoaneeccanes 275
LIB-80 Error Messagesccveuveeeennoesonnnsesoanassennns 277
8080 CPU INSEIUCLIONS +\vvvvvrrvereerenrenrennensonnonnoaeenns 279

List of Figures

IRLFile IndeX ...viviniiiriiiiiii ittt ennnneenannnss 248
Tree-structured Overlay Systemccoviiiiiiiiiiinnnnneen., 251
Separate Overlay Systemcccveeeiiveiiiiirioennceneneenns 258

List of Listings

Sample ASM, PRN, SYM, and HEX files from MAC 1
Conditional Assembly with TTY Trueccoiviiiiiiiinnnnn 17
Conditional Assembly with TTY Falseccvviiiiinnnn. 18
Conditional Assembly Using ELSE for Alternate 19
Sample Program Using Nested IF, ELSE, and ENDIF 21
TYPER Program Listingcciviiieinerenernneenernnennnans 26
Assembly Showing Jumps, Calls, Returns, and Restarts 31
Assembly Using Immediate Operand Instructions 33
Assembly Containing Increment and Decrement Instructions 34
Assembly Using Various Register/Memory Moves 36
Assembly Showing ALU Operationscoeeeviirrernnnnnes 38

xi

6-1.
6-2.
7-1.
7-2a.
7-2b.
7-3.
7-4.
7-5a.
7-5b.

Qo
1 T
EOOENAN D RN

\oooooooo.ooooooooo

grEer

\O \O \© \O \© \O
1)))) 1)
@

>

9-5a.
9-5b.
9-6.
9-7.
9-8.
9-9,
9-10.
9-11.
9-12.
9-13.
9-14.
9-15.
9-16.

Table of Contents (continued)

A Sample Macro Library ..ot 43
A Sample Assembly Using the MACLIB Facility 45
A Sample Program Using the REPT Groupcccovn.... 50
Original ((ASM) File with IRPC Example 52
Resulting (.PRN) file with IRPC Example 53
A Sample Program Using IRPcoiiiiiiiiiiineninnennnn. 57
Use of the EXITM Statement in Macro Processing 59
Assembly Program Using the LOCAL Statement 62
Output from Program of Listing 7-53.curuuieeeeeeeenennn. 63
Example of Macro Definition and Invocation 69
Sample Message Printout Macrooovviiiiineinnnennn.. 71
Sample Program Using the NUL Operator 74
Sample Program Showing a Nested Macro Definition 78
Sample Program Showing Macro Redefinition 80
Sample Program Showing a Recursive Macro 83
Macro Parameter Evaluation Exampleoo... 87
Parameter Evaluation Using Bracketed Notation 89
Examples of Macro Parameter Evaluation 91
Macro Library for Basic Intersectioncoovvveeennnnenns 98
Macro Library for Treadle Controlccovvviiiiininn.n. 100
Macro Library for Corner Pushbuttons 100
Traffic Control Algorithm Using -M Option 102
Intersection Algorithm with *M in Effectccovvnun... 103
Algorithm with Generated Instructionscovvevvnune... 104
Library Segment with Debug Facility 106
Sample Intersection Program with Debug 107
Debug Trace Printoutvvvveirerevnnrereennnereeennneens 107
A-D Averaging Program Using Stack Machine 110
Stack Machine Opcode Macrosccovviiiiiininennnnennnn. 111
Averaging Program with Expanded Macros 114
Averaging Program with Debugging Statements 117
Sample Execution of AVER Using DDTcoovviiinininnennnn 119
Stack Machine Macro Librarycciiiiiiiiiiiiiiinnnnnnns 121
Program for Tool Travel Computationccvvvuevennn. 139
Sample Execution of Distance Using DDTccovvvnnnn 143
Partial Listing of Distance with Full Trace 144
Simple I/0 Macro Libraryovviiiiiiiiiiiiniiniennenne. 147
Macro Library for Simple Comparison Operations 148

Xii

9-17a.

9-17b.

9-18.
9-19a

9-1%.

9-20.
9-21a.

9-21b.

9-22.
9-23a.

9-23b.
9-24a.
9-24b.
9-25a.
9-25b.

9-25c¢.
9-26.
9-27.
9-28.
9-29.
9-30.
9-31.
9-32.
16-1.
16-2.

Table of Contents (continued)

Single Character Processing using COMPARE..................... 150
Partial Trace of Listing 9-17a with Macro Generation 152
Expanded NCOMPARE Comparison Operators 153
Sample Program using NCOMPARE Library 156
Segment of Listing 9-19a with +M Optionc....... 157
Macro Library for the WHEN Statement 161
Sample WHEN Program with -M in Effect 162
Partial Listing of Listing 9-21a with +M Option 163
Macro Library for the DOWHILE Statement 165
An Example Using the DOWHILE Statement 167
Partial Listing of Listing 9-23a with Macro Generation 168
Macro Library for SELECT Statementccvvvennn.. 171
Library for SELECT Statementcoiiiiiiinnnnennnn.. 172
Sample Program Using SELECT with -M +S Options 174
Segment of Listing 9-25a with Mnemonics 175
Segment of Listing 9-25a with +M Option 176
Program Using WHEN, DOWHILE, and SELECT 179
Lower- to Upper-case Conversion Program 186
Sequential File Input/Output Library 188
Sample FILE Expansion Segmentccoviiieeennnnn... 202
Program for Line Printer Page Formatting 208
File Merge Programcoiiieiiiiieeinnnieneiiineeeennns. 211
Sample MERGE Disk Filesccoiiiiiiiiiiiiiiiin.... 219
LINK-80 Console Interactionccuviivieninneennnnnn.. 258
Console Interaction with ROOTccoiiiiinneinn... 258

Xiii

Section 1
Macro Assembler Operation

Start MAC with a command of the form:
MAC filename

where filename corresponds to the assembly language file with an assumed filetype
ASM. During the translation process, MAC creates a file called filename.HEX con-
taining the machine code in the Intel hexadecimal format. You can subsequently load
or test this HEX file. (See the LOAD command and the Dynamic Debugging Tool,
DDT™, in the CP/M documentation.) MAC also creates a file named filename.PRN
containing an annotated source listing, along with a file called filename.SYM contain-
ing a sorted list of symbols defined in the program.

Listing 1-1 provides an example of MAC output for a sample assembly language
program stored on the disk under the name SAMPLE.ASM. Type MAC SAMPLE
followed by a carriage return to execute the macro assembler. The PRN, SYM, and
HEX files then appear as shown in the listing. The assembler listing file (PRN)
includes a 16-column annotation at the left showing the values of literals, machine
code addresses, and generated machine code. Note that an equal sign (=) is used to
denote literal values to avoid confusion with machine code addresses. (See Section
4.3.) Output files contain tab characters (ASCII CTRL-I) whenever possible to con-
serve disk space.

Source Program (SAMPLE.ASM)

org 100h itransient Prodram area
bdos equ 000Sh ibdos entry pPoint
wchar eQqu 2 jwrite character function

enter with ccpP’s return address in the stack
write a sindle character (?) and return

-

mui cswchar jwrite character function
mui es’?’ jcharacter to write

call bdos iwrite the character

ret ireturn to the cce

end 100h istart address is 100h

Listing 1-1. Sample ASM, PRN, SYM, and HEX files from MAC

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 1

] UONDIS

1 Macro Assembler Operation

0100
0005
0002

0100
0102
0104
0107
0108

0E02
1E3F
CD0S00
c9

0005 BDOS

ORG
BDO
WCH

- e

Programmer’s Ultilities Guide

Assembler Listing File (SAMPLE.PRN)

100H iTRANSIENT PROGRAM AREA
S EQU 0005H iBDOS ENTRY POINT
AR EQU 2 FWRITE CHARACTER FUNCTION

ENTER WITH CCP’S RETURN ADDRESS IN THE STACK
WRITE A SINGLE CHARACTER (?) AND RETURN

MUI C+WCHAR SWRITE CHARACTER FUNCTION
MVI Esy'?’ iCHARACTER TO WRITE

CALL BDOS iWRITE THE CHARACTER

RET iRETURN TO THE CCP

END 100H iSTART ADDRESS IS 100H

Assembler Sorted Symbol File (SAMPLE.SYM)

0002 WCHAR

Assembler Hex Output File (SAMPLE.HEX)

:080100000E021E3FCDOS00CIEF
:00010000FF

Listing 1-1. (continued)

End of Section 1

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 2
Program Format

A program acceptable as input to the macro assembler consists of a sequence of
statements of the form

line# label operation operand comment

where any or all of the elements can be present in a particular statement. Each
assembly language statement terminates with a carriage return and line-feed. Note
that the ED program automatically inserts the line-feed when you enter a carriage
return. You can also terminate an assembly language statement by typing the excla-
mation point (!) character. MAC treats this character as an end-of-line. You can
write multiple assembly language statements on the same physical line if you separate
them with exclamation points.

A sequence of one or more blank or tab characters delimits statement elements.
Tab characters are preferred because they conserve source file space and reduce the

listing file size. The tab characters are not expanded until the file is printed or typed
at the console.

The line# is an optional decimal integer value representing the source program
line number. It is allowed on any source line. The assembler ignores the optional
line#.

The label field takes the form:

identifier
or
identifier:
The label field is optional, except where noted in particular statement types.

The identifier is a sequence of alphanumeric characters: alphabetics, question marks,

commercial at-signs, and numbers, the first character of which is not numeric. You

can use identifiers freely to label elements such as program steps and assembler
directives, but identifiers cannot exceed 16 characters in length.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 3

wn
0]
8]
=
0o
3
N

2 Program Format Programmer’s Utilities Guide

All characters are significant in an identifier, except for the embedded dollar sign
($) that you can use to improve name readability. Further, MAC treats all lower-case
alphabetics in an identifier as though they were upper-case. Note that the colon (:)
following the identifier in a label is optional. The following examples are all valid
labels:

X Xy londgéname

X7 xyl: londer$named$data
Xx1x2 @123: ?7@RBabcDEF

Gamma BGAMMA PAREWEHERE?

x23445678%9012%3456:

The operation field contains an assembler directive (pseudo operation), 8080 machine
operation code, or a macro invocation with optional parameters. The pseudo opera-
tions and machine operation codes are described in Section 5. Macro calls are dis-
cussed in Section 6.

The operand field of the statement contains an expression formed from constant
and label operands, with arithmetic, logical, and relational operations on these oper-
ands. Properly formed expressions are detailed in Section 3.

A leading semicolon character denotes the comment field, which contains arbitrary
characters until the next carriage return or exclamation point character. MAC reads,
lists, and otherwise ignores comment fields. To maintain compatibility with other
assemblers, MAC also treats statements that begin with an asterisk (*) in column one
as comment lines.

The assembly language program is thus a sequence of statements of the form
described above, terminated optionally by an END statement. The assembler ignores
all statements following the END.

End of Section 2

4 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 3
Forming the Operand

Expressions in the operand field consist of simple operands—Ilabels, constants, and
reserved words—combined into properly formed subexpressions by arithmetic and
logical operators. MAC carries out expression computation as the assembly proceeds.
Each expression produces a 16-bit value during the assembly. The number of signifi-
cant digits in the result must not exceed the intended use. That is, if an expression is
to be used in a byte move immediate (see the MVI instruction), the absolute value of
the operand must fit within an 8-bit field. Instructions for each expression give the
restrictions on expression significance.

3.1 Labels

A label is an identifier of a statement. The label’s value is determined by the type
of statement it precedes. If the label occurs on a statement that generates machine
code or reserves memory space, such as a MOV instruction or a DS pseudo opera-
tion, then the label is given the value of the program address it labels. If the label
precedes an EQU or SET, then the label is given the value that results from evaluat-
ing the operand field. In a macro definition, the label is given a text value, a sequence
of ASCII characters, that is the body of the macro definition. With the exception of
the SET and MACRO pseudo operations, an identifier can label only one statement.

When a nonmacro label appears in the operand field, the assembler substitutes its
16-bit value. This value can then be combined with other operands and operators to
form the operand field for an instruction. When a macro identifier appears in the
operation field of the statement, the text stored as the value of the macro name is
substituted for the name. In this case, the operand field of the statement contains
actual parameters. These are substituted for dummy parameters in the body of the
macro definition. Later sections give the exact mechanisms for defining, calling, and
substituting macro text.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 5

wn
g
N
=
o
-]
W

3.2 Numeric Constants Programmer’s Utilities Guide

3.2 Numeric Constants

A numeric constant is a 16-bit value in a number base. A trailing radix indicator
denotes the base, called the radix of the constant. The radix indicators are

binary constant (base 2)

octal constant (base 8)

octal constant (base 8)

decimal constant (base 10)
hexadecimal constant (base 16)

IZIOOOw

Q is an alternate radix indicator for octal numbers because the letter O is easily
confused with the digit 0. Any numeric constant that does not terminate with a radix
indicator is assumed to be a decimal constant.

A constant is composed of a sequence of digits, followed by an optional radix
indicator, where the digits are in the appropriate range for the radix. Binary con-
stants must be composed of 0 and 1 digits. Octal constants can contain digits in the
range 0-7. Decimal constants contain decimal digits. Hexadecimal constants contain
decimal digits and hexadecimal digits A through F, corresponding to the decimal
numbers 10 through 15.

Note that the leading digit of a hexadecimal constant must be a decimal digit to
avoid confusing a hexadecimal constant with an identifier. A leading 0 prevents
ambiguity. A constant composed in this manner produces a binary number that can
be contained within a 16-bit counter, truncated on the right by the assembler. Like
identifiers, embedded $ symbols are allowed within constants to improve readability.

Finally, the radix indicator translates to upper-case if a lower-case letter is encoun-
tered. The following examples are valid numeric constants:

1234 1234D 11008 11114$0000%1111400008B
1234H OFFFEH 33770 338774220
33770 Ofe3h 12344 Offffh

6 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 3.3 Reserved Words

3.3 Reserved Words

Several reserved character sequences have predefined meanings in the operand field
of a statement. The names of 8080 registers and their values are given in Table 3-1.

Table 3-1. 8080 Registers and Values

symbol value symbol value
A 7 B 0
C 1 D 2
E 3 H 4
L 5 M 6
SP 6 PSW 6

Lower-case names have the same values as their upper-case equivalents. Machine
instructions can also be used in the operand field, resulting in their internal codes.
For instructions that require operands, where the operand is a part of the binary bit
pattern of the instruction (e.g., MOV A,B), the value of the instruction is the bit
pattern of the instruction, with zeros in the optional fields. For example, the statement

LXI H.,MOV

assembles an LXI H instruction with an operand equal to 40H, the value of the
MOV instruction with zeros as operands.

When the $ symbol appears in the operand field—not embedded within identifiers

and numbers—its value is the address of the beginning of the current instruction. For
example, the two statements

X JMP X

and

JMP ¢
produce a jump instruction to the current location. As an exception, the $ symbol at

the beginning of a logical line can introduce assembly formatting instructions. (See
Section 10.) ’

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 7

3.4 String Constants Programmer’s Ultilities Guide

3.4 String Constants

String constants represent sequences of graphic ASCII characters, enclosed in apos-
trophes (’). All strings must be fully contained within the current physical line, with
the exclamation point (!) character within strings treated as an ordinary string char-
acter. Each individual string must not exceed 64 characters in length, or MAC reports
an error. The apostrophe character can be included in a string by typing two apos-
trophes (”). The assembler reads the two apostrophes as a single apostrophe.

Note that particular operation codes can require the string length to be no longer
than one or two characters. The LXI instruction, for example, accepts a character
string operand of one or two characters. The CPI instruction accepts only a one-
character string. The DB instruction, however, allows strings zero through 64 char-
acters long in its list of operands. In the case of single-character strings, the value is
the 8-bit ASCII code for the character, without case translation. Two-character strings
produce a 16-bit value with the second character as the low-order byte and the first
character as the high-order byte. For example, the string constant ‘A’ is equivalent to
41H. The two-character string ‘AB’ produces the 16-bit value 4142H. The following
are valid strings in MAC statements:

IAI IABI Iabl ICI 1 ¢ s lshe Said llhellolll

Note: You can use the ampersand (&) character to cause evaluation of dummy
arguments within macro expansions inside string quotes. Section 8 details the substi-
tution process.

3.5 Arithmetic, Logical, and Relational Operators

MAC can combine the operands described above in algebraic notation using prop-
erly formed operands, operators, and parenthesized expressions. The operators MAC
recognizes in the operand field are listed below.

a+b produces the arithmetic sum of a and b; +b is b.
a—b produces the arithmetic difference between a and b; —b is 0—b.

a*b is the unsigned multiplication of a by b.

a MOD b is the remainder after division of a by b.

]

[

=

® a/b is the unsigned division of a by b.

]

® a SHL b produces a shifted left by b, with zero right fill.

8 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

® a SHR b produces a shifted right by b, with zero left fill.
NOT b is the bit-by-bit logical inverse of b.

a EQ b produces true if a equals b, false otherwise.

a LT b produces true if a is less than b, false otherwise.

a GT b produces true if a is greater than b, false otherwise.

a XOR b produces the logical exclusive OR of a and b.
HIGH b is identical to b SHR 8 (high-order byte of b).
LOW b is identical to b AND OFFH (low-order byte of b).

3.5 Operators

a LE b produces true if a is less than or equal to b, false otherwise.

a GE b produces true if a is greater than or equal to b, false otherwise.
a AND b produces the bitwise logical AND of a and b.
a OR b produces the bitwise logical OR of a and b.

The letters a and b represent operands that are treated as 16-bit unsigned quantities
in the range 0-65535. All arithmetic operators produce a 16-bit unsigned arithmetic
result. Relational operators produce a true (OFFFFH) or false (0000H) 16-bit result.
Logical operators operate bit-by-bit on their operands producing a 16-bit result of
16 individual bit operations. The HIGH and LOW functions always produce a 16-
bit result with a high-order byte of zero. Table 3-2 lists arithmetic, logical, and

relational operators.

Table 3-2. Operators

arithmetic relational logical

+ EQ NOT
- LT AND
* LE OR
/ GT XOR

MOD GE

SHL NE

SHR

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 9

3.5 Operators Programmer’s Utilities Guide

MAC performs all computations during the assembly process as 16-bit unsigned
operations, as described above. The resulting expression must fit the operation code
in which it is used. For example, the expression used in an ADI (add immediate)
instruction must fit into an 8-bit field. Thus, the high-order byte must be zero. If the
computed value does not fit the field, the assembler produces a value error for that
statement.

As an exception to this rule, negative 8-bit values are allowed in 8-bit fields under
the following conditions: if the program attempts to fill an 8-bit field with a 16-bit
value that has all Is in the high-order byte, and the sign bit is set, then the high order
byte is truncated, and no error is reported. This condition arises when a negative
sign is placed in front of a constant. For example, the value -2 is defined and com-
puted as 0-2, producing the 16-bit value OFFFEH, where the high-order byte (OFFH)
contains extended sign bits that are all 1s, and the low-order byte (OFEH) has the
sign bit set. The following instructions do not produce value errors in MAC:

ADI -1 ADI -15 ADI -127 ADI -128 ADI OFF80H

The following instructions produce value errors:

ADI 256 ADI 32768 ADI -129 ADI OFF7FH

The special operator NUL is used in conjunction with macro definition and expan-
sion operations. The NUL operator takes a single operand. NUL must be the last
operator in the operand field.

Expressions can be formed from simple operands such as labels, numeric con-
stants, string constants, and machine operation codes, or from fully enclosed paren-
thesized expressions such as

10420,

10H+37Q

L1/3:

(LZ + 4) SHR 3

(‘a’ and Sfh) + ‘07,

(‘'BB’ + B) OR (PSW + M),
(1+ (2+4C)) shr (A-(B +1))
(HIGH A) SHR 3

where blanks and tabs are ignored between the operators and operands of the
expression.

10 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 3.6 Precedence of Operators

3.6 Precedence of Operators

MAC assumes operators have a relative precedence of application allowing expres-
sions to be written without nested parentheses. The resulting expression has assumed
parentheses that are defined by this relative precedence. The order of application of
operators in unparenthesized expressions is listed below. Operators listed first have
highest precedence. These are applied first in an unparenthesized expression. Opera-
tors listed last have lowest precedence and are applied last. Operators listed on the
same line have equal precedence and are applied from left to right as they are
encountered in an expression:

/ MOD SHL SHR
+ -
EQ LT LE GT GE NE
NOT
AND
OR XOR
HIGH LO

The following expressions are equivalent:

OR b AND NOT ¢ + d SHL e produces
OR (b AND (NOT (c + (d SHL e))))

a * b + c produces (a * b) + ¢

a+ b % c produces a + (b * c)

a MOD b # ¢ SHL d produces ((a MOD b) % ¢) SHL D
a

a

Balanced parenthesized subexpressions can always override the assumed parenthe-
ses. The last expression above can be rewritten to force application of operators in a
different order, as shown below:

(a OR b) AND (NOT c¢) + d4 SHL e

resulting in the assumed parentheses

(a OR b) AND ((NOT c) + (d SHL e))

Note that an unparenthesized expression is well formed only if the expression that
results from inserting the assumed parentheses is well formed.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 11

3.6 Precedence of Operators Programmer’s Utilities Guide

Relational operators can be expressed in either of two forms, as shown in Table
3-3.

Table 3-3. Equivalent Forms
of Relational Operators

< LT
<= LE
= EQ
<> NE
>= GE
> GT

End of Section 3

12 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 4
Assembler Directives

Assembler directives set labels to specific values during assembly, perform condi-
tional assembly, define storage areas, and specify starting addresses in the program.
Each assembler directive is denoted by a pseudo operation that appears in the oper-

w
ation field of the statement. Table 4-1 lists the acceptable pseudo operations. ®
=
3
Table 4-1. Pseudo Operations &
Directive Meaning
ORG sets the program or data origin.
END terminates the physical program.
EQU performs a numeric equate.
SET performs a numeric set or assignment.
IF begins a conditional assembly.
ELSE is an alternate to a previous IF.
ENDIF marks the end of conditional assembly.
DB defines data bytes or strings of data.
DwW defines words of storage (double bytes).
DS reserves uninitialized storage areas.
PAGE defines the listing page size for output.
TITLE enables page titles and options.

In addition to those listed above, several pseudo operations are used in conjunction
with the macro processing facilities. MACRO, EXITM, ENDM, REPT, IRPC, IRP,
LOCAL, and MACLIB are reserved words. They are fully described in Sections 7
and 8. The nonmacro pseudo operations are detailed below.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 13

4.1 The ORG Directive Programmer’s Utilities Guide

4.1 The ORG Directive
The ORG statement takes the form
label ORG expression

where label is an optional program label—an identifier followed by an optional
colon (:)—and expression is a 16-bit expression consisting of operands defined before
the ORG statement. The assembler begins machine code generation at the location
specified in the expression. There can be any number of ORG statements within a
program. There are no checks to ensure that you are not redefining overlapping
memory areas. Note that most programs written for CP/M begin with an ORG 100H
statement that causes machine code generation to begin at the base of the CP/M
Transient Program Area. Programs assembled with RMAC and linked with LINK-80
do not need an ORG 100H statement. (See Sections 13 and 15.)

If the ORG statement has a label, then the label takes on the value given by the
expression. The expression is the next machine code address to assemble. This label
can then be used in the operand field of other statements to represent this expression.

4.2 The END Directive

The END statement is optional in an assembly language program; if present, it
must be the last statement. All statements following the END are ignored. The two
forms of the END statement are

label END
label END expression

where the label is optional. If the first form is used, the assembly process stops, and
the default starting address of the program is taken as 0000. Otherwise, the expres-
sion is evaluated and becomes the program starting address. This starting address is
included in the last record of the Intel format machine code hex file resulting from
the assembly. Most CP/M assembly language programs end with the statement

END 100H

resulting in the default starting address of 100H, the beginning of the Transient
Program Area.

14 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.3 The EQU Directive

4.3 The EQU Directive

The EQU (equate) statement names synonyms for particular numeric values. The
directive takes the form:

label EQU expression

The label must be present, and it must not label any other statement. The assembler
evaluates the expression and assigns this value to the identifier given in the label field.
The identifier is usually a name describing the value in a more human-oriented man-
ner. You can use this name throughout the program as a parameter for certain
functions. Suppose, for example, that data received from a teletype appears on an
input port, and data is sent to the teletype through the next output port in sequence.
The series of equate statements that can define these ports for a particular hardware
environment is shown below.

TTYBASE EQU 10H iBASE TTY PORT
TTYIN EQU TTYBASE iTTY DATA IN
TTYOUT EQU TTYBASE+1 iTTY DATA OUT

At a later point in the program, the statements that access the teletype could appear
as

IN TTYIN iREAD TTY DATA TO A
ouT TTYOUT iWRITE DATA FROM A

making the program more readable than the absolute /O port addresses. If the
hardware environment is later redefined to start the teletype communications ports
at 7FH instead of 10H, the first statement need only be changed to

TTYBASE EQU 7FH iBASE PORT NUMBER FOR TTY

and the program can be reassembled without changing any other statements.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 15

4.4 The SET Directive Programmer’s Utilities Guide

4.4 The SET Directive
The SET statement is similar to the EQU, taking the form
label SET expression

except that the label, taken as a variable name, can occur on other SET statements
within the program. The expression is evaluated and becomes the current value
associated with the label. Thus, unlike the EQU statement, where a label takes on a
single value throughout the program, the SET statement can assign different values
to a name at different parts of the program. In particular, the SET statement gives
the label a value that is valid from the current SET statement to the point where the
label occurs on the next SET statement. The use of SET is similar to the EQU, except
that SET is used more often to control conditional assembly within macros.

4.5 The IF, ELSE, and ENDIF Directives

The IF, ELSE, and ENDIF directives define a range of assembly language state-
ments to be included or excluded during the assembly process. The IF and ENDIF
statements alone can bound a group of statements to be conditionally assembled, as
shown in the following example:

IF expression
statement#1
statement#2

statement#n
ENDIF

Upon encountering the IF statement, the assembler evaluates the expression following
the IF. All operands in the expression must be defined ahead of the IF statement. If
the expression evaluates to a nonzero value, then statement#1 through statement#n
are assembled. If the expression evaluates to zero, then the statements are listed but
not assembled.

Conditional assembly is often used to write a single generic program that includes
a number of possible alternative subroutines or program segments, where only a few
of the possible alternatives are to be included in any given assembly. Listings 4-1 and
4-2 give an example of such a program.

16 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.5 IF, ELSE, and ENDIF

Assume that a console device, either a teletype or a CRT, is connected to an 8080
microcomputer through I/O ports. Due to the electronic environment, the current
loop teletype is connected through ports 10H and 11H, while the RS-232 CRT is
connected through ports 20H and 21H. The program continually loops, reading and
writing console characters. The program shown below operates either with a teletype
or a CRT, depending on the value of the symbol TTY.

Listing 4-1 shows an assembly for the teletype environment. Listing 4-2 shows the
assembly for a CRT-based system. Note that the assembler leaves the leftmost 16
columns blank when statements are skipped due to a false condition.

CP/M MACRO ASSEM 2.0 #001 Teletyrpe Echo Prodram
FFFF = TRUE EQU OFFFFH iDEFINE TRUE
0000 = FALSE EQU NOT TRUE 3DEFINE FALSE
FFFF = TTY EQU TRUE iSET TTY ON
0010 = TTYBASE EQU 10H iBASE OF TTY PORTS
0020 = CRTBASE EQU 20H iBASE OF CRT PORTS
IF TTY iASSEMBLE TTY PORTS
TITLE ‘Teletype Echo Program’
0010 = CONIN EQU TTYBASE iCONSOLE INPUT
0011 = coNouT EQU TTYBASE+1 iCONSOLE OuTt
ENDIF
IF NOT TTY SFASSEMBLE CRT PORTS
TITLE 'CRT Echo Program’
CONIN EQU CRTBASE iCONSOLE IN
CONOUT EQU CRTBASE+1 iCONSOLE OuT
ENDIF
i
0000 DB10O ECHO: IN CONIN iREAD CONSOLE
CHARACTER
0002 D311~ out coNouT iWRITE CONSOLE
CHARACTER
0004 C30000 JMP ECHO
0007 END

Listing 4-1. Conditional Assembly with TTY True

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 17

4.5 IF, ELSE, and ENDIF Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 CRT Echo Prodram
FFFF = TRUE EQU OFFFFH iDEFINE TRUE
0000 = FALSE EQU NOT TRUE DEFINE FALSE
0000 = TTY EQU FALSE iSET CRT ON
0010 = TTYBASE EQU 10H iBASE OF TTY PORTS
0020 = CRTBASE EQU 20H iBASE OF CRT PORTS
IF TTY iASSEMBLE TTY PORTS
TITLE ‘Teletypre Echo Program’
CONIN EQU TTYBASE iCONSOLE INPUT
CONOUT EQU TTYBASE+1 iCONSOLE 0OuT
ENDIF
IF NOT TTY iASSEMBLE CRT PORTS
TITLE ‘CRT Echo Program’
0020 = CONIN EQU CRTBASE iCONSOLE 1IN
0021 = CONOUT EQU CRTBASE+1 FCONSOLE OuT
ENDIF
i
0000 DB20 ECHO: IN CONIN iREAD CONSOLE
CHARACTER
0002 D321 ouT CONOUT iWRITE CONSOLE
CHARACTER
0004 C30000 JMP ECHO
0007 END

Listing 4-2. Conditional Assembly with TTY False

18 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

4.5 IF, ELSE, and ENDIF

The ELSE statement can be used as an alternative to an IF statement. The ELSE
statement must occur between the IF and ENDIF statements. The form is

IF expression
statement#1
statement#2
statement#n
ELSE
statement#n + 1
statement#n + 2
statement#m
ENDIF

If the expression produces a nonzero (true) value, then statements 1 through n are
assembled as before. However, the assembly process skips statements n+1 through
m. When the expression produces a zero value (false)) MAC skips statements 1
through n and assembles statements n+1 through m. For example, the conditional
assembly shown in Listings 4-1 and 4-2 can be rewritten as shown in Listing 4-3.

CP/M MACRO ASSEM 2.0 #001
FFFF = TRUE EQU
0000 = FALSE EQU
0000 = TTY EQU
0010 = TTYBASE EOQU
0020 = CRTBASE EOQU

IF
TITLE
CONIN EQU
CONOUT EQU
ELSE
TITLE
0020 = CONIN EQU
0021 = CONOUT EQU
ENDIF
i
0000 DB20 ECHO: IN
0002 D321 ouT
0004 C30000 JMP
0007 END

CRT Echo Prodram

OFFFFH SDEFINE TRUE

NOT TRUESDEFINE FALSE

FALSE iSET CRT ON

10H iBASE OF TTY PORTS

20H iBASE OF CRT PORTS

TTY iASSEMBLE TTY PORTS

‘Teletyre Echo Program’

TTYBASE iCONSOLE INPUT

TTYBASE+1 iCONSOLE OuT
iASSEMBLE CRT PORTS

‘CRT Echo Prodram’

CRTBASE iCONSOLE 1IN

CRTBASE+! iCONSOLE OuT

CONIN iREAD CONSOLE CHARACTER
CONOUT iWRITE CONSOLE CHARACTER
ECHO

Listing 4-3. Conditional Assembly Using ELSE for Alternate

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

19

4.

IF, ELSE, and ENDIF Programmer’s Utilities Guide

roperly balanced IF, ELSE, and ENDIF statements can be completely contained

within the boundaries of outer encompassing conditional assembly groups. The struc-

ture outlined below shows properly nested IF, ELSE, and ENDIF statements:

G

1S

IF exp#1
group#1

IF exp#2
group#2
ELSE
group#3
ENDIF
group#4
ELSE
group#5

IF exp#3
group#6
ENDIF
group#7
ENDIF

oups 1 through 7 are sequences of statements to be conditionally assembled, and

exp#1 through exp#3 are expressions that control the conditional assembly. If exp#1

true, then group#1 and group#4 are always assembled, and groups 5, 6, and 7

are skipped. Further, if exp#1 and exp#2 are both true, then group#2 is also included

in

the assembly. Otherwise, group#3 is included. If exp#1 produces a false value,

groups 1, 2, 3, and 4 are skipped, and groups 5 and 7 are always assembled. If
exp#3 is true under these circumstances, then group#6 is also included with § and

7.
Li

Otherwise, it is skipped in the assembly. A structure similar to this is shown in
sting 4-4, where literal true/false values show conditional assembly selection.

20 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

4.5 IF, ELSE, and ENDIF Programmer’s Utilities Guide

There can be up to eight pending IFs or ELSEs with unresolved ENDIFs at any
point in the assembly, but the assembly usually becomes unreadable after two or
three levels or nesting. The nesting level restriction also holds, however, for pending
IFs and ELSEs during macro evaluation. Nesting level overflow produces an error
during assembly.

FFFF = TRUE EQU OFFFFH iDEFINE TRUE
0000 = FALSE EQU NOT TRUE iDEFINE FALSE
IF FALSE
MUI Al
IF TRUE
MUI A2
ELSE
MVI Ay3
ENDIF
MVI Ad
ELSE
0000 3EO0S MUI AsS
IF TRUE
0002 3E06 MVI A+6
ELSE
MVUI A7
ENDIF
0004 3E08 MVI A8
ENDIF
END

Listing 4-4. Sample Program Using Nested IF, ELSE, and ENDIF

4.6 The DB Directive

The DB directive defines initialized storage areas in single-precision (byte) format.
The statement form is
label DB e#l, e#2, ..., e#n

where the label is optional, and e#1 through e#n are either expressions that produce
8-bit values (the high-order eight bits are zeros, or the high-order nine bits are ones),
or are ASCII strings no longer than 64 characters each. There is no practical restric-
tion on the number of expressions included on a single source line. The assembler
evaluates expressions and places them into the machine code sequentially following
the last program address generated.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 21

4.6 The DB Directive Programmer’s Ultilities Guide

String characters are similarly placed into memory, starting with the first character
and ending with the last character. Strings longer than two characters cannot be used
as operands in more complicated expressions. They must stand alone between the
commas. Note that ASCII characters are always placed in memory with the high-
order (parity) bit reset to zero. Further, recall that there is no translation from lower
to upper-case within strings. The optional label can be used to reference the data
area throughout the program. The following are examples of valid DB statements:

dataz: DB 041+2+3+44+546
DB data and Offh+5:377Q0,1+2+3+4
sidgnon: DB ‘please tvyPe vour name:’‘scrsl1f 0

DB ‘AB’ SHR 8y ‘C’y ‘DE’ AND 7FH
DB HIGH datas LOW (signon GT data)

4.7 The DW Directive

The DW statement is similar to the DB statement except double-precision (two-
byte) words of storage are initialized. The form of the DW statement is

label DW e#1, e#2, ..., e#n

where the label is optional, and e#1 through e#n are expressions that produce 16-
bit values. Note that ASCII strings one or two characters long are allowed, but
strings longer that two characters are disallowed. In all cases, the data storage is
consistent with the 8080 processor; the least significant byte of the expression is
stored first in memory, followed by the most significant byte. The following are
examples of properly formed DW statements:

doub: DW Offefh, doub+d4, signon-$,255+255
DW ‘a’y 3¢ ‘AB’y ‘CD’y doub LT sidnon

22 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.8 The DS Directive

4.8 The DS Directive
The DS statement reserves an area of uninitialized memory and takes the form
label DS expression

where the label is optional. The assembler begins subsequent code generation after
the area reserved by the DS. Thus, the DS statement given above has exactly the
same effect as the statement sequences:

label: EQU § ;CURRENT CODE LOC
ORG $+expression ;MOVE PAST AREA

4.9 The PAGE and TITLE Directives

The PAGE and TITLE pseudo operations give you control over the output format-
ting that is sent to the PRN file or directly to the printer device. The forms for the
PAGE statement are

PAGE
PAGE expression

If the PAGE statement stands alone, an ASCII CTRL-L (form-feed) is sent to the
output file after the PAGE statement has been printed. The PAGE command is often
issued directly ahead of major sections of an assembly language program, such as a
group of subroutines, to cause the next statement to appear at the top of the follow-

ing page.

The second form of the PAGE command specifies the output page size. In this case,
the expression following the PAGE pseudo operation determines the number of out-
put lines to be printed on each page. If the expression is zero, there are no page
breaks. The print file is simply a continuous sequence of annotated output lines. If
the expression is nonzero, then the page size is set to the value of the expression.
Form-feeds are issued to cause page ejects when this count is reached for each page.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TG DIGITAL RESEARCH 23

4.9 PAGE and TITLE Directives Programmer’s Utilities Guide

The assembler initially assumes that

PAGE 56

is in effect, producing a page eject at the beginning of the listing and at each 56-line
increment.

The TITLE directive takes the form
TITLE string-constant

where the string-constant is an ASCII string enclosed in apostrophes, not exceeding
64 characters in length. If a TITLE pseudo operation is given during the assembly,
each page of the listing file is prefixed with the title line, preceded by a standard
MAC header. The title line thus appears as

CP/M MACRO ASSEM n.n #ppp string-constant

where n.n is the MAC version number, #ppp is the page number in the listing, and
string-constant is the string given in the TITLE pseudo operation. MAC initially
assumes that the TITLE operation is not in effect. When specified, the title line and
the blank line following the title are not included in the line count for the page. No
more than one TITLE statement is included in a program. Similarly, only one PAGE
statement with the expression option is included.

If a TITLE statement is included, and the Symbol Table is being appended to the
PRN file (see Section 10), then the SYM file also contains the title at the beginning
of the symbol listing with page breaks given by either the default or specified value
of the PAGE statement.

24 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 4.10 A Sample Program

4.10 A Sample Program Using Pseudo Operations

The program in Listing 4-5 demonstrates the pseudo operations available in MAC.
The sample program, called TYPER, operates in the CP/M environment by selecting
one of three messages for output at the console. This program is created using the
ED program, assembled using MAC, and then placed into COM file format using
the CP/M LOAD function. After these steps have been accomplished, TYPER exe-
cutes at the Console Command Processor level of CP/M by typing one of the
commands:

TYPER A
TYPER B
TYPER C

to select message A, B, or C for printing. The TYPER program loads under the CCP
and jumps to the label START where the 8080 stack is initialized. The TYPER
program then prints its sign-on message:

‘tvper’ version 1.0

The program then retrieves the first character typed at the console following the
command TYPER. This character should be A, B, or C. If one of these letters is not
specified, then TYPER reboots the CP/M system to give control back to the CCP. If
a valid letter is provided, TYPER selects one of the three messages (MESS@A,
MESS@B, or MESS@C) and prints it at the console before returning to CP/M.

The TITLE and PAGE statements produce a title at the beginning of each page;
page size is 33 lines, excluding the title lines. Form-feeds are suppressed. A number
of EQU statements at the beginning improve program readability. Note that through-
out the program the exclamation point allows several simple assembly language
statements on the same line. Although multiple statements make the program more
compact, they often decrease the overall readability of the source program. Note also
that the program terminates without the END statement. The END statement is
necessary only if a starting address is specified. The END statement is often included,
however, to maintain compatibility with other assemblers.

The DB statements labeled by SIGNON contain simple strings of characters and
expressions that produce single-byte values. The DW statement following TABLE
defines the base address of each string, corresponding to A, B, and C. Finally, the DS
statement at the end of the program reserves space for the stack defined within the
TYPER program.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 25

4.10 A Sample Program Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 Typer Prodram

TITLE ‘Typer Prodram’

PAGE 33

i PRINT THE MESSAGE SELECTED BY THE INPUT COMMAND AsBs OR C \
000A = VERS EQU 10 FiVERSION NUMBER N.N
0000 = BooT EQU 0000H iREBOOT ENTRY POINT
0005 = BDOS EQU 0005H iBDOS ENTRY POINT
005C = TFCB EQU 005CH iDEFAULT FILE CONTROL BLOCK (GET A:B:s OR C)
0002 = WCHAR EQU 2 FiWRITE CHARACTER FUNCTION
000D = CR EQU ODH iCARRIAGE RETURN CHARACTER
000A = LF EQU 0AH iLINE FEED CHARACTER
0010 = STKSIZ EQU 16 iSIZE OF LOCAL STACK (IN DOUBLE BYTES)

1)
0100 ORG 100H iORIGIN AT BASE OF TPA
0100 C31201 JMP START iJUMP PAST THE MESSAGE SUBROUTINE

)

WMESSAGE:

FWRITE THE STRING AT THE ADDRESS GIVEN BY HL ‘TIL 00

0103 7EB7CB MOV AyM! ORA A! RZ SRETURN IF AT 00
0106 SFOEOZES MOV EsA! MVI C,WCHAR! PUSH H SREADY TO PRINT
010A CDOSOOEL CALL BDOS! POP H iCHARACTER PRINTED: GET NEXT
010E 23C30301 INX H! JMP WMESSAGE

1)

START: SENTER HERE FROM THE CCP, RESET TO LOCAL STACK N’
0112 31C101 LXI SPSTACK iSET TO LOCAL STACK
0115 213701 LXI H+SIGNON iWRITE THE MESSAGE
0118 CD0301 CALL WMESSAGE i‘TYPER' VERSION NN

1
0118 3AS5D0O LDA TFCB+1 iGET FIRST CHAR TYPED AFTER NAME
011E DB41 Sul ‘A’ iNORMALIZE T0 0412
0120 FEO3 CPI TABLEN SCOMPARE WITH THE TABLE LENGTH
0122 D20000 JNC BOOT iREBOOT IF NOT VALID

COMPUTE INDEX INTO ADDRESS TABLE BASED ON A’S VALUE

Listing 4-5. TYPER Program Listing

26 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Ultilities Guide

0125
0126
0128
0128
012C
012D
012E
012F
0130
0131
0134

0137
0147
014A

014D
0003
0153
0167
0182

01A1

CP/M MACRO ASSEM 2.0

SF

1600

214001

19

19

SE

23

56

EB

CD0301

C30000
i
i
SIGNON:

2774797065

312E30

0D0A00

i
TABLE:

5301670182

= TABLEN
i

7468697320MESSEA:

796F752073MESSEB:

7468697320MESSEC:

Y

STACK:

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

MOV
MVI
LXI
DAD
DAD
MoV
INX
Mov
XCHG
CALL
JMP

DATA
DB

DB
DB

4.10 A Sample Program

#002 Tyrper Prodram
EA iLOW ORDER INDEX
D0 SEXTENDED TO DOUBLE PRECISION
H)»TABLE iBASE OF THE TABLE TO INDEX
D iSINGLE PRECISION INDEX
D sDOUBLE PRECISION INDEX
E M iLOW ORDER BYTE TO E
H
DM iHIGH ORDER MESSAGE ADDRESS TO DE
iREADY FOR PRINTOUT
WMESSAGE SMESSAGE WRITTEN TO CONSOLE
BOOT {REBOOT,» GO BACK TO CCP LEVEL
AREAS
‘‘’'typer’’ version '
VERS/10+°0'y '+'y VERS MOD 10 +'0'
CR+LF+0 3END OF MESSAGE

i0F MESSAGE BASE ADDRESSES

DW
EQU

DB
DB
DB

DS

STACK

MESSEA yMESSEB yMESSEC

($-TABLE) /2 SLENGTH OF TABLE

‘this is message a’sCRILF 40

‘vyou selected b this time’»CRsLF 0

‘this messade comes out for c’»CRsLF+0

STKSIZ#2 iRESERVES AREA FOR
Listing 4-5. (continued)

End of Section 4

27

Section 5
Operation Codes

Operation codes, found in the operation field of the statement, form the principal
components of assembly language programs. MAC accepts all the standard mnemon-
ics for the Intel 8080 microcomputer. These standard mnemonics are detailed in the
8080 Assembly Language Programming Manual, published by Intel. Labels are optional
on each input line and, if included, take the value of the instruction address immedi-
ately before the instruction is issued by the assembler. The individual operators are
listed briefly in the following sections. See the Intel documentation for exact operator
details. In this section, operation codes are categorized for discussion; a sample assembly
shows the hexadecimal codes produced for each operation. The following notation is
used throughout:

e3 represents a 3-bit value in the range 0-7 that usually takes one of the
predefined register values A, B, C, D, H, L, M, SP, or PSW

e8 represents an 8-bit value in the range 0-255; signed 8-bit values are
also allowed in the range —128 through +127

elé represents a 16-bit value in the range 0-65535
where €3, €8, and e16 can be formed from an arbitrary combination of operands

and operators in a well-formed expression. In some cases, the operands are restricted
to particular values within the range, such as the PUSH instruction.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TQ DIGITAL RESEARCH 29

wn
(9}
(g
.
o
)
%]

5.1 Jumps, Calls, and Returns Programmer’s Utilities Guide

5.1 Jumps, Calls, and Returns

In some cases, the condition flags are tested to determine whether or not to take
the jump, call, or return. The forms are shown below. The jump instructions are

JMP el6 JNZ e16 JZ el6
JNC el6 JC e16 JPO el6
JPE e16 JP el16 JM el6

The call instructions are

CALL el6 CNZ el6 CZ el6
CNC el6 CCelé6 CPO el6
CPE el6 CP el6 CM el6

The return instructions are

RET RNZ RZ
RNC RC RPO
RPE RP RM

The restart instruction takes the form:
RST e3

and performs exactly the same function as the instruction CALL e3*8 except that
RST e3 requires only one byte of memory.

Listing 5-1 shows the hexadecimal codes for each instruction, along with a short
comment on each line describing the function of the instruction.

30 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0000
0003
0006
0009
000C
000F
0012
0015
0018

0018
001E
0021
0024
0027
002A
0020
0030
0033

0036
0037

0038
0039
003A
0038
003C
003D
003E
003F
0040

0002

0041

CP/M MACRD ASSEM 2.0 #001 8080 JUMPS, CALLS: AND RETURNS

C31B00
€25C00
CA0001
D21F00
DA4142
E21700
EAODOO
F24100
FA1BOO

CD3600
€43800
CC0001
D43A00
DC0000
E43200
EC0900
F44100
FC4100

Cc7
DF

c9
Co
c8
DO
D8
EOQ
E8
FO
F8

L) 3X e

-
—

- -

w
—

- as we

AMMA:

TITLE ‘8080 JUMPS, CALLS+ AND RETURNS'’

JUMPS ALL REQUIRE A 16-BIT OPERAND

JMP L1 $JUMP UNCONDITIONALLY TO LABEL
JNZ L1+’A’ §JUMP ON NON ZERO TO LABEL

JZ 100H iJUMP ON ZERO CONDITION TO LABEL
JNC Li+4d iJUMP ON NO CARRY TO LABEL

JC ‘AB’ iJUMP ON CARRY TO LABEL

JPO $+8 iJUMP ON PARITY 0ODD TO LABEL

JPE L1/2 iJUMP ON EVEN PARITY TO LABEL

JP GAMMA iJUMP ON POSITIVE RESULT TO LABEL
JM LOW L1 §JUMP ON MINUS TO LABEL

CALL OPERATIONS ALL REQUIRE A 16-BIT OPERAND

CALL S1 iCALL SUBROUTINE UNCONDITIONALLY
CNZ S1+X iCALL SUBROUTINE IF NON ZERO FLAG
cz 100H iCALL SUBROUTINE IF ZERO FLAG

CNC S1+4 iCALL SUBROUTINE IF NO CARRY FLAG
cc S1 MOD 3iCALL SUBROUTINE IF CARRY FLAG
CPO $+8 iCALL SUBROUTINE IF PARITY 0DD
CPE S1-% iCALL SUBROUTINE IF PARITY EVEN
cp GAMMA iCALL SUBROUTINE IF POSITIVE

CM GAM$MA SCALL SUBROUTINE IF MINUS FLAG

PROGRAMMED RESTART (RST) REQUIRES 3-BIT OPERAND
(RST X IS EQUIVALENT TO CALL X#8)

RST 0 iRESTART TO LOCATION 0O

RST X+1

RETURN INSTRUCTIONS HAVE NO OPERAND

RET iRETURN FROM SUBROUTINE
RNZ iRETURN IF NON ZERO

RZ iRETURN IF ZERO FLAG SET
RNC iRETURN IF NO CARRY FLAG
RC iRETURN IF CARRY FLAG SET
RPO iRETURN IF PARITY IS 0ODD
RPE iRETURN IF PARITY IS EVEN
RP iRETURN IF POSITIVE RESULT
RM iRETURN IF MINUS FLAG SET
EQU 2

END

Listing 5-1. Assembly Showing Jumps, Calls, Returns, and Restarts

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

5.1 Jumps, Calls, and Returns

31

5.2 Immediate Operand Instructions Programmer’s Utilities Guide

5.2 Immediate Operand Instructions

Several instructions load single- or double-precision registers or single-precision
memory locations with constant values. Other instructions perform immediate arith-
metic or logical operations on the accumulator (register A). The move immediate
instruction takes the form:

MVI e3,e8
where e3 is the register to receive the data given by the value e8. The expression €3
must produce a value corresponding to one of the registers A, B, C, D, E, H, L, or

the memory location M, which is addressed by the HL register pair.

The accumulator immediate operations take the form:

ADI 8 ACI €8 SUI 8 SBI 8
ANI 8 XRI €8 ORI €8 CPI €8

where the operation is always performed on the accumulator using the immediate
data value given by the expression e8.

The load extended immediate instructions take the form:
LXI e3,el6
where e3 designates the register pair to receive the double-precision value given by

el6. The expression e3 must produce a value corresponding to one of the double-
precision register pairs B, D, H, or SP.

32 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 5.2 Immediate Operand Instructions

Listing 5-2 shows the accumulator immediate operations in an assembly language
program and briefly describes each instruction.

CP/M MACRO ASSEM 2.0 #001 IMMEDIATE OPERAND INSTRUCTIONS

TITLE ‘IMMEDIATE OPERAND INSTRUCTIONS’

MVUI USES A REGISTER (3-BIT) OPERAND AND 8-BIT DATA
0000 OBFF MUI B+25S iMOVE IMMEDIATE A+B+C+DsE+HsL M

ALL REMAINING IMMEDIATE OPERATIONS USE A REGISTER

0002 C601 ADI 1 iADD IMMEDIATE TO A W/0 CARRY

0004 CEFF ACI OFFH $ADD IMMEDIATE TO A WITH CARRY

0006 D613 Sul L1+3 iSUBTRACT FROM A W/0 BORROW (CARRY)
0008 DE10 SB1 LOW L1 $SSUBTRACT FROM A WITH BORROW (CARRY)
000A EB02 ANI $ AND 7 SLOGICAL AND WITH IMMEDIATE DATA
000C EE3C XRI 1111$00B5LOGICAL XOR WITH IMMEDIATE DATA
000E FBFD ORI -3 iLOGICAL OR WITH IMMEDIATE DATA

’ L1:

0010 END

Listing 5-2. Assembly Using Immediate Operand Instructions

5.3 Increment and Decrement Instructions

The 8080 set includes instructions for incrementing or decrementing single- and
double-precision registers. The instruction forms for single-precision registers are

INR e3 DCR €3
where €3 produces a value corresponding to register A, B, C, D, H, L, or M. These
registers correspond to the byte value at the memory location addressed by HL. The
double-precision instructions are

INX e3 DCXe3

where 3 must be equivalent to one of the double-precision register pairs B, D, H, or
SP.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 33

5.3 Increment and Decrement Programmer’s Utilities Guide

Listing 5-3 shows a sample assembly language program using both single- and
double-precision increment and decrement operations.

CP/M MACRO ASSEM 2.0 #001 INCREMENT AND DECREMENT INSTRUCTIONS

TITLE ‘INCREMENT AND DECREMENT INSTRUCTIONS'

i INSTRUCTIONS REQUIRE REGISTER (3-BIT) OPERAND
0000 1IC INR E iBYTE INCREMENT A+BC+DsE+HsL M
0001 3D DCR A iBYTE DECREMENT A B +C+DsEsHsL M
0002 33 INX SP i16-BIT INCREMENT B.DsH,SP
0003 OB DCX B i16-BIT DECREMENT B/D+H,SP
0004 END

Listing 5-3. Assembly Containing Increment
and Decrement Instructions

5.4 Data Movement Instructions

A number of 8080 instructions move data from memory to the CPU and from the
CPU to memory. Data movement instructions also include a number of register-to-
register move operations. The single-precision move register instruction takes the
form:

MOV e3, e3

where the e3 and e 3’ expressions each produce a single-precision register A, B, C,D, E, H,
L, or M, where the M register corresponds to the memory location addressed by HL. The
register named by e3 always receives the 8-bit value given by the register expression e3'.
The instruction is often read as move to register €3 from register 3. The instruction
MOV B,H would thus be read as move to register B from register H. Note that the
instruction MOV M,M is not allowed.

The single-precision load and store extended operations take the form:
LDAX e3 STAX e3
where €3 is a register expression that must produce one of the double-precision

register pairs B or D. The 8-bit value in register A is either loaded from (LDAX) or
stored to (STAX) the memory location addressed by the specified register pair.

34 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESEARCH

Programmer’s Utilities Guide 5.4 Data Movement Instructions

The load and store direct instructions operate on either the A register for single-
precision operations, or on the HL register pair for double-precision operations.
Load and store direct instructions take the form:

LHLD elé6 SHLD el6 LDA el6 STA el6

where €16 is an expression that produces the memory address to obtain (LHLD,
LDA) or store (SHLD, STA) the data value.

The stack pop and push instructions perform double-precision load and store oper-
ations, with the 8080 stack as the implied memory address. The forms are

POP e3 PUSH e3

where €3 must evaluate to one of the double-precision register pairs PSW, B, D, or
H.

The input and output instructions are also in this category, even though they
receive and send their data to the electronic environment external to the 8080 pro-
cessor. The input instruction reads data to the A register; the output instruction sends
data from the A register. In both cases, the data port is given by the data value that
follows the instruction. The forms are

IN e8 OUT e8

A set of instructions transfers double-precision values between registers and the
stack. These instructions are

XTHL PCHL SPHL XCHG

Listing 5-4 lists these instructions in an assembly language program and briefly describes
them.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 35

5.4

0000

0001
0002

0003
0006
0009
000C

000F
0010

0011
0013

0015
0016
0017
0018

0019
0018
0004
0010

36

Data Movement Instructions

Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 DATA/MEMORY/REGISTER MOVE OPERATIONS

78

2A1900
221800
3A1900
326400

F1
Cs

DBOB
D3FE

E3
E9
F9
EB

TITLE ‘DATA/MEMORY/REGISTER MOVE OPERATIONS'’

THE MOV INSTRUCTION REQUIRES TWO REGISTER OPERANDS

(3-BITS) SELECTED FROM A+B:C+sD+EsHsy OR M (MM INVALID)

MoV A4B iMOVE DATA TO FIRST REGISTER FROM
iSECOND

LOAD/STORE EXTENDED REQUIRE REGISTER PAIR B OR D
LDAX B iLOAD ACCUM FROM ADDRESS GIVEN BY BC
STAX D iSTORE ACCUM TO ADDRESS GIVEN BY DE

LOAD/STORE DIRECT REQUIRE MEMORY ADDRESS

LHLD D1 iLOAD HL DIRECTLY FROM ADDRESS D1
SHLD Di1+2 iSTORE HL DIRECTLY TO ADDRESS D1+2
LDA D1 iLOAD THE ACCUMULATOR FROM DI

STA D1 SHL 23iSTORE THE ACCUMULATOR TO D1 SHL 2

PUSH AND POP REQUIRE PSW OR REGISTER PAIR FROM B.D.H
PoP PSHW iLOAD REGISTER PAIR FROM STACK
PUSH B iSTORE REGISTER PAIR TO THE STACK

INPUT/0UTPUT INSTRUCTIONS REQUIRE 8-BIT PORT NUMBER
IN K+2 iREAD DATA FROM PORT NUMBER TO A
out OFEH iWRITE DATA TO THE SPECIFIED PORT

MISCELLANEOUS REGISTER MOVE OPERATIONS

KTHL iEXCHANGE TOP OF STACK WITH HL
PCHL iPC RECEIVES THE HL VALUE

SPHL iSP RECEIVES THE HL VALUE

XCHG iEXCHANGE DE AND HL

END OF INSTRUCTION LIST

DS 2 iDOUBLE WORD TEMPORARY
DS 2 iANOTHER TEMPORARY
EQU 4 iLITERAL VALUE

END

Listing 5-4. Assembly Using Various Register/Memory Moves

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 5.5 ALU Operations

5.5 Arithmetic Logic Unit Operations

The 8080 set includes instructions that operate between the accumulator and sin-
gle-precision registers, including operations on the A register and carry flag. The
accumulator/register instructions are

ADD e3 ADC e3 SUB e3 SBB €3
ANA e3 XRA e3 ORA e3 CMP €3

where €3 produces a value corresponding to one of the single-precision registers A,
B, C, D, E, H, L, or M, where the M register is the memory location addressed by
the HL register pair.

The accumulator/carry operations given below operate upon the A register, or
carry bit, or both.

DAA CMA STC CMC
RLC RRC RAL RAR

The function of each instruction is listed in the comment line shown in Listing 5-5.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 37

5.5 ALU Operations Programmer’s Utilities Guide

0000
0001
0002
0003
0004
0005
0006
0007

0008

0009
000A
0008
000C
000D
000E
000F
0010

0011

CP/M MACRD ASSEM 2.0 #001 ARITHMETIC LOGIC UNIT OPERATIONS

80
80
94
29
Al
AF
BO
BC

09

27
2F
37
3F
07
OF
17
1F

TITLE ‘ARITHMETIC LOGIC UNIT OPERATIONS'

ASSUME OPERATION WITH ACCUMULATOR AND REGISTER
WHICH MUST PRODUCE Ay By Cy» D» E» Hy Ly OR M

- ws e e

ADD B iADD REGISTER TO A W/0 CARRY
ADC L iADD TO A WITH CARRY INCLUDED
suB H iSUBTRACT FROM A W/0 BORROW
SBB B+1 iSUBTRACT FROM A WITH BORROW
ANA C iLOGICAL AND WITH REGISTER
XRA A FLOGICAL XOR WITH REGISTER
ORA B iLOGICAL OR WITH REGISTER

CMP H iCOMPARE REGISTER+ SETS FLAGS

i DOUBLE ADD CHANGES HL PAIR ONLY
DAD B iDOUBLE ADD B,D»H,SP TO HL

i REMAINING OPERATIONS HAVE NO OPERANDS

DAA iDECIMAL ADJUST REGISTER A USING LAST OF
CMA iCOMPLEMENT THE BITS OF THE A REGISTER
STC iSET THE CARRY FLAG TO 1
CMC SCOMPLEMENT THE CARRY FLAG
RLC i8-BIT ACCUM ROTATE LEFT+ AFFECTS CY
RRC i8-BIT ACCUM ROTATE RIGHT: AFFECTS CY
RAL i9-BIT CY/ACCUM ROTATE LEFT
RAR i9-BIT CY/ACCUM ROTATE RIGHT

1]
END

Listing 5-5. Assembly Showing ALU Operations

The double-precision add instruction performs a 16-bit addition of a register pair
(B, D, H, or SP) into the 16-bit value in the HL register pair. This addition produces
the 16-bit (unsigned) sum of the two values. The sum is placed into the HL register
pair. The form is

DAD e3

38

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 5.6 Control Instructions

5.6 Control Instructions

The four remaining instructions in the 8080 set are control instructions. These take
the forms:

HLT
DI
El
NOP

They stop the processor (HLT), enable the interrupt system (EI), disable the interrupt
system (DI), or perform a no-operation (NOP).

End of Section §

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 39

Section 6
An Introduction to
Macro Facilities

The fundamental difference between the Digital Research ASM and MAC assem-
blers is that ASM provides only the facilities for assembling 8080 operation codes,
and MAC includes a powerful macro processing facility. MAC implements the indus-
try standard Intel macro definition, which includes the following pseudo operations.

Macro definitions allow groups of instructions to be stored and substituted in the
source program as the macro names are encountered. Definitions and macro calls
can be nested; symbols can be constructed through concatenation using the special
& operator, and locally defined symbols can be created using the LOCAL pseudo
operation. Macro parameters can be formed to pass arbitrary strings of text to a
specific macro for substitution during expansion.

The MACLIB (macro library) feature allows the programmer to define a set of
macros, equates, and sets and automatically includes them in a program. A macro
library can contain an instruction set for another central processor that is not directly
supported by the MAC built-in mnemonics. The macro library can also include
general purpose input/output macros used in programs that operate in the CP/M
environment to perform peripheral or disk I/O functions.

IRPC, IRP, and REPT pseudo operations repeat source statements under control
of a count or list of characters or items to be substituted each time the assembler
rereads the statements. This feature is particularly useful in generating groups of
assembly language statements with similar structure, such as a set of File Control
Blocks where only the filetype is changed in each statement.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 41

O Uond3g

6 Introduction to Macro Facilities Programmer’s Utilities Guide

To illustrate the power of macro facility, consider the macro library shown in
Listing 6-1, which resides in a disk file called MSGLIB.LIB. This macro library con-
tains macro definitions that have standard instruction sequences for program startup,
message typeout, and program termination. The program shown in Listing 6-2 pro-
vides an example of the use of this macro library. The assembly shown in Listing
6-2 lists both the macro calls and the statements in macro expansions that generate
machine code. The statements marked by + in Listing 6-2 are generated from the
macro calls. The remaining statements are a part of the calling program.

The macro call
ENTCCP 10

in Listing 6-2 shows a specific expansion of ENTCCP (enter from CCP). ENTCCP is
defined in Listing 6-1. The macro call causes MAC to retrieve the definition—the
text between MACRO and ENDM in Listing 6-1—and substitute this text following
the macro call in Listing 6-2. Upon entry to the program from CCP, this macro saves
the stack pointer (SP) into a variable called @ENTSP for later retrieval. The stack
pointer is then reset to a local area for the remainder of the program execution.

The size of the local stack is defined by the macro parameter named in the macro
definition as SSIZE (see Listing 6-1), and filled in at the call with the value 10. The
ENTCCP macro reserves space for a local stack of SSIZE=10 double bytes (2*10
bytes) and, after setting up the stack, branches around this reserved area to continue
the program execution.

42 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

6 Introduction to Macro Facilities Programmer’s Utilities Guide

i SIMPLE MACRO LIBRARY FOR MESSAGE TYPEOUT

REBOOT EQU 0000H iWARM START ENTRY POINT

TPA EQU 0100H iTRANSIENT PROGRAM AREA

BDOS EQU Q0OS5H iSYSTEM ENTRY POINT

TYPE EQU 2 SWRITE CONSOLE CHARACTER FUNCTION
CR EQU ODH iCARRIAGE RETURN

LF EQU 0AH iLINE FEED

1

iMACRO DEFINITIONS

CHROUT MACRO SWRITE A CONSOLE CHARACTER FROM REGISTER A
MUT C+TYPE §3iTYPE FUNCTION
CALL BDOS $JENTER THE BDOS TO WRITE THE CHARACTER
ENDM
i
TYPEOUT MACRO PMESSAGE $TYPE LITERAL MESSAGE AT CONSOLE
LOCAL PASTSUB §3JUMP PAST SUBROUTINE INITIALLY
JMP PASTSUB
MSGOUT: i3THIS SUBROUTINE PRINTS THE MESSAGE STARTING AT HL ‘TIL 00
Moy EM $INEXT CHARACTER TO E
Moy AE $3iT0 ACCUM TO TEST FOR 00
ORA A §8=007
RZ $IRETURN IF END OF MESSAGE
INX H $OTHERWISE MOVE TO NEXT CHARACTER AND PRINT

.
kl
.
1

PUSH H iSAVE MESSAGE ADDRESS
CHROUT
POP H i iRECALL MESSAGE ADDRESS
Jup MSGOUT §3iFOR ANOTHER CHARACTER
PASTSUB:
L)
i REDEFINE THE TYPEOUT MACRO AFTER THE FIRST INVOCATION
TYPEOUT MACRO ??MESSAGE

LOCAL TYMSG i iLABEL THE LOCAL MESSAGE
LOCAL PASTM

LXI HyTYMSG §35ADDRESS THE LITERAL MESSAGE
CALL MSGOUT iiCALL THE PREVIOUSLY DEFINED SUBROUTINE
JMP PASTM
i INCLUDE THE LITERAL MESSAGE AT THIS POINT
TYMSG: DB ‘FROM CONSOLE: &??MESSAGE’CRsLF 40O
i ARRIVE HERE TO CONTINUE THE MAINLINE CODE
PASTM: ENDM
TYPEOUT <?MESSAGE:>
ENDM

Listing 6-1. A Sample Macro Library

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 43

6 Introduction to Macro Facilities Programmer’s Utilities Guide

ENTCCP MACRO SSIZE iENTER PROGRAM FROM CCP, RESERVE 2#SSIZE STACK LOCS
LOCAL START 7 JAROUND THE STACK

LXI H»0
DAD SP iiSP VALUE IN HL
SHLD BENTSP iiENTRY SP
LXI SP,@STACK{iSET TO LOCAL STACK
JMP START
IF NUL SSIZE
DS 32 iiDEFAULT 16 LEVEL STACK
ELSE
DS 2#SS1ZE
ENDIF
@STACK: iiLOW END OF STACK
BENTSP: DS 2 iiENTRY SP

START: ENDM

Y

RETCCP MACRO iRETURN TO CONSOLE PROCESSOR
LHLD BENTSP i iRELDAD CCP STACK
SPHL
RET iiBACK TO THE CCP
ENDM

1

ABORT MACRO iABORT THE PROGRAM

JMP REBOOT
ENDM
i
i END OF MACRO LIBRARY

Listing 6-1. (continued)

44 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0

0100

01004210000
0103+39
01044222101
0107+312101
010A+C32301
010D+

0121+

0123+C33401
0126+5E
0127+87
0128+CB
0129+23
012A+ES
012B+0E0Q2
012D+CDOS00Q
0130+E1
0131+C32601
0134+213001
0137+CD2601
013A+C36701

013D+46524F4D20?70003:

0167+217001
016A+CD2601
016D+C39B0O1

0170+46524F4D20??0005:

019B8+21A401
019E+CD2601
01A1+C3CEOL

01A4+46524FAD20770007:

01CE+2A2101
01D1+F9
01D2+C9
0103

BENTSP:

001 S

TITLE

MACLIB
ORG

USE THE
ENTCCP
LXI

DAD
SHLD
LXI

JMP

DS

TYPEQUT
JMP
Mov
ORA
RZ
INX
PUSH
MUI
CALL
POP
JMP
LXI
CALL
JMP

TYPEOUT
LXI
CALL
JMP

TYPEOUT
LXI
CALL
JMP

RETCCP
LHLD
SPHL
RET
END

6 Introduction to Macro Facilities

AMPLE MESSAGE OUTPUT MACRO

'SAMPLE MESSAGE QUTPUT MACRO’

MSGLIB $INCLUDE THE MACRO LIBRARY

TPA {ORIGIN AT THE TRANSIENT AREA

MACRO LIBRARY TO TYPE TWO MESSAGES :
10 {ENTER PROGRAM,s RESERVE 10 LEVEL STACK
Hio

SP

BENTSP

SP+@STACK

??0001

2%10

DS 2

<THIS IS THE FIRST MESSAGE>

2?0002

E WM

A

H

H

CyTYPE

BDOS

H

MSGOUT

H»??20003

MSGOUT

2?0004

08 ‘FROM CONSOLE: THIS IS THE FIRST MESSAGE ' CR.LF+0
<THIS IS THE SECOND MESSAGE:
H»??000S

MSGOUT

7?0006

08 "FROM CONSOLE: THIS IS THE SECOND MESSAGE'/CR,LF 0

<THIS IS THE THIRD MESSAGE:

H??20007

MSGOUT

2?0008

08 ‘FROM CONSOLE: THIS IS THE THIRD MESSAGE'CR,LF0

SRETURN TO THE CONSOLE COMMAND PROCESSOR
BENTSP

Listing 6-2. A Sample Assembly Using the MACLIB Facility

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

45

6 Introduction to Macro Facilities Programmer’s Utilities Guide
it

Consider also the special macro statements used in Listing 6-1 within the body of
the ENTCCP macro. The LOCAL statement defines the label START within the
macro body. Each LOCAL statement causes the macro assembler to construct a
unique symbol starting with ?? each time it is encountered. Thus, multiple macro
calls reference unique labels that do not interfere with one another. ENTCCP also
contains a conditional assembly statement that uses the NUL operator; this tests
whether a macro parameter has been supplied or not. In this case, the ENTCCP
macro can be started by

ENTCCP

with no actual parameter, resulting in a default stack size of 32 bytes. The following
sections give exact details and examples.

The TYPEOUT macro is a more complicated example of macro use. Note that this

macro contains a redefinition of itself within the macro body. The structure of
TYPEOUT is

TYPEOUT MACRO TMESSAGE
TYPEOUT MACRO TT?MESSAGE
ENDM

+ e

ENDM

where the outer definition of TYPEOUT completely encloses the inner definition. The
outer definition is active upon the first invocation of TYPEOUT, but upon comple-
tion, the nested inner definition becomes active.

To see the use of such a nested structure, consider the TYPEOUT macro. Each
time it starts, TYPEOUT prints the message sent as an actual parameter at the
console device. The typeout process, however, can be easily handled with a short
subroutine. Upon the first invocation, include the subroutine inline. Then simply call
this subroutine on subsequent invocations of TYPEOUT. Thus, the outer definition
of TYPEOUT defines the utility subroutine and then redefines itself, so that the
subroutine is called, rather than including another copy of the utility subroutine.

46 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 6 Introduction to Macro Facilities

Note that macro definitions are stored in the symbol table area of the assembler,
so each macro reduces the remaining free space. MAC allows double semicolon
comments to indicate that the comment itself is to be ignored and not stored with
the macro. Thus, comments with a single semicolon are stored with the macro and
appear in each expansion; comments with two preceding semicolons are listed only
when the macro is defined.

Listing 6-2 gives three examples of TYPEOUT invocations, with three messages
that are sent as actual parameters. Note that the LOCAL statement causes a unique
label to be created (2?0002) in the place of PASTSUB, which is used to branch
around the utility subroutine included inline between addresses 0126H and 0133H.
The utility subroutine is then called, followed by another jump around the console
message, also included inline. However, subsequent invocations of TYPEOUT use
the previously included utility subroutine to type their messages.

Although this example concentrates all macro definitions in a separate macro library,
macros are often defined in the mainline (.ASM) source program. In fact, many
programs that use macros do not use the external macro library facility at all.

The rest of this manual examines many applications of macros. Macro facilities
can simplify the programming task by abstracting from the primitive assembly lan-
guage levels. That is, you can define macros that provide more generalized functions
that are allowed at the pure assembly language level, such as macro languages for a
given application, improved control facilities, and general purpose operating systems
interfaces. The remainder of this manual first introduces the individual macro forms,
and then presents several uses of the macro facilities in realistic applications.

End of Section 6

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 47

Section 7
Inline Macros

The simplest macro facilities involve the REPT (repeat), IRPC (indefinite repeat
character), and IRP (indefinite repeat) macro groups. All these forms cause the assem-
bler to reread portions of the source program under control of a counter or list of
textual substitutions. These groups are listed below in order of increasing complexity.

7.1 The REPT-ENDM Group

The REPT-ENDM group is written as a sequence of assembly language statements
starting with the REPT pseudo operation and terminated by an ENDM pseudo oper-
ation. The form is

label: REPT expression
statement-1
statement-2

statement-n
label: ENDM

where the labels are optional. The expression following the REPT is evaluated as a
16-bit unsigned count of the number of times that the assembler is to read and
process statements 1 through n, enclosed within the group.

Listing 7-1 shows an example of the use of the REPT group. In this case, the
REPT-ENDM group generates a short table of the byte values 5, 4, 3, 2, and 1.
Upon entry to the REPT, the value of NXTVAL is 5. This is taken as the repeat
count, even though NXTVAL changes within the REPT. The macro lines that do not
generate machine code are not listed in the repetition, while the lines that do generate
code are listed with a + sign after the machine code address. Full macro tracing is
optional, however, using assembly parameters. (See Section 10.)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 49

2
0
N
.
o
>
~N

7.1 The REPT-ENDM Group

Programmer’s Utilities Guide

CP/M MACRO ASSEM 2.0 #001 SAMPLE REPT STATEMENT

0100 ORG 100H iBASE OF TRANSIENT AREA
TITLE ‘SAMPLE REPT STATEMENT'
i THIS PROGRAM READS INPUT PORT O AND INDEXES

INTO A TABLE

i BASED ON THIS VALUE. THE TABLE VALUE IS FETCHED

AND SENT
H TO OUTPUT PORT 0

0005 = MAXVAL EOQU 3 iLARGEST VALUE TO PROCESS
0100 DBOO RLOOP: IN 0 iREAD THE PORT VALUE
0102 FEOS CPI MAXVYAL 3iTOO LARGE?
0104 D20001 JNC RLOOP iIGNORE INPUT IF INVALID
0107 211401 LXI HsTABLE 3FADDRESS BASE OF TABLE
010A 5F MoV EsA iLOW ORDER INDEX TO E
010B 1600 MUT D0 fHIGH ORDER 00 FOR INDEX
010D 19 DAD D iHL HAS ADDRESS OF ELEMENT
010E 7E MoV AsM iFETCH TABLE VALUE FOR OUTPUT
010F D300 ouTt 0 §SEND TO THE QUTPUT PORT AND LOOP
0111 C30001 JMP RLOOP iFOR ANOTHER INPUT
)
i GENERATE A TABLE OF VALUES MAXVAL sMAXVAL-1144491
0005 # NXTVAL SET MAXVAL SSTART COUNTER AT MAXVAL
TABLE: REPT NXTVAL
DB NXTVAL SFILL ONE (MORE) ELEMENT
NXTUAL SET NXTVAL-1§31AND DECREMENT FILL VALUE
ENDM
0114+05 DB NXTVAL SFILL ONE (MORE) ELEMENT
0115+04 DB NXTVAL SFILL ONE (MORE) ELEMENT
0116+03 DB NXTUAL SFILL ONE (MORE) ELEMENT
0117+02 DB NXTVAL SFILL ONE (MORE) ELEMENT
0118+01 DB NXTVUAL SFILL ONE (MORE) ELEMENT
0119 END

Listing 7-1. A Sample Program Using the REPT Group

If a label appears on the REPT statement, its value is the first machine code
address that follows. This REPT label is not reread on each repetition of the loop.
The optional label on the ENDM is reread on each iteration; thus constant labels,
not generated through concatenation or with the LOCAL pseudo operation, generate

phase errors if the repetition count is greater than 1.

50 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.1 The REPT-ENDM Group

Properly nested macros, including REPTSs, can occur within the body of the REPT-
ENDM group. Further, nested conditional assembly statements are also allowed,
with the added feature that conditionals beginning within the repeat group automat-
ically terminate upon reaching the end of the macro expansion. Thus, IF and ELSE
pseudo operations are not required to have their corresponding ENDIF when they
begin within the repeat group, although the ENDIF is allowed.

7.2 The IRPC-ENDM Group

Similar to the REPT group, the IRPC-ENDM group causes the assembler to reread
a bounded set of statements, taking the form:

label: IRPC identifier,character-list
statement-1
statement-2

statement-n

label: ENDM

where the optional labels obey the same conventions as in the REPT-ENDM group.
The identifier is any valid assembler name, not including embedded $ separators.
Character list denotes a string of characters terminated by a delimiter (space, tab,
end-of-line, or comment).

The IRPC controls the reread process as follows: the statement sequence is read
once for each character in the character list. On each repetition, a character is taken
from the character list and associated with the controlling identifier, starting with the
first and ending with the last character in the list. Thus, an IRPC header of the form

IRPC ?X :ABCDE

rereads the statement sequence that follows (to the balancing ENDM) five times,
once for each character in the list ABCDE. On the first iteration, the character A is
associated with the identifier ?X. On the fifth iteration, the letter E is associated with
the controlling identifier.

On each iteration, the macro assembler substitutes any occurrence of the control-
ling identifier by the associated character value. Using the preceding IRPC header, an
occurrence of ?X in the bounds of the IRPC-ENDM group is replaced by the char-
acter A on the first iteration, and by E on the last iteration.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 51

7.2 The IRPC-ENDM Group Programmer’s Utilities Guide

The programmer can use the controlling identifier to construct new text strings
within the body of the IRPC by using the special concatenation operator, denoted by
an ampersand (&) character. Again using the preceding IRPC header, the macro
assembler replaces LAB&?X with LABA on the first iteration. LABE is produced on
the final iteration. The concatenation feature is most often used to generate unique
label names on each iteration of the IRPC reread process.

The controlling identifier is not usually substituted within string quotes because
the controlling identifier can appear as a part of a quoted message. Thus, the macro
assembler performs substitution of the controlling identifier when it is preceded or
followed by the ampersand operator. Further, all alphabetics outside string quotes
are translated to upper-case, but no case translation occurs within string quotes. So
the controlling identifier must not only be preceded or followed by the concatenation
operator within strings, but it must also be typed in upper-case.

Listings 7-2a and 7-2b illustrate the use of the IRPC-ENDM group. Listing 7-2a
shows the original assembly language program, before processing by the macro
assembler. The program is typed in both upper- and lower-case. Listing 7-2b shows
the output from the macro assembler, with the lower-case alphabetics translated to
upper-case. Three IRPC groups are shown in this example. The first IRPC uses the
controlling identifier reg to generate a sequence of stack push operations that save
the double-precision registers BC, DE, and HL. The lines generated by this group are
marked by a + sign following the machine code address.

construct a data table

save relevant regdisters

enter: 1irpPc redsbdh
Push red iisave red
endm

1
i initialize a partial ascii table
irpc c+1AbS?E
datakc: db ‘&C"’

endm
i
i restore redisters

irpc redshdb

POP red iirecall reg
endm

ret

end

Listing 7-2a. Original (.ASM) File with IRPC Example

52 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.2 The IRPC-ENDM Group

CONSTRUCT A DATA TABLE

SAVE RELEVANT REGISTERS

M e we =

NTER: IRPC REGBDH
PUSH REG i iISAVE REG
ENDM
0000+CS PUSH B
0001+D5 PUSH D
0002+ES PUSH H

INITIALIZE A PARTIAL ASCII TABLE
IRPC Cr1AB$?E@

DATARC: DB ‘&C
ENDM

0003+31 DATAL: DB ‘1’
0004+41 DATAA: DB ‘A’
0005+42 DATAB: DB ‘B’
0006+24 DATA$: DB ‘$’
0007+3F DATA?: DB i
0008+40 DATA@: DB ‘e’

i
i RESTORE REGISTERS
IRPC REG »HDB

POP REG iiRECALL REG
ENDM

0009+E1 POP H

000A+D1 POP D

000B+C1 POP B

000C C9 RET

0000 END

Listing 7-2b. Resulting (.PRN) File with IRPC Example

The second IRPC shown in Listing 7-2a uses the controlling identifier C to gener-
ate a number of single-byte constants with corresponding labels. Although the con-
trolling variable was typed in lower-case, it has been translated to upper-case during
assembly. The string ‘&C’ occurs within the group and, because the controlling
variable is enclosed in string quotes, it must occur next to an ampersand operator
and be typed in upper-case for the substitution to occur properly. On each iteration
of the IRPC, a label is constructed through concatenation, and a DB is generated
with the corresponding character from the character list.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 53

7.2 The IRPC-ENDM Group Programmer’s Utilities Guide

Substitution of the controlling identifier by its associated value can cause infinite
substitution if the controlling identifier is the same as the character from the charac-
ter list. For this reason, the macro assembler performs the substitution and then
moves along to read the next segment of the program, rather than rereading the
substituted text for another possible occurrence of the controlling identifier. Thus, an
IRPC of the form

IRPC C+1ACHTE

produces

DATAC: DB ‘C’

in place of the DB statement at the label DATAA in Listing 7-2b.

The last IRPC restores the previously saved double-precision registers and performs
the exact opposite function from the IPRC at the beginning of the program.

When no characters follow the identifier portion of the IRPC header, the group of
statements is read once, and the controlling identifier is deleted when it is read. It is
replaced by the null string.

7.3 The IRP-ENDM Group

The IRP (indefinite repeat) functions like the IRPC, except that the controlling
identifier can take on a multiple character value. The form of the IRP group is

label: IRP identifier,1<4c1-1,c1-2,...,c1-n1>2
statement-1
statement-2

statement-m

label: ENDM

where the optional labels obey the conventions of the REPT and IRPC groups. The
identifier controls the iteration, as follows. On the first iteration, the character list
given by c1-1 is substituted for the identifier wherever the identifier occurs in the
bounded statement group (statements 1 through m). On the second iteration, c1-2
becomes the value of the controlling identifier. Iteration continues in this manner
until the last character list, denoted by c1-n, is encountered and processed. Substitu-
tion of values for the controlling identifier is subject to the same rules as in the IRPC.

54 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.3 The IRP-ENDM Group

Note rules for substitution within strings and concatenation of text using the amper-
sand & operator. Controlling identifiers are always ignored within comments.

Listing 7-3 gives several examples of IRP groups. The first occurrence of the IRP
in Listing 7-3 is a typical use of this facility—to generate a jump vector at the
beginning of a program or subroutine. The IRP assigns label names (INITIAL, GET,
PUT, and FINIS) to the controlling identifier ?LAB and produces a jump instruction
for each label by rereading the IRP group, substituting the actual label for the formal
name on each iteration.

The second occurrence of the IRP group in Listing 7-3 points out substitution
conventions within strings for both IRPC and IRP groups. The controlling identifier
IS takes on the values A-ROSE and ? on the two iterations of the IRP group,
respectively.

The controlling identifier is replaced by the character lists in the two occurrences
of &IS and IS& inside the string quotes because they are both adjacent to the
ampersand operator. is& is not replaced because the controlling identifier is typed in
lower-case, and there is no automatic translation to upper-case within strings. The
occurrences of IS within the comments are not substituted.

The last IRP group shows the effects of an empty character list. The value of the
controlling identifier becomes the null string of symbols and, in the cases where ?X
is replaced, produces the statement:

DB + ¢

DB produces no machine code and is therefore not listed in the macro expansion.
The three statements

DB ‘?x’ DB ’‘?X‘’ DB ‘&’

appear in the expansions because the ‘?x’ is typed in lower-case and thus is not
replaced. The ‘?X’ does not appear next to an ampersand in the string and is thus
not replaced. In the last case, only one of the double ampersands is absorbed in the
‘88 ?X&’ string. Here, the two ampersands surrounding ?X are removed because
they occur immediately next to the controlling identifier within the string.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 55

7.3 The IRP-ENDM Group Programmer’s Utilities Guide

Substitution rules outside of string quotes and comments are much less compli-
cated; the controlling identifier is replaced by the current character-list value when-
ever it occurs in any of the statements within the group. The ampersand operator
can be placed before or after the controlling identifier to cause the preceding or
following text to be concatenated.

The actual forms for the character lists (cl-1 through cl-n) are more general than
stated here. In particular, bracket nesting is allowed, and escape sequences allow
delimiters to be ignored. The exact details of character list forms are discussed in the
macro parameter sections.

56 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

7.3 The IRP-ENDM Group

i CREATE A JUMP VECTOR USING THE IRP GROUP

IRP
JMP
ENDM
0000+C30C00 JMP
0003+C34300 JMP
0006+C34600 JMP
0009+C34900 JMP

— e e

NITIAL:
000C 211200 LXI
000F C35100 JMP
CHRS: IRP
DB
DB
ENDM
0012+412D524FS3 DB
0022+412D524F53 DB
0032+3F20485320 DB
0038+3F2069736E DB
'

0043 C35100 GET: JMP
i
0046 C35100 PUT: JMP
i
0049 C35100 FINIS: JMP
IRP
DB
DB
DB
DB
DB
ENDM
004C+3F78 DB
004E+3FS8 DB
0050+26 DB
ENDCASE:
0051 C9 RET
0052 END

?LAB<CINITIALGETPUT,FINIS>
?LAB i iGENERATE THE NEXT JUMP

INITIAL
GET

PUT
FINIS

INDIVIDUAL CASES

H+CHRS

ENDCASE
I1S+<A-ROSE+?>
‘&IS IS IS&’
‘&IS isn’‘t is&’

ilIS IS &IS

'A-ROSE IS A-ROSE’
‘A-ROSE isn’‘t is&’
‘? 18 7' iIS IS &IS
‘? isn’’t isk&’

iIS IS &IS

ENDCASE

ENDCASE

ENDCASE
PR
I?xl
I?Xl
‘&KX
"IN
‘REPXE

-
'
8!

Listing 7-3. A Sample Program Using IRP

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

57

7.4 The EXITM Statement Programmer’s Utilities Guide

7.4 The EXITM Statement

The EXITM pseudo operation can occur within the body of a macro. Upon
encountering the EXITM statement, the macro assembler aborts expansion of the
current macro level. The EXITM pseudo operation occurs in the context

macro-heading
statement-1

label: EXITM

statement-n
ENDM

where the label is optional, and macro-heading denotes the REPT, IRPC, or IRP
group heading as described above. The EXITM statement can also be used with the
MACRO group, as discussed in later sections.

The EXITM statement usually occurs within the scope of a surrounding condi-
tional assembly operation. If the EXITM occurs in the scope of a false conditional
test, the statement is ignored, and macro expansion continues. If the EXITM occurs
within the scope of a true conditional, the expansion stops where the EXITM is
encountered. Assembly statement processing continues after the ENDM of the group
aborted by the EXITM statement.

Two examples of the EXITM statement are shown in Listing 7-4. This listing
shows two IRPCs used to generate DB statements up to eight characters long. These
IRPCs might occur within the context of another macro definition, such as in the
generation of CP/M File Control Block (FCB) names. In both cases, the variable LEN
counts the number of filled characters. If the count reaches eight characters, the
EXITM statement is assembled under a true condition, and the IRPC stops expansion.

The first IRPC generates the entire string SHORT because the length of the char-
acter list is less than eight characters. Each evaluation of LEN = 8 produces a false
value, and the EXITM is skipped. This IRPC terminates by exhausting the character
list through its five repetitions.

The second IRPC stops generation at the eighth character of the list LONG-
STRING when the conditional LEN EQ 8 produces a true value, resulting in assem-
bly of the EXITM statement. Note that = and EQ are equivalent operators. The
EXITM causes immediate termination of the expansion process.

58 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.4 The EXITM Statement

The second IRPC also contains a conditional assembly without the balancing ENDIF.
In this case, the ENDIF is not required because the conditional assembly begins
within the macro body. The ENDM serves the dual purpose of terminating unmatched
IFs and marking the physical end of the macro body.

SAMPLE USE OF THE EXITM STATEMENT WITH THE IRPC MACRO

THE FOLLOWING IRPC FILLS AN AREA CF MEMORY WITH AT MOST
EIGHT BYTES OF DATA:

0000 = LEN SET 0 SINITIALIZE LENGTH TO ©
IRPC NSHORT
DB ‘&N’
LEN SET LEN+1
IF LEN = 8
EXITM iSTOP MACRO IF AREA IS FULL
ENDIF
ENDM
0000+53 DB ‘s’
0001+48 DB ‘H’
0002+4F DB ‘o
0003+52 DB ‘R’
0004+54 DB ‘T

i
i
i THE FOLLOWING MACRO PERFORMS EXACTLY THE SAME FUNCTIONS AS
i SHOWN ABOVEs BUT ABORTS EXPANSION WHEN LENGTH EXCEEDS 8
i
L

0000 = EN SET 0 FiINITIALIZE LENGTH COUNTER
IRPC N+LONGSTRING
DB ‘&N’
LEN SET LEN+1
IF LEN EQ 8
EXITM
ENDM
0005+4C DB L’
0006+4F DB ‘0’
0007+4E DB ‘N’
0008+47 DB ‘G’
0009+53 DB ‘S’
000A+54 DB ‘T’
000B+52 DB ‘R’
000C+49 DB ‘1’
1
000D END

Listing 7-4. Use of the EXITM Statement in Macro Processing

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 59

7.5 The LOCAL Statement Programmer’s Utilities Guide

7.5 The LOCAL Statement

It is often useful to generate labels for jumps or data references unique on each
repetition of a macro. This facility is available through the LOCAL statement. The
LOCAL statement takes the form:

macro-heading
label: LOCAL id-1,id-2,. . .,id-n

ENDM
where the label is optional, macro-heading is a REPT, IRPC, or IRP heading, already
discussed, or a MACRO heading as discussed in following sections, and id-1 through
id-n represent one or more assembly language identifiers that do not contain embed-
ded $ separators. The LOCAL statement must occur within the body. It should

appear immediately following the macro header to be compatible with the standard
Intel macro facility.

Upon encountering the LOCAL statement, the assembler creates a new frame of
the form

?2nnnn

for association with each identifier in the LOCAL list, where nnnn is a four-digit
decimal value assigned in ascending order starting at 0001. Whenever the assembler
encounters one of the identifiers in the list, the corresponding created name is substi-
tuted in its place. Substitution occurs according to the same rules as those for the
controlling identifier in the IRPC and IRP groups.

Avoid the use of labels that begin with the two characters ??, so that no conflicting
names accidentally occur. Symbols that begin with ?? are not usually included in the
sorted symbol list at the end of assembly. (See Section 10 to override this default.) A
total of 9999 LOCAL labels can be generated in any assembly. An overflow error
occurs if more generations are attempted.

Listing 7-5a shows an example of a program using the LOCAL statement to gen-
erate both data references and jump addresses. This program uses the CP/M operat-
ing system to print a series of four generated messages, as shown in the output from
the program in Listing 7-5b.

60 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.5 The LOCAL Statement

The program begins with equates that define the operating system primary entry
point, along with names for the nongraphic ASCII characters CR (carriage return)
and LF (line-feed). The REPT statement that follows contains a LOCAL statement
with the identifiers X and Y. These identifiers are used throughout the body of the
REPT group.

On the first iteration, X’s value becomes 220001, the first generated label; Y’s value
becomes 2?0002. The substitution for X and Y within the generated strings follows
the rules stated for controlling identifiers in previous sections.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 61

7.5 The LOCAL Statement Programmer’s Utilities Guide

Upon completion, four messages are generated along with four CALLs to the
PRINT subroutine. At each call to PRINT, the message address is present in the DE
register pair. The subroutine loads the print string function number into register C
(C=9) and calls the operating system to print the string value.

0100 ORG 100H iBASE OF THE TRANSIENT AREA
0005 = BDOS EQU 5 iBDOS ENTRY POINT

000D = CR EQU ODH iCARRIAGE RETURN (ASCII)
000A = LF EQU 0OAH iLINE FEED (ASCII)

SAMPLE PROGRAM SHOWING THE USE OF ‘LOCAL’

REPT 4 iREPEAT GENERATION 4 TIMES
LOCAL XaY i IGENERATE TWO LABELS
JMP Y iJUMP PAST THE MESSAGE
X DB ‘print x=&X» vy=&Y'CRsLF+'$’
Y: LXI DX iREADY PRINT STRING
CALL PRINT
ENDM
0100+C31E01 JMP ??0002 §JUMP PAST THE MESSAGE
0103+7072696E747?7?0001: DB ‘Print x=??0001, y=??0002'CRs+LF,‘$"’
011E+110301 ?70002: LXI D,??0001 iREADY PRINT STRING
0121+CD9101 CALL PRINT
0124+C34201 JMP ??0004 §JUMP PAST THE MESSAGE
0127+7072696E747?70003: DB ‘print x=770003s y=??0004',CRILF,'$’
0142+112701 ??0004: LXI D»?70003 iREADY PRINT STRING
0145+CD9101 CALL PRINT
0148+C36601 JMP ??0006 §JUMP PAST THE MESSAGE
014B+7072696E747?7?0005: DB ‘print x=??0005, y=??0006'CRILF+‘$"’
0166+114B01 ??0006: LXI D+??0005 iREADY PRINT STRING
0169+CD9101 CALL PRINT
01BC+C3B8A01 JMP ??0008 §JUMP PAST THE MESSAGE
016F+7072696E747?70007: DB ‘print x=??0007, y=??0008'CRILF,‘$"’
018A+116FO01 ??0008: LXI D4?70007 iREADY PRINT STRING
018D+CDO101 CALL PRINT
0190 C9 RET
)
0191 OE09 PRINT: MUVI €19
0193 CDOS00 CALL BDOS
0186 C9 RET
0197 END

Listing 7-5a. Assembly Program Using the LOCAL Statement

62 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 7.5 The LOCAL Statement

print x=?70001, y=770002
print x=?70003, y=?70004
print x=?70005, ¥=?7?0006
print x=?70007, y=770008

Listing 7-5b. Output from Program in Listing 7-5a

Upon completion of the program, control returns to the Console Command Pro-
cessor (CCP) for further operations. This program uses the default stack passed by
the CCP. About 16 levels are available. This example is primarily intended to show
operation of the LOCAL statement. Consult the CP/M documentation for BDOS
interface conventions to follow this example completely.

End of Section 7

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 63

Section 8
Definition and Evaluation of
Stored Macros

The stored macro facility of MAC allows you to name a sequence of assembly
language prototype statements to be included at selected places throughout the assembly
process. Macro parameters can be supplied in various forms at the point of expan-
sion which are substituted as the prototype statements are reread. These parameters
tailor the macro expansion to a particular case.

Although similar in concept to subroutine definition and call, macro processing is
purely textual manipulation at assembly time. That is, macro definitions cause source
text to be saved in the assembler’s internal tables, and any expansion involves manip-
ulating and rereading the saved text.

You can combine macro features in various ways to greatly enhance the available
facilities. Specifically, you can

® easily manipulate generalized data definitions

® define macros for generalized operating systems interface
® define simplified program control structures

® support nonstandard instruction sets, such as the Z80®

Finally, well-designed macros for an application can achieve a measure of machine
independence.

g UONDIS

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 65

8.1 The MACRO-ENDM Group Programmer’s Utilities Guide

8.1 The MACRO-ENDM Group

The prototype statements for a stored macro are given in the macro body enclosed
by the MACRO and ENDM pseudo operations, taking the general form

macname MACRO d-1,d-2,...,d-n
statement-1
statement-2

statement-m

label: ENDM

where the macname is any nonconflicting assembly language identifier; d-1 through
d-n constitutes a (possibly empty) list of assembly identifiers without embedded $
separators, and statement-1 through statement-m are the macro prototype state-
ments. The identifiers denoted by d-1 through d-n are called dummy parameters for
this macro. Although they must be unique within the macro body, dummy parame-
ters can be identical to any program identifiers outside the macro body without
causing a conflict. The prototype statements can contain any properly balanced assembly
language statements or groups, including nested REPTs, IRPCs, MACROs, and IFs.

The prototype statements are read and stored in the assembler’s internal tables
under the name give by macname. They are not processed until the macro is expanded.

The following section gives the expansion process.

The label preceding the ENDM is optional.

8.2 Calling a Macro

The macro text stored through a MACRO-ENDM group can be brought out for
processing through a statement of the form

label: macname a-1,a-2,...,a-n
where the label is optional, and macname has previously occurred as the identifier

on a MACRO heading. The actual parameters a-1 through a-n are sequences of
characters separated by commas and terminated by a comment or end-of-line.

66 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.2 Calling a Macro

Upon recognition of the macname, the assembler first pairs off each dummy
parameter in the MACRO heading (d-1 through d-n) with the actual parameter text
(a-1 through a-n). The assembler associates the first dummy parameter with the first
actual parameter (d-1 is paired with a-1), the second dummy with the second actual,
and so forth until the list is exhausted. If more actuals are provided than dummy
parameters, the extras are ignored. If fewer actuals are provided, then the extra
dummy parameters are associated with the empty string (a text string of zero length).
The value of a dummy parameter is not a numeric value, but is instead a textual
value consisting of a sequence of zero or more ASCII characters.

After each dummy parameter is assigned an actual textual value, the assembler
rereads and processes the previously stored prototype statements and substitutes each
occurrence of a dummy parameter by its associated actual textual value, according
to the same rules as the controlling identifier in an IRPC or IRP group.

Listings 8-1 and 8-2 provide examples of macro definitions and invocations. List-
ing 8-1 begins with the definition of three macros, SAVE, RESTORE, and WCHAR.
The SAVE macro contains prototype statements that save the principal CPU registers
(PUSH PSW, B, D, and H). The RESTORE macro restores the principal registers
(POP H, D, B, and PSW). The WCHAR macro contains the statements necessary to
write a single character at the console using a CP/M BDOS call.

The occurrence of the SAVE macro definition between MACRO and ENDM causes
the assembler to read and save the PUSHs, but does not assemble the statements into
the program. Similarly, the statements between the RESTORE MACRO and the
corresponding ENDM are saved, as are the statements between the WCHAR MACRO
and ENDM statements. The fact that the assembler is reading the macro definition is
indicated by the blank columns in the leftmost 16 columns of the output listing.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 67

8.2 Calling a Macro Programmer’s Utilities Guide

Referring to Listing 8-1, note that machine code generation starts following the
SAVE macro call. The prototype statements that were previously stored are reread
and assembled, with a + between the machine code address and the generated code
to indicate that the statements are being recalled and assembled from a macro defi-
nition. The SAVE macro has no dummy parameters in the definition, so no actual
parameters are required at the point of invocation.

The SAVE call is immediately followed by an expansion of the WCHAR macro.
The WCHAR macro, however, has one dummy parameter, called CHR, which is
listed in the macro definition header. This dummy parameter represents the character
to pass to the BDOS for printing. In the first expansion of the WCHAR macro, the
actual parameter H becomes the textual value of the dummy parameter CHR. Thus,
the WCHAR macro expands with a substitution of the dummy parameter CHR by
the value H. The CHR is within string quotes, so it is typed in upper-case and
preceded by the ampersand operator. Following the reference to WCHAR, the pro-
totype statements are listed with the + sign to indicate that they are generated by
the macro expansion.

68 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0100 ORG
0005 = BDOS EQU
0002 = CONOUT EQU
1
SAVE MACRO
PUSH
PUSH
PUSH
PUSH
ENDM
;
RESTORE MACRO
POP
POP
POP
POP
ENDM
;
WCHAR MACRO
MVI
MVI
CALL
ENDM
;
; MAIN
SAVE
0100+F5 PUSH
0101+C5 PUSH
0102+D5 PUSH
0103+E5 PUSH
WCHAR
0104+0E02 MVI
0106+1E48 MVI
0108+CD0500 CALL
WCHAR
010B+0E02 MVI
010D+1E49 MVI
010F+CD0O500 CALL
RESTORE
0112+E1 POP
0113+D1 POP
0114+C1 POP
0115+F1 POP
0116 C9 RET
0117 END
Listing 8-1.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

100H

VT oI

CHR
CCONOUT
E+'&CHR’
BDOS

PSHW

B

D

H

H
C,CONOUT
Ev'H'
BDOS

1
C,CONOUT
Es'17
BDOS

e e e o

8.2 Calling a Macro

iBASE OF TRANSIENT AREA
iBDOS ENTRY POINT
iCHARACTER OUT FUNCTION

iSAVE ALL CPU REGISTERS

IRESTORE ALL REGISTERS

iWRITE CHR TO CONSOLE
i iCHAR OUT FUNCTION
iiCHAR TO SEND

PROGRAM STARTS HERE

iSAVE REGISTERS UPON ENTRY

iSEND ‘H’ TO CONSOLE

iSEND

‘1’ TO CONSOLE

iRESTORE CPU REGISTERS

iRETURN TO CCP

Example of Macro Definition and Invocation

69

8.2 Calling a Macro Programmer’s Utilities Guide

The second invocation of WCHAR is similar to the first except that the dummy
parameter CHR is assigned the textual value I, causing generation of a MVI E, ‘I’ for
this case.

After the listing of the second WCHAR expansion, the RESTORE macro starts,
causing generation of the POP statements to restore the register state. The RESTORE
is followed by a RET to return to the CCP following the character output.

This program saves the registers upon entry, typing the two characters HI at the
console, restoring the registers, and then returning to the Console Command Proces-
sor. The SAVE and RESTORE macros are used here for illustration and are not
required for interface to the CCP, since all registers are assumed to be invalid upon
return from a user program. Further, this program uses the CCP stack throughout.
This stack is only eight levels deep.

Listing 8-2 shows another macro for printing at the console. In this case, the
PRINT macro uses the operating system call that prints the entire message starting at
a particular address until the $ symbol is encountered. The PRINT macro has a
slightly more complicated structure: two dummy parameters must be supplied in the
invocation. The first parameter, called N, is a count of the number of carriage return
line-feeds to send after the message is printed. The second parameter, called MES-
SAGE, is the ASCII string to print that must be passed as a quoted string in the
invocation.

The LOCAL statement within the macro generates two labels denoted by PASTM
and MSG. When the macro expands, substitutions occur for the two dummy para-
meters by their associated actual textual values, and for PASTM and MSG by their
sequentially generated label values. The macro definition contains prototype state-
ments that branch past the message (to PASTM) that is included inline following the
label MSG. The message is padded with N pairs of carriage return line-feed sequences,
followed by the $ that marks the end of the message. The string address is then sent
to the BDOS for printing at the console.

Listing 8-2 includes two invocations of the PRINT macro. The invocation sends
two actual parameters: the textual value 2 is associated with the dummy N, followed
by a quoted string associated with the dummy parameter MSG. The second actual
parameter includes the string quotes as a part of the textual value. The generated
message is preceded by a jump instruction and followed by N = 2 carriage return
line-feed pairs.

70 ALL INFORMATION PRESENTED HERE S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.2 Calling a Macro

The second invocation of the PRINT macro is similar to the first, except that the
REPT group is executed N = 0 times, resulting in no carriage return line-feed pairs.

Similar to Listing 8-1, the program of Listing 8-2 uses the Console Command
Processor’s eight-level stack for the BDOS calls. When the program executes, it types
the two messages, separated by two lines, and returns to the CCP.

0100 ORG 100H iBASE OF THE TPA
i
0005 = BDOS EQU S iBDOS ENTRY POINT
0009 = PMSG EQU 9 iPRINT ‘TIL $ FUNCTION
000D = CR EQU 0DH iCARRIAGE RETURN
000A = LF EQU 0AH iLINE FEED

PRINT MACRO N+MESSAGE

i PRINT MESSAGE, FOLLOWED BY N CRLF'S
LOCAL PASTM,MSG
JMP PASTM iiJUMP PAST MSG
MSG: DB MESSAGE §iINCLUDE TEXT TO WRITE
REPT N i iREPEAT CR LF SEQUENCE
DB CRLF
ENDM
DB ‘$’ i IMESSAGE TERMINATOR
PASTM: LXI D +MSG i iIMESSAGE ADDRESS
MUI C+PMSG §3iPRINT FUNCTION
CALL BDOS
ENDM

PRINT 2+'The rain in Spain does’

0100+C31E01 JMP 770001
0103+546865207277?0002: DB ‘The rain in Seain goes’
0119+40D0A DB CRLF
011B+0DOA DB CRLF
011D+24 DB ‘$’
011E+110301 ?70001: LXI D+??0002
0121+40E09 MVI CPMSG
0123+CD0O500 CALL BDOS

PRINT 0s’mainly down the drain,’
0126+C34001 JMP 7?7?0003
0129+6061696EBC?70004: DB ‘mainly down the drain,’
013F+24 DB ‘$’
0140+112901 ??0003: LXI D»?70004
0143+0E09 MUI C»PMSG
0145+CD0500 CALL BDOS
0148 C9 RET

Listing 8-2. Sample Message Printout Macro

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESFARCH 71

8.3 Testing Empty Parameters Programmer’s Utilities Guide

8.3 Testing Empty Parameters

The NUL operator is specifically designed to allow testing of null parameters. Null
parameters are actual parameters of length zero. NUL is used as a unary operator.
NUL produces a true value if its argument is of length zero and a false value if the
argument has a length greater than zero. Thus the operator appears in the context of
an arithmetic expression as:

... NUL argument

where the ellipses (...) represent an optional prefixing arithmetic expression, and
argument is the operand used in the NUL test. The NUL differs from other operators
because it must appear as the last operator in the expression. This is because the
NUL operator absorbs all remaining characters in the expression until the following
comment or end-of-line is found. Thus, the expression

X GT Y AND NUL XXX

is valid because NUL absorbs the argument XXX, producing a false value in the scan
for the end-of-line. The expression

X GT Y AND NUL M +2Z)

is deceiving but nevertheless valid, even though it appears to be an unbalanced
expression. In this case, the argument following the NUL operator is the entire
sequence of characters M + Z). This sequence is absorbed by the NUL operator in
scanning for the end-of-line. The value of NUL M + Z) is false because the sequence
is not empty.

72 ALL INFORMATION PRESENTED HERE IS PRCPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.3 Testing Empty Parameters

Listing 8-3 gives several examples of the use of NUL in a program. In the first
case, NUL returns true because there is an empty argument following the operator.
Thus, the true case is assembled, as indicated by the machine code to the left, and
the false case is ignored. Similarly, the second use of NUL in Listing 8-3 produces a
false value because the argument is nonempty. Both uses of NUL, however, are
contrived examples, because NUL is only useful within a macro group, as shown in
the definition of the NULMAC macro.

NULMAC consists of a sequence of three conditional tests that demonstrate the
use of NUL in checking empty parameters. In each of the tests, a DB is assembled if
the argument is not empty and skipped otherwise. Seven invocations of NULMAC
follow its definition, giving various combinations of empty and nonempty actual
parameters.

In the first case, NULMAC has no actual parameters. Thus all dummy parameters
(A, B, and C) are assigned the empty sequence. As a result, all three conditional tests
produce false results because both A and B are empty; B&C concatenates two empty
sequences, producing an empty sequence as a result.

The second invocation of NULMAC provides only one actual parameter, XXX,

assigned to the dummy parameter A. B and C are both assigned the empty sequence.
Thus only the DB for the first conditional test is assembled.

ALLINFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 73

8.3 Testing Empty Parameters

IF
0000 7472756520 DB
ELSE
DB
ENDIF

IF

DB

ELSE
0009 78787820869 DB

ENDIF

1
NULMAC MACRO
IF

DB
ENDIF
IF

DB
ENDIF
IF

DB
ENDM

NULMAC
NULMAC
0017+61203D2058 DB
NULMAC
0029+62203D2058 DB
003B+6263203D20 DB
NULMAC
004F+61203D2058 DB
0061+6263203D20 DB
NULMAC
0075+6263203D20 DB
NULMAC
NULMAC
0089+6263203D020 DB
009C END

Programmer’s Utilities Guide

NUL
‘true case’

‘false case’

NUL XXX
‘xxx is nul’

‘Xxx is not nul’

A+BsC
NOT NUL A
‘a = &A is not nul’

NOT NUL B
‘b = &B is not nul’

NOT NUL B&C

‘bec = &B&C is naot nul’

XXX

‘a = XXX is not nul’

P KKX

‘b = XXX is not nul’
'be = XXX is not nul’
KR 2 YYY

‘a = XXX is not nul’
‘bc = YYY is not nul’
1 YYY

‘be = YYY is not nul’
LR

I

‘be = '’’’ is not nul’

Listing 8-3. Sample Program Using the NUL Operator

The third case is similar to the second, except that the actuai parameters for A and
C are omitted. Thus, the second and third conditionals both test NOT NUL XXX,
which is true because B has the value XXX, and B&C produces the value XXX as

well.

74 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.3 Testing Empty Parameters

The fourth invocation of NULMAC skips the actual parameter for B but supplies
values for both A and C. Thus, the first and third test result in true values; the
second conditional group is skipped.

The fifth invocation provides an actual parameter only for C. As a result, only the
third conditional is true because B&C produces the sequence YYY.

The sixth invocation produces exactly the same result as the first because all three
actual parameters are empty.

The final expansion of NULMAC in Listing 8-3 shows a special case of the NUL
operator. The expression

NUL 7

where the two apostrophes are in juxtaposition, produces the value true, even though
there are two apostrophe symbols on the line following NUL and before the end-of-
line. The value of A is the empty string in this case. The value assigned to both B
and C consists of the two apostrophe characters side by side; this is treated as a

quoted string of length zero, even though it is a sequence of two characters. In this
last expansion, the first conditional, however, evaluates the form

NOT NUL ‘7

that is the special case of NUL applied to a length zero quoted string, but not a
length zero sequence. Because of the special treatment of the length zero quoted
string, this expression also produces a false result. The third conditional, however,
must be considered carefully. The original expression in the macro definition takes
the form

NOT NUL B&C

with B and C both associated with the sequence of length two given by two adjacent
apostrophes. Thus, the macro assembler examines

NOT NUL “‘&"‘“
or, after concatenation,
NOT NUL 77

where the four apostrophes are adjacent. Considering only the four apostrophes, the

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 75

8.3 Testing Empty Parameters Programmer’s Utilities Guide

macro assembler considers this a quoted string that happens to contain a single
apostrophe because double apostrophes are always reduced to a single apostrophe.
As a result, the test produces a true value, and the conditional segment is assembled.
Usually the NUL operator is used only to test for missing arguments, as shown in
later examples. (See Listing 8-6.)

8.4 Nested Macro Definitions

The MAC assembler allows you to include nested macro definitions. These take
the form

macl MACRO macl-list
mac2 MACRO mac2-list
ENDM
ENDM
where macl is the identifier corresponding to the outer macro, and mac2 is an
identifier corresponding to an inner nested macro that is wholly contained within the
outer macro. In this case, macl-list and mac2-list correspond to the dummy parame-

ter lists for macl and mac2, respectively. As before, labels are allowed on the ENDM
statements.

The statements contained within a macro definition are prototype statements that
are read and stored by the assembler but not evaluated as assembly language state-
ments until the macro is expanded. Thus, in the preceding form, only the macl
macro is available for expansion because the assembler has stored but not processed
the body of macl that contains the definition of mac2. mac2 cannot be expanded
until macl is first expanded, revealing the definition of mac2.

Properly balanced embedded macros of this form can be nested to any level, but

they cannot be referenced until their encompassing macros have themselves been
expanded.

76 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.4 Nested Macro Definitions

Listing 8-4 gives a practical example of nested macro definition and expansion.
This program writes characters either to the CP/M console device or to the currently
assigned list device, according to the value of the LISTDEV flag set for the assembly.
If the LISTDEYV flag is true, then the assembly sends characters to the listing device.
Otherwise, the console is used for output. In either case, the macro OUTPUT is
produced; this sends a single character to the selected device.

The sample program in Listing 8-4 uses the macro SETIO to construct the OUT-
PUT macro. The OUTPUT macro is wholly contained within the SETIO macro and,
as a result, remains undefined until SETIO is expanded. Upon encountering the invo-
cation of SETIO, the macro assembler reads the prototype statements within SETIO
and, in the process, constructs the definition of the OUTPUT macro. Because LIST-
DEV is true for this assembly, the OUTPUT macro is defined as

OuUTPUT MACRO CHAR
MUI E sCHAR
MUI C,LISTOUT
CALL BDOS
ENDM

Note that the SETIO macro itself uses this newly created OUTPUT macro in its last
prototype statement to print a single + at the selected device.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 77

8.4 Nested Macro Definitions Programmer’s Utilities Guide

Following the invocation of SETIO, the invocations of OUTPUT are recognized
because its definition has been entered in the process of reading the prototype state-
ments of SETIO. These invocations send the characters 1 and 2 to the list device.

0100 ORG 100H iBASE OF THE TPA
0000 = FALSE EQU 0000H iVALUE OF FALSE
FFFF = TRUE EQU NOT FALSE iVALUE OF TRUE
i LISTDEV IS TRUE IF LIST DEVICE IS USED
i FOR OQUTPUT,» AND FALSE IF CONSOLE IS USED
FFFF = LISTDEV EQU TRUE
1)
i
0009 = BDOS EQU 5 iBDOS ENTRY POINT
0002 = CONOUT EQU 2 iWRITE TO CONSOLE
5 PWRITE TO LIST DEVICE

0009 = LISTOUT EQU
i
SETIO MACRO iSETUP OUTPUT MACRO FOR LIST OR CONSOLE

1

OUTPUT MACRO CHAR

MVI E+CHAR §3iREADY THE CHARACTER FOR PRINTING

IF LISTDEV

MVI CyLISTOUT

ELSE

MVI CCONOUT

ENDIF

CALL BDOS

ENDM

OUTPUT ‘%

ENDM

i

SETIO iSETUP THE I0 SYSTEM
0100+1E2A MVI Ey'#’
0102+0E0S MVI CyLISTOUT
0104+CD0OS00 CALL BDOS

QuTPUT ‘1Y
0107+1E31 MVI Ev'17
0109+0E0S MVI C.LISTOUT
010B+CDOS00 CALL BDOS

ouTPUT 27
010E+1E32 MUI Esv'27
0110+0E0S MUI CsLISTOUT
0112+CDOS00 CALL BDOS
0115 C9 RET
0116 END

Listing 8-4. Sample Program Showing a Nested Macro Definition

78 ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.5 Redefinition of Macros

8.5 Redefinition of Macros

It is often useful to redefine the prototype statements of a macro after the initial
prototype statements have been entered. Redefinition is a specific instance of the
nesting described in the previous section, where the inner nested macro carries the
same name as the encompassing macro definition. Macro redefinition is extremely
useful if the macro contains a subroutine. In this case, the subroutine can be included
on the first expansion and simply called in any remaining expansions. Thus, if the
macro is never invoked, the subroutine is not included in the program.

Listing 8-5 shows an example of macro redefinition. This sample program defines
the macro MOVE. MOVE is intended to move byte values from a starting source
address to a target destination address for a particular number of bytes. The three
dummy parameters denote these three values: SOURCE is the starting address; DEST
is the destination address, and COUNT is the number of bytes to move (a constant
in the range 0-65535). The actions of the MOVE macro, however, are complicated
enough to be performed through a subroutine, rather than inline machine code each
time MOVE is expanded.

Examining the structure of MOVE in Listing 8-5, note that it contains a properly
nested redefinition of MOVE, taking the general form:

MOVE MACRO SOURCE,DEST,COUNT

@MOVE subroutine
MOVE MACRO 2S,°D,?C

call to @MOVE

ENDM

invocation of MOVE

ENDM

Upon encountering the first invocation of MOVE, the assembler begins reading the
prototype statements. Note, however, that the first expansion of the MOVE includes
the subroutine for the actual move operation, labeled by @MOVE so that there is
no name conflict (with a branch around the subroutine). MOVE then redefines itself
as a sequence of statements that simply call the out-of-line subroutine each time it
expands. The last statement of the original MOVE macro is an invocation of the
newly defined version. As indicated by this example, once a macro has started expan-
sion, it continues to completion (or until EXITM is assembled), even if it redefines
itself.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 79

8.5 Redefinition of Macros

Programmer’s Utilities Guide

0100 ORG 100H iBASE OF TPA
MOVE MACRO SOURCE +DEST »COUNT
id MOVE DATA FROM ADDRESS GIVEN BY ‘SOURCE’
ii TO ADDRESS GIVEN BY ‘DEST’ FOR ‘COUNT’ BYTES
LOCAL PASTSUB §3iLABEL AT END OF SUBROUTINE
L]
JMP PASTSUB §3iJUMP AROUND INLINE SUBROUTINE
@MOVE: §iINLINE SUBROUTINE TO PERFORM MOVE OPERATION
ii HL IS SOURCE, DE IS DEST, BC IS COUNT
MOV AsC i3LOW ORDER COUNT
ORA B i 3ZERO COUNT?
RZ iiSTOP MOVE IF ZERO REMAINDER
Mov AWM §3GET NEXT SOURCE CHARACTER
STAX D i iPUT NEXT DEST CHARACTER
INX H i iADDRESS FOLLOWING SOURCE
INX D i iADDRESS FOLLOWING DEST
DCX B i SCOUNT=COUNT-1
JMP @MOVE iiFOR ANOTHER BYTE TO MOVE
PASTSUB:
ii ARRIVE HERE ON FIRST INVOCATION - REDEFINE MOVE
MOVE MACRO ?647?D4+7C i iCHANGE PARM NAMES
LXI H?8S i iADDRESS THE SOURCE STRING
LXI D7D i JADDRESS THE DEST STRING
LXI B+?C i iPREPARE THE COUNT
CALL @MOVE i iMOVE THE STRING
ENDM

- s

MOVE
ENDM

CONTINUE HERE ON THE FIRST INVOCATION TO USE
THE REDEFINED MACRO TO PERFORM THE FIRST MOVE

SOURCE +DEST sCOUNT

Listing 8-5. Sample Program Showing Macro Redefinition

80 ALL INFORMATION PRESENTED HERE {S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

MOVE
0100+C30E01 JMP
0103+79 MOV
0104+B0 ORA
0105+C8 RZ
0106+7E MOV
0107+12 STAX
0108+23 INX
0109+13 INX
010A+0B DCX
010B+C30301 JMP
010E+212701 LX1I
0111+114001 LXI
0114+010500 LX1
0117+CD0O301 CALL

MOVE
011A+210030 LXI
011D0+110010 LXI
01204010015 LXI
0123+CD0301 CALL
0126 C9 RET
0127 6865726520X1: DB
0140 7878787878X2: DB

8.5 Redefinition of Macros

X14X2+5 SMOVE S CHARS FROM X1 TO X2
770001
AC

BMOVE
HX1
D X2
B1S
@MOVE
3000H »1000H »1500H iBIG MOVER
H+3000H
D+1000H
B+1500H
@MOVE
iRETURN TO THE CCP
‘here is some data to move’
‘Xxxxxwe are!’

Listing 8-5. (continued)

It is important to note the use of ?S, ?D, and ?C in the previous example. The
innermost MOVE macro uses the same sequence of three parameters for the source,
destination, and count. The dummy parameter names must differ, however, because
they would be substituted by their actual values if they were the same. This is
because the inner MOVE macro is wholly contained within the outer macro, so
parameter substitution takes place regardless of the context.

Macro storage is not reclaimed upon definition, however, because the macro
assembler performs two passes through the source program and saves any preceding

definitions for the second pass scan.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 81

8.6 Recursive Macro Invocation Programmer’s Utilities Guide

8.6 Recursive Macro Invocation

The prototype statements of a recursive macro x contain invocations of macros
that, in turn, invoke macros that eventually lead back to an invocation of x. A direct
recursion occurs when x invokes itself, as shown in the form below:

macname MACRO d-1,. . .,d-n
macname a-1,. . .,a-n
ENDM
Although this form is similar to the embedded macro definition discussed in the
previous section, macname is expanded within its own definition, rather than being
redefined. Recursion is only useful, however, in the presence of conditional assembly
where various tests are made that prevent infinite recursion. In fact, recursion is

allowed only to sixteen levels before returning to complete the expansion of an
earlier level.

Listing 8-6 shows a situation in which indirect recursive macro invocation is use-
ful. The macro WCHAR writes a character to the console device using the general
purpose operating system macro CBDOS (call BDOS). CBDOS acts as an interface
between the program and the CP/M system by performing the system function given
by FUNC, with optional information address INFO. CBDOS loads the specified
function to register C, then tests to see whether the INFO argument has been sup-
plied, using the NUL operator. If supplied, INFO is loaded to the DE register pair.
After register setup, the BDOS is called, and the macro has completed its expansion.

Assume, however, that CBDOS has the additional task of inserting a carriage
return line-feed before writing messages where operating system Function 9 (write
buffer until $) has been specified. In this case, CBDOS uses the WCHAR macro to
send the carriage return line-feed. The WCHAR macro, in turn, uses CBDOS to send
the character, resulting in two activations of CBDOS at the same time. The assembler
holds the initial invocation of CBDOS until the WCHAR macro has completed, then
returns to complete the initial CBDOS expansion.

In recursion the values of the dummy parameters are saved at each successive level
of recursion and restored when that level of recursion is reinstated. Reentry into a
macro expansion through recursion does not destroy the values of dummy arguments
held by previous entry levels.

82 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0100

0005 =
0002 =
0009 =
000D =
000A =

0100+0E02
0102+116800
0105+CD0S00

i
BDOS
CONOUT
MSGOUT
CR

LF

i
WCHAR

19

-

ORG 100H iBASE OF TRANSIENT AREA
SAMPLE PROGRAM SHOWING RECURSIVE MACROS
EQU 0005H FENTRY TO BDOS

EQU 2 iCONSOLE CHARACTER OUT
EQU 9 iPRINT MESSAGE ‘TIL ¢
EQU ODH iCARRIAGE RETURN

EQU 0AH iLINE FEED

MACRO CHR

WRITE THE CHARACTER CHR TO CONSOLE
CBDOS CONOUT +CHR i3iCALL BDOS
ENDM

MACRO FUNC+»INFO

GENERAL PURPOSE BDOS CALL MACRO

FUNC IS THE FUNCTION NUMBER

INFO IS THE INFORMATION ADDRESS OR NUL
CHECK FOR FUNCTION 9, SEND CRLF FIRST IF SO

IF FUNC=MSGOUT

PRINT CRLF FIRST

WCHAR CR

WCHAR LF

ENDIF

NOW PERFORM THE FUNCTION

MUI C+FUNC

INCLUDE LXI TO DE IF INFO NOT EMPTY
IF NOT NUL INFO

LXI D+ INFO

ENDIF

CALL BDOS

ENDM

WCHAR ‘h’ iSEND § "H" TO CONSOLE
MUI C,CONOUT

LXI Di+'h’

CALL BDOS

Listing 8-6. Sample Program Showing a Recursive Macro

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

8.6 Recursive Macro Invocation

83

8.6 Recursive Macro Invocation Programmer’s Utilities Guide

WCHAR i’ iSEND ‘I’ TO CONSOLE
0108+0E02 MVI C.CONOUT
010A+116900 LXI Dy/i’
010D+CDOS00 CALL BDOS
CBDOS MSGOUT yMSGADDR iSEND MESSAGE
0110+0E02 MUI C,CONOUT
0112+110000 LXI DCR
0115+CDOS00 CALL BDOS
0118+0E02 MUI C,CONOUT
011A+110A00 LXI DsLF
011D+CDOS00 CALL BDOS
0120+0E09 MUI CyMSGOUT
0122+112901 LXI D yMSGADDR
0125+CD0S500 CALL BDOS
0128 C9 RET iTERMINATE PROGRAM
1
MSGADDR:
0129 B16EB4206C DB ‘and lois$’
0132 END

Listing 8-6. (continued)

8.7 Parameter Evaluation Conventions

You can exercise a number of options in the construction of actual parameters,
and in the specification of character lists for the IRP group. Although an actual
parameter is simply a sequence of characters placed between parameter delimiters,
these options allow overrides where delimiter characters themselves become a part of
the text. A parameter x occurs in the context:

label: macname <... x,...>

where macname is the name of a previously defined macro, and the preceding label
is optional. The ellipses . . . represent optional surrounding actual parameters in the
invocation of macname. In the case of an IRP group, the occurrence of a character
list x is

label: IRPid,... x,...
where the label is again optional, and the ellipses represent optional surrounding

character lists for substitution within the IRP group where the controlling identifier
id is found. In either case, the statements can be contained within the scope of a

84 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

fritz
Hervorheben

Programmer’s Utilities Guide 8.7 Parameter Evaluation

surrounding macro expansion. Hence, dummy parameter substitution can take place
for the encompassing macro while the actual parameter is being scanned.

The macro assembler follows the steps shown below in forming an actual parame-
ter or character list:

1. Leading blanks and tabs (control-I) are removed if they occur in front of x.

2. The leading character of x is examined to determine the type of scan opera-
tion to take place.

3. If the leading character is a string quote (apostrophe), then x becomes the
text up to and including the balancing string quote, using the normal string
scanning rules: double apostrophes within the string are reduced to a single
apostrophe, and upper-case dummy parameters adjacent to the ampersand
symbol are substituted by the actual parameter values. Note that the string
quotes on either end of the string are included in the actual parameter text.

4. If the first character is the left angle bracket (<), then the bracket is removed,
and the value of x becomes the sequence of characters up to, but not includ-
ing, the balancing right angle bracket (>). The right angle bracket does not
become a part of x. In this case, left and right angle brackets can be nested
to any level within x, and only the outer brackets are removed in the evalu-
ation. Quoted strings within the brackets are allowed, and substitution within
these strings follows the rules stated in 3 above. Left and right brackets
within quoted strings become a part of the string; these are not counted in
the bracket nesting within x. Further, the delimiter characters comma, blank,
semicolon, tab, and exclamation point become a part of x when they occur
within the bracket nesting.

5. If the leading character is a percent (%) character, then the sequence of
characters that follows is taken as an expression that is evaluated immedi-
ately as a 16-bit value. The resulting value is converted to a decimal number
and treated as an ASCII sequence of digits, with left zero suppression (0-
65535).

6. If the leading character is not a quote, a left bracket, or a percent, the

possibly empty sequence of characters that follows, up to the next comma,
blank, tab, semicolon, or exclamation point, becomes the value of x.

ALL INFORMATION Pe INTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 85

8.7 Parameter Evaluation Programmer’s Utilities Guide

There is one important exception to the preceding rules: the single-character escape,
denoted by an up arrow, causes the macro assembler to read the special (nonalpha-
betic) character immediately following as a part of x without treating the character
as significant. The character following the up arrow, however, must be a blank, tab,
or visible ASCII character. The up arrow itself can be represented by two up arrows
in succession. If the up arrow directly precedes a dummy parameter, then the up
arrow is removed, and the dummy parameter is not replaced by its actual parameter
value. Thus, the up arrow can be used to prevent evaluation of dummy parameters
within the macro body. Note that the up arrow has no special significance within
string quotes and is simply included as a part of the string.

Evaluation of dummy parameters in macro expansions has been presented throughout
the previous sections. The macro assembler evaluates dummy parameters as follows:

® If a dummy parameter is either preceded or followed by the concatenation
operator &, then the preceding or following & operator is removed, the
actual parameter is substituted for the dummy parameter, and the implied
delimiter is removed at the position where the ampersand occurs.

® Dummy parameters are replaced only once at each occurrence as the encom-
passing macro expands. This prevents the infinite substitution that occurs if a
dummy parameter evaluates to itself.

In summary, parameter evaluation follows these rules:

Leading and trailing tabs and blanks are removed.

Quoted strings are passed with their string quotes intact.
Nested brackets enclose arbitrary characters with delimiters.

A leading percent symbol causes immediate numeric evaluation.
An up arrow passes a special character as a literal value.

An up arrow prevents evaluation of a dummy parameter.

The & operator is removed next to a dummy parameter.
Dummy parameters are replaced only once at each occurrence.

86 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.7 Parameter Evaluation

Listings 8-7, 8-8, and 8-9 show examples of macro definitions and invocations
illustrating these points. In Listing 8-7, for example, two macros are defined, called
MAC1 and MAC2. Each has several dummy parameters. In this case, the macro
definitions are headed by DB statements to reveal the actual values passed in each
case. There is a single mainline invocation of MAC2 with the actual parameters

I »9» X+1, %7 X + 1, 'Kwote’

that associates I with E, the null sequence with F, the sequence X+1 with G, the
value 16 with H, and the literal string ‘kwote’ with S. MAC2 expands, filling the DB
and MVI instructions with the substituted values. Before leaving MAC2, MAC1 is
invoked with the value of E (the sequence I), the concatenation of the dummy argu-
ment F with the sequence M (producing M since F’s value is null), along with the
literal value A, followed by the value of H (which is 16), and terminated by the value
of S (yielding the string ‘kwote’). These values are associated with MAC1’s dummy
parameters.

i MACRO PARAMETER EVALUATION
MAC1 MACRO A+B4CHD,S

i ENTERING MACRO 1:

DB ‘&A &B &C &C'
DB)

A: NOP
MVI Bl

C&l: NOP

L&ARD: NOP
i LEAVING MACRO 1

ENDM
MAC2 MACRO EsF+G4H S

i ENTERING MACRD 2:

DB ‘&E &F &G &H’
DB S
MVI MsH
MACH E+F&M+AIH,S
i LEAVING MACRO 2
i
ENDM

Listing 8-7. Macro Parameter Evaluation Example

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 87

8.7 Parameter Evaluation Programmer’s Utilities Guide

-

000F = X EQU 15
MAC2 I 49 X+41y 2 X + 1y ‘Kwote’

+ H

+ i ENTERING MACRO 2:
0000+4920205828B DB ‘T X+1 16°
0009+6B776F7465 DB ‘Kwote’
000E+3610 MVI Mi16

+ MAC1 I+MyI+16+'Kwote’

+ i

+ i ENTERING MACRO 1:
0010+49204D2049 DB ‘T M1 167
0018+6B776F 7465 DB ‘Kwote’
001D+00 I: NOP
001E+3601 MVI Mil
0020+00 I1: NOP
0021400 LI16: NOP

+ i LEAVING MACRO 1

+ i

+ ENDM

+ H LEAVING MACRO 2

+ §

+ ENDM
0022 END

Listing 8-7. (continued)

Upon expanding MAC1, the DB statements are filled out, followed by the substitu-
tion of A as a label (producing A’s value I). The MVI instruction references memory
because B’s value is M. Note that the concatenation of C with 1 reduces to a conca-
tenation of A with 1 because C’s value is A. The replacement of C by A constitutes
a substitution of a single occurrence of a dummy parameter. Thus the A that is
produced is not itself replaced at this point. Finally, the literal value L is concaten-
ated to the value of A and D to produce the label LI16.

Listing 8-8 illustrates the use of bracketed notation, using IRPs (indefinite repeats)
within three macros, called IRPM1, IRPM2, and IRPM3. Note that one bracket level
is removed in the first invocation of IRPM1, leaving the IRP list with one bracket
level (required in the IRP heading). Similarly, the IRPM2 invocation also eliminates
the outer bracket level, but these brackets are replaced at the IRP heading within
IRPM2. IRPM3 has three distinct dummy parameters that are reconstructed as a
single list at the IRP heading it contains. IRPM4 shows the effect of passing parame-
ters through two macro invocation levels by accepting a single parameter X, which

88 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.7 Parameter Evaluation

is immediately passed along to the IRPM1 macro. Note that the invocation requires
three bracket levels: the first is removed at the nested invocation of IRPM1 inside
IRPM4, and the innermost level is required at the IRP heading within IRPM1.

Listing 8-9 presents various combinations of bracketed actual parameters, quoted
strings, and escape sequences. The MAC1 macro has two parts: the first portion
includes a DB statement showing the value of the first parameter X, if it is not empty,
and the second part produces the value of Y, if not empty. Note that the first
invocation includes a properly nested bracketed sequence for X and an empty param-
eter for Y. The second invocation sends a properly nested bracketed expression for
X that produces an empty value because no characters remain after the brackets are
removed. The second parameter includes a quoted string (‘string of pearls’) and a
hexidecimal value that becomes a part of the DB in MAC1.

The third invocation of MAC1 passes a bracketed expression, including a quoted
string (the pair of adjacent apostrophes), followed immediately by a sequence of
ASCII characters. Note that the pair of apostrophes are passed intact because they
appear as an empty quoted string. In this case, the value of Y is empty. The remain-
ing examples show various cases of strings and escape sequences. Take care in pass-
ing quoted strings that contain apostrophes because a pair of apostrophes is consid-
ered a single apostrophe at each evaluation level in the sequence of macro invocations.
Pay particular attention to the use of the escape character to pass an unevaluated
dummy parameter from MAC2 to the MAC1 invocation.

IRPM1 MACRO X

i INDEFINITE REPEAT MACRO
IRP Y X

Y NOP
ENDM
ENDM

IRPM1 <<ONE +TWO yTHREE>>

0000+00 ONE: NOP
0001+00 TWO: NOP

0002+00 THREE: NOP
i
IRPMZ MACRO X
IRP Y <{XD
Y NOP
ENDM
ENCM

Listing 8-8. Parameter Evaluation Using Bracketed Notation

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 89

8.7 Parameter Evaluation

0003+00
0004400
0005+00

0006+00
0007+00
0008+00

0009+00
000A+00
0008+00
000C

90

FOUR:
FIVE:
SIX:

IRPM3

SEVEN:
EIGHT:
NINE:

IRPM4A

-.

TEN:
ELEVEN:
TWELVE:

IRPM2
NOP
NOP
NOP

MACRO
IRP
NOP
ENDM
ENDM

IRPM3
NOP
NOP
NOP

MACRO
IRPM1
ENDM

IRPMA
NQOP
NOP
NOP
END

Programmer’s Utilities Guide

{FOURFIVE,SIX>

K1 X2 4X3
Y 1<X1 X2 1X3%

SEVEN JEIGHT sNINE

=<

C{{TEN,ELEVEN,TWELVE>>>

Listing 8-8. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.7 Parameter Evaluation

i SAMPLE BRACKETED PARAMETERS,» WITH ESCAPE CHARACTER
El
MAC1 MACRO XY

DB ‘XY i (ONE)

IF NUL Y

EXITM

ENDIF

DB Y i (TWO)

ENDM

MAC1 <<LEFT SIDE> MIDDLE <RIGHT SIDE::

0000+3C4C454654 DB '¢LEFT SIDE> MIDDLE <RIGHT SIDE:’ i (ONE)
H
MAC1 <ry9¢'string of pearls’ 34H:
001F+737472696E DB ‘string of pearls’s3dH F(TWO)
H
MAC1 <A QUOTE IS A '’y RIGHT?:
0030+412051554F DB ‘A QUCTE IS A '’y RIGHT? i (ONE)
i
MAC1 <xy¢'ridghty but also ‘'’’’ 7%
0046+7269676874 DB ‘righty but also '’ $(TWO)
i
MAC1 1<’is this ‘'’’’ '’confusing’’ '’ ' 463>
0057+6973207468 DB “is this ‘s’ '’confusing’’’,63 1 (TWO)
3
MAC1 {HERE IS A "> AND A "~ * >
006B6+4845524520 DB ‘HERE IS A > AND A ' i (ONE)

MACZ MACRO APAR +BPAR

LOCAL X
X EQU 10
DB APAR
MAC1 “APAR 1BPAR
ENDM
i
MAC2Z (X+5)*4y'what’ """’ '"’ig doing on?’
000A+= ??0001 EQU 10
007E+3C DB (??0001+3) %4
007F+41504152 DB ‘"APAR’ i (ONE)
0083+7768617427 DB ‘what’’s doing on?’ §(TWO)

Listing 8-9. Examples of Macro Parameter Evaluation

Examine the various parameters and their evaluations in Listing 8-9 to ensure that
the rules for evaluation given in this section are consistent.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 91

8.8 The MACLIB Statement Programmer’s Utilities Guide

8.8 The MACLIB Statement

The macro assembler allows you to create and reference macro library files that
are external to the mainline program. The form of the macro library reference is

MACLIB libname

where libname is an identifier referencing file libname.LIB assumed to exist on the
disk. Macro libraries are in source program form, so you can easily create and
modify them using an editor program.

In order to speed up the assembly process, macro libraries are read only on the
first assembly pass. This places some restrictions on the use of the MACLIB state-
ment, as listed below:

® The statements included in the macro library cannot generate machine code.
For example, comments, EQUs, SETs, and MACRO definitions are allowed;
DB statements outside macro definitions are not allowed.

® Macro libraries are not listed with the source program, although an overrid-
ing parameter can be supplied. (See Section 10.)

® All MACLIB statements must appear before the mainline program macro
definitions. The MACLIB statements are placed at the beginning of the pro-
gram, followed by the mainline declarations and machine code.

The principal advantage of the MACLIB feature is that you can predefine macros
that enhance the facilities of the assembly language itself. For example, the additional
operations codes of the Zilog Z80 microprocessor can be defined in a macro library
that is referenced in a single statement

MACLIB 280
causing the assembler to read the file Z80.LIB from the disk that contains the neces-

sary macros for Z80 code generation. These macros can then be referenced within
the program, intermixed with the usual 8080 mnemonics.

92 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 8.8 The MACLIB Statement

The libname.LIB file is assumed to exist on the currently logged disk drive. You
can override this default condition using a special parameter (L) when the macro
assembler is started that redirects the .LIB references to a different disk. (See Section
10.)

Listings 6-1 and 6-2 show the use of the macro library facility, as introduced in
the initial macro discussion. The following sections contain additional examples of
the use of MACLIB in practical applications.

End of Section 8

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 93

Section 9
Macro Applications

The MAC assembler provides a powerful tool for microcomputer systems develop-
ment through its macro facilities. To demonstrate this, the following sections describe
a number of macro applications that solve practical problems in four applications
areas:

® implementation of special purpose languages

® emulation of nonstandard machine architectures
® implementation of additional control structures
B operating systems interface macros

9.1 Special Purpose Languages

A wide variety of microcomputer designs can be broadly classed as controller
applications. Specifically, the microcomputer is used as the controlling element in
sequencing and decision making as real-time events are sampled and directed.

Typical applications of this sort include assembly line sensing and control, metal
machine control, data communications and terminal control functions, production
instrumentation and testing, and traffic control systems.

In many cases, application programmers set up the sequence of operations that the
microprocessor carries out in performing its task. To avoid unnecessary details, the
application programmer is not expected to know how to program and debug micro-
computer assembly language programs.

In this situation, it is useful to define a language through macros that suit the
application. The application programmer uses these predefined macros as the primi-
tive language elements. If properly defined, the application language is easily pro-
grammed, allowing considerable machine independence. That is, an application pro-
gram written for a particular microprocessor can be used with another processor by
changing the definitions of the individual macros that implement the primitive oper-
ations. Further, the macro bodies can incorporate debugging facilities for application
development.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 95

6 UOND3S

9.1 Special Purpose Languages Programmer’s Utilities Guide

To illustrate language definition, consider the following situation. Hornblower
Highway Systems, Inc. produces turnkey traffic control systems for cities throughout
the country. Their hardware subsystems consist of various traffic lights and sensors
customized for the traffic layout in a particular city. When Hornblower negotiates a
contract, their engineers survey the intersections of the city and produce plans show-
ing a configuration of their standard hardware for each intersection, along with the
algorithms required for traffic flow at that point.

The standard hardware items Hornblower manufactures consist of central and
corner traffic lights that display green, yellow, and red (or off completely); pushbut-
ton switches for pedestrian cross requests; road treadles for sensing the presence of
an automobile at an intersection; and a central controller box.

The central controller box contains an 8080 microcomputer connected through
external logic to relays that control the lights and latches that hold the sensor input
information. The controller box also contains a time of day clock that changes on an
hourly basis from 0 through 23. The 8080 processor in the controller box can be
configured for any particular intersection with up to 1024 bytes of programmable
Read-Only Memory (PROM) in 256-byte increments. Although Random Access
Memory can be included in the controller box, Hornblower uses only ROM when
possible.

Thus, the Hornblower engineers examine the hardware requirements for each
intersection in the city and produce hardware configuration plans that intermix the
various standard components. Programs are then written and debugged that control
each intersection, based on predicted traffic patterns.

9% ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

The intersection of Easy Street and Maria Avenue, for example, controls minimal
traffic and thus consists of a controller box with a single central light. The algorithm
for this intersection simply alternates red and green lights between Easy and Maria,
with a bias toward Easy Street because traffic along Easy has measured higher in the
past surveys. Thus the green light along Easy lasts for 20 seconds, while the green
along Maria lasts for only 15 seconds. Given this situation, the application program-
mer writes the following program:

HORNBLOWER HIGHWAYS SYSTEMS, INC.
INTERSECTION:
EASY STREET (N-8) / MARIA AVENUE(E-W)

MACLIB INTERSECT iLOAD MACROS

CYCLE: SETLITE NS »GREEN
SETLITE EW+RED

TIMER 20 iWAIT 20 SECS
i
i CHANGE LIGHTS

SETLITE NS»YELLOMW

TIMER 3 iWAIT 3 SECS

SETLITE NS sRED
SETLITE EW:GREEN
TIMER 15 iWAIT 15 SECS

- .

CHANGE BACK

SETLITE EW,YELLOW

TIMER 3 iWAIT 3 SECS
RETRY CYCLE

The macro library INTERSECT.LIB contains the macro definitions that implement
the primitive operations SETLITE and TIMER, setting the central traffic light and
time out for the specified interval, respectively. Further, the RETRY macro causes
the traffic light to recycle on each light change. The sequence of operations is easy to
write and is completely machine independent.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 97

9.1 Special Purpose Languages Programmer’s Utilities Guide

Listing 9-1 gives an example of a macro library for intersect that assumes the
following hardware with an 8080 processor: the central traffic light is controlled by
the 8080 output port O (given by light); the time of day clock is read from port 3
(clock). Further, the north-south (nsbits) of the central light are given by the high-
order 4 bits of output port 0; the east-west direction (ewbits) is specified in the low-
order 4 bits of output port 0. When either of these fields is set to 0, 1, 2, or 3, the
light in that direction is turned off, or set to red, yellow, or green, respectively. Thus,
the SETLITE macro in Listing 9-1 accepts a direction (NS or EW) along with a color
(OFF, RED, YELLOW, or GREEN) and sets the specified direction to the appropri-
ate color.

macro library for basic intersection

- we as

inPut/outrPut Ports for light and clock

light equ 00h itraffic light control
clock equ 03h 724 hour clock (0s14444223)
1

i constants for traffic lidht control
nsbits equ 4 inorth south bits
ewbits equ 0 jeast west bits

i

off equ 0 fturn light off

red equ 1 jivalue for red light
vellow equ 2 ivalue for vellow lidht
dreen equ 3 idreen lidht

i
setlite macro dirscolor

i set light i"dir" (ns,ew) to i"color" (offsredsvellowsdreen)
mui ascolor shl dir&bits iicolor readied
out light iisent in Proper bit Position
endm

timer macro seconds

i construct inline time-out looP
local t1+t29t3 iiloor entries
mui dsd*seconds iibasic loop control
tl: mui b+250 i1250msec #4 = 1 sec
t2: mui c1182 11182%#5,5usec = Imsec
t3: der c iil cy = .5 usec
dnz t3 §i+10 cy = 5.5 usec
der b jicount 250+249...
Jnz t2 iiloor on b register
der d iibasic loop control
dnz t1 iiloor on d redister

Listing 9-1. Macro Library for Basic Intersection

98 ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

arrive here with approximately i"seconds" secs timeout
endm

i
clock? macro lowshighsiftrue

ii Jump to i"iftrue" if clocK is between low and high
local iffalse ijalternate to true case
in clock jiread real-time clock
if not nul high iicheck high clock
cPi high isequal or dreater?
dnc iffalse i3skip to end if so
endif
cPi low iiless than low value?

Jdnc iftrue §iskip to label if not
iffalse:
endm

retry macro dolabel

i continue execution at 3i"dolabel"
JmpP dolabel
endm

Listing 9-1. (continued)

The TIMER macro in Listing 9-1 uses the internal cycle time of the 8080 processor
to construct an inline timing loop, based on the value of SECONDS. This loop is not
generated as a subroutine because Hornblower prefers not to include RAM in the
controller box. (Subroutines require return addresses in RAM.)

In addition to the basic intersection macro library, Hornblower has also defined
macro libraries for all of the optional hardware components. Listing 9-2a, for exam-
ple, is included when the intersection contains treadles in the street to detect auto-
mobiles; Listing 9-2b shows the macro library for pedestrian pushbuttons. In the case
of automotive treadles, the sensors are attached to input port 1 (trinp) of the proces-
sor. The treadles, however, require a reset operation that clears the latched value
through output port 1 (trout) of the controlling 8080 processor. In any particular
intersection, the treadles are numbered clockwise from true north, labeled 0, 1, through
a maximum of 7 treadles. Each sensor and reset position of the treadle ports corre-
sponds to one bit position, numbered from the least to most significant bit. Thus the
treadle #0 sensor is read from bit 0 of port 1 and reset by setting bit 0 of output
port 1. Similarly, treadle #1 uses bit position 1 of input and output port 1. The
TREAD? macro is invoked to sense the presence of a latched value for treadle tr and,
if on, the sensor is reset, with control transferring to the label given by iftrue.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 99

9.1 Special Purpose Languages Programmer’s Utilities Guide

Listing 9-2b shows the macro library that processes pedestrian pushbuttons. Horn-
blower’s hardware senses the latched pedestrian switches on input port 0 (cwinp) as
a sequence of 1s and Os in the least significant positions, corresponding to the switches
at the intersection. Thus, if there are four pedestrian switches, bit positions 0, 1, 2,
and 3 correspond to these switches. A 1 bit in any of these positions indicates that
the pushbutton has been depressed. Unlike the automotive treadles, the crosswalk
switch latches are all cleared whenever input port 0 is read. Hornblower has defined
several other libraries that support optional hardware manufactured by their company.

macro library for street treadles

- =

trinp equ O1lh itreadle inPut Port
trout equ 01lh itreadle output Port

ead? macro trsiftrue
i"tread?" is invoked to check if
treadle diven by tr has been sensed.
if so» the latch is cleared and control
transfers to the label §"iftrue"

ws ws an as ot
- ws s we -3

local iffalse iiin case not set
i

in trinep iiread treadle switches

ani 1 shl tr iimask proper bit

Jz iffalse iiskip reset if O

myi arl shl tr iito reset the bit

out trut fjiclear it

Jmp iftrue 390 to true label
iffalse:

endm

Listing 9-2a. Macro Library for Treadle Control

i macro library for pedestrian pPushbuttons
i
cwinp equ 00h iinPput port for crosswalk
i
Push? macro iftrue
Vi i"Push?" Jumps to label §"iftrue" when any one
i of the crosswalk switches is derpressed. The
i value has been latched: and readind the Port
i clears the latched values
in cwinp jiread the crosswalK switches
ani (1 shl cwent) - 1 iibuild mask
Jdnz iftrue §jany switches set?
i continue on false condition
endm

Listing 9-2b. Macro Library for Corner Pushbuttons

100 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.1 Special Purpose Languages Programmer’s Utilities Guide

The intersection of Bumpenram Boulevard and Lullabye Lane presents a more
complicated situation. Bumpenram carries heavy traffic in an E-W direction to and
from the center of town. Lullabye, however, feeds a residential portion of the city,
running perpendicular to Bumpenram in a N-S direction. The contracting city wants
the traffic control biased toward Bumpenram as follows: the traffic light must remain
green along Bumpenram until the treadles along Lullabye detect the presence of
automobiles or until the pedestrian switches are pushed. At that time, the light must
change to allow the traffic to move N-S through Lullabye, allowing all traffic to clear
before returning to the major E-W flow along Bumpenram. Late night traffic along
Bumpenram is not very heavy, so the city also wants the E-W light to flash yellow
and the N-S direction to flash red between the hours of 2 and § a.m.

The application program created by Hornblower for the Bumpenram and Lullabye
intersection is shown in Listings 9-3a, 9-3b, and 9-3c. Each major cycle of the traffic
light enters at CYCLE where the time of day is tested. Between 2 and § a.m., control
transfers to NIGHT where the yellow and red lights are flashed in the appropriate
directions. During other hours, the switches and treadles are sampled until N-S traffic
along Lullabye is sensed. If cross traffic is detected, the lights switch until all the
traffic is through. Sampling also stops when the time of day reaches 2 a.m.

Listing 9-3a shows the assembly with no macro generated lines, controlled by the
-M parameter. (See Section 10.) Although the machine code locations are shown to
the left, no 8080 machine code is listed. Listing 9-3b shows a segment of this same
program with machine code generation, but no 8080 mnemonics, controlled by *M.
Listing 9-3a is the most readable to the application programmer. Listings 9-3b and
9-3¢ are useful for macro debugging.

Note that the resulting program requires no RAM for execution because all tem-
porary values are maintained in the 8080 registers. Further, the program is less than
256 bytes, so it can be placed in a single programmable Read-Only memory chip for
a minimum memory/processor configuration.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 101

9.1

0004
0000
0001

0000

00oC
0010

0014
0018
0029
0037
003E

0041
0045
0057
0058
005F

0071
007F

008D

0090
00A2

00AS
00A9
00AD
00BF
00C3
00C?
0009

102

Special Purpose Languages

i INTERSECTION: BUMPENRAM

= CHCNT
s LuLLO
= LuLLl

EQU 4
EQU 0
EQU 1

iSET TO

MACLIB
MACLIB
MACLIB

INTER
TREADLES
BUTTONS
CYCLE: SENTER
CLOCK? 245NIGHT

iNOT BETWEEN 2 AND 5 AM
SETLITE NS,RED

SETLITE EW,GREEN
SAMPLE: 3iSAMPLE THE BUTTONS AND
PUSH? SWITCH §ANYONE
TREAD? LULLO,SWITCH
TREAD? LULL1,SWITCH
CLOCK? 24 sNIGHT

RETRY SAMPLE

SWITCH:
FSOMEONE IS WAITING,
SETLITE EW,YELLOW
TIMER 3
SETLITE EW.RED
SETLITE NS,GREEN
TIMER 23

DONE?: IS ALL

TREAD?

TREAD?

LULLO/NOTDONE
LULL1 yNOTDONE

INEITHER TREADLE IS SET.

RETRY CYCLE

NOTDONE::
TIMER S
RETRY DONE?
NIGHT: STHIS IS NIGHTTIME,
SETLITE EW.OFF
SETLITE NS,OFF
TIMER 1
SETLITE EW,YELLOW
SETLITE NSRED
TIMER 1
RETRY CYCLE

Programmer’s Utilities Guide

BLVD / LULLABYE LN.

4 CROSSWALK SWITCHES

iNAME FOR TREADLE ZERO
iNAME FOR TREADLE ONE

iBASIC INTERSECTION
iINCLUDE TREADLES
FINCLUDE PUSHBUTTONS

HERE ON EACH MAJOR CYCLE OF THE LIGHT

FiSPECIAL FLASHING?

FRED LIGHT ON LULLABYE
FGREEN ON BUMPENRAM

TREADLES

THERE?

iTREADLE 07
iTREADLE 1°?

iPAST 2AM?

iTRY AGAIN IF NOT

CHANGE LIGHTS

iSLOW ‘EM DOWN
iWAIT 3 SECONDS
iSTOP ‘EM

iLET "EM GO
iFOR AWHILE

THE TRAFFIC THROUGH ON LULLABYE?

iTREADLE 07
STREADLE 17

CYCLE

iFOR ANOTHER LOOP

iWAIT S SECONDS
iTRY AGAIN

FLASH LIGHTS

iTURN OFF

iTURN OFF

FWAIT WITH OFF
iTURN TO YELLOW
iTURN TO RED

iLEAVE ON FOR 1 SEC
iGO AROUND AGAIN

Listing 9-3a. Traffic Control Algorithm using -M Option

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

i INTERSECTION: BUMPENRAM BLVD / LULLABYE LN.
0004 = CWCNT EQU a iSET TO 4 CROSSWALK SWITCHES
0000 = LuLLo EQU 0 iNAME FOR TREADLE ZERO
0001 = LuLL1 EQU 1 iNAME FOR TREADLE ONE
MACLIB INTER $BASIC INTERSECTION
MACLIB TREADLES FINCLUDE TREADLES
MACLIB BUTTONS §INCLUDE PUSHBUTTONS
CYCLE: SENTER HERE ON EACH MAJOR CYCLE OF THE LIGHT
CLOCK? 245 NIGHT FSPECIAL FLASHING?
0000+DB0O3
0002+FEOQS
0004+D20C00
0007+FEQ2
0009+D2A500
iNOT BETWEEN 2 AND 5 AM
SETLITE NS,RED iRED LIGHT ON LULLABYE
000C+3E10
000E+D300
SETLITE EW:GREEN iGREEN ON BUMPENRAM
0010+3E03
0012+D300
SAMPLE: $SAMPLE THE BUTTONS AND TREADLES
PUSH? SWITCH §ANYONE THERE?
0014+DB0O
0016+EBOF
0018+C24100
TREAD? LULLOSWITCH iTREADLE 07
0018+DBO1
001D+EBO01
001F+CA2900
0022+3E01
0024+D301
0026+C34100
TREAD? LULLI1SWITCH iTREADLE 17
0029+D601
002B+EB02
002D+CA3700
0030+3E02
0032+D301
0034+C34100
CLOCK? 24 NIGHT iPAST 2 AM?
0037+0803
0039+FE02
003B+D2AS500
RETRY SAMPLE iTRY AGAIN IF NOT
003E+C31400

Listing 9-3b. Intersection Algorithm with *M in Effect

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 103

9.1 Special Purpose Languages Programmer’s Utilities Guide

SWITCH:
iSOMEONE IS WAITING, CHANGE LIGHTS
SETLITE EW,YELLOW iSLOW ‘EM DOWN
0041+3E02 MVI AYYELLOW SHL EWBITS
0043+D300 out LIGHT
TIMER 3 iWAIT 3 SECONDS
0045+160C MUI D/4*3
0047+06FA ?70005: MVI B+250
0049+0EB6 ??0006: MVI C182
004B+0D ??0007: DCR C
004C+C24B00 JNZ ??0007
004F+0S DCR B
0050+C24900 JNZ ??0006
0053+15 DCR D
0054+C24700 JNZ ??0005
SETLITE EW/RED iSTOP ‘EM
0057+3E01 MVI A+RED SHL EWBITS
0059+D300 ouTt LIGHT
SETLITE NS/,GREEN iLET 'EM GO
005B+3E30 MUI A+GREEN SHL NSBITS
0050+D300 out LIGHT
TIMER 23 iFOR AWHILE
005F+165C MVI D14%23
0061+06FA ?70008: MVI B 250
0063+03B6 ??0009: MVI c.182
0065+00D ??0010: DCR C
0066+C26500 JNZ ??0010
0069+0S DCR B
006A+C26300 JNZ ??0009
006D+15 DCR D
006E+C26100 JNZ 7?7?0008

DONE?: §IS ALL THE TRAFFIC THROUGH ON LULLABYE?
TREAD? LULLONOTDONE iTREADLE 07

0071+DBO1 IN TRINP
0073+EB01 ANI 1 SHL LULLO
0075+CA7F00 Jz ??0011
0078+D301 MVI Ayl SHL LULLO
007A+D301 out TROUT
007C+C39000 JMP NOTDONE
TREAD? LULL1,NOTDONE iTREADLE 17
007F+DBO1 IN TRINP
0081+E602 ANI 1 SHL LULL1
0083+CABDOO JZ ??0012
0086+3E02 MVI Asl SHL LULL1L
0088+D301 ouTt TROUT
008A+C39000 JMP NOTDONE
INEITHER TREADLE IS SET.» CYCLE
RETRY CYCLE iFOR ANOTHER LOOP
008D+C30000 JMP CYCLE

Listing 9-3c. Algorithm with Generated Instructions

104 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

Macro-based languages of this sort can easily incorporate debugging facilities. In
the case of Hornblower, Inc., the principal algorithms are constructed and tested in
the CP/M environment by including debugging traces within each macro. In each
case, a debug flag is tested and, if true, machine code is generated to trace the
operation at the console, rather than actually executing the input/output calls.

Listing 9-4 shows the modification required to the INTER.LIB file to include the
debugging code. Although only the SETLITE macro is shown, similar coding is easily
included for the remaining macros. Listing 9-4 includes the debug flag at the begin-
ning of the library, initially set to FALSE, along with the appropriate equates for
CP/M system calls. If the debug flag is set to true by the application programmer,
special trace calls are included. For example, the setlite macro constructs a message
of the form

DIR changing to COLOR

where DIR and COLOR are the parameters sent to the macro. If debug remains false
in the application program, this trace code is not assembled.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 105

9.1 Special Purpose Languages Programmer’s Utilities Guide

macro library for basic intersection

-s ws e

dlobal definitions for debug Processing

true equ Offffh Svalue of true
false equ not truejvalue of false
debug set false finitially false
bdos equ 5 ientry to cp/m bdos
rchar equ 1 iread character function
wbuff equ 9 fwrite buffer functiaon
cr equ Odh icarriade return
1f equ Oah iline feed
i
i inPut/outrut Ports for light and clock
lidht equ 00h itraffic light control
clock equ 03h 24 hour clock (0s1444¢123)
1
H bit positions for traffic light control
nsbits equ a inorth south bits
ewbits equ 0 feast west bits
H
i constant values for the lidht control
off equ 0 jturn light off
red equ 1 fjvalue for red light
vellow equ 2 jvalue for vellow light
dreen equ 3 idreen light
H
setlite macr dirscolar
i set light diven by "dir" to color diven by "color"
if debud iiprint info at console
local setmsdspastmsyg
myi crwbuff jiwrite buffer function
Ixi disetmsd
call bdos iiwrite the trace info
Jmp pastmsd
setmsd: db craif
db ‘&DIR chanding to &COLOR%’
Pastmsd:
exitm
endif
mui ajcolor shl dir&bits readied
out lidght iisent in pProper bit Position
endm

(remaining macros are identical to the previous figure,
but each contains trace information similar to “setlite”)

-. = ws as

Listing 9-4. Library Segment with Debug Facility

106 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.1 Special Purpose Languages

Listing 9-5a shows an application program for an intersection where the debug
flag is set to TRUE after the macro library is included. As a result, each macro
expansion assembles a call to the CP/M operating system to trace the light direction
and color change, skipping the machine code that is eventually assembled to drive
the actual Hornblower hardware.

The application programmer then uses CP/M to trace the operation of the algo-
rithm, resulting in the printout shown in Listing 9-5b. Each trace line corresponds to
a SETLITE call with a specific direction and color, with the appropriate wait time
between printouts.

0100 ORG 100H iREADY FOR THE DEBUG RUN
MACLIB INTER iBASIC MACRO LIBRARY

FFFF# DEBUG SET TRUE iREADY DEBUG TOGGLE

0100 CYCLE: SETLITE NS,RED

0120 SETLITE EW,GREEN

0142 TIMER 10

0154 SETLITE EW,YELLOMW

0177 TIMER 2

1089 SETLITE EWRED

01A8 SETLITE NS/:GREEN

01CB TIMER 10

010D SETLITE NS,YELLOW

0200 TIMER 2

0212 RETRY CYCLE

Listing 9-5a. Sample Intersection Program with Debug

NS chandind to RED

EW chanding to GREEN
EW changdind to YELLOW
EW chanding to RED

NS chanding to GREEN
NS chandingd to YELLOW
NS chandind to RED

EW chandind to GREEN
EW chanding to YELLOW
EW chanding to RED

o e

Listing 9-5b. Debug Trace Printout

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 107

9.1 Special Purpose Languages Programmer’s Utilities Guide

Upon completion of the initial debugging under CP/M, the SET statement in the
application program is removed—the ORG can be removed as well—and the pro-
gram is reassembled. This time, the CP/M traces are not included because the debug
flag remains FALSE. As a result, the actual Hornblower hardware interface is assem-
bled instead. The newly assembled program is then placed into PROM in the con-
troller box for that intersection and tested in its target environment.

This approach to macro based language facilities provides a simple tool for rapid
development and debugging of programs where high-level languages are not avail-
able, but a measure of machine independence is required. The macros are easy to
develop, and the application programs are simple to write and debug.

9.2 Machine Emulation

A second application of macro processing is in the emulation of a machine opera-
tion code set that is different from the 8080 microprocessor. In particular, a machine
architecture is selected, based on an existing or fictitious operation code set, and a
macro is written for each opcode, taking the general form:

op MACRO d-1d-2,. . .,dn
opcode emulation
ENDM

where op is a mnemonic instruction in the emulated machine, and the dummy
parameters d-1 through d-n represent the optional operands required by op. The
macro body includes 8080 instructions that carry out the operation on the 8080
microprocessor. This means the instructions within the macro body perform the same
function as the op with its arguments on the emulated machine.

Upon completion of the opcode macro definitions, a program can be written using

these opcodes. These opcodes expand to the equivalent 8080 instructions but per-
form the emulated machine operations.

108 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

For example, consider the situation encountered by Nachtflieger Maschinewerke,
an internationally famous manufacturer and distributor of automated machining
equipment. Though incorporating microprocessors in controlling their equipment,
Nachtflieger expects to build a custom LSI processor for their future products. The
processor, called the KDF-10, will be used primarily as an analog sensing and control
element in a larger electronic environment. As a result, the KDF-10 word size must
accommodate digital values corresponding to analog signals of up to 12 bits. To
allow computations on these 12-bit values, Nachtflieger engineers are going to allow
a full 16-bit word in the KDF-10, along with a number of primitive operations on
these values. Externally, the KDF-10 will provide four analog-to-digital input ports
(A-D) that can be read by KDF-10 programs, along with four digital-to-analog out-
put ports (D-A) that can be written by the program. The KDF-10 will automatically
perform the A-D and D-A conversion at these ports.

Being forward thinkers, the engineers at Nachtflieger have designed the KDF-10 as
a stack machine, similar in concept to the Hewlett-Packard HP-65 handheld pro-
grammable calculator, where data can be loaded to the top of a stack of data ele-
ments, automatically pushing existing elements deeper onto the stack. Similar to the
Reverse Polish Notation (RPN) of an HP-65, arithmetic on the KDF-10 will be
performed on the topmost stacked elements, automatically absorbing the stacked
operands as the arithmetic is performed. The designers settled on the following three-
character operation codes for the KDF-10:

SIZ n reserves n 16-bit elements as the maximum size of the KDF-10
operand stack. This operation code must be provided at the begin-
ning of the program.

RDM i reads the analog signal from input port i (0, 1, 2, or 3) to the top
of the stack.

WRM o writes the digital value from the top of the stack to the D-A output
port given by o (0, 1, 2, or 3). The value at the stack top is
removed.

DUP duplicates the top of the KDF-10 stack.

SUM adds the top two elements of the KDF-10 stack. Both operands
are removed, and the resulting sum is placed on the top of the
stack.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 109

9.2

Because the KDF-10 does not exist, except in the minds of the Nachtflieger engineers,
the software designers decided to use the macro facilities of MAC to emulate the
KDF-10, using the 8080 microcomputer.

Listing 9-6 shows an example of a program for the KDF-10 that was processed by
MAC using the macro library defined by the Nachtflieger software group. In this
situation, the KDF-10 is connected to four temperature sensors attached at strategic
places on the machining equipment. The program continuously reads the four input
values from the A-D ports and computes their average value by summing and divid-
ing by four. This average value is sent to D-A output port 0 where it is used to set

JMP a

Machine Emulation

LSR n performs a logical shift of the topmost stacked element to the right
by n bits (1, 2,...,15), replacing the original operand by the shifted
result. LSR n performs a division of the topmost stacked value by

Programmer’s Utilities Guide

the divisor 2 to the n power.

environmental controls.

0000
012E
0134
0136
013A

013E
0140
0142

0144
0152
0156

110

branches directly to the program address given by label a.

AVERAGE THE VALUES WHICH ARE READ FROM ANALOG

THE D-A OUTPUT PORTS.

b
i INPUT PORTSs WRITE THE RESULTING VALUE TO ALL
i
)

MACLIB STACK

SIZ
LOOP: RDM
RDM
RDM
RDM

i ALL
SUM
SUM
SUM

i SUM

LSR

WRM

C32E01 JMP

20
0

1
2
3

FOUR VALUES

iREAD THE STACK MACHINE OPCODES
iCREATE 20 LEVEL WORKING STACK
iREAD A-D PORT 0

iREAD A-D PORT 1

iREAD A-D PORT 2

iREAD A-D PORT 3

ARE STACKED: ADD THEM UP
iAD3+AD2

i (AD3+AD2) +AD1

i ((AD3+AD2)+AD1)+ADO

IS AT TOP OF THE STACK, DIVIDE BY 4

2
0
LOOP

FSHIFT RIGHT TWO = DIV BY 4
iWRITE RESULT TO D-A PORT O
iGO GET ANOTHER SET OF VALUES

Listing 9-6. A-D Averaging Program Using Stack Machine

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

As shown in Listing 9-6, the program begins by reserving a stack of 20 elements,
a much larger stack than required for this application, since a maximum of four
elements are actually stacked. The program then cycles following LOOP, where the
values are read and processed. The four operations RDM 0, RDM 1, RDM 2, and
RDM 3 read all four temperature sensors, placing their data values in the stack. The
three SUM operations that follow the read operations perform pairwise addition of
the temperature values, producing a single sum at the top of the stack. Because the
average value is wanted, the LSR 2 operator is applied to the stack top to perform
the division by four. Finally, the resulting average is sent to the D-A port using the
WRM 0 operation code. Control then transfers back to LOOP, where the entire
operation is performed again.

Because Nachtflieger designers are emulating KDF-10s using 8080s, they have cre-
ated the macro library file, called STACK.LIB, as shown in Listing 9-7. A macro is
shown in this listing for each of the KDF-10 opcodes, starting with the SIZ operator.
In this case, the program origin is set, since this must be the first opcode in the
program, and the stack area is reserved. Note that double words of storage are
reserved because a 16-bit word size is assumed. The DUP, SUM, and LSR operators
follow the SIZ macro. In each case, the KDF-10 stack top is assumed to be in 8080’s
HL register pair. Further, each operation that pushes the KDF-10 stack causes the
element in the 8080 HL pair to be pushed to the 8080 memory area reserved by the
SIZ opcode.

siz macro size
i set "ord" and create stack
local stack iilabel on the stack
ord 100h ijat base of TPA
Ixi spistack
Jmp stack iiPast stack
ds size*2 iidouble Precision

stack: endm

dup macro

i duplicate top of stack
Push h
endm

Listing 9-7. Stack Machine Opcode Macros

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 111

- = s
-
-

wes £ e
-, =y
32

112

Machine Emulation Programmer’s Utilities Guide
macro
add the top two stacKk elements
POP d iitor-1 to de
dad d iiback to hi
endm
macro len
lodgical shift ridht by len
reprt len iidenerate inline
Xra a iiclear carry
mov arh
rar jirotate with high 0
mov hra
mov arl
rar
mowv 12 iiback with high bit
endm
endm
equ 1080h ia-d converter O
equ 1082h ja-d converter 1
equ 1084h ia-d converter 2
equ 1086h ja-d converter 3
equ 1090h id-a converter O
equ 1092h id-a converter 1
equ 1094h id-a converter 2
equ 1096h id-a converter 3
macro ?c
read a-d converter number "7?c"
Push h iiclear the stack
read from memory marred input address
1hid adc&?c
endm
macro ?c
write d-a converter number "7c¢c"
shld dack?c Jivalue written
POP h iirestore stack
endm

Listing 9-7. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

The DUP opcode simply pushes the HL register pair to memory since the HL pair
is not altered in the 8080 during this operation. In the case of the SUM operator, it
is assumed that the KDF-10 programmer has somehow loaded two values to the
KDF-10 stack. So the HL registers contain the most recently loaded value, and the
8080 memory stack contains the next-to-most recently stacked value. The POP D
operation loads the second operand to the DE pair in the 8080 CPU. Then the
topmost value and next to top value are added, using the DAD D operation. The
resulting operand goes into the HL register pair. This is necessary in the KDF-10
emulation because the top of the KDF-10 stack is located in the 8080’s HL register
pair.

The LSR opcode is more complicated. The values must go through the accumula-
tor because the 8080 does not support a double precision (16-bit) right shift of the
HL register pair. Thus, the LSR macro contains a REPT loop that generates inline
machine code for each right shift. The inline machine code performs the right shift
by first clearing the carry (XRA A), followed by a high-order right shift by one bit
(MOV A,H followed by RAR), then by a low-order bit shift (MOV A,L followed by
RAR). Note that an intermediate bit can move from the high-order byte to the low-
order byte using the carry between high- and low-order byte shifts.

In Listing 9-7, the RDM and WRM operation codes are defined by memory-
mapped input/output operations. That is, memory locations 1080H through 1087H
are intercepted external to the 8080 microprocessor and treated as external read
operations. Thus, a load from locations 1080H and 1081H to HL is treated as a
read from A-D device 0, rather than from RAM. This operation is simple to perform
in the KDF-10 emulation because all program addresses are assumed to be below
1000H, so any 8080 address bus values beyond 1000H must be memory mapped 1/O.

As a result, ADCO through ADC3 correspond to the locations where A-D values 0
through 3 are obtained. Similarly, the D-A output values that are written to locations
1090H through 1097H are intercepted as memory mapped output values that are
sent to the D-A converters rather than to RAM.

The RDM instruction is emulated by simply performing an LHLD from the appro-
priate memory mapped input address, constructed through concatenation of the dummy
parameter. The HL value is first pushed because the KDF-10 RDM opcode performs
this task automatically. Then the new value is loaded into the HL register pair.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY 1O DIGITAL RESEARCH 113

9.2 Machine Emulation Programmer’s Utilities Guide

The WRM opcode definition is similar, except the value to write is assumed to
reside at the top of the KDF-10 stack and thus appears in the 8080 HL register pair.
The value is written to the memory mapped output location, and the value is removed
from the HL pair by restoring HL from the 8080 stack.

To see the actual code generated by each of these macros, Listing 9-8 shows the
same averaging program as given in Listing 9-6, except that the generated 8080
instructions are interspersed throughout the listing file. Listing 9-8 is the usual output
from MAC; Listing 9-6 was generated using the parameter -M, which suppresses
generated mnemonics. Compare Listings 9-6, 9-7, and 9-8, so that you understand
the macro expansion processes.

AVERAGE THE VALUES WHICH ARE READ FROM ANALOG
INPUT PORTS: WRITE THE RESULTING VALUE TO ALL
THE D-A OUTPUT PORTS.

-e wan wan as

MACLIB STACK iREAD THE STACK MACHINE OPCODES

SlZ 20 iCREATE 20 LEVEL WORKING STACK
0100+ ORG 100H
0100+312E01 LXI SP 42?0001
0103+C32E01 JMP ??0001
0106+ DS 20%2

LOOP: RDM 0 iREAD A-D PORT 0

012E+ES PUSH H
012F+2A8B010 LHLD ADCO

RDM 1 iREAD A-D PORT 1
0132+ES PUSH H
0133+2A8210 LHLD ADC1

RDM 2 iREAD A-D PORT 2
0136+ES PUSH H
0137+2AB410 LHLD ADC2

RDM 3 iREAD A-D PORT 3
013A+ES PUSH H
013B+2A8610 LHLD ADC3

Listing 9-8. Averaging Program with Expanded Macros

114 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

i ALL FOUR VALUES ARE STACKED: ADD THEM UP
SUM iAD3+AD2
013E+D1 POP D
013F+18 DAD D
SUM i (AD3+AD2) +AD1
0140+D1 POP D
0141+18 DAD D
SUM i ((AD3+AD2)+AD1) +ADO
0142+D1 POP D
0143+189 DAD D
i SUM IS AT TOP OF THE STACK, DIVIDE BY 4
LSR 2 $SHIFT RIGHT TWO = DIV BY 4
0144+AF XRA A
0145+7C MoV AH
0146+1F RAR
0147+67 Mov H:A
0148+70 MoV AL
0149+1F RAR
014A+6F MoV LA
014B+AF XRA A
014C+7C MoV A+H
014D+1F RAR
014E+67 Mov H1A
014F+7D MoV Ayl
0150+1F RAR
0151+6F MOV L+A
WRM 0 FWRITE RESULT TO D-A PORT 0
0152+229010 SHLD DACO
0155+E1 POP H
0156 C32E01 JMP LooP iGO GET ANOTHER SET OF VALUES

Listing 9-8. (continued)

A problem arose at Nachtflieger MW, however, that had to be rectified. Although
programs could be effectively written for the KDF-10 computer using the 8080 emu-
lation, they could not be effectively debugged. The program in Listing 9-8, for exam-
ple, could be tested under the CP/M Dynamic Debugging Tool (see CP/M documen-
tation), but the program required monitoring and tracing at the 8080 machine code
level. It became clear that higher level debugging tools were necessary.

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 115

9.2 Machine Emulation Programmer’s Utilities Guide

As a result, Nachtflieger designers added several pseudo opcodes that allow debug-
ging traces. The opcodes can be interspersed in the program and selectively enabled
and disabled, depending on the debugging needs. In production, all debugging traces
are disabled, resulting only in absolute port I/O. The additional debugging opcodes

are listed below.

116

PRN msg

DMP

TRT ¢t

TRF t

TRT p

TRF p

Print the message given by “msg” at the debugging console when-
ever the print trace is enabled. The message must be enclosed in
angle brackets.

Print the value of the top element in the KDF-10 stack in
hexadecimal.

Set machine code trace option to true. Each time a KDF-10 machine
operation is executed, the opcode is printed, followed by the
approximate KDF-10 machine code address, followed by the top
two elements of the KDF-10 stack, in the format:

OPC oploc top top’

where OPC is the opcode, oploc is the location, top is the top
element, and top’ is the second to the top element, all in hexadec-
imal notation.

Disable the machine code trace. Only the KDF-10 instructions
that physically appear between the TRT and TRF opcodes are
shown in the trace.

Enable the print/read trace. PRN opcodes that follow produce
output at the debugging console, and are otherwise treated as
comments. Further, RDM and WRM opcodes prompt and dis-
play data at the debugging console.

Disable the print/read trace. Only the PRN, RDM, and WRM
instructions that physically appear between TRT and TRF inter-
act with the console.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

The traces are disabled at the beginning of the program and must be explicitly
enabled with TRT opcodes.

i AVERAGING PROGRAM WITH INTERSPERSED DEBUG CODE

MACLIB DSTACK SREAD THE STACK MACHINE OPCODES

0000 SIZ 20 iCREATE 20 LEVEL WORKING STACK
0103 TRT T iMACHINE CODE TRACE ON
0103 TRT P iPRINT TRACE ON

0103 PRN <TRACE FOR AVERAGING PROGRAM>
012E LOOP: RDM Q iREAD A-D PORT 0

01F0 DMP iWRITE TOP OF STACK
0z22C ROM 1 iREAD A-D PORT 1

0267 DMP WRITE TOP OF STACK
026A RDM 2 iREAD A-D PORT 2

02A5 DMP iWRITE TOP OF STACK
02AB ROM 3 iREAD A-D PORT 3

02E3 DMP iWRITE TOP OF STACK
02E6 PRN <FOUR VALUES HAVE BEEN READ:

ALL FOUR VALUES ARE STACKED:» ADD THEM UP

-

0310 SUM iAD3+AD2
0324 DMP iWRITE FIRST SUM
0327 SUM i (AD3+AD2) +AD1
0338 DMP iWRITE SECOND SUM
033E SUM i ((AD3+AD2)+AD1)+ADO
0352 PRN <VALUES HAVE BEEN ADDED>»
0378 DMP iWRITE SUM OF VALUES

i SUM IS AT TOP OF THE STACK, DIVIDE BY 4
0378 LSR 2 iSHIFT RIGHT TWO = DIV BY 4
0389 PRN <AVERAGE VALUE CALCULATEC>
0361 DMP iWRITE AVERAGE VALUE
0384 WRM 0 iWRITE RESULT TO D-A PORT ©
O3EE BRN LOOP iGO GET ANOTHER SET OF VALUES
03F1 XIT {iEMIT EXIT CODE

Listing 9-9. Averaging Program with Debugging Statements

ALL INFORMATION TREGINTED HERE IS PROUPRIETARY TO DIGITAL RESEARCH 117

9.2 Machine Emulation, Programmer’s Utilities Guide

Listing 9-9 shows the averaging program of Listing 9-6 with interspersed debug-
ging statements. The opcodes TRT t and TRT p are executed at the beginning of the
program, enabling all trace options throughout the execution. The PRN statement
above the LOOP label prints the initial sign-on; the DMP statements after each read
operation give the value of the A-D port. Upon completion of the four-element read,
the PRN opcode indicates this fact. Each SUM operator is followed by a DMP
opcode that shows the current sum. Finally, the PRN and DMP opcodes display the
final average value that is being sent to D-A port 0. The XIT opcode shown at the
end of the program is discussed below.

Listing 9-10 shows the execution of the averaging program under DDT. Note that
the program headings appear at the points in the program where PRN opcodes are
placed. Further, the console is prompted for input in the case of an RDM opcode,
giving the absolute memory mapped input address in decimal, while the WRM
instruction produces a “D-A OUTPUT . .” message that shows the absolute memory
mapped output address and the data that is written.

The opcodes are also traced showing the opcode mnemonic, address, and top two
stacked elements. The RDM trace at the beginning, for example, shows the instruc-
tion address 01AD, which is in the range of the first RDM of Listing 9-9 (012E to
01EF), and is followed by the two values 0111 (the value just read) and C21D
(garbage value, because only one element is stacked). The trace is easily followed at
the KDF-10 level, showing each value that is read in and the operations performed
upon these values. Upon completion of the debugging process under CP/M, the TRT
opcodes are removed and the program is reassembled, leaving only the 8080 instruc-
tions required in the production machine. Nachtflieger systems engineers then take
the resulting program and test its operation in a hardware environment.

118 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Ultilities Guide 9.2

A>ddt aver.hex
DDT VERS 1.4
NEXT PC

0406 0000
-9100

TRACE FOR AVERAGING PROGRAM
A-D INPUT AT 4224 111

RDM 01AD 0111 C21D

(TOP)= 0111

A-D INPUT AT 4226 222

RDM 0285 0222 0111

(TOP)= Q222

A-D INPUT AT 422
RDM 0293 0555 o022
(TOP)= 0559

A-D INPUT AT 4230 444

RDM 02D1 0444 0555

(TOP)= 0444

FOUR VALUES HAVE BEEN READ
SUM 0312 0999 0222

(TOP)= 0999
SUM 0329 0BBB 0111
(TOP)= (BBB

SUM 0340 OCCC C21D
VALUES HAVE BEEN ADDED
(TOP)= 0CCC

AVERAGE VALUE CALCULATED
(TOP)= 0333

D-A OUTPUT AT 4240 0333
WRM 03DC 7938 C21D

A-D INPUT AT 4224

Machine Emulation

Listing 9-10. Sample Execution of AVER Using DDT

Nachtflieger engineers quickly realized that the KDF-10 design had a number of
deficiencies due to the paucity of arithmetic operators and the total absence of con-
ditional branching instructions. Further, there was no provision for variable storage
other than the stack. Thus, the KDF-11 naturally evolved from the KDF-10, incor-
porating these features. Table 9-1 lists the operation codes of the KDF-11.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESFARCH 119

9.2 Machine Emulation Programmer’s Utilities Guide

Table 9-1. KDF-11 Operation Codes

Code

Meaning

DCL v,n

LIT ¢

VAL v,i,c

STO v,i,c

DIF

GEQ a

BRN a

Declare (reserve) storage for a variable by the name v, with
optional size n. If n is omitted, then n — 1 is assumed. All DCL
opcodes must follow the XIT opcode given below.

Load the value of the literal constant ¢ to the top of the KDF-
11 stack.

Load the value of the variable v optionally indexed by the vari-
able i with the optional constant offset c. VAL V loads the value
of V to the top of the stack. VAL VI loads the value located at
the address of V plus the index value contained in I. VAL V,I,3
loads the value at location V plus the index I, plus the constant
index 3. In all cases, the value is placed at the top of the KDF-
11 stack.

Store the value obtained from the KDF-11 stack to the address
given by v, plus the optional index i, plus the optional constant
index given by c. The top element of the KDF-11 stack is removed.

Subtract the top element of the KDF-11 stack from the next-to-
top element of the stack and replace both operands by their
difference.

Test the next-to-top element (top’) against the top of stack ele-
ment (top), and branch to the label given by “a” if top’ is greater
than or equal to top. If not, program control continues to the

next opcode in sequence.

Replace the JMP instruction in the KDF-10 architecture to allow
complete separation of the KDF-11 and 8080 machines.

Listing 9-11 gives the macro library that was constructed by the Nachtflieger soft-
ware group for KDF-11 machine emulation. More than half of the macro library
implements trace and debugging functions. The remaining components implement
the KDF-11 opcodes themselves. Each major section of this macro library, called
DSTACK.LIB, is briefly described below, followed by an example of its use.

120 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

macro library for a zero address machine
EREREERRERRRRRRRRRRRRRRRRRERRRRRRRRRERRRR

* begin trace/dump utilities *
3 RERRRRERERERERRRRRRERRRRRRRRRRERRRRRRRR RN
bdos equ 0005h isystem entry
rchar eau 1 iread a character
wchar equ 2 jwrite character
wbuff eau 9 iwrite buffer
tran equ 100h itransient Prodram area
data equ 1100h idata area
cr equ 0dh fcarriade return
1f equ Oah iline feed
i
debugdt set 0 jitrace debud set false
debugp set 0 iiprint debug set false
i
PN macro PT
IR print messade ‘Pr’ at console
if debugp Jiprint debug on?
local Pmsgimsd iilocal messade
Jmp Pms g ijaround message
msd: db cr»lf jireturn carriagde
db ‘&PR$’ iiliteral message
Pmsd: Push h iisave top element of stack
Ixi dimsd iilocal messade address
mui ciwbuff ijwrite buffer ‘til ¢
call bdos iiprint it
POP h iirestore top of stack
endif ijend test debugp
endm

i

uden macro

i denerate utilities for trace or dume
local pPsub

Jmp Psub iiJump Past subroutines
@ch: jjwrite character in reg-a

mov esa

mui ciwchar

Jmp bdos iireturn thru bdos
i
@nb: iiwrite nibble in reg-a

adi 90h

daa

aci 4aoh

daa

Jmp Bch iireturn thru Bch

Listing 9-11. Stack Machine Macro Library

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 121

9.2 Machine Emulation

@hx:

L]

@ad

@in0:

@inl:

122

jiwrite hex value in red-a

Push
rre
rrc
rrc
rrc
ani
call
POP
ani
Jmp

fiwrite
Push
mui
call
POP
mov
Push
call
POP
mov
dmp

PSW

ofh
@nb
PSW
ofh
@nb

address
h
ar’
@ch
h
asth
h
Bhx
h
asl
@hx

1

iisave low byte

mask hidh nibble
print hidh nibble

iiprint low nibble

value in hl

iisave value
iileading blank
ijahead of address
iihigh bvte to a

iicory back to stacK
fiwrite high byte

ow brte
rite low byte

£ -

iiread hex value to hl from console

mui ar’ ! iileading space

call @ch iito console

Ixi h»0 iistartingd value

Push h iisave it for char read
myi csrchar iiread character function
call bdos iiread to accumulator
POP h ijivalue being built in hl
sui ‘0 iinormalize to binary
cPi 10 iidecimal?

Jc @inl iscarry if Oslss019

may be hexadecimal asevoesf

sui 'AY-'0"-10

cPi 16 iia through f?

rnc jireturn with assumed cr
iiin randes multiply by 4 and add

rept 4

dad h iishift 4

endm

ora 1 ijadd digit

mov 1:a ijand replace value

Jmp @in0 iifor another digit

Listing 9-11. (continued)

Programmer’s Utilities Guide

ALL INFORMATION PRESENTED HERE iS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

Psub:
uden

1

trace

N o—

- D e @D
-

T e

macro

redef to include once

endm

uden iidenerate first time

endm
EEEREREEERRERRRRRRRRRRRRRRRRERRRRRRRRR RN
* end of trace/dump utilities *
* begin trace (only) utilities *

HRERRRRRRRRNRERERRERRRRERRRRRRRRRRRRRRRRR
macro code smname

trace macro diven by mname.

at location diven by code

local psub

uden iidenerate utilities
Jmp psub

ds 2 iitemp for regd-1

ds 2 iitemp for reg-2

jitrace macro call
bc=code address, de=messade

shld etl jistore top red
POP h jireturn address
xthl iired-2 to top
shld Bt2 iistore to temp
Push PSW iisave flags

Push b iisave ret address
mui ciwbuff §iprint buffer func
call bdos iiprint macro name
POP h iicode address
call Bad iiprinted

1hld evl iitor of stack
call @ad iiPprinted

1hld et2 iitor-1

call Bad iiprinted

POP PSW jiflags restored
POP d jireturn address
lhld Bt2 iitor-1

Push h jirestored

Push d iireturn address
1hld Btl iitor of stack

ret

Listing 9-11. (continued)

NFORMA

TON PRESENTED HERE IS PROPRIETARY 1O D

9.2 Machine Emulation

123

9.2 Machine Emulation Programmer’s Utilities Guide

psub: §ipast subroutines

i

trace macro Cm

LR] redefined trace» uses @tr
local PmMsdsmsd
Jmp PMSd

msd: db crslf jicrslf
db ‘&M$ iimac name

PMSd:
Ixi bsc iicode address
Ixi dimsd iimacro name
call @tr jito trace it
endm

i back to oridinal macro level
trace code ymname
endm

3

trt macro f

i turn on flag "f"

debugdf set 1 iiPrint/trace on
endm

i

trf macro f

LR} turn off flag "f"

debugkf set 0 iitrace/print off
endm

Listing 9-11. (continued)

124 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

“-s we OO ws ws an e
- ws 3

- - D
w e Q
3

@dm0:

macro m
check debugt todgdle before trace

if debugt

trace %% m

endm
HEEREEERRRERRRRRRERERRRRRRRRERRARRRRRRRRR
* end trace (only) utilities *
* begin dump (only) utilities *

EREEREERRERERRRRRERRRRRRRRRRRRRRREERRRRRR
macro uname »n

dump variable vname for

n elements (double bytes)

local Psub iirpast subroutines
uden iiden inline routines
Jmp Psub iipast local subroutines

jidump utility Prodram

de=msd address,» c=element count
hl=base address to Print

Push h iibase address

1
pPush b jielement count
myi ciwbuff jjwrite buffer func
call bdos jimessade written
POP b iirecall count
POP h iirecall base address
mouv asc ijend of list?
ora a
rz iireturn if so
der c iidecrement count
mov e sm iinext item (low)
inx h
mov dm iinext item (high)
inx h iiready for next round
Push h iisave Pprint address
Push b iisave count
xchg iidata ready
call Rad iiprint item value
1)

Jmp @dm0 ifor another value

iidump top of stack only

PIN <(tor)=> F3"(TOP)="
Push h

call Bad itvalue of hl
POP h iitor restored
ret

Listing 9-11. (continued)

9.2 Machine Emulation

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 125

9.2 Machine Emulation Programmer’s Utilities Guide

Psub:
ii
dmp macro ?v4?n
i redefine dump to use Bdm utility

local Pmsdimsy
LR] special case if null rarameters

if nul vname
is dump the tor of the stack only

call @dt

exitm

endif
ii otherwise dump variable name

Jmp Pms 9
msg: db crslf iicrlf

db ‘&7?V=%' jimessade
pmsd: adr ?v iihl=address
active set 0 jiclear active flag

1xi dimsd iimessade to Print

if nul ?n §juse lendth 1

mui csl

else

myi c?n

endif

call Bdm iito perform the dume

endm iiend of redefinition

dmp vname sn

endm
H
H EEEERRRRRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRS
i * end dump (only) utilities: *
i * bedin stack machine opcodes *
H ERRRRERRERRRRRRRRRRRRRRFRRRRRRRRRRERRRRRS
active set 0 jactive redister flag
i
siz macro size

ord tran iiset to transient area
i create a stack when "xit" encountered
@stkK set size iisave for data area

Ixi sprstack

endm
1

Listing 9-11. (continued)

126 ALL INFORMATION PRE D HERE IS PROPRIETARY 1O DIGITAL RESFARCH

Programmer’s Utilities Guide

save

11

save

active

active

ear

- 0O =
- b

active

- = ..
-
L

macro

check to ensure "enter" Properly
if stack iiis it present?
endif

macro jiredefine after initial
if active Jielement in hl
Push h iisave it

endif

set 1 jiset active
endm

save

endm

macro

restore the top element

if not active

POP h iirecall to hl
endif

set 1 jimarkK as active
endm

macro

clear the top active element
rest ijensure active
set 0 iicleared

endm

macro unamesize
label the declaration

if nul size

ds 2 ijone word req’‘d
else

ds size*¥2 Jidouble words
endm

macro val

set up

reference

load literal value to top of stack

save iisave if active
Ixi hsval iiload literal
?tr lit

endm

Listing 9-11.

(continued)

9.2 Machine Emulation

127

9.2 Machine Emulation Programmer’s Utilities Guide

adr macro basesinxscon

i load address of base» indexed by inx:

ii with constant offset diven by con
save iipush if active
if nul inx&con
Ixi h:base §jaddress of base
exitm iisimple address
endif

i must be inx and/or con
if nul inx
Ixi hscon*2 jiconstant
else
l1hld inx ijindex to hl
dad h iidouble precision inx
if not nul con
Ixi dycon*2 jidouble const
dad d ijadded to inx
endif iinot nul con
endif iinul inx
Ixi dsbase Jiready to add
dad d iibasetinx#*2+con*2
endm

i

val macro bsisec

i det value of b+i+c to hl

i check simple case of b only
if nul i&ec
save iipush if active
1hld b iiload directly
else

i "adr" pushes active redisters
adr brisec ijaddress in hl
mov erm iilow order bvte
inx h
mov dm iihigh order brte
xchg iiback to hl
endif
?tr val iitrace set?
endm

Listing 9-11. (continued)

128 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

.. we
.. we *

sum

a .
-
-

macro bsisc
store the value of the top of stack
leavind the top element active

if nul i&e

rest ijactivate stack

shld b iistored directly to b
else

adr bsisc

POP d ijvalue is in de

mov mre iilow brte

inx h

mov msd iihigh brte

endif

clear iimark empty

?tr sto iitrace?

endm

macro

rest iirestore if saved

add the top two stack elements

POP d iitor-1 to de

dad d iiback to hl

?tr sum

endm

macro

compute difference between top elements
rest iirestore if saved

POP d iitor-1 to de

mov are iitor-1 low byte to a
sub 1 iilow order difference
mov 1:a iiback to 1

mov asd iitor-1 hidh byte

sbb h iihigh order difference
mov hra iiback to h

carry flag may be set upon return

?tr dif

endm

Listing 9-11. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.2 Machine Emulation

129

Programmer’s Utilities Guide

9.2 Machine Emulation
lsr macro len
IR] lodical shift right by len
rest jjactivate stack
rept len jidenerate inline
Xra a fjiclear carry
mov arh
rar jirotate with high 0
mov hia
mov arl
rar
mov 1:a iiback with hidh bit
endm
endm
i
deq macro lab
i Jump to lab if (top-1) is dreater or
i equal to (tor) element.
dif iicompute difference
clear iiclear active
?tr deq
dne lab iino carry if dreater
Jz lab iizero if equal
Vi drop throudh if neither
endm
H
dup macro
i duplicate the tor element in the stack
rest iiensure active
Push h
?tr dup
endm
H
brn macro addr
i branch to address
Jmp addr
endm
i
Xit macro
?tr Xit iitrace on?
Jmp 0 jirestart at 0000
ord data jistart data area
ds Bstk*¥2 §jobtained from "siz"
stack: endm
1
Listing 9-11. (continued)
130 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

H ERERRERRRRERRRRRERRERERRRRRRRRRRRRRRRRRNN
i * memory mapped i/0 section *
H HRERRRERERRRRERRRRRRRRRRRRRRRRRRRRERRRNRR
i inPut values which are read as if in memory
adcO equ 1080h ia-d converter O
adcl equ 1082h ia-d converter 1
ade2 equ 1084h ia-d converter 2
adc3 equ 1086h ia-d converter 3
i
dacO equ 1090h id-a converter O
daci equ 1092h id-a converter 1
dac2 equ 1094h id-a converter 2
dac3 equ 1096h id-a converter 3
H
rwtrace macro msdsadr
LR read or write trace with messagde
i given by "msd9" to/from "adr"
PN <msd at adr>
endm
H
rdm macro ?c
i read a-d converter number "“7?c"
save iiclear the stack
if debudp Jistop execution in ddt
rwtrace <a-d input »% adck?c
ugen ijensure @in is Present
call @in iivalue to hl
shld adck?c iisimulate memory inpPut
else
i read from memory marped inpPut address
lhld adc&?c
endif
?tr rdm iitracing?
endm

Listing 9-11. (continued)

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 131

9.2 Machine Emulation Programmer’s Utilities Guide

wrm macro ?c

id write d-a converter number "?c"
rest jirestore stack
if debudp Jitrace the output
rwtrace <d-a outputr»% dac&?c
uden ijinclude subroutines
call Bad iiwrite the value
endif
shld dack?c
?tr wrm iitracing outpPut?
clear iiremove the value
endm

H 39 3 36 3 3 3 3 393 3 3 3 3 36 369 3 3 I 9 3 3 3 K K I K KKK KKK XNR

5 * end of macro library *
H HRERERRERRRRARERRRR RN RRRRRRRRRRRRRRRERR

Listing 9-11. (continued)

The first portion of the library, which is principally concerned with debugging
functions, begins with CP/M system calls, function numbers, and equates for non-
graphic characters, similar to the examples given earlier. Although these values are
not necessary for operation of the KDF-11, they are necessary for the debugging
functions that operate when the TRT opcode is in effect. Following the CP/M equates,
the toggles DEBUGT and DEBUGP are set to false (0 value), reflecting the conditions
of the debugging switches given by TRT and TRF. When DEBUGT is true (1 value),
machine operation codes are traced. Similarly, when DEBUGP is true, PRN, RDM,
and WRM operations interact with the console.

The PRN macro, for example, produces an inline message with a call to CP/M to
write the message whenever the DEBUGP toggle is true. Otherwise, the PRN pro-
duces no generated code.

The UGEN macro that follows PRN is called the first time the debugging subrou-

tines are required by trace or print/read opcodes. When invoked, the UGEN macro
produces several inline subroutines that are used throughout the debugging process.

132 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide . 9.2 Machine Emulation

If no trace or print/read functions are invoked during the assembly, UGEN is not
invoked. Thus no inline subroutines are included for debugging. If UGEN is invoked,
the subroutines shown below are included inline:

@CH writes a single ASCII character to the console.
@NB writes a single half byte (nibble) to the console.
@HX writes a full hexadecimal byte value at the console.

@AD writes a full address (double byte) value with preceding blank.
@IN reads a hexadecimal value from the console to HL.

Upon including these subroutines, UGEN then redefines itself to an empty macro
body so that the subroutines are not included on subsequent invocations of UGEN.
This ensures that the inline subroutines are included only once, and only if they are
required by the debugging macros.

The SIZ macro is similar to the opcode defined for the KDF-10, except that the
size of the stack is saved for later declaration in the data area (see the XIT opcode).
Throughout the opcode macros, the SAVE and REST macros save and restore the
HL register pair, based on the ACTIVE flag. The CLEAR macro, however, marks the
top element of the KDF-11 stack as deleted.

The DCL macro simply sets up the variable name VNAME as a label and follows
the label by a DS that reserves the specified number of double words. The DCL
opcodes must all occur at the end of the KDF-11 program, following the XIT opcode.

The LIT opcode is emulated with a macro that first SAVEs the stack top, possibly
generating an HL push. The literal value is then loaded directly into the HL register
pair. The ACTIVE flag is set on completion of this macro because SAVE always
marks HL as active.

ALL INFORMATION PRESENTED HERE 1S PRI TARY TO DIGITAL RESFARCH 133

9.2 Machine Emulation Programmer’s Utilities Guide

The ADR macro is a utility macro used in the VAL, STO, and DMP opcodes to
build the address of a particular variable, with optional variable and constant offsets,
in the HL register pair. Based on the optional parameters, ADR either loads the base
address directly to the HL pair or constructs the address using HL and DE for
indexing. Thus, the following invocations of ADR (in the left column) produce the
machine code in the right column.

ADR X LXI HisX
ADR X1 LHLD I
DAD H
LXI DX
DAD D
ADR X213 LHLD I
DAD H
LXI D6
DAD D
LXI DX
DAD D
ADR ¥ .3 LXI H»6
LKI DX
DAD D

The final address for the optionally indexed variable remains in the HL register pair.
The code within the ADR macro can be improved slightly by providing a constant
offset. That is, the following invocations in the left column produce the machine
code in the right column by redefining the ADR macro.

ADR X»1.3 LHLD 1
LXI DsX+6
DAD D

ADR X3 LXI H+X+6

As an exercise, redefine ADR to generate this improved machine code sequence.

134 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

The VAL macro loads a variable value to the stack. STO stores the top of stack
value to memory. ADR constructs the address of the variable whenever optional
indexing is specified. Otherwise, LHLD or SHLD directly accesses the variable. Again,
slight improvements in generated code can be obtained by providing a constant offset
with no variable index.

The opcodes LIT, VAL, and STO all end with an invocation of the TR macro
which, as discussed above, checks the DEBUGT flag. If true, the TR macro invokes
TRACE with the machine code address and opcode name for display at the debug-
ging console. The ?*TR macro invocation produces no machine code trace when
DEBUGT is false.

The SUM opcode first invokes REST to ensure that the HL register pair contains
the topmost KDF-11 element. The second to top element is then loaded to the DE
pair and added to HL, producing an active KDF-11 element in HL. ACTIVE is true
at this point, because REST always leaves the flag set to true.

The DIF opcode definition is similar to SUM, except that the 8080 accumulator
computes the 16-bit difference between the top two KDF-11 stacked elements.

The LSR macro defines the KDF-11 logical shift right operation. The REST macro
is first invoked to ensure that HL is active, followed by a repetition of the machine
code required to perform a 16-bit right shift of the HL register pair. In the case of a
long shift, there is a considerable amount of inline machine code for the operation.
Thus, it is a useful exercise to redefine LSR, so that it generates an inline subroutine
to perform the shift operation for values of LEN sufficiently large to warrant the
subroutine call. Although this requires a subroutine set up and call, the amount of
generated code can be reduced significantly for programs that make heavy use of the
LSR operator.

The GEQ macro follows the LSR definition and allows conditional branching to
the specified label address. GEQ begins by computing the difference between the top
two elements of the KDF-11 stack. This has the side-effect of setting the 8080 carry
bit if the next to top element exceeds the top element in the KDF-11 stack. The TR
macro eventually leads to the @TR subroutine where the status flags (including the
carry condition) are saved and restored. Otherwise, GEQ could not count on the
condition of the carry flag.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DICITAL RESFARCH 135

9.2 Machine Emulation Programmer’s Utilities Guide

Further, the 8080 A register contains the least significant byte of the difference
between DE and HL, so the ORA H produces a zero result if the difference is zero.
To be complete, the KDF-11 should have a complete range of conditional tests,
allowing tests for equality (EQL), inequality (NEQ), less than (LSS), greater than
(GTR), and less than or equal (LEQ).

The DUP opcode first ensures that the HL register pair is active, then duplicates
this value by pushing the HL pair to the 8080 stack, emulating a KDF-11 stack push
operation. Note that the HL pair is active at the end of the DUP macro due to the
invocation of REST.

The BRN and XIT macros follow GEQ. The BRN macro simply translates to a
jump instruction in the 8080. The XIT macro first invokes the ?TR macro to check
for machine code tracing. A JMP 0 is then emitted, corresponding to a system restart
in both CP/M and the emulated KDF-11 machine architecture. The XIT macro then
produces an ORG statement that restarts the assembly process in the data area of
the emulated environment (1000H, or 4096 decimal). The area reserved for the stack
is then set up, followed by the declaration of the label STACK at the top of this
reserved area. Note that the SAVE macro includes the statement sequence:

IF STACK i3is it Ppresent?
ENDIF

which ensures that both the SIZ and XIT macros have been included in the assembly.
If the XIT macro is not included, then the label STACK does not appear unless used
in the KDF-11 program, and the IF STACK test produces an undefined operand (U)
error. Further, if the XIT operator is used, but the SIZ is not, then the statement DS
SIZ*2 within XIT produces an undefined operand message. Although these tests are
by no means complete, they detect the most common errors.

Listing 9-11 also contains the definitions of both the RDM and WRM opcodes,
based on the memory mapped input/output addresses defined by ADCO through
ADCS3 for the A-D ports, and DACO through DACS3 for the D-A ports. The RWTRACE
(Read-Write Trace) macro is included for tracing the RDM and WRM macros when
DEBUGP is true. The MSG argument corresponds either to A-D INPUT for the
RDM opcode or to D-A OUTPUT for the WRM opcode. The ADR argument corre-
sponds to the absolute decimal address where the memory mapped input/output is
taking place. Thus, RWTRACE simply constructs a trace message from its two argu-
ments and passes this message to PRN for display at the debugging console.

136 ALL INFORMATION PRESENTED HEKE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

The RDM macro reads the port given by the argument ?C (0, 1, 2, or 3). The HL
register pair is pushed, if necessary, by the SAVE macro, leaving the active flag set
for the RDM. RDM then generates an invocation of the RWTRACE macro to pro-
duce the trace message. Note that the argument “% ADC&?C” produces the numeric
value ADCO, ADC1, ADC2, or ADC3, which is included in the trace message. If the
% is omitted, only the name, not the value, of the input port address is printed.
Following the output message, UGEN is invoked to ensure that the utility subrou-
tines have been included inline. The call to @IN allows you to type a hexadecimal
value for the simulated A-D input value. This value is subsequently stored to memory
and left in the HL register pair with ACTIVE true. If DEBUGP is not set, then the
RDM macro simply loads the HL register pair from the appropriate memory mapped
input location. Finally, RDM invokes ?TR to check for possible opcode tracing.

The WRM opcode is similar to the RDM opcode, except that the REST macro is
first invoked to ensure that the HL registers contain the top element of the KDF-11
stack. This value is displayed at the debugging console if DEBUGP is true and then
sent to the appropriate memory mapped output location.

One application of the emulated KDF-11 machine shows the power of this instruc-
tion set. As a small part of a machine control system, a KDF-11 processor monitors
the machine tool head motion. Nachtflieger engineers connect A-D port 0 to a KDF-
11 processor that reads the instantaneous velocity of the tool head at 1 millisecond
(ms) intervals.

The velocity is provided at the A-D port in micrometer (um) increments, and the
processor is synchronized with the input, so that it halts until the 1 ms interval has
elapsed. Nachtflieger engineers also guarantee that the tool head is in motion for no
more than 100 ms before stopping. Thus, with no variations in velocity, if the tool
moved at the constant rate of 256 um/ms over 50 intervals of 1 ms each, total
distance traveled by the tool is

256 um/ms * 50 ms = 1280 um = 1.280 mm

During its travel, however, the instantaneous velocity of the tool head varies
according to the roughness of the cut, wear on the parts, and start/stop intervals.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITATL RESEARTH 137

9.2 Machine Emulation Programmer’s Utilities Guide

Nachtflieger uses the data collected during a cut to monitor these factors and displays
machine operator information in both digital and analog forms. A primary function
of the KDF-11 processor in this case is to collect instantaneous velocities during a
single cut and hold these values for analysis as the tool returns to its starting posi-
tion. Listing 9-12 shows a KDF-11 program that includes the data collection phase
and an analysis phase described below.

The data collection phase of Listing 9-12 occurs between the labels MOVE? and
COMP; the analysis phase is found between labels COMP and ENDF. The program
is bounded by the SIZ operator at the beginning and the XIT operator at the end,
followed by DCL opcodes that reserve data areas. This program also includes debug-
ging PRN, DMP, TRT, and TRF opcodes for checking out the program.

As for the DCL statements at the end of Listing 9-12, the vector V is declared with
length 100 (double bytes), which holds the collected velocities; I and X are temporary
values used during the collection and analysis phase. The variable TOTAL is a result
produced by the analysis, as discussed below.

The program collects data by performing the following steps. The variable I is first
initialized to 0, corresponding to the first velocity V(0). The program then examines
the A-D input port for the first nonzero velocity, waiting for the tool head to begin
its travel. When the first nonzero velocity is read, the collection process proceeds by
storing the first value at V(0). The index value I is then moved along as data items
are read, with values placed into V(1), V(2), continuing until a zero value is read,
indicating the tool has ended its travel.

Referring to Listing 9-12, note that the KDF-11 opcodes listed before the label
MOVE? initialize the index I by loading a literal 0 value to the KDF-11 stack,
followed by a store into the variable I. To follow these operations, the TRT P and
TRT T traces are enabled. Note, however, that the TRF T opcode stops the machine
code trace immediately before the MOVE? label.

138 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0000
0103
0103
0103
0136
0103
01E8

01E8
0210
0213
0216
021A
0227

022A
0250
029C
029F
02AC
02AF
0283
02B5
0288
0286
02BF
02CC
02F4
02F7

02FA
031A

032D
0330
0331
0334
0338
035F
0372
0389
03A3
03A6
0383

MACLIB DSTACK iSTACK MACHINE SIMULATION

SIZ S0 iS50 LEVEL STACK

TRT P iTURN ON PRN TRACK

TRT T iTURN ON CODE TRACE

PRN <COMPUTATION OF TOOL TRAVEL DISTANCE:
LIT 0 SINITIALIZE INDEX

STO 1 iI=0

TRF T iTURN CODE TRACE OFF

i LOOK FOR STARTING MOTION (NON ZERO VALUE)
MOVE?: SREAD A-D CONVERTER FOR NON ZERO

RDM 0
STO X YHOLD TEMPORARILY
VAL X {RELOAD FOR TEST
LIT 1 iX GEQ 1 TEST
GEQ READ iX GEQ 1 7
BRN MOVE? SRETRY IF NOT
READ:
PRN <STORE FIRST/NEXT VALUE:>
DMP X
VAL X SLOAD FIRST/NEXT VALUE
STO Uyl SSTORE TO THE ITH ELEMENT
VAL 1 SINCREMENT I
LIT 1
SUM i1+1
STO I il=1+1
LIT 0 i0y FOR O GTR X TEST
VAL X iZERO YALUE READ?
GEQ COMP SCOMPUTE DISTANCE IF 0O
RDM 0 iREAD ANOTHER DATA ITEM
STO X iSAVE IT IN X
BRN READ iTO STORE AND TEST
COMP: PRN <VALUES ARE LOADED:
DMP Vy10
i NOW COMPUTE DISTANCE TRAVELLED BY TOOL
LIT 0
DuP iTWO ZEROES
STO 1 i1=0
STO TOTAL STOTAL=0
GETNXT: PRN {COMPUTING NEXT INTERVAL:
DMP I
DMP TOTAL
DMP VI3 2
LIT 0] FZERD AT END
VAL Uyl AT END?
GEQ ENDF 10 GEQ X(I)?

Listing 9-12. Program for Tool Travel Computation

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.2 Machine Emulation

139

9.2 Machine Emulation Programmer’s Utilities Guide

NOT AT END OF INTERVAL: COMPUTE NEXT TRAPEZO

-

03C0 VAL Uyl
03CC VAL Uslol FV(I) 2V (I+1)
030D SUM VT +V(T+1)
03DF LSR 1 FU(I)+V(I+1)/2
03E6 vaL TOTAL iREADY TOTAL
03EA SUM iTOTAL=TOTAL+TRAPEZOID
03EC STO TOTAL iBACK TO SUM
03EF VAL I il=1+1
03F2 LIT 1
03F6 SUM
03F8 STO I iBACK TO I
03FB BRN GETNXT
03FE ENDF: PRN <END OF COMPUTATION>
0420 DMP TOTAL
0437 VAL TOTAL iLOAD FOR D-A OUTPUT
043A WRM 0 iWRITE D-A PORT
0462 XIT

i

i DATA AREA
1164 DCL 1 FINDEX
1166 DCL X iTEMPORARY
1168 DCL V100 FVELOCITY VECTOR
1230 DCL TOTAL iTOTAL DISTANCE

Listing 9-12. (continued)

Following the MOVE? label, A-D port 0 is read and examined for the first nonzero
value. Each time the port is read, it is stored into the temporary variable X, then
reloaded and examined for a zero value. Because GEQ is the only comparison oper-
ator in the KDF-11 machine, the test is “1 greater than or equal to X.” Thus, the
branch is taken to READ whenever X is 1 or larger.

Upon encountering the READ label, the value X (just read from port 0) is stored
into V(I), where I is zero. The value of I is then incremented by loading I to the top
of the KDF-11 stack, adding 1 (LIT 1, SUM), and then storing the sum back into L.
After incrementing I, the program proceeds to check the end of the tool travel. X is
loaded to the top of the stack, and the test 0 greater than or equal to X is performed.
If the condition is true, control transfers to the label COMP, where the analysis
phase begins. Otherwise, port 0 is read again, and the value is stored into the tem-
porary X. Control then proceeds back to the READ label to store the next velocity
and test for zero.

140 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DHITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

Before 100 intervals have elapsed, the RDM 0 produces a zero value that is stored
into X and subsequently stored into V(I), for the current value of I. Thus, when
control arrives at the label COMP, the instantaneous velocities are stored in V,
terminated by a zero. At this point, the analysis of these collected velocities can take
place.

The single function that takes place in the analysis section of Listing 9-12 is the
computation of the distance traveled by the tool through this interval. Nachtflieger
engineers have determined that it is sufficient to compute the distance traveled by the
tool using the trapezoidal rule that approximates the actual distance by summing the
average of each adjacent pair of velocities. The sums are formed as shown below:

Vo4V, Vi+V, Vo +V,
+ +ooo P .
2 2 T

where n is the last interval to sum. Thus, for example, if the velocity is constant at
256 um/ms (which would not occur in practice), then

Vi=V,=---=V, =256

The summing formula given above reduces to 256 * n. Given the preceding example,
where n = 50 ms, this formula produces the value 1.280 mm, as given earlier. The
velocity values are not usually constant, so the numerical integration given by the
trapezoidal rule is used to obtain an approximation.

The KDF-11 instructions shown in Listing 9-12 between the COMP and ENDF
labels perform the numeric integration, given by the trapezoidal rule. The temporary
I is used to index through the velocity vector V until the final zero value is encoun-
tered. For each interval, the values of two adjacent velocities are summed and divided
by two. Each result is then summed into TOTAL, where the values are accumulated
until the final zero velocity is discovered.

The opcode sequence immediately following COMP places a zero value at the top
of the KDF-11 stack, then stores this value into both the index I and the accumulat-
ing sum given by TOTAL. Ignoring the trace opcodes, the operations following
GETNXT read the starting point of the next interval to process into the stack, using
VAL V,I (value of V, indexed by I). If O is greater than or equal to this value, then
the computation is complete and control goes to the label ENDF. Otherwise, the
value of V() is loaded to the KDF-11 stack, followed by the value of V(I+1). The
loaded values are then summed (SUM) and divided by two (LSR 1), producing a
value that remains in the KDF-11 stack. TOTAL is then loaded and added to this

ALL INFORMATION PRISENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 141

9.2 Machine Emulation Programmer’s Utilities Guide

partial sum, and the result is stored back to TOTAL. The index value I is then

incremented to the next interval and processing continues back at the loop header
GETNXT.

Upon processing the final zero velocity, control reaches the ENDF label where the
distance traveled is written to D-A output port zero. The output value is sent to
external instrumentation, which processes the result and displays the distance trav-
eled in a form that is readable by the tool operator.

Debugging statements have been placed throughout the program. These can be
used to trace the program execution. Listing 9-12 also contains TRT operators that
have enabled trace code generation. Thus this program, although longer than the
final production version, can be used to follow execution under CP/M.

Listing 9-13 shows the execution of the program of Listing 9-12 under DDT. The
messages printed at the debugging console are a result of the PRN opcodes distrib-
uted throughout the original program that were enabled through the TRT P opcode.
Further, the machine code trace was only enabled for the interval of two operation
codes (LIT and STO) at the beginning. To test this program, simple A-D values were
supplied at the console for the velocities:

Vo = 100H, V, = 120H, V, = 100H, V; = 80H, V4 = 0

Upon detecting the final 0 value, the trace of Listing 9-13 shows the first 10 values
of V (the last 5 elements are garbage values), followed by a trace of the sum opera-
tions for each interval. In each case, the pairs of values that are being added are
displayed (using the DMP opcode), followed by their summed value, along with the
running total. Upon completion of the distance computation, the value 320H is sent
to the D-A output port and displayed at the console.

After initial checks under CP/M, Nachtflieger programmers remove the TRT and
TREF statements from the KDF-11 program and reassemble, producing only the abso-
lute input/output instructions required for machine tool control. The resulting pro-
gram, which produces much less code than the debugging version, is placed into the
equipment for further testing and evaluation.

Listing 9-14 also provides an example of the listing produced when all machine
code operators are traced. Although the source program listing is not shown, it is
identical to Listing 9-12 except that the TRF T opcode is removed. Because the
complete trace is quite extensive, only a partial execution is shown in Listing 9-14.

142 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

A>DDT INTEG.HEX
DDT VERS 1.4
NEXT PC

0465 0000

-G100

COMPUTATION OF TOOL TRAVEL DISTANCE
LIT 0139 0000 OF77

STO 01D6 0000 0000

A-D INPUT AT 4224 0
A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0100

A-D INPUT AT 4224 120
STORE FIRST/NEXT VALUE
X= 0120

A-D INPUT AT 4224 100
STORE FIRST/NEXT VALUE
X= 0100

A-D INPUT AT 4224 80
STORE FIRST/NEXT VALUE
X= 0080

A-D INPUT AT 4224 0
STORE FIRST/NEXT VALUE
X= 0000

VALUES ARE LOADED

Y= 0100 0120 0100 0080 0000 3ECO BA11 CI1C9 SEE1 5623
COMPUTING NEXT INTERVAL
I= 0000

TOTAL= 0000

VyI= 0100 0120
COMPUTING NEXT INTERVAL
I= 0001

TOTAL= 0110

VyI= 0120 0100
COMPUTING NEXT INTERVAL
I= 0002

ViyI= 0100 0080
COMPUTING NEXT INTERVAL
I= 0003

TOTAL= 0Z2EOQ

YiyI= 0080 0000
COMPUTING NEXT INTERVAL
I= 0004

TOTAL= 0320

UyI= 0000 3ECO

END OF COMPUTATION
TOTAL= 0320

D-A OUTPUT AT 4240 0320

Listing 9-13. Sample Execution of Distance Using DDT

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 143

9.2 Machine Emulation

A>ddt inted.hex
00T VERS 1.4

NEXT
0852 0000

PC

-9100

COMPUTATION OF TOOL TRAVEL DISTANCE

LIT
STO
A-D
RDM
§TO
vaL
LIT
DIF
GEQ
A-D
RDM
STO
VAL
LIT
DIF
GEQ

STORE FIRST/NEXT VALUE

026E
030B

INPUT

0344
0359
036E
0384
039D
03AF

0000
0000

AT
0000
0000
0000
0001
FFFF
FFFF

INPUT AT

0344
0359
036E
0384
039D
03AF

X= 0006

vaL
STO
VAL
LIT
SUM
STO
vaL
A-D
ROM
STO0
LIT
DIF
GEQ

STORE FIRST/NEXT VALUE

043F
045E
0473
0489
049D
04B2
04c7

INPUT

0501
0516
0528
0544
0556

XK= 0000

VAL
STO
VAL
LIT
SUM
STO0
vaL
A-D
RDM

144

043F
045F
0473
0489
0490
04B2
04c?

INPUT

0501

0006
0006
0006
0001
00035
0009

0006
016F
0000
0001
0001
0001
0006

AT
0000
0000
0001
0005
0005

0000
0171
0001
Q001
0002
0002
Q000

AT
0000

CAB1
0000
128 0
0000
0000
0000
0000
0000
0000
128 6
0000
0000
0000
0006
0000
0000

0000
0000
0000
0000
0000
0001
0001
128 0
0006
Q006
00086
0001
0001

0001
0001
0001
0001
0001
0002
0002
128

0000

Programmer’s Utilities Guide

Listing 9-14. Partial Listing of Distance with Full Trace

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGHAL RESEARCH

Programmer’s Utilities Guide 9.2 Machine Emulation

In summary, Nachtflieger MW derived several benefits from their emulation of the
KDF series stack machines. First, there is very little cost involved in designing and
altering their machine architecture. In fact, current prices for 8080 microcomputers
might preclude the custom LSI version of the KDF-? machine. A second advantage of
the KDF emulation is that the KDF programs are highly independent from the host
processor. If a higher performance or less expensive processor becomes available to
Nachtflieger, the existing programs can be used intact by changing only the macro
definitions for each of the KDF opcodes and reassembling using MAC.

Finally, machine emulation through macro defined operation codes offers a distinct
advantage over interpretive approaches because each opcode translates to only a few
host machine operations. Interpretive execution often involves ratios of 1000 to 20,000
emulated instructions per host instruction; macro based opcodes are often in a ratio
of less than 10 to 1. Further, interpretive processors usually require run-time support
consisting of a predefined general purpose subroutine package that is included for
each and every program. For a wide variety of microcomputer applications, machine
emulation through macro defined opcodes offers distinct advantages over alternative
approaches.

9.3 Program Control Structures

Macro facilities can provide program control statements that resemble those found
in many high-level languages. In general, program control statements allow Boolean
tests and conditional branching based on the outcome of the Boolean test. Further,
label names usually provided by you as the destination of a branch are automatically
generated for the particular statement.

The following paragraphs discuss three typical control statements that allow simple
conditional grouping (WHEN-ENDW), controlled iteration (DO-ENDDO), and case
selection (SELECT-ENDSEL). All three statements are program control facilities that
allow well-structured programming, resulting in programs that are easier to write,
debug, and maintain.

Two libraries are first introduced as a foundation for the discussion. The I/O
library shown in Listing 9-15 allows simple character input operations along with
full message output. The READ macro accepts a single character from the console
keyboard and stores this character into the variable given by the parameter VAR.
The WRITE macro shown in Listing 9-15 takes an ASCII message as a parameter
and sends this message to the console output device preceded by a carriage return
line-feed sequence. These simple I/O macros are stored in the disk in the file SIM-
PIO.LIB and are used in the examples that illustrate the control structures.

NEORMATION Tl 08D HERE IS PR CTARY TO DIGITAL RESEARCH 145

9.3 Program Control Structures Programmer’s Ultilities Guide

The second library used in the control structure examples is given in Listing 9-16.
Collectively, these macros define a number of Boolean operations that are performed
on 8-bit operands, providing the basic relational operations on unsigned integer values,
including:

LSS less than

LEQ less than or equal to
EQL equal to

NEQ not equal to

GEQ greater than or equal to
GTR greater than

In all cases, the macros accept three actual parameters. The parameters consist of
two data values involved in the test (X and Y), along with a program label that
receives control if the Boolean test produces a true value (TL). The first operand X
can be a labeled memory location containing an 8-bit value, and Y can be either a
labeled 8-bit location or a literal numeric value. If the first operand X is not supplied,
then the value to be tested is assumed to exist in the 8080 accumulator when the
macro is entered. Thus, for example, the macro invocation

LSS ALPHA:BETATRUECASE

compares the values stored at the labeled memory locations ALPHA and BETA,
defined by a DS or DB statement, and transfers to the program step labeled by
TRUECASE if ALPHA contains a value less than the value stored at BETA. The
invocation

LSS +BETA»TRUECASE

is similar, but it compares the contents of the 8080 accumulator with the value
stored at BETA. Finally, the invocation

LSS ALPHA 34 yTRUECASE

compares ALPHA with the literal value 34 in the relational test.

146 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

The macro TEST? is used throughout the macro library to construct the relational
test by first loading the initial operand X, if necessary. The second operand type is
then examined by executing an IRPC within the TEST? macro of Listing 9-16. This
extracts the first character of the Y operand. This first character must be either
numeric or alphabetic. If numeric, then the literal value is subtracted from the accu-
mulator, setting the 8080 condition codes. If the first character of Y is nonnumeric,
then the value is assumed to reside in memory. In this case, the HL registers are set
to the Y operand and the value at Y is subtracted from the accumulator value. In
any case, the 8080 condition codes are set as a result of the subtraction operation.
These condition codes are then used in the individual macros to produce conditional
jumps to the destination labels. These macros are collectively stored on the disk in a
file named COMPARE.LIB for use in examples that follow.

i macro library for simple i/o
bdos equ 0005h ibdos entry
conin equ 1 iconsole input function
msdout equ 9 iPrint messade til $
cr equ Odh icarriade return
1f equ Oah iline feed
i
read macro var
i3 read a sindle character into var
mui csconin jconsole inpPut function
call bdos icharacter is in a
sta var
endm

5
write macro msd

i write messade to console
local msdlPmsg

JmpP PmMs 9
msdle db crylf iileading crlf
db '&MSG’ §iinline messade
db ‘$’ iimessade terminator
PMSd: mui cimsdout iiPrint messade til $
Ixi dimsgl
call bdos
endm

Listing 9-15. Simple I/O Macro Library

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH 147

9.3 Program Control Structures Programmer’s Utilities Guide

test? macro Xy
i utility macro to denerate condition codes
if not nul x fithen load «x
lda X i assumed to be in memory
endif
irec Yy iivy may be constant operand
tdig? set ‘&Y -0 jifirst char digit?
exitm iistopr irpc after first char
endm
if tdig? <= 9 iiy numeric?
sui Y jivess so sub immediate
else
Ixi hy iy not numeric
sub m iiso sub from memory
endm
i
lss macro Xsystl
i x lss than v test
[transfer to tl (true label) if true.
i continue if test is false
test? X1y iiset condition codes
Jc tl
endm
i
lea macro X1y atl
i x less than or equal to v test
lss Xayatl
Jz tl
endm
i
eql macro Xy atl
i X equal to v test
test? Xy
Jz tl
endm
i
neq macro Xy stl
LR X not equal to vy test

test? X1y
dnz tl
endm

Listing 9-16. Macro Library for Simple Comparison Operations

148 ALL INFORMATION PRESENTED HERE S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

deq macro Xy otl
i X dreater than or equal to v test
test? X1y

Jnc tl
endm
3
gtr macro Xy atl
ER] X dreater than v test
local fl iifalse label
test? Xy
Jc fl
der a
dne tl
fl: endm

Listing 9-16. (continued)

Listings 9-17a and 9-17b show an example of a program that uses both the SIM-
PIO and COMPARE libraries. This program successively reads console characters
and print messages based on the character typed. The program begins by sending the
sign-on message at the label CYCLE. A character is then read and stored into X,
using the READ macro. The LSS test determines whether lower- to upper-case trans-
lation is required, assuming the input is alphabetic. If X is numerically less than 61H,
the value of a lower-case A, then control transfers to the label NOTRAN. Otherwise,
the character is loaded to the accumulator, the lower-case bit is stripped from the
character, and it is replaced in memory. Following the label NOTRAN, the character
is compared with the letters A, B, C, and D. In each case, a message is typed
corresponding to each letter. If one of these four letters cannot be found, the message
at ERROR is typed.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 149

9.3 Program Control Structures

0100

0100
012B

0133

0138
013E
0140

0143
0148
0167

016A
0172
018D

0190
0198
0183

01B6
01BE
01D9
O1EB

01EC
020E

0211
0212

150

3A1102
EBSF
321102

C30001

C30001

C30001

c9

C30001

ORG 100H
MACLIB SIMPIO JSIMPLE IO LIBRARY
MACLIB COMPARE 3iCOMPARISON OPERATORS

CYCLE: WRITE {TYPE A CHARACTER FROM A TO D >

READ X
i TEST FOR LOWER CASE ALPHABETIC
LSS X+61H NOTRAN

ARRIVE HERE IF X IS GREATER OR EQUAL TO
A LOWER CASE A (=61H) s TRANSLATE

LDA X
ANI SFH iCLEAR LOWER CASE BIT
STA X iSTORE BACK TO X
NOTRAN:
§ NOW CHECK CASES
§
NEQ Xa%k A’ HNOTA
WRITE <YOU TYPED AN A>
JMP CYCLE
i
NOTA: NEOQ X+%'B’+NOTB
WRITE <YOU TYPED A B>
JMP CYCLE
i
NOTB: NEQ X% 'C’/yNOTC
WRITE <YOU TYPED A C>
JMP CYCLE
§
NOTC: NEQ X% /D' +ERROR

WRITE <YOU TYPED A D’
WRITE <BYE"!>
RET

ERROR: WRITE <NOT AN Ay By Cy» OR D>

JMP CYCLE

i

X: DS 1 iTEMP FOR CHARACTER
END

Listing 9-17a. Single Character Processing using COMPARE

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

Programmer’s Utilities Guide 9.3 Program Control Structures

In comparing each letter, the macro NEQ starts with the first argument corre-
sponding to the character typed at the console (X); the second argument corresponds
to the letter to match. The % operator in each case produces the numeric value of
the character. This is necessary because the TEST? macro expects either a number or
a label value in the second argument position. The program processes characters
until a D is typed when it returns to the Console Command Processor. The intention
here is to show the use of Boolean tests used by the control structure macros that
follow.

Listing 9-17b shows a partial expansion of the macros given in the previous exam-
ple. The first message expansion is shown, along with the READ and NEQ macros.
The listing has been abstracted, however, and does not show the macro library
statements or the remainder of the program following the NOTA label.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 151

9.3 Program Control Structures Programmer’s Utilities Guide

CYCLE: WRITE {TYPE A CHARACTER FROM A TO D >

0100+C32301 JMP ??0002
0103+0D0A ?7?0001: DB CRLF
0105+5459504520 DB 'TYPE A CHARACTER FROM A TO D
0122+24 DB ‘$’
0123+0E09 ?70002: MVI CMSGOUT
0125+110301 LX1 D+??0001
0128+CD0500 CALL BDOS

READ X
012B+0EO1 MVI C+CONIN SCONSOLE INPUT FUNCTION
012D+CD0S00 CALL BDOS iCHARACTER IS IN A
0130+321102 STA X

i TEST FOR LOWER CASE ALPHABETIC

LSS X+161HNOTRAN
0133+3A1102 LDA X
0136+D661 sul 61H
0138+DA4301 JC NOTRAN

ARRIVE HERE IF X IS GREATER OR EQUAL TO
A LOWER CASE A (=B61H)» TRANSLATE

- s

0138 3A1102 LDA X

013E EBSF ANI SFH iCLEAR LOWER CASE BIT

0140 321102 STA X §iSTORE BACK TO X
NOTRAN:

NOW CHECK CASES

NEQ X% A’ yNOTA
0143+3A1102 LDA X
0146+D641 SuUl 65
0148+C26A01 JNZ NOTA
WRITE <YOU TYPED AN A>
014B+C35F01 JMP ?70004
014E+0DOA ??0003: DB CRyLF
0150+594F552054 DB ‘YOU TYPED AN A’
015E+24 DB ‘$’
015F+0E09 ??0004: MVI C/MSGOUT
0161+114E01 LXI Ds??0003
0164+CDOS00 CALL BDOS
0167 C30001 JMP CYCLE
i
NOTA: NEQ X% 'B’NOTB

.
1 DR)

Listing 9-17b. Partial Trace of Listing 9-17a with Macro Generation

152 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

The macro library shown in Listing 9-18, called NCOMPARE, expands upon the
basic relational macros by allowing a false branch option. Each macro accepts four
arguments: the X and Y operands, as before, a true label (TL), and a false label (FL).
It is assumed that either the TL or FL is supplied in any invocation of a relational
operator, but not both. If the TL is supplied, then the branch is taken if the relational
operator produces a true result. Conversely, if the TL label is absent but the FL label
is supplied, then the branch to FL is taken if the relational operation produces a false
result. Thus, NCOMPARE expands upon the COMPARE library by allowing all of
the relational operation and their negations. Using the NCOMPARE library, for
example, the macro invocation

LSS X120, +FALSELAB

branches to the label FALSELAB if X is not less than the value 20. The negation
operations are accomplished within the NCOMPARE library by first testing for a
null TL operand and, if empty, the relational operation is reversed by invoking the
appropriate negated macro. For example, the LSS macro in Listing 9-18 invokes the
GEQ macro, which is equivalent to ‘not LSS’ when the TL argument is empty and
supplies the FL argument to LSS as the TL label to GEQ. These negated relational
forms are used within the control structures described below.

i macro library for B8-bit comparison orPeration

test? macro XY
i utility macro to denerate condition codes

if not nul x iithen load «x

1da X iix assumed to be in memory

endif

irpPc ?yay iiy may be constant operand
tdig? set ‘gRY -0 iifirst char digit?

exitm iistop irpc after first char

endm

if tdig? <= 9 3y numeric?

sui ¥ iivess so sub immediate

else

Ixi hyy iiy not numeric

sub m iiso sub from memory

endm

Listing 9-18. Expanded NCOMPARE Comparison Operators

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 153

9.3 Program Control Structures Programmer’s Utilities Guide

lss macro Xsystl,fl
ii X lss than vy test
i if tl is Presents assume true test
i if t1 is absents then invert test
if nul tl
deq Xy afl
else
test? X1y jiset condition codes
Jec tl
endm
H
lea macro Xy stlsfl
ii x less than or equal to v test
if nul tl
deq X1y sfl
else
lss Xy atl
Jz tl
endm
eql macro Xeyatlsfl
i X equal to vy test
if nul tl
neq Xy sfl
else
test? X1y
Jz tl
endm
i
neq macro X1y astlsfl
ii X not equal to vy test
if nul tl
eql Xy afl
else
test? X1y
Jnz tl
endm
§
deq macro Xy stlafl
i X dreater than or equal to v test
if nul tl
lss Xy ofl
else
test? X1y
Jnc tl
endm

Listing 9-18. (continued)

154 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

dtr macro Xeystlafl
i X dreater than vy test
if nul tl
lea Xy ofl
else
local 9f1 iifalse label
test? Xy
Jc 9fl
der a
Jnc tl
afl: endm

Listing 9-18. (continued)

Listing 9-19a is an example of the use of the NCOMPARE library within a pro-
gram. This program is similar to the previous example, but instead checks to ensure
that alphabetic translation occurs only within the proper range of lower-case letters.
Following the label CYCLE, the character read from the console is compared with a
lower-case a, using the % operation to produce equivalent decimal value 97. Because
the negated form of GEQ is used here, the label NOTRAN receives control if X is
not greater than or equal to %‘a’. If X is greater than or equal to %a, program flow
continues to the next test in sequence where X is compared with a lower-case z
(%°2’= decimal 122). In this case, the normal form of GTR is used. Control trans-
fers to NOTRAN if X is greater than %°z’, which is above the range of lower-case
alphabetics. If X is between %‘a’ and %°z’, the character is changed to upper-case,
as before, by removing the lower-case bit and replacing X in memory. Note that the
indentation levels between the GEQ and GTR operations are included for readability
of the program.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 155

9.3 Program Control Structures Programmer’s Ultilities Guide

Listing 9-19b shows the GEQ-GTR section of the program of Listing 9-19a with
full macro trace enabled. (See Section 10.) The trace in this listing shows the transi-
tion from GEQ to the LSS operator, substituting the FL label in place of the TL
label. Again, the macro library statements are not shown, and the listing following
the NOTRAN label is not present.

0100 ORG 100H
MACLIB SIMPIO SSIMPLE IO LIBRARY
MACLIB NCOMPAREiCOMPARISON OPERATORS

0100 CYCLE: MWRITE <TYPE A CHARACTER FROM A TO D »
0128 READ X
i TEST FOR LOWER CASE ALPHABETIC
0133 GEQ X+%'a’+»NOTRAN §iBRANCH ON FALSE
i X IS GREATER OR EQUAL TO LOWER CASE A
0138 GTR Kok '2 ' sNOTRAN
0147 3A1002 LDA X
014A EBSF ANI SFH iUPPER CASE
014C 321002 STA X iBACK T0 X
i
NOTRAN:
i NOW CHECK CASES
i
014F NEQ X% A’ 4NOTA
0157 WRITE <YOU TYPED AN A
0173 C30001 JMP CYCLE
i
0176 NOTA: NEQ X% 'B’NOTB
017E WRITE <YOU TYPED A B>
0199 C30001 JMP CYCLE
i
019C NOTB: NEQ X% 'C’yNOTC
01A4 WRITE <YOU TYPED A C:
01BF C30001 JMP CYCLE
i
01C2 NOTC: NEQ X+%'D’ +ERROR
01CA WRITE <YOU TYPED A D>
01ES WRITE <BYE" !X
01F7 C9 RET
i
01F8 ERROR: WRITE <NOT AN Ay By Cy» OR D
021A C30001 JMP CYCLE
i
0210 Xt DS 1 FiTEMP FOR CHARACTER
021E END

Listing 9-19a. Sample Program using NCOMPARE Library

156 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

-.

GEQ

+ IF

+ LSS

+ IF

+ GEQ

+ ELSE

+ TEST?

+ 1F
0133+3A1D02 LDA

+ ENDIF

+ IRPC

+ TDIG? SET

+ EXITM

+ ENDM
0009+ TDIG? SET

+ EXITM

+ IF
0136+D661 SuUI

+ ELSE

+ LXI

+ suB

+ ENDM
0138+DA4F 01 JC

+ ENDM

+ ELSE

+ TEST?

+ JNC

+ ENDM

i

+ IF

+ LEQ

+ ELSE

+ LOCAL

+ TEST?

+ IF
013B+3A1D02 LDA

+ ENDIF

+ IRPC

+ TDIG? SET

+ EXITM

+ ENDM
0001 +# TDIG? SET

+ EXITM

+ IF

9.3 Program Control Structures

TEST FOR LOWER CASE ALPHABETIC

X% ’a’»»NOTRAN
NUL
X+97NOTRAN
NUL NOTRAN
X197

iBRANCH ON FALSE

X197

NOT NUL X
X

?Y 497
I&’?YI-IOI

groQ

TDIG? <= 9
97

H97
M

NOTRAN

X197

X IS GREATER OR EQUAL TO LOMWER CASE A

GTR X% 'z’ yNOTRAN
NUL NOTRAN

X122
GFL

X122

NOT NUL X
X

?Y122
‘RPY -0

SRR X

TDIG? <= 9

Listing 9-19b. Segment of Listing 9-19a with + M Option

ALL INFORMATION PRESENTED HERE {S PROPRIETARY TO DIGITAL RESEARCH

157

9.3 Program Control Structures Programmer’s Utilities Guide

013E+DB7A SUI 122
+ ELSE
+ LXI H»122
+ sus M
+ ENDM
0140+DA4701 JC ??0003
0143+3D DCR A
0144+D24F01 JNC NOTRAN
+ ??0003: ENDM
0147 3A1D02 LDA X
014A EBSF ANI SFH iUPPER CASE
014C 321D02 STA X iBACK TO X
1
NOTRAN:

Listing 9-19b. (continued)

Given the SIMPIO and NCOMPARE libraries, it is now possible to define the first
complete control structure, called the WHEN-ENDW group. The form of the group
is

WHEN condition
statement-1
statement-2

statement-n
ENDW

where condition is a relational expression taking one of the forms
id,rel;id id,rel,number ,rel,id ,rel,number

and id is an identifier; rel is a relational operator (LSS, LEQ, EQL, NEQ, GEQ,
GTR), and number is a literal numeric value. Similar in form to the arguments of the
individual relational operators of the COMPARE library, the last two forms shown
above assume the first argument is present in the 8080 accumulator. The condition
following the WHEN is evaluated as a relational expression, according to the rules
stated with the COMPARE library. If the condition produces a true result, then
statement-1 through statement-n are executed. Otherwise, control transfers to the
statement following the ENDW. Nested WHEN-ENDW groups are allowed when
they take the form:

158 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

WHEN . . .
" WHEN . ..
" WHEN . . .
ENDW
ENDW
ENDW
to arbitrary levels, where the ellipses represent interspersed statements. Because of
the simplified implementation, nested parallel WHEN-ENDW groups are disallowed
when they take the form:
WHEN . . .
. WHEN . . .
ENDW
WHEN .
ENDW
ENDW
The implementation of the WHEN-ENDW group is based upon macros that count
WHEN-ENDW groups and generate branches and labels at the proper levels in the

structure.

Listing 9-20 shows the WHEN macro library, consisting of four macros:

GENWTST (generate WHEN test)
GENLAB (generate label)

WHEN (beginning of WHEN group)
ENDW (end of WHEN group)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 159

9.3 Program Control Structures Programmer’s Utilities Guide

These macros, in turn, use the macros in the NCOMPARE library shown previously
and thus are assumed to exist in the user’s program as a result of a MACLIB
NCOMPARE statement. Label generation is based on the WCNT (WHEN count)
and WLEV (WHEN level) counters. WCNT is incremented each time a WHEN is
encountered, and WLEV keeps track of the number of WHENSs that have occurred
without corresponding ENDWs.

Upon encountering the first WHEN, the WCNT and WLEV counters are set to
zero, and the WHEN macro is redefined to generate the first WHEN test by invoking
GENWTST, using the relation R, operands X and Y, and WHEN counter WCNT.
The value of WCNT is passed to GENWTST rather than the characters WCNT
themselves. Thus, at the first invocation of GENWTST, the dummy argument NUM
has the value 0. The first argument to GENWTST, called TST, corresponds to a
relational operation (LSS through GTR) and thus is invoked automatically within the
body of GENWTST, using the negated form of the relational because the TL argu-
ment is empty.

Again referring to the body of the GENWTST macro in Listing 9-20, the last
argument, corresponding to the false label of the relational operation, is the con-
structed label ENDW&num, where num has the value 0 initially, and successively
larger values on later invocations. Each time GENWTST is invoked, it generates a
relational test and a branch on false to a generated label. It is the responsibility of
the ENDW macro to produce the appropriate balanced label when encountered in
the program.

In the body of the WHEN macro in Listing 9-20, the WLEV level counter is set to
the current WCNT, and the WCNT is incremented in preparation for the next WHEN
statement. Similar to nearly all macros that redefine themselves, the outer macro
definition of WHEN invokes the newly created WHEN macro before exit.

Upon encountering the ENDW statement in the source program, the ENDW macro
first invokes GENLAB to generate the appropriate ENDW label. The first argument
to GENLAB is the label prefix ENDW; the second argument is the evaluated param-
eter % WLEV corresponding to the current ENDW label. If only one WHEN state-
ment is encountered, for example, the value of WLEV is zero, and thus GENLAB
produces the label ENDWO0, which is the destination of the earlier branch generated
by an invocation of GENWTST. Following the invocation of GENLAB, WLEV is
decremented to account for the fact that one more destination label has been resolved.

160 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TC DIGITAL RESEARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

macro library for "when" construct

lakel denerators
enwtst macro tstyxsysnum
denerate a "when" test (negated form).
invoKe macro "tst" with Parameters
Xy with Jump to endw & num
tst xsvrsendwhknum
endm

[P

i
denlab macro labynum

i produce the label "lab" & "num"
lab&num:
endm
i
i "when" macros for start and end
H
when macro xusrelsyu
i initialize counters first time
went set 0 iinumber of whens
when macro XoTay
denwtst raxsvdwent
wlev set went iinext endw to denerate
went set went+l §inumber of i"when"s
endm
when xusrelsyv
endm
3
endw macro
i denerate the endind code for a "when"
denlab endwilwlev
wlev set wlev-1 iicount current level down
L R] wlev must not do bhelow O (not checked)
endm

Listing 9-20. Macro Library for the WHEN Statement

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 161

9.3 Program Control Structures Programmer’s Utilities Guide

As an example of the use of WHEN-ENDW, Listing 9-21a shows a sample pro-
gram that resembles the previous character scanning function, but uses the WHEN
group in place of simple tests and branches. As before, a single character is read
from the console and first tested for possible case conversion. The statement WHEN
X,GEQ,61H causes the three statements that follow to execute only when X is
greater than or equal to 61H (lower-case a). Further, the four WHEN groups that
follow test for the specific characters A, B, C, or D. If an A is typed, the correspond-
ing WHEN group executes, and control transfers back to the CYCLE label where
another character is read from the console. If the letter D is typed, the program
responds with two messages and returns to the console command processor.

Listing 9-21b shows the same program with full macro trace enabled. This portion
of the program shows macro processing for the first WHEN-ENDW group only,
although the remaining groups are processed in a similar fashion. It is a worthwhile
exercise to determine that the nesting rules for WHEN groups are properly stated,
and that the restriction on nested parallel groups is necessary.

0100 ORG 100H
MACLIB SIMPIO §SIMPLE 10 LIBRARY
MACLIB NCOMPARESFEXPANDED COMPARE OPS
MACLIB WHEN FWHEN CONSTRUCT

0100 CYCLE: WRITE {TYPE A CHARACTER FROM A TO D >
0128 READ X
i TEST FOR LOWER CASE ALPHABETIC
0133 WHEN X+GEQ+61H
0138 3A1102 LDA X
013E EBSF ANI SFH iCLEAR LOWER CASE BIT
0140 321102 STA X FSTORE BACK TO X
0143 ENDW

i NOW CHECK CASES

0143 WHEN XKIEQL LA’
0148 WRITE £YOU TYPED AN A>
0167 C30001 JMP CYCLE
016A ENDKW
1
016A WHEN XK+EQLZ B’
0172 WRITE <YOU TYPED A B>
0180 C30001 JMP CYCLE
0190 ENDKW

Listing 9-21a. Sample WHEN Program with —M in Effect

162 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

9.3 Program Control Structures

0190 WHEN X/EQL,%'C’
0198 WRITE <YOU TYPED A C>
0183 C30001 JMP CYCLE
0186 ENDW
1
0186 WHEN X,EQL,% ‘D’
01BE WRITE <YOU TYPED A D>
01D9 WRITE <BYE" !>
01EB C9 RET
01EC ENDW
1
01EC WRITE <NOT AN A, B, C/+ OR D>
020E C30001 JMP CYCLE
1)
0211 X DS 1 iTEMP FOR CHARACTER
Listing 9-21a. (continued)
1 ¢
]
] TEST FOR LOWER CASE ALPHABETIC
WHEN X/GEQ,G1H
0000+ WCNT SET 0
+ WHEN ~ MACRO XiR,Y
+ GENWTST RX Y s XWCNT
+ WLEY SET WCNT
+ WCNT SET WCNT+1
+ ENDM
+ WHEN X)GEQ,B1H
+ GENWTST GEQsX+61H) XWCNT
+ GEQ X151H 1 JENDWO
+ IF NUL
+ LSS X 161H JENDKO
+ IF NUL ENDWO
+ GEQ X161H
+ ELSE
+ TEST? X,61H
+ IF NOT NUL X
0133+3A1102 LDA X
+ ENDIF
* IRPC ?Y,B1H
+ TDIG? SET RPY -0
* EXITM
+ ENDM
0006+# TDIG? SET ‘B'-0"
+ EXITM
+ IF TDIG? <= 9

Listing 9-21b. Partial Listing of Listing 9-21a with + M Option

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

163

9.3 Program Control Structures Programmer’s Utilities Guide

0136+D661 Su1 61H
+ ELSE
+ LXI Hy61H
+ suB M
+ ENDM
0138+DA4301 JC ENDWO
+ ENDM
+ ELSE
+ TEST? X1+61H
+ JNC
+ ENDM
+ ENDM
0000+# WLEV SET WCNT
0001+ WCNT SET WCNT+1
+ ENDM
+ ENDM
0138 3A1102 LDA X
013E EBSF ANI SFH iCLEAR LOWER CASE BIT
0140 321102 STA X iSTORE BACK TO X
ENDW

Listing 9-21b. (continued)

A second control structure, called the DOWHILE-ENDDO group, takes the gen-
eral form:

DOWHILE condition
statement-1
statement-2

statement-n
ENDDO

where the condition and nesting rules are identical to the WHEN-ENDW group. The
DOWHILE group is similar in concept to the WHEN group, except that statements
1 through n execute repetitively as long as the condition remains true. That is, the
condition is evaluated when the DOWHILE is encountered in normal program flow.
If the condition produces a false value, then control transfers to the statement follow-
ing the ENDDO. Otherwise, the statements within the group execute until the ENDDO
is reached. Upon encountering the ENDDO, control transfers back to the DOWHILE,
and the condition is evaluated again. Iteration continues through the group until the
condition produces a false value.

164 ALL INFORMATION PRESENTED HERE IS PROTRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

The macro library for the DOWHILE group is shown in Listing 9-22. The
DOWHILE statement invokes the relational operator macros to produce the proper
sequence of tests and branches. Upon encountering the ENDDO, the proper label
and jump sequence is again generated. The only essential difference in the DOWHILE
and WHEN groups is that the location of the DOWHILE test must be labeled, and
a JMP instruction must be generated to this label at the end of each group.

i macro library for "dowhile" construct
3
dendtst macro tStaX sy num

] denerate a "dowhile" test
tst X1y srenddinum
endm
i
dendlab macro lab srium
i produce the label lab & num
i for dowhile entry or exit
lab&num:

endm

]

dendJmp macro num

i denerate Jump to dowhile test
Jmp dtest&num
endm

dowhile macro xusrelsvu

i initialize counter

docnt set O inumber of dowhiles
L]

dowhile macro XDy

i denerate the dowhile entry
dendlab dtest,%Zdocnt

denerate the conditional test
dendtst rixsyddocnt

dolev set docnt iinext endd to denerate
docnt set docnt+l
endm
dowhile xvsrelsvv
endm
i
enddo macro
i denerate the Jump to the test

dendimp Z%dolev
denerate the end of a dowhile
dendlab endd:Xdolev
dolevy set dolev-1
endm

Listing 9-22. Macro Library for the DOWHILE Statement

ALLINFORMATION 00 WNTED HERE IS PROTMULTARY TO DIGITAL RESEARCH 165

9.3 Program Control Structures Programmer’s Utilities Guide

In Listing 9-22, GENDTST (generate DOWHILE test), GENDLAB (generate
DOWHILE label), and GENDJMP (generate DOWHILE jump) are all label genera-
tors used in the macros that follow. Similar to the WHEN macro, DOWHILE uses
the counters DOCNT and DOLEV to keep track of the number of DOWHILE
groups encountered along with the current DOWHILE level, corresponding to the
number of unmatched DOWHILEs. The DOWHILE macro first generates the entry
label DTESTn, where n is the DOWHILE count. The conditional test is then gener-
ated, similar to the WHEN macro, with a branch on false condition to the ENDDn
label that is eventually generated by the ENDDO macro. Finally, the DOWHILE
macro increments the DOCNT counter in preparation for the next group.

The ENDDO macro in Listing 9-22 first generates the JMP instruction back to the
DOWHILE test, using the GENDLAB utility macro, and then produces the ENDDn
label that becomes the target of the jump on false condition. The form of the expanded
macros for one nested level thus becomes:

DTESTO:

conditional Jump to ENDDO
DTEST1:
conditional Jump to ENDDI1
JMP DTEST1

ENDD1

JMP DTESTO

Listing 9-23a shows an example of a program that uses the DOWHILE group.
Although this program differs slightly from the previous examples, the principal
function is the same: a STOP character is first read from the console, followed by a
group of statements that repetitively execute in search of the STOP character. Two
DOWHILE groups occur within the program. The first group checks each character
typed (X) to see if it matches the STOP character. If not (DOWHILE X,NEQ,STOP),
the statements up through the matching ENDDO are processed. If the value of X is
the character A, then the message YOU TYPED AN A is sent to the console. Other-
wise, the message NOT AN A is typed, followed by a check to see if the STOP
character was typed. If so, the messages STOP CHARACTER and BYE! appear at
the console. Control continues through the ENDWs to the ENDDO and back to the
DOWHILE header. The DOWHILE X,NEQ,STOP produces a false condition, and
control transfers to the XRA A instruction following the ENDDO.

166 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0100 ORG
MACLIB
MACLIB
MACLIB
MACLIB
i
0100 WRITE
0127 READ
i X =
012F
0139 WRITE
0159 READ
i
0161 WHEN
0169 WRITE
0185 ENDW
1)
0185 WHEN
0180 WRITE
01A3
01AD
01C9
0108
0108 ENDW
0108 ENDDO
i
§
01DE AF XRA
01DF 320002 STA
01E2 DOWHILE
01EA WRITE
01F8 210002 LXI
01FB 34 INR
01FC ENDDO
O1FF C8 RET
1
0200 00 X DB
0201 STOP: DS

100H

SIMPIO

9.3 Program Control Structures

iSIMPLE IO LIBRARY

NCOMPARE SEXPANDED COMPARE QOPS

WHEN

DOWHILE

iWHEN CONSTRUCT
iDOWHILE STATEMENT

<TYPE THE STOP CHARACTER: >

STOP

DOWHILE X,NEQ,STOP

0 FOR THE FIRST LOOP

iLOOK FOR STOP CHARACTER

{TYPE A CHARACTER: =

X

XIEQL v 'A’

<YOU TYPED AN A
KINEQ 2L 'A’

<NOT AN A>

WHEN XEQL,STOP

WRITE <STOP CHARACTER:
WRITE <BYE" !>

ENDW

A
X

X1LSS,23

<7

H X
M

CLEAR THE SCREEN (23 CRLF‘S)

iX=0

iX=X+1

FEXECUTES "DOMWHILE" FIRST TIME
iSTOP CHARACTER

Listing 9-23a. An Example Using the DOWHILE Statement

A

LU INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

167

9.3 Program Control Structures Programmer’s Utilities Guide

i CLEAR THE SCREEN (23 CRLF’S)
01DE AF XRA A
01DF 320002 STA X iX=0
DOWHILE X,LSS+23
01E2+3A0002 LDA X
01ES+DE17 SUI 23
01E7+D2FFO1 JNC ENDD1
WRITE <
01EA+C3F001 JMP 770014
01ED+0DOA ??0013: DB CRLF
O1EF+24 DB ‘$’
01F0+0E09 ??0014: MUI CMSGOUT
01F2+11EDO1 LXI D+??0013
01F5+CD0O500 CALL BDOS
01F8 210002 LXI HiX
01FB 34 INR M iX=X+1
ENDDO
01FC+C3E201 JMP DTEST1
01FF C9 RET

Listing 9-23b. Partial Listing of Listing 9-23a
with Macro Generation

In Listing 9-23a, the second DOWHILE-ENDDO group clears the normal CRT
screen size of 23 lines. This is accomplished by first setting X to the value zero,
followed by a DOWHILE group that checks the condition X,LSS,23 which iterates
until X reaches the value 23. The WRITE statement within the DOWHILE group
produces only the carriage return line-feed on each iteration because the character
sequence within the brackets is empty. Following the WRITE statement, X is incre-
mented by one, acting as a line counter. When X reaches 23, the RET statement
following the matching ENDDO receives control, and the program terminates by
returning to the console processor. Note that the DB statement for X provides the
initial value zero, so that the first DOWHILE executes at least one time.

Listing 9-23b shows a portion of the program of Listing 9-23a, with partial macro
trace enabled. This trace does not show the generated labels ENDD1 and DTEST1
because no machine code was generated on those lines. The + M assembly parameter
would show the labels, however. The locations of these labels can be derived from
the hex listing to the left; the JNC ENDD1 produces the destination address 01FF
corresponding to the RET statement, and the J]MP DTEST1 produces the address
01E2 corresponding to the LDA X instruction at the beginning of the DOWHILE

group.

168 ALL INFORMATION PRESENTED HERE (5 ¢ FTARY 1O DIGITAL RESIARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

The last control structure presented in this section is the SELECT-ENDSEL group,
which corresponds to the FORTRAN computed GO-TO, the ALGOL switch state-
ment, and the PL/M case statement. The general form of the SELECT group is

SELECT id
statement-set-0
SELNEXT
statement-set-1
SELNEXT
SELNEXT
statement-set-n
ENDSEL

where id is a data label corresponding to an 8-bit value in memory, and statement
set 0 through n denotes groups of statements separated by SELNEXT delimiters.

The action of the SELECT-ENDSEL group is as follows: the variable given in the
SELECT statement is taken as a case number assumed to be in the range 0 through
n. If the value is 0, statement-set-0 is executed and, upon completion of the group,
control transfers to the statement following the ENDSEL. If the variable has the
value 1, then statement-set-1 executes. Similarly, if the variable produces a value i
between 0 and n, then statement-set-i receives control. There can be up to 25§
groups of statements within each SELECT-ENDSEL group, and any number of dis-
tinct SELECT-ENDSEL groups. Nested SELECT-ENDSEL groups are not allowed.
That is, a SELECT-ENDSEL group cannot occur within a statement-set that is enclosed
in another SELECT-ENDSEL group. As a convenience, the variable following the
SELECT can be omitted, in which case the current 8080 accumulator content selects
the proper case.

Listings 9-24a and 9-24b show the SELECT macro library that implements the
SELECT-ENDSEL group. The general strategy is to count the cases as they occur,
starting with the SELECT, delimited by NEXTSEL, and terminated by ENDSEL. As
the cases occur, a case label is generated that takes the form CASEn@m where n
counts the SELECT-ENDSEL groups, and m is the case number within group n. A
jump instruction is generated at the end of each case to the label ENDSn that marks
the end of the SELECT group number n. Upon encountering the end of the group, a
select-vector is generated that contains the address of each case within the group,
headed by the label SELVn, where n is again the group number. Machine code is
thus generated at the SELECT entry, which indexes into the select vector, based upon
the SELECT variable, to obtain the proper case address. The first statement within
the case receives control based upon the value obtained from this vector.

L INFORMATION Pis TED HERE IS PROOCETARY TO DICITAL RESEARC H 169

9.3 Program Control Structures Programmer’s Utilities Guide

The general form of the machine code generated for the first SELECT group within
a program (group n = 0) is:

LDA id

LXI SELVO0

(index HL by id, and
load the address to HL)

PCHL
CASE0@0:
statement-set-0
JMP ENDSO
CASEO0@1:
statement-set-1
JMP ENDSO
CASE@n:
statement-set-n
JMP ENDSO
SELVO:

DW CASE0@O
DW CASEO@1

DW CASEO@n
ENDS0:

Listing 9-24a contains the label generators GENSLXI (generate SELECT LXI),
GENCASE (generate case labels), GENELT (generate select vector element), and
GENSLAB (generate SELECT label). Listing 9-24b contains the macro definitions for
SELNEXT (select next case), SELECT, and ENDSEL.

In Listing 9-24b, the SELECT macro begins by zeroing CCNT which counts SELECT-
ENDSEL groups and then redefines itself, similar to the WHEN and DOWHILE
macros. The redefined SELECT macro then generates the select vector indexing oper-
ation by loading the indexing variable, if necessary, and then fetches the specific case
address. No machine code is generated to check that the indexing variable is within
the proper range. The PCHL at the end of this code sequence performs the branch
to the selected case.

170 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

At the end of the redefined select macro, SELNEXT is invoked automatically, to
delimit the first case in the SELECT group (otherwise SELECT would have to be
followed immediately by SELNEXT in the user program to generate the proper
labels). SELECT also zeros the ECNT variable, which counts the cases until ENDSEL

is encountered.

H macro library for "select" construct
§
i label denerators
denslxi macro num
i load hl with address of case list
Ixi hsselvi&num
endm
i
dencase macro numselt
i denerate Jmp to end of cases
if elt 4t O
Jmp ends&num iirpast addr list
endif
i denerate label for this case
caseknum&@&elt:
endm
H
denelt macro numselt
i denerate one element of case list
dw case&knum&@&elt
endm

1
denslab macro numselts

LR denerate case list

seluknum:

ecnt set 0 jicount elements
rept elts iidenerate dw's
denelt numsZecnt

ecnt set ecnt+l
endm iiend of dw’'s

i denerate end of case list label

ends&num:
endm

Listing 9-24a. Macro Library for SELECT Statement

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

171

9.3 Program Control Structures Programmer’s Utilities Guide

selnext macro

is denerate the next case
dencase X%ccntskecnt
ER] increment the case element count
ecnt set ecnt+l
endm
i
select macro var
LR denerate case selection code
cent set 0 jicount "selects"
select macro u iiredefinition of select
ER] select on v or accumulator contents
if not nul v
1da Y iiload select variable
endif
denslxi %cent iidenerate the 1xi hsselus
mouy era iicreate double Precision
myi 440 ijv in dse Pair
dad 4 iisindle Pprec index
dad d iidouble prec index
mov e iilow order branch addr
inx h iito hidh order byvte
movy dam iihigh order branch index
xchg iiready branch address in hl
Pchl iidone to the Proper case
ecnt set 0 iielement counter reset
endm
K invoke redefined select the first time
select war
selnext jjautomatically select case O
endm

endsel macro

[R] end of selects denerate case list
dencase Accntifecnt iilast case
denslab %ccntiZecnt ijcase list

IR increment "select" count

ccnt set cent+l
endm

Listing 9-24b. Library for SELECT Statement

You use SELNEXT, shown at the top of Listing 9-24b, to delimit cases. The
GENCASE utility macro is invoked which, in turn, generates a JMP instruction for
the previous group, if this is not group zero, and then produces the appropriate case
entry label. SELNEXT also increments the select element counter ECNT to account
for yet another case.

172 ALL INFORMATION PRESENTED HERE 18 7 1ODRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.3 Program Control Structures

Upon encountering the ENDSEL, the last macro in Listing 9-24b, GENCASE is
again called to generate the JMP instruction for the last case. GENSLAB then pro-
duces the select vector by first generating the SELVn label, followed by a list of
ECNT DW statements that have the case label addresses as operands.

Listing 9-25a gives an example of a simple program that uses two SELECT groups.
The first SELECT group executes one of five different MVI instructions based on the
value of X. The second SELECT group assumes that the 8080 accumulator contains
the selector index and executes one of three different MVI instructions. The program
of Listing 9-25a illustrates generated control structures, and does not produce any
useful values as output. The sorted Symbol Table shown at the end of the listing
gives the generated label addresses for the individual cases.

Listing 9-25b shows a segment of the previous program with generated macro
lines. Note the case selection code following SELECT X at the end of the listing.

Listing 9-25¢ gives a more complete trace of the SELECT-ENDSEL group, showing
the actions of the macros as they expand for the second SELECT-ENDSEL group of
Listing 9-25a. The listing has been edited to remove the case selection code, which is
listed in Listing 9-25b, and the code generated for case number 2. Cross-reference
Listing 9-25¢ with the SELECT macro library given in Listings 9-24a and 9-24b if
you are confused about the actions of these macros.

ALL INFORMATION PRLSLNTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 173

9.3 Program Control Structures Programmer’s Utilities Guide

MACLIB SELECT

0000 SELECT X
0010 3EO00 MVI A0
0012 SELNEXT
0015 3E01 MUI Al
0017 SELNEXT
001A 3E02Z MUI A2
001C SELNEXT
001F 3EO03 MVI A3
0021 SELNEXT
0024 3E04 MVI A
0026 ENDSEL

,
0033 SELECT
0040 0600 MYI B0
0042 SELNEXT
0045 0601 MVI Bt
0047 SELNEXT
004A 0602 MVI B2
004C ENDSEL

i
00595 X: DS 1

0010 CASEORO 0015 CASEOE! 001A CASEOEZ 001F CASEOR3 0024 CASEO 4
0029 CASE0OEBS 0040 CASE1@0 0045 CASElE@l 004A CASE1@2 004F CASEL 3
0033 ENDSO 0055 ENDS1 0029 SELVO 004F SELV1 0055 X

Listing 9-25a. Sample Program Using SELECT with —M +S Options

174 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

0000+3A5500
0003+212500
0006+5F
0007+1600
0009+19
000A+19
000B+5E
000C+23
000D+56
000E+EB
000F+ES
0010 3E00

0012+C33300
0015 3EO01

0017+C33300
001A 3E02

001C+C33300
001F 3E03

0021+C33300
0024 3E04

0026+C33300
0029+1000
002B+1500
002D+1A00
002F+1F00
0031+2400

MACLIB
SELECT
LDA
LXI
MoV
MUI
DAD
DAD
MOV
INX
MOV
XCHG
PCHL
MUI

SELNEXT

JMP
MVI

SELNEXT

JMP
MUI

SELNEXT

JMP
MYI

SELNEXT

JMP
MVI
ENDSEL
JMP

DW

DW

DW

DW

DW

9.3 Program Control Structures

SELECT
X

X
H»SELVO
E+A

D0

D

D

EWM

DM

A0

ENDSO
Al

ENDSO
A2

ENDSO
A3

ENDSO
A

ENDSO

CASEORD
CASEOR@L
CASEORZ
CASEOR3
CASEORY

Listing 9-25b. Segment of Listing 9-25a with Mnemonics

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

175

9.3 Program Control Structures

+ + o+

+

0033+214F00
+

0000+#
+

0001+#

+ + + + + + +

0040 0600

+

+
0042+C35500

+

+

+
Q002+#

+

+
+
Q000+#

Q04F+4000
+
Q001 +#
+

SELECT

IF NOT NUL
LDA

ENDIF

GENSLXI %CCNT
LXI H:SELV1
ENDM

(indexing code similar to Fig S0b)

ECNT SET 0

GENCASE %ZCCNT,»LECNT
IF 0 GT 0
JMP ENDS1
ENDIF
CASE1RO:
ENDM
ECNT SET ECNT+1
ENDM
ENDM
MVI B0
SELNEXT
GENCASE %CCNT,%ECNT
IF 1 GT 0
JMP ENDS1
ENDIF
CASE1@!1:
ENDM
ECNT SET ECNT+1
ENDM

(remaining cases are similar)

ENDSEL

GENSLAB ZCCNT +ZECNT
SELVL:
ECNT SET 0
REPT 3
GENELT 1 ,%ECNT
ECNT SET ECNT+1
ENDM
GENELT 1 ,XECNT
DW CASELRO
ENDM
ECNT SET ECNT+1
GENELT 1,%ECNT

Listing 9-25c. Segment of Listing 9-25a with +M Option

176 ALL INFORMATION PRESENTED HERE {S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

Programmer’s Utilities Guide 9.3 Program Control Structures

0051+4500 DW CASE1E@!
+ ENDM

0002+ ECNT SET ECNT+1
+ GENELT 1 ,%XECNT

0053+4A00 DuW CASE1@2
+ ENDM

0003+ ECNT SET ECNT+1
+ ENDM
+ ENDS1:
+ ENDM

0002+ CCONT SET CCNT+1
+ ENDM

Listing 9-25¢c. (continued)

It is now possible to show a complete program that uses the WHEN, DOWHILE,
and SELECT groups. Listing 9-26 shows a program similar in function to a more
complicated program that interacts with the console in executing single-character
input commands. The two CP/M programs ED and DDT both take this general form.
(See the CP/M documentation for details.) A single letter selects a single action that
might correspond to an edit request in the ED program or a debug request in DDT.
Upon completion of each command, control returns to the main loop to accept
another single-letter command.

The program given in Listing 9-26 begins by loading the macro definitions for the
SIMPIO, NCOMPARE, WHEN, DOWHILE, and SELECT operations. Several mes-
sages are then sent to the console device, followed by a single DOWHILE-ENDDO
group that encompasses nearly the entire program. The DOWHILE group is con-
trolled by the X,NEW,% ‘D’ test and thus continues to loop while the X character is
not the letter D. On each iteration of the DOWHILE group, a single letter is read
from the console and converted to upper-case, if necessary. To ensure that the letter
is in the proper range of values, two WHEN groups follow that convert illegal values
to the letter E, which subsequently produces an error response.

ALL INFORMATION PEESONTED HERE IS PROYVUITARY 10 DIGITAL RESFARCH 177

9.3 Program Control Structures Programmer’s Utilities Guide

Following the WHEN tests in Listing 9-26, the character must be in the range A
through E. Before indexing into the SELECT group, this value is normalized to the
absolute value 0 through 4, corresponding to each of the possible values. The SELECT
statement uses the value in the accumulator to select one of the five cases, producing
the appropriate response to the letters A through D, or an error response for the last
case. Upon completion of the SELECT group, control returns to the DOWHILE
where the last character typed is tested against the letter D. If X is not equal to the
letter D, the iteration continues. Otherwise, the DOWHILE completes and control
returns to the console processor.

The control structures presented in this section are representative of the forms that
can be implemented. Additional facilities, such as the controlled iteration found in
FORTRAN DO loops or ALGOL FOR loops can be implemented using essentially
the same techniques used for the WHEN and DOWHILE. Further, subroutine
parameters can also be defined with macro libraries. It is relatively easy to include
control substructures for the stack machine given in the previous section, allowing
machine independent programming of control structures and arithmetic operations.

178 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

9.3 Program Control Structures

0100 ORrRG 100H FiBEGINNING OF TPA
MACLIB SIMPIO JSIMPLE READ/WRITE
MACL.IB NCOMPAREiCOMPARISON OPS
MACLIB WHEN i"WHEN" CONSTRUCT
MACLIB DOWHILE 3"DOWHILE" CONSTRUCT
MACLIB SELECT §"SELECT" CONSTRUCT
1
i USING THE CCP'S STACK: READ INPUT
i CHARACTERS s UNTIL A 2 IS TYPED
0100 WRITE <SAMPLE CONTROL STRUCTURES:
0127 WRITE <TYPED SINGLE CHARACTERS FROM:
0150 WRITE <A TO Dy I"’"‘LL STOP ON D=
)
0174 DOWHILE XNEQ,%'D"’
017C WRITE <TYPE A CHARACTER: =
019C READ X
01Ad WHEN X GEQ %A’
01AC 3ABFOZEBSF LDA X! ANI OSFH! STA X 3iCONV CASE
0184 ENDW
0184 WHEN XsLSSyZ'A’
01BC 3E4532BF02 MUL A,'E’! STA X 3SET TO ERROR
01C1 ENDW
01C1 WHEN X GTR+Z'E’
01CC 3E4532BF02 MUI A,’E’! STA X JSET TO ERROR
01D1 ENDMW
01D1 3ABF0O2D641 LDA X! SUI ‘A’ iNORMALIZE TO 0-4
0106 SELECT JiBASED ON X IN ACCUM
01E3 WRITE <YOU SELECTED CASE A
0204 SELNEXT
0207 WRITE <YOU SELECTED CASE B>
0228 SELNEXT
022 WRITE <YOU SELECTED CASE C:»
024C SELNEXT
024F WRITE <YOU SELECTED CASE D=
0270 WRITE <80 I‘‘'M GOING BACK"!:»
0290 SELNEXT
0293 WRITE <BAD CHARACTER:
02AE ENDSEL
0288 ENDDO
02BE C9 RET iBACK TO CCP
i DATA AREA
02BF 00 X DB 0 iX=00 INITIALLY

Listing 9-26. Program Using WHEN, DOWHILE, and SELECT

ALLINFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

179

9.4 Operating System Interface Programmer’s Utilities Guide

9.4 Operating System Interface

In a general purpose computing environment, macros often provide systematic and
simplified mechanisms for programmatic access to operating system functions.
Throughout this manual, the examples have shown various low-level calls to the
CP/M operating system that implement functions such as single-character input, sin-
gle-character output, and full message output. In each case, the macros simplify the
operations by performing the low-level register setups and calls that perform the
function.

This section introduces more comprehensive operating system interface macros and
shows a sample macro library that allows simplified disk file operations for sequen-
tial stream input/output operations. The principal macros of this library that allow
file access are listed below:

FILE set up a named file for subsequent disk operations.
GET read a single character from specific data source.
PUT send a character to a specific data destination.
FINIS terminate file access for specific group of files.
ERASE remove a specific disk file.

DIRECT search for a specific file on the disk.
RENAME rename a specific disk file.

Before introducing the macro library that performs these functions, the operation of
each macro is described, followed by a simple example.

The FILE operation takes the form:
FILE mode,fileid,diskname,filename,filetype,buffsize,buffadr

where the individual parameters of the FILE macro describe a file to be accessed in
the program. The parameter values for the FILE macro are:

mode INFILE (input file)

OUTFILE (output file)
SETFILE (set up filename for ancillary functions)

180 ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

fileid file identifier for internal reference throughout the program.

diskname disk drive name (A, B,...) containing the file being accessed, or
empty if the default drive is being used.

filename the filename (up to eight characters) of the disk file being accessed;
if “1” or “2” is specified, then the first or second default filename
is used, respectively.

filetype the filetype (up to three characters) of the file being accessed; if
“1” or “2” has been specified for the filename parameter and an
empty filetype is given, then the filetype is taken from the selected
default filename; otherwise, the filetype is set to blanks.

buffsize the size in bytes of the buffer area used for this file; the value is
rounded down to an integral multiple of the disk sector size; if
the rounding produces a result that is too small, or if the param-
eter is empty, then only one sector is buffered.

buffaddr the address of the buffer area to use during accesses to this file;
if empty, then the buffer address is assigned automatically.

For example, the FILE statement
FILE INFILE +Z0T +AsNAMES sDAT

sets up the file NAMES.DAT on disk drive A for subsequent access. Internal to the
program, this file is referenced by the name ZOT. Further, the buffer address is
assigned automatically, and the buffer size is set to one sector (usually 128 bytes).
Larger buffers are useful in minimizing rotational delay on the disk due to missed
sectors during the file operations. If the NAMES.DAT file does not exist, an error
message is sent to the console, and the program aborts. For example, an output file
can be created using the statement:

FILE OUTFILE +ZAP +B»ADDRESS sDAT »1000

which creates the file ADDRESS.DAT on drive B for subsequent output, referenced
internally by the name ZAP. In this case, the buffer size is set to 1000 bytes (rounded
down to 7 * 128 = 896 bytes), and the base address of the buffer is set ~»tamati-
cally. The sample programs show alternative FILE options.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 181

9.4 Operating System Interface Programmer’s Utilities Guide

The GET macro invocation takes the form:
GET device

where device specifies a simple peripheral or a disk file defined by a previously
executed FILE statement. The GET statement reads one byte of data into the 8080
accumulator from the specified device. The possible device names are:

KEY console keyboard input
RDR reader device
fileid previously defined file identifier given in a FILE statement

The following GET invocations perform the functions shown to the right below.
GET KEY read one keyboard character.

GET RDR read one reader character. (See the CP/M documentation for
READER entry point definition.)

GET ZOT read one character from the file given by the internal name ZOT.
(The NAMES.DAT file if the above FILE statement had been
executed.)

The end-of-data can be detected in two ways: if the file contains character data, the
end-of-file is detected by comparing the individual characters with the standard
CP/M end-of-file mark, which is a CTRL-Z (hexadecimal 1AH). The GET function
also returns with the 8080 zero flag set to true if a real end-of-file is encountered, so
that pure binary files can be read to the end-of-data.

The PUT macro performs the opposite function from the GET macro. The PUT
invocation takes the form:

PUT device

182 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

where device specifies a simple output peripheral or a disk file defined previously
using the FILE macro. The possible device names are

CON console display device

PUN system punch device

LST system listing device

fileid previously defined output file identifier

These PUT invocations perform the following functions:

PUT CON write the accumulator character to the console.

PUT PUN write the accumulator character to the punch.

PUT LST write the accumulator character to the list device.

PUT ZAP write the accumulator character to the file with the internal name

ZAP. (The ADDRESS.DAT file in the preceding example.)

Note that the character in the accumulator is preserved during the invocation, so
that it can be involved in further tests or macro invocations following the PUT
statement.

The FINIS statement closes a file or set of files upon completion of file access. In
the case of an output file, the internal buffers are written to disk, and the filename is
permanently recorded on the disk for future access. The form of the FINIS invocation
takes the form:

FINIS filelist

where filelist is a single internal name that appeared previously in a file statement or
a list of such filenames, enclosed within angle brackets and separated by commas.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 183

9.4 Operating System Interface Programmer’s Utilities Guide

Although it is not necessary to close input files with the FINIS statement, it is good
practice, because the file close operation might be required on future versions of the
macro library. An example of the FINIS statement is:

FINIS ZAP

write all buffers for the ZAP file, and record the file in the disk directory; in the
above example, the ADDRESS.DAT file is closed.

The ERASE macro allows programmatic removal of a disk file given by the speci-
fied file identifier defined in a previous FILE statement. If the file identifier is not used
in a GET or PUT statement, then the FILE statement can have the mode SETFILE.
This mode requires less program space than an INFILE or OUTFILE parameter.
Examples of the ERASE statement are given later in this section. In the example

ERASE 20T

however, the file NAMES.DAT is removed from the disk, given the previous FILE
statement that defines ZOT.

The DIRECT macro searches for a specific file on the disk. Similar to the ERASE
macro, the file identifier must be previously given in a FILE statement using one of
the three possible file modes. The DIRECT invocation sets the 8080 zero flag to false
if the file is present on the disk. In both the ERASE and DIRECT macros, the file
identifiers can reference filenames and types with embedded ? characters, similar to
the normal CP/M DIR command, where the question mark matches any character in
the filenames being scanned. The macro invocation

DIRECT ZAP
for example, returns with the zero flag cleared if the file ADDRESS.DAT is present,
and with the zero flag set if the file is not present, given the original FILE statement
involving the ZAP file identifier.
The RENAME macro takes the form:
RENAME newfile,oldfile

where newfile and oldfile are file identifiers that have appeared in previous FILE
statements. The RENAME macro changes the filename given by oldfile to the file-

184 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

name given to newfile. The file identifiers newfile and oldfile must appear in previously
executed FILE statements, but can have a mode of SETFILE if they are not used in GET
or PUT macros. If the drive names for oldfile and newfile differ, then the drive name of
newfile is assumed. The sequence of macro invocations

FINIS ZAP iCLOSE ZAP
ERASE 207 iREMOVE ZOT
RENAME Z0T +ZAP iCHANGE NAMES

for example, first closes the ADDRESS.DAT file on drive B, then erases the
NAMES.DAT file on drive A. The RENAME macro then changes the ADDRESS.DAT
file to the name NAMES.DAT file on drive A.

Listing 9-27 shows the use of the FILE, GET, PUT, and FINIS macros in a working
program. This program reads an input file, specified at the Console Command Pro-
cessor level as the first filename, and translates each lower-case alphabetic character
to upper-case. The output is sent to the file given as the second parameter at the
command level. For a program assembled, loaded, and stored as CASE.COM on the
disk, a typical execution would be

CASE LOWER.DAT UPPER.DAT

This causes the CASE.COM file to load and execute in the Transient Program Area.
Before execution, the Console Command Processor passes LOWER.DAT as the first
default filename, and UPPER.DAT as the second filename. (See the CP/M documen-
tation for exact details.)

In Listing 9-27, the CASE program begins by initializing the stack pointer to a
local stack area in preparation for subsequent subroutine calls that occur within the
various macros in the SEQIO macro library. The first default file specification is then
taken as the SOURCE file, as defined in the first FILE macro. The second FILE
statement assigns the second default file specification as an output file with the inter-
nal name DEST. In both cases, the FILE statements open the respective files and
initialize the buffer areas, consisting of 2000 bytes rounded down to a multiple of
the sector size.

Note that if the UPPER.DAT file already exists, the second file statement removes
the existing file and creates a new UPPER.DAT file before continuing. In either case,
the appropriate error messages appear at the console if the files cannot be accessed
or created in the FILE statements.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 185

CASE.COM
CASE.COM

9.4 Operating System Interface Programmer’s Utilities Guide

0100 ORG 100H

COPY FILE 1 TO FILE 2, CONVERT

TO UPPER CASE DURING THE COPY

AND ECHO TRANSACTION TO CONSOLE
MACLIB SEQIO iSEQUENTIAL 1/0 LIB

0000 = BOOT EQU 0000H iSYSTEM REBOOT

005F = UCASE EQU SFH iUPPER CASE BITS
i

0100 317003 LXI SP+STACK

DEFINE SOURCE FILE:
INFILE = INPUT FILE
SOURCE = INTERNAL NAME

ws wa as we s we ws

(NUL) = DEFAULT DISK
1 = FIRST DEFAULT NAME
(NUL) = FIRST DEFAULT TYPE
2000 = BUFFER SIZE

0103 FILE INFILE +SOURCE » 41422000

DEFINE DESTINATION FILE:
QUTFILE = OUTPUT FILE

1)
1
i
i DEST = INTERNAL NAME
i (NUL) = DEFAULT DISK
i 2 = SECOND DEFAULT NAME
i (NUL) = SECOND DEFAULT TYPE
i 2000 = BUFFER SIZE
01EC FILE QUTFILEDEST ++2+,2000

READ SOURCE FILE:» TRANSLATE. WRITE DEST

O -

02EA YCLE: GET SOURCE
02ED FE1A CPI EOF iEND OF FILE?
02EF CA0CO3 Jz ENDCOPY 3iSKIP TO END IF SO

L)

i NOT END OF FILE,» CONVERT TO UPPER CASE
02F2 FEB1 CPI ‘a’ iBELOW LOWER CASE "A"?
02F4 DAFE02Z JC NOCONV §SKIP IF SO
02F7 FE78B CPI ‘z'+1 iBELOW LOWER CASE "zZ"7?
02F9 D2FEO2 JNC NOCONY §SKIP IF ABOVE

i MASK OUT LOMWER CASE ALPHA BITS
02FC EBSF ANI UCASE
02FE NOCONVY: PUT CON FWRITE TO CONSOLE
0306 PUT DEST FAND TO DESTINATION FILE
0309 C3EA0Z JMP CYCLE iFOR ANOTHER CHARACTER

Listing 9-27. Lower- to Upper-case Conversion Program

186 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

ENDCOPY:
030C FINIS DEST iEND OF QUTPUT
034D C30000 JMP BOOT iBACK TO CCP
]
0350 DS 32 i16 LEVEL STACK
STACK:
BUFFERS:
1270 = MEMSIZE EQU BUFFERS+E@NXTB iPROGRAM SIZE
0370 END

Listing 9-27. (continued)

The CASE program main loop is shown in Listing 9-27 between the CYCLE and
ENDCOPY labels. Each successive character is read from the SOURCE file (in this
case, LOWER.DAT) and tested to see if the character is in the range of a lower-case
a to lower-case z. If in this range, the character is changed to upper-case. At the
NOCONYV label, the (possibly translated) character in the accumulator is sent to the
console device using the PUT CON macro and then sent to the DEST file (in this
case, UPPER.DAT). Looping continues back to the CYCLE label where another
character is read and translated.

Because the data file is assumed to consist of a stream of ASCII characters, the
end-of-file is detected when a CTRL-Z is encountered. When this character is found,
control transfers to the label ENDCOPY where the DEST file is closed using the
FINIS macro. An error in writing or closing the DEST file produces an error message
at the console, and the program aborts immediately. Upon completion of the pro-
gram, control returns to the console processor through a system reboot (JMP BOOT).

The SEQIO library macros assume that all file buffers are located at the end of the
user’s program, as shown in Listing 9-27. In particular, the label BUFFERS must
appear as the last label in the user’s program, and becomes the base of the buffers
allocated automatically in the FILE statements. The actual memory requirements for
the program can be determined using an EQU as shown in Listing 9-27, with a
statement of the form:

MEMSIZE EQU BUFFERS+@NXTB

that produces the equated value 1270H at the left of the listing. In this case, the
program does not use the memory area beyond 1270H.

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH 187

9.4 Operating System Interface Programmer’s Utilities Guide

The macro library for SEQIO is shown in Listing 9-28. This listing is the most
comprehensive macro library shown in this manual, containing an instance of nearly
every macro facility available in MAC. The following discussion of SEQIO outlines
the general functions of each macro, but it is left to you to investigate the exact
operation of the library.

The SEQIO library begins with generally useful equates and utility macros. The
label FILERR at the beginning becomes the destination of transfers upon encounter-
ing a file operation error. Because this is a SET statement, it can be changed in the
user’s program to trap error conditions rather than rebooting. The use of FILERR is
apparent throughout the macro library.

i sequential file i/o0 library

3

filerr set 0000h ireboot after error
Bbhdos equ Q005h ibdos entry Point
@tfch equ 00Sch jdefault file control block
@tbuf eau 0080h idefault buffer address
1

i bdos functions

Bms g equ 9 isend messade

Born equ 15 ifile opPen

Bcls equ i6 ifile close

Bdir equ 17 idirectory search
Bdel equ 19 ifile delete

@frd equ 20 ifile read oreration
Bfwr equ 21 jfile write oPeration
Bmak equ 22 ifile make

@ren equ 23 ifile rename

@dma equ 26 jset dma address

i

Bsect equ 128 jsector size

eof equ lah jend of file

cr equ 0dh jcarriade return

1f equ Oah iline feed

tab equ 09h fshorizontal tab

Bkey equ 1 iKevboard
@con equ 2 jconsole disPplay
@rdr equ 3 sreader
@Pun equ 4 jPunch
Blst equ 3 jlist device
b
Listing 9-28. Sequential File Input/Output Library
188 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

5 keywords for "file" macro
infile eau 1 jinput file
outfile equ 2 joutputfile
setfile equ 3 jsetup name only
i
i the following macros define simple sequential
i file operations:
i
fillnam macro fcoc
LR fill the file name/tyre diven by fc for ¢ characters
@cnt set c iimax lendth
irpc ?fcifc 313fill each character
i mavy be end of count or nul name
if @cnt=0 or nul ?fc
exitm
endif
db ‘&?FC’ §3fill one more
@cnt set @cnt-1 §idecrement max lendth
endm ijof irepc 7fc
LR}
LR pad remainder
rept @Bcnt iiBcnt 15 remainder
db c iipad one more blank
endm ijof rept
endm
i
filldef macro fechy?f1421n
i fill the file name from the default fch
i for lendth ?In (9 or 12)

local Psub

Jmp Psub iiJump Past the subroutine
@def: 35this subroutine fills from the tfct (+16)

mov arm jidet next character to a

stax d jistore to fchb area

inx h

inx d

der c iscount lendth down to O

Jdnz Bdef

ret

Listing 9-28. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

189

9.4 Operating System Interface Programmer’s Utilities Guide

H ft is the file type

i bs is the buffer size

i ba is the buffer address
local pfch

i end of fill subroutine
Psub:
filldef macro Pfch?f 0?1
1xi hi@tfchb+?f jieither @tfcb or Btfcb+16
1xi ds?fch
myi c+?1 iilendth = 9412
call @def
endm
filldef fcbs?f14?1n
endm
b
fillnxt macro
i initialize buffer and device numbers
@nxtb set 0 jinext buffer location
Bnxtd set @lst+l Jinext device number
fillnxt macro
endm
endm
fillfch macro fidsdnsfnsftsbssba
i fill the file control block with disk name
i fid is an internal name for the file:
i dn is the drive name (asbss)» or blank
i fn is the file names» or blank
i
1
L

59
i set up the file control block for the file
R] look for file name = 1 or 2
@c set 1 jjassume true to bedin with
irpc ?cifn iilook throudh characters of name
if not (’&?C’ = ‘1’ or ‘&?C’' = '2')
@c set 0 iiclear if not 1 or 2
endm
i Bc is true if fn =1 or 2 at this pPoint
if 8¢ jithen fn = 1 or 2
ER) fill from default area
if nul ft §ityrpe specified?
Bc set 12 iiboth name and tvpe
else

Listing 9-28. (continued)

190 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

@c set 9 iiname onlv
endif
filldef fcb&fid,»(fn-1)*16,8¢c iita select the fcb
Jmp pfch iirast fcb definition
ds Bc iispace fur drive/filename/tyPe
fillnam ft12-@c jiseries of db’'s
else
JmpP pfch jipast initialized fcb
if nul dn
db 0 jiuse default drive if name is zero
else
db 'RDN‘-'A‘+1 jjuse specified drive
endif
fillnam fn.8 yifill file name
id now denerate the file type with padded blankKs
fillnam ft,3 ijand three character tvypre
endif
fcb&fid equ $-12 iibedinning of the fcb
db 0 iiextent field 00 for setfile
i now define the 3 bvyte field» and disk mar
ds 20 FixaxsrcsdmOsvvdm1Sscr fields
L]
if fid&ktypr<=2 ijin/outfile
i denerate constants for infile/outfile
fillnxt §iBnxtb=0 on first call
if bs+0<{@sect
i bs not supplieds or too small
@bs set Bsect iidefault to one sector
else
i compute even buffer address
@bs set (bs/@sect)*Bsect
endif

now define buffer base address

if nul ba
i use next address after @nxtb
fid&buf set buffers+@nxtb
i count past this buffer
Bnxtb set @nxtb+ bs

else
fid&kbuf set ba

endif
LR] fid&buf is buffer address
fid&kadr:

dw fid&buf

Listing 9.28. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

191

9.4 Operating System Interface Programmer’s Utilities Guide

i

fidksiz equ @8bs iiliteral size
fid&klen:

duw @bs iibuffer size
fid&ptr:

ds 2 iiset in infile/outfile
i set device number
B&fid set @Bnxtd iinext device
Bnxtd set Bnxtd+l

endif iiof fid&ktyp(=2 test
pfcb: endm

file macro mdsfidsdnsfnsftsbssba

LR create file using mode md:

LR} infile = 1 input file

i outfile = 2 outrut file

[R] setfile = 3 setup fcb

i (see fillfcb for remaining Parameters)
local PsubimsdsPmsd
local pndseodseobsPnc

[R] construct the file control block
]
fid&tvye equ md jiset mode for later ref’s
fillfcb fidsdnsfnsftsbssba
if md=3 iisetur fcb onlv, so exit
exitm
endif
IR file control block and related parameters
i are created inliney now create io function
Jmp Psub jipast inline subroutine
if md=1 iiinPut file
detkfid:
else
Putdfid:
push PSW jisave outPut character
endif
1hld fid&len 33load current buffer lendth
xchd jide is lendth
1hld fidkptr 33load next to det/Put to hl
mov arl jicomPute cur-len
sub e
mov arh
sbb d sicarry if next{lendth
Jc PNC iicarry if len dtr current
i end of buffer, fill/empty buffers
1xi hy0
shld fid&ketr §iclear next to det/pPut

Listing 9-28. (continued)

192 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

9.4 Operating System Interface

pnd:
i process next disk sector
xchgd sifid&etr to de
1hld fiddlen i3do not exceed lendth
i de is next to fill/empty,s hl is max len
mov are jicomPute next-len
sub 1 ijto det carry if more
mov ard
sbb h sito fill
Jnc eob
i carry den’ed» hence more to fill/empPty
1hld fid&kadr iibase of buffers
dad d iihl is next buffer addr
xchgd
mui c)@dma Jiset dma address
call Bbdos iidma address is set
Ixi dsfcb&fid iifchb address to de
if md=1 iiread buffer function
mui c'@frd §ifile read function
else
mui ci@fwr §ifile write function
endif
call @bdos iird/wr to/from dma address
ora a jicheck return code
Jnz eod iiend of file/disk?
i not end of file/disk, increment lendth
Ixi ds@sect iisector size
l1hld fid&kptr jinext to fill
dad q
shld fid&ptr iiback to memory
Jme pnd iiprocess another sector
i
eod:

end of file/disk encountered

if md=1 jiinPut file
lhld fid&ptr §ilendth of buffer
shld fid&len jireset lendth
else

i fatal errory end of disk
local emsd
mui ci1@msg ijwrite the error
Ixi dremsd
call @bdos ijerror to console
POP PSW iiremove stacked character
Jmp filerr Jiusually reboots

Listing 9-28.

ALL INFORMATION PRESENTED HERE IS PROPRIZTARY TO DIGITAL RESEARCH

(continued)

193

9.4 Operating System Interface Programmer’s Utilities Guide

emsd: db crqlf
db ‘disk full: &FID’
db ‘4
endif

19

eob:

i end of buffers reset dma and Pointer
Ixi ds@tbuf
mui c+Bdma
call @bdos
Ixi h0
shld fid&kptr iinext to det

i

PNC:

bR process the next character
xchg iiindex to det/pPut in de
1hld fid&adr sibase of buffer
dad d ijaddress of char in hl
xchd jiaddress of char in de
if md=1 jiinput Processing differs
1hld fiddlen iifor eof check
mov arl §1300007
ora h
myi areof iiend of file?
rz iizero flag if so
ldax d iinext char in accum
else

ER] store next character from accumulator
POP PSW jirecall saved char
stax d iicharacter in buffer
endif
1hld fid&kptr iiindex to det/Put
inx h
shld fid&ptr FiPointer updated

i return with non zero flag if det
ret

Listing 9-28. (continued)

194w

Programmer’s Utilities Guide

Psub:

msd:

Pmsd:

finis

i

iirpast inline subroutine

xra a iizero to acc
sta fecbkfid+12 iiclear extent
sta fchb&fid+32 iiclear cur rec
Ixi hifidésiz iibuffer size
shld fid&klen jiset buff len
if md=1 ijinPut file

shld fidkpPtr iicause immediate read
mui c+@opn jioren file function
else ijoutput file

Ixi h0 iiset next to fill

shld fid&kptr §iPointer initialized
mui ciB8del

1xi dyfcb&fid iidelete file
call @bdos iito clear existing file
mui cs@mak dicreate a new file
endif

now open (if inPut),» or make (if output)
Ixi difcb&fid

call @bdos ijoren/make oK?

inr a 73255 becomes 00

Jdnz PMs 9

myi c+Bmsd Jiprint messade function
Ixi dimsd ijerror messade

call @bdos iiprinted at console
Jmep filerr §ito restart

db crylf

if md=1 fiinPut messagde

db ‘no &FID file’

else

db ‘no dir space: &FID’

endif

db ‘$’

endm

macro fid

close the file(s) diven by fid

irp ?fa<fid>
skip all but output files
if ?f&typ=2

local eob?sPeof msgsrPmsd
write all partially filled buffers

Listing 9-28. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.4 Operating System Interface

195

9.4 Operating System Interface Programmer’s Utilities Guide

eob?: §jare we at the end of a buffer?
1hld ?f&etr dinext to fill

mov arl jion buffer boundary?
ani (Bsect-1) and Offh
Jdnz peof jiput eof if not 00
if Bsect>255

i check high order byte also
mov ash
ani (@Bsect-1) shr 8
Jnz peof jiput eof if not 00
endif

arrive here if end of buffers» set lendgth
and write one more byte to clear buffs

shld ?f&klen Jiset to shorter lendth
peof: mvi areof ijwrite another eof
pPush PSW iisave zero flag
call Putd?f
POP PSW iirecall zero flag
Jdnz eob? iinon zero if more
i buffers have been written, close file
mui ciBcls
Ixi dyfcb&?f iiready for call
call @bdos
inr a 3255 if err becomes 00
Jdnz PmMs g
i file cannot be closed
myi c@msyg
Ixi dimsd
call Bbdos
Jmp PmMS g ijerror messade printed
msg: db crslf
db ‘cannot close &?F’
db ‘$’
PMSd:
endif
endm ijof the irp
endm
;
erase macro fid
i delete the file(s) diven by fid
irp ?f<{fid>
mui c@del
Ixi dsfcb&?f
call @bdos
endm iiof the irp
endm

Listing 9-28. (continued)

196 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

rect

1
rename

Brens:

ren0:

Psub:
rename

- W we
-s M
4

macro fid
perform directory search for file
sets zero flag if not present

Ixi dsfcbifid

mui ci@dir

call @bdos

inr a 00 if not Present
endm

macro newsold

rename file diven by "old" to
local Psubren0

include the rename subroutine once
JmpP Psub

iirename subroutiney hl is address of
ijold fcby de is address of new fcb

new

Push h iisave for rename
1xi b+16 1ib=00,c=16

dad b iihl = old fcb+16
ldax d jinew fcb name

mov mra iito old fcb+16

inx qd iinext new char

inx h jinext fcb char

der c iicount down from 16
Jdnz ren0

old name in first halfs new in second half
POP d sirecall base of old name
mui c'Bren sirename function
call @bdos

ret jirename comPlete
macro nio iiredefine rename
Ixi h:fcb&o s3old fcb address
1xi d:fcb&n 3sinew fcb address
call @rens iirename subroutine
endm

rename newsold

endm

macro dev
read character from device
if Bikdev <= Blst

Listing 9-28. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.4 Operating System Interface

197

9.4 Operating System Interface Programmer’s Utilities Guide
LR simple inPut
mui c1@&dev
call @bdos
else
call det&dev
endm
i
i
PUt macro dev
ii write character from accum to device
if B&dev <= @lst
i simple outpPut
push PSW iisave character
mui ci1@&dev jjwrite char function
mov era iiready for outpPut
call @bdos iiwrite character
POP PSW iirestore for testing
else
call Putkdev
endm

Listing 9-28. (continued)

The equates that follow define the usual BDOS entry points and functions along
with the disk sector size (@SECT) and special nongraphic characters (EOF, CR, LF,
and TAB). The equates for @KEY through @LST are used in the GET and PUT
macros to determine the source or destination device. The INFILE, OUTFILE, and
SETFILE equates are used in the FILE macro as mnemonics for the file mode attribute.

FILLNAM is a utility macro used in the construction of a File Control Block.
FILLNAM accepts a filename or filetype along with a field size and builds a sequence
of DBs that fill the name or type field with padded blanks.

FILLDEF is a utility macro similar to FILLNAM, but FILLDEF fills the File Con-
trol Block name or type field from the default File Control Block at @TFCB or
@TFCB + 16. FILLDEF is invoked to extract either the default filename (first eight
characters) or default filetype (following three-character field).

The FILLDEF macro constructs an inline subroutine to perform the data move

operation the first time it is invoked and calls the inline subroutine (@DEF) on
subsequent invocations.

198 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

FILLNXT initializes two assembly time variables: @NXTB and @NXTD. @NXTB
counts the accumulated size of buffers as they are automatically allocated in the FILE
statement. @NXTD counts files in the FILE macro for later reference in GET and
PUT statements. They are included within a macro, so that they are properly initial-
ized in the two successive passes of the macro assembler. FILLNXT is invoked by
the FILE macro where the expansion initializes @NXTB and @NXTD. FILLNXT
then redefines itself as an empty macro, so that subsequent FILE invocations do not
reset the two counters.

The macro FILLFCB constructs a File Control Block in the CP/M standard format,
where FID is the file identifier; DN is the disk name; FN is the filename; FT is the
filetype; BS is the buffer size, and BA is the buffer address, as described in the FILE
statement above. Recall that some of these parameters might be empty, causing
default conditions to be selected.

The FILLFCB macro begins by searching for a “1” or a “2” as the FN parameter,
indicating that default name 1 or 2 is to be selected for the file. The IRPC loop
involving ?C results in a value of 1 for @C if either FN=1 or FN=2, and a value
of 0 for @C if FN is not 1 or 2. The FILLFCB macro then selects either the default
name or the user-specified name along with the default or user-specified drive num-
ber. The equate for FCB&FID then produces the address of the File Control Block
for the file identifier followed by DB 0 for the extent field and DS 20 for the remain-
der of the File Control Block.

The remainder of the FILLFCB macro is devoted to storage allocation for buffer
areas. The @BS variable is set to the buffer size after rounding and size checks.
FID&BUF then becomes the address of the file buffer area, and FID&ADR labels a
DW containing this literal value. FID&SIZ becomes the literal size of the buffer, and
FID&LEN labels a DW containing the literal size. FID&PTR is also allocated as a
double byte that subsequently holds the buffer index of the next character to get or
put in the file. All of these values are used in the file operations that occur later.

The principal file access macro, FILE, sets up the File Control Block, buffers, and
access subroutines for a file. Similar to the FILLFCB macro, the parameters FID, DN,
FN, FT, BS, and BA describe the particular characteristics of a file. The MD param-
eter, however, indicates the file mode and must have the value 1, 2, or 3. The FILE
macro begins by assigning the mode value to FID&TYP, so that subsequent macros
can determine the type of access for this file. The FILLFCB macro is then invoked to
construct the File Control Block for this macro and sets generally useful parameters
for the file, as discussed previously. The FILE macro then generates the label GET&FID
for input files or PUT&FID for output files, followed by a subroutine that GETs a
single character or PUTs a single character for this file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 199

9.4 Operating System Interface Programmer’s Utilities Guide

The GET&FID reads a single character from the input buffer and, when the
input buffer is exhausted, fills the buffer area again in preparation for following GET
operations. Upon detecting a real end-of-file, the EOF character is returned with the
zero flag set. Similarly, the PUT&FID subroutine generated for output files stores the
accumulator character into the output buffer at the next character position and,
when the buffer is full, writes the sequence of sectors and returns to accept more
output characters. In the case of an output error, the appropriate message is printed,
and control transfers to FILERR, which usually remains at 0000H, causing a system
reboot.

The generated code that follows the label PSUB initializes the file pointers to the
proper position for file access. The file extent and next record fields of the File
Control Blocks are zeroed for both input and output files. In the case of an input
file, the buffer index variable FID&PTR is set to the end of the buffer, causing an
immediate read operation when the first character is read. In the case of an output
file, the FID&PTR is set to zero, indicating that the next position to fill is the first
character of the output buffer. If the file is an output file, any duplicate files are
erased, and a new file is created. In both cases, the file is opened upon completion of
the FILE operation, and the buffer pointers are set for the next GET or PUT invoca-
tion. Note that the FILE statement is executable; it must occur ahead of the GET or
PUT statements for the file and performs its function each time control passes through
the FILE machine code.

The FINIS macro serves to empty the output buffers and close the file for output.
Input files are skipped because no actions need take place to close an input file. The
FINIS macro fills the remaining buffer segment (one size sector) with EOFs, then
writes the partially filled buffers.

The ERASE macro accepts a file identifier or list of file identifiers and successively
calls the BDOS to erase each file, while the DIRECT macro searches for a single file
given by the file identifier FID. In the case of the DIRECT macro, the zero flag is
cleared if the file exists. No prechecks are made to see if the file exists before the
ERASE operation takes place, although erasing a nonexistent file is of no conse-
quence. The DIRECT macro can, of course, be used to check if a file exists before
the ERASE is executed.

200 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

The RENAME macro allows a file to be renamed by accepting two file identifiers,
denoted by NEW and OLD. These file identifiers must correspond to the FCB names
created by FILLFCB in an earlier FILE invocation, and have the effect of renaming
the OLD file to the NEW filename. This is accomplished within the RENAME macro
through an inline subroutine, called @RENS, which is included the first time the
RENAME macro is invoked. The inline subroutine moves the new File Control Block
information (first sixteen bytes) into the second half of the old File Control Block in
the form required for a rename operation under CP/M. (See the CP/M documenta-
tion.) The BDOS is then called to perform the rename function. There is no check to
ensure the old file exists before the rename takes place.

The GET and PUT macros are similar in structure: both accept a device or file
identifier as the formal parameter DEV and perform the corresponding input or
output function on that device. If the device is a simple peripheral, the BDOS is
called directly to perform the input and output function. If, instead, the device name
was created by a FILE macro, the corresponding GET&FID or PUT&FID subroutine
is called to accomplish the input or output operation. Note that the accumulator is
preserved (PUSH PSW) upon output to a simple peripheral within the PUT macro;
the save/restore sequence is performed within the PUT&FID subroutine if the desti-
nation is a disk file.

Listings 9-29 shows the full expansion of a segment of the case conversion pro-
gram of Listing 9-27 (using the “+M?” assembly parameter). It begins with the
invocation of FILE, followed by FILLFCB, again followed by FILLDEF. The @DEF
subroutine is included inline, and the FILLDEF macro is redefined to exclude the
subroutine. Upon completion of the FCB construction, the file parameters are gener-
ated, as shown in Listing 9-29b, along with the beginning of the GETSOURCE
subroutine.

The conditional assembly ignores the portions of this FILE macro expansion that
are related to output files but includes the machine code for the input SOURCE file.
In each case, the &FID labels result in names with the prefix or suffix SOURCE,
associating the generated labels with this internal name. The machine code that
initializes the File Control Block fields and buffer pointer follows the label ?20001.
Upon completion of the FILE macro, the SOURCE file is ready for access. Each call
to GETSOURCE reads one more character into the accumulator. Due to the length
of the expanded macro form, the remainder of the case translation program is not
shown.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 201

9.4 Operating System Interface Programmer’s Utilities Guide

To illustrate the facilities of the SEQIO macro library, two additional programs
are given. The first, called PRINT, formats the output from the macro assembler for
printing on the system line printer. The second, called MERGE, performs a simple
merge operation on two disk files.

FILE INFILE ySOURCE + +14+2000

+ LOCAL PSUB +MSG sPMSG
+ LOCAL PND ,EOD »EOB sPNC
0001+= SOURCETYP EQU INFILE
+ FILLFCB SOURCE ++14,2000,
+ LOCAL PFCB
0001+ ec SET 1
+ IRPC ?C»1
+ IF NOT (‘&?C’ = ‘1’ OR ‘&?C’ = '2')
+ eC SET 0
+ ENDM
+ IF NOT (‘1 = ‘17 OR ‘1/ = ‘2')
+ ec SET 0
+ ENDM
+ IF ec
+ IF NUL
000C+# ec SET 12
+ ELSE
+ ec SET 9
+ ENDIF
+ FILLDEF FCBSOURCE:(1-1)%*16,8C
+ LOCAL PSUB
0103+C30F01 JMP 770009
+ @DEF:
0106+7E MOV AWM
0107+12 STAX D
0108+23 INX B
0109+13 INX D
010A+0D DCR c
010B+C20601 JNZ @DEF
Q10E+CS RET
+ ??0009:
+ FILLDEF MACRO PFCB?F 4 7L
+ LXI H+@TFCB+?F
+ LX1 D+?FCB
+ MVI C+?L
+ CALL BDEF

Listing 9-29. Sample FILE Expansion Segment

202 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

+

+
010F+215C00
0112+111D01
0115+0E0C
0117+CD0OBOL

+

+
011A+C34401
011D+

+
0000+#

+

R T T T T S S S S

011D+=
0129+00
012A+

+

+
0000+
0006+#

+

+

ENDM
FILLDEF
LXI

LXI

MVI
CALL
ENDM
ENDM
JMP

DS

@CNT SET
IRPC
IF
EXITM
ENDIF
DB
@CNT SET
ENDM
IF
EXITM
REPT
DB
ENDM
ENDM
ELSE
JMP
IF
DB
ELSE
DB
ENDIF
FILLNAM
FILLNAM
ENDIF
FCBSOURCE
DB
DS
IF
FILLNXT
@NXTB SET
@NXTD SET
FILLNXT
ENDM

9.4 Operating System Interface

FCBSOURCE +»(1-1)%16,@C
Hy@TFCB+(1-1)%16
D+FCBSOURCE

C:@ecC

RDEF

7?0008
ec

12-@C
?FC»
@CNT=0 OR NUL ?FC

'&7?FC’

@BCNT-1

BCNT=0 OR NUL

@CNT

o

270008
NUL

20

SOURCETYP{=2
Q

BLST+1

MACRO

Listing 9-29. (continued)

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

203

9.4 Operating System Interface

+ + o+

+
0780+

+

+
0370+#
0780+

+

+

+

+
013E+7003
0780+=

+
0140+8007

+
0142+
000G+#
0007+

0144+C3B401
+

+ + + +

+
0147+2A4001
014A+EB
014B+2A4201
014E+7D
014F+93
0150+7C
0151+9A
0152+DA9DO1L
01554210000
0158+224201

204 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

ENDM
IF
@8BS SET
ELSE
@BS SET
ENDIF
IF
SOURCEBUF
@NXTB SET
ELSE
SOURCEBUF
ENDIF
SOURCEADR:
DW
SOURCESIZ
SOURCELEN:
DW
SOURCEPTR:
DS
@SOURCE
BNXTD SET
ENDIF
??0008:
IF
EXITM
ENDIF
JMP
IF
GETSOURCE:
ELSE
PUTSOURCE:
PUSH
ENDIF
LHLD
XCHG
LHLD
Moy
SuB
MOV
sBB
JC
LXI
SHLD

Listing 9-29.

Programmer’s Utilities Guide

2000+0<@SECT
@SECT

(2000/@SECT) *#@SECT

NUL
SET BUFFERS+E@NXTB
BNXTB+@BS

SET

SOURCEBUF
EQU @Bs

@Bs

2

SET @NXTD
@NXTD+1

ENDM
INFILE=3

??0001
INFILE=1

PSHW
SOURCELEN

SOURCEPTR
AL

E

AsH

D

7?0007
H0
SOURCEPTR

(continued)

Programmer’s Utilities Guide

+ ?7?0004:
01SB+EB XCHG
015C+2A4001 LHLD
01SF+7B MOV
0160+95 SuB
0161+7A MOV
0162+9C SBB
0163+D28FO01 JNC
0166+2A3E01 LHLD
0169+19 DAD
01BA+EB XCHG
016B+0E1A MVI
016D+CD0OS00 CALL
0170+111001 LXT

+ IF
0173+0E14 MVI

+ ELSE

+ MVI

+ ENDIF
0175+CD0OS00 CALL
0178+87 ORA
0179+C28901 JNZ
017C+118000 LXI
017F+2A4201 LHLD
0182+19 DAD
0183+224201 SHLD
0186+C356B601 JMP

+ ??0005:

+ IF
0189+2A4201 LHLD
018C+224001 SHLD

+ ELSE

+ LOCAL

+ MVI

+ LXI

+ CALL

+ POP

+ JMP

+ EMSG: DB

+ DB

+ DB

+ ENDIF

SOURCELEN
AE

L

AsD

H

??0006
SOURCEADR
D

C)@DMA
@BDO0S

D +FCBSOUR
INFILE=1
C/@FRD

C1@FWR

@BDO0S

A

??6005
D+@SECT
SOURCEPTR
D
SOURCEPTR
??0004

INFILE=1
SOURCEPTR
SOURCELEN

EMSG
C+@MSG
DEMSG
@B00S

PSHW
FILERR
CRLF
‘disk ful
g

Listing 9-29.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.4 Operating System Interface

CE

1: SOURCE’

(continued)

205

9.4 Operating System Interface

+
018F+118000
0192+0E1A
0194+CD0S00
01974210000
019A+224201

+
019D+EB
019E+2A3E01
01A1+19
01A2+EB

+
01A3+2A4001
01AB+7D
01A7+B4
01AB+3E1A
01AA+CB
01AB+1A

+

+

+

+
01AC+2A4201
01AF+23
01B0+224201
01B3+C9

+
01BA+AF
01B5+322901
01B8_3230D01
01BB+218007
01BE+224001

+
01C1+224201
01C4+0EOF

+

+ 4+ + o+ o+ o+

206

??0006:

??0007:

??0001:

LXI
MVI
CALL
LX1
SHLD

XCHG
LHLD
DAD
XCHG
IF
LHLD
Mov
ORA
MVI
RZ
LDAX
ELSE
POP
STAX
ENDIF
LHLD
INX
SHLD
RET

XRA
STA
STA
LXI
SHLD
IF
SHLD
MVI
ELSE
LXI
SHLD
MVI
LXI
CALL
MVI
ENDIF

Listing 9-29.

Programmer’s Utilities Guide

D+@TBUF
C@DMA
@BD0S

H»0
SOURCEPTR

SOURCEADR
D

INFILE=1
SOURCELEN
AL

H

AEOF

PSHW
D

SOURCEPTR
H)
SOURCEPTR

A
FCBSOURCE+12
FCBSOURCE+32
H/SOURCESIZ
SOURCELEN
INFILE=1
SOURCEPTR
C@0PN

H»0
SOURCEPTR
C+@DEL

D FCBSOURCE
@BD0OS

C +@MAK

(continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

01C6+111D01 LXI DFCBSOURCE
01C9+CDOS00 CALL 2BD0OS
01CC+3C INR A
01CD+C2ECO1 JNZ ??0003
01D0+0E09 MVI C»@MSG
01D2+11DBO1 LXI D»??0002
01D5+CD0OS500 CALL @BDOS
01D8+C30000 JMP FILERR
01DB+0DOA ??0002: DB CRLF
+ IF INFILE=1
01DD+BEBF20534F DB ‘no SOURCE file’
+ ELSE
+ DB ‘no dir space: SOURCE’
+ ENDIF
01EB+24 DB '$’
+ ??0003:
+ ENDM

Listing 9-29. (continued)

The PRINT program, shown in Listing 9-30, executes under the Console Com-
mand Processor and takes the following form:

PRINT filename

where filename is the name of a previously assembled program. PRINT assumes that
there is a PRN file on the disk and possibly a SYM file on the same disk drive. The
PRN file is first printed, with a form-feed at the top of each 56-line page. If the SYM
file exists, it is also printed using the same formatting. If the files are successfully
printed, they are both erased from the disk.

The PRINT program begins by saving the console processor stack, with the inten-
tion of returning directly to the CCP without a system reboot. The input printer file
is then defined with a FILE statement that specifies the internal name PRINT and
obtains the filename from the console command line. The filetype, however, is set to
PRN in this case. After performing an initial page eject, the program loops between
the PRCYC (print cycle) and ENDPR (end print) labels by successively reading char-
acters from the PRINT source and writing to the printer through the LISTING
subroutine. On detecting an end-of-file character, control transfers to the ENDPR
label where the PRN file is erased from the disk.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 207

9.4 Operating System Interface Programmer’s Utilities Guide

The program then checks for the presence of the SYM file by invoking the FILE
macro with a SETFILE mode. This creates the proper File Control Block for the
input file with type SYM but does not create buffers or open the file for access.
Following the FILE macro, the DIRECT statement performs a directory search and,
if the file is not present, control transfers to the ENDLST (end listing) label where
execution terminates.

If the SYM file exists, the program performs another page eject and then opens the
SYM file for access. Note that the third FILE macro accesses the SYM file using the
internal name SYMBOL but shares the buffer areas of the PRINT file. The PRINT
file has been erased at this point, so the buffers are available.

If the SYM file is present, the program loops between the SYCYCLE (symbol cycle)
and ENDSY (end symbol) labels where characters are read from the SYMBOL file
and again sent to the printer through the LISTING subroutine. Upon detecting the
end-of-file, control passes to the ENDSY label where the SYM file is erased from the
disk. If no errors occur, control eventually reaches the ENDLST label where the
printer page is ejected. The entry stack pointer is then, retrieved from OLDSP, and
control returns to the Console Command Processor, completing execution of the
PRINT program.

0100 ORG 100H
MACLIB SEQIO iSEQUENTIAL 1/0 LIB
i PRINT THE X.PRN AND X.,SYM FILES ON THE

i LINE PRINTER WITH PAGE FORMATTING.
i

000C = FF EQU OCH iFORM FEED

0038 = MAXLINE EQU 56 iMAX LINES PER PAGE
i

i SAVE THE ENTRY STACK POINTER

0100 210000 LXI H+ 0
0103 39 DAD SP FENTRY SP TO HL
0104 22CF03 SHLD oLDSP iSAVE ENTRY SP
0107 31CFO3 LXI SP,STACKISET TO LOCAL STACK
b
010A FILE INFILE+PRINT»+1+PRN,1000
i READ THE PRINT FILE UNTIL END OF FILE
01F2 CD8AO3 CALL EJECT iTOP OF PAGE
01F9 PRCYC: GET PRINT
01F8 FE1A CPI EOF
01FA CA0302 JZ ENDPR iSKIP IF END FILE

Listing 9-30. Program for Line Printer Page Formatting

208 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Ultilities Guide

01FD
0200

0203

0208
023A
0243

0246
0249

0328
0329
0328
032E
0331

0334

033C
033F
0342
0343

0344
034cC
034F
0350

CD5103
C3FS01

CA3CO3

CDBAO3

FE1A

CA3403
Cb5103
C32603

CD8ARO3
ZACFO03
F9
c9

210203
34
ce9

ENDPR:

CALL LISTING SWRITE TO LISTING DEV
JMP PRCYC

iEND OF PRINT FILE. DELETE IT

ERASE PRINT

CHECK FOR THE OPTIONAL .SYM FILE
FILE SETFILE sSYMCHK ++1 +SYM
DIRECT SYMCHK §IS IT THERE?

JZ ENDLST §iSKIP SYMBOL IF SO

SYMBOL FILE IS PRESENT, PAGE EJECT
CALL EJECT iTO TOP OF PAGE
FILE INFILESYMBOL »+1,5YM+1000,PRINTBUF

SYCYCLE:

ENDSY:

]

ENDLST:

k)

GET SYMBOL

CPI EOQF

JZ ENDSY iSKIP TO END ON EOF
CALL LISTING §SEND TO PRINTER
JMP SYCYCLE 3iFOR ANOTHER CHAR
ERASE SYMBOL {ERASE .SYM FILE

iEND OF LISTING - EJECT AND RETURN
CALL EJECT
LHLD oLbsp iENTRY STACK POINTER
SPHL iRESTORE STACK POINTER
RET iTO CCP

UTILITY SUBROUTINES

LISTOUT:

iSEND A SINGLE CHARACTER TO THE PRINTER
PUT LST

LXI H/CHARC iCHARACTER COUNTER

INR M i INCREMENT POSITION

RET

Listing 9-30. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.4 Operating System Interface

209

9.4

0351
0353
0356
0337
035A
035D
035F
0361
0364
0365
0368
0368
036C
036D
036F
0370
0372
0374
0376

0379
0378
037E
0381
0383
0386
0387
038A
038C
038F
03CF

0301
0302

0303

210

Operating System Interface Programmer’s Utilities Guide
LISTING:
iWRITE CHARACTER FROM REG-A TO LIST DEVICE
FEOC CPI FF iFORM FEED?
C25F03 INZ LISTO
AF XRA A JCLEAR LINE COUNT
320103 5TA LINEC
320203 STA CHARC jCLEAR TAB POSITION
3E0C MVI AFF JRESTORE FORM FEED
FEOA LISTO: CPI LF JEND OF LINE?
27403 INZ LISTY
AF XRA A JCLEAR TAB POSITION
320203 STA CHARC
210103 LXI H)LINEC LINE COUNTER
34 INR M 3 INCREMENTED
7E MU AWM iCHECK FOR END OF PAGE
FE38 CPI MAXLINE SLINE OVERFLOW?
08 RC JRETURN IF NOT
3600 M1 M0 iCLEAR LINEC
3E0C MVI AFF SEND PAGE EJECT
FE09 LISTL: CPI TAB iTAB CHARACTER?
£28703 INZ LIST2
i FEED BLANKS TD NEXT TAB POSITION
3E20 TABOUT: MUI Art
CD4403 CALL LISTOUT
3AD203 LDA CHARC jCHARACTER POSITION
EG07 ANI 7H iMOD B8
£27903 INZ TABOUT 3FOR ANOTHER BLANK
i ON CHARACTER BOUNDARY
of:] RET
LIST2: iSIMPLE CHARACTER
£34403 JMP LISTOUT $PRINT AND RETURN
]
EJECT: $PERFORM PAGE EJECT
3E0C MUT AFF FORM FEED
£34403 JMP LISTOUT
L]
; DATA AREAS
DS B4 132 LEVEL STACK
STACK:
OLDSP: DS 2 JENTRY STACK POINTER
LINEC: DS 1 JLINE COUNTER
CHARC: DS 1 iCHARACTER COUNTER
]
BUFFERS:
END
Listing 9-30. (continued)
ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

The next program, MERGE, is more complicated. The MERGE program accepts
two filenames as input, taking the general command form

MERGE filename

where filename is the name of a master file, with assumed filetype of MAS, as well as
an update name with assumed filetype UPD. The files consist of varying length rec-
ords, each of which starts with a six-character numeric sequence number followed
by textual material and ends with a carriage return line-feed sequence. The lines of
information in the master and update files are assumed to be in ascending numeric
order according to their sequence numbers. The MERGE program reads these two
files and merges the records together to form a new file consisting of numerically
ascending, sequence-numbered lines.

Upon completion of the merge operation, the newly merged file becomes the new
master file. Update records are properly interspersed within the new master file
according to the numeric order, and any update record that matches a master record
results in replacement of the master record by the update record. Upon successful
completion of the merge operation, the original master file is renamed to have the
filetype MBK (master back-up), the original update file is renamed to the filetype
UBK (update back-up), and the newly created file becomes the new MAS file. In this
way, the operator can return to the back-up files in case of error, so that the source
data is not destroyed.

0100 ORG 100H
i FILE MERGE PROGRAM
MACLIB SEQIO iSEQUENTIAL FILE I/0

0000 = BOOT EQU 0000H iSYSTEM REBOOT
0006 = SEQSIZ EQU 6 SIZE OF THE SEQUENCE #'S
03E8 = USIZE EQU 1000 iUPDATE BUFFER SIZE
03E8 = MSIZE EQU USIZE iMASTER BUFFER SIZE
0700 = NSIZE EQU USIZE+MSIZE iNEW BUFF SIZE
)
0100 31ECO05 LXI SPySTACK
0103 C3C801 JMP START iTO PERFORM THE MERGE

i UTILITY SUBROUTINES

Listing 9-31. File Merge Program

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 211

9.4 Operating System Interface Programmer’s Utilities Guide

DIGIT: STEST ACCUMULATOR FOR VALID DIGIT
H RETURN WITH CARRY SET IF INVALID

0106 FE30 CPI o’

0108 D8 RC iCARRY IF BELOW 0
0109 FE3A CPI ‘9’ +1 SCARRY IF BELOW 10
0108 3F CMC iNO CARRY IF BELOW 10
010C C9 RET

i
i ERROR MESSAGES FOR READU AND READM
SEQERRU:

010D 7570646174 DB ‘update sea error’,0
SEQERRM:
011E 6D61737465 DB ‘master seq error’ 0

i

i GENERATE READU AND READM SUBROUTINES
IRPC ?F +UM

i INLINE SEQUENCE NUMBER BUFFER

?F&SEQ: DB 0 iTO START PROCESSING
DS SEQSIZ-135REMAINING SPACE FOR SEQ#

k]

READ&?F:
LXI H?F&SEQ iSEQUENCE BUFFER
Mav AWM iIS IT FF (END FILE)?
INR A iFF BECOMES 00
RZ iSKIP THE READ

READ THE SEQUENCE NUMBER PORTION

MUI CySEQSIZ iSIZE OF SEQUENCE #
RD&?F&0:
PUSH H iSAVE NEXT TO FILL
PUSH B iSAVE NUMBER COUNT
GET ?F&FILE iREAD THE FILE
POP B iRECALL COUNT
POP H iRECALL NEXT FILL
CPI EOF iEND FILE?
Jz EOQF&?F
CALL DIGIT iASCII DIGIT?
LXI D +SEQERR&?F iERROR MESSAGE
JC SEQERR iSEQUENCE ERROR
i NO SEQUENCE ERROR: FILL NEXT DIGIT POSITION
MoV MsA
INX H INEXT TO FILL
DCR C iCOUNT=COUNT-1
JINZ RD&?F&0 iFOR ANOTHER DIGIT
RET iEND OF FILL

Listing 9-31. (continued)

212 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

018F
0190
0191

0194
0195
0190
019E
019F

01A2
01A4
01A5
01AB6
01A7
01A8
01AB
01AC
01AD
O01AE
01B1

1A
B7
CA0000

DS

D1
13
C38F01

OEOB
7€
23
ES
CS

C1
El
0D
C2A401
c9

EOF&?F: iEND OF FILE, SET SEQ# TO OFFH
MUT AOFFH
STA ?F&SEQ iSEQ# SET TO FF
RET
ENDM
i
SEQERR:
i WRITE ERROR MESSAGE FROM (DE) TIL 00
LDAX D
OrRA A
JZ BooT
i OTHERWISE s MORE TO PRINT
PUSH D
PUT CON iWRITE TO CONSOLE
POP D
INX D
JMP SEQERR iFOR MORE CHARS
]
WRITESEQ:

IWRITE THE SEQUENCE NUMBER GIVEN BY HL
iTO THE NEW FILE

MUI C:SEQSIZ iSIZE OF SEQ#
WRITO: MOV AWM
INX H INEXT TO GET
PUSH H iSAVE NEXT ADDR
PUSH B iSAVE COUNT
PUT NEW iWRITE TO NEW
POP B iRECALL COUNT
POP H iRECALL ADDRESS
DCR C §COUNT=COUNT-1
JNZ WRITO iFOR ANOTHER CHAR
RET

Listing 9-31. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

9.4 Operating System Interface

213

9.4 Operating System Interface Programmer’s Utilities Guide

COMPARE THE UPDATE SEQUENCE NUMBER WITH
THE MASTER SEQUENCE NUMBER, SET:

CARRY IF UPDATE < MASTER

ZERO IF UPDATE = MASTER

-ZERD IF UPDATE » MASTER

) - we we e e

OMPARE:
0162 112F01 LXI D,USEQ iUPDATE SEOQ#
0185 215F01 LXI HMSEQ iMASTER SEQ#
0188 0OE0B MUI C,SEQSIZ iSEQUENCE SIZE
01BA 1A CLOOP: LDAX D iUPDATE DIGIT
01BB BE CMP M iUPDATE-MASTER
01BC D8 RC iCARRY IF LESS
018D CO RNZ iNZERO IF GTR
i ITEMS ARE THE SAME, CHECK FOR OFFH
01BE FEFF CPI OFFH iEND OF FILE
01CO C8 RZ iBOTH ARE OFFH
01C1 13 INX D iNEXT UPDATE
01C2 23 INX H iNEXT MASTER
01C3 0D DCR C iCOUNT DOWN
01C4 C2BA01 JNZ cLoorp iFOR ANOTHER DIGIT
01C7 C9 RET iZERO FLAG IF EQUAL
1
i MAIN PROGRAM STARTS HERE
START:
iUPDATE FILE+ WITH ASSUMED .UPD TYPE
oice FILE INFILEsUFILEs1,UPD,USIZE
1]
iMASTER FILEs» WITH ASSUMED TYPE +MAX
0280 FILE INFILEMFILE+1+MASMSIZE
)
iNEW FILEs TEMP.$$$% (RENAMED UPON EOF’S)
038C FILE OUTFILENEW+»TEMP ,$%$ NSIZE
1
0470 CD3501 CALL READU FINITIALIZE UPDATE RECORD
0480 CDBS01 CALL READM FiINITIALIZE MASTER RECORD
MERGE: JiMAIN MERGING LOOP
0483 CDB201 CALL COMPARE 3CARRY SET IF UPDATE<MASTER
0486 CAADO4 JZ SAME iZERD IF IDENTICAL SEQ#
0489 D2C804 JNC MASLOW iMASTER LOW?
1)
i UPDATE SEQUENCE NUMBER IS LOMW
048C 212F01 LXI H,USEQ §COPY SEQUENCE NUMBER
048F CDAZ201 CALL WRITESEQSWRITE THE SEQUENCE #

Listing 9-31. (continued)

214 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

ULOOP: SUPDATE RECORD TO NEW FILE

0492 GET UFILE iCHARACTER TO A

0495 F5 PUSH PSW iSAVE IT

0496 PUT NEW FOUTPUT TO NEW FILE

0499 F1 POP PSW iRECALL CHARACTER

049A FEOA CPI LF iLINE FEED?

049C CAA704 Jz ENDUP

049F FE1A CPI EOQF

04A1 CAA704 Jz ENDUP

04A4 C39204 JMP uLoaoe §CYCLE IF NOT END REC
1)

04A7 CD3S01 ENDUP: CALL READU iREAD ANOTHER SEQ#

04AA C38304 JMP MERGE iFOR ANOTHER RECORD

SAME: SEQUENCE NUMBERS ARE IDENTICAL

04AD 3ASFO1 LDA MSEQ iCHECK FOR OFFH
04B0 FEFF CPI OFFH
04B2 CAES04 JZ ENDMERGE
i NOT THE SAME: DELETE MASTER RECORD
04B5 DELMAS: GET MFILE
04B8 FE1A CPI EOF iEND OF FILE?
04BA CAC204 JZ GETMAS JGET SEQ# FF
04BD FEOA CPI LF
04BF C2B504 JNZ DELMAS §iFOR ANOTHER CHAR
04C2 CDBSO1 GETMAS: CALL READM iTO NEXT RECORD
04C5 C38304 JMP MERGE iFOR ANOTHER
1)
MASLOW: iMASTER SEQUENCE NUMBER IS LOW
04C8 215F01 LXI H/MSEQ
04CB CDA201 CALL WRITESEQ3iSEQUENCE NUMBER
04CE MLOOP: GET MFILE
04D1 FS PUSH PSW iSAVE MASTER CHARACTER
0402 PUT NEW
04D5 F1i PoOP PSW iLF OR EOF?
04D6 FEOA CPI LF
04D8 CAE304 JZ ENDMS
04DB FE1A CPI EOQF
04DD CAE304 JZ ENDMS
04E0 C3CEO04 JMP MLOOP iMORE TO COPY
1)
04E3 CDGS01 ENDMS: CALL READM iREAD NEW SEQ NUMBER
04EB C38304 JMP MERGE iTO MERGE ANOTHER

Listing 9-31. (continued)

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 215

9.4 Operating System Interface Programmer’s Utilities Guide

ENDMERGE:

iCLOSE ALL FILES FOR RENAMING
04E9 FINIS CUFILE/MFILE NEW>

i0LD MASTER FILE FOR ERASE/RENAME
0529 FILE SETFILE OLDMAS » +1 yMBK
0558 ERASE OLDMAS

iRENAME MASTER TO JMBK
0560 RENAME OLDMASMFILE

b

i0OLD UPDATE FILE FOR ERASE/RENAME
0580 FILE SETFILE,OLDUPD,,1,UBK
05AF ERASE OLDUPD

iRENAME UPDATE TO .UBK

0587 RENAME OLDUPD,UFILE
i

iRENAME NEW TO MASTER FILE

05CO RENAME MFILE sNEW
05C9 C30000 JMP BOOT
)
05CC DS 32 i16 LEVEL STACK
STACK:
i BUFFER AREA
BUFFERS:
146C = MEMSIZE EQU BUFFERS+NXTB iEND OF MEMORY
05EC END

Listing 9-31. (continued)

The MERGE program, shown in Listing 9-31, begins with utility subroutines,
including the DIGIT subroutine that tests for valid decimal digits in sequence num-
bers. The IRPC that follows the DIGIT subroutine generates two distinct subroutines,
called READU and READM, for reading the update and master files, respectively.
The generation of these two subroutines has been suppressed in the listing to keep
the listing short. (See Section 10.) These two READ subroutines fill their respective
sequence number buffers from the input source, so that the merge operation can take
place based on the current sequence number values. Upon detecting an end-of-file,
the sequence number is set to OFFH as a signal that the input source has been
exhausted.

216 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 9.4 Operating System Interface

The SEQERR subroutine reports an error condition when a nonnumeric character
is detected in the sequence number field. Although the error reporting is spartan,
sequence errors are easily found using the TYPE command on the master or update
file. The WRITESEQ subroutine is called whenever the source for the next record
has been determined. The COMPARE subroutine determines the next source record
(master or update) by comparing the buffered sequence numbers from left to right
while they are equal. If a mismatch occurs in the sequence number scan, COMPARE
returns with the carry flag and zero flag set to indicate which file holds the next
source record.

Execution of the MERGE program begins following the START label where the
update, master, and new files are defined. The UFILE and MFILE sources are defined
with the same buffer sizes, as determined by the earlier USIZE and MSIZE equates.
Both take their primary name from the default value specified at the CCP level by
the operator. The new file is created as a temporary, with filename TEMP and

filetype $3$9, but is renamed upon completion of the program to become the master
file.

The merge operation proceeds in Listing 9-31 as follows. First the READU and
READM subroutines are called to fill the sequence number buffers. The loop between
MERGE and ENDMERGE is then repetitively executed until the merge is complete.
On each iteration of this loop, the COMPARE subroutine is called to compare the
buffered sequence numbers. If the update sequence number is smaller than the master
sequence number, it is moved to the new file, and data is copied from the update file
to the new file until the end of the current record is encountered. Upon completion
of the copy operation, the READU subroutine is called again to refill the update
sequence number buffer.

If the COMPARE subroutine instead detects equal sequence numbers, control
transfers to the SAME label, where the master record is deleted. Alternatively, the
COMPARE subroutine causes control to transfer to the MASLOW label when the
master sequence number is lower than the update sequence number. In this case, the
master sequence number and data record are copied to the new file in exactly the
same manner as an update record.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 217

9.4 Operating System Interface Programmer’s Utilities Guide

Upon completion of the merge operation, indicated by an end-of-file in both the
update and master files, control transfers to the ENDMERGE label where the files
are closed and renamed. Following the FINIS statement, the previous MBK file (pos-
sibly from an earlier execution) is erased so that the current master (MAS) can be
renamed to the master back-up (MBK). Similarly, any previous UBK file is erased,
and the current update file is renamed to become the new UBK file. Finally, the new
file (TEMP.$$$) is renamed to become the new master file (MAS) before execution
stops.

Listing 9-32 shows an example of the files involved in a typical merge operation.
In this application, the sequence numbers control the ordering of a list of names that
is updated periodically. The NAMES.MAS file, which is the original master, is updated
by merging with the NAMES.UPD file, also shown in the listing. The merge opera-
tion is initiated by typing

MERGE NAMES

and, upon completion, produces the new NAMES.MAS shown in the righthand col-
umn of Listing 9-32.

The SEQIO library is typical of the interface you can construct to provide a higher
level interface between assembly language programs and their operating environment.
Although the library shown here performs only simple sequential file input/output,
you can construct more comprehensive libraries for random access based on this
library.

218 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

NAMES . MAS
000100 ABERCROMBIE: SIDNEY
000200 CARLSBAD: YOLANDA
000300 EGGBERT.EBENEZER
000400 GRAVELPAUGH: HORTENSE
000500 ISENEARS: IGNATZ
000600 KRABNATZ, TILLY
000700 MILLYWATZ,» RICARDO
000800 OPFATZ, ADOLPHO
000900 QUAGMIRE» DONALD
001000 TWITSWEET: LADNER
001090 VERANDA» VERONICA
001100 WILLOWANDER: PRATNEY
001200 YUPPGANDER, MANNY

NAMES.UPD

000110
000200
000210
000330
000410
000540
0006820
000710
000820
000930
000960
001010
001110
001210

BERNSWEIGER» ALFRED
CRUENCE» CLARENCE
DENNINGSKI s HUBERT
FINKLESTEIN, FRANK
HILLSENFIELDS» RANDOLPH
JOLLYFELLOW,» JUNE
LAMBAA» WILLY
NEEBEND, ASTRID
PRATTWITZ s HEADY
RUBBLEMEYER+ RUNYON
SWIGSTITTS, ULYSSES
UMPLANDER» XAVIER
XYLOPH, ERHARDT
ZEPLIPPS, EGGERWORTZ

9.4 Operating System Interface

new NAMES.MAS

000100
000110
000200
000210
000300
000330
000400
000410
000500
000540

ABERCROMBIE» SIDNEY
BERNSWEIGER+ ALFRED
CRUENCE » CLARENCE
DENNINGSKI» HUBERT
EGGBERT» EBENEZER
FINKLESTEIN, FRANK
GRAVELPAUGH, HORTENSE
HILLSENFIELDS+» RANDOLPH
ISENEARS+ IGNATZ
JOLLYFELLOW,» JUNE
000600 KRABNATZ, TILLY
000620 LAMBAA» WILLY

000700 MILLYWATZ, RICARDO
000710 NEEBEND, ASTRID
000800 OPFATZ, ADOLPHO
000820 PRATTWITZ, HEADY
000900 QUAGMIRE,» DONALD
000930 RUBBLEMEYER: RUNYON
000960 SWIGSTITTS, ULYSSES
001000 TWITSWEET: LADNER
001010 UMPLANDER s XAVIER
001090 VERANDA, VERONICA
001100 WILLOWANDER: PRATNEY
001110 XYLOPH,» ERHARDT
001200 YUPPGANDER MANNY
001210 ZEPLIPPS, EGGERWORTZ

Listing 9-32. Sample MERGE Disk Files

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

End of Section 9

219

Section 10
Assembly Parameters

You can include assembly parameters when you invoke the assembler that controls
various assembler functions. The macro assembler is initiated with the name of the
source file, followed by a dollar sign ($) and the assembly parameters. The parame-
ters are indicated by single controls that denote particular functions. The character
on the left below controls the function shown to the right.

Table 10-1. Assembly Parameters

Character Function
A the source disk for the .ASM file
H the destination of the .HEX machine code file
L the source disk for the .LIB files (see MACLIB)
M MACRO listings in the .PRN file
p the destination of the .PRN file containing the listing
Q the listing of LOCAL symbols
S the generation and destination of the .SYM file
1 pass 1 listing

Any or all of the above parameters can be included. The A, H, L, and S parameters
are followed by the drive name to obtain or receive the data, where the drives are
labeled A, B, ..., Z. By convention, the X disk corresponds to the user’s console;
the P disk corresponds to the system line printer (logical list device), and the Z disk

wn
0
N
=
0
-}
o

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 221

10 Assembly Parameters Programmer’s Utilities Guide
corresponds to a null file that is not recorded. The following is a valid assembly
parameter list following the MAC command and source filename:

$PB AA HB SX

that directs the .PRN file to disk B, reads the .ASM file from disk A, directs the
.HEX file to the B disk, and sends the .SYM file to the user’s console. Blanks are
optional between parameter specifications.

The parameters L, S, M, Q, and 1 can be preceded by + or - symbols that enable
or disable their functions. These functions are

+L lists input lines read from the macro library (see MACLIB).
-L suppresses listing of the macro library (default value).

+$S appends the .SYM to the end of the .PRN output.
-S suppresses the generation of the sorted Symbol Table.

+M lists all macro lines as they are processed during assembly.
—M suppresses all macro lines as they are read during assembly.
*M lists only hex generated by macro expansions.

+Q lists all LOCAL symbols in the symbol list.
—Q suppresses all LOCAL symbols in the symbol list.

+1 produces a listing file on first pass (for macro debugging).
-1 suppresses listing on pass 1 (default).

The following is an example of a valid assembly parameter list that uses a number
of the parameter specifications given above:

$PB+5-M HB
In this case, the .PRN file is sent to disk B with the symbol list appended (no .SYM

file is created), all macro generations are suppressed, and the .HEX file is sent to disk
B with the .PRN file.

222 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 10 Assembly Parameters

The M parameter can be preceded by an asterisk (*), causing the assembler to list
only macro generations that produce machine code. The asterisk suppresses the list-
ing of the instructions that are produced; positions beyond the hex fields are not
listed. Under normal operation, the macro assembler lists only generations that pro-
duce machine code, along with the generated line.

Given that disk d is the currently logged drive, the macro assembler defaults these
parameters as follows: the .ASM and .LIB files are assumed to originate on drive d;
the .HEX, .PRN, and .SYM files are sent to drive d; a Symbol Table is generated
with LOCAL symbols suppressed. This means symbols beginning with ?? are not
listed, and macro lines that generate machine code are listed. Note, however, that the
filename following the MAC command can be preceded by a drive name, in which
case the P parameter overrides the drive name, if supplied. Whenever a parameter is
repeated in the assembly parameter specification, the last value is assumed. Valid
assembly statements are shown below, assuming the file to be assembled is called
SAMPLE.

MAC SAMPLE $PX+5-M

assembles the file SAMPLE.ASM with listing to the console, symbols at the console,
and no listing of generated macros.

MAC A:SAMPLE $+5 -M+Q

assembles sample.ASM from disk A, creating sample.PRN with appended symbols
on the currently logged drive, suppressing generated macros, and listing symbols that
begin with the characters ?? in addition to the usually listed symbols.

MAC SAMPLE

assembles SAMPLE.ASM from the currently logged drive, creating SAMPLE.PRN

along with sample.SYM (containing the Symbol Table) and SAMPLE.HEX, which
holds the Intel format hex file in the ASCII form.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 223

10 Assembly Parameters Programmer’s Utilities Guide

MAC SAMPLE 4AB HA PB +Q +S +L #*M

assembles the SAMPLE.ASM file from drive B and produces the file SAMPLE.HEX
on drive A, with the SAMPLE.PRN file on drive B. The Symbol Table includes ??
symbols. The Symbol Table is placed at the end of the .PRN file on drive B. The .LIB
files are listed with the .PRN file as the .LIB files are read. The instructions that
correspond to generated macro lines are not included, although generated machine
code is listed.

In addition to the parameters shown above, you can intersperse controls through-
out the assembly language source or library files. Interspersed controls are denoted
by a $ in the first column of the input line, where the form shown on the left below
corresponds to the action described on the right.

$—PRINT stops output listing by discarding formatted lines
$+PRINT enables the output printing when previously disabled
$-MACRO disables generated macro lines, as in —M above
$+MACRO enables full macro trace, as in + M above

$ * MACRO enables partial macro trace, as in *M above

Because MAC allows each line to be optionally prefixed by a line number, the $
control can be included directly following this line number.

End of Section 10

224 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 11
Debugging Macros

A number of common debugging practices can be used in developing macros and
macro libraries. One technique, called iterative improvement, is often used in the
design of programs and is most useful in building macros. The basic idea of iterative
improvement is that a small portion of the overall macro set is first implemented and
tested before continuing to more complicated macros. In this way, errors can be
isolated at each step as the macro evolves. Further, if errors occur in the macro
generations after a small portion of the macro set has been improved, it is most likely
that the error is being caused by the macros that are changed.

In the case of the Hornblower Highway System macro libraries, for example,
iterative improvement was used to evolve the final macro library. Only the simplest
macros were first implemented, including the SETLITE, TIMER, and RETRY macros.
(See Section 9.) Debugging facilities were then added to these macros, so that the
programs could be traced at the console. Upon successful testing of the basic macro
facilities, the PUSH?, CLOCK?, and TREAD? macros were individually written and
tested, resulting in the final macro library.

At each step, you can use the various assembly parameters to control the debug-
ging information. If the macro generations are not producing the proper machine
code, it might be necessary to obtain a full trace, using the + M option when MAC
is started. If the program produces too much output with the full trace enabled, you
can use the $+MACRO and $-MACRO commands interspersed throughout the
assembly language source program, resulting in full macro generation traces only in
the regions selected for debugging consideration.

If macro generation errors are caused by macro libraries, you can use the +L

parameter when MAC starts to cause the libraries to be included in the listing as
they are read.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 225

wn
M
N
=
)
o]

11 Debugging Macros Programmer’s Utilities Guide

As a final consideration, it might be necessary to enable the first pass listing of the
assembly language using the +1 parameter. In this case, MAC lists the program as
it is being read on the first pass as well as the second pass. Note, however, that the
listing contains spurious error messages on this pass that might disappear on the
second pass. The first pass listing parameter allows you to view the macro genera-
tions on the two successive expansion passes to ensure that the assembler is process-
ing the program in the same way in both cases.

If a macro expands improperly, and the source of the error is not evident after
examining various traces, it might be necessary to remove the offending macro from
the program and create an isolated smaller test case where the error is reproduced.
Full traces can then be examined to determine the source of the error and, after
fixing the macro, it can be replaced in the larger program and retested.

End of Section 11

226 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 12
Symbol Storage Requirements

The maximum program size that can be assembled by MAC is determined only by
the Symbol Table storage requirements for the program. The Symbol Table itself
occupies the region above the macro assembler in memory, up to the base of the
CP/M operating system. Thus, the size of the Symbol Table depends on the size of
the current MAC version—approximately 12K program and data, plus 2.5K for /O
buffers—and the size of the user’s CP/M configuration. The Symbol Table size is
dynamically determined by MAC upon startup and fills as symbols are encountered.
To provide some insight regarding storage requirements, the basic item size for iden-
tifiers and macros is given below.

A name used as a program label, data label, or variable in a SET or EQUATE
requires

N=L+5
bytes, where L is the length of the identifier name. Thus, the statement
PORTVAL EQU 37FH
makes an entry into the Symbol Table that occupies

N =7 + 5§ = 12 bytes

of Symbol Table space. Recall that LOCAL symbols take the form ??nnnn, which
generates a name of length L = 6.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 227

wn
[0
N
o,
o)
>
N

12 Symbol Storage Requirements Programmer’s Utilities Guide

Macro storage is more complicated to compute. The general form is

M=L+7+H+T

where L is the macro name length; H is the parameter header storage requirement,
and T is the macro text storage requirement, computed as

H=P1+P2+...+Pn+n

where P, is the length of the first parameter name. The text length T is the number
of characters in the macro body, including tab and end-of-line characters. Reserved
symbols, however, are reduced to a single byte from their multicharacter representa-
tions. The jump, call, and return on condition operators, however, require their full
character representations. Comments starting with double semicolon are not included
in the character count. The comment line is backscanned to remove preceding tab or
blank characters in this case. For example, the macro

LOADR MACRO REG»ALPHA SFILL REGISTER crlf
MUI REG: '&ALPHA’ iiDATA crlf
ENDM crlf

contains a macro header, followed by two macro lines, where each line is written
with tab characters (rather than spaces) and terminated by carriage return line-feeds
(crlfs).

In this case, the macro name length (LOADR) is five characters (L = §), and the
parameter name lengths are three characters (REG) and five characters (ALPHA),
resulting in the following parameter header storage requirement:

H=P; +P,+2=3+35+ 2= 10 bytes

The first macro line contains a leading tab (one byte), the MVI instruction (reduced
to one byte), another tab character (one byte), the operands REG,‘8& ALPHA’ (twelve
characters), and the end of line (two characters), for a total of seventeen bytes. Note
that the comment, with the preceding tab, is removed from the line. The second line
contains a tab (one byte), ENDM (one byte), and end-of-line (two characters) for a
total of four bytes. Summing the textual characters, the total is T = 21 bytes. As a
result, the total macro storage for LOADP is

M=L+7+H+T=5+7+ 10 + 21 = 43 bytes

228 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 12 Symbol Storage Requirements

No permanent storage is required for REPTs, IRPCs, or IRPs, although temporary
storage in the Symbol Table is used while the groups are actively iterating. The
characters contained within the group bounds (from the header to the corresponding
ENDM) are stored in the Symbol Table in their literal form, with no reduction of
reserved symbols to single bytes. Upon completion of the iteration, the storage is
returned for other purposes. Similarly, active parameters for macro expansions require
temporary storage in the Symbol Table. Storage is returned upon completion of the
macro expansion.

In any case, a Symbol Table overflow message results if the total amount of free
Symbol Table space is used up. As mentioned previously, the user can regenerate the
CP/M system, up to the maximum memory space of the 8080 processor, to increase
the symbol table area. The percentage of Symbol Table utilization is always printed
at the console at the end of assembly. The printout takes the form:

OhhH USE FACTOR

where hh is a hexadecimal value in the range 00 to FF, where 00 results from an
almost empty table, and FF is produced from an almost full table. The value 080H,
for example, is printed when the Symbol Table is half full. Keep note of the use
factor as a program develops to gauge the relative amount of free space as the
program is enhanced.

In many of the examples shown in this manual, macros include inline subroutines
that are generated at the first invocation and called upon subsequent invocations.
(See the TYPEOUT macro in Listing 6-11, for example.) These subroutines can be
included in the mainline program to reduce Symbol Table storage requirements, if
necessary. In this case, the subroutines are assumed to exist the first time the macro
is invoked, and thus are not generated by the macro.

End of Section 12

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 229

Section 13
RMAC,
Relocating Macro Assembler

RMAC, the CP/M Relocating Macro Assembler, is a modified version of the
CP/M Macro Assembler (MAC). RMAC produces a relocatable object file (REL),
rather than an absolute object file (HEX), that can be linked with other modules
produced by RMAGC, or by other language translators such as PL/I-80, to produce an
absolute file ready for execution. The differences between RMAC and MAC are
described in the following subsections.

13.1 RMAC Operation
RMAC takes the command form:
RMAC filename.filetype

followed by optional assembly parameters. If the filetype is not specified, ASM is
assumed. RMAC produces three files: a list file (PRN), a symbol file (SYM), and a
relocatable object file (REL). Characters entered in the source file in lower-case appear
in lower-case in the list file, except for macro expansions.

The assembly parameter H in MAC, used to control the destination of the HEX
file, has been replaced by R, which controls the destination of the REL file. Directing
the REL file to the console or printer (RX or RP) is not allowed, because the REL
file does not contain ASCII characters.

The following example directs RMAC to assemble the file TEST.ASM, send the
PRN file to the console, and put the symbol file (SYM) and the relocatable object file
(REL) on drive B.

A*RMAC TEST $PX SB RB

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 231

wn
M
N
s
o
3
w

13.2 Expressions Programmer’s Utilities Guide

13.2 Expressions

The operand field of a statement can consist of a complex arithmetic expression,
as described in Section 3, with the following restrictions:

® In the expression A+B, if A evaluates to a relocatable value or an external,
then B must be a constant.

8 In the expression A-B, if A is an external, then B must be a constant.

® In the expression A-B, if A evaluates to a relocatable value, then B must be a
constant, or B must be a relocatable value of the same relocation type as A.
That is, both must appear in a CSEG or DSEG, or in the same COMMON
block.

® In all other arithmetic and logical operations, both operands must be absolute.
An expression error (‘E’) is generated if an expression does not follow these
restrictions.
13.3 Assembler Directives

The following assembler directives have been added to support relocation and
linking of modules:

ASEG use absolute location counter
CSEG use code location counter
DSEG use data location counter

COMMON use common location counter

PUBLIC symbol can be referenced in another module
EXTRN symbol is defined in another module
NAME name of module

The directives ASEG, CSEG, DSEG, and COMMON allow program modules to
be split into absolute, code, data, and common segments. These segments can be
rearranged in memory as needed at link time. The PUBLIC and EXTRN directives
provide for symbolic references between program modules.

232 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 13.3 Assembler Directives

Note: symbol names can be up to 16 characters, but the first six characters of all
symbols in PUBLIC, EXTRN, and COMMON statements must be unique, because
symbols are truncated to six characters in the object module.

13.3.1 The ASEG Directive

The ASEG statement takes the form:
label ASEG

and instructs the assembler to use the absolute location counter until otherwise directed.
The physical memory locations of statements following an ASEG are determined at
assembly time by the absolute location counter, which defaults to 0 and can be reset
to another value by an ORG statement following the ASEG statement.

13.3.2 The CSEG Directive

The CSEG statement takes the form:
label CSEG

and instructs the assembler to use the code location counter until otherwise directed.
This is the default condition when RMAC begins an assembly. The physical memory
locations of statements following a CSEG statement are determined at link time.

13.3.3 The DSEG Directive
The DSEG statement takes the form:
label DSEG
and instructs the assembler to use the data location counter until otherwise directed.
The physical memory locations of statements following a DSEG statement are deter-

mined at link time.

13.3.4 The COMMON Directive
The COMMON statement takes the form:

COMMON /identifier/
and instructs the assembler to use the COMMON location counter until otherwise

directed. The physical memory locations of statements following a COMMON state-
ment are determined at link time.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 233

13.3 Assembler Directives Programmer’s Utilities Guide

13.3.5 The PUBLIC Directive

The PUBLIC statement takes the form:
PUBLIC label{,label,...,label}

where each label is defined in the program. Labels appearing in a PUBLIC statement
can be referred to by other programs that are linked using LINK-80.

13.3.6 The EXTRN Directive
The EXTRN statement takes the form:
EXTRN label{,label,...,label}
The labels appearing in an EXTRN statement can be referenced but must not be
defined in the program being assembled. They refer to labels in other programs that

have been declared PUBLIC.

13.3.7 The NAME Directive
The NAME statement takes the form:
NAME ‘text string’
The NAME statement is optional. It is used to specify the name of the relocatable
object module produced by RMAC. If no NAME statement appears, the filename of

the source file is used as the name of the object module. Module names identify
modules within a library when using the LIB-80 library manager.

End of Section 13

234 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 14
XREF

XREF is an assembly language cross-reference utility program used with the PRN
and SYM files produced by MAC or RMAC to provide a summary of variable usage
throughout the program.

XREF takes the command form:
XREF filename

The filename refers to two input files that are created using MAC or RMAC with the
assumed (and unspecified) filetypes of PRN and SYM, and one output file with an
assumed (and unspecified) filetype of XRF.

XREF reads the file, filename.PRN, line by line, attaches a line number prefix to
each line, and writes each prefixed line to the file filename.XRF. During this process,
XREF scans each line for any symbols that exist in the file filename.SYM.

After completing this copy operation, XREF appends to the file filename.XRF a
cross-reference report that lists all the line numbers where each symbol in file-
name.SYM appears. It also flags with a # character each line number where the
referenced symbol is defined.

XREEF also reports the value of each symbol, as it appears in the file filename.SYM.
As an option, the file specification can include a drive name in the standard CP/M

format, d:. When the drive name is specified, XREF associates all the files described
above with the specified drive. Otherwise, it associates the files with the default drive.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 235

AR IIBETS

14 XREF Programmer’s Utilities Guide

XREF also allows you to direct the output file to the default list device instead of
to the file filename.XRF. To use this option, add the string $p to the command line:

XREF filename $P

XREF allocates space for symbols and symbol references dynamically during exe-
cution. If no memory is available for an attempted symbol or symbol reference
allocation, XREF issues an error message and terminates.

End of Section 14

236 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 15
LINK-80

15.1 Introduction

LINK-80 is a utility program you can use to combine relocatable object modules
into an absolute file ready for execution under CP/M or MP/M 1L

There are two types of relocatable object modules. The first has a filetype of REL
and is produced by PL/I-80, RMAC, or any other language translator that produces
relocatable object modules in the Microsoft® format.

The second has a filetype of IRL and is generated by the CP/M library manager
LIB-80. An IRL file contains the same information as a REL file but includes an
index that enables faster searching of large libraries.

Upon successful completion, LINK-80 lists the following items at the console:

® the Symbol Table

® any unresolved symbols
® a Memory Map

® the Use Factor

The Memory Map shows the size and locations of the different segments. The Use
Factor indicates the amount of available memory used by LINK-80 as a hexadecimal
percentage.

LINK-80 writes the Symbol Table to a SYM file suitable for use with the CP/M
Symbolic Instruction Debugger (SID™) and creates a COM or PRL file for direct
execution under CP/M or MP/M 1L

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 237

Gl uondas

15.2 LINK-80 Operation Programmer’s Utilities Guide

15.2 LINK-80 Operation
LINK-80 takes the general command form:
link filenamel{,filename2,. . .,filenameN}

where filenamel,. . ..filenameN are the names of the object modules to be linked. If
you do not specify a filetype, LINK-80 assumes filetype REL.

LINK-80 produces two files:

® filenamel.COM
@ filenamel.SYM

You can specify a different name for the COM and SYM files with a command of
the form:

link newfilename = filename1{,filename2,. . .,filenameN}

LINK-80 supports a number of optional switches that control the link operation.
These switches are described in the following section.

During the link process, LINK-80 can create up to eight temporary files on the
default disk. The files are named:

KKABS . $%% KXPROG.$%% HKXDATA. . $%% KXCOMM . $%%
YYABS . 4%% YYPROG.$%% YYDATA . $%% YYCOMM . $%%

LINK-80 deletes these files following termination. However, they can remain on the
disk if LINK-80 halts due to an error condition.

15.3 Multi-line Commands

If a LINK-80 command does not fit on a single line (126 characters), the command
can be extended by terminating the command line with an ampersand character. The
ampersand can appear after any character in the command and need not follow a
filename.

238 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

filenamel.COM

Programmer’s Utilities Guide 15.3 Multi-line Commands

LINK-80 responds with an asterisk on the next line, at which point you can
continue the command. LINK-80 allows any number of lines ending with the amper-
sand. The last line terminates with a carriage return, as in the following example.
The Symbol Table and memory map would appear where vertical ellipses are shown.

A»linKk mains iomodls iomodZ, iomod3, iomodd, iomod5, &
LINK 1.3

*1ibi1lsl1, 1ib2[s],y 1ib3[s], 11ibd48

*¥[s], lastmod[rP20008

*,d2001]

+

A

Note: you can use XSUB to submit multi-line commands to LINK-80.

15.4 LINK-80 Switches

LINK-80 supports optional run-time parameters called switches that control the
link operation. All LINK-80 switches are enclosed in square brackets, separated by
commas, and immediately follow one or more of the filenames in the command line.

All switches except the S switch can appear after any filename in the command
line. The S switch must follow the filename to which it refers. For example,

A>LINK TESTLL40001,I0MODTESTLIBLSsNL +GSTART]

15.4.1 The Additional Memory (A) Switch

The A switch provides additional space for Symbol Table storage by decreasing
the size of LINK-80’s internal buffers. Use this switch only when necessary, as indi-
cated by a MEMORY OVERFLOW error. Using the A switch causes LINK-80 to
store its internal buffers on the disk, slowing down the linking process considerably,
while allowing linking of larger programs.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 239

15.4 LINK-80 Switches Programmer’s Utilities Guide

15.4.2 The BIOS Link (B) Switch

The B switch is used to link a BIOS in a banked CP/M 3 system. LINK-80 aligns
the data segment on a page boundary, puts the length of the code segment in the
header, and defaults to the SPR filetype.

15.4.3 The Data Origin (D) Switch
The D switch specifies the origin of the data and common segments. If you do not
use the D switch, LINK-80 places the data and common segments immediately after
the program segment.
The D switch takes the form:
Dnnnn

where nnnn is the data origin in hexadecimal.

15.4.4 The Go (G) Switch
The G switch specifies the label where program execution begins, if it does not
begin with the first byte of the program segment. Using the G switch causes LINK-
80 to put a jump to the label at the load address.
The G switch takes the form:
G<label>

15.4.5 The Load Address (L) Switch
The load address defines the base address of the COM file generated by LINK-80.
The load address is usually 100H, which is the base of the Transient Program Area
(TPA) in a standard CP/M system. The L switch also sets the program origin to
nnnn, unless otherwise set by the P switch.
The L, switch takes the form:
Lonnn

where nnnn is the desired load address in hexadecimal.

Note: COM files created with a load address other than 100H do not execute prop-
erly under a standard CP/M system.

240 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 15.4 LINK-80 Switches

15.4.6 The Memory Size (M) Switch

The M switch can be used when you are creating PRL files to indicate that the
program requires additional data space for proper execution.

The M switch takes the form:
Mnnnn
where nnnn is the amount of additional data space needed in hexadecimal.

15.4.7 The No List (NL) Switch
The NL switch suppresses the listing of the Symbol Table at the console.

15.4.8 The No Recording of Symbols (NR) Switch
The NR switch suppresses the recording of the Symbol Table file on the disk.

15.4.9 The Output COM File (OC) Switch

The OC switch directs LINK-80 to produce a COM file. This is the default condi-
tion for LINK-80.
15.4.10 The Output PRL File (OP) Switch

The OP switch directs LINK-80 to produce a page-relocatable PRL file rather than
a COM file. See Section 7.1 of the MP/M II Operating System Programmer’s Guide
for more information on creating PRL files.
15.4.11 The Output RSP File (OR) Switch

The OR switch outputs RSP (Resident System Process) files for execution under
MP/M.
15.4.12 The Output SPR File (OS) Switch

The OS switch outputs SPR (System Page Relocatable) files for execution under
MP/M.
15.4.13 The Program Origin (P) Switch

The P switch specifies the origin of the program segment. If you do not use the P
switch, LINK-80 puts the program segment at the load address, which is 100H unless
otherwise specified by the L switch.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 241

15.4 LINK-80 Switches Programmer’s Utilities Guide

The P switch takes the form:
Pnnnn

where nnnn is the program origin in hexadecimal.

15.4.14 The ? Symbol (Q) Switch

Symbols in many run-time subroutine libraries begin with a question mark to
avoid conflict with user-defined symbols. LINK-80 usually suppresses listing and
recording of these symbols.

The Q switch causes LINK-80 to include these symbols in the Symbol Table listed
at the console and recorded on the disk.

15.4.15 The Search (S) Switch

The S switch indicates that the preceding file should be treated as a library.
LINK-80 searches the file and includes only those modules containing symbols that
are referenced but not defined in the modules already linked.

15.5 The $ Switch

The $ switch controls the source and destination devices. The $ switch takes the
general form:

$td
where t is a type, and d is a drive specification.
LINK-80 recognizes five types:

C — Console
® | — Intermediate

@ L — Library
8 O— Object
® S — Symbol

242 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 15.5 The $ Switch

The drive specification can be a letter in the range A through P corresponding to
one of sixteen logical drives, or one of the following special characters:

® X — Console
® Y — Printer
® Z — Byte bucket

15.5.1 $Cd - Console

LINK-80 usually sends messages to the console, but messages can be directed to
the list device by using $CY, or they can be suppressed by using $CZ. Once $CY or
$CZ has been specified, $CX can be used subsequently in the command line to
redirect messages to the console device.

15.5.2 $Id - Intermediate

LINK-80 usually places the intermediate files it generates on the default drive. The
$1 switch allows you to specify another drive for intermediate files.

15.5.3 $Ld - Library

LINK-80 usually searches on the default drive for library files that are automati-
cally linked because of a request item in a REL file. The $L switch instructs
LINK-80 to search the specified drive for these library files.

15.5.4 $0d - Object

LINK-80 usually generates an object file on the same drive as the first REL file in
the command line, unless an output file with an explicit drive is included in the
command. The $O switch instructs LINK-80 to place the object file on the drive
specified by the character following the $0O, or to suppress the generation of an
object file if the character following the $O is a Z.

15.5.5 $Sd - Symbol

LINK-80 usually generates a symbol file on the same drive as the first REL file in
the command line, unless an output file with an explicit drive is included in the
command. The $S switch instructs LINK-80 to place the symbol file on the drive
specified by the character following the $S, or to suppress the generation of a symbol
file if the character following the $S is a Z.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 243

15.5 The $ Switch Programmer’s Utilities Guide

15.5.6 Command Line Specification

The td character pairs following a $ switch must not be separated by commas. The
entire group of $ switches must be set off from any other switches by a comma. For
example, the three command lines shown below are equivalent:

A>link pPartll[$sz+$0ds$1bsalspart?
A>link partll$szodlbsalsparts
A>linKk pPartil$sz od lblspartZ2lql

The $1 switch specifies the drive to be used for intermediate files during the entire
link operation, but the other $ switches can be changed in the command line. The
value of a § switch remains in effect until it is changed as LINK-80 processes the

command line from left to right. This is especially useful when linking overlays. (See
Section 16.) For example, the command

A>linKk root (ovil[$szczl)(ovZ2)(ov3)(ovdl$sacxl])
suppresses the SYM files and console output generated when OV1, OV2 and OV3

are linked. When OV4 is linked, LINK-80 places the SYM file on drive A and sends
any messages to the console device.

15.6 Creating MP/M 1I PRL Files

Assembly language programs often contain references to symbols in the Base Page
such as BOOT, BDOS, DFCB, and DBUFF. To run properly under CP/M, or as a
COM file under MP/M 1I, these symbols are simply defined in equates as follows:

boot equ 0 jJumPp to warm boot

bdos equ S jJumPp to bdos entry Point
dfchb equ Sch jdefault file control block
dbuff equ 80h jdefault i/o0 buffer

With PRL files, however, the Base Page itself can be relocated at load time, so
LINK-80 must know that these symbols, while at fixed locations within the Base
Page, are relocatable.

244 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 15.6 Creating MP/M 1I PRL Files

To do this, simply declare these symbols as externals in the modules in which they
are referenced:

extrn boots» bdoss dfcbs dbuff

and link in another module in which they are declared as publics and defined in
equates:

public boots bdoss dcfbs» dbuff

boot equ 0 jJumPp to warm boot
bdos equ S jJumP to bdos entry Point
dfchb equ Sch jdefault file control blocK
dbuff equ 80h jdefault i/0 buffer

end

15.7 The Request Item

Many language translators use the request item, a specific bit pattern in a REL file,
to tell LINK-80 to search the appropriate run-time subroutine library file. When
LINK-80 processes a library request, it first searches for an IRL file with the specified
filename. If there is no IRL file, it searches for a REL file of that name. If both
searches fail, then LINK-80 displays the following error message and halts.

NO FILE: filename.REL

Libraries requested in this manner appear in the Symbol Table listed at the console
with a value of ‘RQST".

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 245

15.8 REL File Format Programmer’s Utilities Guide

15.8 REFL File Format

REL files contain information encoded in a bit stream, which LINK-80 interprets
as follows:

m If the first bit is a 0, then the next 8 bits are loaded according to the value of
the location counter.

® If the first bit is a 1, then the next 2 bits are interpreted as follows:
00 — special link item, defined below.

01 — program relative. The next 16 bits are loaded after being offset by
the program segment origin.

10 — data relative. The next 16 bits are loaded after being offset by the
data segment origin.

11 — common relative. The next 16 bits are loaded after being offset by
the origin of the currently selected common block.

® A special item consists of:

#® A 4-bit control field that selects one of 16 special link items described
below.

An optional value field that consists of a 2-bit address field and a 16-
bit address field. The address type field is interpreted as follows:

00 — absolute

01 — program relative
10 — data relative
11 — common relative

¢ An optional name field that consists of a 3-bit name count followed
by the name in 8-bit ASCII characters.

The following special items are followed by a name field only.

0000 — entry symbol. The symbol indicated in the name field is defined in this
module, so the module should be linked if the current file is being
searched, as indicated by the S switch.

0001 — select common block. Instructs LINK-80 to use the location counter

associated with the common block indicated in the name field for
subsequent common relative items.

246 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 15.8 REL File Format

0010 —

0011 —

0100 —

program name. The name of the relocatable module.
unused.

unused.

The following special items are followed by a value field and a name field.

0101 —

0110 —

0111 —

1000 —

define common size. The value field determines the amount of memory
reserved for the common block described in the name field. The first
size allocated to a given block must be larger than or equal to any
subsequent definitions for that block in other modules being linked.

chain external. The value field contains the head of a chain that ends
with an absolute 0. Each element of the chain is replaced with the

value of the external symbol described in the name field.

define entry point. The value of the symbol in the name field is defined
by the value field.

unused.

The following special items are followed by a value field only.

1001 —

1010 —

1011 —

1100 —

1101 —

external plus offset. The following two bytes in the current segment
must be offset by the value of the value field after all chains have been
processed.

define data size. The value field contains number of bytes in the data
segment of the current module.

set location counter. Set the location counter to the value determined
by the value field.

chain address. The value field contains the head of a chain that ends
with an absolute 0. Each element of the chain is replaced with the
current value of the location counter.

define program size. The value field contains the number of bytes in
the program segment of the current module.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 247

15.8 REL File Format Programmer’s Utilities Guide

1110 — end module. Defines the end of the current module. If the value field
contains a value other than absolute 0, it is used as the start address
for the program being linked. That is, the current module is the main
module. The next item in the file starts at the next byte boundary.

Item 1111, end file, has no value field or name field. This item follows the end
module item of the last module in the file.

15.9 IRL File Format
An IRL file consists of three parts: a header, an index, and a REL section.
The header contains 128 bytes, defined as follows:
B byte 0 — extent number of first record of REL section
® byte 1 — record number of first record of REL section

B bytes 2-127 — currently unused

The index consists of a number of entries corresponding to the entry symbol items in
the REL section. The entries take the form:

e|lr|blcl|c2|...]lcen|d

Figure 15-1. IRL File Index

where:
e = extent offset from start of REL section to start of module.
r = record offset from start of extent to start of module.
b = byte offset from start of record to start of module.
cl-cn = name of symbol.

d = end of symbol delimiter (OFEH).

248 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 15.9 IRL File Format

The index terminates with an entry in which c1 = OFFH. The remainder of the
record containing the terminating entry is unused.

The REL section contains the relocatable object code, as described in Section 15.8.

End of Section 15

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 249

Section 16
Overlays

16.1 Introduction
You can use LINK-80 to produce a simple tree structure of overlays as shown in
Figure 16-1. Currently, the Overlay Manager is part of the PL/I-80 run-time library.
(A OVe
O\lll 0\172 0\173 O\l/4

|
ROOT

Figure 16-1. Tree-structured Overlay System

In such a system, LINK-80 produces the ROOT.COM and ROOT.SYM files, as
well as an OVL file and a SYM file for each overlay specified in the command line.

The OVL file consists of a 256-byte header containing the load address and length
of the overlay, followed by the absolute object code. The SYM file contains only
those symbols that have not been declared in another module lower in the tree.

The origin of an overlay is the highest address, rounded to the next 128-byte
boundary, of the module below it on the tree. The stack and free space for the PL/I
program are located at the top of the highest overlay which is, again, rounded to the
next 128-byte boundary. LINK-80 displays this address at the console on completion
of the entire link process and patches it into the root module in the location ‘?MEMRY’.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 251

wn
o
0
=
©)
=]
o)

ROOT.COM

16.1 Introduction Programmer’s Uetilities Guide

The following restrictions must be observed when producing a system of overlays
for a PL/I program using LINK-80:

® Each overlay has only one entry point. The Overlay Manager in the PL/I Run-
time system assumes that this entry point is at the base (load address) of the
overlay.

® No upward references are allowed from a module to an entry point in an
overlay higher on the tree. The only exception is a reference to the main entry
point of the overlay, as described above. Downward references to entry points
in overlays lower on the tree or in the root module are allowed.

B The overlays are not relocatable, so the root module must be a COM file.

® Common blocks, EXTERNALS in PL/I, that are declared in one module can-
not be initialized by a module higher in the tree. LINK-80 ignores any attempt
to do so.

® Overlays can be nested to 5 levels.

® The Overlay Manager uses the default buffer located at 80H, so user pro-
grams should not depend on data stored in this buffer.

16.2 Using Overlays in PL/I Programs

There are two ways to use overlays in a PL/I program. The first method is straight-
forward and suffices for most applications. However, it has two restrictions. First, all
overlays must be on the default drive, and second, the overlay names cannot be
determined at run-time.

The second method does not have these restrictions, but its calling sequence is
slightly more complicated.

16.2.1 Overlay Method 1

To use the first method, simply declare an overlay as an entry constant in the
module where it is referenced. As an entry constant, it can have parameters declared
in a parameter list. The overlay itself is simply a PL/I procedure or group of procedures.

252 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 16.2 Using Overlays

For example, the following program is a root module having one overlay:

root: Pprocedure oPtions (main)3
declare ovl entry (char (15))3
Put sKip list (‘root’)}
call ovl (‘overlay 17)3
end root}

with the overlay OV1.PLI defined as follows:

ovl: procedure (c)3
declare ¢ char (135)3
Pput skie list (c)3
end ovl}

Note: when passing parameters to an overlay, you must ensure that the number and
type of the parameters are the same in the calling program and the overlay itself.

To link these two programs into an overlay system, use the command:

A>LINK ROOT (0OV1)

This causes LINK-80 to produce four files:

At execution time, ROOT.COM first displays the message ‘root’ at the console.
The ‘call ov1’ statement then transfers control to the Overlay Manager.

The Overlay Manager loads the file OV1.OVL from the default drive at the proper
location above ROOT.COM and transfers control to it, passing the CHARAC-
TER(15) parameter in the usual manner.

The overlay then executes, displaying the message ‘overlay 1’ at the console. It
then returns directly to the statement following the ‘call ovl’ in ROOT.PLI, and

execution continues from that point.

If the Overlay Manager determines that the requested overlay is already in mem-
ory, then it does not reload the overlay before transferring control to it.

ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH 253

ROOT.COM
ROOT.COM

16.2 Using Overlays Programmer’s Utilities Guide

There are several important points to keep in mind regarding overlay method 1:

® The name associated with the overlay in the call and entry statements is the
actual name of the OVL file loaded by the Overlay Manager, so the two
names must agree. Because PL/I truncates symbol names to 6 characters in the
REL file, the names of the OVL files must be limited to 6 characters.

8 The name of the entry point to an overlay (the name of the procedure) need
not agree with the name used in the calling sequence. The same name should
be used to avoid confusion.

® The Overlay Manager loads overlays only from the drive that was the default
drive when the root module began execution. The Overlay Manager disre-
gards any changes in the default drive that occur after the root module begins
execution.

® The names of the overlays are fixed. This means the source program must be
edited, recompiled, and relinked to change the names of the overlays.

® No nonstandard PL/I statements are needed. Thus the program is transportable
to other systems.

16.2.2 Overlay Method 2

In some applications, it is useful to have greater flexibility with overlays, such as
the ability to load overlays from different drives, or the ability to determine the name
of an overlay at run-time, perhaps from the keyboard or from a disk file.

To do this, a PL/I program must declare an explicit entry point into the Overlay
Manager as follows:

declare Tovlay entry (char (10), fixed (1))}

The first parameter is a character string specifying the name of the overlay to load
and an optional drive name in the standard CP/M format, d:filename.

The second parameter is the Load Flag. If the Load Flag is 1, the Overlay Manager

loads the specified overlay whether or not it is already in memory. If the Load Flag
is 0, then the Overlay Manager loads the overlay only if it is not already in memory.

254 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 16.2 Using Overlays

The ‘call ?ovlay’ statement signals the Overlay Manager to load the requested
overlay, if needed. The Overlay Manager returns to the calling program, which must
then perform a dummy call to execute the overlay just processed by the Overlay
Manager. This allows a parameter list to be passed to the overlay.

Using this method, the example shown in the first method above appears as follows:

root: Procedure opPtions (main)s3
declare Tovlay entry (char (10), fixed (1))}
declare dummy entry (char (15))}
declare name char (10)3
Put sKip list (‘root’)3
name = ‘0V1’3
call 7ovlay (name,s Q)3
call dummy (‘overlay 17)3
end roots

The file OV1.PLI is the same as before.

At run-time, the Overlay Manager loads OV1.OVL from the default drive because
that is the current value of the variable ‘name’, and then returns to the calling
program, in this case, ‘root.’

At this point, the argument ‘overlay 1’ is set up according to the PL/I parameter
passing conventions. The ‘call dummy’ statement transfers control to the Overlay
Manager, which in turn transfers control to the base address of the overlay the name
of which it just processed. When OV1 finishes execution, it returns to the statement
following the call dummy statement.

Note that in this example, name is set to ‘OV1’ in an assignment statement.

However, the overlay name can also be supplied as a character string from some
other source, such as the console keyboard.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 255

16.2 Using Overlays Programmer’s Utilities Guide

Observe these important points when using overlay method 2:

B A drive name can be specified, so the Overlay Manager can load overlays
from drives other than the default drive. If no drive is specified, the Overlay
Manager uses the default drive as described in Method 1.

® The name of the overlay can be up to 8 characters in length because it is
specified in the character string and not by the entry symbol.

| If there are any parameters in the dummy call following the call ?ovlay, they
must agree in number and type with the parameters in the procedure declara-
tion in the overlay.

16.3 Specifying Overlays in the Command Line

The syntax for specifying overlays is similar to that for linking without overlays,
except that each overlay specification is enclosed in parentheses.

An overlay specification can take one of the following forms:
A>LINK ROOT(OV1)
A*LINK ROOT(OV1 PARTZ:PART3)
A*LINK ROOT(OV1=PART! PARTZ+PART3)
The first command produces the file OV1.OVL from a file OV1.REL. The second
command produces the file OV1.OVL from OV1.REL, PART2.REL, and PART3.REL.

The third command produces the file OV1.OVL from PART1.REL, PART2.REL,
and PART3.REL.

256 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 16.3 Specifying Overlays

Note that a left parenthesis, indicating the start of a new overlay specification, also
indicates the end of the group preceding it. Thus the following command line is
invalid, and LINK-80 flags it as an error:

A>LINK ROOT(OV1) sMOREROOT

All files to be included at any point on the tree must appear together, without any
intervening overlay specifications. Thus the following command is valid:

A>LINK ROOT MOREROOT(0OV1)

Any filename in the command line can be followed by a number of LINK-80
switches. The overlay specifications are not set off from the root module or from
each other with commas. Spaces can be used to improve readability.

To nest overlays, they must be specified in the command line with nested parenthe-
ses. For example, the following command line can link the overlay system shown in

Figure 16-1:

A>LINK ROOT (0OV1) (0OVZ2 (OVS) (OVG)) (OV3) (0V4)

16.4 Sample LINK-80 Execution

Listing 16-1 shows the console output from a LINK-80 operation. Note that OV1
is flagged as an undefined symbol. LINK-80 indicates that OV1 has not been defined
in the current module and assumes it is either the name of an overlay or a dummy
entry point to an overlay.

When linking overlays, each entry variable that refers to an overlay, by actual
name or a dummy entry, appears as an undefined symbol. No symbols other than
these actual or dummy overlay entry points should be undefined.

Listing 16-2 shows the console output when executing the resulting COM file.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 257

16.4 Sample LINK-80 Execution Programmer’s Utilities Guide

A>linKk root(ovl)
LINK 1.3

PLILIB RQST ROOT 0100 /SYSIN/ 1A15 /SYSPRI/ 1A3A

UNDEFINED SYMBOLS:

ovi

ABSOLUTE 0000

CODE SIZE 18BC (0100-19BB)
DATA SIZE 02A9 (1A90-1D38)
COMMON SIZE 00D4 (19BC-1A8BF)
USE FACTOR 4E

LINKING 0OV1.0UL

PLILIB RQOST

ABSOLUTE 0000
CODE SIZE 0024 (1DBO-1DA3)
DATA SIZE 0002 (1DA4-1DAS)
COMMON SIZE 0000
USE FACTOR 09

MODULE TOP 1E0QO

Listing 16-1. LINK-80 Console Interaction

A>root

root

overlay 1

End of Execution
Ax

Listing 16-2. Console Interaction with ROOT

258 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide 16.5 Other Overlay Systems

16.5 Other Overlay Systems

You can also use LINK-80 to produce a system of overlays that is not a tree
structure, but contains instead a number of separate overlay areas, as shown in
Figure 16-2.

top of TPA
OV2A
— overlay area 2
OV2B
—overlay area 1
OVi1B
OV1A ovicC
ROOT
100H

Figure 16-2. Separate Overlay System

In such a system, the root module can reference any of the overlays. An overlay
can reference entry points in the root module or the main entry point of any overlay
that is not in the same overlay area.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 259

16.5 Other Overlay Systems Programmer’s Utilities Guide

Linking a system of overlays as shown above is done in a number of steps. One
link operation must be performed for each overlay area because LINK-80 must be
supplied the address of the top of the overlay area when linking the next higher
overlay area.

For example, from the command

AXLINK ROOT (OVIA)(OVIB)(OVIC)

LINK-80 generates the three overlays in overlay area 1 and indicates the top address
of the module. This address is then supplied as the load address in the next command:

A>LINK ROOT (OVZA[Lmod top] (OVZB [Lmod top 1)

This command creates the overlays for overlay area 2 at the appropriate address.
Note that the overlay area that is the highest in memory should be linked last
because LINK-80 always writes the module top address into the root module at the
end of the link operation.

At some point after the entire system has been linked, it is desirable to relink only
one overlay, which might not be at the top overlay area. This can be done using the
$0OZ switch to prevent generation of a root module that would contain an erroneous
*MEMRY value.

If only OV1C is changed, the following command creates a new OV1C overlay
without creating a new root module. The root module is included in the LINK
command so that LINK-80 can resolve references to the root from OV1C.

For example,

A>LINK ROOT [$0Z21(0VICL$0AT)
Note: when using this type of overlay system, you must ensure that none of the

overlays overlap and that no overlay attempts to reference another overlay in the
same overlay area.

End of Section 16

260 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Section 17
LIB-80

17.1 Introduction

LIB-80 is a utility program that creates libraries. Libraries are files consisting of
any number of relocatable object modules. LIB-80 can perform the following functions:

® concatenate a group of REL files into a library

@ create an indexed library (IRL)

m select, delete, or replace modules from a library
® print module names and PUBLICS from a library

17.2 LIB-80 Operation
LIB-80 takes the general command form:
LIB filename = filenamel,. . .,filenameN
This command creates a library called filename.REL from the files
filename1.REL,. . .,filenameN.REL. If you omit the filetypes, LIB-80 assumes filetype
REL.

A filename can be followed by a group of module names enclosed in parentheses.
Only the modules indicated are included in the LIB function being performed. If
omitted, LIB-80 includes all the modules in the file.

For example, the command
A>LIB TEST=A(A1+AZ) +B+C(C1-C4:+CE)
creates a file named TEST.REL consisting of the modules A1 and A2 from A.REL,

all the modules from B.REL, and the modules between C1 and C4, and Cé from
C.REL.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 261

d
0
N
=
o
3
\j

17.2 LIB-80 Operation Programmer’s Utilities Guide

LIB-80 can delete or replace modules in a library with a single command. To do
this, enter the names of the modules to be affected and enclose them in angle brack-
ets immediately following the name of the source file that contains the modules.

For example, the command
A>LIB NEWLIB=0LDLIB<MODI1 >

creates a new library named NEWLIB.REL that is the same as OLDLIB.REL except
that the module MOD1 is replaced with the file MOD1.REL. Use this form of the
command if the name of the module being replaced is the same as the filename of
the REL file replacing the module.

The command form:
LIB NEWLIB =OLDLIB<MOD1=FILE1>

creates a new library with the module MOD1 replaced by the file FILE1.REL. Use
this form of the command when the name of the module being replaced is not the
same as the name of the file replacing it. This form of the command must be used if
the filename within angle brackets has more than 6 characters because module names
in the REL file are truncated to 6 characters.

The command form
LIB NEWLIB =OLDLIB<MOD1>
creates a new library from OLDLIB.REL, deleting the module MOD1.

The command form
LIB NEWLIB=OLDLIB<MOD1,MOD2 =FILE2,MOD3 =>

creates a new library from OLDLIB.REL with MOD1.REL replacing the module
MOD1, FILE2.REL replacing MOD?2, and deleting MOD3. This command demon-
strates that a number of replace and/or delete instructions can be included within the
angle brackets.

262 ALL INFORMATION PRESENTED HERE [S PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide

17.3 LIB-80 Switches

17.3 LIB-80 Switches

LIB-80 supports optional parameters in the command line that control its opera-
tion. These parameters are called switches. They are enclosed in square brackets and
appear after the first filename in the LIB command. Table 17-1 shows the LIB-80

switches.

Table 17-1. LIB-80 Switches

Switch

Function

D

I

displays contents of object modules in ASCII form.
creates an indexed library (IRL).
prints module names.

prints module names and PUBLICS.

For example, the command

A:LIB TEST=A:B.C

creates a file TEST.REL consisting of A.REL, B.REL, and C.REL.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

263

17.3 LIB-80 Switches Programmer’s Utilities Guide

The command

A>LIB TEST=TEST.D

appends D.REL to the end of TEST.REL.
The command

A>LIB TESTLI]

creates an indexed library TEST.IRL from TEST.REL.
The command

A>LIB TESTLI1=A+B.:C:D

performs the same function as the preceding examples, but LIB-80 creates a file
TEST.IRL without creating a file TEST.REL.

The command
A>LIB TEST [F1

lists all the module names and PUBLICS in TEST.REL.

End of Section 17

264 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix A
MAC/RMAC Error Messages

When errors occur within the assembly language program, they are listed as single-
character flags in the leftmost position of the source listing. The line in error is also
echoed at the console so that the .PRN file need not be examined to determine if
errors are present. The single-character error codes are listed in Table A-1.

Table A-1. MAC/RMAC Error Messages
Flag Meaning

B Balance error: macro does not terminate properly, or conditional
assembly operation is ill formed.

C Comma error: expression was encountered but not delimited properly
from the next item by a comma.

Vv xipuaddy

D Data error: element in a data statement (DB or DW) cannot be placed
in the specified data area.

E Expression error: expression is ill formed and cannot be computed at
assembly time.

I Invalid character error: a nongraphic character has been found in the
line other than a carriage return, line-feed, tab, or end-of-file; edit the
file, delete the line with the I error, and retype the line.

L Label error: label cannot appear in this context; it might be a dupli-
cate label.
M Macro overflow error: internal macro expansion table overflow; might

be due to too many nested invocations or infinite recursion.

N Not implemented error: features that appear in RMAC, such as relo-
cation, are recognized, but flagged in MAC.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 265

A MAC/RMAC Error Messages Programmer’s Utilities Guide

Table A-1 (continued)

Message

Meaning

o

Overflow error: expression is too complicated (i.e., has too many
pending operators), string is too long, or too many successive substi-
tutions of a formal parameter by its actual value in a macro expan-
sion. This error also occurs if the number of LOCAL labels exceeds
9999.

Phase error: label does not have the same value on the two passes
through the program, or the order of macro definition differs between
the two successive passes; might be due to MACLIB that follows a
mainline macro; if so, move the MACLIB to the top of the program.

Register error: the value specified as a register is not compatible with
the operation code.

Syntax error: the fields of this statement are ill formed and cannot be
processed properly; might be due to invalid characters or delimiters
that are out of place.

Undefined symbol: a label operand in this statement has not been
defined elsewhere in the program.

Value error: operand encountered in an expression is improperly
formed; might be due to delimiter out of place or nonnumeric operand.

The error messages shown in Table A-2 indicate terminal error conditions that
abort the MAC execution. Whenever possible, the disk drive name, followed by the
relevant filename, is printed with the message.

266

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide A MAC/RMAC Error Messages

Table A-2. Terminal Error Conditions

Message Meaning
CANNOT CLOSE FILE:

An output file cannot be closed. The disk might be write protected.

INVALID PARAMETER:

An invalid assembly parameter was found in the input line. The
assembly parameters are printed at the console up to the point of
the error.

NO DIRECTORY SPACE:

The disk directory is full. Use the ERA command of the CCP to
remove files you do not need. Often superfluous .HEX, .PRN,
and .SYM files can be removed.

NO SOURCE FILE PRESENT:

The source program file ((ASM) following the MAC command
cannot be found on the specified disk. Use the DIR command in
the CCP to locate the source file.

OUTPUT FILE WRITE ERROR:

An output file cannot be written properly, probably due to a full
disk. As in the NO DIRECTORY SPACE error above, use the
CCP commands to erase unnecessary files from disk.

SOURCE FILENAME ERROR:

The form of the source filename is invalid or not specified. The
command form must be

MAC filename $assembly parameters
where the filename is the primary name (up to eight characters)

of the source file, with an assumed filetype of.ASM. Filetype is
not specified.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 267

A MAC/RMAC Error Messages Programmer’s Utilities Guide

Table A-2. (continued)

Message Meaning

SOURCE FILE READ ERROR:

The source file cannot be read properly by the macro assembler.
Use the CCP TYPE command to display the file contents at the
console.

UNBALANCED MACRO LIBRARY:

A MACRO definition was started within a macro library, but the
end of file was found in the library before the balancing ENDM
was encountered. Examine the macro library using the TYPE
command of the CCP, or use the +L assembly parameter to
ensure that the library is properly balanced.

End of Appendix A

268 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix B
XREF Error Messages

During the course of operation, XREF might display error messages. These error
messages and brief explanations of their causes are shown in Table B-1.

Table B-1. XREF Error Messages

Error Cause

No SYM file

The file filename.SYM is not present on the default or specified drive.

No PRN file

The file filename.PRN is not present on the default or specified drive.

Symbol Table overflow

No space is available for an attempted symbol allocation.

Invalid SYM file format

XREF issues this message when it reads an invalid filename.SYM
file. Specifically, a line in the SYM file that does not terminate with
a CRLF forces this error message.

Symbol Table reference overflow

No space is available for an attempted symbol reference allocation.

filename .XRF maKe error

XREF issues this message if the CP/M BDOS returns an error code
after a make file request for the file filename.XRF. This error code

usually indicates that no directory space exists on the default or
specified drive.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 269

>
o
K°)
1)
>
Q
X
w

B XREF Error Messages Programmer’s Utilities Guide

Table B-1. (continued)

Error Cause

XREF issues this message if the CP/M BDOS returns an error code
after a close request for the file filename.XRF.

XREF issues this message if the CP/M BDOS returns an error code
after a write request for the file filename.XRF. This error code usu-
ally indicates that no unallocated data blocks are available, or no
directory space exists on the default or specified drive.

End of Appendix B

270 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Appendix C
LINK-80 Error Messages

When LINK-80 detects any kind of command line error, it echoes the command
tail up to the point where the error occurs and follows it with a question mark. For
example,

A*link as by ci d
Ay By C57?

AxlinKk longfilename
LONGFILENT?

During the course of operation, LINK-80 can display error messages. These error
messages are described in Table C-1 below.

Table C-1. LINK-80 Error Messages
Message Meaning
CANNOT CLOSE:

An output file cannot be closed. The disk might be write-protected.

COMMON ERROR:

An undefined common block has been selected.

DIRECTORY FULL:

There is no directory space for the output files or intermediate
files.

DISK READ ERROR:

A file cannot be read properly.

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 271

>
)
o)
®
3
a
X
e)

C LINK-80 Error Messages Programmer’s Utilities Guide

Table C-1. (continued)

Message Meaning

DISK WRITE ERROR:

A file cannot be written properly, probably because the disk is
full.

FIRST COMMON NOT LARGEST:

A subsequent COMMON declaration is larger than the first
COMMON declaration for the indicated block. Check that the
files being linked are in the proper order, or that the modules in
a library are in the proper order.

INDEX ERROR:

The index of an IRL file contains invalid information.

INSUFFICIENT MEMORY :

There is not enough memory for LINK-80 to allocate its buffers.
Try using the A switch.

INVALID REL FILE:

The file indicated contains an invalid bit pattern. Make sure that
a REL or IRL file has been specified.

MAIN MODULE ERROR:

A second main module was encountered.

MEMORY OVERFLOW:

There is not enough memory to complete the link operation. Try
using the A switch.

272 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide C LINK-80 Error Messages

Table C-1 (continued)

Message Meaning
MULTIPLE DEFINITION:

The specified symbol is defined in more than one of the modules
being linked.

NO FILE:

The indicated file cannot be found.

OVERLAPPING SEGMENTS:

LINK-80 attempted to write a segment into memory already used
by another segment. Probably caused by incorrect use of P and/or
D switches.

UNDEFINED START SYMBOL :

The symbol specified with the G switch is not defined in any of
the modules being linked.

UNDEFINED SYMBOLS:

The symbols following this message are referenced but not defined
in any of the modules being linked.

UNRECOGNIZED ITEM:

An unfamiliar bit pattern has been scanned and ignored by
LINK-80.

End of Appendix C

ALL INFORMATION PRESENTED HERE 1S PROPRIETARY TO DIGITAL RESEARCH 273

Appendix D
Overlay Manager Run-time
Error Messages

At run-time, the Overlay Manager can display certain error messages. These mes-
sages and a brief explanation of their causes are shown in Table D-1.

Table D-1. Run-time Error Messages

Error Cause

ERROR (8) OVERLAY s NOFILE d:filename.OVL

The Overlay Manager cannot find the indicated file.

ERROR (9) OVERLAY s DRIVE d:filename.OVL

An invalid drive code was passed as a parameter to ?ovlay.

ERROR (10) OVERLAY s SIZE d:filename . .0OVL

The indicated overlay would overwrite the PL/I stack and/or free
space if it were loaded.

ERROR (11) OVERLAY » NESTING d:filename.0OVL

Loading the indicated overlay would exceed the maximum nesting
depth.

ERROR (12) OVERLAY: READ d:filename.OVUL

Disk read error during overlay load, probably caused by premature
EOF.

End of Appendix D

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 275

Appendix E
LIB-80 Error Messages

During the course of operation, LIB-80 can display error messages. These error
messages and a brief explanation of their causes are given in Table E-1.

Table E-1. LIB-80 Error Messages

Error Cause

CANNOT CLOSE: LIB-80 cannot close the output file. The disk might
be write-protected.

DIRECTORY FULL: There is no directory space for the output file.

DISK READ ERROR: LIB-80 cannot read the file properly.

DISK WRITE ERROR: LIB-80 cannot write to the file properly, probably
due to a full disk.

FILE NAME ERROR: The form of a source filename is invalid.

NO FILE: LIB-80 cannot find the indicated file.

NO MODULE:: LIB-80 cannot find the indicated module.

SYNTAX ERROR: The LIB-80 command line is not properly formed.

End of Appendix E

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 277

Appendix F
8080 CPU Instructions

Table F-1. 8080 CPU Instructions

or OP 0) 3
Code MNEMONIC Code MNEMONIC Code MNEMONIC

00 NOP 1D DCR E 3A LDA Adr

01 LXI B,D16 1IE MVI EDS8 3B DCX SP

02 STAX B 1F RAR 3C INR A

03 INX B 20 --- 3D DCR A

04 INR B 21 LXI H,D16 3E MVI ADS

05 DCR B 22 SHLD Adr 3F CMC

06 MVI B,DS8 23 INX H 40 MOV BB

07 RLC 24 INR H 41 MOV B,C

08 - 25 DCR H 42 MOV B,D

09 DAD B 26 MVI H,DS8 43 MOV B,E

0A LDAX B 27 DAA 44 MOV BH

OB DCX B 28 - 45 MOV B,L

0C INR C 29 DAD H 46 MOV BM

0D DCR C 2A LHLD Adr 47 MOV BA

0OE MVI CD8 2B DCX H 48 MOV CB

OF RRC 2C INR L 49 MOV (C,C

10 --- 2D DCR L 4A MOV CD

11 LXI D,D16 2E MVI L,DS8 48 MOV CE

12 STAX D 2F CMA 4C MOV CH

13 INX D 30 - 4D MOV CL

14 INR D 31 LXI SP,D16 4E MOV CM

15 DCR D 32 STA Adr 4F MOV CA

16 MVI D,DS8 33 INX SP 50 MOV D,B

17 RAL 34 INR M 51 MOV D,C

18 - 3. DCR M 52 MOV D,D

19 DAD D 36 MVI M,DS8 53 MOV D,E >

1A LDAX D 37 STC 54 MOV DH g

1B DCX D 38 --- 5§ MOV D,L ®

1C INR E 39 DAD §SP 56 MOV DM a
x

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 279

F 8080 CPU Instructions Programmer’s Utilities Guide

Table F-1. (continued)

(0) 4 or opP
Code MNEMONIC Code MNEMONIC Code MNEMONIC
57 MOV D,A 7B MOV AE 9F SBB A
58 MOV EB 7C MOV AH A0 ANA B
59 MOV EC 7D MOV AL Al ANA C
SA MOV ED 7E. MOV AM A2 ANA D
SB MOV EE 7F MOV AA A3 ANA E
SC MOV EH 80 ADD B A4 ANA H
SD MOV EL 81 ADD C AS ANA L
SE MOV EM 82 ADD D A6 ANA M
SF MOV EA 83 ADD E A7 ANA A
60 MOV H,B 84 ADD H A8 XRA B
61 MOV H,C 85 ADD L A9 XRA C
62 MOV H,D 86 ADD M AA XRA D
63 MOV HE 87 ADD A AB XRA E
64 MOV HH 88 ADC B AC XRA H
65 MOV H,L 89 ADC C AD XRA L
66 MOV HM 8A ADC D AE XRA M
67 MOV HA 8B ADC E AF XRA A
68 MOV LB 8C ADC H BO ORA B
69 MOV L,C 8D ADC L B1 ORA C
6A MOV LD 8E ADC M B2 ORA D
66 MOV LE 8F ADC A B3 ORA E
6C MOV LH 90 SUB B B4 ORA H
6D MOV LL 91 SUB C BS ORA L
6E MOV LM 92 SUB D Bé6 ORA M
6F MOV LA 93 SUB E B7 ORA A
70 MOV M,B 94 SUB H B8 CMP B
71 MOV M,C 95 SUB L B9 CMP C
72 MOV MDD 96 SUB M BA CMP D
73 MOV M,E 97 SUB A BB CMP E
74 MOV MH 98 SBB B BC CMP H
75 MOV M,L 99 SBB C BD CMP L
76 HLT 9A SBB D BE CMP M
77 MOV M,A 9B SBB E BF CMP A
78 MOV AB 9C SBB H Cco RNZ
79 MOV A C 9D SBB L C1 POP B
7A° MOV AD 9E SBB M C2 JNZ Adr

280 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer’s Utilities Guide F 8080 CPU Instructions

Table F-1. (continued)

OP OP OP
Code| MNEMONIC |~ | MNEMONIC |, | MNEMONIC
C3 JMP Adte D7 RST 2 EB XCHG
C4 CNZ Adr D8 RC EC CPE Adr
CS PUSH B D9 - ED -
Cé ADI D8 DA JC Adr EE XRI D8
C7 RST O DB IN D8 EF RST §
C8 RZ DC CC Adr FO RP
C9 RET Adr DD - F1 POP PSW
CA Jz DE SBI D8 F2 JP Adr
CB - DF RST 3 F3 DI
cC cz Adr EO RPO F4 CP Adr
CD CALL Adr E1 POP H FS PUSH PSW
CE ACI p8 E2 JPO Adr F6 ORI D8
CF RST 1 E3 XTHL F7 RST 6
DO RNC E4 CPO Adr F8 RM
DI POP D ES PUSH H F9 SPHL
D2 JNC Adr E6 ANI D8 FA M Adr
D3 OUT D8 E7 RST 4 FB EI
D4 CNC Adr E8 RPE FC CM Adr
D5 PUSH D E9 PCHL 130 J—
D6 SUI D8 EA JPE Adr FE CPI D8
FF RST 7

D8 = constant or logical/arithmetic expression that evaluates to an 8 bit quantity.

Adr = 16-bit address.

D16 = constant or logical/arithmetic expression that evaluates to a 16 bit data
quantity.

Reproduced with permission from Intel Corporation, Santa Clara, CA.

End of Appendix F

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 281

Index

$ controls, 224
$ parameters, 221
$ switches, 242
$Cd, 243
$1d, 243
$Ld, 243
$0d, 243
$Sd, 243
8080 registers, 7
TR macro, 135
22, 60

A

absolute file, 237
absolute location counter, 232
absolute object file, 231
accumulator character, 183
accumulator immediate instruction,
32
accumulator /carry operations, 37
accumulator /register instructions, 37
actual parameters, 5, 67, 146
bracketed, 89
options, 84
additional memory switch, 239
ADR macro, 134
alphabetic translation, 155, 185
ampersand, 238
concatenation operator, 52, 86
inside string quotes, 8
angle brackets
leading, 85
apostrophe, 8
double, 8, 75, 76, 85
leading, 85
quoted string, 70, 75

arithmetic logic unit operations, 37
arithmetic operators, 8
ASCII strings, 8, 21, 22, 24
assembler directives; also see
statements

ASEG, 232

COMMON, 232

CSEG, 232

DSEG, 232

EXTRN, 232

NAME, 232

PUBLIC, 232
Assembly parameters

1, 221

2?2, 223

A, 221

asterisk in, 223

controls, 224

debugging, 225

default, 222

disabled, 222

enabled, 222

H, 221

L, 221

M, 221

P, 221

Q, 221

S, 221
assembly process

computations, 10

restart, 136
Asterisk

in assembly parameters, 223

in LINK-80, 239

leading, 4

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

283

B

back-up files, 211

base address, 25

base page symbols, 244
binary constant, 6
blanks, leading, 85
boolean tests, 145, 146, 151
bracket nesting, 56, 85
bracketed expressions, 89
bracketed notation, 88
BRN macro, 120
BUFFERS, label, 187

C

call instruction, 30
CASE program, 187
CASEn@m, 169
character list, 54
character strings, 8
CLEAR macro, 133
code location counter, 232
comment field, 4
COMPARE, 217
COMPARE library, 149
concatenation operator&, 52, 86
condition flags, 30
conditional assembly
and recursion, 82
nested, 46
with EXITM, 58
with IF, ELSE, ENDIF, 16-21
with NUL operator, 46
conditional assembly groups, 20
conditional branching, 135
conditional tests, 136
constant, 6
constant labels, 50
control instructions, 39

controlling identifiers, 51-56
translated to upper-case, 55
controlling variable, §3
conversion
lower to upper-case, 177
CPI instruction, 8
cross-reference utility, 235

D

data location counter, 232
data movement instructions, 34
data origin switch, 240
DB instruction, 8
DB statement, 21, 25
DCL macro, 133
DDT, 115, 118, 142
debug flags, 105
debugging
assembly parameters, 225
codes, 105
full trace, 225
iterative improvement, 225
macro, 135
trace code generation, 142
traces, 105, 116, 135, 142
debugging opcodes
DMP, 116
PRN msg, 116
TRF p, 116
TRF t, 116
TRT, 118, 132
TRT p, 116
TRT ¢, 116
debugging subroutines
@AD, 133
@CH, 133
@HX, 133
@IN, 133, 137
@NB, 133

284 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

DEBUGP, 132, 136
DEBUGT, 132
decimal constant, 6
decrement instructions, 33
default condition
LINK-80, 238, 241
RMAC, 233
default filename, 198
default filetype, 198
default list device, 236
default stack, 63
default starting address, 14
delimiters, 56, 84, 85
DIF opcode, 135
DIGIT, 216
DIRECT macro, 180, 184, 200
DIRECT statement, 208
directives; see statements, 13
directory search, 208
dollar sign
embedded, 4, 6
in operand field, 7
double apostrophes, 8, 75, 76, 85
double semicolon, 47
double-precision
add instruction, 38
storage words, 22
DOWHILE macro, 166
DOWHILE statement, 165
DOWHILE-ENDDO group, 164
drive specifications
LINK-80, 242
DS statement, 23
dummy parameters, S, 76
unevaluated, 89
DUP opcode, 113, 136
DW statement, 22, 25

E

ED, 3
editor program, 92
ELSE, 51
ELSE statement, 19
embedded dollar sign, 4, 6
embedded macros, 76
embedded question mark, 184
empty parameters, 72

default conditions, 199

testing, 72
END statement, 4, 13, 14, 25
end-of-file character, 207
ENDDO macro, 166
ENDIF, 51
ENDM statement, 58
ENDMERGE label, 218
ENDPR label, 207
ENDSEL, 169, 170
ENDW macro, 160, 161
ENTCCP macro, 42, 46
EQU statement, 15, 16
equivalent expressions, 11, 12
ERASE macro, 180, 184, 200
error conditions

terminal, 266
errors

overflow, 60

sequence, 217

undefined operand, 136

value, 10
escape characters, 89

up arrow, 86
escape sequences, 56, 89
evaluation

macro parameters, 87-88

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

285

exclamation point character, 3, 8, 25
EXITM statement, 58
expanded macros, 76
expressions, 11
bracketed, 89
RMAC, 232
unparenthesized, 11
well formed, 11

F

false branch option, 153
false condition, 17
file access macros, 180
File Control Block, 41, 198, 199,
201

file format

IRL, 248
FILE macro, 180, 198, 199
FILE statement, 182
FILERR label, 188
FILLCB macro, 199
FILLDEF macro, 198, 201
FILLNAM macro, 198
FILLNXT macro, 198
FINIS macro, 180, 200
FINIS statement, 183
flags

condition, 30

debug, 105

load overlay, 254

G

GENCASE, 172
GENDJMP, 166
GENDLAB, 166
GENDTST, 166
GENLAB macro, 160

286 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

GENWTST macro, 160
GEQ macro, 135
GET device names
fileid, 182
KEY, 182
RDR (reader), 182
GET macro, 180, 182, 201
GET statements
GET KEY, 182
GET RDR, 182
GET ZOT, 182
go switch, 240

H

hexadecimal constant, 6
HL register pair, 38, 136

I

identifiers, 3, 5, 51, 60
controlling; see controlling
identifiers
IF, 16, 51

immediate operand instructions, 32

increment instructions, 33
infinite substitution, 54
inline machine code, 113
inline macros, 49

inline subroutines, 229

input and output instructions, 35

instructions
accumulator immediate, 32
accumulator /carry, 37
accumulator /register, 37
call, 30
control, 39
CPI, 8
data movement, 34

DB, 8

decrement, 33

double-precision add, 38

increment, 33

input and output, 35

jump, 30

load and store direct, 35

load extended immediate, 32

LXI, 8

move immediate, 32

RDM, 113

restart, 30

return, 30

stack pop and push, 35

WRM, 118
IRL file, 237

format, 248
IRP-ENDM group, 54
IRPC-ENDM group, 51
iterative improvement, 225

]

jump instruction, 30

L
label field, 3

label generators

GENCASE, 170
GENDJMP, 166
GENDLAB, 166
GENDTST, 166
GENELT, 170

GENSLAB, 170
GENSLXI, 170

labels, $

BUFFERS, 187
constant, 50
ENDMERGE, 217
ENDPR, 207
FILERR, 188
MASLOW, 217
optional, 22
SAME, 217
START, 217
unique, 46, 47
with leading ??, 60

leading characters

22, 60

angle brackets, 84, 85
apostrophe, 85
asterisk, 4

blanks, 85

double apostrophe, 85
percent, 85
semicolon, 4

string quotes, 85
tabs, 85

x, 85

LIB-80 switches, 263
line#, 3

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

287

LINK-80
default condition, 238, 241
multiline commands, 238
run-time parameters, 239
LINK-80 switches, 239-242
additional memory, 239
data origin, 240
go, 240
load address, 240
memory size, 241
no list, 241
no recording of symbols, 241
output COM file, 241
output PRL file, 241
program origin, 241
? symbol, 242
search, 242
$, 242-244
listing device, 77
LIT opcode, 133
literal values, 1
load address switch, 240
load and store direct instructions, 35
load extended immediate instructions,
32
Load Flag
overlays, 254
local stack, 42
LOCAL statement, 46, 60
logical operators, 8
lower-case names, 7
LSR macro, 135
LSR opcode, 113
LXI H instruction, 7

M

machine emulation, 145
MACLIB statement, 92
macro calls
multiple, 46
macro debugging; see debugging, 225
macro definitions, 76
nested, 76
macro error messages, 265
macro groups
DOWHILE-ENDDO, 164
IRP-ENDM, 54
IRPC-ENDM, 51
MACRO-ENDM, 66
nested WHEN-ENDW, 159
REPT group, 50
REPT-ENDM, 49
SELECT-ENDSEL, 169
WHEN-ENDW, 159
macro invocation, 82
macro libraries
COMPARE, 149
comprehensive, 188
DOWHILE statement, 165
expanded NCOMPARE, 153
NCOMPARE, 153, 155
SELECT statement, 171
SEQIO, 187, 188, 218
stack machine, 121
WHEN, 160
WHEN statement, 161
Zilog 780, 92
macro opcodes
machine emulation, 145
macro redefinition, 79
macro storage, 228
macro subroutines, 79
MACRO-ENDM group, 66

288 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

macros

TR, 135

ADR, 134, 135
BRN, 136
CLEAR, 133
DCL, 133
debugging, 135
DIRECT, 180, 184
DOWHILE, 165
embedded, 76
ENDDO, 166
ENDW, 159, 160
ENTCCP, 42, 46
ERASE, 180, 184
expansion, 76
FILE, 198
FILLFCB, 199
FILLDEF, 198, 201
FILLNAM, 198
FILLNXT, 198
GENLAB, 160
GENWTST, 160
GEQ, 135

GET, 201

inline, 49

LSR, 135
MOVE, 79
negated, 153
NEQ, 151
NULMAC, 73
OUTPUT, 77
predefined, 92
PRINT, 70
PUT, 175, 201
RDM, 136
READ, 149
RENAME, 184
REST, 133, 135
RESTORE, 70
RWTRACE, 136

SAVE, 68, 133, 136

SELECT, 170

SETIO, 77

SIZ, 133, 136

TEST?, 147, 151

TIMER, 99

TYPEOUT, 46

VAL, 135

WCHAR, 82

WHEN, 160, 161

WRITE, 145

XIT, 136
macros; also see file access macros
MASLOW label, 217
master back-up, 211, 218
master record, 211
master sequence number, 218
Memory Map, 237
memory size switch, 241
MERGE program, 211, 216, 217
move immediate instruction, 32
MOVE macro, 79
multiline commands
LINK-80, 238
multiple macro calls, 46

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 289

N

name field

optional, 246
names

overlay, 255
NCOMPARE library, 153
negated macro, 153
negative values, 10
NEQ macro, 151
nested macro definitions, 76-77
nested macro groups, 159
nested overlays, 256
nesting level restriction, 21
NEXTSEL, 169
no list switch, 241
no recording symbols switch, 241
nonmacro labels, §
nonzero value, 19
notation

bracketed, 88
NUL operator, 10, 72, 75
null parameters, 72
null string, 54
NULMAC macro, 73

numeric constants, 6

@)

octal constant, 6
one-character strings, 8
opcode emulation, 108
opcodes

debugging; see debugging opcodes

DIF, 13§

DUP, 113, 136

LIT, 133

LSR, 113

PRN, 142

SUM, 135

TRT T, 138

WRM, 113, 137
operand field, 10
operand

undefined error, 136

undefined message, 136
operation codes, 29
operation field, 4, §
operators

ampersand, 52, 55

arithmetic, 8

concatenation, 52, 86

logical, 9

NUL, 10, 72, 7§

precedence of, 11

relational, 9
optional label, 23
optional name field, 246
optional value field, 246
options

false branch, 153
ORG statement, 14
output COM file switch, 241
OUTPUT macro, 77
output PRL file switch, 241
overflow error, 60
overlapping overlays, 259
Overlay Manager, 251
overlays

in command line, 255

in PL/I programs, 252

methods, 252, 254

names, 25§

nested, 252, 256

origins, 251

overlapping, 259

PL/I, 251, 252

restrictions, 252

specification, 255

tree structure, 251

290 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

P

page
breaks, 24
ejects, 24
size, 25
PAGE statement, 23
parameter evaluation, 84-86
conventions, 84
example, 87
parameter specifications, 221
parameters
actual; see actual parameters
dummy; see dummy parameters
empty; see empty parameters
run-time, 239
percent character, 85
percent operator, 151
PL/I overlays, 252
plus sign, 49
predefined macros, 92
PRINT
macro, 70
program, 202, 207
subroutine, 62
PRN
macro, 132
opcodes, 142

program control structures, 145, 158

program origin switch, 241
program starting address, 13, 14

prototype statements, 67, 68, 70, 77

plus sign, 68
recursive macros, 82
redefining, 79

ENTED HERE IS PRov

Pseudo operations, 13, 25

DB, 13

DS, 13

DW, 13

ELSE, 13, 51

END, 13

ENDIF, 13

EQU, 13

EXITM, 58

IF, 13, 51

IRP, 41

IRPC, 41

ORG, 3

PAGE, 13

REPT, 41, 49

SET, 13

TITLE, 13
PUT

device names, 183

macro, 182, 200
PUT statements

PUT CON, 183

PUT LST, 183

PUT PUN, 183

PUT ZAP, 183

Q

question mark
embedded, 184
quoted strings, 75, 89

PYARY TO DIGITAL RISEARCH

R

radix indicators, 6
Random Access Memory, 101
RDM instruction, 113
RDM macro, 136
READ macro, 149
READM, 216
READU, 216
records
updated, 211
recursion, 82
recursive macros
invocation, 82
prototype statements, 82
redefinition of macros, 79
register-to-register move instructions,
34
registers, restoring, 70
REL file, 262
relational operators, 8
relocatable object code
LINK-80, 249
relocatable object file, 231
relocatable object module, 237, 244
RENAME macro, 180, 184, 201
REPT group, 49
REPT loop, 113
REPT-ENDM group, 49
reserved symbols, 228
reserved words, 7, 13
REST macro, 133, 135
restart instruction, 30
RESTORE macro, 67
restrictions
overlays, 251, 252
return instruction, 30
RMAC
default condition, 233
expressions, 232

run-time error messages
LINK-80, 271

run-time parameters, 239

RWTRACE macro, 136

)

SAME label, 217
SAVE macro, 67, 133, 136
search switch, 242
SELECT group

CASEn@m, 169

ENDSEL, 169

NEXTSEL, 169

SELVn, 169
SELECT macro, 170"
SELECT-ENDSEL group, 169
select vector, 169
SELNEXT, 170, 172
SELVn, 169
semicolon

double, 47

leading, 4
SEQERR, 217
SEQIO library, 218
sequence errors, 217
SET statement, 16, 188
SETIO macro, 77
SID, 237
single-character commands, 177, 180
single-character escape, 86
single-character flags, 265
single-precision storage, 21
SIZ macro, 111, 136
source program line number, 3
special characters

LINK-80, 242
special link items, 246
stack machine macro library, 111

292 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

N’

stack pointer, 42
stack pop and push instructions, 35
START label, 46, 217
statement elements
comment, 3
label, 3
line#, 3
operand, 3
operation, 3
statements
ASEG, 232
COMMON, 232
CSEG, 232
DB, 25
DIRECT, 208
DS, 23
DSEG, 232
DW, 25
ELSE, 16
END, 13, 14
ENDM, 58
EQU, 13, 15
EXITM, 58
EXTRN, 232
FILE, 182, 199
FINIS, 183
IF, 16
LOCAL, 46, 60
MACLIB, 92
NAME, 232
ORG, 13
prototype; see prototype statements
PAGE, 23
PUBLIC, 232
PUT, 182
SET, 16, 188
TITLE, 24
storage words
double-precision, 22

storage
in symbol table, 229
macro, 228
single-precision, 21
symbol table, 229
string characters, 22
string constants, 8, 24
string quotes, 53, 86, 89
subexpressions, 11
subroutines
inline, 229
PRINT, 62
subroutines; also see utility
subroutines
substitution
dummy parameters, 86-87
infinite, 86
rules, 56
SUM opcode, 135
switches
LIB-80, 263
LINK-80; see LINK-80 switches
SYM file, 208
symbol storage requirements, 227
symbol table, 47
overflow message, 229
storage, 227, 229
temporary storage, 229
symbols
Base Page, 244
defined in equates, 244
relocatable in Base Page, 244
undefined, 256
user-defined, 242

ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH 293

T

tab characters, 1, 3

leading, 86
terminal error conditions, 267-268
TEST? macro, 147, 151
TIMER macro, 97
TITLE statement, 24
tree structured overlays, 251
TRT T opcode, 138
two-character strings, 8
TYPE command, 217
TYPEOUT macro, 46

U

UGEN macro, 132

undefined operand error, 136
undefined operand message, 136
undefined symbols, 256

unique label, 46, 52

up arrow as escape character, 86
update back-up, 211

update records, 211

upper-case names, 7

Use Factor, 237

user-defined symbols, 242
utility subroutines, 46, 216

\%

VAL macro, 135
value errors, 10
value field
optional, 246
values
negative, 10

W

" WCHAR macro, 67

well-formed expressions, 11
WHEN macro, 160, 161
WHEN macro library, 160
WHEN-ENDW group, 158
WRITE macro, 145

WRITE statement, 168
WRITESEQ, 217

WRM instruction, 116
WRM opcode, 113, 114, 137

X

XIT macro, 136
XREF, 235

Z

zero value, 19

294 ALL INFORMATION PRESENTED HERE IS PROPRIETARY TO DIGITAL RESEARCH

Programmer's Utilities Guide
for the
CP/HG’Pamily of Operating Systems
Release Notes

Compiled December 1982

Copyright © 1982

Digital Research
P.0. Box 579
160 Central Avenue
Pacific Grove, CA 93950
(408) o049-3896
TWX 910 360 5001

All Rights Reserved

Programmer's Utilities Guide
for the CP/M® Family of Operating Systems

Release Notes

Addendum to the First Printing--1982

Copyright © 1982 by Digital Research
CP/M is a registered trademark of Digital Research.
LINK-80 and MP/M are trademarks of Digital Research.
Compiled December 1982

The following LINK-80™ ontion switches are not documented in
Section 15.4 of The Programmer‘'s Utilities Guide for the CP/M®
Family of Operating Systems.

The BIOS Link (B) Switch
The B switch is used to link a BIOS in a banked CP/M 3 system.

LINK-80 aligns the data segment on a page boundary, puts the length
of the code segment in the header, and defaults to the SPR filetype.

The Output RSP File (OR) Switch

The OR switch outputs RSP (Resident System Process) files for
execution under MP/M™

The Output SPR File (0S) Switch

The OS switch outputs SPR (System Page Relocatable) files for
excution under MP/M.

All Information Presented Here is Proprietary to Digital Research

1

——

Reader Comment Form

We welcome your comments and suggestions. They help us provide you with better
product documentation.

Date __ Manual Title Edition

1. What sections of this manual are especially helpful?

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

3. Did you find errors in this manual? (Specify section and page number.)

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

Attn: Publication Production

BUSINESS REPLY MAIL

FIRST CLASS / PERMITNO.182 / PACIFIC GROVE, CA
AR P PR AL oA T B T B P R RSN
POSTAGE WILL BE PAID BY ADDRESSEE

07 DIGITAL RESEARCH"

P.O. Box 579
Pacific Grove, California
93950

NO POSTAGE
NECESSARY
IF MAILED IN THE

c
z
=
m
O
»
3
>
=
m
7]

8086

Programmer’s Utilities Guide

For the
CP/M® Family of
Operating Systems

8086

	TOP
	Foreword
	Table of Contents
	1 Macro Assembler Operation
	2 Program Format
	3 Forming the Operand
	3.1 Labels
	3.2 Numeric Constants
	3.3 Reserved Words
	3.4 String Constants
	3.5 Arithmetic, Logical, and Relational Operators
	3.6 Precedence of Operators

	4 Assembler Directives
	4.1 The ORG Directive
	4.2 The END Directive
	4.3 The EQU Directive
	4.4 The SET Directive
	4.5 The IF, ELSE, and ENDIF Directives
	4.6 The DB Directive
	4.7 The DW Directive
	4.8 The DS Directive
	4.9 The PAGE and TITLE Directives
	4.10 A Sample Program Using Pseudo Operations

	5 Operation Codes
	5.1 Jumps, Calls, and Returns
	5.2 Immediate Operand Instructions
	5.3 Increment and Decrement Instructions
	5.4 Data Movement Instructions
	5.5 Arithmetic Logic Unit Operations
	5.6 Control Instructions

	6 An Introduction to Macro Facilities
	7 Inline Macros
	7.1 The REPT-ENDM Group
	7.2 The IRPC-ENDM Group
	7.3 The IRP-ENDM Group
	7.4 The EXITM Statement
	7.5 The LOCAL Statement

	8 Definition and Evaluation of Stored Macros
	8.1 The MACRO-ENDM Group
	8.2 Calling a Macro
	8.3 Testing Empty Parameters
	8.4 Nested Macro Definitions
	8.5 Redefinition of Macros
	8.6 Recursive Macro Invocation
	8.7 Parameter Evaluation Conventions
	8.8 The MACLIB Statement

	9 Macro Applications
	9.1 Special Purpose Languages
	9.2 Machine Emulation
	9.3 Program Control Structures
	9.4 Operating System Interface

	10 Assembly Parameters
	11 Debugging Macros
	12 Symbol Storage Requirements
	13 RMAC, Relocating Macro Assembler
	13.1 RMAC Operation
	13.2 Expressions
	13.3 Assembler Directives
	13.3.1 The ASEG Directive
	13.3.2 The CSEG Directive
	13.3.3 The DSEG Directive
	13.3.4 The COMMON Directive
	13.3.5 The PUBLIC Directive
	13.3.6 The EXTRN Directive
	13.3.7 The NAME Directive

	14 XREF
	15 LINK-80
	15.1 Introduction
	15.2 LINK-80 Operation
	15.3 Multiline Commands
	15.4 LINK-80 Switches
	15.4.1 The Additional Memory (A) Switch
	15.4.2 The BIOS Link (B) Switch
	15.4.3 The Data Origin (D) Switch
	15.4.4 The Go (G) Switch
	15.4.5 The Load Address (L) Switch
	15.4.6 The Memory Size (M) Switch
	15.4.7 The No List (NL) Switch
	15.4.8 The No Recording of Symbols(NR) Switch
	15.4.9 The Output COM File (OC) Switch
	15.4.10 The Output PRL File (OP) Switch
	15.4.11 The Program Origin (P) Switch
	15.4.12 The ? Symbol (Q) Switch
	15.4.13 The Search (S) Switch
	15.4.14 The ? Symbol (Q) Switch
	15.4.15 The Search (S) Switch

	15.5 The $ Switch
	15.5.1 $Cd - Console
	15.5.2 $Ld - Intermediate
	15.5.3 $Ld - Library
	15.5.4 $Od - Object
	15.5.5 $Sd - Symbol
	15.5.6 Command LineSpecification

	15.6 Creating MP/M II PRLFiles
	15.7 The Request Item
	15.8 REL File Format
	15.9 IRL File Format

	16 Overlays
	16.1 Introduction
	16.2 Using Overlays in PL/I Programs
	16.2.1 Overlay Method 1
	16.2.2 Overlay Method 2

	16.3 Specifying Overlays in the Command Line
	16.4 Sample LINK-80 Execution
	16.5 Other Overlay Systems

	17 LIB-80
	17.1 Introduction
	17.2 LIB-80 Operation
	17.3 LIB-80 Switches

	Appendixes
	A MAC/RMAC Error Messages
	B XREF Error Messages
	C LINK-80 Error Messages
	D Overlay Manager Run-time Error Messages
	E LIB-80 Error Messages
	F 8080 CPU Instructions

	Index
	Release Notes
	Back

