
CP/M

SUMMARY GUIDE

:• ..-.

r

FOR VERSION 1.4 & 2.0

EDITED BY

BRUCE A. BRIGHAM

The Rosetta Stone

CP/M is a registered trademark of Digital Research

INTRODUCTION

Some of the information contained in this booklet was extracted

from various manuals written by Digital Research, Compiler Systems
Inc. and Microsoft. All paraphrased material contained in the
CP/M® portion was used with permission of Digital Research,
holder of the copyright. All paraphrased material contained in the
CBASIC ™ portion was used with permission of Compiler Systems
Inc., holder of the copyright. The BASIC-80 portion is Copyrighted
(C) 1979 Microsoft and reprinted with permission.

CBASIC-2 and Microsoft BASIC-80 are individually alphabetized by
name which interlaces string functions, commands, arithmetic
functions and so on. This kind of "total alphabetizing" saves time
and eliminates the need for an index. It is not intended to be used
as a learning guide and only has limited explanations and examples.
if more detail is needed, the user should consult his/her user manual.
We welcome any and all criticism.

This guide will be kept up-to-date as new software releases are
received from the various producers.

COPYRIGHT NOTICE:

Copyright (C) 1980 by The Rosetta Stone. No part of this publica-
tion may be reproduced, transmitted or stored in a retrieval system
without the express permission of The Rosetta Stone P.O. Box 35,
Glastonbury, CT 06025.

CP/M® is a registered trademark of Digital Research.

CBASIC™ is a registered trademark of Compiler Systems.

TABLE OF CONTENTS

File Name References 1
Disk References 1
Switching Disks 2
Logical Names 2
Physical Names 2
Common File types 2
Special Functions Keys 3

Direct Commands
ERA erase files 4
DIR directory list 4
REN rename 4
SAVE save program 4
TYPE type file 4
USER selects new user 4

Transient Commands
ASM CP/M assembler 6
DDT debugger 8
DUMP 10
ED editor 5
LOAD 10
MOVCPM 14
PIP 11
STAT 9
SUBMIT 16
SYSGEN 15
XSUB 17

Commonly Used Programs
DESPOOL 18
MAC 19
TEX 23
CBASIC : 25

Compiler time toggles 35
Compiler directives 35
Error messages 36

MICROSOFT BASIC 80 Ver 5.0 43
Compiler commands 56
Compiler error messages 57
Edit mode subcommands 53
Operators 54
PRINT USING format 55
Special characters 53
Table of error codes 52

FILE NAME REFERENCES
Names arc of the form PPPPPPPP.SSS

where PPPPPPPP is the primary name (1-8 chars),
where SSS is the secondary name (1 to 3 chars).

Unambiguous File Names (ufn)
file name completely specified.

Ambiguous File Names (afn)
parts of the file name are unspecified.

A question mark (?) in the file name will be replaced with any ASCII char,
(except . , ; : = ? * [])

An astcrick (*) is used to specify either the primary or secondary or both file
names. (Sometimes called wild card)

File name examples:

SAMPLE.PRN
a file with primary name SAMPLE and a secondary name of PRN.

SAMPLE?.ASM
A file with many possible names SAMPLEI.ASM or SAMPLES.ASM are
2 valid names for this example of an ambiguous file name.

SORTME.*
A file named SORTME with any extension name (wild card option)

*.COM
All files with the secondary name of COM

* *

All files are referenced.

DISK REFERENCES
All references to files on other drives arc performed by simply typing the drive
letter (A. B, C. . .P) followed by a colon followed by the file name.

e.g. B:SAMPLE.ASM
will reference the file named SAMPLE.ASM on drive B.

SWITCHING DISKS
Type the drive name desired followed by a colon (:)

TYPICAL COMMAND: A > B:
CP/M will respond with B> indicating the new drive = B.

LOGICAL NAMES
CON: system CONsolc
PTR: Paper Tape Reader
PUN: paper tape PUNch
LST: LiST device (printer)

PHYSICAL DEVICE NAMES
TTY: TeleTYpe device
CRT: Cathode Ray Tube
BAT: console is reader (RDR) output to current LST: device
UC1: User defined Console *1
PTR: high speed Paper Tape Reader
UR1: User def ined Reader « 1
UR2: User def ined Reader #2
PTP: high speed Paper Tape Punch
UP1: User def ined Punch #1
UP2: User de f ined Punch *2
LPT: Line Printer
UL1: User defined List device
A: disk A
B: disk B
C: d i s k C
D: disk D for CP/M 2.0. up to 16 physical drives (P:)

COMMON FILE TYPES
.ASM standard assembler source files
.BAK backup file created by ED
.BAS BASIC file
.COM an executable memory image file
.DAT DATA file
.DOC messages or documentations
.FOR FORTRAN type file
.HEX an INTEL formatted HEX file (generated by ASM)
.INT an INTERMEDIATE file created by EBASIC and CBASIC
.LIB a LIBRARY file used by ED
.LST LiST file created by CBASIC
.MSG same as .DOC
.PRN printout of text formatters, compilers, assembler. . .
.REL relocatable files generated by MICROSOFT Basic-80
.SAV a system file on CP/M 2.0
.SUB source of SUBMIT u t i l i ty
.SYM symbol table , generated by macro assemblers
.TEX ASCII data for Text-formatters
.TXT same as .DOC
.SSS a TEMPORARY file

SPECIAL FUNCTION KEY COMMANDS
rubout

Delete last character typed on console.

CTRL/B
Deactivates and removes DESPOOL (optional program).

CTRL/C
CP/M system reboot (warm boot).

CTRL/E
Physical end of line, carriage is returned but not sent.

CTRL/F
Actives DESPOOL (if purchased and installed).

CTRL/H
Backspace one (1) character position and delete that character. If the
character was a TAB, it moves back to where it was (Ver 2.0 only).

CTRL/1
Tabs to next 8th column (8, 16, 24. . .).

CTRL/J
Line feed —same as carriage return, terminates current input (Ver 2.0 only).

CTRL/M
Carriage return — terminates input.

CTRL/P
Copy all console output to list device until next CTRL/P.

CTRL/R
Retype current command line.

CTRL/S
Stop console output, continue on any character.

CTRL/U
Delete the entire line typed at the console.

CTRL/X
CP/M 1.4 - same asCTRL/U.
CP/M 2.0 — backspace to beginning of current line.

CTRL/Z
End of input from console (ED & PIP).

D I R E C T (BUILT-IN) COMMANDS

The (*) applies to all files in version 1.4 but only applies to the current USER
in version 2.0. The following 6 commands are built-in or DIRECT:

DIR afn

ERA afn

TYPE afn

SAVE n ufn

REN ufnl=ufn2

USER n

TRANSIENT

DIR* .COM

DIRB:

request a list of all file names in the DIRectory which
satisfy the ambiguous file name (afn)

ERAses all files whose name satisfies the afn (must
have extension name)

TYPE the file specified on the console

SAVE n (decimal) pages (256 bytes ea.) on disk with
name specified. To calculate n, take the high byte of
the last address of the program in memory and convert
it to decimal, (e.g. 0100H -> 2135H. . .21H = 33D
therefore n = 33)

REName existing file ufn2 with the first name
specified (ufnl)

a new USER disk area will be established (Boot =
USER 0, CP/M 2.0 only)

see transient commands. . .

EXAMPLES

lists all .COM type files at the console,

list all files contained on drive B.

ERA B :SAMPLE.* erases all files with the primary name of SAMPLE
from drive B.

TYPE SAMPLE.ASM types the contents of file SAMPLE.ASM on the
console.

SAVE 33 SAMPLE. CON
copies 0100H -> 21FFH to the file named
SAMPLE.COM on the current drive.

REN SAMPLE1.ASM=SAMPLE2.ASM
file SAMPLE2.ASM is now named SAMPLEI.ASM.

USER 2 logs in user 2. (Ver 2.0)

T R A N S I E N T COMMANDS

ED (Editor) COMMANDS
nA append lines

+—B begin/bottom of buffer

+—nC move n character positions

+—nD delete n characters in current line

E end edit and close files (normal exit)

nFs find string "s"

H end edit, close and reopen same files

I insert characters before current line

nj place string in juxtaposition

+—nK kill lines

+—nL move down/up n lines

nM macro definition

nNs find next occurrence of string "s" (entire file)

O return to original file

+—nP move and print pages

Q quit with no file change

R read library file

nS substitute strings

+—nT type n lines (0 will type contents of current line)

+—U translate lower to upper case if U
no translation if —U

V produces absolute line numbers (not stored on disk)

—V turns off the absolute line numbers

OV prints memory buffer statistics (free/total)

nW write n lines to disk

nX transfers n lines to temporary file

OX erases the temporary file

nZ sleep

+—n move and type (+—LT)

n:T move to line n and type that line (The T can be replaced with any
ED command)

CR Advance one line

— Go back one line

T R A N S I E N T COMMANDS

ASM (Assembler)

INVOKING THE ASSEMBLER
The extension name is used to specify the source or destination of a file. The
file type is .ASM.

TYPICAL COMMAND A > ASM filename.abc

where a = designates the disk name which contains the source file
(valid char. = A, B, C. . .Y)

b = designates the disk name which will receive the .HEX file
(valid char. = A, B, C. . .Z where Z = skip the generation of
the .HEX file)

c = designates the disk name which will receive the .PRN file
(valid char. = A, B, C. . .Z where X will send .PRN to the
console and Z = skip .PRN)

EXAMPLES-

ASM SAMPLE Assemble S AMPLE .ASM on current drive and place
S AMPLE .HEX and S AMPLE PRN on current drive.

ASM SAMPLE.AZZ Assemble SAMPLE.ASM on drive A and don't generate
the .HEX or .PRN file (syntax checker).

ASM SAMPLE.ABX Indicates that SAMPLE.ASM is to be taken from drive
A, the .HEX file is to be sent to drive B and .PRN is
sent to the console.

NUMERIC CONST ANTS
B binary constant (base 2)
O octal constant (base 8)
Q octal constant (base 8)
D decimal constant (base 10)
n. where n is decimal number (e.g. 19.)
H hexadecimal constant (base 16)

ASSEMBLER DIRECTIVES
ORG set the program or data origin
END end program, optional start address
EQU numeric "equate"
SET numeric "set"
IF begin conditional assembly
ENDIF end of conditional assembly
DB define data bytes
DW define data words
DS define data storage area

T R A N S I E N T COMMANDS

ARITHMETIC AND LOGICAL OPERATORS
a+b unsigned arithmetic sum of a and b

a—b unsigned arithmetic difference between a and b

+b unary plus (produces b)

—b unary minus (identical to O—b)

a*b unsigned magnitude multiplication of a and b

a/b unsigned magnitude division of a by b

a MOD b remainder after a/b

NOT b logical inverse of b (O's become 1's, 1's become O's) where b
is considered a 16-bit value

a AND b bit-by-bit logical AND of a and b

a OR b bit-by-bit logical OR a and b

a XOR b bit-by-bit logical exclusive OR of a and b

a SHL b the value which results from shifting a to the le f t by an amount
b, with zero fill

a SHR b the value which results from shifting a to the right by an amount
b, with zero fill

ERROR MESSAGES
D Data error: element in data statement cannot be placed in the

specified data area.

E Expression error: expression is ill-tormed and cannot be computed
at assembly time.

L Label error: label cannot appear in this context (may be duplicate
label).

N Not implemented: features which will appear in -future ASM
versions (e.g. MACRO's) are recognized but flagged in this version.

O Overflow: expression is too complicated (i.e.. too many pending
operators) to compute, s impl i fy it.

P Phase error: label docs not have the same value on two subsequent
passes through the program.

R Register error: the value specified as a register is not compatible
with the operation code.

U Undefined label: label referenced doesn't exist.

V Value error: operand encountered m expression is improperly
formed.

T R A N S I E N T COMMANDS

DYNAMIC DEBUGGING TOOL (DDT)
As "ASSEMBLE" mnemonic code starting at address s.

Ds,f "DISPLAY" memory locations starting at s and ending at f.

Fs,f,c "FILL" memory location starting at location s and ending at
location f with data c.

Gs,b "GO" and execute at location s and break at location b (b is
optional).

Ifilename "INSERT" the file named into the file control block (005CH)
which will be read with the READ command.

Ls,f "LIST" the assemble language mnemonics of the addresses
specified, s is the start and f is the finish address.

Ms,d,f "MOVE" data where s is the start address f is the final address
and d is the destination.

Rb "READ" the file specified by the INSERT command with a
bias of b. (Bias optional and 0100H is assumed).

Ss "SET" examine and optional alter any memory location s
(a period "." terminates SET).

Tn "TRACE" will display all registers and flags during the execution
of a program for n steps.

U "UNTRACE" is the same as TRACE but the registers are not
displayed.

X "EXAMINE" all registers.

XT "EXAMINE" register r, where r is any valid register name
(A, B, C, D, E, H, I, L, M, P, S, Z).

ERRORS
"?" Means one of three (3) things:

1. The file can't be opened.
2. A checksum error occured in a HEX file.
3. The assembler/disassembler was overlayed.

RESTART DDT
by executing a RST 7 (FF).

RUBOUT
will abort long displays.

T R A N S I E N T COMMANDS

ST AT command
STAT cr calculates the storage remaining on all active

drives.

STATE: cr selects drive B, then calculates the storage.

STAT SAMPLE.* cr specifies a set of files to be scanned by STAT
(all files with the primary name of SAMPLE).

STAT B: =R/O cr sets drive B to read only until a warm or cold
boot takes place.

STAT DE V: er produces a list of each physical device currently
assigned to each logical unit.

STAT VAL: cr prints the possible values which can be taken on
for each logical device (CP/M 1.4).

STAT VAL: cr produces a summary of the new 2.0 commands.

STAT USR: cr produces a list of USER numbers which have
files on the currently addressed disk.

STAT SAMPLE. COM $S cr produces the output shown below (SS is
optional).

Size Recs Bytes Ext Ace
48 48 6K 1 R/O A:SAMPLE.COM

STATB:DSK: lists the drive characteristics of the disk B.
B: can be in the range of A: •* P: (16 drives)

STAT SAMPLE.PRN $R/O cr
sets the file SAMPLE.PRN to read only
(CP/M 2.0).

STAT SAMPLE. PRN SR/W cr
sets the file back to read/write (CP/M 2.0).

STAT B:PIP.COM $SYS cr makes PIP a system file - will not be displayed
when DIR is issued (CP/M 2.0).

STAT B:PIP.COM $DIR cr makes PIP a system file - opposite of $SYS
(2.0).

T R A N S I E N T COMMANDS

REASSIGNMENT OF THE LOGICAL DEVICES
STAT logical=physical,. . .logical=physical cr

EXAMPLES

STAT CON: = CRT: cr
STAT PUN: = TTY: ,LST:=LPT: cr

LOAD command
The LOAD command reads the file specified which is assumed to be in INTEL
"hex" format and produces a memory image file which can be subsequently
executed.

Typical Command:

LOAD SAMPLE this will produce a file by the name S AMPLE .COM
from the file named SAMPLE.HEX.

LOAD B:SAMPLE2 this will load the .HEX file from drive B and produce
the corresponding .COM file.

In all cases, the file created is ready to be executed by simply typing its name.
The file is now considered a transient program.

e.g. A>SAMPLE cr will run the program SAMPLE.

DUMP command
This DUMP program is used to display the contents of a binary disk file at
the console in hexadecimal form. Of course this can be sent to the printer by
typing (CTRL P) before the carriage return.

Typical Command:

DUMP S AMPLE .COM will produce a hexadecimal table of that file.

NOTE: DDT produces a nicer table due to the fact that the ASCII codes
for the memory contents are displayed to the right of the HEX code.

10

T R A N S I E N T COMMANDS

PIP command

INVOKING PIP
1. type PIP cr
2. type PIP "command line" cr

COMMAND LINE FORM
destination = source#l, source#2, . . ., source#3 cr

DISK REFERENCES
file names prefixed by a A: or B: ... P: will be accessed to/from that
drive.

DISK TO DISK COPY EXAMPLES
PIP B: S AMPLE.* cr

copies all files from the current drive to drive B with the primary name of
SAMPLE.

PIP B:=C:SAMPLE.* cr
copies all files with the primary name SAMPLE from drive C to drive B.

PIPcr
»SAMPLE.ASM=B: cr

invokes PIP, and then takes the file S AMPLE. ASM from drive B and
copies it to the current drive.

PIP A:SAMPLE.ASM=B: cr
copies the file SAMPLE.ASM from drive B to drive A.

PHYSICAL/LOGICAL DEVICE REFERENCE
PIP can directly address any of the logical or physical devices already discussed.
They are listed again for convenience.

LOGICAL PHYSICAL:

CON: = TTY: CRT: UC1:
RDR: = TTY: PTR: UR1: UR2:
PUN: = TTY: PTP: UPI UP2:
LST: = TTY: CRT: LPT: UL1:

11

T R A N S I E N T COMMANDS

Additional device names which can be used in PIP:

NUL: sends 40 nulls to the device specified.

EOF: sends end-of-fde (CTRL-Z) to device.

INP: special PIP input source which can be "patched" into
the PIP program itself. Check page 21 of the CP/M
Features and Facilities manual.

OUT: special PIP output handler patched into PIP (similar to
INP:).

PRN: Same as LST:, except that the tabs are expanded at
every eighth character position, lines are numbered and
page ejects are inserted every 60 lines with an initial
eject (same as [t8np]).

OPTIONAL TRAILING PIP PARAMETERS:
B Block mode transfer: data is buffered by PIP until an ASCII x-off

(ctrl—s) is received from the source device.

Dn delete characters which extend past column n during the transfer of
data to the destination from the character source (truncateslonglines).

E Echo all data to the console as it is happening.

F Filter form feeds (ctrl-L) from the file.

Gn get file from USER n (CP/M 2.0 n=0 to 15).

H Hex data transfer: checks and corrects for proper INTEL hex
format (console is prompted).

I Ignore ":OO" records in the transfer of Intel hex format file (auto-
matically sets H parameter).

L Translate upper case alphabetics to lower case.

N Add line numbers to each line transferred starting at 1, incrementing
by 1 (no leading zeros). If N2 is used, leading zeros are included.

O Object file transfer (non-ASCII) the normal CP/M end of file is
ignored.

Pn Include page ejects at every n lines (with an intial page eject). If
n = 1 or is excluded altogether, page ejects occur every 60 lines. If
the F parameter is used, form feed suppression takes place before
the new page ejects are inserted.

12

T R A N S I E N T COMMANDS

Qs~z Quit copying from the source device or file when the s t r ings (ter-
minated by ctl—Z) is encountered.

R read system files (CP/M 2.0).

SsÄ z Star t copying from the source device when the string s is encountered
(terminated by ctl—z). The S and Q parameters can be used to
"abstract" a particular section of a file (such as a subroutine) . The
start and quite strings are always included in the copy operation.

Tn Expand tabs (c t l — I characters) to every nth column during the
transfer of characters to the destination from the source.

U Translate lower case alphabetic^ to upper case during the copy
operation.

V Verify that data has been copied correctly by rereading af ter the write
operation (the destination must be a disk file).

W write over R/O files without console interrogation.

Z Zero the parity bit on input for each ASCII character.

PIP OPTION EXAMPLES
PIP B:SAMPLE.ASM=A:SAMPLE.BAK[UVN] cr

this will copy the backup file SAMPLE.BAK from drive A to drive
B, changing its name to SAMPLE.ASM, translates lower case to upper
case, number each line and verify a good copy.

PIPcr
*SUBR.ASM=TEST.ASM[SSTART: ~ ZQEND ~ Z]

copy from file TEST.ASM to file SUBR.ASM of the current drive,
all text starting from the string START: and ending af ter the first
occurrance of the string END (extracts part of a file).

PIP LST:=SAMPLE.PRN[t8np| cr
print on the LIST device the füe SAMPLE.PRN expanding the TABs
to 8 columns, number the lines and page eject every 60 lines.

13

T R A N S I E N T COMMANDS

MOVCPM
The MOVCPM allows the user to reconfigure the CP/M system for any
memory size (IK boundaries). Two (2) parameters are optionally given after
the command MOVCPM. The first is used indicate the memory size desired
and the second is used indicate the disposition of the newly created system
when MOVCPM terminates (remain in memory for SYSGEN or execute).
The following examples will more clearly show these options:

MOVCPM cr

MOVCPM 32 cr

MOVCPM

MOVCPM 48 * cr

relocate and execute CP/M for management of the
current memory configuration. Upon completion of
the relocation, the new system is executed but not
recorded on disk.

create a relocated CP/M system for management of a
32K system (range = 16—64) and execute the system
as in example 1.

construct a relocated memory image for the current
memory configuration but leave the memory image in
memory for preparation of a SYSGEN.

construct a relocated memory image for a 48K memory
system and leave the memory image in memory for
preparation of a SYSGEN. (See SYSGEN for a
complete example.)

14

T R A N S I E N T COMMANDS

SYSGEN
The SYSGEN program enables the user to copy or create a new operating
system from the old disk to a new one. The prompting messages arc se l f -
explanatory but examples arc shown below for clarity.

This example is a simple backup procedures that assumes the user wants to
copy the operating system on drive A to drive B. The user's response is
underlined.

A > SYSGEN cr
SYSGEN VERSION 1.4
SOURCE DRIVE NAME (OR RETURN TO SKIP) A
SOURCE ON A, THEN TYPE RETURN cr
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) _B_
DESTINATION ON B, THEN TYPE RETURN cr
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) cr
A>

In the next example, if a "MOVCPM 48 *" was previously executed, the
SOURCE DRIVE NAME (OR RETURN TO SKIP) would be skipped (type a
cr) to allow the newly created system in memory to become the SOURCE.
The DESTINATION DRIVE NAME would be the same as before.

e-g-

A > MOVCPM 48 *

CONSTRUCTING 48K CP/M VERS l .4
READY FOR "SYSGEN" OR
"SAVE 32CPM48.COM"
A > SYSGEN cr
SOURCE DRIVE NAME (OR RETURN TO SKIP) c£_
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) B
DESTINATION ON B, THEN TYPE RETURN cr
DESTINATION DRIVE NAME (OR RETURN TO REBOOT) cr
A>

The system that was just moved is ready to run if it is a standard CP/M system
but if any customizing is needed the user should consult his/her owner's
manual.

15

T R A N S I E N T COMMANDS

SUBMIT ufn parm#1 . . . parm#n
The SUBMIT command allows CP/M commands to be batched together
for automatic processing. The ufn given in the SUBMIT command must be
the filename of a file which exists on the currently logged drive with an
assumed file type of "SUB." The SUB file contains CP/M prototype
commands with possible parameter substitution.

The prototype command file is created using the ED program. The dollar sign
($) is used to represent the parameters which are in the form: $1 S2 S3. . .

EXAMPLE

Suppose the file ASSEMBLE.SUB exists on the currently logged disk and
contains the following prototype commands:

ASM $1
DIR 51.*
TYPE S1.PRN
ERAS1.PRN
LOAD $1.HEX
REN $2.COM=S1.COM

and the command

A > SUBMIT ASSEMBLE SAMPLE GOOD cr

is issued by the operator. The SUBMIT program reads the ASSEMBLE.SUB
file, substituting SAMPLE for all occurrences of SI and GOOD for all occur-
rences of $2 resulting in a file of SSS.SUB with the following substitutions:

ASM SAMPLE
DIR SAMPLE.*
TYPE SAMPLE.PRN
ERA SAMPLE.PRN
LOAD SAMPLE.HEX
REN GOOD.COM=SAMPLE.COM

This file is then executed as if the user typed each command and waited for
each command to finish. This is a real time saver if the same procedure is
repeated many times.

16

T R A N S I E N T COMMANDS

XSUB*
XSUB extends the capability of SUBMIT to include line input to programs
as well as the console command processor. The XSUB command is included
as the first line of your SUBMIT file and when executed, self-relocates directly
below the CCP.

If the SUBMIT file SAVER.SUB contained:

XSUB
DDT
IS1.HEX
R
G0
SAVE l S2.COM

and the command:

A > SUBMIT SAVER SAMPLE DONE

was typed, the following would take place:

1. XSUB program loads
2. DDT loads right after
3. DDT executes

ISAMPLE.HEX
R
G0

4. SAVE 1 DONE.COM

XSUB stays active until a cold boot is performed. Because DESPOOL lives
and hides in the same area, it must be loaded before XSUB.

"Used with permission of Digital Reserach. holder of the copyright.

17

DESPOOL™
This program is optional and can be purchased from Digital Research. It
allows a file to be typed on the list device while the console device is being
used. To install DESPOOL, just type it's name. (It must be on the current
drive). It announces itself and disappears.

Typical Command:

A > DESPOOL er

There are 2 commands the user has:

CNTL F starts the printing
CNTL B stops the printing and removes itself

DESPOOL™ is a registered trademark of Digital Research.

18

MAC™

ARITHMETIC AND LOGICAL OPERATORS:
a+b arithmetic sum of a and b
a—b arithmetic difference between a and b
a*b unsigned magnitude division of a by b
a/b unsigned magnitude division of a by b
a MOD b remainder after division of a by b
a SHL b a shifted left by b, with zero right fill
a SHR b a shifted right by b, with zero left fill
NOT b bit-by-bit logical inverse of b
a EQ b produces true if a equals b, false otherwise
a LT b produces true if a is less than b
a LE b produces true if a is less or equal to be
a GT b produces true if a is greater than b
a GE b produces true if a is greater or equal to be
a AND b produces the bitwise logical AND of a and b
a OR b produces the bitwise logical OR of a and b
a XOR b produces the logical exclusive OR of a and b
HIGH b is identical to b SHR 8 (high order byte of b)
LOW b is identical to b AND OFFH (low order byte of b)

ASSEMBLER DIRECTIVES
ORG sets the program or data origin
END terminates the physical program
EQU performs a numeric "equate"
SET performs a numeric "set" or assignment
IF begins conditional assembly
ELSE is an alternate to a previous IF
ENDIF marks the end of conditional assembly
DB defines data bytes or strings of data
DW defines words of storage (double bytes)
DS reserves uninitialized storage areas
PAGE defines the listing page size for output
TITLE enables pages titles and options

INLINE MACROS
REPT-ENDM Repeat the statements between the REP and the ENDM

to the value of expression.

label: REPT expression
statement—1
statement—2

statement—n
label: ENDM

MAC™ is a trademark of Digital Research.

19

MAC™ Cont'd.
1RPC—ENDM — causes the assembler to re-read a bounded set of statements
and replace identifier with each character in the list.

label: IRPC identifier, character-list
statement—1
statement—2

statement—n
label: ENDM

The "identifier" is any valid assembler name, not including embedded "$"
separators, and "character-list" denotes a string of characters, terminated by
a delimiter (space, tab, end-of-line, or comment).

1RP—ENDM is similar in function to the IRPC, except that the controlling
identifier can take on a multiple character value.

label: IRP identifier, cl-1, cl-2, . . ., cl-n
statement—1
statement—2

statement—m
label: ENDM

On the first iteration, the character-list given by "cl—1" is substituted for the
identifier wherever the identifier occurs in the bounded statement group
(statements 1 through m). On the second iteration, cl—2 becomes the value
of the controlling identifier. Iteration continues in this manner until the
last character-list is encountered and processed.

EXITM — can occur within the body of a macro and, upon encountering the
EXITM statement, the macro assembler aborts expansion of the current macro
level.

macro-heading
statement—1

label: EXITM

statement—n
ENDM

The EXITM statement normally occurs within the scope of a surrounding
conditional assembly operation.

MAC™ is a trademark of Digital Research.

20

MAC™ Cont'd.
LOCAL — it is often useful to "generate" labels for jumps or data references
which arc unique on each repetition of a macro. This facility is the opposite
of GLOB ALS used in other assemblers.

macro-heading
label: LOCAL id-l,id-2 id-n

ENDM

"Macro-heading" is a REPT, IRPC, or IRP heading and id—1 through id—n
represent one or more assembly language identifers which do not contain
embedded "$'' separators. The LOCAL statement must occur within the body
of a macro definition.

DEFINITION AND EVALUATION
OF STORED MACROS

MACRO-ENDM
The prototype statements for a stored macro are given in the macro body
enclosed by the MACRO and ENDM pseudo operations, taking the general
form.

macname MACRO d-1. d-2 d-n
statement—1
statement—2

sta tement—3
statement—m

label: ENDM

Where the "macname" is assembly language identifier, d—1 through d—n
constitutes a (possibly empty) list of assembly identifers without imbedded
"$" separators and statements—1 through m are the macro prototype
statement.

MACT is a trademark of Digital Research.

21

MAC™ Cont'd.

ASSEMBLY PARAMETERS

In general, the macro assembler is initiated with the name ot the source file,
followed by the assembly parameters, indicated by a preceding dollar symbol

W-

A controls the source disk for the .ASM file.
H controls the destination of the .HEX machine code file.
L controls the source disk for the .LIB files (see MACLIB).
M controls MACRO listings in the .PRN file.
P controls the destination of the .PRN file containing the listing.
Q controls the listing of LOCAL symbols.
S controls the generation and destination of the .SYM file.
1 controls pass 1 listing.

The A. H, L. and S parameters arc followed by the drive name to obtain or
receive the data.

Example: MAC SAMPLE SPB AA HB SX

which directs the .PRN file to disk B. reads the .ASM file from disk A. directs
the .HEX file to the B disk, and sends the .SYM file to the user's console.

Remember X = console Parameters L, S, M, Q, and 1 can be preceded by either

+ or -.

+L list the input lines read from the macro library.

—L suppress listing of the macro library.

+S append the .SYM to the end of the .PRN output.

—S suppress the generation of the symbol table.
+M list all macro lines as they arc processed.
—M suppress all macro lines as they are read.
+M list only "HEX" generated by macro expansions.
+Q suppress all LOCAL symbols in the symbol list.
+ 1 produce a listing file on the first pass.
— 1 suppress listing on pass 1 (defaul t) .

e.g. MAC SAMPLE SPX+S-M

assembles the file SAMPLE.ASM with listing to console, symbols at console
and no listing of generated macros.

MAC is a trademark of Digital Research.

22

TEX COMMAND SUMMARY
.AD Adjust Margins (initially on)
.BP +-n Begin Page
.BR Break
.CE n Conditional Page
.DS Double Space (init. off)
.HE s Heading (init. off)
.HM + —n Heading Margin (init. 2 lines)
.IG Ignore
.IN +—n Indent (init. O)
.LI Literal
.LL +—n Line Length (init. 70)
.LS n Line Spacing (init. 1)
.MB +— n Margin, Bottom (init. 5)
.MT +-n Margin, Top (init. 6)
.NA No Admustment (init. off)
.OP Omit Page Numbers (init. off)
.PA n Page Advance
.PL +— n Page Length (init. 66)
.PN +— n Page Number (init. 1)
.PO +-n Page Offset (init. 8)
.PP n Paragraph (init. 6)
.QI Quit Indentation
.SP n Space n Lines (init. 1)
.SS Single Space (init. on)
.TI +—n Temporary Indent (init. O)

RUN-TIME PARAMETERS
$C Redirects output to print on console device.

$E Redirects error messages to print on list device.

$F Enables user to forms-Feed on printer, if capability exists.

SL Redirects output to print on list device.

SP Stops printing at end of page, for paper change; resumes
printing with <cr> .

SS Produces no output file; prints error messages as usual.

23

TYPICAL TEX COMMAND:
TEX SAMPLE $L F

will send output to LIST device and enables forms-feed if LIST device
has capability.

TEX SAMPLE $P $E
will stop printing at end of page and prints all error messages on LIST.

TEX ERROR MESSAGE:
OPENING SOURCE* Invalid or missing source file name.

PARAMETER SCAN* Invalid character in parameter string.

FILE READ*

DISK WRITE*

READING EOF*

Invalid file format.

Cannot write output file from memory to disk.

End-of-filc mark detected where not expected.

FITTING A WORD Usually, a long word cannot be formatted successfully
into a short line length.

COMMAND VERIFY Invalid command after a "." at beginning of input line.

HM COMMAND

MB COMMAND

MT COMMAND

PP COMMAND

Heading margin value greater than or equal to the top
margin.

Bottom margin greater than or equal to PL value —
MT value.

Top margin greater than or equal to PL value —
MB value.

Paragraph indent value greater than line length.

24

CBASIC-2™

ABS(X)
returns the absolute value of the X. (e.g. Y = ABS (X))

ASC(AS)
returns the ASCII numeric value of the first character of the AS.
(e.g. Y%=ASC(A$))

ATN(X)
returns the arctangent of the X. (e.g. Y=ATN(X))

CALL <exp>
used to link to a machine language subroutine. The exp is the
address of the subroutine. Return to CBASIC by executing a 8080
RET instruction, (e.g. CALLS)

CHAJN <cxp>
transfers control from the program currently being executed to the
program selected by the expression, (e.g. CHAJN "B:PAYROLL.COM")

CHR$(I%)
returns a character string of length 1 consisting of the character whose
ASCII equivalent 1%. (e.g. PRINT CHR$(BELL%))

CLOSE <exp> ,<exp>
closes the file specified by each exp . (e.g. CLOSE 1,2,3)

COMMANDS
returns a string which contains the CP/M command line. (e.g. CRUN2
PAYROLL NOCHECKS TOTAL) will return: NOCHECKS TOTAL

COMMON <var> ,<var>
specifics that the variables listed will be common to the main program
and all programs executed through a CHAIN statement. COMMON
statements must be the first statements in a program (if used).

CONSOLE
restores printed output to console (see LPRINTER). (e.g. CONSOLE)

CONCHAR%
reads one (1) character from the keyboard (integer re turned) (e.g.
I%=CONCHAR% or IF CONSTAT% THEN CHARS = CONCHAR%)

CBASIC is a trademark of Compiler Systems. Inc.

25

CBASIC-2™

CONSTAT%
returns the console status as an integer value. If the console is ready.
a logic tnie is returned, (e.g. IF CONSTAT%THEN GOSUB 100)

COS(X)
returns the cosine of the X. (e.g. Y=COS(B))

CREATE<exp>|RECL<exp>] AS <cxp>lBUFF<exp>RECS<exP>]
is the same as OPEN except that a new file is created, (e.g. CREATE
TEMPS RECL 20 AS 6)

DATA <constant]> {. < constant ^> }
DATA statements define string and floating point constants which arc
assigned to variables using a READ statement, (e.g. DATA 10.0, "word",
100)

DEF <^ function namc^> [(<^dummy argument list ^)] = <exp^> specifies
a user defined function which returns a value of the same type as the
< function name >. (e.g. DEF FNA(X.Y) = X+Y-Z)

DEF ^funct ion name^k [(^ dummy arg list >)]
this is the multiple line function where dummy list is the same as the
single l ine function. The DEF must end with FEND. Explain by example:

DEF FN.OMEGA(Pl,f)
W=2*PI*f
PRINT W
RETURN

FEND
DELETE <cxp> { , <cxp> }

erases the active file referenced by < exp> . (e.g. DELETE 6,7)

DIM <idcnt> (< subscript list >) {, < ident> (< subscript list >)}
dynamical ly allocates space for numeric or string arrays, (e.g. DIM B$

END
indicates the end of the source program, (e.g. 10 END)

EXP(X)
returns the value of "e" raised to the power of X. (e.g. Y=10*EXP(2))

FEND
used to end a multiple line DEF instruction. Sec DEF.

CBAS1C is a trademark of Compiler Systems, Inc.

26

CBASIC-2™

FILE <var> [(<exp>)] , < v a r > [« var »]
opens files used by the program. The order of the names determines the
numbers used to reference the files in READ and PRINT statements.
(e.g. FILE INPUTS, OUTPUTS)

FOR <index> = <exp> TO <exp> [(STEP <exp>)]
execution of all statements between the FOR statement and its cor-
responding NEXT statement is repeated until the indexing variable
reaches the exit criteria, (e.g. FOR 1=1 TO 10 STEP 3)

FLOAT(I%)
converts the argument 1% into a real value. (DOLLAR = FLOAT(COST%)

FN <ident>
FN refers to a user-defined function. See DEF (e.g. FNA(A,B))

FRE
returns the number of bytes of unused space in the free storage area.
(c.g. Y=FRE)

GOSUB or GO SUB <line number>
control is transferred to the subroutine labeled with the <linc number ^> .
(c.g. GOSUB 100)

GOTO or GO TO < line number >
execution continues at the statement labeled with thc<^l inc nurnber^>
(e.g. GOTO 10).

IF <exp> THEN <line number >
(e.g. IF Y=X THEN 300)

I F < e x p > T H E N <statement list> [ELSE < statement list >]
operates the same as any other IF instruction, (e.g. IF X=A+B THEN
PRINT MSGS ELSE PRINT "too big")

IF END * <exp>THEN <line number >
if end of file is detected control is transferred to the line number, (e.g.
IF END * 1 THEN 100)

INITIALIZE
initializes a new diskette after a disk is replaced. Similar to a A C when
under the operating system. Equivalent to the CALL 264 in CBASIC 1.0.
(e.g. INITIALIZE)

CBASIC is a trademark of Compiler Systems.

27

CBASIC-2™

INP«cxp»
performs an input operation on the 8080 machine port represented by
the value of the <exp> . (e.g Y=INP(2)).

INPUT I < prompt string> ;] < variable> { ,< variable >}
prints prompting string and a line of input data is read from the console
and assigned to the variables as they appear in the variable list. (e.g.
INPUT "SIZE OF ARRAY?"; N).

INPUT [< prompt string> ;] LINE< var >
same as INPUT except only one variable is permitted and it must be a
string, (e.g. INPUT "NAME & AGE"; NAMES, AGE%)

INT(X)

returns the integer part of the variable, (e.g. Y=INT(X))

INT%(X)
converts X into an integer. See FLOAT% (e.g. J% = INT%(DOLLAR)

LEFTS(AS,I%)
returns a string consisting of the first 1% characters of AS. (e.g. B$=
LEFTS (A$, 3).

LEN(AS)
returns the length of the string AS. (e.g. Y=LEN(C$ + B$)).

LET < variable > =< exp>
the <^ exp ^> is evaluated and assigned to the <^ variable ̂ appearing
on the left side of the equal sign. (e.g. LET A=B+C)

LOG(X)
returns the natural logarithm of the absolute value of the X. (e.g. Y=
LOG (X))

LPRINTER [width <exp>]
directs all output in a PRINT statement to the printer which is set to an
optional WIDTH at execution time (see CONSOLE), (e.g. LPRINTER
WIDTH = 120)

MATCH(patternS, objects. start%)
returns the position of the first occurance of "patternS" in "objectS"
starting with character position "start%".
1. # will match any digit (0-9)
2. ! will match any upper/lower letter (a-z)
3. ? will match any character
4. # ! ? will match themselves if immediately preceded by a /. (e.g.

MATCH "IT", "HE HIT IT", 1) returns 5.

CBASIC™ is a trademark of Compiler Systems, Inc.
28

CBASIC-2™

M1DS (A$,I%, J%)
returns a string consisting of the J% characters of A$ starting at the
1% character, (e.g. B$=M1D$(OBJECT$,LOC%,3)

NEXT [<idcnt> { ,<ident>} 1
a NEXT statement denotes the end of the closest unmatched FOR
statement, (e.g. NEXT I)

ON <exp> GOTO < line number > { ,< line number >}
The <£ exp^ , rounded to the nearest integer value is used to select
the <£ line number^ at which execution will continue. If thc^exp%
evaluates to 1, the first <£ line number^ is selected and so forth, (e.g.
ON I GOTO 10,20,30,40)

OPEN<exp>lRECL<cxp>] AS<exp>[BUFF<exp >REC <exp >]
opens files on the system disks where<^exp ̂ is the filename (w/ optional
drive). The RECL is an optional fixed record length. The AS assigns an
identification number to the file. BUFF specifies the number of disk
sectors to maintain in memory at one time (default=l). RECS specifies
the size of the disk sector (not used at this time but REC must follow
BUFF <exp>. (e.g. OPEN "ACCOUNT.DAT" AS 9 BUFF 6 REC 128)
(e.g. OPEN mail.listS AS 10)

OUT<exp>,<exp>
the low-order eight bits of the integer portion of the second ^cxp^
is sent to the 8080 machine output port selected by the integer portion
of the first expression modulo 256. (e.g. OUT 3,10)

PEEK «exp»
returns the contents of the memory location given by <exp ^> (e.g.
Y=PEEK(256))

POKE <expl> ,<cxp2>
the low-order 8 bits of<Cexp2]> is stored at the memory address pointed
t o b y < e x p l > . (e.g. POKE 255,ASC("?"))

POS
returns the current position of the output line buffer pointer. Either the
console or the printer, (e.g. PRINT TAB(POS + 3);X)

CBASIC is a trademark of Compiler Systems.

29

CBASIC-2™

PRINT # <exp> , < e x p > ; <exp> { , <cxp>} (1) RANDOM FILE
PRINT # <cxp> ; <cxp> { , <exp> J (2) SEQUENTIAL FILE
PRINT <cxp> < d e l i m > { < e x p > <del im>} (3) CONSOLE

a PRINT statement sends the value of the expressions in the expression
list to either a disk file (type (1) and (2)) or the console (type (3)}.

delim can be a ";" (skip 1 space) or a"," (tab to next 20th tab stop)
(e.g. PRINT #FILE,HERE; A,B,C,D$)
(e.g. PRINT #2;A,B,C$,D)
(e.g. PRINT "THIS IS TEST NO. ",N)

PRINT USING < format string > ; [< file reference >] < exp >
The "format string" is composed of data fields and literal data. The
"format string" is any string expression. The < e x p > consists of
expressions separated by commas or semicolons. The "file reference"
is optional and will direct the output to the disk file. There are 4 field
types which are shown below as examples:

1. String character field (! prints only one character)
e.g. NAME$="John"

PRINT USING "!.";N AMES,"SMITH"
will print J.S.

2. Fixed length string fields (/ /)
e.g. PART$="FILE NO. IS/ /":N=333

PRINT USING PARTS, N
will print FILE NO. IS 333

3. Variable length string fields (specified by &)
e.g. MONEYS = "ONE DOLLAR"

PRINT USING "& &"; "GIVE HIM",MONEY$
will print GIVE HIM ONE DOLLAR

4. Numeric data string fields (specified by #)
e.g. PRINT USING "**,#** "-,100,1000,10000

will print 100 1,000 10,000

e.g. COST= 123456.78
PRINTUS1NG "**##,*#*,*#*.*# ";COST
will print *1 23,456.78

PRINTUSING "$$## ,### ,#*# .#* ";COST
will pr int $123.456.78

P R I N T U S I N G " * * * - #** -";10, 10, -10, -10
will print 10 100E-01 10- 100E-01-

PRINT USING "-***#* "; 10, -10
will print 10 - 10

CBASIC is a trademark of Compiler Systems, Inc.

30

CBASIC-2™

PRINT USING <exp> ;* <exp> ; <exp> , <cxp>
PRINT USING <exp> ; * <exp> , <cxp> ; <cxp> { , <exp>}

these are used to write formatted data to a disk file. They follow the
same rules as the PRINT USING above.
(e.g. B$="BROWN": COSTS$="$$#, ###.##": PRICE=1234.56
PRINT USING "THE QUICK "&" FOX " +COSTS; #2; B$, PRICE
will print THE QUICK BROWN FOX COST $1,234.56)

RANDOMIZE
a RANDOMIZE statement initializes the random number generator.
(e.g. RANDOMIZE)

READ <var> {, < v a r > } (1) DATA
READ * <cxp> , <cxp> ; <var> , <var> (2) RANDOM FILE
READ # <exp> ; < v a r > {, <va r> } (3) SEQUENTIAL FILE

a type (1) READ sta tement assigns values from DATA statements to the
variables in the list. Type (2) reads a random record specified by the
second expression from the disk file specified by the first expression and
assigns the fields in the record to the variables in the variable list. The
type (3) READ statement reads the next sequential record from the
file specified by the expression.

(e.g. 100 READ A,B,C$)
(e.g. 200 READ #1,1; PAY.REG)
(e.g. READ #2; NAME$,NO,ZIP)

READ * <exp> ; LINE <var>
reads sequentially all the data from the specified file until a carriage
return is encountered. All data is assigned to < v a r > . (e.g. READ
6 ; L I N E d a t a $)

READ # <expl> , <cxp2> ; LINE <var>

reads record specified by < exp 2 > of the file specified by <exp l>
All data is assigned to <var> . (e.g. READ #7, KEY%; LINE TOTAL.
STRINGS)

REM (< remark >)
The REM statement may be used to document a program, (e.g. 10 REM
this is a remark).

REMARK « string >)
same as REM.

CBASIC is a trademark of Compiler Systems.

31

CBASIC-2T M

RENAME (ncwnamcS, oldnameS)
changes the name of the file selected by oldnamcS to newnameS. (e.g.
RENAME "SAMPLE.BAS", "TEMP.BAS") (e.g. IF RENAME
(NEWFILE$,TEMP.BAS) THEN RETURN)

RESTORE
a RESTORE statement allows rereading the DATA statements, (e.g.
10 RESTORE)

RETURN
control is returned from a subroutine to the calling routine. (e.g.
RETURN)

RIGHTS (AS,I%)
returns a string consisting of the 1% rightmost character of A$. (e.g.
B$=RIGHT$(TEST$,2)

RND
The RND function generates a uniformly distributed random number
between 0 and 1. (e.g. X=10*RND)

SADD(A$)

returns the address of the string assigned to the argument AS. (e.g.
X<%FSADD(TOTAL$)

SAVEMEM < constant > , <exp>
reserves space (value of constant) for a machine language program by the
name of <exp> .(e.g. SAVEMEM 256, "TEST.COM")

SGN(X)

if X > 0, returns a 1. If X = 0, returns a 0. If X < 0, returns a -1.
(e.g. Y=SGN(X))

SIN(X)
returns the sine of the X. (e.g. X=SIN(Y))

SIZE (AS)
returns the size, in blocks, of the file specified by AS. (X% = SIZE
("SAMPLE.PRN"))

STOP
program execution terminates and all open files are closed. The print
buffer is emptied and control returns to the host system, (e.g. STOP)

CBAS1C is a trademark of Compiler System, Inc.

32

CBASIC-2™

STR$ (X)
returns the ASCII string which represents the value of the X. Sec VAL.
(e.g. B$=STR$ (3.141617))

SQR (X)
returns the square root of the absolute value of the X. (e.g. X=SQR(Y)).

TAB«exP»
positions the output buffer pointer to the position specified by the
integer value of the<exp> . (e.g. PRINT TAB (10);X)

TAN (X)
returns the tangent of the expression (in radians), (e.g. X=TAN(A)).

TRACE
CRUN <filcname> TRACE < number > , < number >
The first optional number is used to specify the statement where the
trace is to begin. The 2nd optional number specifies where the trace
is to stop. NOTE: TOGGLE E MUST BE SET AT COMPILE-TIME.
(e.g. CBASIC SAMPLE RE

CRUN SAMPLE TRACE 10.100)

UCASES (AS)
returns a string in which the lower case characters in AS have been trans-
lated to uppercase. (IF UCASES(ANSS) = "YES" THEN RETURN)

VAL (AS)
converts AS into a floating point number. Sec STRS. (e.g. X=VAL(A$)).

WEND
denotes the end of the closest unmatched WHILE. See WHILE.

WHILE < e x p >
all statements between the WHILE and WEND statement will be repeated
until the value of the expression is zero. If < e x p > = 0 initially, the
loop is skipped,
e.g. WHILE X > 0

X = X + l
PRINT X

WEND

CBASIC is a trademark of Compiler Systems.

33

CBASlC-2™

XREF <filename > [diskref] [$ < toggles >] [' < title > ')
produces a file which contains an alphabetized list of all identifiers
used in a CBAS1C program. Toggles are explained below and 'title' is
used to print a title on each page.

TOGGLES:
A listing to list device and disk file.

B. suppresses output to disk file.

C same effect as specifying A and B

D output to be 80 columns wide instead of 132.

E produces output with only the identifiers and their usage.

F(x) changes page length to x.

G suppresses heading lines and formfeeds.

(e.g. XREF SAMPLE B: $EAF(40})
(e.g. XREF PAYROLL CF(55) ' RUN 15 on 12/25/81')

CBASIC™ is a trademark of Compiler Systems. Inc.

34

CBASIC-2T

CBASIC Compile-Time TOGGLES
The toggles are invoked by typing a "$" before the desired le t te r , (e.g. CBASIC
SAMPLE SEE)

B suppresses the listing of the program on the console during compilation
(initially off).

C suppresses the generation of an INT file (initially off).

D suppresses translation of lower case letters to upper case (initially o f f) ,
(e.g. "YES" doesn't = "yes")

E will cause the run-time program to accompany any error messages with
the CBASIC line number in which the error occurred (init ially off).

F will cause the compiled output listing to be printed on the system list
device in addition to the console (initially off).

G will cause the compiled output listing to be written to the diskette
(initially off).

COMPILER DIRECTIVES
Directives are used to control the action of the compiler.

%LIST
will turn on the listing after a %NOLIST was executed.

%NOLIST
will stop the listing at the console during compile time.

%INCLAJDE <filenamc>
insert the file specified in the INCLUDE statement in the source listing
immediately following the %1NCLUDE. (e.g. %INCLUDE B:SAMPLE.
BAS)

%PAGE < constant >
sets the length of a page output to the printer. Must be positive integer
(default = 64).

%EJECT
positions the listing directed to the printer and the disk to the top of
the next page (outputs a formfeed).

%CHAIN <^ constant ^> , ^ constant^ , <^ constant ^> , «^ constant^
used to set the size of the main program's constant, code, data and
variable areas.

CBASIC is a trademark of Compiler Systems. 35

CBASIC™ ERROR MESSAGES

AC The string used as the argument in an ASC function evaluated to a null
string.

BF A branch into a multiple line function from outside the function was
attempted.

BN An invalid numeric constant was encountered (Compile-time Error).

The value following the BUFF option in an OPEN or CREATE statement
is less than 1 or greater than 52.

CC A chained program's code area is larger than the main program's code
area. Use the %CHA1N directive in the main program.

CD A chained program's data area is larger than the main program's data
area. Use the %CHAIN directive in the main program.

CE The file being closed could not be found in the directory. This could
occur if the file name had been changed with the RENAME function.

CF A chained program's constant area is larger than the main program's
constant area. Use the %CHA1N directive in the main program.

Cl An invalid file name was detected in a %INCLUDE directive. The file
name may not contain a?,*, or:.

CP A chained program's variable storage area is larger than the main pro-
gram's variable storage area. Use the %CHAIN directive in the main
program.

CS A chained program reserved a different amount of memory with a
SAVEMEM statement than the main program (Compile-time Error).

A COMMON statement, which was not the first statement in a program,
was detected. Only a compiler directive such as %CHA1N may proceed
a COMMON statement.

CU A close statement specified a file number that was not active.

CBASIC is a trademark of Compiler Systems, Inc.

36

CBASIC™ ERROR MESSAGES

CV An improper definition of a subscripted variable in a common state-
ment. Possibly the subscript count is not a constant or there is more
than one constant. One constant must appear in parenthesis and it
specifies the number of subscripts.

DE A disk error occurred while trying to read the BAS file.

DF An OPEN or CREATE was specified with a file number that was
already active. (CBASIC-2)

There was no space on the disk or the disk directory was full. The
intermediate file was not created. (CBASIC-1)

DL The same line number was used on two different lines. Other compiler
errors may cause a DL error message to be printed even if duplicate
line numbers do not exist.

DP A variable in a DIM statement was previously defined.

DR Disk read error (reading unwritten data in random access).

DU A DELETE statement specified a file number that was not active.

DW An error occurred while writing to a file. This occurs when cither the
directory or the disk is full.

DZ A number was divided by zero. The result is set to the largest valid
CBASIC number.

EF A read past the end of file occurred on a file for which no IF END
statement had been executed. (CBASIC-2)

A number in exponential format was input with no digits following the
E. (CBASIC-1)

ER An attempt was made to write a record of length greater than the
maximum record size specified in the associated OPEN, CREATE or
FILE statement.

FA A function name appears on the left side of an assignment statement
but is not within that function. In other words the only function
name that may appear to the left of an equal sign is the name of the
function currently being compiled.

CBASIC™ is a trademark of Compiler Systems, Inc.

37

CBASIC™ ERROR MESSAGES

FD A function name that has been previously defined is being redefined in
a DBF statement.

FE A mixed mode expression exists in a FOR statement which the com-
piler can not correct. Probably the expression following the TO is of a
different type than the index.

FI An expression which is not an unsubscripted numeric variable is being
used as a FOR loop index.

FL A field length greater than 255 bytes was encountered during a READ
LINE. The first 255 characters of the record are retained; the other
characters arc ignored.

FN A function reference contains an incorrect number of parameters.

FP A function reference parameter type docs not match the parameter
type used in the function's DEF statement.

FR An at tempt was made to rename a file to an existing file name.

FT A file statement was executed when 20 files were already active.

FU A funct ion has been referenced before it has been defined (Compile-
time Error).

An attempt was made to read or write a file that was not active (Run-
time Error).

1C Invalid character in BASIC statement.

IE An expression used immediately following an IF evaluates to type
string. Only type numeric is permitted.

IF A variable used in a file statement is of type numeric where type string
is required (Compile-time Error).

A file name was invalid. Most likely an invalid character was found in
the file name. A colon may never appear imbedded in the name proper.
Question marks and asterisks may only appear in ambiguous file names.
This error will also result if the file name was a null string (Run-time
Error).

CBASIC is a trademark of Compiler Systems, Inc.

38

CBASIC™ ERROR MESSAGES

II Invalid input from the console.

IP An input prompt string was not surrounded by quotes.

IR A record number less than one was specified.

IS A subscripted variable was referenced before it was dimensioned.

IT An invalid compiler directive was encountered. A parameter required
by the directive may be out of range or missing. Or the directive may be
misspelled.

ID A variable defined as an array is used with no subscripts.

IV Ail attempt was made to execute an INT file created by a version 1
compiler. To use CRUN2 a program must be recompiled using the
version 2 compiler, CBAS2. This error will also result from attempting
to execute an INT file which is empty.

IX A FEND statement was encountered prior to executing a RETURN
statement. All multiple line functions must exit with a RETURN
statement.

LN The argument given in the LOG function was zero or negative. The
value of the argument is returned.

LW A line width less than 1 or greater than 133 was specified in an
LPR1NTER WIDTH statement.

ME An error occurred while creating or extending a file because the disk
directory was full.

MF An expression evaluates to type string when type numeric is required.
(CBASIC)

File identifier too large or zero. (EBASIC only)

MM Variables of type string and type numeric are combined in the same
expression.

MP The third parameter in a MATCH function was zero or negative.

MS A numeric expression was used where a string expression is required.

CBASIC™ is a trademark of Compiler Systems.

39

CBASIC™ ERROR MESSAGES

ND A FEND statement was encountered without a corresponding DBF
statement. This error could be the result of an improper DEF statement.

N E A negative number was specified following the raise to a power oper-
ator (Ä). The absolute value is used in the calculation.

NF The file number specified was less than 1 or greater than 20.

NI No INT file found in the directory (CBASIC-1).

A variable referenced by a NEXT statement does not match the variable
referenced by the associated FOR statement (CBASIC-2).

NM There was insufficient memory to load the program.

NN An attempt was made to print a number with a PRINT USING state-
ment but there was not a numeric data field in the USING string.

NP No appl icable production exists.

NS No BASIC file found (EBASIC only).

An a t t empt was made to print a string with a PRINT USING statement
but there was not a string field in the USING string (Both CBASIC's).

NU A NEXT statement occurs without an associated FOR statement.

OD A READ statement was executed with no DATA statement, or all
data statements having already been read.

OE An a t t empt was made to open a file that didn't exist and for which no
IF END statement had been previously executed.

OF A branch out of a multiple line function from inside the function was
attempted.

A calculation produced a number too large. The result is set to the
largest valid CBASIC number (CBASIC-2 WARNING).

CBASIC is a trademark of Compiler Systems, Inc.

40

CBASIC™ ERROR MESSAGES

OI The expression specified in an ON. . .GOSUB or an ON. . .GOTO
statement evaluated to a number less than 1 or greater than the number
of line numbers contained in the statement.

OM The program ran out of memory during execution.

OO More than 25 ON statements were used in the program.

PM A DEF statement appeared within a multiple line function. Functions
may not be nested.

QE An attempt was made to PRINT to a file string containing a quotation
mark.

RB Random access was attempted to a file activated with the BUFF
option specifying more than one buffer.

RE An attempt was made to read past the end of a record in a fixed file.

RG A RETURN occurred for which there was no GOSUB.

RU A random read or print was attempted to other than a fixed file.

SB An array subscript was used which exceeded the boundaries for which
the array was defined.

SE The source line contained a syntax error.

SF A SAVEMEM statement uses an expression of type numeric to specify
the file to be loaded. The expression must be a string. Possibly the
quotation marks are left off a string constant.

SL A concatenation operation resulted in a string of more than 255 bytes.

SN A subscripted variable contains an incorrect number of subscripts.

CBASIC is a trademark of Compiler Systems, Inc.

41

CBASIC™ ERROR MESSAGES

SO The expression is too complex and should be simplified and placed on
more than one line (Run-time Error).

The file specified in a SAVEMEM statement could not be located on
the referenced disk. The expression specifying the file name must
include the type if one is present. A type of COM is not forced (Com-
pile-timc Error).

SQ A negative number was specified in the SQR function. The absolute
value is used.

SS The second parameter of a M1D$ function was zero or negative.

TF An a t t empt was made to have more than 20 active files simultaneously.

TL A TAB statement contained a parameter less than 1 or greater than the
current line width .

TO The program is too large for the system. The program must be simpli-
fied or the system size increased.

TZ At tempt to evaluate tangent of "pi over two".

UL A line number that docs not exist has been referenced.

UN A PRINT USING statement was executed with a null edit string.

US A string has been terminated by a carriage return rather than by quotes.

VO Variable names are too long for one statement.

WE The expression immediately following a WHILE statement is not
numeric.

WN W H I L E statements are nested to a depth greater than 12. CBASIC
has an arbitrary limit of 12 for nesting of WHILE statement.

WR An attempt was made to write to a file after it had been read but before
it had been read to the end of the file.

WU A WEND statement occurs without an associated WHILE statement.

CBASIC is a trademark of Compiler Systems, Inc.

42

Microsoft BASIC-80 VER 5.0

ABS(exp) Absolute value of expression = ABS(A+B)

ATN(exp) Arctangent of the expression (in radians) PRINT-ATN(A)

ASC(string) Returns the ASCII value of the first PRINT ASC(A$)
character of a string

AUTO

CALL

CDBL(exp)

AUTO [line] (,inc) AUTO 100,50
Generate line numbers automatically.

CALL variable [(arg list)]
Call an assembly language or
FORTRAN subroutine.

Convert the expression to a double
precision number

CALL ROUT (I,J,K)

A=CDBL(Y)

CHAIN

CHR$(exp)

CINT(exp)

CLEAR

CLOSE

COMMON

CONT

CHAIN [MERGE] filename [.[line exp] [,ALL] [.DELETE range]]
Call a program and pass
variables to it.
MERGE with ASCII files
allows overlays.
II line exp is omitted, CHAlNed
program starts with the first line.
.ALL means all variables will be
passed, otherwise variables
designated with COMMON.
DELETE allows deletion of an
overlay before CHAIN is executed.

CHAIN "PROGV.1000

CHAIN MERGE"OVRLY2",1200

Returns a one-character string whose
character has the ASCII code of exp

Convert the expression to an integer

CLEAR [,[exp1][,exp2]]
Clear program variables. Exp 7 sefs
end of memory and exp2 sefs amount
of stack space.

CLOSE [[#] f l.fj] f...]]
Closes disk files. If no argument, all
open files are closed.

COMMON list of variables
Pass variables to a CHAlNed
program.

CONT
Continue program execution.

PRINT CHR$(48)

B=CINT(B)

CLEAR ,32768
CLEAR „2000

CLOSE 6

COMMON A.B(),C$

CONT

43

Microsoft BASIC-80 V E R 5 0

COS(exp) Cosine of the expression (in radians) A = COS(2.3)

CSNG(exp) Convert the expression to a single C = CSNG(X)
precision number

CVI(string) Converts a 2-character string to an Y! = CVS(N$)
CVS(string) integer (CVI). Converts a 4-character A% = CVI(B$)
CVD(string) string to a single precision number C# = CVD(X$)

(CVS). Converts an 8-character string
to a double precision number (CVD).

DATA DATA list of constants
Lists data to be used in a READ
statement.

DATA 2.3,"PLUS",4

DEF DEF FNx[(arg list)) = exp
Delme an arithmetic or string
function.

DEFUSRn = address
Define the entry address lor
the nth assembly language
subroutine.

DEFtype range(s) of letters
Define default variable types
where "type"is INT. SNG, DBL,
or STR.

DEFFNA(X.Y) =
SQR(X 'X- t -Y 'Y)

DEFUSR3 = &2000

DEFINT I-N
DEFSTRA.W-Z
DEFDBLD

DELETE DELETE start line [- e n d line]
Delete program lines.

DELETE 20

DELETE 20-25

DIM DIM list of subscripted variables
Allocate space for arrays
and specify maximum subscript
values.

DIM A(3).B$(10.2,3)

EDIT EDIT line number
Edit a program line. See Edit Mode
Subcommands.

EDIT 110

END END
Stop program, close all tiles
and return to BASIC command
level.

END

EOF(f) Returns true (-1) if file is positioned
at its end

IFEOF(1)GOTO300

ERASE

44

ERASE variable [.variable...]
Release space and variable
names previously reserved for
arrays.

ERASE A.B$

Microsoft BASIC-80 VER 5 0

ERR

ERROR

Error line number
Error code number

ERROR code
Generate error of code (see
table). May call user ON ERROR
routine or force BASIC to handle
error.

PRINT ERL
IFERR = 62THEN.

ERROR 17

EXP(exp) Raises the constant e to the power of B = EXP(C)
expression

FIELD FIELD (#} f.n AS string variable [,n AS string variable ...]
Define fields in a random file buffer. Fl ELD # 1,3 AS A$,7 AS B$
Note: PRINT#[USING] and [LINE] INPUTfi
statements to random tiles write and read
data into the FIELD buffer.

FILES FILES [filename]
List files in disk directory that match
filename. ? matches any character.
" matches any name or extension.

FILES
FILES "*.BAS"
FILES "TEST.BAS"
FILES "B:'."1

FlX(exp) Returns truncated Integer of expression J = FIX(A/B)

FOR FOR variable-exp TO exp [STEP exp]
Used with NEXT statement FOR DAY = 1 TO 5 STEP 2
fo repeat a sequence of
program lines. The variable is
incremented by the value of STEP.

FRE(exp) Gives memory free space not used by PRINT FRE(O)
BASIC

FRE(string) Returns remaining memory free space PRINT FRE(A$)

GET GET [#] f [.record number] GET #1,17*1+1
Read a record from a random disk tile.

GOSUB GOSUB line number
Call a BASIC subroutine by
branching to the specified line
number. See RETURN.

GOSUB 210

GOTO GOTO line number
Branch to specified line number.

GOTO 90

HEXS(exp) Converts a number to a hexadecimal H$ = HEX$(100)
string

45

Microsoft BASIC-80 VfR 5-0

IF/THEN

IF/GOTO

INP(port)

INPUT

INKEYS

IF exp THEN Statement [:statement...] [ELSE statement...]
If exp is not zero, the THEN IF X <Y THEN Y = X ELSE Y =
clause is executed. Otherwise,
the ELSE clause or next
statement is executed.

IF exp GOTO line [ELSE statement...]
If exp is not zero, the GOTO IF ENDVAL>0 GOTO 200
clause is executed. Otherwise
the ELSE clause or next
statement is executed.

Inputs a byte from an input port PRINT INP(21)

INPUT [;] [prompt string;] variable [.variable...]
INPUT [;] [prompt string,] variable [.variable...]
Read data from the terminal. Semicolon
after INPUT suppresses echo of carriage
return/line feed. Semicolon after prompt
string causes question mark atier prompt.
Comma after prompt string suppresses
question mark.

INPUT #f, variable [.variable...]
Read data from a disk tile.

INPUT"VALUES";A,B

INPUT #1,A,B

Returns either a one-character String read from terminal
or nul l String if no character pending at terminal A$=INKEY$

INPUT$(length [.[#] (])
Returns a string of length characters
read from console or from a disk file.
Characters are not echoed.

X$ = INPUT$(4)
X$ = INPUT
X$ = INPUT$(5,«2)

LINE LINE INPUT [;] [prompt string;] string variable
INPUT Read an entire line from the terminal. LINE INPUT A$

Semicolon after LINE INPUT suppresses LINE INPUT "NAME",N$
echo of carriage return/line feed.

LINE INPUT #f,string variable
Read an entire line from a disk file.

LINE INPUT #2,B$

INSTR([exp.]string 1,string2)
Returns the first position of the first
occurrence of string2 in string! starting
at position exp

INSTR(A$,":")
INSTR(3,X$.Y$)

INT(exp) Evaluates the expression for the largest
integer contained

KILL KILL filename
Delete a disk file.

C = INT(X+3)

KILL"INVEN.BAS"

LEFT$(string,length)
Returns leftmost length characters of
the string expression

LEN(strmg) Returns the length of a string

LET [LET] variable = exp
Assign a value to a variable

B$=LEFT$(X$,8)

PRINT LEN(BS)

LETX = l + 5

46

Microsoft BASIC-80 VE« 5.0

LINE LINE INPUT [;] [prompt string;] string variable
INPUT Read an entire line from the terminal. LINE INPUT A$

Semicolon after LINE INPUT suppresses LINE INPUT "NAME";N$
echo ot carriage return/line feed.

LINE INPUT #f .string variable
Read an entire line from a disk file.

LINE INPUT #2,B$

LIST LIST [line[-[line]]]
List program lines at terminal.

LIST 100-1000

LLIST

LOAD

LOC(f)

LOQ(exp)

LPOS(n)

LSET

LLIST [line[-[line]]]
List program lines at printer.

LOAD filename [,R]
Load a program file.
,R option means RUN.

LLIST 50-

LOAD-INVEN"

Returns next record number to read or PRINT LOC(1)
write (random file), or number of sectors
read or written (sequential file)

Gives the natural logarithm of the
expression

Returns carriage position of line printer
(n Is dummy argument)

LSET field variable=string exp
Store data in random file buffer left
justified. Or left justify a non-disk string
in a given field.

D«LOG(Y-2)

IFLPOS(3)>60...

LSET A$="JOHN JONES'
LSETB$=MKS$(MAX)

MERGE MERGE filename
Merge program on disk with program
in memory. Program on disk must have
been SA VEd in ASCII mode.

MERGE "SUB1"

MID$ MID$(strlng1,n[,m]) =string2
Replace a portion ot string 1 with
strings. Start at position n and
replace m characters.

MID$(string,start [.length])
Returns characters from the middle of
the string starting at the position
specified to the end of the string or for
length characters

MKI$(value) Converts an Integer to a 2-character
MKSS(value) string (MKI$). Converts a single
MKDS(value) precision value to a 4-character string

(MKS$). Converts a double precision
value to an 8-character string (MKD$).

MID$(A$,14) = "KS"

MID$(X$,5,10)

LSETD$=MKS$(A)
LSETA$=MKI$(B%)

47

Microsoft BASIC-80 VER 5

NAME NAME old filename AS new filename
Change the name of a disk tile.

NAME"SUB1"AS"SUB2"

NEXT NEXT variable [.variable...] NEXT I
Delimits the end of a FOR loop.

NEW NEW NEW
Delete current program and variables.

NULL NULLexp
Sef the number of nulls printed after
each line.

OCT$(exp) Converts a number to an octal string

ON ERROR ON ERROR GOTO line
GOTO Enables error trap subroutine

beginning at specified line. If
line = 0, disables error trapping.
If line = 0 inside error trap
routine, forces BASIC to handle error.

NULL 2

O$ = OCT$000)

ON ERROR GOTO 1000

ON/GOSUB ON expGOSUB line [,line]
GOSUB to statement specified
by expression. (If exp =1, to 20;
it exp = 2, to 20; if exp = 3, to 40;
otherwise, error.)

ONDATE% + 1 GOSUB 20,20,40

ON/GOTO ON exp GOTO line [,line...]
Branch to statement specified
by exp. (If exp= 7, to 20; if
exp = 2, to 30; otherwise, error.)

ON INDEX GOTO 20,30

OPEN OPEN mode,[#] filename [jeden]
Open a disk tile. Mode must be one of:

I (sequential input tile)
O (sequential output tile)
R (random input/output file)

OPEN "O-JI,"OUTPUT-

OPTION OPTION BASE n
BASE Declare the minimum value for

array subscripts, n is 0 or 1.

OPTION BASE 1

OUT OUT port,byte
Puts byte specified to output
port specified.

OUT41,16+DATAO%

PEEK(exp)

POKE

48

Reads a byte from memory location
specified by expression

POKE address,byte
Puts byte specified into memory
location specified.

PRINT PEEK(&2000)

POKE&23100.255

Microsoft BASIC-8Ö VE« 50

POS(n) Returns carriage position of terminal IFPOS(3)>60...
(n is dummy argument)

PRINT PRINT [USING format string;] exp [,exp...]
Print data at the terminal using the PRINT USING "!";A$,B$
format specified. See table for format
characters.

PRINT iff, [USING format string;] exp [,exp...]
Write data to a disk tile. PRINT 04.A.B

LPRINT [USING format string;] variable [.variable]
Write data to a line printer. LPRINT A.B

PUT PUT [|] f [.record number]
Write data from a random buffer to a
data file.

PUT #3,4

RANDOMIZE RANDOMIZE [exp]
Reseed the random number
generator.

RANDOMIZE 5

READ READ variable [.variable...]
Read data from a DA TA statement into
the specified variables.

READI.X.AS

REM any text
Allows user to insert comments
in program (not executed).
NOTE: ":" does not terminate a
REM statement.

REM COMPUTE AVERAGE

RENUM RENUM[[new line] [.[old line] [,inc]]] RENUM 100.,100
Renumber program lines.

RESET RESET
Reinitialize CP/M disk information.
Use after changing diskettes.

RESET

RESTORE RESTORE [line number] RESTORE
Resets DA TA pointer so that
DATA statements maybe re-read.

RESUME RESUME or RESUMED RESUME
Returns from ON ERROR routine
to statement that caused error.

RESUME NEXT RESUME NEXT
Returns to statement after the
one that caused the error.

RESUME line RESUME 100
Returns to the specified line.

49

Microsoft BASIC-80 VER 5 0

RETURN RETURN
Return from subroutine to
Statement following last GOSUB
executed.

RIGHT$(string,length)
Returns rightmost length characters
of the string expression

RETURN

C$=RIGHT$(X$,8)

RND[(exp)] Generates a random number. E
Expression:

< 0 seed new sequence
= 0 return previous random number
> 0 or omitted, return new random number

= RND(1)

RSET RSET field variable = string exp
Sfore data in a random tile butter right
justified. Or right justify a non-disk string
in a given field.

RUN RUN [line number]
Run a program (from line number).

RUN filename [,R]
Load a program from disk and run it.
,R used to keep files open.

RSETB$ = "CORRECT
RSETC$ = MKS$(COUNT)

RUN
RUN 50

RUN "TEST-

SAVE SAVE filename [,A or ,P]
Save the program in memory with
name "filename." ,A saves program in
ASCII. ,Pprotects file.

SAVE "PROG",P

SGN(exp) 1 if expression > 0
0 if expression = 0
-1 if expression < 0

SGN(X+Y)

SIN(exp) Sine of the expression (in radians)

SPACES(exp) Returns a string of exp spaces

SPC(exp) Used in PRINT statements to print
spaces

SQR(exp) Square root of expression

STOP STOP
Stop program execution, print
BREAK message, and return to
command level.

B = SIN(A)

S$=SPACE$(20)

PRINT SPC(5),A$

C = SQR(D)

STOP

Microsoft BASIC-80 VER 5.0

SPECIAL CHARACTERS (i m«.n.control)

T A Enters Edit Mode on line being typed or last line typed

IC Interrupts program execution, returns to BASIC command level
and types OK

1 Q Rings the bell at the terminal

I H Deletes last character typed

I1 Tab. Tab stops are every 8 columns

I 0 Halts/resumes program output
I R Retypes the line currently being typed

I S Suspends program execution

1 Q Resumes execution after control-S
I U Deletes line being typed
I X Deletes line being typed

< return > Ends every line typed in

< linefeed > Used to break a logical line into physical lines

< rubout > Deletes last character typed

< escape > Escapes Edit Mode subcommands
Current line for EDIT, RENUM, DELETE, LIST. LLIST commands

&O or & Prefix for octal constant
&H Prefix for hexadecimal constant

: Separates statements typed on the same line
? Equivalent to PRINT statement (L? Is not equivalent to LPRINT)

EDIT MODE SUBCOMMANDS
Subcommand Function

A Restore original line and restart EDIT at the start of the line.

nCc Change n character(s).

nD Delete n character(s) at the current position.

E End editing and save changes but don't type the rest of the line.

Hstring < escape > Delete the rest of the line and insert string.

Istring < escape > Insert string at current position.

nKc Kill all characters up to the nth occurrence of c.

L Print the rest of the line and go to the start of the line.

Q Quit editing and restore original line.

nSc Search for nth occurrence of c.

Xstring < escape> Go to the end of the line and insert string.

< rubout > Backspace over characters. In Insert mode, delete characters.

< return > End editing and save changes.

< »P«* > Move to the next character 53

Microsoft BASIC-80 Vf« 5 0

OPERATORS
Symbol Function

Assignment or equality test

Negation or subtraction

+ Addition or string concatenation

Multiplication

/ Division (floating point result)

Exponentiation

\ Integer division (integer result)

MOD Integer modulus (integer result)

NOT One's complement (integer)

AND Bitwise AND (integer)

OR Bitwise OR (integer)

XOR Bitwise exclusive OR (integer)

EQV Bitwise equivalence (integer)

IMP Bitwise implication (integer)

= ,< . > . Relational tests (result is TRUE =
< =. = < . orFALSE = 0)
> =. = >

-1

The precedence of operators is:
(1) Expressions in parentheses
(2) Exponentiation (A 1 B)
(3) Negation (-X)
(4) *,/
(5) \
(6) MOD
(7) +,-
(8) Relational operators (= ,< > ,< ,> ,<= , > =)
(9) NOT

(10) AND
(11) OR
(12) XOR
(13) IMP
(14) EQV

54

PRINT USING Format Field Specifiers
NUMERIC

Specifier

$$

**$

mi

underscore

STRING
i

\<spaces>\

&

Possible
Digits

1

0

0

Field
Characters

1

1

1

2

1

2

1

0

2

2

3

1

4

Definition Example

Numeric field U # # V

Decimal point # . #

Print leading or trailing sign. + # #
Positive numbers will have " + ", # # # +
negative numbers will have

Trailing sign. ##.##-
Prints "-" if negative,
otherwise blank.

Leading asterisk **###.##

Floating dollar sign. $$##.##
$ is placed in front of the
leading digit.

Asterisk fill and floating dollar **$#.##
sign

Use comma every three digits ##,###.##
(left of decimal point only.)

Exponential format. Number # . # # } }]]
is aligned so leading digit
is non-zero.

Next character literal !#.#

Single character !

2+number of spaces \ \
character field

Variable length field &

55

MICROSOFT BASIC COMPILER
The following direct mode commands are not implemented on the compiler and will
generate an error message:

AUTO CLEAR CLOAD
CSAVE CONT DELETE
EDIT LIST LLIST
RENUM COMMON SAVE
LOAD MERGE ERASE

NEW

BASIC COMPILER COMMANDS AND SWITCHES
Format of a BASIC compiler command:

[device:] [ob] filename] [.[device:] [list filename]]=[device:]sourcefilename[/switch...]

Switches:

/E Use /E if the program contains an ON ERROR GOTO statement with the
RESUME <line number > statement. Line numbers will be included in the
binary file.

/X Use /X if the program contains an ON ERROR GOTO statement with the
RESUME, RESUME 0, or RESUME NEXT statement. Line numbers will be
included in the binary file.

/N Do not list generated object code.

/D Generate debug/checking code at runtime.

/S Quoted strings of more than 4 characters will be written to the binary file as
they are encountered.

/4 Compiler will recognize the lexical conventions of the Microsoft 4.51
BASIC-80 Interpreter. (May not be used together with /T.)

/C Relax line numbering constraints. Line numbers may be in any order or
they may be eliminated, but they may not be repeated. With /C, the un-
derline character causes the remainder of the physical line to be ignored,
and the next physical line is considered to be a continuation of the current
logical line. /C and /4 may not be used together.

/T Use BASIC-80 version 4.51 execution invention. (May not be used together with 14)

/Z Use Z80 opcodes wherever possible.

SAMPLE COMPILE AND GO
1. Compile TEST BAS to create TEST.REL

A > BASCOM
•TEST,TTY: = TEST/N/D

2. Link TEST.REL with BASLIB.REL and execute

A>L80
•TEST/G

56

BASIC COMPILER ERROR MESSAGES
Compile-time Fatal Errors:

SN Syntax error
OM Out of memory
SQ Sequence error
TM Type mismatch
TC Too complex
BS Bad subscript
LL Line too long
UC Unrecognizable command
OV Math overflow
/O Division by zero
DD Array already dimensioned
FN FOR/NEXT error
FD Function already defined
UF Function not defined
WE WHILE/WEND error
/E Missing/E switch
IN INCLUDE ERROR
LS Long string constant
/X Missing/X switch

Compile-time Warning Errors:

ND Array not dimensioned
SI Statement ignored

Run-time Error Messages:

2 Syntax error
3 RETURN without GOSUB
4 Out of data
5 Illegal function call
6 Floating overflow or integer overflow
9 Subscript out of range

11 Division by zero
14 Out of string space
20 RESUME without error
21 Unprintable error
50 Field overflow
51 Internal error
52 Bad file number
53 File not found
54 Bad file mode
55 File already open
57 Disk I/O error
58 File already exists
61 Disk full
62 Input past end
63 Bad record number
64 Bad filename 57
67 Too many files

DEC - HEX - OCT - ASCII

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

00
01
02
03
04
05
06
07
08
09
OA
OB
OC
OD
OE
OF
10
11
12
13
14
15
16
17
18
19
1A
IB
1C
ID
IE
IF

000
001
002
003
004
005
006
007
010
Oil
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

NUL
SOH
STX
ETX
EOT
ENQ
AC K
BEL
BS
HT
LF
VT
FF
CR
SO
SI
OLE
DC1
DC 2
DC 3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

20 ' 040
21 1 041
22
23
24
25

042
043
044
045

26 j 046
27
28
29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

3P
j
"
I
S
%
&
1

(
)
*
+
t

-

/
0
1
2
3
4
5
6
7
8
9

<

•

>

p

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
13-

9
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z
[
S
]
t
-*-

96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
Ui
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

•
a
b
c
d
e
f
q
h
i
j
k
1
m
n
o
P
q
r
s
t
u
v
W

X

y
z
{
1

}
~

DEL

60

	SUMMARY GUIDE
	INTRODUCTION
	TABLE OF CONTENTS
	FILE NAME REFERENCES
	DISK REFERENCES
	SWITCHING DISKS
	LOGICAL NAMES
	PHYSICAL DEVICE NAMES
	COMMON FILE TYPES
	SPECIAL FUNCTION KEY COMMANDS
	DIRECT (BUILT-IN) COMMANDS
	TRANSIENT COMMANDS
	ED (Editor) COMMANDS
	ASM (Assembler)
	DYNAMIC DEBUGGING TOOL (DDT)
	ST AT command
	LOAD command
	DUMP command
	PIP command
	MOVCPM
	SYSGEN
	SUBMIT ufn parm#1 . . . parm#n
	XSUB*
	DESPOOL™
	MAC™
	TEX COMMAND SUMMARY
	CBASIC-2™
	Microsoft BASIC-80
	MICROSOFT BASIC COMPILER
	DEC - HEX - OCT - ASCII

