
USER’S MANUAL
VER. A.3

DOSPLUS (c) (p) 1983 Micro-Systems Software Inc.
DOSPLUS User’s Manual (c) (p) 1983 Micro-Systems Software Inc.

This manual is copyrighted material. Reproduction in any form,
without the written permission of the publisher, is prohibited by law.

DOSPLUS 3.5 – User’s manual addendum – Misc. information

Page 1

A note to all previous owners of DOSPLUS

If you are a previous DOSPLUS owner (versions 3.3, 3.4, or 4.0), there are a couple
of areas that have changed with this new version that deserve a bit of documenting.
Specifically, they are:

(1) Methods of configuring the system.
(2) Creating a double density Model I master disk.

One very important note to all owners of version 3.5, whether you are a first time
DOSPLUS owner or not. Please read carefully the library command SYSTEM. There is a
great deal of information there on "customizing" your DOSPLUS. Used in conjunction
with the information in this addendum, you should be able to configure the new system
in any manner you desire.

Methods of configuring the system

Using the external device structure with alternate drivers

In earlier versions, DOSPLUS used what is referred to as an "internal" device
structure. This means that all drivers needed to operate whatever devices are attached
to the computer were internal to the DOSPLUS operating system. This in turn meant
that every time we moved to support a new device (a different hard drive, a new
printer, etc.) we were forced to create a "new" version of the system.

This has become impractical. Therefore, DOSPLUS 3.5 adopts a new procedure
referred to as an "external" device structure. This means that all drivers needed for
the operation of that various peripherals are no longer built in to the system but exist
as options outside the system. The system will use the drivers provided by the TRS-80’s
ROMs by default and only load in the new drivers if you indicate that you want them.

This is a great deal more flexible. It allows us to provide support for a much wider
range of add on peripherals by simply altering a driver without having to make major
changes to the system itself. It also removes many of the memory restrictions
associated with maintaining drivers internally in the "system’s memory area".

The other thing that the new external device structure means is that certain
advanced functions that used to be automatic are not automatic now until you install
one of the alternate drivers (usually with the ASSIGN command). Specific examples are
the printer driver and, on the Model I, the keyboard and display drivers.

The printer driver. On both the Model I and the Model III, DOSPLUS will now use
the ROM printer driver unless you instruct the system to install the PR/DVR driver
supplied on the disk for you. This means that automatic pagination, serial printer
support, spooled output, etc., are not available until this driver is installed with
ASSIGN. This creates an extra step initially, but allows us to supply other alternate
drivers for non-standard printers. Later, we will cover how to make the installation of
our DOSPLUS printer driver (and any of our drivers) a permanent part of your system.

DOSPLUS 3.5 – User’s manual addendum – Misc. information

Page 2

The Model I keyboard and display drivers. Another area that will surprise some of
you will be the lack of repeating keys and lower case support on the Model I when you
first boot up the new system. These items are still present, but you must install the
KI/DVR keyboard driver and the DO/DVR display driver first. Because the system uses
the ROM drivers unless otherwise instructed, the "standard" features are those
provided by these drivers until such time as you install an alternate driver and make
that the "standard". What is important to remember, is that we have taken away
nothing from the system. We may have required you to ask for it before we give it to
you, but all the functions of previous systems exist in DOSPLUS 3.3.

What does all this have to do with methods of configuring the system? A great deal.
Many users of previous DOSPLUS systems will find that they cannot configure the
system to suit their desires until alternate drivers are installed. This is why it is
important to understand that the "standard" features are those provided by the ROM
drivers. If these features are not sufficient for your needs, then we have provided for
your convenience many alternate device drivers that should provide you with a wealth
of options. All that is required of you is to install any needed drivers before
attempting to configure that area of the system.

This is not limited to just the drivers discussed. Although the printer, keyboard, and
display drivers were the ones selected as examples, these are not the only times you
would need to use the alternate drivers. For example, if you wanted to install a filter
on the display device (@DO), the ROM drivers would not support this. Before this could
be done, the alternate display driver DO/DVR would have to be installed with the
ASSIGN command.

Also, it is not limited to just the device drivers, although these are the most
common. You will also need to ASSIGN alternate disk drivers for some special
instances. Examples would include operating a hard disk drive or an eight inch floppy
disk drive. These drivers are not provided with the standard 3.5 system and must be
requested separately. They may require an extra charge, as in the cases of the hard disk
drivers, to name one.

How to permanently configure DOSPLUS

Now that we have addressed the basics of customizing your DOSPLUS 3.5 and how
that it may require the installation of alternate drivers, we will move on to the subject
of, once that your system is configured the way that you want it with all drivers
installed, how do you make this a permanent change.

In the older systems, you had several commands that were used to configure the
DOSPLUS system. Among them were CONFIG, RS232, and FORMS. Each of these had
some manner (usually a "SAVE" parameter) of making the configurations in that
command permanent. This has changed with version 3.5.

In the new version, we are no longer just concerned with saving some settings for
the internal drivers, but also with saving the drivers themselves. If we did not save the
drivers also, it would mean that each time you booted the system, you would have to
re-install all the alternate drivers needed to support the functions desired.

DOSPLUS 3.5 – User’s manual addendum – Misc. information

Page 3

For example, we will assume that you have installed the alternate printer driver in
order to drive a serial printer. You have used the ASSIGN command to install the
PR/DVR driver and specified all needed parameters. You have also adjusted the
FORMS command to provide pagination of printer output. Everything functions fine.
Then you reboot the system. If all that we saved was the settings on FORMS, before
you could resume printer output, you would have to install the driver again and reset
all needed parameters. This would quickly become very tedious.

Therefore, we now provide you with the ability to create configuration files. Please
don’t confuse these with the CONFIG command. They will save the CONFIG command’s
current settings, but they do a great deal more as well. When you create a
configuration file, the system is saved as it is at that moment. This includes not only
the settings of all the commands such as FORMS, CONFIG, RS232, and SYSTEM; it
also includes any drivers that may have been installed.

All of this information, drivers and settings, is stored on the disk in a file. All you
must do to regain the configuration and driver scheme as it was when you created this
file is to execute the file. Execute it exactly as you would any other machine language
program.

To summarize all of this, in the old system you would use various commands to
customize the system and then you would permanently save these changes with the
command. In DOSPLUS 3.5, this is not possible for two reasons. First, the drivers need
to be saved also. Second, there are now more areas in which you can configure the
system and to have them all save independently of each other would get confusing.

Therefore, picture a funnel. That is the manner in which the new system functions.
All of the commands and all of the drivers funnel down to one act: creating the
configuration file. When the system is set up just the way you want it, you will create
the configuration file to be able to recall this later in a moment.

You may then, if you wish, put the name of this file on an AUTO statement so that
your system configures itself automatically upon powerup. By using the invisible AUTO,
you can even do this without having to observe its occurrence. Also, because you may
have more than one command on an AUTO statement now, you can place the
configuration file on an AUTO statement and still be able to execute other commands.

One final note. This technique will also be used to operate the hard disk drives.
Once you have initialized the drive and, if desired, transferred system control to the
hard disk, you will then create a configuration file containing this. After booting from
your floppy disk, execute that configuration file and you will immediately be
re-configured for the hard disk. You may also create as many of these files as you
like, each with a slightly different configuration. You can change configurations
quickly and simply by executing these various files. Although it is not a requirement, it
may be useful to have at least one file on the disk with a "bare bones" configuration.
That is, one file with only those items you consider essential to the operation of the
system. This allows you to load this file and proceed from that point on in further
configuration when creating new files. It prevents you from having to start completely
over when designing a configuration file for a different function.

Please note that if items such as TRAP, JCL, or filters are in effect, they will also
be saved in the configuration file. Also saved will be the current drive CONFIGurations
and device names. In short, all areas of the system are saved with this file.

DOSPLUS 3.5 – User’s manual addendum – Misc. information

Page 4

Creating a double density Model I master disk

All of the following assumes that you have hardware capable of operating in double
density. This would include some form of double density adapter for the expansion
interface unit.

Creating the actual disk to be used

The first and most important item to remember is to backup both of the Model I
master disks you received before attempting ANY of the following. Only work with
duplicate copies.

Version 3.5 of DOSPLUS is supplied on two single density system disks. This is so
that anyone may boot and read them. It is no longer necessary to have a separate
double density version. However, there is now a simple procedure that must be followed
before a double density master disk can be created.

Note: Owners of the Radio Shack Double Density Disk Kit, catalog number 26-1143,
must install a patch before beginning. This is described later.

The first step is to format the disk. Use the FORMAT utility to accomplish this.
When FORMAT prompts you for the disk density respond with "D" for double. After
you have formatted the disk, use the SYSGEN command to install the operating system
on the disk you just created.

Once SYSGEN is finished, use the COPY command to copy all files from the single
density master disk to the disk you just formatted and sysgened. Following that step,
exchange the single density master disk currently in the system drive with the other
master and repeat the copy so that all files on both disks are copied to the double
density disk.

Once this is done, the process is complete. File this working master away in a safe
place and make all your backups from it.

Example

Place the single density master disk labeled "A" or "SDEN" in the system drive and
reset the machine. Place a blank disk in drive 1. Issue the command:

FORMAT :1

When FORMAT prompts you for disk density, respond with "D" for double. Answer
all other questions according to your drive hardware (number of cylinders, number of
sides, etc.). When format is complete, remove the disk labeled "A" or "SDEN" from
drive 0 and replace it with the disk labeled with "B" or lacking the "SDEN" stamp. One
that disk is in place, issue the command:

SYSGEN :1

SYSGEN will copy the system modules to the disk in drive 1. Once this is complete
that disk will contain only the system files. To move the utilities and other files to
this disk, issue the command:

DOSPLUS 3.5 – User’s manual addendum – Misc. information

Page 5

COPY :0 :1,ECHO,SPW="PASSWORD",INV,NEW

This will copy all files from the single density disk to the double density disk just
formatted and sysgened. This assumes that the password on the master disk is still
"PASSWORD". If you have changed this, alter the statement accordingly. After this
step is complete, replace the single density master disk in drive 0 with the other single
density master (the one labeled "A" or "SDEN") and issue the command:

COPY :0 :1,ECHO,SPW="PASSWORD",INV,NEW

Note that you did not have to reboot, since both master disks are system disks. Also
note that you could have simply typed a slash (/) and pressed ENTER after making the
swap.

Once all of these steps are complete, the disk in drive 1 will be a double density
master DOSPLUS diskette. You may make all future backups from this disk. This would
have also allowed you to create a double sided or 80 track master at the same time, if
you so desired.

Whatever manner of disk you formatted (double density, double sided, 80 track,
etc.), when you have sysgened it and copied all files to it, that disk is now a DOSPLUS
master disk. This very simple sequence of events allows you to create whatever type of
master is desired from the two 35 track single density masters we supply.

Please note that if all you wanted to do was create a 40 track single density master
(e.g. expand the cylinder count but not alter the density), this may be accomplished
through using FORMAT and BACKUP. Format the destination disk to 40 tracks before
beginning the backup and when BACKUP told you the disk contained data, reply with a
"Y". This tells it to use the existing format. BACKUP will not de-allocate the last five
cylinders.

The following notice applies to all of you DOSPLUS owners with the Radio Shack
double density adapter. It is in regards to a patch required before DOSPLUS may be
used with this kit.

NOTICE TO ALL MODEL I USERS

If you have a TRS-80 Model I with the Radio Shack Double Density Disk Kit,
catalog number 26-1143, you must modify your DOSPLUS 3.5 for proper operation with
the double-density adapter. To make this modification, type the following command
from the DOSPLUS command level:

DO RS

This command will initiate a sequence of actions which will modify the DOSPLUS
diskette in drive 0 for use with the Radio Shack double-density adapter.

Please note that these steps are not required for other "doubler" kits, and if the
changes are made, other double density adapters may not function properly.

DOSPLUS 3.5 – User’s manual addendum – Misc. information

Page 6

Example

Place a backup of the DOSPLUS Master diskette labeled "A" or "SDEN" in drive 0
and reset the system. From the DOS PLUS prompt, issue the command:

DO RS

This will cause that Master diskette to be patched for Radio Shack doubler
operation. Press the reset button to reboot and load in the patched DOSPLUS system.
After you have done this, follow the steps outlined above to create a double density
Master disk.

If for any reason, you need the "B" disk (the one labeled "B" or lacking the "SDEN"
stamp) to operate in double density also, you will have to first copy the file RS/TXT
to the "B" disk from the "A" disk and then while the "B" disk is in drive 0, issue the
"DO RS" command.

Note: You must reboot after making the patch. This is vital to the correct operation of
the system. Then, while creating the double density Master disk, you should not reboot
when switching between Masters. This is so that the patched system remains resident
in memory until the actual double density Master is created.

Manual omissions

There are several items that were inadvertently left out of the DOSPLUS 3.5 User’s
manual as it was sent to you. In this part of the addendum, we shall cover some of
these.

Pausing DIR, CAT, and FREE display outputs

There is no clear statement in the manual regarding what is used to pause the
display output on the library commands DIR, CAT, and FREE. This is accomplished by
pressing the SPACE BAR. The listing will pause and wait for you to press any key to
continue.

Pressing the SPACE BAR will pause the output on many DOS commands and utilities
such as LIST, MAP, etc. This replaces the SHIFT @ used in earlier systems. Please note
that BASIC still uses SHIFT @ to pause program listings, however.

Screen printer option

When you have assigned the DOSPLUS alternate keyboard driver KI/DVR, you have
the option of obtaining, at any time, a printout of what information is currently on the
screen. This is accomplished by typing control-asterisk (*). The key sequence for this is
SHIFT DOWN ARROW, and while still holding these two keys, pressing the asterisk (*).

This is the same for both the Model I and Model III editions of the driver.

DOSPLUS 3.5 – User’s manual addendum – Misc. information

Page 7

LABEL/CMD

As discussed in the BASIC section of this manual, DOSPLUS 3.5 Extended Disk BASIC
supports labeled line addressing. Briefly, this means that all BASIC commands
that normally require line number references may accept label names instead of line
numbers. Labels are assigned by placing the BASIC keyword NAME followed by the
label, at the beginning of any desired line. For example, this BASIC program:

10 PRINT"(1) ENTER NEW ITEM"
20 PRINT"(2) DISPLAY EXISTING ITEM"
30 PRINT"(3) DELETE OLD ITEM"
40 PRINT
50 INPUT"SELECTION";X
60 ON X GOTO 1000,2000,3000
70 GOTO 10
1000
.
.
2000
.
.
3000
.
.

could be written, using label addressing, like this:

10 NAME MENU:PRINT"(1) ENTER NEW ITEM"
20 PRINT"(2) DISPLAY EXISTING ITEM"
30 PRINT"(3) DELETE OLD ITEM"
40 PRINT
50 INPUT"SELECTION";X
60 ON X GOTO ENTER,DISPLAY,DELET
70 GOTO MENU
1000 NAME ENTER
.
.
2000 NAME DISPLAY
.
.
3000 NAME DELET
.
.

This is, of course, a very convenient way to write BASIC programs. Unfortunately,
most BASIC interpreters do not understand label addressing, and therefore programs
using label addressing written under DOSPLUS 3.5’s Extended Disk BASIC often will not
run under other versions of BASIC (including TBASIC). The LABEL program is a label
resolver; that is, the program will process a program containing labels and label
references and create a program without labels. LABEL will replace all label
references with line number references, and will delete all label names and associated
NAME keywords from the source program.

DOSPLUS 3.5 – User’s manual addendum – Misc. information

Page 8

To create a resolved BASIC program from a program containing labels, type:

LABEL filespec1 filespec2

where "filespec1" is the name of the BASIC program containing label references, and
"filespec2" is the name of the file to contain the resolved BASIC program.

If the filenames are not specified on the command line when requesting the LABEL
program, LABEL will prompt for the source and destination filenames.

When the LABEL program processes a BASIC program, it does so in two stages.
The first stage, or pass, involves scanning the source program for all label definitions;
that is, all of the line numbers containing the NAME keyword. LABEL builds a table in
the computer’s memory of all label names and the associated line number in which they
occur. In the second pass, LABEL removes all label names, the NAME keyword, and
replaces any references to a label with the line number in which the label was defined.
If a reference is found to a label that does not occur in the program, the label is left
unchanged in the program text, and the message:

Resolving line #:xxx Undefined label:xxxxxx

is displayed on the screen, informing you of the line number in which the undefined
label was found and the name of the label.

After the LABEL program is finished, the resolved destination BASIC program file
may be used normally.

Disk Master password

The password on the DOSPLUS 3.5 Master disks as supplied from Micro-Systems
Software is "PASSWORD".

This password may be required when performing certain global functions with library
commands such as COPY, ATTRIB, PROT, and KILL. This password may also be
substituted at any time for a regular file password.

Note: This should indicate to you the importance of assigning a Disk Master Password
when formatting new disks. If the Disk Master Password is null (not set), then by not
specifying the password, you have, in effect, given the password. This is because NO
password IS the password. If you desire to protect any of the files on that diskette,
you must assign a Disk Master Password. If one was not assigned during format, you
may use the PROT command to assign a password.

File passwords

Many of the DOSPLUS utility and system files are protected with a password. This
is to prevent you from accidentally deleting one of these files. If you wish to copy
only a single utility or system file, though, the password will be the same as the file’s
extension. For example, the password on SYS0/SYS is "SYS" and on BACKUP/CMD, it
is "CMD". By using the correct password, you may access any of the files that have
protected status.

DOSPLUS 3.5 – User’s manual addendum – Misc. information

Page 9

Standard files

There were many files included with your DOSPLUS 3.5. Some of these are covered
in the manual and some are not. Most of the files that are not covered are patch files.

These files will have extensions such as /PPT or /FIX. These files will also usually
be simply text files to be interpreted by certain DOSPLUS commands. Therefore, you
can usually determine what the files do by using the LIST command to display them and
reading any comment lines they may contain.

Files that have the /SYS extension are DOSPLUS system files. Files with the /CMD
extension are usually DOSPLUS utilities. Files with extensions of /DVR and /FLT are
drivers and filters and will be covered in that section of the manual.

Remember, if you have a question about one of these files (one not covered
elsewhere), it is usually advisable to list it and see if it is self explanatory.

Manual errors

PRINT@ routine address incorrect

On pages T/23 and T/38 of the technical manual, it states that the address for the
PRINT@ routine is 4462. This is incorrect.

The correct address is: 446A. This applies to both Model I and Model III.

Parameter on FILE/DVR incorrect

On page 6-10 of the DOSPLUS manual, it states that the SIZE parameter of the
FILE/DVR program indicates the desired size of the pseudodisk in KILOBYTES. This is
not true.

The SIZE parameter of the FILE/DVR program indicates the desired pseudodisk size
in 256 byte RECORDS.

FILTER command misleading

On pages 2-79 and 2-80 of the DOSPLUS manual, the statement is made that the
FILTER command assumes the extension /FLT. This is incorrect.

The FILTER command assumes no extensions whatsoever. We recommend that you
use the /FLT extension to identify the filter files, but you will have to specify this
extension when using FILTER.

I command inaccurate

On pages 2-90 and 2-91 of the library commands section, it states that the command
I by itself will cause the DOS to recognize a change in the number of sides on a
diskette at the next disk access. This is not the case.

In order to have the system recognize a switch in diskettes from single to double
sided or vice versa, you must use the MOUNT parameter. The I command by itself will
simply initialize the driver. With the standard floppy disk drivers, this will not affect a
change in sides recognition.

DOS Operations

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-1

Introduction

Welcome to DOSPLUS 3.5! This unique Disk Operating System is based upon our
belief that a program does not have to be confusing to be powerful. For those of you
are used to our previous systems, DOSPLUS 3.5 will prove to be a bit of a surprise.
This is perhaps the most device independent system ever designed for the TRS-80
Models I and III. This manual is designed to help you get acquainted with DOSPLUS 3.5
and is written in what (I hope) is a user-friendly and easy to understand manner. The
manual is basically divided into the following sections

The operations manual. This portion of the manual is aimed
at teaching you the concepts behind the system and
introducing you to the various parts of the system. It
contains the area for the first time user and also
information on command syntax and how to operate
DOSPLUS.

The library of commands. This portion of the manual covers
the library commands. A library command is a "built-in"
function of the system. In other words, it is a command
that is contained within the actual system files. You will
be allowed to purge whatever commands you do not need,
but, for the most part, a "minimum system" will consist of
these commands.

The DOSPLUS utilities. The section of the manual covers
the DOSPLUS utility programs. These are programs that are
included with your DOSPLUS that enhance or expand on the
capabilities of your library commands. These utilities may be
easily removed by the user (if not needed, of course), thus
allowing the user to "customize" their DOSPLUS in the
interests of disk space efficiency.

The Disk BASIC manual. DOSPLUS 3.5 has its own Disk
BASICs. A Disk BASIC is a program that enhances the
capabilities of the BASIC that is included with your TRS-80
in the ROM. DOSPLUS has two : BASIC and TBASIC. This
section will cover each of them and then detail the
differences.

The DOSPLUS 3.5 technical manual. This final portion of
the manual contains all of the important RAM and Disk
addresses for those of you seeking information on the DOS.
It also has documentation of the various system calls and
how they function. This area of the manual is a "must read"
for the machine language programmer seeking to interface
to the system.

We hope that you will be pleased with your DOSPLUS and hope that you enjoy using
the system. There are some differences between DOSPLUS 3.5 and other systems,
though, (even earlier DOSPLUS’) so we strongly suggest that you read the manual
before beginning to use the system.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-2

General manual syntax

This manual will follow some fairly uniform syntax and to make the use of the
manual easier, we should cover that here. The first item is general syntax of entering
commands.

Three terms will be used in this manual in regards to responding to the system’s
request for information (usually called "prompts"). They are "press", "type", and
"enter".

Press means to press the single key indicated by the text. Type can either indicate
a single keystroke or a series of keystrokes. In either case, when you are instructed
to "type" something, you will be given exactly key by key what it is that you are
supposed to type. Enter is used when the user is to respond based on a set of valid
parameters for that command and fill them in as desired. You will be instructed to
"enter" something when we wish YOU to make the choice regarding what is typed.

For the sake of simplicity, we have adopted certain general manual notations. These
are as follows :

Capital letters Word must be typed in as shown.

Lowercase letters Information to be entered by the user based
upon a list of valid values and parameters for
that command.

Brackets [] Indicates that the information contained
within the brackets is optional and may or
may not be entered depending upon the
situation and the user’s desire for clarity.

Parenthesis () Indicates the parameter field. This field is
composed of those parameters that will modify
the action of the command to suit the user’s
needs. Please note that the parenthesis are no
longer a requirement in DOSPLUS. The
parameter field is now indicated as much by
position as by the delimiters.

H Indicates that the value it follows is a
hexadecimal value. Used for entering data to
the system in hexadecimal format.

The general form of each command will be the command itself, followed by the I/O
field, followed by the parameter field. The parameter field and certain portions of the
I/O field are optional and included at the discretion of the operator.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-3

First time operation

If this is the very first time that you are using DOSPLUS, the first thing you should
do is make a backup of your Master diskette. Before you can make a backup, though,
you must first power up the system.

Booting up

After switching on the machine, place your DOSPLUS Master diskette in Drive 0 and
press the reset button. On the Model III, it is the orange button in the upper right
hand area of the keyboard. For the Model I, it is located at the left rear of the
keyboard next to the expansion bus. If the system fails to boot or reports an error,
open the drive door, re-seat the diskette, and try again.

The DOSPLUS header and logo should appear. You will be prompted to enter the
date and time. DOSPLUS 3.5 stores the date of last access on every file and this is
displayed from the DIR command, so we do recommend that you take the time to set
the date on system power up. You may, if you wish, remove the logo, date, and time
prompts (or any combination of same) by using the SYSTEM command.

DOSPLUS allows you to enter the date and time in what we call "free form format".
Essentially, this means that you may enter the date and time in any form that appeals
to you. "MM/DD/YY" is valid; as is "MM/DD/YYYY". You may use any valid delimiters
to separate the information. For further examples or a detailed explanation, see the
DATE and TIME library commands. After answering the date and time prompts, you
will see the prompt "DOS PLUS" and a cursor appear.

This is called the "DOS command mode". Please remember this term, as we will refer
to it often in this manual. This is the mode from which you will enter all commands to
the system. It is from this mode that we will now issue the backup command.

Backing up with multiple drives

Place whatever diskette you wish to use for BACKUP in drive 1. It does not matter
if the diskette is blank or not. From the DOS command mode, type BACKUP and press
<ENTER>. The drive will engage, the backup program header will be displayed, and
you will be prompted :

Source drivespec ?

Reply to this with a "0" (a numeric "0", not an alphabetic "O"). This question is
asking in which drive the diskette we are backing up FROM is located. Because we
are backing up from the Master diskette located in drive 0, we answer accordingly.
Following that, you will be prompted :

Destination drivespec ?

Reply to this with a "1". This question is asking you in which drive the diskette we
are backing up TO is located. Since we placed this diskette in drive 1, we answer
accordingly.

If the current system date is "00/00/00", which would result if you had pressed
<ENTER> or <BREAK> at the date prompt and no system date was previously set,
BACKUP will prompt you :

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-4

Backup date ?

At this point, you may enter the correct date or any eight characters that you wish
to have appear in the diskette’s "creation date" field. Any characters are valid at this
prompt.

BACKUP will then read first from the source diskette, then from the destination. If
the destination diskette was blank, BACKUP will format the diskette and proceed with
the copy. If the diskette was NOT blank, you will be prompted :

Diskette contains data, Use or not ?

At this prompt you have three options.

(1) Abort the backup.

(2) Continue using present destination format.

(3) Continue, but after re-formatting the destination diskette.

To abort the backup, type N and press <ENTER>. You may also simply press
<BREAK> to abort (at any of the prompts). BACKUP will then flash the message :

Insert System disk (ENTER)

Your DOSPLUS Master diskette should still be in drive 0 at this point, so simply
press the <ENTER> key. You may use BACKUP to backup between two non-system
disks if you wish. Consult the utilities manual under BACKUP for details.

To continue with the backup and attempt to use the current destination disk format,
type Y or U and press <ENTER>. DOSPLUS will then examine the destination disk to
determine whether or not the formats are compatible. The system will re-format as
little of the destination disk as possible if they are not compatible (to save time) and
then proceed with the backup. If the destination disk has a major incompatibility,
BACKUP will automatically just re-format the entire disk.

To continue with the backup, but force BACKUP to re-format the destination disk
first, type F and press <ENTER>. BACKUP will then re-format the destination disk
and proceed with the backup. This is useful when you are not certain of the
destination disk’s format or when you wish to make sure that no vestiges of the old
data exist on the destination disk after the backup.

When BACKUP is actually copying the disk, it will read just as many granules as it
can into memory at one time before writing them out to the destination disk. BACKUP
will read only those granules that are currently allocated, so if some cylinders seem
to be skipped or the numbers change more rapidly, don’t be alarmed. Those granules
were empty and there was no need to copy them.

Please note that BACKUP makes only "mirror image" copies. That is, the destination
disk will be exactly like the source. If it encounters too many flaws such that it
cannot place data in exactly the same location on the destination disk as it occurred
on the source, then BACKUP will abort with an error. To make a "copy by file"
backup, use the library command COPY with the wildmask parameters.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-5

BACKUP will also abort on any sort of disk read error. In the event that this should
occur and you cannot backup the disk, you may use the COPY command to remove
what files you can and preserve whatever data is good.

When BACKUP is finished, it will flash the message :

Insert SYSTEM disk (ENTER)

Insert your backup disk in drive 0 (as a matter of testing) and press <ENTER>. You
should be returned to the DOS command mode. Your backup is complete. File your
Master away in a safe location and use the disk you just made as your "working"
Master.

Backing up with a single drive

Backing up with a single drive is much the same as backing up with multiple drives,
except that during the actual copy, BACKUP will be prompting you to switch between
the source and destination disks. From the DOS command mode, type BACKUP and
press <ENTER>. The BACKUP program will load, display its header and prompt :

Source drivespec ?

Reply to this with a "0" (a numeric "0", not an alphabetic "O"). This question is
asking in which drive the diskette we are backing up FROM is located. Because we
are backing up from the Master diskette located in drive 0, we answer accordingly.
Following that, you will be prompted :

Destination drivespec ?

Reply to this also with a "0". This question is asking you in which drive the diskette
we are backing up TO is located. Since we are using a single drive to make this
backup, we are backing up TO drive 0 as well as FROM it and we therefore answer
accordingly.

If the current system date is "00/00/00", which would result if you had pressed
<ENTER> or <BREAK> at the date prompt and no system date was previously set,
BACKUP will prompt you :

Backup date ?

At this point, you may enter the correct date or any eight characters that you wish
to have appear in the diskette’s "creation date" field. Any characters are valid at this
prompt.

BACKUP will then read first from the source diskette, then from the destination. It
will prompt you as to when to insert each of them. After inserting each disk as
prompted, press <ENTER>. It is most important that you do not confuse the two disks
and insert source instead of destination or vice versa. Also bear in mind that from time
to time BACKUP will need to load something from the system disk. When it prompts
you for the system disk, insert your Master disk and press <ENTER>. Please pay
attention to the prompts and be careful.

If the destination diskette was blank, BACKUP will format the diskette and proceed
with the copy. If the diskette was NOT blank, you will be prompted :

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-6

Diskette contains data, Use or not ?

At this prompt you have three options.

(1) Abort the backup.

(2) Continue using present destination format.

(3) Continue, but after re-formatting the destination diskette.

To abort the backup, type N and press <ENTER>. You may also simply press
<BREAK> to abort (at any of the prompts). BACKUP will then flash the message :

Insert System disk (ENTER)

Place your Master diskette in drive 0 and press <ENTER>. You may use BACKUP to
backup between two non-system disks if you wish. Consult the utilities manual under
BACKUP for details.

To continue with the backup and attempt to use the current destination disk format,
type Y or U and press <ENTER>. DOSPLUS will then examine the destination disk to
determine whether or not the formats are compatible. The system will re-format as
little of the destination disk as possible if they are not compatible (to save time) and
then proceed with the backup. If the destination disk has a major incompatibility,
BACKUP will automatically just re-format the entire disk.

To continue with the backup, but force BACKUP to re-format the destination disk
first, type F and press <ENTER>. BACKUP will then re-format the destination disk
and proceed with the backup. This is useful when you are not certain of the
destination disk’s format or when you wish to make sure that no vestiges of the old
data exist on the destination disk after the backup.

When BACKUP is actually copying the disk, it will read just as many granules as it
can into memory at one time before writing them out to the destination disk. BACKUP
will read only those granules that are currently allocated, so if some cylinders seem
to be skipped or the numbers change more rapidly, don’t be alarmed. Those granules
were empty and there was no need to copy them.

Please note that BACKUP makes only "mirror image" copies. That is, the destination
disk will be exactly like the source. If it encounters too many flaws such that it
cannot place data in exactly the same location on the destination disk as it occurred
on the source, then BACKUP will abort with an error. There is no method to make a
"copy by file" backup with only a single disk drive.

BACKUP will also abort on any sort of disk read error. In the event that this should
occur and you cannot backup the disk, you may use the COPY command to remove
what files you can and preserve whatever data is good.

When BACKUP is finished, it will flash the message :

Insert SYSTEM disk (ENTER)

If you have been following your prompts, you will insert the Master diskette and
press <ENTER>. At that point, you will be returned to the DOS command mode. Insert
your backup disk in drive 0 and re-boot the system as a matter of testing the copy

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-7

you just made. If all goes well and the new disk boots, then your backup is complete.
File your Master away in a safe location and use the disk you just made as your
"working" Master.

Overview

In this next section of the manual, we will cover such areas as :

(1) File, drive, and device specifications.

(2) Entering commands.

For those of you interested in "customizing" your DOSPLUS, as well as those of you
who have upgraded from previous systems, a discussion of the new manner of hard
configuring the system is detailed in the SYSTEM command (see SYSTEM).

File, drive, and device specifications

File specifications

We will cover these three areas in that order. First, the file specifications. The
only way to store data in a permanent manner and retrieve it later is to place it into
a "file". A file is any group of organized data stored on the disk. It can be a program
file or simply data, but all data that is permanently stored is stored in a file. A file
can store the data on the disk until you are ready to retrieve it. The data is then
accessed through the filename that you assigned it when you opened or last renamed
the file. In this sense, your disks are nothing more that electronic filing cabinets.

A file specification (or "filespec" for short) will be in the following general format :

filename/ext.password:ds

filename is a sequence of 1 to 8 characters used to specify
which file we are referring to. A filename may contain any
alphabetic or numeric characters or any of the special
filespec characters. These are detailed below.

/ext is the optional extension. This consists of from 1 to 3
characters used to further specify which file we are talking
about. Two files with the same filenames and different
extensions are different files. These may contain the same
characters as a filename.

.password is an optional file password consisting of up to
eight characters. This will be used in conjunction with
whatever protection level you set via the ATTRIB command
to control access to your file. The password may also
contain any of the legal filespec characters.

:ds is the optional drive specifier noting which drive this
particular file is stored on. We will cover drive specifiers
and what they are used for after filespecs. If you specify a
drive specifier, it must correspond to one that us currently
defined in the system.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-8

Legal filespec characters. This area differs in DOSPLUS 3.5 from earlier versions of
DOSPLUS and from all other Model I/III operating systems. Any standard filename
accepted by the other systems is legal in DOSPLUS, but we have added some special
characters and loosened the restrictions on filespecs.

In DOSPLUS, filespecs may contain the following :

(1) The letters A-Z.
(2) The numbers 0-9.
(3) The special characters : #, $, %, &, +, <, and >.

In addition to allowing those special characters to appear in filespecs, DOSPLUS will
allow you to begin any portion of the filespec with any of the legal characters. In the
past, each portion of the filespec (filename, extension, and password) had to begin
with an alphabetic character. That is no longer true in DOSPLUS. You may begin each
portion with any character you wish.

CAUTION : While this allows you a great deal more flexibility in your filespecs
within the DOSPLUS system, it can cause you to create filespecs that are
incompatible with the other operating systems. Please keep this in mind when you are
assigning filespecs and do not use any of our "special" conventions when creating a
file that you wish to transfer to another system. Remember, just because we let you
do it, doesn’t mean the rest of the systems will, too.

There can be no blank spaces or illegal characters within the filespec. DOSPLUS
will terminate the filespec at the first blank space or illegal character that it
encounters. For example, "NO GOOD/DAT" will be seen by the DOS as "NO".

Each portion of the filespec other than the filename has a specific character that
indicates to the system which portion of the filespec is coming. For the extension, it
is a slash mark "/", for the password a period ".", and for the drive specifier a colon
":". These are not optional. If you wish to use these areas of the filespec, you must
precede them with the proper specifiers. If you omit one of these characters, an
error will result.

You also may not have an ASCII 03 (end of text) or an ASCII 13 (carriage return) in
your filespec as either one of these will signal the end of the command line to the
DOS. If you wish to use multiple commands on the same line, append the commands
with a semi colon ";" as this indicates an implied carriage return to the system and it
will continue to look for more input on the command line. For more information on
multiple commands, see the section Built-in features toward the end of the operations
manual.

Further examples and details regarding filespecs. Throughout the system, and
consequently this manual, we will be dealing with two types of files. These are
program files and data files. The type of file, though, is usually known only to the
user that has created it. In most cases, DOSPLUS will never "know" what sort of data
is contained in a file. The one exception to this is the Z-80 object code file. If you
attempt to execute a file from the DOS command mode directly and it is not such a
file, you will be rewarded with an error message. The topic of "load file format" will
be covered in the LOAD command. Consult that for further details.

As we have already stated, all files have a file specification (or filespec). This
filespec may consist of from 1 to 4 parts. For instance, given the example :

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-9

PRICE/DAT.DOLLAR:1

This filespec has all four parts. The first part is the filename. In our example, this
would be "PRICE". This filename may be from 1 to 8 characters in length and may
contain any of the legal characters already given. Some examples are :

Legal Illegal Reason

MONEY ?MONEY "?" is an illegal character

JUNSALES JUNESALES Too many characters

The second part of the filespec is the extension. In our example, this would be
"/DAT". Note that the extension is separated from the filename by a slash mark. This
is not optional! An extension may be from 1 to 3 to three characters in length and may
use any of the legal filespec characters already given. The extension is a useful item
that is usually implemented in indicating what sort of information is being stored in
that file. The following are some examples of the extensions we have used in
DOSPLUS :

ASM Assembly language source file

BAS BASIC language program file

CIM A "core image" file. This file consists of data transferred
directly from memory to disk. Not necessarily executable
code.

CMD Executable Z-80 object code. Usually called a "command"
file.

DAT A data file (of any type)

DVR A driver file. This file is a peripheral "driver" that allows
you to operate various types of hardware with DOSPLUS.
This will be installed by the ASSIGN command.

FLT A filter file. Contains the data needed to instruct the
FILTER command regarding manipulating character I/O to
the various devices.

PAT A patch file. This file will contain the information needed
to instruct the PATCH program in how to modify a file.

SYS A system file. This file is actually part of the DOSPLUS
Disk Operating System.

TXT Any ASCII text file. This is also the extension used by the
DO command as its default extension.

Extensions are certainly optional and you may whatever you wish, but these are the
conventions that we suggest for the most commonly occurring types of files and in
many cases are the default extensions that our commands and utilities will assume if
no other extension is given.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-10

While the extension is not a required part of the filespec, it is often used to more
completely describe a file’s contents. For example, we may have a number of files
with the same filename, but differing in the extension :

Filespec Contents

SALES/JAN January sales

SALES/FEB February sales

SALES/MAR March sales

SALES/APR April sales

SALES/QTD Quarterly sales

The one exception to the optional nature of extensions is the Z-80 object file. In
order for you to be able to execute a machine language program directly from the
DOS command mode, it must have an extension. DOSPLUS assumes the extension
"/CMD" for the name of any program entered from the DOS command mode. Therefore,
if the name of your program is "TEST" and you type TEST and press <ENTER> from
the DOS command mode, DOSPLUS will append a "/CMD" extension to that and seek to
execute the file "TEST/CMD". This, of course, will not be found. Therefore, as you
can see, DOSPLUS requires that you have some form of extension in order to execute
a machine language file directly from the DOS command mode. It is true that you can
use the LOAD command to do it or that you could assign a different extension such as
"/Z80", but in each instance, executing the file becomes a tedious process. We
strongly suggest that you adopt the habit of referring to your machine language files
with the "/CMD" extension.

In our example, PRICE/DAT.DOLLAR:1, the third part of the filespec is the
password. In this case, it is ".PASSWORD". A password can be given to any file in
order to control access to it. You may, by using the file password in conjunction with
the ATTRIB command’s protection levels, assign a file any level of protection ranging
from "full access" to "execute only". You may require them to know the, password
before they can access the file at all, or you may require it only if they intend to
modify the file. If you set up a file as "run only", they may run it without knowing
the password, but will need the password in order to load, list, or modify the file in
any way. For more information on defining a file as "run only", see the library
command ATTRIB.

A password may be from 1 to 8 characters in length and can consist of any of the
legal filespec characters. The password is denoted by the period "." and is an optional
portion of the filespec.

Once you have created a file with a password, be sure to remember what the
password is. If you forget it, you will not be able to access that file again except
through the use of the PROT command, and even then only if you know the Disk
Master Password.

The fourth element of the filespec is the drive specification (or drivespec for short).
In our example, this was ":1". This drivespec simply informs DOSPLUS that the file
"PRICE/DAT" that we are referring to resides on the drive currently named ":1". We
will cover drivespecs in detail later in this section.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-11

For our purposes now, let it suffice to say that a drivespec is a one or two
character name that indicates which of the drives that we are referring to. DOSPLUS
was supplied with the drivespecs ":0" through ":7" as standard. You may assign these
to the actual physical drives as needed and rename them as desired.

The drivespec is also an optional portion of the filespec. If you do not give the
drivespec, DOSPLUS will begin with the first drive and search through all the drives
currently defined in the system. This is called a "global search". It will continue until
a matching filespec has been located or DOSPLUS has searched all available disk
drives.

What makes a filespec unique

It is important that we understand clearly what portions of the filespec contribute
to the uniqueness of the filespec. If, for instance, you have written a BASIC program
and we wish to store it on the disk, we must assign it a filespec. It is important to
us that the filespec we assign does not duplicate an existing filespec, because if it
did, DOSPLUS would overlay the BASIC program on top of the old file and whatever
data was contained within it would be lost.

Three of the four parts of a filespec contribute to its uniqueness : the filename, the
extension, and the drivespec. The password does not. What this means is that if two
filespecs have the same filename and drivespecs, but a different extension, they are
two distinct files. If however, two files have the same filespec, extension, and
drivespec, but only different passwords THEY DENOTE THE SAME FILE! Some
examples :

Filespec 1 Filespec 2 Same?

TEST/DAT.CLOUD:1 TEST/DAT.CLOUD:2 No

DATA/ONE DATA/TWO No

LEDGER/BAS.CASH LEDGER/BAS.CREDIT Yes

PAYROLL/BAS:0 PAYROLL/BAS Yes

ALPHA/ASM ALPHA2/ASM No

If you bear this in mind as you are saving programs and opening data files, you can
save yourself a great deal of potential problems. In this case, an ounce of caution is
truly worth a pound of recovering data lost because of carelessly overwriting a
previous file.

To recap an important point, remember that in filespecs the filename field is
mandatory in all cases. All other fields are optional.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-12

Device and drive specifications

The DOSPLUS system has eight character devices and eight drive devices built into
it. Following is a list of the two and whether it is an input or an output device :

Device Default name Class

Keyboard KI Input,
Display DO Output
Printer PR Output
Serial port RS Input or output
User defined U1 User defined
User defined U2 User defined

Drives :

First drive 0 Input or output
Second drive 1 Input or output
Third drive 2 Input or output
Fourth drive 3 Input or output
Fifth drive 4 Input or output
Sixth drive 5 Input or output
Seventh drive 6 Input or output
Eighth drive 7 Input or output

A device name is a two character description assigned to that device. Whenever you
access that device, you must specify the device name.

The first group, system devices, are all character orientated. Which is to say that
all I/O done to these devices is done byte by byte, one character at a time. The
second group, drive devices, are what we call file orientated. Which is to say they are
used to move a file at a time.

This is not to say that a file itself cannot function as a character orientated I/O
path; it can. These (files) are special cases and the file is functioning as a "channel".
But a drive cannot. Therefore the last eight devices, the drive devices, will address
one file at a time, not one byte.

You may name your devices anything you wish. For the sake of conformity and
standardization, we recommend that you leave the default names in effect. Within the
manual, we will refer to them by their default names. To rename a device, use
RENAME (see the library command RENAME). Do NOT confuse renaming a drive with
re-routing the order in which the drives are searched. That is accomplished by using
CONFIG (see the library command CONFIG) to alter the physical drive number for that
drive device.

Some restrictions -

You may not assign two devices the same name. In order to swap two device names,
you would have to temporarily rename one of the devices to a "dummy" device name.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-13

Addressing devices

You address a system (character orientated) device via its device specification
(DEVICESPEC for short). You will address a drive (file orientated) device via its drive
specification (DRIVESPEC for short). A drivespec or devicespec will have two parts :

(1) The type indicator.

(2) The device name.

The type indicator is a single character that indicates whether we are giving a
devicespec or a drivespec. It will be very important throughout the system to keep the
two clearly separate. The type indicator for a devicespec is "@" (i.e. @KI is the
keyboard). For a drivespec, this is ":" (i.e. :0 is the first drive).

The device name is any two non-reserved characters used to specify which device
you are talking about. Remember, no two device names may be the same, even if the
devices are of different types (character/file).

Any time that you refer to a device, no matter what sort of operation you are
performing, you will use the devicespec. It is very important that you, if you decide to
rename devices, remember what names you have assigned what devices. To receive a
list of the current device names and status, use the FORCE or JOIN commands! display
ability (see the library commands FORCE and JOIN).

In most cases in DOSPLUS, you may use character orientated devices in place of
filespecs. This is part of what is called "device independence".

Summary of device handling in DOSPLUS

The principle of device handling in DOSPLUS is really simple. There are only two
ways that data gets from point A to point B within the system :

(1) A byte at a time (character I/O).

(2) A file at a time (file I/O).

The two of them are not the same, and as long as we continue to remember that,
we shall have no problems with specifying an illegal I/O path for the data to move on.

When specifying the I/O path, we can specify one of three things :

(1) A devicespec.

(2) A filespec.

(3) A drivespec.

Options one and two can operate in a character I/O mode. Options two and three
can operate in a file I/O mode. So you see, the filespec is unique in that a file can
work with both styles of I/O.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-14

If all this device handling seems foreign and confusing, do not be concerned. The
actual operation of the system is much simpler than the theories behind it. They are,
however, what makes DOSPLUS work the way that it does and they deserve to be
documented. As a user of DOSPLUS, you need only be concerned with "How does this
command work and what can I do with it?". This is all explained clearly, command by
command, in the library section of this manual. Those people who are DEVELOPING
software using DOSPLUS will be able to make full use of the system’s flexibility to
develop new and innovative methods of performing the various tasks that make up a
"program".

The next subject we will address is the explanation of the various parts of the
command line and I/O field. In that discussion, we will examine how the system views a
command line after it is entered, even to the point of taking a sample command line
and proceeding step by step through it, detailing how the DOS will react to each
portion.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-15

Detailed explanation of the command line

The command line is the means by which you communicate with DOSPLUS. When you
are at the DOS command mode (remember that term?), you may enter up to 64
characters of text that commands DOSPLUS to do something. This line of text is
called the command line and has four parts: (1) The command, (2) The I/O field, (3)
The parameter field, and (4) The optional comment field. Let’s look at each of these
in turn.

The command. This is the actual DOSPLUS library command. This will call in the
portion of the system that you wish to operate with. This command must be the first
data on the line (although leading spaces will be ignored) and must be followed with
either a terminator or a separator, otherwise DOSPLUS will assume that you have
entered a program name. A terminator is a carriage return, placed into the command
line by pressing ENTER after typing in the command. You have "terminated" that
entry. An example of this would be if you typed "LIB" and pressed ENTER. A
separator, on the other hand, occurs when you follow the command name with a space
prior to entering further data.

The I/O field. This is the field immediately following the command. It will specify
the direction of the I/O and which files and/or devices shall be affected. The I/O
field has three parts to it: (1) The source field, (2) The destination field, and (3) The
wildmask field. These are indicated by the delimiter words FROM, TO, and USING
respectively. Each of these portions of the I/O field must be separated from their
delimiters and each other by a space. You may omit the delimiter words if you wish,
but if you desire to change the order of the various portions of the I/O field, you
MUST include them. For example :

COPY FROM TEST/CMD:0 TO TEST1/CMD:1

is the same as :

COPY TEST/CMD:0 TESTI/CMD:1

But if you wanted to specify the destination file FIRST, you would have to use the
delimiter words. Therefore :

COPY TO TEST1/CMD:1 FROM TEST/CMD:0

is NOT the same thing as :

COPY TEST1/CMD:1 TEST/CMD:0

The wildmask field is a field that contains a filespec that has wildcard characters in
it. This field is used to make the effect of a command global to several or all files.
There are three wildcard characters: "?", "*", and "!". A question mark indicates that
the specific character at that position is not important. An asterisk terminates that
portion of the wildmask and fills the rest of the characters with question marks.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-16

For example :

T??T/B??

will match the files "TEST/BAS" and "TOOT/BOB" equally well. In the filename
area, we used the question marks to skip two characters and then specified another
character.

However, after the "B" in the extension area, we were through but wanted any and
all extensions to match. In that case, we could have used the asterisk. For example :

T??T/B*

will match the same files as the previous example. The asterisk in the extension
field fills the rest of the extension area with question marks. Taking it further :

T/BAS

will only match the file "T/BAS". However :

T*/BAS

will match ANY file that has a filename beginning with the letter "T" and ending
with the extension "/BAS". If you do not wish to specify a filename, simply put an
asterisk in the filename area. The same is also true for the extension. That will fill
either area entirely with question marks and any character will match. The
exclamation mark is used to indicate that BOTH fields should be filled with question
marks past the point at which this character occurs in the command field so that ANY
character will match. This is also used when it is necessary to perform a function,
such as COPY, on an entire drive’s worth if files. It saves keystrokes and is more
convenient. For example :

T!

is the same as :

T*/* or T**

because "!" is the same as If you wish to use this character to replace the
entire wildmask field (such as on a COPY), you would enter :

COPY !:0 :1

This tells DOSPLUS that you wish to copy ALL files from the disk in drive "0" to
the disk in drive "1". A very useful character. DOSPLUS is signaled that a wildmask
is present whenever: (1) the USING delimiter precedes the wildmask, (2) the wild mask
appears in its proper area of the command line, or (3) the wildmask contains wildcard
characters.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-17

The parameter field. This field allows you to specify certain additional switches and
values that modify the action of the command. This field need not be included at all
unless you either want to use something other than the default parameters or you plan
on including a comment field. The parameter field is set off from the I/O field by one
of two things: (1) A comma, or (2) A left parenthesis. Within the parameter field, you
must separate your parameters from each other with a separator. In the I/O field, you
had to use a space as a separator because a comma would indicate the start of the
parameter field. Within the parameter field, though, you may use either a space OR a
comma. If you are using a comment field, you must conclude your parameter field with
a right parenthesis; otherwise the line terminator described before will suffice. If for
some reason, you intended to use the comment field but had NOT included an I/O
field, you would still have to place a right parenthesis in the command line prior to
the start of the comment field to signal DOSPLUS that the following text was a
comment and not part of the command line.

Within the parameter field, you will be entering parameters followed by expressions.
These expressions will indicate what action the parameter will take in relation to the
command. An expression will be one of three things

(1) A string. This is in the case of a password or a disk
name or any other input that requires you to enter a
literal string for system use. These MUST be encased in
quotes (single or double).

(2) A value. This is used to pass numeric data to the
command about the parameter. An example of this
would be setting the buffer size for the print spooler.
You would specify a value at that point. Values may be
expressed in any base as long as you follow the value
with the correct base specifier. You do NOT have to
enclose a value in quotes.

(3) A switch. These are used to specify a positive or
negative condition for a parameter. If you are turning
something "on" or "off", you will use a switch. When
using a switch, the terms "yes" and "on" are equivalent
as are the terms "no" and "off". "Yes" and "No" may be
abbreviated as "Y" and "N". You will not have to
enclose a switch in quotes, either.

Remember, when you specifying parameters and expressions, you will always
separate the expression from the parameter with the equals sign ("=").

The comment field. This field allows you to place an optional comment at the end of
an executable command line. This is useful when using BUILD and DO for command
chaining, because it allows you to document the command being executed. For
example, a line could say "CREATE TEST/DAT (LRL=4) - Create index file", in order
to let the user know what the command was doing (see also the library command
CREATE). For further information and some practical examples of using the comment
field, consult the library commands BUILD and DO.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-18

Let’s take an example and see how the command interpreter will view a command
line. Given the command :

DIR :0 TO @PR (ALPHA) - Prints alphabetized directory

DOSPLUS will scan the command line from left to right. When you scan the
command line and interpret what is there, you are said to "parse" the command line.
Notice please that the syntax for this command is correct. The I/O field is separated
from the command by a space. The various parts of the I/O field have spaces between
them. The parameter field begins with a left parenthesis. The comment field follows a
right parenthesis, indicating a completed parameter field.

DOSPLUS will pick up the command "DIR". That tells it that we will be doing a
directory. Since the first characters in the I/O field are not a delimiter word (FROM,
TO, or USING), the system will assume that we are using the default sequence and
|pick up ":0" as the source field. It finds the delimiter "TO" and therefore knows that
"@PR" is the destination field. In this case, the destination field was in the default
position and the delimiter word TO was not needed. However, by saying "TO @PR", we
free ourselves from the default positions. That phrase can occur anywhere in the
command line and if the delimiter is present, it will be parsed as the destination field.

Next, DOSPLUS finds a left parenthesis. This tells it that the I/O field is complete
and we are beginning the parameter field. To the right of the parenthesis, DOSPLUS
finds the parameter "ALPHA", indicating that we desire the directory listed
alphabetically. The next item found as DOSPLUS parses the command line is the right
parenthesis. This tells the system that the parameter field is through and that anything that
follows that parenthesis is a comment and should be ignored.

Definition of terms -

The following is a list of DOSPLUS terms and their definitions. It is not meant to be
a system glossary, merely to cover some often used technical expressions. Before
these terms can be understood, novice users may find it necessary to read the
preceding text on files and devices. More experienced users and programmers will find
this a good "quick reference section" for terminology.

Term Definition

Filespec A reference to a particular disk
file. This may not contain any
wildcard characters, but can
contain an optional drive
specifier. A more detailed
breakdown is afforded above.

Drivespec A colon ":" followed by a one or
two character drive name. Used
to refer to a particular disk
drive. May only be used when
file I/O is specified. It is NOT a
character orientated device.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-19

Definition of terms (cont.) :

Term Definition

Devicespec An at sign "@" followed by a one
or two character device name.
Used to refer to one of the eight
system devices. May only be
used when character I/O is
specified. It can be specified
when an I/O channel is
requested.

Channel A channel is a character
orientated I/O path. When a
channel is requested, it is
indicative of the fact that the
data will be moved a byte at a
time. File by file I/O is not
allowed with channels. A channel
may be either a filespec or a
devicespec. It may NOT be a
drivespec except in cases where
a drivespec is only part of a
filespec.

Wildmask A filespec containing wildcard
characters. Used to make the
effect of a command global to
several files. May not be used
when a channel is requested.
Consists of a filename and
extension only. It can be used in
conjunction with a channel, but
cannot be specified AS the
channel. For further details on
the use of wildmasks, see the
section above - "Detailed
explanation of the command
line".

Parameter An optional control field that
can specify additional
information on exactly HOW you
want the indicated command to
function. Can be a switch (On or
Off), a string (passwords, etc.),
or a value (buffer size, record
length, number of lines per page,
etc.) If the parameter is a
switch, usually the mere mention
of the parameter will engage it
(i.e. "=Y" will be assumed).

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

DOS Operations - Page 1-20

Definition of terms (cont.) :

Term Definition

Separator Used to separate delimiters and
channels, parameters, etc. Within
the I/O field, separators MUST
be a space. Within the parameter
field, they may either be a space
or a comma. If you use commas
within the I/O field, DOSPLUS
will terminate the I/ID field and
start looking for parameters.
Separators are NOT optional. For
the command line to be
evaluated properly, you must
separate the various portions of
the fields.

Delimiter A field specifier. Will be either
FROM, TO, or USING. Indicates
direction within the I/O field.
These may not be used as
filenames (i.e. you can’t call a
file TO/CMD, because "TO" is a
reserved word). Remember, these
must be surrounded by
separators. You need not
actually mention these terms in
the command line unless you
wish to specify the various
portions of the I/O field in
something other that the default
order (e.g. specify the
destination channel before the
source, etc.). If the delimiter is
present, it will override any
default positioning and re-route
I/O any way you wish.

Throughout the manual, we will be referring to these terms. Realizing
that some of them may be un-familiar to you, we suggest that you review the
above section carefully if you run across terms that you do not understand.

Library Commands

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-1

DOSPLUS 3.5 Library of commands

The following are the library commands for DOSPLUS 3.5. To execute a command,
enter the name of the command followed by any needed parameters :

Command Description Page #

APPEND (Append two devices or files together) 2-2
ASSIGN (Install a driver routine) 2-6
ATTRIB (Alter file’s attributes) 2-10
AUTO (Set auto execute command) 2-15
BOOT (Execute system "cold-start") 2-19
BREAK (Disable/Enable BREAK key) 2-20
BUILD (Create ASCII text file) 2-21
CAT (Display drive’s file catalog) 2-24
CLEAR (Clear user memory and files) 2-29
CLOCK (Turn on/off system clock display) 2-32
CLS (Clear screen) 2-33
CONFIG (Alter system configuration) 2-34
COPY (Copy device/file to device/file) 2-48
CREATE (Create and pre-allocate disk file) 2-55
DATE (Display or change system date) 2-60
DEBUG (Activate system memory monitor) 2-61
DIR (Display detailed file listing) 2-64
DO (Execute command chain file) 2-71
DUMP (Save memory to disk file) 2-75
ERROR (Display detailed error message) 2-77
FILTER (Filter I/O to/from specified device) 2-78
FORCE (Re-direct I/O to device/file) 2-82
FORMS (Alter printer pagination parameters) 2-84
FREE (Display free space data) 2-88
I (Initialize disk drive) 2-91
JOIN (Link two logical devices) 2-93
KILL (Kill specified device or file) 2-96
LIB (Display list of library commands) 2-100
LIST (List file to device) 2-101
LOAD (Load disk file into memory) 2-103
PAUSE (Pause execution) 2-105
PROT (Alter disk’s protection status) 2-106
RENAME (Rename a device or file) 2-109
RESET (Restore device to default driver) 2-110
RS232 (Display/alter serial port settings) 2-111
SCREEN (Send contents of screen to device) 2-115
SYSTEM (Customize your operating system) 2-116
TIME (Display time or set system clock) 2-123
VERIFY (Toggle automatic disk verification) 2-124

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-2

APPEND

This command allows you to append one device or file to another device or file.

===

The command syntax is :

APPEND [FROM] device1/file1 [TO] device2/file2 (param=switch...)

device1/file1 is the SOURCE device or file. This is the device or
file that will be appended.

device2/file2 is the DESTINATION device or file. This is the
device or file to which you will be appending.

(param=switch...) is the optional action switch.

The parameters are

CMD=switch Appends to destination file in load module format
(i.e. a /CMD file).

STRIP=switch Backspaces one byte from the end of file on the file
being appended to.

Abbreviations

CMD C
STRIP S

===

The APPEND command may be used as a means of easily linking together two data
files. By using APPEND, you avoid having to open both files, position to the end of the
destination file, read from the source, write to the destination, etc., etc.

Some data files may also have an "end-of-file" marker. Most data files will not, they
let their end-of-file be maintained by the DOS and the directory points to the
end-of-file in those cases. This is the case with both data files created by BASIC and
with BASIC programs themselves. However, certain programs create data files that use
a one-byte value to signal the end of the file (an example would be data files created
by standard SCRIPSIT which use a 00 byte to signal the end of file). In those cases,
when you append another data file onto the end of the first, the end-of-file marker
would inhibit the program from using it. Therefore, to get around this, DOSPLUS’
APPEND command has a STRIP parameter. When you specify strip, it will overlay the
last byte in the file being appended to with the first byte of the file being appended,
thereby stripping the end-of-file marker.

APPEND can also be used as a sort of dynamic disk merge. You may append one
BASIC program (saved in ASCII) on to the end of another BASIC program (also saved in
ASCII) and then load the resulting file. The lines appended will overlay any lines in the
original file and the program may then be saved back to the disk under whatever
filename you choose in compressed format, if you desire.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-3

APPEND also has an optional switch to append to the destination file in load module
format (i.e. the CMD switch). Load module format is simply the format used to store a
machine language program on the disk so that it can be correctly loaded at exact
locations later. Simply stated, a file in load module format contains "block markers"
that inform the DOS’ program loader what sort of information is here and where it
|should be loaded in memory. When loading a data file, DOSPLUS does not "look at" the
file, it merely loads the data that it finds into the locations specified. However, when
loading a machine language program (load module format), DOSPLUS actually scans the
file to find out where it wants to load. Because the block markers identify comments
and the like, these will be skipped during the program load.

Also, the last four bytes in any machine language program’s disk file is called the
"transfer address". These bytes tell the DOS where to begin executing the program it
has just loaded. When the transfer address is encountered, execution begins
immediately. Therefore, you could not effectively append two machine language
programs together if the second never got loaded because the first was immediately
executed. To avoid these problems, when you append in load module format, the last
four bytes of the file being appended to (that file’s transfer address) will be overlaid
by the first four bytes of the file being appended. When the DOS encounters no
transfer address, the file will continue to be loaded, any duplicate addresses will be
overlaid with the instructions from the second file, and the transfer address of the
appended module will be used.

Appending a device to a file is essentially the same thing as copying that device to
the file (see COPY), except that if you append a device to a file it will position to the
end of the file after opening it instead of over-writing.

PLEASE use extreme caution when appending devices. As with any system this
flexible, it can be mis-used and "hang-up" the system. Think through your logic
carefully when appending devices. Always bear in mind that you must append from an
input device and to an output device. If you are not certain what a particular device
is, use the FORCE or JOIN command to distinguish.

Examples:

APPEND FROM DATAFIL1 TO DATAFIL2
APPEND DATAFIL1 DATAFIL2

This command will take all the data in DATAFIL1 and append it to the end of
DATAFIL2.

APPEND NEWMOD/BAS TO OLDPROG/BAS
APPEND NEWMOD/BAS OLDPROG/BAS

This command would append the file NEWMOD/BAS on to the end of the file
OLDPROG/BAS. In the case of two BASIC programs saved in ASCII, when the file
OLDPROG/BAS was loaded next, the lines in the appended module would overlay those
in the initial module. For example, let’s assume that the file OLDPROG/BAS contained
the lines :

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-4

10 CLS : PRINT "This is the old program."
20 FOR I=1 TO 1000
30 NEXT I

And the file NEWMOD/BAS contained the line :

20 FOR 1=1 TO 250

After you had saved both of these in ASCII and executed the above APPEND
command, the next time that you loaded in the file OLDPROG/BAS, you would get the
following :

10 CLS : PRINT "This is the old program."
20 FOR I=1 TO 250
30 NEXT I

As you can see, the line from NEWMOD/BAS has become part of the program
OLDPROG/BAS. However, if you had listed the file from the disk first (see LIST), you
would have seen :

10 CLS : PRINT "This is the old program."
20 FOR I=1 TO 1000
30 NEXT I
20 FOR I=1 TO 250

As you see here, there are TWO lines with the line number 20. The second will
always overlay the first. After loading in the new program, you should save it out in
its altered form.

APPEND PATCH/CMD PROGRAM/CMD (CMD)
APPEND PATCH/CMD PROGRAM/CMD,C

This command will take the load module format file PATCH/CMD and append it to
the end of the load module format file PROGRAM/CMD. It will keep the appendage in
load module format. When the file PROGRAM/CMD is executed from DOS, the
instructions in the file PATCH/CMD will merge themselves in with the program and
modify it. This is a VERY effective way of patching programs. Simply write the patch
module and assemble it to load in at whatever address it needs to modify the
existing code and then append it to the end of the file to be patched.

APPEND @KI DOCUFILE/TXT:1

This command will append any further data that is input from the keyboard (i.e. any
further keystrokes) on to the end of the file DOCUFILE/TXT that is located on drive
one. This would allow you to append further instructions onto the end of a build file,
for example (please note that BUILD itself has a superior manner of accomplishing this,
though).

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-5

APPEND TO SERIAL/DAT:0 FROM @RS (STRIP)
APPEND TO SERIAL/DAT:0 FROM @RS,S

This command will open the file "SERIAL/DAT" on drive zero, position to the end of
the file, backspace one byte to strip off any end-of-file marker that your last
operation might have put there, and then append any further incoming data from the
serial interface to the end of that file (this assumes that you have installed the serial
drivers and activated the device).

The important thing to note here is that in this example the order within the I/O
field was changed. Under normal circumstances, the I/O field specifies the source first
and the destination. By including the FROM and TO delimiters, however, you may
override the default evaluation and route the I/O any way that you want. Remember,
you must specify the delimiters FROM and TO if you wish to change the normal order
within the I/O field.

Finally:

Remember, APPEND will never affect the source device or file.

Also, unless you specify the CMD option, the appendage will always be saved in
data file format. Machine language appendages MUST be appended with the CMD
option. There simply is no choice.

Please remember that you MUST append from an input device or a disk file (source)
to an output device or disk file (destination). A list of default devices and their names
and classes is available in the operations section of this manual. A disk file may
function as either input or output.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-6

ASSIGN

This command allows you to install a driver program for any device or drive.

===

The command syntax is

ASSIGN [FROM] devicespec/drivespec [TO] filespec
ASSIGN [FROM] devicespec1/drivespec1 [TO] devicespec2/drivespec2

devicespec/drivespec is the name of the device or drive for which
you intend to install the driver (i.e. @KI, @DO, @PR, :0, :1, etc.).

filespec is the name of the driver program.

devicespec1/drivespec1 is the name of any active device or drive
whose information will be installed for devicespec2/drivespec2.

===

The ASSIGN command gives you the ability to install non-standard drivers for any
device or drive in the system. This allows you to operate with hardware other than
that supplied by Radio Shack (i.e. hard disks, eight inch drives, etc.).

A driver is simply a machine language program that controls I/O to or from a
particular device. Depending upon the nature of the physical equipment, the driver
program may also input certain control signals from the peripheral to govern its
operation, as in the case of a serial printer driver. Such a driver may cease output
when the peripheral signals "printer not ready" or "out of paper". Other driver
programs can be used to control input devices such as the keyboard or the serial
interface. These drivers can then process any data coming in from these devices.
Therefore, you can accurately refer to a driver program as being an interface between
a physical piece of equipment and the DOSPLUS Disk Operating System.

There are two basic forms of the ASSIGN command. In the first, you are actually
installing the driver in memory from a file. In the second, you are simply setting two
devices to the same driver. The advantage to the second method is that it does not use
the additional memory to load the driver in a second time. Obviously, though, the
driver must have been loaded in at some point for the device to function at all.

The DOSPLUS system comes standard with default drivers already established for
the main system devices (@KI, @DO, @PR, and the disk drives). Generally, these drivers
are suitable for a wide variety of situations. However, a situation may arise where the
system’s driver is inadequate or incompatible with a particular piece of equipment.
Such a situation may be when a line printer using non-standard symbols is attached to
the system, or when you need to do I/O to the serial port, or when you wish to attach
a hard disk drive. In such a case, a new driver must be installed for the affected
device. Such driver programs may be provided with the system, or they may be
specially written for the user’s purposes. Information is provided in the technical
manual on how to write driver programs of your own and interface them to DOSPLUS.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-7

Driver programs are stored on the disk just as any other file and are called via the
ASSIGN command when they are needed. When you ASSIGN a driver, you must specify
both the devicespec and the filespec of the driver program. Wildmasks are not valid.
You must ASSIGN each driver independently of any others. No extension will be
assumed on the filespec, but we recommend that you use "/DVR".

When you use the first form of the ASSIGN command, loading the driver from the
disk, the driver program will load into high memory. It will adjust the high memory
pointer downward to protect itself from being overlaid by other routines. This is at
least the case with all drivers supplied by us. We cannot attest to how other drivers
will be written. The driver programs are also fully relocatable. If another program is
already in high memory and has adjusted the high memory pointer accordingly, the
driver will load in below it and avoid memory conflicts.

When a driver is installed for a device by means of the ASSIGN command, any
previous forcing or joining of the device will be reset. However, any filtering or
translating established for the device will remain in effect. Any drivers that are in
effect at the time that a configuration file is saved (see SYSTEM) will be saved with
the file and restored when that file is executed.

If further devices are going to use the same driver program, to use the first form of
the command would waste memory by loading the driver again from the disk. To avoid
this, use the second form of the ASSIGN command. When you use this form, the driver
is not re-loaded. The second device is simply set up to use the same driver as the first.
The only memory used is that which is required to set up the new device (only a few
bytes). This represents a great saving of memory.

For example, if you ASSIGNed drive 4 to the driver RIGID/DVR (we are assuming
that drive 4 is a hard disk here), and you wished to also use drives 5, 6, and 7 as hard
disks, you would merely assign each of those drives to drive 4 (i.e. ASSIGN :5 :4,
ASSIGN :6 :4, etc.). This would install each of those drives to the one copy of the
driver that was loaded when we called it for drive 4 (i.e. ASSIGN :4 RIGID/DVR).

Please note : After you duplicate a driver for two drives in this manner, the second
drive will share the same CONFIG settings as the first. This includes the physical drive
number (see CONFIG). You may have to alter this to reflect the proper values.

Whenever you ASSIGN a device or drive to itself (i.e. ASSIGN :4 :4, ASSIGN @PR
@PR), you will re-install the current driver defined for that device or drive. In the
case of the character devices, this will cause any FORCEs or JOINs to be reset. In the
case of both devices and drives, if they have been killed (see KILL) and are in the NIL
state, it will cause them to be re-activated. If that device or drive never had a driver
ASSIGNed to it, then it will report an error if you attempt to ASSIGN it to itself.

Each driver that Micro-Systems Software provides for DOSPLUS comes with specific
instructions as to the installation and operation of the driver. When you receive your
DOSPLUS, if you receive any non-standard drivers with it, you should have such
documentation. There is a section of this manual called Standard I/O drivers that
contains information on all drivers sent with your DOSPLUS.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-8

Parameter passing with the ASSIGN command

Certain specialized drivers may require the user to pass it a set of parameters at
installation time. These parameters could include, but are not limited to, additional
filespecs. What these parameters are will depend on the driver program itself. For
instance, the alternate keyboard driver could require a filename indicating where the
MacroKey definition file is stored (see Standard I/O drivers : DOSPLUS alternate
keyboard driver).

You pass the parameters to the driver just as you would to any library command.
After you enter the I/O field (e.g. the FROM and TO fields), you simply enter the
parameter list. You must separate this from the I/O field by either a comma, a space,
or a left parenthesis. For example, if you chose to use the MacroKey option on the
keyboard driver and you had your MacroKey definitions stored in a file called
KEYS/DAT, when you ASSIGNed the driver it should look something like this :

ASSIGN @KI KI/DVR KEYS/DAT

If you wanted to install a printer driver that allowed an indent parameter and you
needed to pass the driver a value indicating the amount of characters to indent, it
might look something like this :

ASSIGN @PR PRTR/DVR (INDENT=20)

The parameter field must be terminated by a carriage return, an implied carriage
return (e.g. a semi colon), or a right parenthesis. It will be up to the individual driver
program to retrieve the parameters and interpret them. The technical manual will have
a description of what you can expect to find when ASSIGN is used in this manner.

Examples :

ASSIGN FROM @PR TO PR/DVR
ASSIGN PR PR/DVR

This will install the driver program PR/DVR for the device @PR (the printer). Any
previous FORCEs or JOINs would be cancelled. Any needed parameters could have been
passed after the PR/DVR filespec.

ASSIGN :4 RIGID/DVR

This will load from the disk and install the driver program RIGID/DVR for drive 4.
All I/O to or from drive 4 would then be controlled by that driver.

ASSIGN :5 :4

This would install whatever driver was currently defined for drive 5 to drive 4 also.
As discussed earlier, this has the advantage of conserving memory when more than one
device will be operating from the same driver.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-9

ASSIGN FROM :1 TO :1
ASSIGN :1 :1

This will re-install the driver currently defined for drive 1. If there never was a
driver defined for that drive, an error will result. If that drive had been killed, it will
now be restored.

Finally:

Please note that there is no standard system driver ASSIGNed to the serial
interface. Before that can be implemented, the driver (included with your system) must
be installed.

Also please note that none of the standard drivers will support filtering. If you wish
to implement a filter, you MUST install one of the non-standard drivers for that device
first.

Once a driver is installed, you may remove it by loading a configuration file (see
SYSTEM) that does not have the driver installed or re-booting the system.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-10

ATTRIB

This command allows you to set a file’s user definable attributes.

===

The command syntax is :

ATTRIB filespec (param=exp...)
ATTRIB [USING] wildmask (param=exp...)

filespec specifies the file that you wish to alter the attributes of.

wildmask is the wildmask that indicates which file or group of
files we are operating upon.

(param=exp...) is the attribute we wish to alter and the new value
we wish to assign to that attribute.

The parameters for ATTRIB are :

PW="string" Disk Master Password. Required during wildmask
ATTRIBs.

ACC="string" New access password.
UPD="string" New update password.
PROT=value New protection level.
LRL=value New Logical Record Length.
INV=switch New invisible status.
KEEP=switch New non-shrinkable status.
MOD=switch New mod flag status.

Abbreviations :

ACC A
UPD U
PROT P
LRL L
INV I
KEEP K
MOD M

===

The ATTRIB command gives you total control of a disk file’s attributes. You may
use it to alter the amount of access you allow to a particular file, set or remove
certain flags DOSPLUS maintains on a file, or change a file’s password.

The ATTRIB command operates in two modes : standard and global. In the standard
mode, you specify the filename after the ATTRIB command itself, including any needed
extensions, drivespecs, or passwords. Following that is your parameter list of items to
change. In the global mode, you specify the wildmask after the ATTRIB command, and
follow that with the parameter list. If there will be any protected files included in
this, you will have to specify the disk’s Disk Master Password using the PW parameter.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-11

Use of ATTRIB can be divided into two major areas. The first would be controlling
a file’s protection level (this includes the actual protection level and the passwords).
The second area is controlling various flags and conditions regarding a file. We will
cover each in turn.

Controlling a file’s protection level

A protection level is useless unless a password has been set for that file. You see,
if no password has been set, then in effect no password IS the password. The default
password for any file is a series of blanks. This is also the default when no password is
specified with the filespec. Therefore, when the user omits the password, they have in
actuality SPECIFIED the correct password and they are allowed full access to the file.

Remember also, the ACCESS password controls access to the file per your
protection level. In other words, if an access password has been set, the user needs
that password to even get at the file. Once they have the password, they may access
that file only up to the limit that you have assigned. However, if they know the
UPDATE password, it will allow full access to the file even if a protection level has
been set. Therefore, keep your update passwords in closer confidence than your access
passwords.

Also important to know is that under DOSPLUS, the Disk Master Password may be
used at any time in place of a file password. This means that knowledge of that
password will let you into any file on the disk (excluding protection level 7 that is set
by the DOS as "No access!"). Therefore, you should use care, when protecting files, to
not only password protect the files but also the disk. To alter the Disk Master
Password, use the library command PROT (see the library command PROT).

You have several protection levels to choose from. You refer to them and set them
by their numbers. This list will illustrate those that you have a choice of :

Number Protection level

0 No protection set. Total access.
1 Kill, Rename, Write, Read, Execute.
2 Rename, Write, Read, Execute.
3 Not used at this time.
4 Write, Read, Execute.
5 Read, Execute.
6 Execute only.
7 No access. Not a user option.

Protection level 1 allows you complete access to a file. You may kill it, rename it,
write to it, read it without executing, or execute it.

Protection level 2, rename, allows you to do everything to a file EXCEPT kill it
from the disk.

Protection level 3 is not implemented in this release of DOSPLUS, but ATTRIB will
allow you to set this level.

Protection level 4, write, will allow you to write to a file or load it without
executing, but you may NOT rename the file or kill it.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-12

Protection level 5, read, will not allow you to write to the file at all, but will allow
you to load it without executing or read it without loading. This would enable you to
examine the code but not enable you to alter it.

Protection level 6, execute, will only allow you to execute that file. If it is a
BASIC program, you may only RUN it. You may not load it or list it or interrupt
program execution while it is operating. Machine language programs may be run but not
examined or modified.

Again, remember that these protection levels work in conjunction with the ACCESS
password. They need that password to get to the file at all and once they do, THEN
the protection level restricts the amount of access. Anyone with the update password
has complete freedom to update the file no matter what protection level has been set.

Manipulating file flags and conditions

The other main function of ATTRIB is to allow you to change certain status flags
and conditions that DOSPLUS maintains about each file. These include the file’s logical
record length, whether the file is visible or invisible, whether the file’s disk space can
be dynamically altered, or whether or not the file has been written to since you last
copied it off or backed up the disk.

Under DOSPLUS 3.5, the logical record length of a file is merely for your
convenience when it comes to displaying that file from the directory. Both the DOS
and BASIC allow you to open a file with a logical record length different than the one
indicated when the file was opened. However, certain programs may require that the
logical record length be correct and it is always convenient when working with
variable length data files in BASIC to be able to see the logical record length. This
option allows you to alter a file’s logical record length.

To use it, specify LRL=value (where value is the desired logical record length). A
logical record length can be anywhere between 1 and 256. You may use the wildmask
option to alter the logical record lengths of a group of files or even an entire disk.

When a file is invisible, it does not get displayed via a normal directory display. In
order to see these files, you must specify the INVIS option from the DIR or CAT
command (see the library commands DIR and CAT). This is very useful when a file is a
permanent part of your working DOS system and you do not wish to see that filename
constantly displayed when you list the disk’s directory. This option affects only
whether a file is visible. Simply because a file is invisible doesn’t mean that it is
protected. You must set the protection level independently.

To make a file invisible, specify INV=Y as the parameter for the ATTRIB command.
To restore it to visible status, use INV=N. Remember, by utilizing the wildmask
capacity of this command, you may make large classes of files visible and invisible.

When a file has the KEEP option set, that tells DOSPLUS not to decrease the disk
space for that file. Normally, when you create a data file on a disk and then access it
later without filling up the file, the un-used space will be de-allocated (freed for other
use). This can cause problems when you have pre-allocated space in a data file to
prevent another program from using required disk space. This does not inhibit DOSPLUS
from expanding the file, it merely prevents it from shrinking.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-13

The final parameter that you can alter with ATTRIB is the modification flag (MOD
FLAG for short). This is one of the most useful items in DOSPLUS’ directory. This flag
tells you when a file has been updated since you last copied it or backed up the disk
that it resides on. Updating a file refers to writing to the file. If you simply read from
a file, you have done nothing to alter that file, therefore the mod flag is not set.

By using the mod flag with COPY (see the library command COPY), you may copy
off only those files needed when making backup copies of programs. For example,
suppose you are developing a program. You wish to copy off all the files you worked
on today. You merely copy any that have the mod flag set. The rest of them have not
been overwritten since the last time you copied the file off or backed up the disk. The
same principle will apply with data files.

This parameter may, from time to time, need to be set or reset manually. ATTRIB
allows you to do that. An example might be a program that uses a general "system
information" file and then several specific data files. You would not need to backup
the general file at the end of each session, just the specific files. The easiest way to
do this is to use the MOD flag when copying. However, the general purpose file was
also modified each time the program was used, even just to read and write one record
from it without changing it. You may then use ATTRIB to manually reset the MOD flag
before using COPY.

Examples:

ATTRIB UTILITY/PRG:1 (UPD="PASSWORD",PROT=6,INV)
ATTRIB UTILITY/PRG:1 (U="PASSWORD",P=6,I)
ATTRIB UTILITY/PRG:1,U="PASSWORD",P=6,I

These three commands will have the same effect. In this example, we are addressing
the file UTILITY/PRG located on disk drive :1. We are setting the update password to
PASSWORD, the protection level to 6 (execute only), and making the file invisible.
Note that the access password was NOT set. This will allow you to run the program
without knowing a password, but you may not modify or in any way examine the code
without using the update password. This example assumes that no previous password
existed.

ATTRIB FILE (MOD=N)
ATTRIB FILE (M=N)
ATTRIB FILE,M=N

All three of these commands will have the same effect. They will do a global search
of all drives for the file named FILE. When they find it, they will reset (turn off) the
mod flag. This is an example of manually resetting that flag.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-14

ATTRIB PAYDATA:AA (KEEP=Y)
ATTRIB PAYDATA:AA (K)
ATTRIB PAYDATA:AA,K

All three of these commands will also have the same effect. In this example, we are
operating on the file named PAYDATA currently located on the drive named :AA. We
are setting (turning on) the KEEP flag to indicate that we do NOT want any of that
file’s disk space released to the system even if the file decreases in space actually
used.

ATTRIB !:5 (LRL=256,PW="MARK")
ATTRIB !:5,LRL=256,PW="MARK"
ATTRIB !:5,L=256,P="MARK"

These commands would cause the system to alter the logical record lengths of all
visible user files on drive 5 to 256. If the file is protected, the PW parameter will give
access via the Disk Master Password.

Finally:

When using ATTRIB, please keep in mind that if a file already has some protection
(a password and a protection level set) on it, you MUST use this current password when
accessing the file to alter its attributes.

Also bear in mind that when you specify a filespec WITHOUT a drivespec, it will do
a global search of all drives in the system looking for that filespec. The first one that
it locates will have the prescribed action performed on it, and ATTRIB will stop at
that point. On the other hand, if you use a wildmask, the effect will be global on all
files matching that wildmask, but ONLY on the drive specified. If a drive is NOT
specified, then ATTRIB will assume that the system drive is to be used.

For example :

ATTRIB FILE,I

will search until it finds FILE and make that file invisible. But :

ATTRIB FILE/*,I

will search out all files that have the filename FILE and any extension and make them
invisible, but it will only do this for the system drive.

If a file already has a password set for it and you will be operating upon that file
in a global ATTRIB, you will need to indicate the Disk Master Password. That was
mentioned earlier, but deserves a bit more emphasis.

Any file that has a password assigned to it must have that password specified when
you are changing the file’s attributes. This is not possible when doing a global ATTRIB,
because all the files can have potentially different passwords.

It is because of that we have the PW parameter. DOSPLUS will always allow you to
specify the Disk Master Password in place of the file password.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-15

AUTO

This allows you to set a command to be executed upon boot-up of the system.

===

The command syntax is :

AUTO [drivespec] [command line]

drivespec is the optional drive specifier that tells DOSPLUS which
disk you wish to store this AUTO command on.

command line is the command line that you wish executed upon
power-up. The first character (or two) can be an optional switch
to indicate the type of AUTO.

Command switches :

! Invisible AUTO.
* Non-breakable AUTO.

===

The AUTO command allows you to set a command that will be automatically
executed whenever the system is booted (unless the ENTER key is held down as the
system is booting). This command may be a library command, a program name, a
configuration file, or any command that you might normally have to enter yourself.

There are several different types of AUTO. There is the standard AUTO, in which
each command is displayed on the screen before it is executed. This form of AUTO
may be defeated by holding down the ENTER key as the system is booted. You also
have the invisible AUTO, in which the command is NOT echoed to the screen as you
boot up. The final form would be the non-breakable AUTO. This is used when you do
not want the user to have the option of escaping the AUTO by holding down the
ENTER key as the system is booted.

To implement the alternate forms of AUTO, include the correct character in front
of your AUTO command. The characters may appear in either order if you choose to
use both of them. For the invisible AUTO, use an exclamation mark (i.e. !) and for the
non-breakable AUTO, use the asterisk (i.e. *)• Therefore, the command DIR would be :

AUTO DIR

with the invisible option (such that DIR would not display on the screen, but could
be aborted by holding down ENTER) :

AUTO !DIR

with the non-breakable option (such that DIR would display but could not be
avoided) :

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-16

AUTO *DIR

with both engaged (such that DIR would not be seen and could not be avoided) :

AUTO !*DIR - or - AUTO *!DIR

As was explained earlier in the operations section, you may enter multiple commands
on the same line as long as you separate these commands with a semi colon ";". This
implies a carriage return and enters the command to that point. This means that you
may actually have two or more commands imbedded in your AUTO statement as long
as the TOTAL Length of the command is under 32 characters.

If you use the multiple command feature (i.e. command;command), AUTO will write
these commands to the disk exactly as you enter them, length permitting. For
example :

AUTO LIB;FORMS

would write :

LIB;FORMS

to disk so that when you booted the system the commands LIB and FORMS would be
executed. It will NOT write LIB to the disk and then execute a FORMS command.
Remember, the total length of the AUTO command must not exceed 31 characters,
anything longer will be truncated.

By using the optional drivespec, you may set an AUTO on a diskette other than the
one that is in the system drive. This is useful in preparing program diskettes for use.
You may set an AUTO on a disk without having to actually boot from that disk. When
you wish to set an AUTO on a floppy disk and your system disk is other than a floppy,
this can be an extremely important feature.

Also, you can use this same feature to reset an AUTO on a disk. For example, lets
assume that we have a program disk of some sort that is set to directly execute from
a non-breakable AUTO. We wish to reset this so that it doesn’t AUTO directly into
the program. All we have to do is place the disk in another drive other than the
system drive and enter :

AUTO :ds

where ":ds" is the drivespec of the drive containing the disk we wish to
operate upon. This will cause the AUTO command field on that disk to be reset. If you
enter AUTO without the optional drivespec or command (e.g. AUTO by itself on the
command line), it will reset the AUTO field on the current system drive.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-17

Examples:

AUTO SYSCON

This command tells DOSPLUS that upon power-up, it is to load and execute the file
SYSCON/CMD (the /CMD extension is assumed). If this were a system configuration
file, the system would be automatically configured and all needed drivers loaded every
time the machine is reset.

AUTO *SYSCON

This command tells DOSPLUS the same thing except that this time the AUTO
command will always be executed, even if the ENTER key is being held down to
indicate an abort.

AUTO *!SYSCON

This command also tells DOSPLUS to load and execute the file SYSCON/CMD and
also tells it to ignore the abort signal. However, this command also tells DOSPLUS not
to display the AUTO command as it is executing. In the above two examples, the word
SYSCON would appear on the screen as the file was being executed. In this example,
it would not.

AUTO :1 DO START

This command will set the AUTO on the disk in drive one to "DO START". Whenever
the system is booted using that disk, DOSPLUS will attempt to execute the DO file
START/TXT. Remember, the /TXT is the default extension for the DO command. You
may specify differently if you wish.

AUTO :B

This command will reset the AUTO command on the disk currently in the drive
named :B.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-18

Finally:

Perhaps one of the most useful aspects of AUTO is to execute a "system
configuration" file. For a detailed explanation of these files, consult the Section
Customizing your DOSPLUS in the operators portion of the manual. For a explanation
of how to create these files, see the command SYSTEM. For right now, suffice it to
say that the system configuration file offers an easy method to alter your DOSPLUS
configuration to meet any special needs or desires that you might have.

Once you configure your DOSPLUS, you will create these files using SYSTEM. In
order to resume the configuration you just set once the machine is reset, you merely
execute these files. The AUTO command allows you to execute one of these
configuration files without having to enter the filename each time. If you wish, you
can even make it invisible so that you don’t have to be reminded of the file loading
each time.

Simply set the AUTO command to the name of your configuration file. For example,
if you had installed hard disk drivers and then saved the configuration in a file called
RIGID/CFG, every time you wanted to re-load the hard disk configuration, you would
just execute RIGID/CFG. This allows you to boot from the floppy and with a single
filename transfer control to the hard disk. You would set that file on an AUTO.
Something like this :

!RIGID/CFG

which would cause that configuration file to be loaded each time the system disk
was booted. The filename would NOT be displayed.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-19

BOOT

This command will allow you to perform a cold system reset from software.

===

The command syntax is :

BOOT

There are no parameters for this command.

===

The BOOT command is most useful when you wish to have the system reloaded under
program control. This function is the same as pressing the reset button. All drivers
and configurations are returned to their default levels.

You must have the disk in place in the system drive when executing this command.
Failure to do so will result in a boot error.

Because this is in effect a system reset, any AUTO functions or DO files that
normally start on power-up will begin after this command also. You may abort them,
provided they are not non-breakable, by holding down the ENTER key.

You may be prompted for the date and time when booting up. This is a configurable
option that may be disengaged by using the SYSTEM command. You may also disable
the opening logo if you wish (see SYSTEM).

You may also activate the system debugger by holding down the D key as DOSPLUS
boots up. This enables you to go directly to the system’s built-in memory monitor and
proceed to examine memory without having to go through any start-up procedures or
even going to the system level at all.

However, when booting DOSPLUS, if you have any of the prompts engaged (i.e. time
or date), the system will pause at those prompts before engaging whatever options you
have indicated during boot up. For example, if you hold down the D key to enter the
debugger, it will not jump to DEBUG until after the prompts (if any) have been
answered.

The same holds true for aborting an AUTO. If you haven’t been holding down the
ENTER key as the system is booting, it is too late when you find yourself at the
prompt.

One additional option is to hold down the shift and up arrow keys while the system
is booting. This will cause DOSPLUS to initialize with only the unmodified ROM
drivers in effect. There will be no modifications made by the operating system.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-20

BREAK

This command allows you to enable or disable the break key.

===

The command syntax is:

BREAK [param]

param is the optional switch.

Your switches are:

ON Enable break key.

OFF Disable break key.

===

The BREAK command allows you to manipulate the break key. In some applications,
it may be desirable that the user not be able to use the break key (i.e. some DO files
or BASIC programs).

All that is needed is for you to use this parameter to turn the break key off and
the system will not respond to the break key. Normally, the break key serves as the
"abort" for certain functions. If, for example, a PAUSE (see PAUSE) occurs during
the execution of a DO file and the user responds by pressing the break key, they will
be returned to DOS. If the break key has been turned off with this parameter, it will
simply be ignored.

For some programs, this is not desirable, so use caution with this command. Once
you turn off the break key, you have in effect removed it from the system. Until
enabled or the system is rebooted, this key will not be recognized if the program
depends on the DOS to inform it when the break key has been pressed. Programs that
contain their own keyboard drivers may not be affected by this.

Examples:

BREAK OFF
BREAK NO
BREAK N

This command will disable the break key.

BREAK ON
BREAK YES
BREAK

This command will enable the break key.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-21

BUILD

This command offers you the ability to create an ASCII text file on the disk or output
ASCII statements to any device.

===

The command syntax is :

BUILD devicespec/filespec (param=switch...)

devicespec/filespec is the standard DOSPLUS device or file
specification that indicates where the output of the BUILD
command should be directed.

(param=switch...) is the optional parameter to modify the
command’s action.

Your parameter is :

APPEND=switch Optional switch to indicate that you wish to append
the instructions you are about to enter on to the end
of an already existing file.

Abbreviation :

APPEND A

===

This command allows you to output ASCII statements to any device or file in the
system. You may use this for a variety of purposes. The most common by far will be
creating ASCII text files on the disk for use with the various DOSPLUS library
commands.

As stated, the BUILD command allows you to construct an ASCII file on the disk.
This makes it one of the most often used commands in the entire DOSPLUS system. By
using this command, you may create a file on the disk that allows you to store
command lines just as you would have entered them from the DOS command mode and
execute these later with the DO command (see DO), allows you to create ASCII files
with lists of patches in them for use with the PATCH utility (see PATCH), and create
ASCII text files that are interpreted by the FILTER library command (see FILTER)
and used to modify data as it moves from driver to device.

You do not have to use the BUILD command for these. Any ASCII file will work. We
have merely provided this means of accomplishing the creation of these files. This
means that you may also create these files from BASIC or machine language
applications programs (such as a word processor). Therefore, your programs could
create the needed files based on information supplied by the user and the user would
never actually interface with the DOS.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-22

However, the BUILD command offers you the ability to create these files easily
from the DOS command mode without having to load some intermediate program to do it.
For the most part, with the exception of special cases, you will find that BUILD
handles the task adequately and there will not be a need for you to use anything else.
The only exception might be the fact that BUILD doesn’t offer any editing capacity.

BUILD will assume the extension /TXT unless another is given it. That is also the
default extension for the DO command (see DO).

When you enter the BUILD command (i.e. BUILD TEST:0), you will see the following
initial prompt :

Enter text (63 chars/line)

At that point you are free to type up to 63 characters of text. When you have
finished typing a line, press ENTER to store that line. When you are finished, press
BREAK at the next blank line and BUILD will return to DOSPLUS. Should you press
BREAK without pressing ENTER, the line will be stored in the file without a
terminating carriage return.

If you specify the APPEND option, BUILD will display whatever lines are currently
in the file and then prompt you for the new data. Any text entered will be added to
the end of the existing file.

Examples:

BUILD TEST:0

This command would open the file TEST/TXT on drive :0 and store your text there.
If a file by that name is already on that drive, the current information will be
overlaid.

BUILD TEST:0 (APPEND=Y)
BUILD TEST:0 (A=Y)
BUILD TEST:0,A

These three commands will all have the same effect. They also will open a file
TEST/TXT on drive :0, but if this file already exists; BUILD will display the contents
and then append any new text to the end of the file.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-23

Sample use

Let’s assume that we are going to use BUILD to create a text file to be used by DO
as a startup sequence for a BASIC program. It might look like this :

BUILD STARTUP/BLD:0 <ENTER>
Enter text (63 chars/line)
FORMS (W=80) <ENTER>
BASIC MENU/BAS-F:1-M:65000 <ENTER>
<BREAK>

This example would build a file called STARTUP/BLD on drive :0. This file would be
accessed by the statement :

DO STARTUP/BLD

Notice that the /BLD extension was used when we called DO because we didn’t use
the default extension of /TXT. This file, when executed, would set FORMS for 80
column paper (see FORMS) and then enter BASIC with one file buffer allocated and
memory protected at 65000. Once in BASIC, DOSPLUS would execute the BASIC
program MENU/BAS.

Finally:

When using BUILD to create text files for DO, if you wish to print a line if
instructions or comments on the screen, you may do so. Any line that begins with a
period "." will not be executed by DOSPLUS. Therefore, to place non-command lines
into your DO file, simply start them off with a period. For example :

.Insert the #1 disk

is a comment line and :

DIR :1

is not.

Comment lines may also he used in patch and filter files to identify the patch or
filter for future reference, the syntax is the same. Simply start the line off with a
period (".") and both PATCH and FILTER will ignore it.

Also, when entering lines into a file, you may press <LEFT ARROW> to delete a
character and <SHIFT> <LEFT ARROW> to delete a line. No other editing functions
are supported.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-24

CAT

This command will display a disk’s file catalog.

===

The command syntax is :

CAT [FROM] drivespec [TO] file/device [USING] wildmask (param=exp...)

drivespec is the name of the drive for which you desire the file
catalog.

file/device is the optional output file or device.

wildmask is the optional wildmask to restrict CAT to a certain
group or class of files.

(param=exp...) is the optional action parameter that indicates what
type of file catalog you want to see.

The parameters are

SYSTEM=switch Display system files as well as standard entries.
INVIS=switch Display both visible and invisible user files.
KILL=switch Display names of any deleted files not yet wiped

from the directory or over-written by an active file.
ALPHA=switch Display names in alphabetical order.

Abbreviations:

SYSTEM S
INVIS I
KILL K
ALPHA A

===

The CAT command is used to display a disk’s file catalog (hence the name "cat"). A
disk’s file catalog is simply a list of files currently residing on that disk. A file
catalog will contain ONLY a filename and extension. If you require more information,
then request the disk’s file directory (see DIR).

The CAT command has two basic types of function : standard and global. In a
standard CAT, you will get a catalog only of the drive you request. In the global
form, engaged by using a wildmask, you will receive a file catalog of all mounted disk
drives. Used in conjunction with a specific enough wildmask, this can be very useful
for ascertaining where in the system a file is currently located.

When you request a file catalog, you may also specify the output file or device. If
you do not specify a file or device specification when you issue the CAT command,
the file catalog will be displayed on the screen. The display (i.e. @DO) is the default
device. This feature allows you to output the file catalog to the printer, a disk file,
or wherever it may be required.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-25

The simplest form of CAT is :

CAT

which will display a file catalog of all visible user files on the system drive. Next
simplest would be :

CAT :1

which has the same effect, but restricts itself to those visible user files located on
drive 1.

The file catalog display

When you request a file catalog, your output should look something like this :

Drive: 1 DOS 3.5 - Space: 085/128 82.5k

PATCH/CMD TAPE/CMD KBD/DVR CODIR/CMD
RFORMAT/CMD DIRCHECK/CMD HELP/CMD BACKUP/CMD
WD/DVR ERROR/OVL DISKDUMP/CMD JCL/RLD
MAP/CMD FORMAT/CMD MENU/JCL SYSGEN/CMD
DIR/DVR JCL/CMD TRAP/CMD TBASIC/CMD
BASIC/CMD DISKZAP/CMD CONVERT/CMD RESTORE/CMD

You may call CAT from BASIC without problems unless you wish to use the ALPHA
option for an alphabetical file catalog. This cannot be used from within a BASIC
program inasmuch as when you ask for a sorted file catalog, the memory required to
do the sort expands past the limits of BASIC’s overlay area for DOS commands and
will corrupt the BASIC program itself.

Specifying output files and devices

When using CAT, if you wish to specify an output file or device other than the
display and you have NOT specified a source channel, you must use the delimiter TO

to indicate data flow. This would occur if you were going to get a printout of the file
catalog for the system drive. To type :

CAT @PR

would produce an error, since @PR is in the source field position and @PR is not a
valid drivespec. However :

CAT TO @PR

would work just fine. This does not apply if you are using a source drivespec,
because then the output device is in its proper location. For example :

CAT :1 @PR

would work properly. @PR is in its proper position and all output will be directed to
the printer.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-26

Specifying wildmasks

The only exception to this rule of order is a wildmask that contains wildcard
characters. If the wildmask contains a wildcard character (i.e. ?, *, or !), then the
DOS will move that to the wildmask position for you and scan the rest of the line in
normal order. For instance :

CAT :0 USING */BAS

is the same thing as :

CAT */BAS :0

The system will move the */BAS to the wildmask field and accept :0 as the source
drivespec. This does not apply if the wildmask doesn’t contain any wildcard
characters. A wildmask without wildcard characters (with the source drivespec
explicitly given) is regarded by the DOS as a valid output filespec. If the source
drivespec is not given (e.g. implied), then the filespec will be moved into the source
field and an error will result.

If you wish to specify a wildmask without any wildcard characters such that only
files EXACTLY matching the wildmask will be included, then include the USING
delimiter. For example :

CAT :0 TEST/DAT

will output the CAT into the file TEST/DAT, while :

CAT TEST/DAT

will produce an error, and :

CAT USING TEST/DAT

will function properly.

Follow these rules of order on CAT and you should never get an "Invalid parameter"
error. The best rule of thumb is, if you cannot remember whether or not the delimiter
is required, include it. It never hurts to have it in the command line, but sometimes it
will cost you to omit it.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-27

Examples:

CAT :0 (SYSTEM=Y,INVIS=Y,KILL=Y)
CAT :0 (SYSTEM,INVIS,KILL)
CAT :0 (S,I,K)
CAT :0,S,I,K

All four of these command lines will perform the same task. They will display a file
catalog of the disk in drive :0. The catalog will include all filespecs, whether system,
invisible, active or deleted.

CAT USING PER/DAT

This will search the directory of all available drives and printout a file catalog for
any drive having the file PER/DAT on it. This is an example of the method that would
be used to locate all occurrences of the file.

CAT */CMD TO @PR

This example will scan all drives and printout the filespecs of any files that have
the extension /CMD.

CAT :1 (INVIS=Y,ALPHA)
CAT :1 (I,A)
CAT :1,I,A

These three commands are all equivalent. They will display, in alphabetical order,
all the user files, both visible and invisible, located on the disk in drive 1.

Finally:

If the switch is not specified in the parameter list, it defaults to "off". For
example, if you do NOT specify the SYSTEM option in the parameter field, it will
default to SYSTEM=N (e.g. no system files will be included in the file catalog). On the
other hand, because of this, the simple inclusion of the option in the parameter field
is sufficient to engage it. For example :

CAT :0 (SYSTEM=Y)

and :

CAT :0 (S)

are equivalent commands. This applies to all of the optional parameters on CAT.
The simple inclusion of the name of the option is sufficient to engage it and the
exclusion of the name will cause the option NOT to be in effect.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-28

Although overwriting files by accident was mentioned earlier, it deserves to be
strengthened now. The form of the command is :

CAT <source> <destination> <wildmask> <parameters>

If you wish to only specify the source drivespec and a wildmask (e.g. you wish to let
the destination default to the screen), then you must either have a wildcard character
in the wildmask or use the USING delimiter. There is no way around this.

A wildmask in the destination field that does not contain any wildcard characters
will be regarded as the output filespec and the file catalog will be placed into that
file. This can destroy the very file that you were seeking to locate.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-29

CLEAR

This command allows you to fill either a file or user memory with user defined data.

===

The command syntax is :

CLEAR [filespec] (param=exp...)

filespec is the optional file specification indicating that you wish to operate on a
file and which file is to be affected.

(param=exp...) are your optional parameters.

Your parameters are :

START=value Starting memory address.
END=value Ending memory address.
DATA=value Optional fill data.

Abbreviations:

START S
END E
DATA D

===

The CLEAR command will allow you to fill either a file or a specified amount of
memory with a user-definable one or two byte value. The command has two very
distinct forms (e.g. file and memory) and certain of the parameters only function in
the proper mode.

The two modes of CLEAR are mutually exclusive. Which is to say that you cannot
mix the two. While you are clearing out a file, you cannot be clearing memory and
vice versa. To fill a file using CLEAR, simply specify a filespec after the CLEAR
command. To fill memory, omit the filespec. It is that easy.

The START parameter allows you to specify the starting address of the area to fill
when doing a memory CLEAR. This parameter does not effect the file CLEAR and
will be ignored if specified when a filespec is given. If you indicate a memory CLEAR
by omitting the filespec, but do not expressly state the START address, 5C00H (23552
decimal) will be used.

The END parameter allows you to specify the ending address of the area to fill
when doing a memory CLEAR. As with START, the END parameter does not affect a
file CLEAR and will be ignored if specified with a filespec. If you indicate a memory
CLEAR and do not give the END address, the address currently defined as the top of
memory will be used.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-30

The DATA parameter allows you to specify a one or two byte value to be used
during the fill operation. This parameter is valid for both file and memory CLEARs.
To use it, simply specify

DATA=value

where "value" is the one or two byte value you wish to use. This value may be given
in decimal or hexadecimal format. Remember to append an H to any hexadecimal
entries.

It will prove most convenient to be able to clean out memory or a file when writing
programs. The ability to clear out a file will allow you to "start over" with fresh data
space.

The CLEAR command will not allow you to clear out memory below the value
5C00H or above the value currently set as the top of memory. By default, it fills
between those two. Therefore, if your goal is to fill all user memory, it would be
simpler to just omit the START and END parameters.

Examples:

CLEAR

This example will fill all of user memory (the area between 5C00H and the top of
memory) with zeros.

CLEAR (START=6000H,END=7000H,DATA=6CH)
CLEAR (S=6000H,E=7000H,D=6CH)
CLEAR,S=6000H,E=7000H,D=6CH

These three commands are equivalent. All three of them will fill memory between
addresses 6000H (24576 decimal) and 7000H (28672 decimal) inclusive with the value
6CH (108 decimal).

CLEAR TESTFILE/TXT

This command will instruct the system to fill the file TESTFILE/TXT with zeros.

CLEAR DATA:TD (DATA=229)
CLEAR DATA:TD (D=229)
CLEAR DATA:TD,D=229

These three commands will all accomplish the same thing. They will search the drive
named ":TD" for the file DATA. If the file is located, CLEAR will fill it with the
value 229 decimal (E5H).

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-31

Finally:

Remember, if you use CLEAR to erase a file’s data on the disk, that file is gone!
There is no way to recover data that has been CLEARed out. The same is true for
data resident in RAM. If you use CLEAR to remove it, there is no way to ever
recover it.

As a note to users of DOSPLUS 3.4, CLEAR used to be the command you used to
set the high memory address. You will now use SYSTEM.

When you are specifying the DATA parameter, if you only specify a one byte value,
then CLEAR simply duplicates the first byte into the second when filling. Which is to
say that CLEAR always fills with a two byte value. It simply allows you to only
specify one byte if you want the same value in each.

What this means is that the values 6C00H and 006CH will react very differently. In
the first case, CLEAR will fill with a data pattern of "6C006C006C00" where the
second will use a pattern of "6C6C6C6C6C6C". A leading zero is ignored, a trailing
one is not. When using a decimal value, anything between 0 and 65535 is valid.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-32

CLOCK

This command allows you to turn on and off the display of the system clock.

===

The command syntax is :

CLOCK switch

switch is the optional switch to inform DOSPLUS whether to turn the clock
display on or off.

Your switches are

ON Display on.

OFF Display off.

===

By using this command, you can display the real time clock in the upper right hand
corner of the screen. This can be useful in certain applications to indicate to the
operator that the time has not been set (i.e. if they see a time of "00:00:00").

The system powers up with the clock turned off, unless you have the clock turned
on when you save a configuration file (see SYSTEM). You may either set the time at
that prompt upon powerup, or after powerup by using the TIME command (see TIME).
When the clock reaches "23:59:59", it will reset itself to "00:00:00" and increment the
date by one day. The clock display will be updated once a second.

If you use the system command to disable the time prompt or skip the prompt by
pressing ENTER or BREAK, DOSPLUS will attempt to recover the time last set. If,
and only if, the values are out of range for a legal time value, "00:00:00" will be
used. Also, please note that the CLOCK command affects only the display of the
clock. Turning the clock off does NOT shut off the system clock, merely the display.

If you use the CLOCK command without any switches, ON will be assumed.

Examples :

CLOCK ON
CLOCK

This command turns on the clock display.

CLOCK OFF

This command turns off the display.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-33

CLS

This command clears the display and resets the video mode.

===

The command syntax is :

CLS

There are no parameters for this command.

===

This command, when executed, will cause the display to be cleared immediately. It
will also cause the video mode to be reset. If you are in a 32 character per line
format (e.g. double wide text), you will be restored to the standard 64 character per
line format.

This command was designed with two primary uses in mind.

First, under DOSPLUS, the library commands (and most of the utilities) do not
automatically clear the screen before execution.

Therefore, this command becomes very useful to you. DOSPLUS allows multiple
commands on the same line separated by a semi colon ";". Preceding your command
with a CLS command will clear the screen before the command outputs to it. For
example :

DIR

would become :

CLS;DIR

Second, you may also use this command during a JCL file to enhance display output.

Examples:

CLS

This command will clear the screen.

CLS;FREE :0

This command will clear the screen and then display a free space map for the drive
named ":0" (see FREE).

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-34

CONFIG

This command allows you to configure DOSPLUS for non-standard disk drives.

===

The command syntax is :

CONFIG [drivespec] (param=exp...)

drivespec is the optional drive specification to indicate which drive
you are configuring.

(param=exp...) is the optional parameter.

Your parameters are :

Floppy drives :

WP=switch Sets software write protect.
MD=switch Configures for delay on motor on.
HL=switch Configures for delay on head load.
STEP=value Sets the drive step rate.
SKIP=switch Sets double step mode.
SIZE=value Indicates disk drive’s physical size.
SIDES=value Indicates number of read/write surfaces.
PD=value Indicates which physical drive this drivespec will

address.

Rigid drives :

SIZE=value Sets platter size.
SIDES=value Indicates number of read/write surfaces.
WP=switch Sets the software write protect.
STEP=value Sets the drive step rate.
HO=value Sets the head offset.
CO=value Sets the cylinder offset.
TS=value Sets the number of sectors per track.
PD=value Indicates which physical drive this drivespec will

address.

Abbreviations :

Floppy drives :

WP W
MD M
HL None.
STEP S
SKIP SK
SIZE SIZ
SIDES SID
PD P

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-35

Rigid Drives :

SIZE SIZ
SIDES SID
WP W
STEP S
HO H
CO C
TS T
PD P

===

The CONFIG command allows you to configure your DOSPLUS to operate correctly
with all manner of non-standard disk drives. CONFIG will allow you to set any
parameter for any drive. It is up to the driver to interpret that parameter and act
accordingly.

Using the CONFIG command can be as simple or as difficult as you choose to make
it. If you are operating standard Radio Shack hardware, then you do not need to use
CONFIG unless you wish to change the order in which your drives are scanned or in
some other way alter the regular scheme of things.

Since CONFIG has two areas of operation, floppy and rigid disks, we will cover each
in turn. Many of the parameters are the same, but since the types of configurations
differ so greatly we will cover each separately.

Floppy disk drives

The first step is displaying your current CONFIG settings. To do that, type :

CONFIG

and press ENTER. You should see something similar to the following :

$00 :0 Floppy,Dden,Size=5,Sides=1,Step=3,PD=0,MD
$01 :1 Floppy,Dden,Size=5,Sides=1,Step=3,PD=1,MD
$02 :2 Floppy,Dden,Size=5,Sides=1,Step=3,PD=2,MD
$03 :3 Floppy,Dden,Size=5,Sides=1,Step=3,PD=3,MD
$04 :4 NIL
$05 :5 NIL
$06 :6 NIL
$07 :7 NIL

Note : The above settings are the standard default settings for DOSPLUS 3.5. Unless
you received some variety of special "pre-configured" system, this is the manner in
which your DOSPLUS should be set when you receive it.

The first item displayed is the drive device number. As you can see from
the numbers 0 through 7, there are 8 drive devices in the DOSPLUS 3.5 system. You may
define these in any manner you wish up to a maximum of four physical floppy drives
and four physical rigid drives. You may have more than one drive device referencing
the same physical disk drive.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-36

Second is displayed the drivespec. The drivespec is simply the name by which you
reference the disk drive. This has no relation whatsoever to the manner in which the
drives are scanned (the drives will always be scanned in the order of device number,
starting with 0 and proceeding to 7) or any other area of drive performance. These
may be changed via the RENAME command to suit the needs and desires of the user.
The only restriction is that you may not have two drives with the same drivespecs
(see RENAME and File and Device Specifications).

After those two items, the various parameters for each drive will be displayed. Let
us cover now those used for floppy drives :

Floppy disk parameters

Floppy

Floppy media. This parameter indicates that the drive device whose CONFIG line it
appears in is currently defined as a floppy disk drive. This is controlled by the driver
program and cannot be altered by the user without changing which driver is installed
for that device. You would accomplish this via the ASSIGN command if it is so
desired. This parameter’s only purpose in the display line is to inform you which type
of driver is in effect.

Dden or Sden

Media density. This parameter indicates the density of the drive whose CONFIG line
it appears in. This is also not a user alterable parameter. DOSPLUS 3.5 will
automatically recognize the density of a disk (e.g. single or double) and will adjust
itself accordingly. For your convenience, this information is displayed here. It will
either read "Dden" or "Sden", depending on the density of the media.

Dden, of course, is double density while Sden is single density. Having this
parameter displayed like this allows you to, at a glance, be informed as to what type
of media is mounted in each disk drive.

Size

Physical disk size. This parameter displays and allows you to configure the physical
size of the media. We are referring to whether the drive is 5 or 8 inch. This
parameter allows you to alter that as required. Be advised that the standard floppy
disk I/O drivers no longer support 8 inch disk operation. If you wish to use an 8 inch
floppy drive, you will have had to install the proper alternate driver first.

What all this means is, if you wanted to operate an 8 inch disk drive (or any
non-standard disk drive, for that matter), the first step is to ASSIGN the proper
drivers. After that, you simply use CONFIG to set the drive parameters as needed.
Since you are operating an 8 inch drive, you would CONFIG size equal to 8.

Example: CONFIG :2 (SIZE=8)
CONFIG :AA (SIZE=5)
CONFIG :3,SIZ=8

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-37

Sides

Number of sides. This parameter allows you to configure DOSPLUS to access double
sided disk drives. The actual creation of a double sided disk is handled by the
FORMAT utility. When FORMAT is prompting you for the disk information, one of the
questions asked you will be "Single or Double sided?". If you respond with a "D",
FORMAT will create a double sided disk. Every time FORMAT initializes a disk’s
system information it stores a table on that disk that is used by the system to inform
DOSPLUS what sort of disk it is. This table is called a DCT (Drive Control Table).
One of the items stored in this table is whether a disk is single or double sided. The
first time that DOSPLUS accesses a drive, it will pick up this parameter. However,
should you switch disks, the system would have to be informed that a different disk is
in the drive. This can be accomplished two ways.

First, you could use the I command to "init" the drive so that the next time
DOSPLUS accessed that disk it would know it had to re-read the DCT information
because something had been changed. Second, you could use this parameter on
CONFIG to inform the system directly that a double sided disk is now resident in that
drive.

Therefore, whenever you are switching between single and double sided disks in the
same drive, you will need to take some action to inform the system that this has
occurred. This parameter is one of the ways of doing this. Please be aware of the
fact that double sided operation is not a software function. Without the software, the
hardware won’t operate, but the software is not an end to itself. The standard Radio
Shack disk drives are not double sided. If you are not specifically aware of the fact
that you have double sided disk drives, you probably do not.

Example: CONFIG :2 (SIDES=1)
CONFIG :A (SIDES=2)
CONFIG :2,SI=1

Step

Step rate. This parameter displays and allows you to alter what step rate DOSPLUS
will use for the various disk drives in the system. The value used here is NOT an
exact track to track step rate but rather a relative value that the DOS then
interprets. Your values are

Value Step rate

0 6 milliseconds
1 12 "
2 20 "
3 30 "(double density)

40 "(single density)

A drive’s step rate determines how much time the system allows for the read head
to move between cylinders. Drives with a low track to track access time can step the
head faster than those with a high track to track access time.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-38

DOSPLUS sets the drive step rate at two locations. The first, controlled by SYSTEM
is the system default step rate. This step rate is what will be assumed for all drives
on power up. However, you may have certain disk drives in your system that cannot
step as fast as all the others. For those drives, you should use the second method,
which is to use CONFIG to individually alter the step rate to whatever is needed.

When you use CONFIG to alter a step rate individually, you must store this as part
of a configuration file (see SYSTEM), and execute that file to restore the
configuration later. On the other hand, the default system step rate is written to the
disk’s DCT each time it is altered.

Example: CONFIG :0 (STEP=0)
CONFIG :DS (STEP=2)
CONFIG :3,S=1

PD

Physical Drive. This parameter displays and allows you to alter what actual, physical
drive a particular drive device addresses. You have four possible floppy disk drives (0
through 3). Any drive device may address any one of these. Two drive devices
may address the same physical drive, if desired.

This parameter is what is used to reorder the drives. To reorder the drives means
that you change the order in which the drives are scanned. In a standard system,
DOSPLUS will scan from drive device 0 to drive device 7 in ascending order. This may
not always be what you desire. To effect a change, you may use this parameter.

To accomplish this, simply place the various PD parameters into the drive device list
as you want them scanned. In our example above, drive 1 would be scanned before
drive 2. But if the PD value for drive 1 was 2 and the value for drive 2 was 1, this
would be reversed. DOSPLUS, during a global operation, would scan drive 0, then drive
1 (which would be physical drive 2), then drive 2 (which would be physical drive 1),
and finally drive 3. If you didn’t like having physical drive 2 addressed as logical drive
1, you could use the RENAME command to alter the drivespecs (see RENAME).

Therefore, by changing the order in which the physical drive numbers appear the
drive device list, you change the order in which the drives are scanned. You may then
alter the drivespecs with RENAME to read any way you like. The most important use
of the parameter, though, is simply when you are creating your system configuration,
be certain that all of the physical drives present in your system have at least one
drivespec assigned to them if you hope to access them later.

Example: CONFIG :2 (PD=1)
CONFIG :1 (PD=2)
CONFIG :2,P=1

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-39

WP

Software Write Protect. This parameter does not appear in our example, but were it
to be set, this is the Location that it would occur in the CONFIG display line (e.g.
immediately following the physical drive number), so we will cover it here. This
parameter allows you to set a software write protect option for any logical drive.
This has exactly the same effect as engaging a hardware write protect (e.g. the
system will not write to that drive).

The advantage is that this can be set and reset easier than you can engage a
hardware write protect and also often the logical drive is simply a portion of a
physical drive or is really a file within a drive (see under Driver and Filters,
FILE/DVR). You cannot engage a hardware write protect in such instances.

If this option is engaged for that drive, the letters WP will appear in the display
line for that drive. If these letters are not present, then the option is not engaged. If
you do not specify Y or N when mentioning WP in a CONFIC command line, Y will be
assumed.

Example: CONFIG :2 (WP=Y)
CONFIG :++ (WP=N)
CONFIG :2,W=Y
CONFIG :2,W

MD

Motor on Delay. This parameter allows you to configure DOSPLUS to operate with
drives that only switch on the motor when selected or drives that run their motors
constantly. This is primarily for use with the 8 inch drives. All standard 5 inch drives
will not switch on the motor until a drive is selected. Because of this, the system has
to delay slightly while waiting for the drive to come to speed. On the other hand,
many of the 8 inch drives run the motor constantly, so having the DOS delay in those
cases would be a needless waste of time.

You will notice that the MD parameter was present in all the floppy disk display
lines of our CONFIG example. If you do not specify a switch when using this
parameter, Y will be assumed.

Example: CONFIG :1 (MD=Y)
CONFIG :2 (MD=N)
CONFIG :1,M=Y
CONFIG :1,M

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-40

HL

Head Load delay. This parameter allows you to DOSPLUS to operate with drives that
load the head on motor on and drives that load the head with drive select. When a
drive’s read head is against the media ready to read or write data, that head is
referred to as being loaded. Certain drives keep the read head against the media all
the time. Others load and deload the heads between accesses. Of the drives the load
the heads, there are two ways they can do it.

The first method is called head load with motor on. This means the drives load the
heads whenever the motor on signal is received. Since all drives engage their motors
when any one drive is selected, this would mean that all drives would load their heads
when any one drive is selected. Because we already delay for the motor on signal,
there is no need for an additional head load delay initially and because the heads are
all loaded when the first drive was selected, we don’t need an additional delay for
head load when moving between two drives.

The second method is called head load with drive select. In this method, each drive
keeps its read head deloaded until that drive is specifically selected for use. This
would mean that we would have the heads constantly loading and deloading as we
moved data between two drives. Because of this, an additional delay will be required
at each drive selection to allow the heads to load. By setting the head load
parameter, we accomplish this.

To summarize, if your drives keep the head loaded against the media all the time,
then you do not need this parameter set. If your drives load the head with the motor
on signal, then you still don’t need this parameter. The only time that you need this
parameter set is when you are functioning with drives that load the head with drive
select.

Skip

Double step drive. This parameter allows you to instruct a drive to double step, or
read every other track. Again, this parameter doesn’t appear in our standard example,
but if set, this is where in the line it will occur (e.g. after the HL parameter). This is
primarily used to read 40 track disks in 80 track drives. 80 track disk drives use a
track density of 96 TPI (Tracks Per Inch). 40 track drives use a density of 48 TPI. 80
track drives write data exactly twice as dense. Therefore, if you instruct an 80 track
drive to skip, or read only every other track, it will read at half its regular density or
48 TPI. This will allow it to read a 40 track diskette.

Caution! Please do NOT write to a standard 40 track disk in a skipped 80 track
drive. Not only do 80 track drives use twice the tracks per inch density, but the
actual tracks themselves are somewhat smaller. This causes no problem when you are
only reading, but should you write to the disk, the track would not completely overlay
the old one. Then, when you moved it back to the 40 track drive, that drive would
read a portion of the old track as well as the new when attempting to read this disk.
This would, of course, render that track unreadable.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-41

It is vital that you remember this. If you are using an 80 track drive to backup a 40
track disk, you could cause serious problems. BACKUP seeks to clear all mod flags in
the directories of both disks after making the backup. To do that, it writes to both
the source and the destination directories. When it writes to the source disk, a 40
track disk in a skipped 80 track drive, it will ruin the directory. Therefore, before
using a skipped 80 track drive to backup a 40 track disk, either write protect that
disk or set the WP parameter on CONFIG for that drive. Failure to do so will make
the disk unusable in the 40 track drive.

The simplest way to avoid this is to never write to a 40 track disk using a skipped
80 track drive. And when using a skipped 80 track drive to backup a 40 track
disk, either hardware or software write protect that disk. An excellent rule is to always
engage software write protect at the same time you engage the skip option for any
given drive.

The same warning applies when copying a file from that disk. COPY will also seek
to remove the mod flag for the file it just copied. This will cause it to write to the
source disk directory. Please be aware of this and prevent it before losing any disks.
This parameter is too useful to be removed just because it can cause a problem if
misused, so you (the user) are responsible for seeing that it is properly implemented.
When using the Skip parameter, if you do not specify a switch with the parameter,
Skip=Y will be assumed.

Example: CONFIG :2 (SKIP=Y)
CONFIG :3 (SKIP=N)
CONFIG :2,SK=Y
CONFIG :2,SK

If we were to set all of the possible floppy disk drive parameters for one of the
drives listed in our example above, it would looks something like this

$00 :0 Floppy,Dden,Size=5,Sides=1,Step=3,PD=0,MD
$01 :1 Floppy,Dden,Size=5,Sides=1,Step=3,PD=1,MD
$02 :2 Floppy,Dden,Size=5,Sides=1,Step=3,PD=2,WP,MD,HL,Skip
$03 :3 Floppy,Dden,Size=5,Sides=1,Step=3,PD=3,MD
$04 :4 NIL
$05 :5 NIL
$06 :6 NIL
$07 :7 NIL

Note that drive 2 now has all available options engaged for it. This is how the
CONFIG line would appear in such cases.

Rigid disk drives

This first step in CONFIGuring rigid disk drives is to ASSIGN the drivespec you wish
to use with the proper rigid disk driver. You will do this via the ASSIGN parameter.
For more specific information and exact syntax’s for installing the various drivers,
please look up that driver in the section Drivers and Filters elsewhere in this manual.
For our purposes here, we will assume that you have already installed the driver and
will deal simply with changing the parameters.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-42

To display the current CONFIG settings, type :

CONFIG

and press ENTER. You should receive something similar to the following display :

$00 :0 Floppy,Dden,Size=5,Sides=1,Step=0,PD=0,MD
$01 :1 Floppy,Dden,Size=5,Sides=1,Step=0,PD=1,MD
$02 :2 Floppy,Dden,Size=5,Sides=1,Step=0,PD=2,MD
$03 :3 Floppy,Dden,Size=5,Sides=1,Step=0,PD=3,MD
$04 :4 Hard,Fix,Size=5,Sides=0,Step=6,PD=0,CO=0,HO=0,TS=0
$05 :5 NIL
$06 :6 NIL
$07 :7 NIL

Note : The above example is of a standard DOSPLUS 3.5 after installing a rigid disk
driver and before any further installations or configurations. Yours may appear
slightly differently regarding the setting of the parameters (depending on the
individual driver), but the parameters should remain the same.

The first item displayed is the drive device number. As you can see from the
numbers 0 through 7, there are 8 drive devices in the DOSPLUS 3.5 system. You may
define these in any manner you wish up to a maximum of four physical floppy drives
and four physical rigid drives. You may have more than one drive device referencing
the same physical disk drive.

Second is displayed the drivespec. The drivespec is simply the name by which you
reference the disk drive. This has no relation whatsoever to the manner in which the
drives are scanned (the drives will always be scanned in the order of device number,
starting with 0 and proceeding to 7) or any other area of drive performance. These
may be changed via the RENAME command to suit the needs and desires of the user.
The only restriction is that you may not have two drives with the same drivespecs
(see RENAME and File and Device Specifications).

After those two items, the various parameters for each drive will be displayed.
Let us cover now those used for rigid drives :

Rigid disk parameters

Hard

Rigid media. This parameter indicates that the drive device whose CONFIG line it
appears in is currently defined as a rigid disk drive. This is controlled by the driver
program and cannot be altered by the user without changing which driver is installed
for that device. You would accomplish this via the ASSIGN command if it is so
desired. This parameter’s only purpose in the display line is to inform you which type
of driver is in effect.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-43

Fix or Rem

Fixed or removable platters. This parameter indicates that the driver you have
installed for that drive is set to work with either fixed platter (non-removable) or
removable platter drives. If you are going to be removing the platters and replacing
them with a new set, the system needs to be informed that this might be the case at
any given time. This, however, is NOT a user option. It is controlled by the driver. If
the driver you have installed will operate with removable platter drives, then the
word "Rem" will appear.

Size

Platter size. This parameter allows you to configure DOSPLUS for the actual
physical size of the drive’s platters. Some drivers may work with several different
units from a single manufacturer by simply altering the CONFIG line to reflect the
proper settings for that drive. One of the items that may change between the units is
the physical platter size for the drive.

This is referring to 5 or 8 inch platters. After installing the drive, you would simply
configure the drive for whatever size hardware is correct. At this writing, the
majority of the drives being sold used the 5 inch drives, so this should be by far the
most common size encountered.

Example: CONFIG :4 (SIZE=5)
CONFIG :5 (SIZE=8)
CONFIG :4,,SIZ=5

Sides

Number of surfaces. This parameter allows you to use CONFIG to inform the rigid
disk driver regarding the number of surfaces on the drive that a particular drivespec
addresses. This is measured in sides or number or read/write surfaces. This is exactly
twice the number of platters, because each platter contains exactly two read/write
surfaces.

Therefore, if you have a three platter drive, you have 6 sides. A 2 platter drive has
4 sides, and a single platter drive has 2. The rule is, when configuring your rigid
disk, multiply the platter count by two and set sides equal to that. There are some
restrictions involved here. You may not have more than 256 sectors on any given
cylinder.

A cylinder is defined as being all like-numbered tracks all on all platters. You may
not have more than 256 sectors on any one of these. To determine how many sectors
you have on a cylinder, multiply the number of surfaces (sides) by the number of
sectors on each surface (TS or Track Size, covered later). If, for example, you have a
Track Size of 32 (32 sectors per track or surface), then the maximum numbers of
platters allowed would be 4. 4 platters are 8 sides and 8 time 32 is 256, the maximum
number of sectors per cylinder.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-44

For the most part, this will not even concern you. For each drivespec that you are
configuring, set the sides value equal to the number of platters multiplied by two.

Example: CONFIG :4 (SIDES=4)
CONFIG :5 (SIDES=6)
CONFIG :4,SI=4

Step

Drive step rate. This parameter allows you to set the relative step rate for the
drive. This will be a value between 0 and 255. It has no relation to the actual rate at
which the drive steps. Different drivers will require different values. The same driver
may require a different value for two separate drives.

Each driver description should contain what step rates are valid for which drives.
Simply configure each drive according to the information included with that driver.

Example: CONFIG :6 (STEP=6)
CONFIG :7 (STEP=128)
CONFIG :4,STEP=0
CONFIG :6,S=6

PD

Physical Drive. This parameter allows you to control what physical drive a drivespec
addresses. You may only have a maximum of 4 physical hard disk units (drives 0
through 3) attached to your machine. However, you may partition those using any or
all of the 8 drivespecs available to you.

If, for example, you wanted to split physical hard drive 0 (the first one on the
chain) into two volumes and chose to use drivespecs 4 and 5 for it, you would set the
PD parameter for both of those to 0. This would have both drivespecs addressing the
same physical hard disk. Then, by using the other hard disk parameters, you may tell
each drivespec which portion of the hard disk to use. For a detailed explanation of
the concepts behind drive partitioning, consult the portion of the technical manual
called Rigid Disk Partitioning.

Example: CONFIG :4 (PD=0)
CONFIG :6 (PD=1)
CONFIG :5,PD=0
CONFIG :4,P=0

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-45

CO

Cylinder Offset. This parameter is part of what allows you to control what area of
the hard drive a drivespec will address. If you are dividing a 230 cylinder hard drive
into two equal volumes, you would want each volume to use 115 cylinders. And, since
in this case you would not want two drivespecs using the SAME 115 cylinders, you
would have to use the CO parameter to tell one of the drivespecs to start at cylinder
115.

Let’s assume that you are using drivespecs 4 and 5 again. Allow drive 4 to start at
cylinder 0. To give drive 4 115 cylinders would encompass cylinders 0 through 114.
This would mean that drive 5 would begin at cylinder 115. You would set the CO
parameter for drive 5 to 115. When addressing the drive via DISKZAP (see utilities) or
in any other method, that would be referred to as cylinder 0. However, CONFIC would
keep track of the fact that cylinder 0 through 114 of logical drive 5 are really
cylinders 115 through 229 of physical drive 0. And it would do all this via the PD and
CO parameters.

Example: CONFIG :4 (CO=0)
CONFIG :5 (CO=115)
CONFIG :6,CO=112
CONFIG :4,C=0

HO

Head Offset. This parameter allows you to control at which surface a logical drive
will begin. This may be used to create a logical drive that only uses certain platters
of a hard disk. To use this parameter, you will set HO equal to a value that
represents how many surfaces to skip before starting the logical drive. This is used
when you wish to partition a drive by platter either in conjunction with or in lieu of
partitioning it by cylinder.

For example, to start a logical volume with the second head of a particular drive,
you would use a head offset of 1, since skipping one head will cause you to begin with
the second head.

This parameter becomes useful when you wish to assign each head as a separate
logical volume or when dealing with drives that would otherwise have too many
platters for you to address via cylinder partitioning. If you specify this in the
command line, you must give an accompanying value.

Example: CONFIG :5 (HO=2)
CONFIG :4 (H=0)
CONFIG :5,H=2

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-46

TS

Track size. This parameter is used to inform DOSPLUS as to the number of sectors
stored on one track of the hard disk. Do not confuse this with the number of sectors
per cylinder. A cylinder may contain more sectors than a track, depending on the
number of surfaces. This is not an arbitrary parameter, but rather must be set to what
the hardware requires. Your drive owner’s manual should have this information. If it
does not, contact the drive assembler and ask them.

This parameter may not be set by the driver (depending on the drive). Always check
to see that it is set before attempting to use the hard disk formatter or make any
other access to the drive. A track size of 0 will usually cause unpredictable results.

Example: CONFIG :4 (TS=32)
CONFIG :6 (T=33)
CONFIG :4,T=32

Important : None of the above described rigid parameters will appear without the
installation of the rigid disk driver. If your DOSPLUS does not have this driver, you do
not have hard disk capability.

The following is an example of a 230 cylinder, 3 platter, 10 megabyte hard disk
configured as three volumes with the CO parameter. There are three floppy disks in
the system and two drive devices set to NIL.

$00 :4 Hard,Fix,Size=5,Sides=6,Step=6,PD=0,CO=0,HO=0,TS=32
$01 :5 Hard,Fix,Size=5,Sides=6,Step=6,PD=0,CO=115,HO=0,TS=32
$02 :6 Hard,Fix,Size=5,Sides=6,Step=6,PD=0,CO=172,HO=0,TS=32
$03 :2 Floppy,Dden,Size=5,Sides=1,Step=0,PD=2,MD
$04 :1 Floppy,Sden,Size=5,Sides=1,Step=0,PD=1,MD
$05 :0 Floppy,Dden,Size=5,Sides=1,Step=0,PD=0,MD
$06 :A NIL
$07 :B NIL

Notice that in this example, the hard disk has been installed as the system device.
This was accomplished through the ASSIGN command (see ASSIGN). This operation also
requires that you have formatted and sysgened the drive.

In addition, the drive scan sequence in this system has been modified such that when
DOSPLUS does a global search on all drives, it searches the hard disk volumes first
and then comes back to the floppies (as long as they are available).

The entire operation can be outlined as follows :

(1) Use ASSIGN to install the driver and activate that drive device.

(2) Use CONFIG to alter the parameters correctly for each volume.
There may be as many volumes as you desire (or need) up to the
limit of the system to accept drivespecs.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-47

(3) Use the rigid disk formatter utility supplied with your drivers to
format the hard disk. Instructions on its use will be contained in
documentation sent with the specific drivers (because each may
operate slightly differently).

(4) Use the SYSGEN utility to copy the system files to the hard disk.

(5) Copy all user files to the hard disk.

(6) Use the ASSIGN command to duplicate the driver information
from the hard disk volume you just performed all these operations
on into the system drive. This would transfer system control to the
hard drive. You may then rename the drives to suit you.

Perhaps this model will be of some aid to you.

Examples

CONFIG :1 (STEP=1)
CONFIG :1 (ST=1)
CONFIG :1,ST=1

This command will cause the system to configure the step rate for drive 1 as "1" or
12 mS.

CONFIG :4 (TS=34,CO=0,HO=0)
CONFIG :4 (T=34,C=0,H=0)
CONFIG :4,T=34,C=0,H=0

This command will set the drive defined as ":4" for certain rigid disk parameters.
This example assumes that you have the rigid disk drivers installed. Otherwise, any
attempt to configure these parameters (which are non-existent on floppies) will result
in an error.

Finally:

Remember that none of the alterations you make with CONFIG are automatically
permanent. If you wish to preserve these, you must use SYSTEM to create a
configuration file while these parameters are set the way that you want them. Then,
by executing this file, you may resume that configuration.

Please don’t be intimidated by CONFIG and the rigid disk drives. With each driver
that Micro-Systems Software produces, we will attempt to produce a JCL file that
will install the system for you in several different standard configurations. The only
time that you really need to become involved in altering the parameters is when you
are setting up some non-standard configuration and no JCL exists to aid you.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-48

COPY

This command allows you to copy data from one point in the system to another.

===

The command syntax is:

1. COPY [FROM] device/file [TO] device/file (param=exp...)
2. COPY [FROM] filespec [TO] filespec/drivespec (param=exp...)
3. COPY [FROM] drivespec [TO] drivespec [USING] wildmask (param=exp...)

Your parameters are :

DPW="string" Destination disk’s Disk Master Password.
ECHO=switch Display (echo) filenames as they are copied.
INVIS=switch Copy invisible files, also.
KILL=switch Delete source file after copying.
MOD=switch Copy based on MOD flag condition.
OVER=switch Prompt before overwriting.
PROMPT=switch Prompt for disks (single drive copy).
QUERY=switch Prompt before copying.
SPW="string" Source disk’s Disk Master Password.
TINY=switch Copy with tiny buffer (a sector at a time).
NEW=switch Copy only files from source disk that DON’T exist

on destination.
OLD=switch Copy only files from source that DO exist on

destination.

Abbreviations :

DPW D
ECHO E
INVIS I
KILL K
MOD M
OVER O
PROMPT P
QUERY Q
SPW SP
TINY T
NEW N
OLD O

===

The COPY command is used to copy data from one point in the system to another.
Whether you are copying a file, a group of files, or data to/from a device, this is the
command you will use.

The average user may use COPY more than almost any other. command in DOSPLUS.
This command operates in three separate styles or "modes" :

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-49

(1) One device/file to another copying a byte at a time.

(2) One file to another copying a file at a time.

(3) Several files from one disk drive to another copying a file at a
time.

In the command syntax box, we showed syntax examples of each of the three modes
of COPY. Let us now take an expanded look at each of those and what they are used
for :

Mode 1

In this mode, also known as a "device copy", we are copying a :

* Device to a file.
* Device to a device.
* File to a device.

Therefore, if your copy doesn’t involve a device, it is not operating in this mode.

An example of copying a device to a file might be copying the keyboard (@KI) to a
disk file (FILENAME/EXT). The format would be :

COPY @KI TEXT:1

Any output from the keyboard (i.e. characters that you type...) would be sent to the
disk file TEXT on drive 1.

An example of copying a device to a device would be copying the keyboard (@KI) to
the printer (@PR). This would, in effect, give you a typewriter (depending on the type
of the printer, of course). Any character typed on the keyboard would be copied
directly to the printer without being sent to the screen or executed. The format would
be :

COPY @KI @PR

An example of copying a file to a device may be copying a text file
(FILENAME/EXT) to the serial communications device (@RS). This would allow you to
send data directly from a disk file out the serial communications device. The format
would be :

COPY TEXT:1 @RS

This would instruct the DOS to copy the file TEXT located on drive 1 out the serial
communications device.

The copy will be terminated during device copies when an ETX (03H) is received. If
the keyboard is the source device, this will be a CONTROL-C.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-50

Also bear in mind that a file may function as either an input or an output device.
The is not the case with all of the various system devices, though. Some of them
function only as input devices (the keyboard is an example), and others only as output
devices (the printer, for instance). You must always copy data from an input device to
an output device. When using device copies, a filespec may appear in EITHER position.
However, you must be careful to assure that the device mentioned in the other position
is of the correct type (e.g. input or output). Should you copy to an output device or
from an input device (i.e. COPY @PR TESTFILE or COPY TESTFILE @KI), you will
create an error.

To summarize the principle involved; COPY is used to move data between two
devices of differing types. Since a file can be either input or output, COPY can be
used to move data between two files. But when dealing with the system devices, care
must be given to the device type. To move data between two system devices of the
same type, use either the FORCE or JOIN command, depending on what your
application is. These commands also provide a display of the system devices and what
type they are (e.g. input or output).

Mode 2

In this mode, also known as a "file copy", we are copying a :

* File to a file, with rename.
* File to a file, without rename.

Therefore, if a copy involves a device or more than one file at a time, it is not
operating in this mode.

An example of copying a file to a file would be if you copied the file TEST1 from
drive 0 to drive 1. The format would be :

COPY TEST1:0 TEST1:1
or

COPY TEST1:0 :1

Notice the two different manners of issuing that command. In the first form, where
the second filespec IS specified, you have the option of changing the filespec as you
copy it. For example :

COPY TEST1:0 TEST2:1

would be perfectly legal. When the file TEST2 on drive 1 was examined, you would
find that is it the same as the file TEST1 on drive 0.

Using the second form, in which the second filespec is not specified, but rather
assumed to be unchanged from the first, you may not rename the file while you are
copying it. For example :

COPY TEST1:0 :1

is going to create a file TEST1 on drive 1. Since copying without changing the
filespec is a far more common occurrence than copying with the change, you will be
using primarily this form.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-51

Technical note : When you are using either of these forms you are engaging a file
by file copy. By default, this uses the "big buffer" (all available memory) for the copy.
In other words, it reads in as much of the file as available memory will allow before
writing it back to the destination disk. This greatly increases the speed and efficiency
of the copy.

You may specify the tiny buffer option (TINY parameter) and force COPY to copy
only one sector at a time. This will slow down the copy, but it will force COPY to
keep its buffer within the system overlay areas and out of user memory altogether.

If you are going to copy a file into a different area of the same disk, you MUST
change the filename (because two files with the same name may not exist on the same
disk). Therefore, the second form is only legal when moving files between two disks.
You may, however, use the second form within a single drive when copying between
two disks in that drive with the PROMPT parameter (e.g. single drive copy).

To copy a file between two disks in a single drive, specify the PROMPT parameter.
COPY will then prompt you for the source, destination, and system disks as needed.
Please pay close attention to the prompts and only insert the proper disks at the
proper times.

Mode 3

In this mode, also known as a "wildmask copy", we are copying between a :

* Drive and a drive, using a wildmask.

Therefore, if your copy involves a device, only a single file, or you wish to rename
the file during the COPY, you should be using one of the other modes.

An good example of copying a drive to a drive might be if you wanted to move all
the files from the disk in drive 1 to the disk in drive 2. You would accomplish this by
instructing DOSPLUS to move all files that match a certain wildmask from one drive to
another. You would then simply make the wildmask general enough to incorporate ALL
files.

In this area, wildmasks, DOSPLUS is VERY flexible. All these commands would
accomplish the same thing :

COPY !:0 :1
(copy everything from drive 0 to drive 1)
COPY :0 :1
(copy from drive 0 to drive 1 using everything)
COPY FROM :0 TO :1 USING */*
(copy from drive 0 to drive 1 using everything)
COPY USING ! TO :1 FROM :0
(copy using everything to drive 1 from drive 0)
COPY TO :1 !:0
(copy to drive 1 everything from drive 0)
COPY :0 :1
(copy drive 0 to drive 1)

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-52

The phrase in parenthesis underneath the command example is there to help you get
the feel of what each command is telling the system to do. You see, DOSPLUS
evaluates each command line and determines what the user wanted to do.

It is during these wildmask copies that most of your parameters come into play.
Let’s cover them each now and what effect they have.

During one of these wildmask copies, if a file is invisible it will NOT be copied
unless the INVIS parameter has been specified. This will become very important when
setting up non-standard system disks with SYSGEN and COPY.

The filenames will NOT be displayed during a wildmask copy unless you use the
ECHO parameter. Under most circumstances, you will want to see what files COPY is
moving, and so use this parameter.

By using the MOD parameter, you may copy on the basis of whether or not the mod
flag has been set. The mod flag (short for "modification flag") indicates that a file has
been modified (e.g. opened and written to) since it was last copied or the disk was last
backed up. This is displayed as a "+" in the directory entry of that file (see DIR). In
some instances, you may wish to copy all files that have been modified from a
particular disk. To do that, indicate "MOD=Y" in the parameter list during your
wildmask copy. Then, when DOSPLUS encounters a file that matches the wildmask, it
checks first to see that the mod flag is set before copying (e.g. has the file been
modified?). If it is not set, in other words the file has not been modified, then
DOSPLUS will skip that file and proceed.

The KILL parameter, when specified, will cause COPY to delete the file being
copied from the source disk after it has been moved.

If you use the QUERY parameter, DOSPLUS will ask you if you wish to copy each
file BEFORE it actually copies it. This can be useful in screening out one or two files
that you don’t want copied, but if you have a large number of files being copied it can
get tedious to be prompted for each one.

If you use the OVER parameter, DOSPLUS will ask if you wish to overwrite a file
(when it finds the same filespec on the destination drive) BEFORE it actually
overwrites it. This prevents you from accidentally overwriting a file. It is often a good
precaution to use this parameter.

When using either of these "prompting" parameters (i.e. QUERY or OVER), you will
receive a prompt on the screen requesting action. In the case of QUERY, DOSPLUS
will prompt "Copy ?" each time it finds a file matching the wildmask. In the case of
OVER, DOSPLUS will prompt "Overwrite ?" each time it encounters a file on the
destination disk with the same filespec as the one it is copying. If you press ENTER by
itself at either of these prompts, it will have the same effect as typing "N" and
pressing ENTER. The only way that action will be taken in either case is to type a "Y"
and press ENTER.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-53

When doing a wildmask copy, often you will have either a source or destination file
that is password protected. You will not be able to copy or overwrite this file without
a password. But since there may be several such files in any given copy, you cannot
specify all the needed passwords. This is where the expanded use of the Disk Master
Password in DOSPLUS 3.5 and the SPW and DPW parameters come in. In DOSPLUS, you
may always specify the Disk Master Password in place of a file password. That is why
it is so important to assign passwords when formatting. If you will be copying in a
situation where you may encounter protected files, COPY allows you to specify the
source and destination Disk Master Passwords. Using the form "SPW=password" and
"DPW=password", you can supply these in the parameter line. When COPY encounters
any protected files, it will then use the supplied password to attempt to access it. You
will need to avail yourself of this when using COPY to move the DOSPLUS utilities
after a SYSGEN.

The NEW and OLD parameters are also for use during a wildmask copy. They provide
a means of copying between two disks based on what files exist on which disk. For
example, if you copied from drive 0 to drive 1 using the NEW parameter, all the files
that existed on drive 0 (the source drive) that did not exist on drive 1 (the destination
drive) would be copied (e.g. all the new files). To do the same thing with the OLD
parameter would only copy those files that already existed on the destination drive
(e.g. all the old files). NEW can be used to make certain that two disks contain the
same files. OLD can be used as a convenient way to update programs from new
masters.

Examples:

COPY FROM :0 TO :1 USING! (INVIS,ECHO,OVER,SPW='PASS')
COPY :0 :1 ! (INVIS,ECHO,OVER,SPW='PASS')
COPY :0 :1 ! (I,E,O,SP'PASS')
COPY !:0 :1,I,E,O,SP='PASS'

All four of these commands will have the same effect. They will cause all files from
drive 0 to be copied to drive 1. Invisible files will also be copied and DOSPLUS will
NOT overwrite a file without first asking. The Source Disk Master Password is "PASS",
in case any of the files being copied are protected.

COPY FROM @KI TO @DO
COPY TO @DO FROM @KI
COPY @KI @DO

These three commands all instruct DOSPLUS to copy all characters received from
the keyboard to the display. As you would type in characters, they would be echoed to
the screen, but would NOT be acted upon. Remember that you MUST copy FROM an
input device TO an output device. To do otherwise will cause an error.

COPY MYFILE/BAS.PASSLOG:0 YOURFILE/BAS:2

This example will copy the file MYFILE/BAS from drive 0 to drive 2. In the process,
it will rename it to YOURFILE/BAS. On drive 0, the file is protected and uses the
password "PASSLOG", so this is specified in the source filespec.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-54

COPY THISFILE/CMD:0 THATFILE/CMD.CHECK:1

In this example, we have reversed the protection situation. This time, the
destination file is password protected and the password had to be included with it. This
example assumes that the destination file is already existing, but if it were not, COPY
would create it. Because COPY clones attributes when it creates files, if it had to
create the destination file it would bear the same password and protection status as
the source file.

COPY SHORT:1 :0

This command will move the file SHORT from drive 1 to drive 0. The second
filespec is assumed to be SHORT as well, because only the drivespec was specified.

Finally:

When using wildmask copies that affect a great number of files, please use the
QUERY, OVER, and ECHO parameters if there is any doubt at all as to whether or not
your mask is too general. Don’t wait until it is too late to discover that you have set a
mask that allows too many files to be moved and potentially corrupts valuable data.

When using the PROMPT parameter, you may not be copying with a device or
wildmask copy. It must be a file copy. This means that single drive copies must be done
one file at a time.

COPY will duplicate the attributes of any file that it copies. That is, the file it
creates will have the exact same attributes (i.e. Logical Record Length, Protection
levels, etc.) as the file it is copying. This does not apply to device copies.

If you have created any files with the system attribute set on them (please note
that this is not a normal user option, you must have done this manually), COPY would
normally not copy these files during a wildmask copy. We have included an extra
parameter to help with that, though. COPY has a parameter called SYSTEM that works
like INVIS. If you specify SYSTEM, COPY will simply consider system files as well as
user files during the copy. This may not be used to copy the DOSPLUS system files. It
is there to aid some users in very special cases.

Some of the parameters may not apply in all cases. Please use common sense. If you
specify OVER and NEW together, it will never prompt you to overwrite. If the file
exists, it won’t be copied, therefore how could it be overwritten? The same is true for
QUERY and ECHO. You will never see the filename twice. If DOSPLUS shows you the
filename to ask you whether or not to copy, why should it show you the filename again
when you say yes? These are not errors, but rather the command has fairly
sophisticated error trapping.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-55

CREATE

This command allows you to create disk files and pre-allocate their space.

===

The command syntax is :

CREATE filespec (param=exp...)

filespec is the standard DOSPLUS file specification that informs
CREATE of the name of the file you wish to create.

(param=exp...) is the optional parameter indicating what further
action you might wish CREATE to take past simply creating a
directory entry.

Your parameters are :

DATA=value Fill data (one or two bytes).
GRANS=value Number of grans.
KEEP=switch Sets keep flag (non-shrinkable attribute).
KILO=value Number of kilobytes.
LRL=value Logical record length.
SIZE=value Number of records.
VERIFY=switch Verify disk space after creation.

Abbreviations :

DATA D
GRANS C
KEEP K
KILO KI
LRL L
SIZE S
VERIFY V

===

By using the CREATE command, you may create and pre-allocate (set aside space
for) a disk file. This is different than normal operation in which the file has space
allocated to it dynamically (as it is needed). Normally, whenever data is written into
the file, if more room is needed, the system will assign the file more disk space.

When you create a file, you have the option of setting the KEEP parameter. This
affects the allocation/de-allocation of a file still further. Normally, even if you use
CREATE to create the file, the space may be re-claimed dynamically under certain
circumstances (i.e. if the file is closed after data is written to it sequentially).

Therefore, by using CREATE, you have brought the file into existence. Space is still
allocated and de-allocated dynamically unless you use the KEEP parameter. The KEEP
parameter tells the system to never DE-ALLOCATE space from that file. The file may
still be extended dynamically, but DOSPLUS will never reclaim space from it.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-56

If you attempt to create a file that already exists, CREATE will inform you that
the file DOES already exist and abort. If you do not specify the drivespec when giving
CREATE the filespec to be created, then CREATE will attempt to create it on the
first available drive. If there is insufficient space on a drive to hold the file, then you
will receive a error message informing you that the disk space is full and it will
allocate as much space as WAS available to that file.

In such a case, the file will have been created and space allocated to it, but the
file will contain no records because it was never actually closed. The date in the
directory will also not be set.

This is, of course, assuming that you have elected to pre-allocate the disk file in
addition to creating it and instructed CREATE to do so. If you do not tell CREATE to
pre-allocate disk space, this command will simply create the directory entry. The file
will have no space allocated to it and will not take up any space on the disk. The
system will allocate space to the file the first time that you write to that file.

Using CREATE to pre-allocate data files can greatly increase the speed of data
handling. Because the file already exists and has its space allocated, time will not have
to be taken to do it dynamically. Also, depending on the disk, the file will tend to be
less segmented. The fewer segments the file is in, the less that the drive has to move
the head around when reading in the data. It also gives you the very important option
of filling the file with a specified data pattern and then verifying the file’s disk area
before beginning operations.

Pre-allocation

To determine the size of the file when you wish to pre-allocate, you have three
options. You may

(1) Allocate by the number of records with SIZE.
(2) Allocate by the number of granules with GRANS.
(3) Allocate by the number of total kilobytes with KILO.

When allocating by number of records, then the logical record length has a great
bearing on file size. The logical record length of a file in DOSPLUS does little more
than affect how the directory entry will look. You can choose any logical record
length between 1 and 256, inclusive. The DIR command displays both the number or
sectors in a file and the number of logical records (see DIR). Only by having the proper
logical record length for each file will the information in the "number of records"
column be really useful.

However, DOSPLUS does allow you to access files with a different logical record
length than they had when they were opened. You may find this of some use.

You will adjust the logical record length of the files you create with the LRL
parameter. For example, LRL=128, would be a logical record length of 128.

When you are pre-allocating a file by records, you specify the number of records
you desire in that file by using the SIZE parameter. Simply set SIZE equal to however
many records you anticipate. The actual physical size of the disk file will be equal to
the number of records specified times the logical record length used. Of course, if the
logical record length happened to be 256, then SIZE would equal the number of sectors.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-57

Allocating a file by "granule" assumes that you have at least a passing familiarity
with what a granule is. A granule is defined as the smallest unit of disk allocation. A
disk is made up of sectors. Each sector is 256 bytes long. These sectors are grouped
into tracks. The tracks are concentric circles of data on the disk. Each track has a
pre-defined number of sectors on it. As data is written to the disk, space must be
made available to the file.

If DOSPLUS were to allocate space to a file one sector at a time, the result would
be very slow. The drive would constantly be stepping out to the directory track to
ascertain where the next free sector was and assign it to the file to which you are.
Therefore, DOSPLUS will allocate space several sectors at a time. This unit of
allocation is called a granule. On a standard 5 inch single sided floppy disk, a granule
is made up of 5 sectors single density and 6 sectors double density. There are a total
of two granules (10 sectors) on each track in single density, or three granules (18
sectors) in double density.

You may also allocate a file by specifying how many granules that you wish the file
to contain. You will adjust this value via the GRAN parameter. Granules are normally
invisible to the user. The only place in the entire DOSPLUS system that the number of
free granules on a disk is displayed is from the DIRCHECK utility (see DIRCHECK).
When you specify the number of granules, the system will calculate how many records
to allocate and act accordingly. It does not matter what the logical record length is,
CREATE will adjust for it. There will ALWAYS be the number of granules in the file
that you have specified regardless of whether or not you specify a logical record
length of less than 256 (unless, of course, you try to allocate more space than is on
the disk).

And finally, pre-allocating by kilobytes. Allocating a file by kilobytes is simple. Just
determine how big the file should be and inform the system. This figure is expressed in
kilobytes, so be careful not to ask for more than you desire. For example, "KILO=100"
is asking for 100,000 bytes, not 100. Again, it will not matter what the logical record
length is. CREATE will allocate as many records as it needs to come up to the
specified amount of total disk space.

All of the values that we have just talked about (SIZE, GRANS, and KILO) MUST be
entered in the command line as positive integers.

Verification of data

To use CREATE to verify a file’s disk space, you have two parameters available.
These are DATA and VERIFY. Both of these parameters are invalid unless you have
pre-allocated some space to the file in the CREATE statement.

To simply fill a file’s disk space with a specified data pattern, you only need to use
the DATA parameter. This will cause CREATE to write to every sector of a file’s disk
space with whatever one or two byte value you specify.

When you are specifying the DATA parameter, if you only specify a one byte value,
then CREATE simply duplicates the first byte into the second when filling. Which is to
say that CREATE always fills with a two byte value. It simply allows you to only
specify one byte if you want the same value in each.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-58

What this means is that the values 6C00H and 006CH will react very differently. In
the first case, CREATE will fill with a data pattern of "6C006C006C00" where the
second will use a pattern of "6C6C6C6C6C6C". A leading zero is ignored; a trailing
one is not. When using a decimal value, anything between 0 and 65535 is valid.

To have CREATE verify the file’s disk space after it has filled it, just include the
VERIFY parameter in the parameter list when you issue the command. CREATE will
create the file and pre-allocate the space, fill the file with the specified data, and
then read each record to make certain that the area is readable.

You do not have to fill a file to verify it, just pre-allocate space. If you include the
VERIFY parameter without the DATA parameter, the file’s area will still be read.
However, in most cases, you will probably want to clean out the area to be used or
perhaps fill it with a more critical data pattern for an extra measure of verification.

Examples:

CREATE NEWDAT:0 (LRL=128,SIZE=100)
CREATE NEWDAT:0 (L=128,S=100)
CREATE NEWDAT:0,L=128,S=100

These three commands will all have the same effect. They will create the file
named NEWDAT on Drive 0 with a logical record length of 128 and pre-allocate 100
records to it. It will not write any data to the file, nor will it verify the file’s disk
space.

CREATE PAYROLL:B (DATA=229,GRANS=12,VERIFY)
CREATE PAYROLL:B (D=229,G=12,V)
CREATE PAYROLL:B,D=229,G=12,V

These three commands will also perform the same function. They will create the file
PAYROLL on the drive B with a logical record length of 256. They will pre-allocate
12 granules of disk space to the file and then fill each sector with a data pattern of
229 decimal (E5 hex) and then verify each sector to make certain that the space was
readable.

CREATE DATAFILE/DAT (DATA=108,KILO=100,KEEP)
CREATE DATAFILE/DAT (D=108,KILO=100,K)
CREATE DATAFILE/DAT,D=108,KILO=100,K

These three commands are equivalent. They will each cause the system to attempt
to create a file called DATAFILE/DAT on the first available disk drive. It will create
this file with a logical record length of 256 (because nothing else was specified) and
pre-allocate 100K to it. Then the system will fill each sector with a data pattern of
108 decimal (6C hex). It will NOT verify these. Finally, it will set the KEEP
parameter, instructing the system never to de-allocate disk space from that file.

CREATE BADFILE (DATA=108)

This is an example of an illegal command. You have specified a data pattern without
pre-allocating any disk space to the file. DOSPLUS will simply ignore the DATA
parameter, create the file, and proceed.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-59

CREATE WORSEFIL (VERIFY)

This is another example of an incorrect command. You have instructed CREATE to
verify a file that you have not pre-allocated any space for.

Finally:

The most important thing to remember when using CREATE is, don’t allocate more
space than you have. If there is only 90K free on a disk, don’t specify "KILO=100"
when pre-allocating disk space. If you DO receive an error, don’t panic. That is one of
the reasons for CREATE, so that you may first test to see if you have the space for a
file and then, if you wish, to test every record of the file’s disk space.

Also keep in mind that CREATE will NOT work if a file already exists on the disk
with the same filespec as the one you are creating. This is for your protection, so that
you don’t accidentally destroy all data in a file.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-60

DATE

This parameter allows you to display or set the current system date.

===

The command syntax is :

DATE
DATE mm/dd/yy or mm/dd/yyyy

===

To display the currently set system date, type

DATE

and press ENTER. The date will be displayed in the following format :

Thu - Jan 27, 1983 - 27

The first item is the day of the week, followed by the date, and the last number is
the day of the year (1-365). When using the DATE command to set the system date, the
date can be specified in a variety of ways. Allowable separators are any non-numeric
characters. This flexibility allows you to specify the date in whatever format is most
comfortable to you. Also, DATE will accept either a two or four digit year value when
accepting a date. All this allows you to enter the date as you are used to with
TRSDOS and later as you become more familiar with DOSPLUS, move to the more
convenient formats.

DOSPLUS will accept dates from 1900 to 1999. Micro-Systems will issue free
patches to 3.5 owners in the year 2000 to change the base year.

Examples:

DATE 1:27:83
DATE 01:27:83
DATE 01:27:1983
DATE 1-27-83
DATE 1 27 83
DATE 1.27.83
DATE 01/27/83
DATE 1,27-83

All of these commands are equivalent and will have the same exact effect. They
will set the system date to January 27th, 1983.

DATE 9

This would set the month in the system date to September. If you do not specify any
other fields, the current values remain unchanged.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-61

DEBUG

This command will engage or disengage the system debugger (memory monitor).

===

The command syntax is :

DEBUG [switch]

switch is the optional ON or OFF condition.

===

DEBUG is a powerful disk based memory monitor. With it you can examine any
memory location in RAM or any CPU register. You may also change the content of a
RAM location or register.

Unlike the other DOSPLUS commands, when you enable DEBUG you will not see any
noticeable change on the screen. This is because DEBUG is transparent to the
execution of your program and is only entered when called. There are two ways to call
DEBUG when it has been enabled. They are:

(1) Pressing BREAK at any time (SHIFT-BREAK on the Model III).

(2) Automatically after a machine language program has been loaded
and before the first instruction has been executed.

(3) If an abort due to error occurs, DOSPLUS will exit to DEBUG
instead of the DOS command mode.

Once DEBUG is called, you have the following commands:

Command Operation performed

A Set ASCII/Graphic display mode
C Instruction/Call step
Daaaa Set memory display address to aaaa
Gaaaa,bbbb,cccc Go to address aaaa, with breakpoints optionally set

at bbbb and cccc
H Set hexadecimal display mode
I Single step next instruction
Maaaa<space bar> Set memory modification mode starting at address

aaaa (optional). ENTER records change and ends,
space bar records change and moves to next
address.

O Exit to DOSPLUS (DEBUG still engaged)
Rpr aaaa Alter register pair pr to value aaaa. Space between

register pair and value is required.
S Set full screen memory display mode
U Set dynamic display update mode
X Set register examine mode
; (Semi colon) Display next memory page
- (Dash) Display previous memory page

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-62

The following is an example of a DEBUG register examine mode display (X):

AF = 0044 -Z---P--
BC = 0200: 64 79 0D 1E 3D AF C9 3E 0D CD 3B 00 AF C9 7E 23
DE = 2000: 2D 38 02 1F 26 C3 A2 19 11 0A 00 D5 28 17 CD 4F
HL = 3FC0: 64 36 30 30 30 20 35 32 33 30 3A 20 20 30 37 20
AF' = D380 S-------
BC' = 0000: F3 AF C3 15 30 C3 00 40 C3 00 40 El E9 C3 12 30
DE' = 4314: FE 41 20 13 CD EC 51 7E FE 20 38 04 FE C0 38 02
HL' = 58C1: 20 5B 45 4E 54 45 52 5D 0D FF FF FF 10 04 04 10
IX = 4010: 07 73 04 16 3E 20 5F 00 90 44 FC 43 00 00 FF 52
IY = 446C: 25 40 FF FF FF FF 66 FC 02 50 52 08 45 FF FF FF
SP = 41D3: 10 40 A6 57 00 43 3F 3F 69 06 41 01 00 43 6A 4E
PC = 0694: D1 DD El E1 C1 C9 AF 32 9F 40 16 FF C3 8D 28 E6

6000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
6020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The general format is :

The register pairs are indicated down the left hand side of the screen, with the
standard registers listed first, and the prime registers following. Last are listed the
special registers (IX, IY, SP, and PC).

The AF register contains the system flags. They are all set in the example above.
They are :

S - Sign flag
Z - Zero flag
H - Half-carry flag
P - Parity flag
N - Overflow flag
C - Carry flag

These are indicative of system status. after an operation, and of limited usefulness
to anyone save the machine language programmer.

The rest of the registers all display the contents of the register, and then
immediately to the right of the register, it displays the sixteen bytes of memory that
the contents point to.

In the case of the stack pointer (SP), this will display to you what is on the stack.
In the case of the program counter (PC), it will displayed the next instruction to be
executed.

The last four lines are simply displaying memory. You can alter these to display any
desired address.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-63

The following is an example of a full screen memory display mode (S) :

5B00: 6E 79 74 68 69 6E 67 20 79 6F 75 20 77 69 73 68
5B10: 2E FD 0D 62 0D 03 02 EF FD 0D 62 0D 03 02 EF F2
5B20: 4E 6F 77 2C 20 61 66 74 65 72 20 72 65 62 6F 6F
5B30: 74 69 6E 67 20 74 68 65 20 73 79 73 74 65 6D 2C
5B40: 20 74 6F 20 6C 6F 61 64 20 74 68 65 20 64 72 69
5B50: 76 65 72 73 20 77 65 20 68 61 64 20 61 73 73 69
5B60: 67 6E 65 64 20 61 6E 64 20 69 6E 73 74 61 6E 74
5B70: 6C 79 F8 72 65 74 75 72 6E 20 61 6C 6C 20 74 68
5B80: 65 20 69 74 65 60 73 20 77 65 20 68 61 64 20 63
5B90: 6F 6E 66 69 67 75 72 65 64 20 74 6F 20 74 68 65
5BA0: 20 76 61 6C 75 65 73 20 77 65 20 73 65 74 20 74
5BB0: 68 65 6D 20 74 6F 2C 20 61 6C 6C 20 77 65 20 68
5BC0: 61 76 65 20 74 6F 20 64 6F F8 69 73 20 65 78 65
5BD0: 63 75 74 65 20 74 68 65 20 66 69 6C 65 20 40 4F
5BE0: 44 31 2F 43 46 47 2E FD 0D 62 0D 03 02 EF FD 0D
5BF0: 62 0D 03 02 EF F2 54 68 69 73 20 63 61 6E 20 62

The left hand column contains the hexadecimal memory address currently being
displayed. The memory is displayed in sixteen byte rows for one 256 byte "page".

The following is an example of the ASCII/graphics display mode (A) :

A000:
A010: _ . S C R I P
A020: S I T / C M D b . . .
A030:
A040: M I S
A050: S P E L L / C T L
A060:
A070:
A080:
A090:
A0A0:
A0B0:
A0C0:
A0D0:
A0E0:
A0F0:

The left hand column contains the address being displayed. To the right is the ASCII
translation of the memory contents. Unprintable characters are represented as periods
(".").

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-64

DIR

This command will display a disk’s file directory.

===

The command syntax is :

DIR [FROM] drivespec [TO] device/file [USING] wildmask (param=exp...)

drivespec is the optional drivespec indicating which disk’s file
directory to display.

device/file is the optional output device or file.

wildmask is the optional wildmask to restrict DIR to a certain
group or class of files.

(param=exp...) is the optional action parameter that indicates what
type of directory you want to see.

Your parameters are :

SYSTEM=switch Display system files as well as standard entries.

INVIS=switch Display both visible and invisible user files.

KILL=switch Display any deleted files not yet wiped from the
directory or overwritten by an active file.

ALPHA=switch Display files in alphabetical order.

Abbreviations :

SYSTEM S
INVIS I
KILL K
ALPHA A

===

The DIR command is used to display a disk’s file directory (hence the name "dir"). A
disk’s file directory is a list of files residing on any given disk with a host of
accompanying information for each file. This command will display all available
information regarding a disk file. It will detail the filename and extension, it will
indicate how large the file is, whether the file is segmented or not, whether or not the
file has password protection, and what level this protection is set at. It will give you a
file’s logical record length, it will tell you if the file has been modified since last
copied or backed up, and it will tell you the date of the file’s last update.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-65

The DIR command has two basic types of function : standard and global. In the
standard DIR, you receive only the file directory for the drive that you request. In the
global form, engaged by using a wildmask, you will receive a file directory of all
mounted disk drives. Used in conjunction with a specific enough wildmask, this can be
very useful for ascertaining where in the system a file is currently located.

When you request a file directory, you may also specify the output file or device. If
you do not specify a file or device when you issue the DIR command, the file directory
will be displayed on the screen. The display (i.e. @DO) is the default device. This
allows you to output the file directory to the printer, a disk file, or wherever it may
be required.

The simplest form of DIR is :

DIR

This will display a directory of all visible user files on the system drive The next
simplest form would be :

DIR :1

This accomplishes the same effect, but restricts itself to those visible user files on
drive 1.

The file directory display

When you request a file directory, your output should look something like this :

Drive: 1 DOS:3.50 - Space: 080/128 67.5k
Filespec Attrib LRL #Secs #Recs Space Updated

BACKUP/CMD 6P..I.. 256 12 12 3.0k 01/26/83
DIR/SYS 5PS.I.. 256 18 18 4.5k 01/26/83
DISKZAP/CMD 6P..I.. 256 13 13 4.5k 01/26/83
DO/DVR 6P....+ 256 2 2 1.5k 01/26/83
FILE/DVR 6P.K.!. 256 6 6 1.5k 01/26/83
SYS0/SYS 6PS.I.. 256 15 15 4.5k 01/26/83
SYS2/SYS 6PS.I.. 256 5 5 1.5k 01/26/83
TRAP/CMD 0 256 3 3 1.5k 01/26/83

The simplest way to explain the directory output is to divide it up into three lines.
These three lines will be present for all disks that are directories.

The first line of display will be the free space summary for that drive. This line will
give you, reading from left to right, the following information

* The drive name.
* The disk name.
* The status of directory entries. (free/total).
* The amount of free space in kilobytes.

The drive name (in our example, this is drive 1). This is the current drive
specification for the drive being directoried. The drivespec is, of course, the two
character designation (preceded by a colon ":") by which you address the disk drive.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-66

The disk name (in our example, "DOS:3.50"). At time of format, both the FORMAT
and RFORMAT utilities will ask you what you wish to name the disk. This name is
stored on the directory and is displayed whenever you do a CAT, DIR, FREE, MAP, or
DIRCHECK. Usually, you will use this name to reflect the contents of the disk (i.e.
"Profile" or "Gen Led"). This can be up to eight characters in length.

The directory entry status (in our example this was "080/128"). DOSPLUS only allows
a certain number of entries per directory (256 maximum). Once you have filled this up,
you may not create any new files on that disk regardless of its free space because
there is no room to put it in the directory. This does not necessarily mean that you
cannot extend existing files. As long as they don’t need to create an extended entry
and there IS some free space on the disk, you may extend the existing files.

The directory entry status display tells you how many file entry positions you have
free (i.e. how many files remain) and how many possible entries there were for that
drive. The second number will never change, but when the first number reaches 0, the
directory is full. Therefore, in our example, it is informing us that we have used 80 out
of a possible 128 files on this particular disk.

The free space in kilobytes (in our example, 67.5k). This will give you, in brief, the
free space remaining on that drive. This figure will be expressed in kilobytes and will
be rounded to one decimal point.

The next line of the directory display is the header line. The directory entries
themselves are divided into columns of information. This header line titles each column
and identifies it. We will list the columns here and explain them one at a time when
we cover the directory entries.

* Filespec.
* File attributes (Attrib).
* Logical record length (LRL).
* Number of physical sectors (#Secs).
* Number of records (#Recs).
* Total size in kilobytes (Space).
* Date last updated.

Following this line are the directory entry lines themselves. If there are no files to
display (i.e. no visible files and no invisible parameter, no files matching wildmask, or
whatever the reason), there will be none of these. There WILL be as many of these
display lines as there are entries to show. Let’s address now the display entry line one
item at a time

The filename. This first piece of information will consist of the file’s name AND
extension. For further detail as to what are legitimate filenames and extensions,
consult the operations section under "File and Device Specifications". If you don’t see
the filename that you expected, perhaps you didn’t use the INVIS, SYSTEM, or KILL
parameter that was needed. If you wish this display to be alphabetized, remember to
use the ALPHA parameter.

The file attributes. This column, underneath the word "Attrib", contains seven items
of great importance regarding the disk file. These are called the file’s attributes. For
more detailed explanation of the attributes and when to use them, see the command
ATTRIB. At this time we will only discuss them such as they affect the operation of
DIR.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-67

(1) The file’s protection level. This first character will never be a
period. A file always has a protection level. Even if it is simply
"0", it is still a valid protection level. This position will contain a
number from 0 to 7 that corresponds with one of the seven
protection levels listed in ATTRIB. Note that in the example, the
file TRAP/CMD has a 0 in this position. This indicates no
protection at all. The other files have either a 5 or 6 in this
position indicating that they have a protection level assigned
them.

(2) The password flag. If a file has a password set for it, either
access or update, this second character will be a "P". Otherwise, a
period will be displayed here. The differences between access and
update passwords are also covered in ATTRIB. This flag simply
lets you know that one or the other or both are set.

(3) The system file flag. If a file carries the system attribute, then an
"S" will be displayed in the third character. The files SYS0/SYS
and SYS2/SYS in our example illustrate this. This is not an
attribute that can be set from DOS. It is reserved for the
DOSPLUS system files.

(4) The kill flag. If a file is deleted (non-active), then a "K" will
appear in the fourth character. DOSPLUS does not remove the
filespec from the directory when it is killed unless you instruct it
to do so with PROT. This leaves open the possibility of using
the RESTORE utility to bring back a file that was accidentally killed.
This flag will appear in the attribute line of all "dead" files during
a directory display.

(5) The invisible flag. If a file is invisible, normally it will not be seen
in the directory. If you use the INVIS parameter, though, these
files will be included. At that point, you would have no way of
discerning which files are normally visible and which are normally
invisible. That is, no way without this flag. If there is an "I" in
the fifth character, you know that file is normally invisible.

(6) The keep flag. If a file has the KEEP flag set for it, the DOS will
never de-allocate space from it. It may extend it, but it will never
shrink. This parameter is set by and documented under ATTRIB
and CREATE. If a file has the keep flag set, and exclamation
mark will appear in the sixth character. The file FILE/DVR in our
example illustrates this.

(7) The mod flag. This flag indicates that a file has been modified
since the last time that file was copied or the disk it resides on
was backed up. This serves as a warning to you that a file exists
with unique data in it (e.g. if you lose this disk, you have
potentially no other copies of this data). This parameter is
extremely useful when using a backup by file method of preserving
your data inasmuch as COPY allows you to copy based on this mod
flag (see COPY).

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-68

The logical record length. For machine language programs and data files that are to
be accessed by machine language programs, this figure is essentially for display only.
This will be expressed as a numeric value between 1 and 256. If the logical record
length is less than 256, the "Number of records" display will be a larger number than
the "Number of sectors".

The number of records. This figure will give you the number of records currently in
that file. This may or may not the same as the "Number of sectors" display, depending
on the logical record length of the file. This figure will be the actual number of
records written to the file.

The number of sectors. This figure will give you the number of actual disk sectors
currently written to by that file. This will NOT reflect the number of sectors
allocated. DOSPLUS allocates by granule (for an explanation of granule allocation, see
the library command CREATE or the technical manual under diskette formats). Since a
granule is comprised of several sectors, there will usually be more sectors allocated
than are currently written to.

The total size in kilobytes. This will give you a figure to indicate what the total
size of the file is. This figure will be given rounded off to the first decimal point (i.e.
to the nearest hundred bytes). For example, if a file was 1220 bytes long, the directory
entry would indicate 1.2K. If it was 1270 bytes long, it would indicate 1.3K. This
figure represents the amount of space ALLOCATED. This is different from the number
of records and number of sectors parameters. Those two indicate the number actually
written, while this indicates not only the space already used, but also the space that
has already been allocated to be used. For that reason, the "number of sectors * 256"
formula may not always agree with this figure.

The date last updated. As you know, DOSPLUS maintains a "system date". On
power-up, the DOS will prompt you for the date (unless you have disabled this question
by using the SYSTEM command). It will preserve this date in memory and any time that
it would normally ask you for the date (FORMAT, BACKUP, etc.), it will skip that
prompt. One additional feature of having the date set is this display in the directory.
Each time that you access a file, the current system date is updated to that file’s
directory and displayed via the DIR command. If this system date is not set, the date
"01/01/80" will be used.

Using DIR

You may call DIR from BASIC without problems unless you wish to use the "Alpha"
function for an alphabetical DIR. This cannot be used from within a BASIC program
because when you ask for a sorted directory, the memory required to do the sort
expands past the limits of BASIC’s overlay area for DOS commands and it will corrupt
your program.

When using DIR, if you wish to specify an output device/file and you have NOT
specified a source device/file, you must use the delimiter "TO" to indicate data flow.
This would occur if you were going to get a printout of the file catalogs for all
available drives. To type :

DIR @PR

would produce an error, since "@PR" is in the source field position and "@PR" is not
a valid drivespec. However :

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-69

DIR TO @PR

would work just fine. This does not apply if you are using a source drivespec,
because then the output device/file is in the proper location. For example :

DIR :1 @PR

will operate properly. "@PR" is in the proper position for an output device/file and
all will work well.

The only exception to this rule is the wildmask. If the wildmask contains a wildcard
character (i.e. "?", "*", or "!"), then the DOS will move that to the wildmask position
for you and scan the rest of the line in normal order. For instance :

DIR :0 USING */BAS

is the same thing as :

DIR */BAS :0

The system will move the "*/BAS" to the wildmask field and then pick up ":0" as the
source drivespec. This does NOT apply if the wildmask doesn’t contain any wildcard
characters. IF you were to specify a wildmask without wildcard characters, then only
files EXACTLY matching the wildmask would be displayed. However, with no wildcard
characters to signal DOSPLUS that this is indeed a wildmask, it will simply be regarded
as an invalid source drivespec. For example :

DIR TEST/DAT

will produce an error, while :

DIR USING TEST/DAT

will not. If you follow these rules of order, you should never get an error while
using DIR. The best rule of thumb is, if you can’t remember whether or not the
delimiter is required, include it. It never hurts to have it in the command line, but
sometimes it will cost you to omit it.

Examples:

DIR :0 (SYSTEM=Y,INVIS=Y,KILL=Y)
DIR :0 (SYSTEM,INVIS,KILL)
DIR :0 (S,I,K)
DIR :0,S,I,K

All four of these command lines will perform the same task. They will display a file
directory of the disk in drive :0. The catalog will include all filespecs, whether system,
invisible, active or deleted.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-70

DIR USING PER/DAT

This will search the directory of all available drives and printout a file directory
for any drive having the file PER/DAT on it. This is an example of the method that
would be used to locate all occurrences of the file.

DIR */CMD TO @PR

This example will scan all drives and printout the filespecs of any files that have
the extension /CMD.

DIR :1 (INVIS=Y,ALPHA)
DIR :1 (I,A)
DIR :1,I,A

These three commands are all equivalent. They will display, in alphabetical order,
all the user files, both visible and invisible, located on the disk in drive 1.

Finally:

If the switch is not specified in the parameter list, it defaults to "off". For
example, if you do NOT specify the SYSTEM option in the parameter field, it will
default to SYSTEM=N (e.g. no system files will be included in the file directory). On
the other hand, because of this, the simple inclusion of the option in the parameter
field is sufficient to engage it. For example :

DIR :0 (SYSTEM=Y)

and :

DIR :0 (S)

are equivalent commands. This applies to all of the optional parameters on DIR. The
simple inclusion of the name of the option is sufficient to engage it and the exclusion
of the name will cause the option NOT to be in effect.

Although overwriting files by accident was mentioned earlier, it deserves to be
strengthened now. The form of the command is :

DIR <source> <destination> <wildmask> <parameters>

If you wish to only specify the source drivespec and a wildmask (e.g. you wish to let
the destination default to the screen), then you must either have a wildcard character
in the wildmask or use the USING delimiter. There is no way around this.

A wildmask in the destination field that does not contain any wildcard characters
will be regarded as the output filespec and the file directory will be placed into that
file. This can destroy the very file that you were seeking to locate.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-71

DO

This command allows you to begin execution of a command chaining file (sometimes
called "DO files").

===

The command syntax is :

DO filespec (param=exp...)

filespec is the standard DOSPLUS file specification that indicates
what file the commands to be executed are stored in.

(param=exp...) is the optional action parameter that modifies the
operation of the command.

Your parameters are :

BREAK=switch Break key enable/disable.

HIGH=value Set high memory before beginning DO execution.

Abbreviations :

BREAK B
HIGH H

===

The DO command allows you to execute, from a file on the disk, sequences of
commands that you wish the system to accept exactly as if typed from the keyboard.
This can be useful in the case of command sequences that will be repeated often or
the case of startup procedures for "turn-key" programs.

These commands may be DOSPLUS library commands, the name of an applications
program you wish to execute, or anything that you might normally enter from the DOS
command mode.

When DO reaches the end of a list of commands, it will return control to DOSPLUS.
The "DOS PLUS" prompt will be redisplayed along with the cursor. Commands may be
entered as soon as the control is returned to the keyboard.

The BREAK parameter allows you to set up whether the break key may be used to
abort the DO file at PAUSE prompt (see PAUSE). Normally, you may abort a DO and
return control to whatever program (DOS or BASIC) happens to have it whenever DO
has stopped at a PAUSE statement and is requesting you to press a key. Sometimes,
this is not desirable. In those cases, use this parameter to turn the break key "off" (i.e.
BREAK=N). This only affects the break key within DO. It will function normally when
DO has finished.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-72

The HIGH parameter allows you to set high memory before starting a DO file and
thus control where in memory DO will reside. DO uses 288 bytes of high memory (256
bytes for an I/O buffer, 32 bytes for a DCB). This area will be located starting at the
top of memory and proceeding downward. By adjusting the top of memory pointer, you
may control where DO resides. If you have applications programs in high memory that
do not protect themselves by adjusting this pointer, DO may overwrite them unless you
make provision for it. Please note that none of the DOSPLUS drivers exhibit this
problem.

You may adjust the top of memory pointer in two ways. You may use the HIGH
parameter on the SYSTEM command (see SYSTEM) and then call DO, or you may use
this HIGH parameter when actually calling DO. The function is the same. When using
the HIGH parameter, set it equal to an address, either in decimal or hex, that
represents the address in memory that you do NOT want DO to use above. This should
be one byte lower than the starting address of the block of memory you are seeking to
protect (i.e. HIGH=7FFFH or HIGH=32767 would serve to protect from 8000H up). The
pointer value will be adjusted before DO begins and will not be altered when DO is
complete.

Applications of DO

There are many areas that DO is used in, but perhaps the most common are :

(1) Startup for applications programs.

(2) Routine sets of often used instructions.

(3) Installing patches to the system.

(4) Automatic operation of programs.

In the first, startup for applications programs, DO is perhaps most useful. Many
of your applications programs, especially those written in BASIC, will require that you set
certain library commands or in some other way interface to the system BEFORE
running the desired application program. DO will allow you to enter all needed
commands and chain into your program without operator intervention.

Because DO allows you to do this automatically without forcing the novice user or
non-technical operator to remember DOS syntax, your programs and computer system
can seem more "user friendly". Simply set up a file with BUILD (see BUILD) that
contains the needed sequence of commands. Remember, enter these EXACTLY as you
would if you were entering them in the DOS command mode. Then you would have the
last statement in your DO file call your program (i.e. BASIC MENU/BAS-F:7).

The most convenient method of starting this file executing is to set the DO
command on an AUTO statement. For example, if we created a file to adjust FORMS
and then load our BASIC file, we might place the following statements in the file
STARTUP/TXT :

FORMS (PAGE=66,LINES=60)
BASIC PAYROLL-F:5

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-73

Then we would enter the statement :

AUTO DO STARTUP

Whenever we re-booted the system, the statement "DO STARTUP" would appear and
the statements we had stored there would be executed. We would see them as they
were being executed. For more specific information on setting AUTO commands, see
the library command AUTO.

For the second application, routine execution of sets of often used instructions,
perhaps the best example would be in backing up your data disk after using some
application program. You would set up a DO file with all the needed statements to call
in BACKUP and copy the disk.

By using comment lines for instructions (see BUILD) and the PAUSE command to stop
the DO file whenever it is necessary to swap diskettes (see PAUSE), you can make the
entire procedure automatic. The advantages of this are two-fold. First, it makes it
easier for you to backup the disks yourself because you’re not typing in the
instructions each time you do it. Second, it makes it easier on an operator if all they
have to remember when backing up the disk is type "DO BACKUP" and follow the
directions that appear on the video, answering all questions as they are asked.

The third application, installing patches to the system, is a method that we will be
using to keep your DOSPLUS up to date and supply you with patches to other software
to make it run with DOSPLUS. The method is simple. The PATCH program is able to
accept input from a disk file containing an ASCII list of the patches. You would simply
have to have the patch file present and you could instruct PATCH from the DO file to
"patch this file using that set of patches".

Therefore, it is often easier to create a file (again, using the BUILD command), that
contains these patches and then allow DO to instruct PATCH to install them. The
reasons for this are clear. First, it allows you to review the patches before they are
actually installed. Second, it allows you to easily move the DO file to another disk and
install the same patches there. Third, it allows you an easy method of distributing
these patches (in the case of software houses, to customers) to others.

The fourth and final application, automatic execution of programs, is the one that
the average user will find the least useful. However, software manufacturers wishing to
"demo" their programs have a powerful tool at their disposal, and the function should
be described.

The method is simple. Create a DO file with all the needed information to begin
operating your program. Then, include the statements needed in order to answer any
prompts that the program might ask. Whenever your program request keyboard entry,
DO will send it the next statement from the file.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-74

Examples:

DO STARTUP (BREAK=Y)
DO STARTUP (B=Y)
DO STARTUP,B=Y

All three of these commands will execute the statements located in the file
STARTUP/TXT. Pressing the BREAK key will abort the operation, because the BREAK
key has been enabled.

DO FREE/DO:2

This command will execute the statements located in the file FREE/DO on drive 2.
Notice that the extension "/TXT" was not used because another was specified.

DO TEST:3 (BREAK=N,HIGH=BFFFH)
DO TEST:3 (B=N,H=BFFFH)
DO TEST:3,B=N,H=BFFFH

These commands, all equivalent, will cause DO to set the HIGH$ value to BFFFH and
then execute the instruction set in the file TEST/TXT located on drive 3. You will not
be allowed to abort execution by pressing the BREAK key.

Finally:

If you wish to create a "non-breakable" DO file, use the non-breakable AUTO option
(see AUTO) and then when calling your DO file, turn the BREAK key off. The user will
have to execute all the way through the file before gaining control of the DOS.

Also, it was stated earlier that DO used 288 bytes of high memory. This is true. But
if DO has been used once already, it will reuse the same 288 bytes.

When using DO from BASIC, you must provide for this buffer. You have basically
two methods of doing this. One is to protect memory when calling BASIC with BASIC’s
own syntax for this (see BASIC) and the other is to call BASIC itself from within a DO
file. Since DO protected its buffer with HIGH$ before calling BASIC, BASIC will not
expect to be able to use that area of memory. And since DO will reuse it, there will
be no conflicts. Choose whatever method pleases you most, but you MUST protect the
memory.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-75

DUMP

This command allows you to take a specified area memory and transfer it to disk as a
file.

===

The command syntax is :

DUMP filespec (param=exp...)

filespec is the standard DOSPLUS file specification indicating
which disk file you would like the information to be stored in.

(param=exp...) is the optional action parameter that modifies the
action of the command.

Your parameters are :

DATA=switch Indicates that the file being created is a non-program
file. DUMP will not create a file in load module
format in such cases.

END=value Ending memory address.
RELO=value Relocation address.
START=value Starting memory address.
TRA=value Transfer address.

Abbreviations :

DATA D
END E
RELO R
START S
TRA T

===

DUMP is used any time that you wish to transfer an area of memory to disk and
store it as a file. It applies to both machine language programs and data files. Any
area of memory (between the low memory and high memory pointers) may be dumped to
disk.

Once the file is on the disk, in the case of machine language programs, you may
either execute the file directly by typing in the filename from the DOS command mode
or you may load the file via the LOAD command and execute it via DEBUG or by
specifying the RUN parameter on LOAD (see the library commands LOAD and DEBUG).

By using the DUMP command, you may enter machine language programs into
memory via the modification mode of the DEBUG command and then dump them into a
disk file to be executed later.

The DUMP command in DOSPLUS is unique in the manner in which it allows you to
completely control all items of information about the file as you are saving it to disk.
You may alter the load address of the program or change the transfer address,
whichever you choose.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-76

When transferring memory to a disk file, if you wish the system to store it as data
and not a machine language file, then you must remember to specify the "Data"
parameter. Machine language programs and data files are stored on the disk in two
completely different manners.

When a machine language program is stored on the disk, there are two pieces of
information that the CPU needs to know in order to load and execute it properly.
First, where the program loads or its "load address". Second, where in memory to pass
the program control to after the program has been loaded or its "transfer address".

Under certain circumstances, you may want to alter either or both of these. You
may wish, for example, to dump memory between 7000 hex and D000 hex to disk, but to
have the system load it back later from 6000 hex to C000 hex. When you dumped that
file, you would use the RELO parameter. You would set that parameter to "6000H" and
from then on, when the system loaded that file, it would start at 6000 hex.

Some programs also use a transfer address that is different from their load address’.
In other words, the program does not actually begin executing at the exact same
location in memory as it loads. This is commonly handled by the assembler creating the
object file, but in the case of a file being dumped to disk, that obviously would not
apply. Therefore, DOSPLUS’ DUMP command allows you to set a transfer address for
the file.

If you specify neither the RELO or the TRA parameter, DUMP will assume that :

(1) The program loads back into memory at the same area that it
came from.

(2) The program is NOT to be executed, but instead, you wish to
return to DOS after loading the file.

Examples:

DUMP TESTFILE (START=7000H,END=D000H)
DUMP TESTFILE (START=28672,END=53248)
DUMP TESTEILE (S=7000H,E=D000H)
DUMP TESTFILE,S=7000H,E=D000H

All four of these commands will have the same effect. They will attempt to write
the area of memory between 7000 hex and D000 hex to the first available disk drive
under the filename "TESTFILE/CMD". The load address and the transfer address for the
file will both be left set to 7000 hex. Note that the decimal input was used
interchangeably with the hexadecimal.

DUMP DATAFILE/DAT:1 (START=3000H,DATA)
DUMP DATAFILE/DAT:1 (S=3000H,D)
DUMP DATAFILE/DAT:1,S=3000H,D

These three commands will all accomplish the same effect. They will move the area
of memory from 3000 hex to whatever HIMEM is currently set to a disk file named
"DATAFILE/DAT" located on drive ":1". It will store the information on the disk in
data file format (as opposed to load file format).

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-77

ERROR

This command allows you to get a get a detailed message printout of any error number
or a display of the last error displayed, depending on the syntax used.

===

The command syntax is :

ERROR [value]

value is the optional error number that you wish to obtain a
message for.

===

DOSPLUS does provide you with detailed error messages instead of numbers, but for
TRSDOS compatibility and reference’s sake, this command will still translate error
numbers into error messages. A complete list of the error messages will be published in
the technical section of the manual.

ERROR also has the unique feature of recalling the last error displayed. Simply
enter the word "ERROR" without a number and the resulting message will be the last
error the system displayed.

As stated before, DOSPLUS itself always prints out a detailed error message.
However, some applications software, in keeping with TRSDOS tradition, may give you
simply an error number. This command allows you to quickly see what the error
message for that number is.

Other programs may use the ERROR command in TRSDOS within the actual
program. For that reason, we have this command in DOSPLUS.

A very useful application of the ERROR command is the error "replay". If an error
occurs and the message is scrolled off the screen, or for some other reason you are
unable to read it, this will allow you to pick up the error message later.

Examples:

ERROR

This command will print to the screen the message corresponding to the last error
displayed.

ERROR 32

This command will print the error message pointed to by Error 32. Note that only
decimal values are accepted by this command.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-78

FILTER

This command allows you to set up a "filter" on any of the character orientated system
devices.

===

The command syntax is :

FILTER [FROM] devicespec [To] filespec (param)

devicespec is the name of the device you wish to filter.

filespec is the name of the file that contains the filter.

param is the optional action switch.

Your switches are:

YES Engage filter after loading (assumed). Also can be
used to engage previously loaded filters.

NO Load, but do not engage filter. Also can be used to
deactivate a previously loaded filter.

MAP Display filter codes.

===

This command is used to install device filters. These filters are used to modify data
as it passes between the device and its driver program. DOSPLUS was designed in such
a manner as to make this filtering easy. Filter files are simply stored as ASCII lists on
the disk and the system will interpret which codes get translated to what new values.

DOSPLUS comes standard with several filters. These are explained in the section on
System and BASIC enhancement files. You will find that most of these filters are used
to provide enhancement or alteration of existing functions. Filters are NOT drivers.
They simply modify the data as told. Device drivers are another thing altogether and
are installed via the ASSIGN command (see ASSIGN).

A good example of using a filter is the DVORAK keyboard. If you were to
re-arrange the keys on the keyboard into the DVORAK formula, that would only
accomplish half the task. For example, the "Q" key now has a "D" label, but when you
press "D", "Q" shows up on the screen. Therefore, you have need of a filter.

The device to filter in this case is the keyboard. We wish to alter the data BEFORE
the system evaluates it. We could simply filter any "Q"s that went to the display into
"D"s, but then although we would see a "D", DOSPLUS will still regard it as a "Q".
Therefore, we must filter the data after it leaves the input device and not before it
goes to the output device. In other words, the filter goes on the keyboard.

In this filter file that we install on the keyboard, we would instruct the system to
translate any "Q"s into "D"s. The end result is this. You press the key labeled "D"
which is really the "Q" key. A "Q" is sent to the filter where it gets translated to a
"D" and returned to the keyboard driver which sends it to the system. In effect, the
"Q" key has really become the "D".

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-79

For your convenience, a DVORAK keyboard filter is included with DOSPLUS. Should
you have such a keyboard, all you would have to do is issue the statement :

FILTER @KI DVORAK

and the rest would be taken care of. Whenever you create a configuration file with
the SYSTEM command, all current filters are saved with it and re-installed
automatically when the configuration file is called.

Writing a filter file

Some other systems may provide you with filter capability, but they almost ALWAYS
require some form of at least moderately comprehensive assembly language filter/driver
combination. DOSPLUS will not require this of you. Filter files are nothing more than
ASCII text files.

The first step is to list the code you wish to translate. This may expressed as
a hexadecimal value or it may be a quoted literal. For instance, if you wanted to
translate the letter "A", you could search for the codes :

41 hex
"A" quoted literal

This capacity (expressing values as literals) makes it easy for even the novice user
to create these files. The next step is to include the equals sign ("=") to indicate that
the translated value follows. Then you may express the new value for this character.
Let’s assume you wish to translate that capital "A" into a lower case "a". The
statements could look something like these :

41=61
"A"="a"

you may also mix and match the types :

41="a"
"A"=61

Hexadecimal values are assumed and quoted literals are obvious to the system. Once
you have completed the first translation, you may separate it from the next with a
comma and proceed for as many of these as you need. You may also put each
statement on a line by itself, if you wish.

An actual example of a filter file might be to filter out certain codes that would
cause your printer to go into special print modes. Let’s assume those codes are 0E (14
decimal) and 0F (15 decimal). Our filter file would be short (only two translations), and
would look something like this :

0E=00,0F=00

Let’s also assume that we store this on the disk with a filename of PRT/FLT. We
would then say :

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-80

FILTER @PR PRT

to install the filter. You can create these filter files using the BUILD command (see
the library command BUILD).

When using quoted literals in a filter file, you may use either single or double
quotes.

Examples:

FILTER FROM @DO TO DISPLAY/FLT
FILTER @DO DISPLAY

These two commands are equivalent. Notice that the FROM and TO words are
optional and that the extension "/FLT" is assumed. These will install the filter
DISPLAY/FLT on the video device.

FILTER @DO (MAP)

This command will display any filter that is currently in effect for the video device.
If one is NOT present, it will inform you that "No function exists". If one IS present, it
will list that filter to the display. It will print the character, unless it is unprintable in
which case it will print a period, followed by the value for that character in
parenthesis. The equals sign and the new value (in the same format) will follow.

FILTER @DO (NO)
FILTER @DO (N)
FILTER @DO,N

These three commands will all dis-engage the filter currently on the video device.
They will NOT deinstall the filter. Memory will still be reserved and the filter is still
there if they wish to re-engage it.

FILTER @DO (YES)
FILTER @DO (Y)
FILTER @DO,Y

These three commands will re-engage any filter installed on the video device.

Finally:

To LOAD a filter without engaging it, use the switch with the name of the filter.
For example :

FILTER @DO DISPLAY (NO)

will load the filter DISPLAY/FLT into memory and install it on the video device,
but because of the NO parameter, it will not engage it. You may then turn the filter
on later. This "pre-loading" of filters can come in handy as an easy way of getting all
needed memory reserved for filters before loading BASIC or your applications program.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-81

Once a filter is installed on a device, you may remove it by loading a configuration
file that does not have the filter in it or by rebooting the system. You may turn the
filter "Off", but this does not remove it or reclaim the memory.

If another filter is used on the same device, the previous memory will be reclaimed
and used, if possible.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-82

FORCE

This command allows you to route the I/O of one DOSPLUS system device to another.

===

The command syntax is:

FORCE
FORCE [FROM] devicespec [TO] device/file

devicespec is the primary device which is to be routed.

device/file is a device or a file to which the primary device or
file is to be routed.

===

The FORCE command provides the DOSPLUS user with the ability to redirect the
I/O paths of the system’s devices. This provides unparalleled operational flexibility
with a minimum of effort. With this command, lineprinter output may be sent to the
display, or display output sent to a disk file. This avoids the need to rewrite programs
in the event that, for example, a lineprinter should fail;, all lineprinter output could
merely be rerouted to the display, or to a disk file for later printing.

Unlike the JOIN command, which links two I/O devices together so that data goes to
the two devices simultaneously, FORCE actually routes data intended for one device to
another device or to a disk file.

Neither "devicespec" nor "device/file" default to anything. If a device or file is
specified, then a file must also be specified. If a devicespec is specified, then a device
or file must also be specified. If FORCE is entered without any device specification or
channels, then the current device settings will be displayed. It will appear something
like this :

$00 @KI <- 4DCAH
$01 @DO <-> 0473H
$02 @PR -> 03C2H
$03 @RS - NIL
$04 @U1 - NIL
$05 @U2 - NIL

The I/O directions of the devices involved in the FORCE must be the same, that is,
input devices may only be linked to other input devices, and output devices to other
output devices. Routing an input device to an output device or vice versa, is illegal.
For moving data between two devices of dissimilar natures, use the COPY command
(see COPY).

If a device is routed to itself (i.e. FORCE @PR TO @PR), then that device is reset
that device, that is, any previous routing established will be removed. You may also
use the RESET command to remove any routing (see RESET).

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-83

Restrictions

(1) Only devices 0-5 can be the primary device. These are the system
devices @KI, @DO, @PR, and @RS, plus the two user-definable
devices @U1 and @U2 (remember that these devices may be
renamed; if they are, then the current name of the device is the
one which should be used). Drives may NOT be specified, either as
the primary device or the destination device/file. Drivespecs are
valid only with filenames.

(2) Input devices should only be routed to other input devices (or
devices capable of simultaneous input and output) and output
devices may only be routed to other output devices or disk files.
Routing an input device to an output device, or vice versa, is
possible but the results are not always predictable.

(3) The order in which the devices are routed is important. Remember
that you are FORCEing the primary device to the destination
device or file. For example, if @DO is routed to @PR, the printer
output will be sent to the display. Order is important.

(4) When routing an output device to a file, remember that the file
will remain open until the device is reset and the FORCE
removed. If the computer is rebooted without resetting the
device, the file may not be readable.

Examples:

FORCE @DO TO @PR

This command will send all output normally going to the display to the lineprinter
instead. Once this command is given, no new data will appear on the display screen.

FORCE @PR PRINTFIL/TXT:3

All output to the lineprinter will be sent to a disk file called PRINTFIL/TXT on
drive :3. If PRINTFIL/TXT previously exists, then any data going to the routed @PR
device will OVERWRITE the contents of PRINTFIL/TXT. If PRINTFIL/TXT does not
previously exist, it will be created on drive :3. The disk file will remain open until the
routing is cancelled by means of the RESET command.

FORCE @PR TO @PR

This will cancel any active routing or linking for the @PR device, in effect
performing a RESET @PR.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-84

FORMS

This command will allow you to define certain parameters concerning the printer.

===

The command syntax is :

FORMS
FORMS (param=exp...)

Your parameters are:

PAGE=value Number of physical lines on a page.

LINES=value Number of lines per page to be actually used. The
ROM driver will not implement this.

WIDTH=value Number of characters that will be allowed on a line.

TOP Sends an immediate top-of-form to the printer.

CODE=value Sends the specified one or two byte value
immediately to the printer.

Abbreviations:

PAGE P
LINES L
WIDTH W
TOP T
CODE C

===

The FORMS command gives you control over the items that will instruct the printer
driver regarding the dimensions of the paper on which you will be printing. If you enter
the word FORMS without any accompanying parameters, the current settings will be
displayed.

Please note that certain functions may not be supported without the installation of
the DOSPLUS alternate printer driver supplied on your Master diskette. The resident
printer drivers in the Radio Shack ROMs do not support the LINES and WIDTH
parameters on the Model I and the LINES parameter on the Model III. For your
convenience, we have supplied an alternate printer driver that supports all of these
parameters fully as well as adding certain advanced support features such as a spooler,
line indenting, serial printer support, and much more. Consult the actual driver
documentation for details. You may install this as needed (see Drivers and Filters).

The PAGE parameter allows you to set how many physical lines there are on each
page. Most printers will print 6 lines in every inch. Standard paper is 11 inches long.
This means that standard 11 inch paper in a standard 6 line per inch printer mode will
hold 66 lines per page. To use the parameter, simply set PAGE equal to the number of
actual physical lines there are on the paper.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-85

This parameter is useful when working with paper of varying lengths. When working
with, for example, 14 inch long paper, you will have 84 lines on each page. When you
execute a top-of-form, if the PAGE parameter had not been adjusted to indicate longer
than normal paper, the system would not top-of-form correctly. It would not advance
the paper far enough. The same holds true in the opposite direction with paper shorter
than 11 inches. If you only have 42 physical lines on a page and execute a top-of-form
with the PAGE parameter set for 66 lines, the system will advance the paper too far.

This can also be used to work with printers that print more than the standard 6
lines per inch. Any application that increases or decreased the actual physical number
of lines that can be printed on a page will be adjusted for using this parameter.

One additional note. In the Model III, if you are using the resident ROM driver, it
will require you to store the number of lines per page as number of lines per page plus
one. Therefore, if you are using standard 66 line per page paper, you would set the
PAGE parameter to 67. If you are using the alternate printer driver, this will not be
the case. Lines per page are stored exactly.

The LINES parameter is used to adjust the number of lines that the driver will use
on each page before executing an automatic top-of-form to the next. This allows you
to automatically skip over perforations on fan fold paper. Without having the LINES
parameter set correctly, pagination would not be possible. To use it, set LINES equal
to the desired number of lines.

When using this parameter, simply set LINES to execute the top-of-form at the
proper time to provide the desired margins. This option can be very nice when the
operation being performed has no internal provision for paginated output. Please note
that this option is not supported under either Model I or Model III unless the alternate
driver is installed. This option is simply not honored by the resident drivers in the
Radio Shack ROMs.

The WIDTH parameter will allow you to instruct the printer driver how many
characters to print on a line before it terminates that line. When the number of
characters printed on that line attempts to exceed the value defined for WIDTH, the
printer driver terminates that line, outputting a carriage return at the point you tell it
to with WIDTH and then printing the rest of the characters on the next line. To use it,
set WIDTH equal to the number of characters that can be printed on a single line.

This parameter comes in most useful when using 8.5 inch wide paper in printers
designed to accommodate 13 inch paper as well. Many printers that are designed for
the narrower paper will automatically "wrap around" any lines that exceed the
maximum paper width. However, a printer that can handle either size paper would have
no real way of knowing how wide the particular paper loaded at the moment would be.
This means that a wide carriage printer printing upon a narrow sheet of paper could
run over the edge and print on the platen.

The WIDTH parameter will prevent this. If you set it for the maximum number of
characters, your printer can print on any particular size paper, it will wrap any lines
exceeding the maximum length down to the next line.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-86

One item to watch out for is special graphics modes on various lineprinters that
cause you to output great numbers of bytes in order to configure the printer or engage
the various graphics modes. Sometimes this can cause to attempt to output more
than the limit of characters. Since the Model I resident ROM driver doesn’t use this
parameter, there will be no conflict there. On the Model III, WIDTH defaults to 255.
After that point is reached, text will be wrapped around to the next line. To avoid this
problem on the Model III, if you are using the alternate printer driver, you may specify
WIDTH=0 and the driver will also never automatically wrap a line around no matter
how many codes are output prior to a carriage return.

Please note that this parameter is not recognized at all on the Model I without the
installation of our driver and one the Model III, you must store the value here at
characters per line plus two. This will, of course, be both active and exact under the
alternate driver.

TOP sends an immediate top-of-form code to the printer. This provides a simple
method for advancing the paper without having to touch the printer. That is especially
nice for the various styles of printers that have no simple switch to top-of-form.

There are no parameters for TOP, simply specify it in a command line and the
system will send the printer an ASCII 0CH (form feed). If your printer does not perform
a top-of-form when receiving that code, you may use the CODE parameter to send
whatever code is required.

The CODE parameter allows you to immediately transmit a one or two byte decimal
or hex value to the printer. This can be used for a wide variety of purposes. Some of
them include :

(1) Sending a top-of-form code to a printer that does not recognize
0CH as such.

(2) Sending a line feed to the printer.

(3) Setting some special mode (underline, boldface, etc.) from the DOS
command level.

(4) Using it within a DO file to output codes to the printer to
configure it for a particular applications program about to be
executed.

These are just some examples of how you can use the CODE parameter. Because you
can send any codes you desire, this command is totally flexible. You will more than
likely develop many more uses for it than just those listed.

To use this parameter, simply specify the desired one or two byte value by setting
CODE equal to that value in the command line. Decimal or hex input is accepted. Be
certain to append a trailing "H" to any hexadecimal input. You may send multiple
values by using the multiple command feature of DOSPLUS.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-87

Examples:

FORMS

This would cause the forms parameters to be displayed on the screen.

FORMS (PAGE=66,LINE=60,WIDTH=80)
FORMS (P=66,L=60,W=80)
FORMS,P=66,L=60,W=80

This will set the page length to 66 lines, the number of lines to be used to 60, and
the maximum line width to 80 characters.

FORMS (PAGE=66,TOP)
FORMS (P=66,T)
FORMS,P=66,T

This command will set the page length to 66 lines and transmit a top-of-form (ASCII
0CH) to the line printer.

FORMS (CODE=10)
FORMS (C=10)
FORMS,C=10

This command will send a decimal 10 (hexadecimal 0A) to the printer. Normally, this
will produce a single linefeed. The value could have been given as "0AH".

Finally:

A note to previous owners. The operation of the FORMS command is now slightly
different in version 3.50 than in earlier versions. Please look in the "Dos operations"
portion of the manual for the section on items that have changed and note the
differences.

When sending a two byte hexadecimal value with CODE, remember to send it in
LSB-MSB order. For example, to send the codes 27 (1BH) and 15 (0FH) as one two byte
hexadecimal value, it would be done with the statement :

FORMS (CODE=0F1BH)

The last byte given is sent first. Notice the "H" following the value. This is
mandatory for hexadecimal input.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-88

FREE

This command will display the free storage space and remaining directory space on all
mounted disks.

===

The command syntax is:

FREE
FREE [FROM] drivespec [TO] device/file

drivespec is the optional drive specification. If given, a free space
map of that drive will be displayed. If omitted, the free space
summary for all mounted disks will be shown.

device/file is the optional output device or file.

This command has no parameters.

===

The FREE command, when given without any drivespecs, will read the directory of
each mounted disk and determine the amount of space available on that disk. "Mounted
disks" includes logical drives (such as those on a hard drive which has been split up
into one or more volumes). The free space remaining on each disk will then be
displayed, along with the number of available directory slots for new files. Free
storage space will be given in kilobytes.

It is quite possible that a disk may have free disk space remaining, but has a full
directory. In this case, even though there is storage space remaining on the disk, no
new files may be placed on it because there is no more room in the directory to hold
information about that new file. Conversely, there may be available directory slots, but
no free storage space remaining on the disk. DOSPLUS will create the file but will not
allocate any space to it in this case.

If FREE is given with a drivespec, then DOSPLUS will read only that drive, and
then display a map of the disk. The map will show all the formatted sectors on the disk
and indicate which ones are in use, which ones are free, and which ones are
unavailable (locked out). Granules allocated to a file will be displayed with an "x", free
granules with a "." (period). The directory track will have its granules displayed with a
"D". This display will be by cylinder, with the cylinder numbers for each line given in
the farthest left hand column.

The information generated by the FREE command is normally sent to the video
display, but may be sent to any valid output device or a disk file simply by specifying
that you desire this. For example, FREE TO @PR, will send the free space information
to the line printer.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-89

When you request FREE without a drivespec, you should see something similar to
this :

Drive: 4 Volume 1 - Space: 175/256 3096.0k
Drive: 5 Volume 2 - Space: 238/256 3012.0k
Drive: 6 Volume 3 - Space: 254/256 3440.0k
Drive: 7 Volume 4 - Space: 254/256 3440.0k
Drive: 0 Scripsit - Space: 071/128 16.5k

As covered above, the first item displayed is the drivespec and the disk name.
Second is the amount a free directory space remaining. The first number is the amount
a directory entries free and the second reflects the total available on that drive. By
subtracting the first number from the second, you may arrive at the number of
directory entries used for that drive. Following that is the free diskette space
expressed in kilobytes. This value will be rounded to one decimal place.

If you request FREE with a drivespec, you will get the same line of information, but
only for the drive you request. Following that will be the free space "map". This map
is also described above. Some maps, such as those for a hard disk volume, may be large
enough to scroll off the screen. In these cases, you may press the SPACE BAR to
pause the output. By pressing it again, you will re-start it. This allows you to step
through the free space map.

Examples:

FREE

This command will display free space information for all mounted drives on the
video display.

FREE TO @PR

This command will send the free space information for all mounted drives to the
lineprinter.

FREE FROM :1 TO @PR
FREE :1 TO @PR
FREE :1 @PR

This command will send a map of the disk in drive 1 to the lineprinter.

FREE TO FREEINF/TXT:A

This command will send the free space information for all mounted disks to a file
called FREEINF/TXT on drive :A.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-90

Finally:

When using the optional output device or file on FREE, be certain to include the
delimiter "TO" if you have not given a source drivespec. If you do not, FREE will
attempt to interpret the output device as the drive desired and return an error.

For example :

FREE @PR

will cause FREE to evaluate "@PR" as the source drivespec. This is invalid, and an
error will result. If you include the word "TO", such as :

FREE TO @PR

all will be fine.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-91

I

This command will instruct the system to log in a disk.

===

The command syntax is:

I [drivespec] (param=switch)

drivespec is the specifier of the name of any valid drive in the
system.

(param=switch) is the optional action parameter.

Your parameter is:

MOUNT=switch Logs in the disk immediately.

Abbreviation:

MOUNT M

===

The I command allows you to instruct DOSPLUS to log in a specific disk or all disks.
When DOSPLUS "logs in" a disk, it reads the information stored on the disk that
describes the disk to the system and it also reads the directory. Therefore, if a disk
will log in properly, you are assured of two items

(1) DOSPLUS now knows exactly how that disk is formatted.

(2) That disk is readable to the system (at least in a general sense,
obviously specific read errors could exist elsewhere.)

When the I command is issued, the system will be flagged to log in a mounted disk
at the next disk access. If no drivespec is given, then the system will flag for all
mounted disks as necessary and read the information from each disk at the first access
of that disk following the I command. If a drivespec is specified, then the system will
flag just for the disk in that drive.

This is necessary only when you are using double-sided floppy disk drives and wish
to swap a single-sided disk for a double-sided one, or vice versa. For all other items
about a disk, it is optional. DOSPLUS needs to know whether a disk is double-sided or
not. The I command will allow it to determine this information. If all your disks are
formatted identically regarding the number of sides, then it is not necessary to use the
I command at all.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-92

The MOUNT parameter will cause the system to immediately read the information
from the specified drive into memory without waiting for the next disk access.

You may also manually adjust the SIDES parameter on CONFIG if you wish, but use
of the I command will accomplish the same results with less user effort. Put simply, all
the I command does is "initialize" the disk from the DOS’ point of view. When you use
the I command, the DOS "forgets" all that it knows about the disk and will re-establish
all information on the next disk access. By using the MOUNT parameter, you can force
it to do that immediately and not wait for the next disk access.

The only time this is mandatory is with single and double sided disks. If a disk’s
track count has changed or the density is altered, DOSPLUS will recognize that
automatically on the next access. However, unless the system specifically looks for it,
a single sided disk had no immediate difference from a double sided disk and vice
versa. This information is stored in the DCT, but we have to be told to look at it.

This command can also be useful in determining that a disk is readable before
continuing with some procedure. If you can mount the disk, DOSPLUS can read it. If
the format is incompatible or the disk is blank, it will not mount properly.

Examples:

I

This command will cause DOSPLUS to flag the DCT information in all drives. This is
necessary when switching from a double-sided disk to a single-sided disk or vice versa
in dual-headed disk drives.

I :0 (MOUNT)

This form of the I command will cause the system to flag drive 0 for its drive
control information. If the disk in drive 0 was a double sided disk and you wish to read
a single sided disk in the same drive, mount the single-sided disk and then issue this
command.

If the new disk is formatted identically to the one already in drive 0, then this
command is unnecessary; however, issuing it will do no harm.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-93

JOIN

This command will link together two devices within the DOSPLUS system.

===

The command syntax is:

JOIN [FROM] devicespec [TO] device/file

devicespec is the primary device which is to be linked.

device/file is a device or file with which the primary device is to
be linked.

===

The JOIN command allows simultaneous I/O from two devices in the system. If, for
example, you wanted a hard copy of everything that appeared on your video display,
you could JOIN the @DO device to the @PR device. After the JOIN is established, then
everything going to the display will also be sent to the printer.

It is also possible to JOIN an output device to a file, so that everything sent to that
device will simultaneously be sent into a disk file. For example, linking @PR to a file
will duplicate all printer output into a disk file.

Neither "devicespec" nor "device/file" default to anything. If a device or file is
specified, then a devicespec must also be specified. If a devicespec is specified, then a
device or file must also be specified. If neither are specified, then the JOIN settings
for all devices, if any such settings exist, will be displayed on the video screen. It will
appear something like this

$00 @KI <- 4DCAH
$01 @DO <-> 0473H
$02 @PR -> 03C2H
$03 @RS - NIL
$04 @U1 - NIL
$05 @U2 - NIL

The I/O direction of the linked devices must be the same, that is, input devices can
only be linked to other input devices, and output devices can only be linked to other
output devices. Linking an input device to an output device, and vice versa, is illegal.
For moving data between two devices of dis-similar natures, use the COPY command
(see COPY).

Linking a device to itself (e.g., JOIN @PR TO @PR) will reset that device; that is,
any previous linking established will be removed. You may also use the RESET
command to remove any linking (see RESET).

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-94

Restrictions

(1) Only devices 0-5 can be the primary device. These are the system
devices @KI, @DO, @PR, and @RS, plus the two user-definable
devices @U1 and @U2 (remember that these devices may be
renamed; if they are, then the current name of the device is the
one which should be used). Drives may NOT be specified, either as
the primary device or the linked device/file. Drivespecs are valid
only with filenames.

(2) Input devices should only be linked to other input devices (or
devices capable of simultaneous input and output) and output
devices may only be linked to other devices capable of output or
disk files. Linking an input device to an output device, or vice
versa, is possible but the results are not always predictable.

(3) The order in which devices are linked together is important, since
the JOIN is essentially in one direction only (e.g. from the device
being linked to the device or file with which the link is
established). For example, if @DO was linked to @PR any output
sent to @DO would also appear on @PR, but any output sent to
@PR would not appear on @DO. JOIN does not establish a two way
link.

(4) When linking an output device to a file, remember that the file
will remain open until the device is reset and the JOIN removed. If
the computer is rebooted without resetting the device, the file
may not be readable.

Examples:

JOIN @PR TO @DO

This command will send all printer output to the video display simultaneously.
However, display output will not be sent to the printer.

JOIN @DO FILE1/TXT

This command will duplicate all data sent to the screen in a file called FILE1/TXT.
This would, in effect, give you a "record" of what occurred on the screen in a given
period of time (e.g. during the effect of the JOIN). If FILE1/TXT exists, the old data
will be overwritten. If it does not, DOSPLUS will create the file.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-95

JOIN @RS @KI
JOIN @DO @RS

These two commands will link the serial communications device to the keyboard device
and the video display to the serial communications device. Since @RS is capable
of both input and output, these two links are valid. After these two commands are
given, any input that comes over the RS device will be treated as keyboard input,
and any output going to the display will also be sent out the serial communications
device. If the serial communications device was set up correctly previously, these two
commands will allow your computer to be controlled from a remote terminal. However,
the local keyboard remains active, so that any commands typed in at the keyboard will
also be handled normally. This, in effect, creates a "host".

JOIN @PR TO @PR

This command will RESET the @PR device. Any FORCEing or JOINing (see below)
which may have been active will be removed.

JOIN

This command, with nothing given in the I/O field, will simply display a list of
devices with their current JOIN settings if any.

Finally:

Here are some examples of illegal JOINs:

JOIN FOO/BAR:0 TO @KI

Only devices may be linked, not files. Files may serve as the destination device in a
link, but not the primary device.

JOIN @DO :1

You cannot simply link to a drivespec. You have not correctly specified an output
file or device.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-96

KILL

This command will delete a file or group of files from a disk. It will also disable any
active devices or drives.

===

The command syntax is:

KILL filespec (param=exp)
KILL [FROM] drivespec [USING] wildmask (param=exp)
KILL devicespec
KILL drivespec

filespec is the name of the file you wish to delete.

wildmask and drivespec are the wildmask and optional drivespec
that indicate the group of files that you wish deleted. If the
drivespec is omitted, the system drive will be used.

(param=exp...) is an optional parameter affecting the action of the
KILL command. You only have valid parameters when killing files.

devicespec is the name of a device you wish to deactivate.

drivespec is the name of a drive you wish to remove from the
system.

The valid parameters for this command are:

INV=switch Specifies whether or not invisible files are to be
included when a wildcard delete is done.

ECHO=switch When doing a wildmask delete, this will display the
name of each file as it is killed.

SYS=switch Specifies whether or not system files are to be
included in a wildcard delete.

QUERY=switch This will cause the system to display the filespec and
prompt you for a reply before deleting the file.

PW="string" This parameter declares the DISK master password to
the system, which will be used in place of file
passwords when wildmasks are specified.

Abbreviations:

INV I
ECHO E
SYS S
QUERY Q
PW P

===

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-97

The KILL command is used to delete items from the system that are no longer
needed or not desired. This may include files, devices, or drives. When deleting files
with KILL, there are basically two modes of operation : standard and global.

The standard method is invoked by entering the KILL command followed by a
filespec. This will delete that file from the disk. The global method is invoked by
entering the KILL command followed by a wildmask. This causes KILL to delete all
files matching that mask. When using either of these methods, you have available the
above listed parameters to modify the manner in which KILL works.

When KILL is typed with a filespec, but without a drivespec, the system will
perform a global search of all mounted disks until it finds the first occurrence of the
file, which it will then delete. If a drivespec is supplied, then only that drive will be
searched.

When KILL is typed with a wildmask, and no drivespec is supplied, the current
system drive will be searched. The system will search the directory of the specified
drive for the first filename that fits the wildmask, and kill it. It will then continue to
search for other files which will fit the mask, killing each one that it finds.

When using a wildmask, the KILL command requires that the disk’s master password
be given with the PW parameter. In this case, the disk master password will be used in
place of the file passwords when a password protected file is encountered. This does
not apply if the Disk Master Password is not set for that drive. Because the password
is set to null (no password), by omitting the password you are in effect specifying the
correct password (since "no password" is the password). The fact that anyone knowing
the Disk Master Password can delete any file on the disk (system files included), should
be sufficient to illustrate the importance of setting the Disk Master Password in
DOSPLUS 3.5. Our increased use of that password means that for a disk to be at all
protected, a password must be set.

The INV and SYS parameters are used when doing a multiple-file kill using a
wildmask. Normally, this type of multiple-file kill includes only visible user files.
However these two parameters allow you to include invisible and system files. The INV
parameter will include invisible files, and the SYS parameter will include system files
in the wildmask search. Remember that system files are also invisible, so to include the
system files, you must specify both parameters.

The ECHO parameter may be used when doing a wildmask search, to display the
names of the files as they are deleted. You will find that for the most part, this is a
desirable option. It is not often that you want to kill multiple files from a disk and not
be told which files are being killed. If you see a filename that you did not mean to be
included, you have the option of using the RESTORE utility to recover it. As a rule of
thumb, always turn ECHO on during a wildmask kill.

The QUERY parameter will force the system to display the filename before killing
it, and prompt the user for a yes or no reply. The file will be killed only if you
specifically reply "Y" when prompted. Pressing ENTER alone will not kill the file. This
is most useful when the wildmask you have specified is so general that files will be
included that you don’t want deleted. In most instances, you would rather spend the
extra time answering a prompt than recovering a file killed by accident.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-98

The QUERY parameter will override the ECHO parameter. This means that if the
system prompts you as it kills the files, it will not re-display the filename if you say
"Y".

The PW parameter declares the disk’s master password to the system. This password
will be used instead of the file access and update passwords when a wildmask search
encounters a protected file. The disk’s master password must be enclosed in either
single quotes or double quotes and may be in upper or lower case, or both.

When doing a wildmask KILL, this parameter is REQUIRED. The disk master
password MUST be specified even though the files are not password protected as long
as wildmasks are used.

KILL may also be used to disable devices. If a devicespec is given, then a bit will
be set in that device’s DCB indicating that it is set to NIL. It will become unavailable
until it is re-entered in the table by means of the RESET command (see RESET). For
example, KILL @PR will remove the lineprinter device from the system.

Similarly, disk drives may be disabled with KILL. When disk drives are KILLed, they
are also set to NIL. Simply because a drive is set to NIL does not mean that it was
once active and is now removed. If a driver was never installed for a device, then
obviously it cannot be recovered.

When I/O is performed to any KILLed output device, no error message will be
returned; however the data will go nowhere.

When a disk drive is KILLed, any attempt to access that drive will return the error
message, "Drive not available."

Care should be taken when using KILL to disable devices. The only way out of
injudicious use of this command may be to reboot (for example, KILL @KI will disable
the keyboard; the only possible recovery from this case would be to reset the entire
system). However, if a device is linked to another, the other device will continue to be
active even if the first device is KILLed.

KILLed devices and disk drives may be restored to an active state by setting the
device back to itself, for example, ASSIGN @PR @PR (See ASSIGN).

Examples:

KILL FIRST/CMD

This command will cause the system to search the directories of all mounted disks
for the first occurrence of FIRST/CMD, which will then be killed.

KILL FIRST/CMD:1

This command will cause the system to search the directory on drive :1 for
FIRST/CMD. If it finds the file, the file will be killed. If the file does not exist on
that directory, the system will return a "File not found" error.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-99

KILL */OLD:4 (QUERY=Y,PW="SUPER")
KILL */OLD:4 (QUERY,PW="SUPER")
KILL */OLD:4 (Q,P="SUPER")
KILL */OLD:4,Q,P="SUPER"

The system will search the directory of the disk on drive :4 for every file with the
extension /OLD. It will then display the filename that it finds which fits the wildmask
and ask the user whether that file is to be killed or not. If the user replies "Y", then
the file will be killed. Otherwise the file will be left alone, and the search will
continue for other files with the /OLD extension.

KILL PROG?/BAS:A (PW="PASSWORD")
KILL PROG?/BAS:A (P="PASSWORD")
KILL PROG?/BAS:A,P="PASSWORD"

This command will search the directory on drive A for any filename that fits the
wildmask PROG?/BAS and kill them. Files with names such as PROG1/BAS,
PROGA/BAS, PROG$/BAS, etc. would be killed. Note that the disk’s master password
must be supplied. Due to the lack of QUERY and ECHO parameters, you will not be
prompted before the file is killed, nor will you see the filename as it is deleted.

KILL MYDATA/DAT.SECRET:0A

This command will remove all traces of the file called MYDATA/DAT.SECRET from
the disk in drive :0A.

KILL :02

The disk drive designated as :02 will be disabled. It will be disabled and any
attempts to read or write drive :02 will produce an error.

KILL */*:X1 (QUERY=Y,PW="CIA")
KILL */*:X1 (QUERY,PW="CIA")
KILL */*:X1 (Q,P="CIA")
KILL */*:X1,Q,P="CIA"

This form of the KILL command is a global KILL. Any filename will fit the */*
wildmask form, so the use of this command will result in every file on drive :X1 being
killed. In this case, QUERY is switched on and the user will be prompted before each
file is killed.

KILL !:0 (PW="MYFILE",QUERY=N,ECHO=Y)
KILL !:0 (PW="MYFILE",ECHO)
KILL !:0 (P="MYFILE",E)
KILL !:0,P="MYFILE",E

The ! is a special wildcard character which is the same as the wildcard combination
/. This command would result in every file on drive :00 being killed. The disk
password "MYFILE" will be used to access any file encountered which is password
protected. The name of each file will be displayed as it is KILLed, and the user will
not be prompted before a file is KILLed. Note that since the parameters default to "Y"
if specified and "N" if omitted, the QUERY parameter can be dropped since it is not
desired and the expression "=Y" can be dropped from the ECHO parameter.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-100

LIB

The LIB command will send a list of the DOSPLUS library commands to the specified
output device.

===

The command syntax is:

LIB [TO] device/file

device/file is any valid output device in the system. If specified, it
may not contain any wildmasks.

There are no parameters with this command.

===

The LIB command will display a list of the DOSPLUS library commands, or send the
list to a user-specified output device or a disk file, which may be any output device
(for example, @PR) or filespec (for example, LIBRARY/COM:3). If not specified, it will
default to @DO, the video display.

DOSPLUS distinguishes between library commands and programs. Library commands
are routines which are within the operating system itself. These are the commands
displayed with LIB. Library commands are given priority over programs; that is, if a
program’s filespec is the same as one of the library commands, the system will execute
the library command rather than the program. The system is extended by adding
programs which perform functions not covered by the library commands. These
programs are not part of the operating system itself, and the system is not affected
when they are killed. Conversely, library command routines cannot be easily removed
from the operating system.

When specifying an output device or file, wildmasks should not be used, and will be
rejected. For example, the command LIB TO */LST would not be valid. When sending
the list of commands to a file, drivespecs may or may not be specified. If omitted, the
system will use the first available drive.

Examples:

LIB

This command will display a list of the library commands on the video screen. It is
identical to LIB @DO.

LIB TO LIBLIST:4

This command will send the listing of library commands into a file called LIBLIST on
drive 4.

LIB @PR

This command will output the library command listing to the lineprinter. Library commands -

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-101

LIST

This command will list data from a device or disk file to a specified output device or
file.

===

The command syntax is:

LIST [FROM] device1/file1 [TO] device2/file2 (param=exp...)

device1/file1 is the source device or file.

device2/file2 is the optional destination device or file.

(param=exp…) is the optional action parameter.

Your parameter is:

CTL=switch Determines whether or not control codes (ASCII 00H
- 1FH) will be output unchanged or whether they will
be displayed as periods (".").

Abbreviation:

CTL C

===

The LIST command is normally used for listing a disk file to an output device such
as the video display or the lineprinter. However, it may also be used to list data
coming from other input devices such as the keyboard or the communications lines.
Non-printable characters are listed as periods. However, control codes may be passed
to the output channel without being translated to periods by specifying CTL=Y. Note
that control codes may affect the action of the output channel. For example, a
CTRL-W (17H) may cause the @DO device to switch to reverse video; similarly, a
CTRL-L (0CH) may cause your lineprinter to execute an unexpected form feed to the
next page.

While the LIST command is outputting data, you may press the SPACE BAR to pause
the output or the BREAK key to abort.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-102

Examples:

LIST FOO/BAR

This command will list the disk file called FOO/BAR to the video display (default
output device). Control codes will be displayed as periods ".").

LIST FOO/BAR (CTL=Y)
LIST FOO/BAR (CTL)
LIST FOO/BAR,CTL
LIST FOO/BAR,C

This command is identical to the first one except that now control codes (00H to
1FH) are output unchanged. All other characters will be listed as is. Depending on the
control codes present in the file called FOO/BAR the display may react unpredictably.

LIST FOO/BAR:1 TO @PR

The file called FOO/BAR on drive 1 will be listed to the lineprinter.

LIST FROM @KI TO @PR (CTL=Y)
LIST @KI @PR (CTL)
LIST @KI @PR (C)
LIST @KI @PR,C

This command will echo keyboard input to the lineprinter device, in a fashion similar
to the COPY command. Keyboard input will not be passed to the DOSPLUS system for
interpretation as commands. Control codes will be output unchanged (however, the
lineprinter may act on certain codes, for example a form feed).

All characters typed in at the keyboard will continue to be sent to the lineprinter
until BREAK is pressed.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-103

LOAD

The LOAD command will load a disk file into memory.

===

The command syntax is:

LOAD [FROM] filespec (param=exp...)

filespec is the name of the file to be loaded.

(param=exp...) is an optional parameter which may be specified
with the command.

The parameters are:

PROMPT=switch Determines whether the system will prompt the user
for disk mounts or not.

RUN=switch Determines whether the file is to be executed upon
completion of loading.

START=address Determines the starting point in memory for loading a
core image file.

TRA=address This parameter will determine what address control is
to be transferred to if the file is to be executed.

Abbreviations:

PROMPT P
RUN R
START S
TRA T

===

The LOAD command will take a file from disk and load it into memory. If the file is
a program file, that is, it is in executable format and has the /CMD extension, then
the address at which it is to be loaded will be taken from the file itself (this address
is saved when the program is written to disk). If the file is not in executable format,
that is, it is a "core-image" file, and the START parameter must be specified.

A "core-image" file is any file that does not contain loader codes. Executable
program files contain special codes which tell the system where in memory it is to
load, and what its starting address is. A file which does not contain these codes is
considered to be a "core-image" file. Such a file may consist of binary program
instructions, ASCII text, or binary data. It is generally given the extension /CIM. If a
file is given without an extension, the LOAD command will assume the extension /CIM
if START is specified, or the extension /CMD if not.

The PROMPT parameter will allow you to load programs from other than a system
diskette using the system drive. You will be prompted to mount the proper diskette in
the drive. Pressing ENTER will cause the system to proceed with the load. If the
program is to be executed, you will then be prompted again to re-mount the system
disk in the drive before the program is executed.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-104

The RUN parameter tells the system that you want the file to be executed after
loading. Using this parameter along with the PROMPT parameter allows you to execute
machine language programs directly from data diskettes in a single drive system.

The START parameter informs the system where to start loading a core-image
file. These files do not contain loader codes which tell the system where in memory they
are to load, so the load address must be supplied by the user.

The TRA parameter tells the system where the entry point of a core-image file is,
and is generally given with the RUN parameter. After the file has loaded into memory,
control will be transferred to the address supplied with the TRA parameter. This
parameter can also be used to override the normal entry point address of a /CMD file.
Since programs may also be saved as core-image files without loader codes, the LOAD
command will also allow you to specify a transfer address if you wish to run such a
file after loading. This address is specified by the TRA parameter.

Examples:

LOAD TEST/CMD:1

This command will load the program file TEST/CMD from disk drive 1 into memory.
The locations into which it loads will be determined from the special loader codes
within the file itself. Control is passed back to DOSPLUS after the file is loaded.

LOAD TEST/CMD:1 (RUN)
LOAD TEST/CMD:1,R

The file TEST/CMD is loaded into memory from drive 1. As soon as the file is
loaded, control is passed to it and it will begin executing. This is the same as typing
"TEST:1" from the DOS command level.

LOAD FOOBAR/CMD:0 (PROMPT=Y,RUN)
LOAD EOOBAR/CMD:0 (PROMPT,RUN)
LOAD EOOBAR/CMD:0,P,R

The program file FOOBAR/CMD is to be loaded from disk drive :0. The system will
prompt the user to mount the correct disk containing FOOBAR/CMD in drive :0 before
it begins the load. The user should insert the disk in drive :0 and press <ENTER>.

As soon as the file is loaded, you will be prompted to reinsert the system disk. Then
FOOBAR/CMD will execute.

LOAD MEMTEST (START=7C00H)
LOAD MEMTEST (S=7C00H)
LOAD MEMTEST,S=7C00H

MEMTEST/CIM will be loaded into memory starting at address 7C00H (31744
decimal). Control will return to DOSPLUS upon completion of the load. Note that a
default extension of /CIM is assumed by the LOAD command because the START
parameter indicates a core image file.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-105

PAUSE

This command will pause execution until a key is pressed.

===

The command syntax is:

PAUSE [message]

message is an optional message string.

===

The PAUSE command provides a convenient way to temporarily halt execution of
DOSPLUS to give the operator a chance to perform some necessary task. It is generally
used inside a DO file. The command may optionally be followed by any string of
characters which the user wants displayed at the PAUSE. When the command is
executed, the word "PAUSE" will be displayed followed by the string. Execution will
then be suspended until the user presses any key on the keyboard. If the BREAK key is
pressed, the DO processing will terminate.

Note that if PAUSE is inside a DO file which is executed with the BREAK key
disabled, pressing the BREAK key in response to PAUSE will have no effect. Also note
that your command must fit onto a single command line.

Examples:

Suppose a DO file contains the following commands:

CLOCK ON
PAUSE Please insert diskette MGPDATA.
LOAD MGP/CIM (S=5500H)
MGP

When this DO file is executed, the real-time clock display will first be turned on.
Then the PAUSE command will be executed, displaying the line:

PAUSE Please insert diskette MGPDATA.

At this point execution will be suspended. The user should then insert the proper
diskette in a drive and press any key. As soon as he presses any key execution will
continue with the next command.

If this DO file was executed with BREAK turned off then all keys EXCEPT the
BREAK key could be used to cancel the PAUSE condition. Pressing the BREAK key,
however, would not cause execution to proceed.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-106

PROT

This command allows you to change diskette information.

===

The command syntax is:

PROT drivespec (param=exp...)

drivespec is the name of the drive that contains the disk we wish
to operate with.

(param=exp...) is the optional parameter whose value is to be
altered.

The parameters are:

PW="string" Supplies the current disk master password to the
system.

MPW="string" Supplies the new password to the system, if the
password is to be changed.

NAME="string" Specifies the new name for the diskette.
DATE="string" Specifies the new date for the diskette. This field

can be entered in free format.
LOCK=switch Determines whether the disk master password is to be

assigned to, or removed from, all the files in the
directory or not.

ACC=switch If LOCK=Y, this will cause the disk master password
to be assigned to the ACCESS password of all files.
If LOCK=N, this will cause the ACCESS password of
all files which have them to be removed.

UPD=switch If LOCK=Y, this will cause the disk master password
to be assigned to the UPDATE password of all files.
If LOCK=N, the UPDATE password of all files which
have them will be removed.

CLEAN=switch Specifies whether unused slots in the directory are to
be zeroed.

Abbreviations:

PW P
MPW M
NAME N
DATE D
LOCK L
ACC A
UPD U
CLEAN C

===

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-107

The PROT command allows you to change diskette attributes which were assigned at
FORMAT or BACKUP time. These attributes include the diskette name, date, and
master password. In addition, you can use the PROT command to assign the diskette
master password to all the files in the diskette directory, or, conversely, remove all
passwords from user files (system files will not be affected).

The PW parameter supplies the diskette’s current master password to the system.
The password is a string of valid characters enclosed in single or double quotes. Any
alphabetic characters in the strings are evaluated in a case-independent fashion, that
is, upper and lower case letters are treated equally. To use the PROT command, the
diskette’s master password must be specified using this parameter unless it is null or
nonexistent.

The MPW parameter assigns a new diskette master password. The password must
consist of a string of valid characters enclosed in quotes. Either single or double
quotes may be used.

The NAME parameter assigns a new name to the diskette. The name must be a
string of up to eight valid characters enclosed in quotes.

The DATE parameter allows you to change the diskette date. Normally this date is
assigned at FORMAT or BACKUP time, but you may change it using the PROT
command. The date may actually be any string up to 8 characters in length which the
user wishes to place in this field.

The LOCK parameter affects the protection status of the files on the diskette.
LOCK=Y assigns the disk’s master password to the Access and Update passwords of all
user files on the diskette (unless used with the ACC and UPD parameters, see below).
Conversely, LOCK=N removes all Access and Update passwords from all user files on
the diskette. System files (that is, files with a file protection level of 6) are not
affected.

The ACC and UPD parameters are used in conjunction with LOCK to control the
assignment or removal of file passwords. For example, if ACC=NO was specified in
conjunction with LOCK=Y, then only the UPDATE password of each user file would
have the diskette’s master password assigned to it. The Access passwords would be left
untouched. Similarly, if UPD=NO was specified together with LOCK=N, then only
ACCESS passwords would be removed from user files.

The CLEAN parameter will determine whether unused slots in the diskette directory
will be zeroed out or not. Some unused directory slots may contain information
pertaining to KILLed files. If the directory slots are zeroed out, then no trace of any
killed files would remain, and consequently it would be impossible to attempt the
recovery of any killed files.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-108

Examples:

PROT :AA (PW="secret",MPW="CIA")

This command will change the master password of the diskette in drive :AA from
"secret" to "CIA". Note that the case-independent evaluation of alphabetic characters
would have allowed you to specify PW="SECRET" or MPW="cia" and still obtain the
same results.

PROT :5 (LOCK=N,UPD=N)

This command will result in the access passwords of all user files being removed.
Update passwords, however, would not be touched.

PROT :X1 (N="Fiscyr83",D="01.01.83")

The name of the diskette in drive :X1 would be changed from whatever it was
originally to "FISCYR83", and the diskette date changed to 01.01.83.

PROT :K2 (N="New$disk",CLEAN)

The diskette in drive :K2 would be renamed to "New$disk" and all unused slots in its
directory would be zeroed out.

PROT :XX (DATE="KEEPOUT")

The DATE field may contain any string, not just the date.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-109

RENAME

This command will permit you to rename devices, disk drives and disk files.

===

The command syntax is:

RENAME [FROM] device1/file1 [TO] device2/file2

device1/file1 is the name of the device or disk file being renamed.

device2/file2 is the new name.

===

The user may rename any device, file or disk drive under the DOSPLUS system.
Names must conform to the conventions described in the Operations section of this
manual. Briefly, a device name consists of an -character followed by one or two valid
characters; a disk drive name consists of a : (colon) followed by one or two valid
characters. A filespec consists of a one to eight character file name, and a one to
three character extension preceded by a slash ("/"). A file’s password cannot be
changed by the RENAME command. However, if a file to be renamed has a password, it
still must be entered in order for the RENAME to execute properly.

Duplicate device or file names are not allowed. Wildmask specifications may NOT be
used with the RENAME command.

The logical device and/or disk drive names are entered into the system’s device
table. Thereafter that particular device should be referred to by the new logical name
until it is again changed by the RENAME command. New filenames replace the old ones
in the diskette directory. If the same filename exists on more than one diskette
directory, only the first one is changed if no drivespec is specified.

Examples:

RENAME @KI TO @KB

This command renames the @KI device to @KB.

RENAME :0 :ME

This command renames disk drive :0 to :ME.

RENAME FOO/BAS TO FOOBAR/BAS

This command renames the file called FOO/BAS to FOOBAR/BAS.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-110

RESET

The RESET command will restore a device or disk drive to its default driver.

===

The command syntax is:

RESET
RESET [FROM] devicespec/drivespec

devicespec/drivespec is the current logical name of the device or
disk drive to be RESET.

There are no parameters for this command.

===

The RESET command is used to dissolve any FORCEs or JOINs that happen to be in
effect for a device and restore it to its default value. A device’s default value could
be either the powerup value or an assigned value. RESET will always restore the last
value that was in effect.

RESET without any device or drive specification will perform a GLOBAL reset of
all devices and disk drives. If a devicespec or drivespec is included on the command
line, then only that device or drive will be reset. Any linking or routing of the device
will be cancelled, and the device will be restored to its normal power-up setting.
However, any active translation (that is, the device is FILTERed) will not be affected.
Also, the current logical name of the device or drive will NOT be changed.

If a device was linked or routed to a disk file, RESET will close the disk file when
the link or route is cancelled.

Examples:

RESET

This command will perform a global reset of all devices. Any devices which were
linked or routed will be restored to their powerup condition. Disk files which were the
target of linking or routing will be closed.

RESET @PR

This command will restore the @PR device to its normal condition if it had been
linked or routed to another device. If no linking or routing had been done, this
command would not have any effect.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-111

RS232

This command allows you to display the current settings of or alter the settings for
the serial communications device (RS232).

===

The command syntax is:

RS232
RS232 (param=exp...)

(param=exp...) is the optional configuration parameters. If omitted,
the current settings will be displayed.

Your parameters are:

BAUD=value Sets baud rate.
WORD=value Sets word length.
STOPS=value Sets number of stop bits.
PARITY=switch Engages/disengages parity error checking.
EVEN=switch Configures for even parity.
ODD=switch Configures for odd parity.
DTR=switch Sets/resets DTR line.
RTS=switch Sets/resets RTS line.
BREAK=switch Sets RS232 break status.

Abbreviations:

BAUD B
WORD W
STOPS S
PARITY P
EVEN E
ODD O
DTR D
RTS R
BREAK BR

===

The RS232 command is used to control the TRS-80’s serial communications device
(RS232C). This device is generally used in communications with remote computers or
for driving a serial printer. This command will allow you to display and optionally alter
any of the settings that are used to control this device.

The Model I includes no standard drivers for this device. The drivers included with
the Model III ROMs are so inefficient that DOSPLUS disables them on powerup.
Therefore, you can use this command to alter any settings that you desire, but before
you implement any use of the RS232 device, you will have to install the drivers we
have provided on the disk for your convenience. For specific information on this driver,
look in the section Drivers and Filters.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-112

To display the current settings, type :

RS232

and press ENTER. The current settings for the serial interface will be displayed.

The BAUD parameter allows you to configure the baud rate for the RS232 to use.
This controls the speed of transmission. BAUD is a term used to express speed of data
transmission in "bits per second". For example, 300 baud is 300 bits per second. To
alter the baud rate, simply set BAUD equal to the desired speed.

Allowable baud rates are : 50, 75, 110, 134, 150, 300, 600, 1200, 1800, 2000, 2400,
3600, 4800, 7200, 9600, and 19200. Most services are either 300 or 1200 baud.

The WORD parameter allows you to set the word length to be used. This is
controlling the number of bits that make up a data word. During serial communications,
many pieces of information are sent, one right after another. In order for the serial
drivers to work properly, they must know how many of the bits received are used to
make up the actual data word. Other bits received will then be used elsewhere.

Allowable word lengths are : 5, 6, 7, and 8. Seven or 8 bit lengths are usually used
for communications since they allow the entire ASCII character set to be transmitted.
A word length of 8 would allow any one byte value (0 through 255) to be sent.

The STOPS parameter determines the number of stop bits that will be used. In
asynchronous serial communications, each data word is framed with start and stop bits.
These are used to synchronize the start of the data elements. The start bit is normally
a single bit set to 0. Following the word are normally 1 or 2 stop bits set to 1. As the
data is received, the transition from stop bit to start (1 to 0) signals the beginning of
the next data word.

Allowable stop bit values are 1 or 2. All you must know is what the requirements of
the service used or peripheral device communicated with are and adjust this
accordingly.

The PARITY parameter allows you to enable or disable parity error checking. The
parity bit is an extra bit sent with each data word that indicates how many bits in
that word should have been set (1). Parity takes two forms, odd and even. These will
be covered with their respective parameters. This parameter simply allows you to
configure the system to recognize or ignore that bit as desired.

Parity is either set ON or OFF. Adjust yours to comply with whatever your
application demands.

The EVEN parameter allows you to set the serial device for even parity. Even parity
means that if the number of bits set in the data word is odd, then the parity bit will
be set so that the total number of bits set in the data word plus the parity bit will be
an even number.

This parameter can be turned ON or OFF. EVEN=N is the same thing as ODD=Y. You
may set this parameter even if parity checking is not turned on. This simply controls
the type of parity check that will be done if it is used.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-113

The ODD parameter allows you to set the serial device for odd parity. Odd parity
means that if the number of bits set in the data word is even, then the parity bit will
be set so that the total number of bits set in the data word plus the parity bit will be
an odd number.

This parameter can be turned ON or OFF. ODD=N is the same thing as EVEN=Y. You
may set this parameter even if parity checking is not turned on. This simply controls
the type of parity check that will be done if it is used.

The DTR parameter allows you to enable or disable the DTR signal. DTR stands for
Data Terminal Ready. This is used by many devices such as modems to indicate that
you (the terminal) are ready to communicate. This is a logic signal, not transmitted
data.

You may set DTR as either ON or OFF. For the most part, this parameter should be
left on as many devices will require it so before operating. Simply put, this signal
generally indicates that you are ready to send data.

The RTS parameter allows you to enable or disable the RTS signal. RTS stands for
Request to send. This is used by remote devices as an indication that the terminal
(you) is ready to receive data. This also is a logic signal rather than transmitted data.

You may set RTS as either ON or OFF. For the most part, you may leave this
parameter on as many devices will require it before sending you data. Simply put, this
signal generally indicates that you are ready to receive data.

The BREAK parameter allows you to set the RS232 break condition. The break
condition will interrupt all serial communications. It is a special condition that
transmits a continuous space as opposed to spaces and marks (pieces of information).

You may set the BREAK parameter to ON or OFF. For the most part, you should
leave this off, because while break is engaged the RS232 will not receive or transmit
any characters.

Examples

RS232 (BAUD=300,WORD=7,STOPS=1,PARITY,EVEN,DTR,RTS,BREAK=N)
RS232 (B=300,W=7,S=1,P,E,D,R,BR=N)
RS232,B=300,W=7,S=1,P,E,D,R,BR=N

This command will set the serial interface for a baud rate of 300, a word length of
7, one stop bit, even parity, set DTR, set RTS, and turn off break.

RS232 (BAUD=1200)
RS232 (B=1200)
RS232,B=1200

This command will alter the baud rate to 1200. All other parameters will remain
unchanged.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-114

RS232

This command will display the current RS232 settings.

Finally

Any parameters not specified when you use this command will remain unchanged
from their previous value. For example, if you set the baud rate to 1200 and then set
the word length to 8 in another statement, the baud rate will still be 1200. It will not
revert to its default.

The default settings are controlled by the ROM. If you wish to alter these, change
the settings as desired and save them as part of a configuration file (see SYSTEM).

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-115

SCREEN

This command is used to output video data to another device or file.

===

The command syntax is:

SCREEN [TO] device/file

device/file is the optional output device or disk file.

There are no parameters for this command.

===

The SCREEN command will take whatever is on the video display at the time it is
issued and send it to a specified output device or a disk file. Normally, the default
output device is the lineprinter (@PR). The user may specify other output devices, for
example the serial communications device. While the SCREEN command is processing
the video output, any other program operations will be suspended.

This command provides you with a convenient way of maintaining copies of screen
displays. For example, the SCREEN command can be embedded in BASIC programs, or
executed from machine language programs to keep track of user input to particular
prompts. It can also be placed at strategic points in user programs to maintain a log of
the program’s I/O operations.

Examples:

SCREEN

Everything that is on the video display will be sent to the @PR device. Any running
program will be temporarily suspended until the operation is completed (or until all the
screen data has been loaded into the @PR spool buffer if it is engaged, but NOT until
the lineprinter has finished printing).

SCREEN TO SCRNFILE/DAT:0

All characters currently on the video display will be sent to the file called
SCRNFILE/DAT on drive 0. If SCRNFILE/DAT does not previously exist, it will be
created. If the file already exists, then the screen data will overwrite the previous
contents of the file.

SCREEN @RS

Characters on the video display will be output to the serial communications device.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-116

SYSTEM

This command allows you to configure certain aspects of the DOSPLUS system to your
requirements.

===

The command syntax is:

SYSTEM
SYSTEM (param=exp...)
SYSTEM [filespec]

(param=exp...) is the optional parameter to be changed.

filespec is the name of the configuration file you wish to create.

The parameters for the SYSTEM command are:

TIME=switch Enable/disable time prompt.
DATE=switch Enable/disable date prompt.
LOGO=switch Enable/disable logo.
BLINK=switch Enable/disable blinking cursor.
CAPS=switch Toggle caps mode (upper/lower).
CURSOR=value Define cursor character.
HIGH=value Set top of memory pointer.
STEP=value Set system default drive step rate.
SAVE=switch Effect permanent change of certain parameters.
PORT=value Address of port to be output to upon powerup.
MODE=value One byte value to be output to this port.

Abbreviations:

TIME T
DATE D
LOGO L
BLINK B
CAPS C
CURSOR CU
HIGH H
STEP S
SAVE SA
PORT P
MODE M

===

The SYSTEM command is used to set certain parameters regarding your DOSPLUS
according to your personal taste. This command allows you to set such items as
whether or not you wish to be prompted for the time and date and whether or not you
wish to see the logo on powerup.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-117

But perhaps the most important use of this command is the creation of
"configuration files". These files are actual programs that can be executed from DOS
command level, JCL, or anywhere that you would normally execute a machine language
file. When executed, they will restore the configuration of the system to exactly what
it was when the file was first made with SYSTEM. It is by using these files that you
make permanent alterations to the way your DOSPLUS is configured.

There are three distinct forms of the SYSTEM command. First, you may enter
SYSTEM all by itself and receive a display of the currently set memory pointers.
Second, you may enter SYSTEM followed by a list of parameters to alter. Third, you
may enter SYSTEM followed by a filespec. This filespec will be used for the
configuration file.

Mode 1

Simply type :

SYSTEM

and press ENTER. DOSPLUS will display three values.

LOW$ is the address currently defined as the bottom of free memory. User programs
should not load in at an address lower than this value.

HIGH$ is the address currently defined as the top of available memory. User
programs should never use memory above this address. All DOSPLUS utilities and
library commands will honor this address. You may alter this with the HIGH parameter.

TOP$ is the address that indicates the top of actual memory. This value will never
change. By subtracting HIGH$ from TOP$, you may calculate exactly how many bytes
of high memory are being used at any one time.

All of these values will be displayed in hexadecimal format.

Mode 2

In this mode, you will use SYSTEM to set certain custom parameters regarding your
DOSPLUS. Certain of these parameters will take effect at once, and some will require
that you reset the machine before they take effect. Certain of them will automatically
permanently configure the disk and others of them will require that you specify an
additional parameter if you want to make the change permanent.

The TIME parameter allows you to turn the time prompt ON or OFF. When DOSPLUS
boots up, one of the items you will be prompted for is the time of day. If you do not
wish to see this prompt, use TIME=N as a parameter. This parameter will take effect
at once and is a permanent change. You may turn it back on at any time you desire.
Do not write protect the drive before using this or any other parameter that needs to
write to the disk.

The DATE parameter allows you to do the same thing with the date prompt.
Normally, DOSPLUS will ask you for the date each time it boots up. This parameter
allows you to turn that off if you so desire. If you turn off the date prompt, DOSPLUS
will automatically attempt to preserve the date when the system is rebooted. This
parameter takes effect at once and does not require the use of the SAVE parameter.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-118

The LOGO parameter allows you to turn ON and OFF the DOSPLUS logo that is
displayed on powerup. This also takes effect at once and does not require you to
specify SAVE to make it permanent.

The BLINK parameter allows you to engage or disengage the cursor blink function
on DOSPLUS. The Model III supports this both with the standard keyboard driver and
with the alternate keyboard driver supplied from us. The Model I requires that you load
the alternate keyboard driver before the cursor will blink regardless of the status of
this parameter. This will take effect at once but does not become a permanent change
unless you specify the SAVE parameter. This allows you to turn blink ON and OFF
without permanently configuring your system.

The CAPS parameter allows you to toggle between upper and lower case. This has
the same immediate effect as pressing the <SHIFT> and <0> keys simultaneously (on the
Model I, this is only true if the alternate keyboard driver is installed). This parameter
allows you to toggle back and forth under software control. By using the SAVE
parameter, the current CAPS status will become the default powerup condition. This
applies even if you have not specified the CAPS parameter. Any time that you specify
the SAVE parameter on SYSTEM, the current CAPS status (as of that moment) becomes
the default powerup condition.

The CURSOR parameter allows you to change the cursor character to any one byte
value. Simply specify CURSOR=value, where "value" is the byte either in decimal or
hex that represents the character you wish to use for your cursor. The change will
take effect at once, but is not permanent unless you specify the SAVE parameter. This
parameter will only function on the Model I if you have installed the alternate
keyboard driver.

The HIGH parameter allows you to alter the address that DOSPLUS regards as the
top of available memory. DOSPLUS will use high memory for some of its alternate
drivers and filters. This area of memory should not be corrupted by the user for any
reason. You may, however, have some programs that also load into high memory but do
not adjust the high memory pointer to reflect their location. DOSPLUS will then use
this area of memory if it needs it, thereby corrupting your program. By using this
parameter, you may adjust the top of memory pointer downward to protect your
programs and DOSPLUS will not use that area of memory.

All of the DOSPLUS drivers and filters are self relocating and will honor this value.
Ideally, all programs should automatically adjust the top of memory pointer, but for
those that don’t you may use this parameter. This parameter is not saved to the disk
permanently either automatically or with the SAVE parameter. If you wish to
consistently change this value, save it as part of a configuration file.

The STEP parameter sets the system default step rates. DOSPLUS is supplied
stepping the disk drives at the lowest possible rate so that it will function with any
brand of aftermarket drive. However the standard Radio Shack drives as well as many
of the aftermarket units are capable of stepping faster than this. To avoid having to
force you to use a configuration file just to alter your drive step rates, we have
included this parameter.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-119

This parameter only affects the overall default step rate. To change the step rate
of any individual drive (e.g. you have one drive that needs to step slower than the
rest), you must still use CONFIG and store it in a configuration file. To use this
parameter, set it equal to one of the following values :

Value Step rate
0 6 mS
1 12 mS
2 20 mS
3 30 mS (double density)

40 mS (single density)

The STEP parameter will be saved at once to the disk, no need to use the SAVE
parameter. However, the new step rate will not be in effect until you reboot. For
standard Radio Shack disk drives on the Model III, you should be able to use a step
rate of 0 (6 mS). For Model I drives, you may use 2 (20 mS). Some Model I drives will
go faster, but all will work with a value of 2.

Technical note: For any eight inch disk drives, the step rate will be one half that
listed in the table. Also, please confine yourself to these values listed. Using other
values may cause the floppy disk controller to operate incorrectly. Remember, these
are relative values, not the actual step rate.

The SAVE parameter allows you to make permanent certain of the SYSTEM
parameters that would not otherwise be so. Specifically, the parameters BLINK, CAPS,
and CURSOR require that you use this parameter to make them permanent. To use it,
simply include the parameter in the command line. The status of the three above
mentioned parameters will be saved as they are at that time.

The PORT parameter allows you to set the port that DOSPLUS will output to on
powerup. Many clock speed modification kits and other products (i.e. LNW80
microcomputers) will require a value to be output to a port to engage certain
functions. You may have DOSPLUS do this automatically if you choose. This parameter
allows you to set which port receives this output. This parameter will be automatically
altered on the disk without the use of the SAVE parameter.

The MODE parameter allows you to set what value will be output to the port on
powerup. Any one byte value may be used. The value may be expressed in decimal or
hex format. When you set MODE, it will be saved on the disk automatically. To
disengage MODE, set it to 0.

Mode 3

This form of the SYSTEM command allows you to create configuration files. These
files are used to permanently store your custom configurations.

It is very important that before you understand the method of creating configuration
files with SYSTEM, you understand what these files are and why you use them.
Throughout the DOSPLUS system, there are commands such as CONFIG, FORMS, and
RS232 that allow you to alter parameters affecting system operation.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-120

In addition, many applications require that alternate drivers be loaded or filters be
installed. Before using the Job Control Language, it must also be loaded into memory.
For all of these applications, when you reset the system these areas return to their
default powerup conditions.

This is the reason that we have provided you the ability to create these
configuration files. They are used to preserve these special configurations. Let’s take
an example.

Assume that we have assigned the alternate display and keyboard drivers for our
Model I so that we may have lower case and the advanced keyboard features. In
addition, we have configured drive 2 to step at 6 mS and altered the default RS232
parameters. In short, we have customized our DOSPLUS in the manner that best suits
operation on our particular machine.

Now we wish to preserve this. To accomplish that end, we might use the statement :

SYSTEM MOD1:0

This command would create the file MOD1/CFG on drive 0. This file would contain
all of the drivers we had assigned and a record of the current system configurations in
all user definable areas. Note the use of the default extension "/CFG". This is to
identify the configuration files. You may use anything you wish.

Now, after rebooting the system, to load the drivers we had assigned and instantly
return all the items we had configured to the values we set them to, all we have to
do is execute the file MOD1/CFG.

This can be done in more than one manner. The configuration files is an executable
program. You may enter the filename at the DOS command level, set it on an AUTO, or
use any other method appropriate to executing a machine language program.

Important : There is one restriction with this. When executing a configuration file in
a multiple command line or with AUTO, the name of the configuration file must be the
first item on the line. To do otherwise will produce some rather annoying results.

Let’s take another example. Assume that we have attached a five megabyte hard
disk to our Model III. We have used ASSIGN to install the driver, CONFIG to adjust the
parameters, formatted the drive, and performed all desired operations upon it. In
addition, we have transferred the system files to the hard disk with SYSGEN and used
CONFIG to move control to the hard disk. Then, also using CONFIG, we re-order our
drives such that the various volumes of the hard disk are searched first and the floppies second.

Once the system is set up exactly the way that we want it, all drivers installed and
all parameters configured, we might use the statement :

SYSTEM RIGID/CMD

This command would create the file RIGID/CMD on the first available disk drive.
This file, when executed, would load the drivers needed and send the system control
back to the hard disk.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-121

Note : If the first available drive was the first volume of the hard disk, as it would
have been in our example case, the file will be on the hard disk. Please copy it to a
floppy disk for the purposes of booting up. Without the file to re-configure for the
hard disk, we will have to re-do all the work we just did and will defeat the purpose
of the configuration files.

Upon rebooting the system, we would come to the DOS command level and execute
the file RIGID/CMD. This file would instantly reload all needed drivers and move the
system control to the hard disk as it was when the file was created.

Applications of configuration files

These are far too numerous to go into great detail, but we will address just a few :

(1) The fact that you may create as many of these files as you wish
and store them all on the same disk means that several people can
use the same copy of DOSPLUS (or the same rigid disk) and
configure the system to suit them just by loading in the proper
file.

(2) The same fact also makes it possible for the user to have more
than one machine with differing numbers of drives and various
kinds of peripherals for each. After creating a configuration file
for each machine, the user may boot the same system disk in all
machines and assume the needed configurations by simply
executing the file.

(3) It is also convenient to use the configuration files to remove
drivers or filters that are assigned as temporary measures. When
one of these files is executed, a true "warm-start" is performed.
The system is reset to exactly the same conditions as existed when
the file was created. If you have loaded any other drivers or
altered parameters in the meantime, these will also be removed
from the system or reset to their whatever values are stored for
them. This is especially useful in removing programs such as JCL
or filters no longer needed.

Examples:

SYSTEM

This command will display the currently defined memory pointer addresses.

SYSTEM (TIME=N,LOGO=N)
SYSTEM (T=N,L=N)
SYSTEM,T=N,L=N

This command will turn off the time prompt and the DOSPLUS logo. These items will
no longer appear on powerup or reboot.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-122

SYSTEM (BLINK=N,CURSOR=140)
SYSTEM (B=N,CU=140)
SYSTEM,B=N,CU=140

This command will set a steady block cursor. If we wanted to make this a permanent
change, we would have included the SAVE parameter (i.e. SYSTEM,B=N,CU=140,SA). As
it is, this command will only be temporary in its effect.

SYSTEM MYFILE

This command will create the configuration file MYFILE/CFG on the first available
disk drive, saving all system parameters to the currently set values along with any
drivers or filters that are loaded. To resume this configuration scheme, all that is
needed is to execute the file MYFILE/CFG.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-123

TIME

This command will allow you to set or display the time in the system’s real-time clock.

===

The command syntax is:

TIME
TIME hh:mm:ss

===

This command is used to display the time currently in the system’s real time clock
or to set this time. The time, if displayed, will be in the "HH:MM:SS" format. You may
set the time in free form format. To display the current time, specify "TIME" without
any accompanying time and press ENTER.

When setting the clock with the TIME command, the time can be specified in
a variety of ways. Allowable separators are any non-numeric character. This flexibility
allows you to specify the time in whatever format is most comfortable to you.

The time is maintained by the system in 24-hour format. That is, the hours go from
0 to 23. Midnight is 00:00:00, and one p.m. is 13:00:00.

Examples:

TIME 3:5:30
TIME 03:05:30
TIME 3-05-30
TIME 03 5.30
TIME 3.05/30

All of the above are equivalent and set the system’s clock to 03:05:30.

TIME 9.00
TIME 9

The system clock is set to nine o’clock. If minutes and seconds are not specified,
they default to 00.

TIME

DOSPLUS will print the current time on the video screen.

DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual

Library commands - Page 2-124

VERIFY

The VERIFY command causes DOSPLUS to read back whatever is written onto the disk
in order to verify that it was written correctly.

===

The command syntax is:

VERIFY [param]

param is the optional status switch.

Your switches are:

ON Engage verify.
OFF Disengage verify.

===

This command will enable automatic read-after-write on all disk I/O. It will ensure
that data written to the disk can be read back without error. This will slow disk I/O
down slightly but might be desirable when writing critical data to the disk.

When VERIFY is engaged, even utilities such as CONVERT and library commands
such as COPY will verify what they write. Any user software that uses standard DOS
file I/O calls to write to the disk will also be forced to verify what it writes.

Examples:

VERIFY
VERIFY YES
VERIFY Y
VERIFY ON

These forms of the VERIFY command are all equivalent and enable the
read-after-write function. If VERIFY is already on, then these commands will have no
effect.

VERIFY OFF
VERIFY N
VERIFY NO

These forms of the VERIFY command will turn off the read-after-write function. If
the function was already disabled, then these commands would have no effect.

UTILITIES

DOSPLUS 3.5 Utilities Manual Table of Contents

Utility Page
Name Number
BACKUP 3-1
CONVERT 3-6
DIRCHECK 3-11
DISKDUMP 3-13
DISKZAP 3-15
FORMAT 3-26
HELP 3-29
MAP 3-30
PATCH 3-32
RESTORE 3-35
SYSGEN 3-36
TAPE 3-38
TRAP 3-40

CODIR: Cursor-oriented Directory 3-41

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-1

BACKUP

This program is used to copy all data from one floppy disk to another.. It will make
exact or "mirror-image" copies only. To use a "copy by file" method to backup your
disk, use the library command COPY. You will also use COPY to backup the hard
disk.

===
BACKUP [FROM] :sd [TO] :dd (param=exp)

":sd" is the drive that you will be copying FROM. If this information is not provided
in the command line, BACKUP will prompt you for it later.

":dd" is the drive that you will be copying TO. As above, if this is not specified in the
command line, it will be prompted for.

"param" is the optional parameter that modifies what action the parameter takes.

The allowable parameters are:

DATE="string" Allows you to set the date directly from the command line when
you are aware that the system date is NOT set and you do not
wish to be prompted.

USE="string" Allows you to indicate that you wish to over-write any existing
format on the destination disk WITHOUT being prompted during
the backup. Answer with "Y" to proceed with the BACKUP, or
"N" to abort. Use "F" to reformat the diskette.

Abbreviations :

DATE D
USE U
===

The backup utility enables you to backup your floppy diskettes. It is recommended
as a good computing practice to use this utility to make frequent copies of your
important data diskettes.

With DOSPLUS 3.5’s BACKUP utility, it is not necessary to pre-format your
destination diskettes. If the diskette is blank, DOSPLUS 3.5 will format it
automatically. Even if the diskette was previously formatted, DOSPLUS 3.5 will offer
you the chance to format it again before using it in the backup.

BACKUP allows you to optionally specify the source and destination drive from the
command line using the syntax shown above. You, of course, do not need the FROM
and TO delimiters unless you are specifying the destination drive first or only.
BACKUP will assume that the first drivespec encountered is the source drive unless it
finds a TO delimiter. It will likewise assume the second drivespec encountered to be
the destination drive unless it encounters a FROM delimiter.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-2

If you do not specify the source and destination drives at the command line,
BACKUP will prompt you for them. If you specify one without the other, BACKUP
will prompt for the one that is missing.

Also, in addition to specifying the source and destination drives from the command
line, you have the option of specifying the date and whether or not you wish to use
the disk if it contains data.

To set the date, all you must do is use the statement "DATE=string", where
"string" is a quoted string up to eight characters in length. When inputting the backup
date, either with this line or in response to the prompt, you are not limited to
numeric input.

To implement the "Use" parameter, simply type "USE=Y" or "U=Y" in the parameter
list. This will inform BACKUP that you do not wish to be prompted before
over-writing a disk that already contains data.

You may, if you wish, operate BACKUP from within a DO file. This can allow you
to use BACKUP as a menu option from a BASIC program and then return to the menu.
The procedure is

(1) Have the first statement of the DO file exit BASIC and return to
DOS.

(2) Execute the BACKUP.

(3) Have the DO file re-load BASIC and run your menu.

This is made simpler by virtue of the fact that you can specify all information
needed for BACKUP right from a command line. True "hands off" operation. The
computer operator doesn’t even need to respond to a "Diskette contains data" prompt.

Prompting messages -

Source drivespec ?

Reply to this question with the drivespec of the drive that contains the disk you
wish to backup. Do not include the colon (":"). It is only necessary to provide BACKUP
with the one or two character drive name.

Destination drivespec ?

Reply to this question with the drivespec of the drive that contains the disk you
wish to backup to. As above, you do not need to include the colon. This drivespec may
be the same as the source drivespec if you wish to execute a single drive backup.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-3

Backup date (MM/DD/YY) ?

If the system date has not been set and you have not entered it from the command line,
BACKUP will prompt you for the date. When it does, you have three options :

(1) Press BREAK and abort the backup.

(2) Press ENTER and default to a date of "00/00/00".

(3) Type in up to any eight ASCII characters you wish for the date and
press ENTER. You are not restricted to numeric characters.

If the diskette is not blank and you have not specified the "Use" parameter from
the command line, you will receive the prompt :

Diskette contains data, Use or not ?

You may reply in one of three ways to this prompt :

(1) Press BREAK and abort the backup.

(2) Type "Y" or "U" and press ENTER. This will cause BACKUP to
attempt to use the existing format.

(3) Type "F" and press ENTER. This will cause BACKUP to re-format the
destination disk first.

Once all of these questions have been answered, BACKUP will proceed with the
copy of the disk. The destination disk will bear the same name and Disk Master
Password as the source disk. The date on the destination disk will be either the
current system date or whatever characters you entered when prompted.

Single drive vs. Multiple drive -

If the source and destination drivespec are not the same (in other words, you are
backing up between two separate disk drives), BACKUP will proceed with the copy
after all information has been provided with no further operator intervention.

If, on the other hand, the source and destination drivespecs are identical (in other
words, a single drive backup), BACKUP will proceed with the copy but will prompt
you for the source, destination, and system disks as they are needed.

Pay close attention to these prompts and insert the proper diskette. If you were to
accidentally insert the wrong disk at the wrong time, you could corrupt the data.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-4

Examples:

BACKUP

This will execute the backup program and have it prompt for all information.

BACKUP FROM :0 TO :1
BACKUP TO :1 FROM :0
BACKUP :0 :1

These three examples are all equivalent. They instruct the BACKUP program to
backup the disk in Drive 0 to the disk in Drive 1. Note that if you ARE going to use
the drive specifiers from the command line, you will need to have both disks (source
and destination) in place before executing BACKUP.

BACKUP FROM :0 TO :1 (DATE="Sept 24",USE="Y")
BACKUP :0 :1 (D="Sept 24",U="Y")
BACKUP :0 :1,D='Sept 24',U='Y'

All of these commands will accomplish the same results. They will backup the disk
from Drive 0 to the disk in Drive 1. They will set the backup date to "Sept 24" (note
the use of non-numeric characters) and instruct BACKUP to use the destination disk
even if it contains data.

Note that BACKUP will not backup between two disks of dissimilar format. For
example, you can’t backup a single sided to disk to a double sided one or vice versa.
For those applications, you should use the COPY command to perform a "copy by file"
type of backup. BACKUP also will not backup between rigid and floppy disk drives.

As BACKUP is making the backup, it will ONLY copy those cylinders that have
allocated data on them and it will ONLY copy as much data from each cylinder as it
contains. Do not be alarmed if you see BACKUP skip several cylinders or it BACKUP
seems to copy some cylinders faster than others. If you wish to verify, make note of
the cylinders at which this occurs. Then use the library command FREE to display a
free space "map" of that disk. The cylinders skipped should show no "x"s at all and
cylinders that seemed to backup faster than others should have open space (i.e. not
solid "x"s). (See the library command FREE)

BACKUP attempts to make "mirror-image" copies of the source disk. If it cannot
for any reason do this (a granule allocated on the source disk is locked out on the
destination), BACKUP will report an error and abort to the DOS command mode. You
may at that time either re-format the destination disk and try again or resort to a
"copy by file" backup.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-5

One important note: After the "Diskette contains data" prompt is on the screen,
you may NOT switch the source disk. This will cause incorrect information to be
written to the destination disk that will later corrupt data. You may switch the
destination disk at that time, if you wish.

Obviously, if you are going to invoke BACKUP with all questions answered from
the command line, you had better have the disks to be backed up all mounted and
ready. This is doubly true if you have specified the "Use" parameter.

As a rule of thumb, if you are going to backup two disks that are not currently
mounted and ready to go it is best to just type "BACKUP" and allow the program to
load and ask you all needed questions. Once the program is loaded, you may remove
all disks and proceed. It will tell you when it needs a system disk again.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-6

CONVERT

The CONVERT utility has several uses:

(1) To allow DOSPLUS 3.5 to copy program and data files from double-density
TRSDOS systems onto DOSPLUS 3.5-compatible diskettes.

(2) To allow DOSPLUS 3.5 to display a file catalog of double-density TRSDOS
diskettes.

(3) To render Model I single-density diskettes readable under Model III
DOSPLUS 3.5.

===
CONVERT [FROM] :sd [TO] :dd [USING] wildmask (param=exp)
CONVERT [FROM] :dr (param=exp)

The parameters for CONVERT are:

CAT=switch Instructs CONVERT to display a file catalog of a double-density
TRSDOS diskette

DIR=switch Same as CAT, above

ECHO=switch Instructs CONVERT to display each filename as the file is
copied onto DOSPLUS-compatible media

INVIS=switch Allows CONVERT to operate on invisible files as well as
visible files

SYSTEM=switch Allows CONVERT to operate on system files as well as non-system
files

OVER=switch Forces CONVERT to query the user whether to overwrite a file
which already exists

QUERY=switch Forces CONVERT to query the user before copying files from
TRSDOS to DOSPLUS

V12 Informs CONVERT that the Model III TRSDOS to be operated upon
is a TRSDOS version 1.2 or earlier

V13 Informs CONVERT that the Model III TRSDOS to be operated upon
is a TRSDOS version 1.3

MOD1=switch Used to inform CONVERT whether a Model I or Model III
double-density diskette is to be used (Model I DOSPLUS only)

Abbreviations:

ECHO E
INVIS I
SYSTEM S
OVER O
QUERY Q
MOD1 M
===

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-7

The first application mentioned above, that of copying files from double-density
TRSDOS diskettes onto DOSPLUS 3.5 diskettes, can be used on the Model III and
double-density Model I DOSPLUS 3.5 systems. Single-density Model I’s cannot perform
this function, since the diskettes are unreadable to a single-density machine.

Using CONVERT to copy files from double-density TRSDOS requires two disk
drives; one to hold the double-density TRSDOS, and another to hold a
DOSPLUS-compatible diskette onto which the files are to be copied. Of course, a
DOSPLUS system diskette must be present in drive 0 at all times.

The general syntax for copying files from double-density TRSDOS is as follows:

CONVERT [FROM] :sd [TO] :dd [USING] wildmask (param=exp)

where ":sd" is the source drive containing the double-density TRSDOS diskette, ":dd" is
the destination drive containing DOSPLUS-compatible media, and "wildmask" is a valid
DOSPLUS wildcard specification.

Examples:

Command Action
CONVERT FROM :1 TO :0 USING */CMD Copies all /CMD files on the

double-density TRSDOS diskette in
drive 1 onto drive 0.

CONVERT :1 :0 Copy all files from the double-density
TRSDOS diskette in drive 1 to drive 0.

CONVERT */TXT:3 :1 Copies all /TXT files from drive 3 onto
drive 1.

Several parameters are valid when using this form of CONVERT. The ECHO
parameter is used to instruct the CONVERT utility to echo, or display, the name of
each file which it copies from TRSDOS to DOSPLUS as the file is copied. This is
especially useful when CONVERTing the entire contents of a diskette, or during a
CONVERT on a class of files.

The MOD1 parameter is present only on the Model I DOSPLUS 3.5 CONVERT
utility. Model III DOSPLUS users need not concern themselves with this parameter.
Model I CONVERT is capable of CONVERTing files on both Model I and III
double-density TRSDOS. The Model I CONVERT program will normally assume that the
CONVERT is to take place on a Model I double-density TRSDOS instead of a Model III
TRSDOS. Therefore, to CONVERT the files on a Model I double-density TRSDOS, one
might use the command:

CONVERT :2 :1,E

However, if it were desired to CONVERT the files from a Model III TRSDOS
diskette, the command would be modified to read:

CONVERT :2 :1,E,MOD1=N

By specifying "MOD1=N", we inform CONVERT that the diskette to be CONVERTed
is not a Model I double-density TRSDOS, and therefore must be a Model III TRSDOS.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-8

The INVIS switch is used to tell the CONVERT utility to CONVERT files that are
invisible on double-density TRSDOS as well as files which are visible.

The SYSTEM switch is used to inform CONVERT to copy files which have the
system file attribute as well as non-system files.

The OVER parameter, when specified in the CONVERT command line, will cause
the CONVERT utility to query the user whether or not a file should be copied if a file
already exists on the destination diskette. For instance, assume that a DOSPLUS system
diskette is placed in drive 0, and a TRSDOS system diskette is in drive 1. The
following command is executed:

CONVERT :1 :0,S,I

This command will cause CONVERT to copy all files on the TRSDOS system diskette
onto the DOSPLUS diskette in drive 0. Unfortunately, there may be some files on the
TRSDOS diskette that have the same name as files on the DOSPLUS diskette - BASIC,
for example. If the above command were given, the program BASIC/CMD on the
TRSDOS diskette would be copied over the file BASIC/CMD already present on the
DOSPLUS diskette, destroying the DOSPLUS BASIC. The OVER parameter can prevent
this from happening. Consider the command:

CONVERT :1 :0,S,I,O

This command line now contains the 0, or OVER, switch. Now, when the CONVERT
utility encounters a file which already exists on the destination diskette (like
BASIC/CMD in the example), CONVERT will query the operator with the question:

Overwrite?

The operator should answer the question with a "Y" (for yes) or an "N" (for no). If the
<ENTER> key is pressed, CONVERT will assume the reply is "N". If the operator replies
in the affirmative, CONVERT will proceed to copy the file onto DOSPLUS. If the
operator answers with an "N" (or by pressing <ENTER>), CONVERT will skip to the
next file on the diskette.

The QUERY parameter may be used to make CONVERT ask the operator whether
each file affected by the CONVERT command should be copied onto the destination
diskette. For example, if the command:

CONVERT */CMD:1 :2,Q

were given, CONVERT would attempt to copy each with the /CMD extension from
drive 1 onto drive 2. Before each file is copied, CONVERT will query the operator
with the question:

filename/ext Convert?

where "filename/ext" is the name of the file to be CONVERTed. If the operator
responds with a "Y", the conversion will take place. If the response is an "N" (or if
only <ENTER> is pressed), CONVERT will not copy the file onto the destination
diskette and will skip to the next file.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-9

Two general types of Model III TRSDOS are in existence at the, time of this
writing: TRSDOS 1.2 and earlier, and TRSDOS 1.3. When using the CONVERT utility,
you must inform it of which type of TRSDOS diskette is to be CONVERTed. CONVERT
will assume version 1.3 unless otherwise specified. Therefore, the command:

CONVERT AR!:3 :0

will copy all files beginning with the letters "AR" on the TRSDOS 1.3 diskette in drive 3
to drive 0. If the diskette in drive 3 were a TRSDOS version 1.2 or 1.1, the following
command should be given:

CONVERT AR!:3 :0,V12

The CONVERT utility may also be used to display a file catalog of a
double-density TRSDOS diskette. The form of this command is:

CONVERT :dr (CAT)
or

CONVERT :dr (DIR)

where ":dr" is the drive specification of the disk drive containing the double-density
TRSDOS diskette whose directory is to be displayed. Note that the V12 and V13
parameters are not necessary for this function of CONVERT.

Model I users must use the "MOD1=N" parameter in order to display a file catalog
on a Model III TRSDOS diskette.

The third major purpose of the CONVERT utility is to render diskettes created on
single-density Model I’s readable on the Model III. Single-density Model I diskettes have
the directory track recorded in a manner that is unacceptable to the Model III. The
CONVERT utility can be used to alter the directory track of such single-density
diskettes such that they are useable on the Model III. The general syntax for this
operation is:

CONVERT :dr

where ":dr" is the drive specification of the disk drive containing the Model I
single-density diskette to be CONVERTed. Note that this form of CONVERT requires
only one disk drive; if the target drive specified is the system drive, CONVERT will
prompt the operator to insert the target and system diskettes as needed.

This form of CONVERT does not copy files from one diskette to another; rather, it
alters the target diskette in order to make it readable on the Model III.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-10

NOTE: After performing this form of CONVERT, certain Model I operating
systems (such as Model I TRSDOS 2.3) may not read the target diskette
due to the alterations to the diskette directory. Note that Model I
DOSPLUS will read the diskette normally, as will most operating systems
currently available for the Model I. If it is necessary to subsequently use
such a CONVERTed diskette under an operating system which will not
read the diskette, it is possible to reverse the alterations to the diskette
directory. Assuming that you have access to a double-density Model I
system, re-CONVERT the diskette using the same syntax as above:

CONVERT :dr

where ":dr" is the drivespec of the disk drive containing the target
diskette. The Model I CONVERT program will restore the directory to its
original state, and allow any Model I DOS to read the diskette normally.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-11

DIRCHECK

This utility is used to check the integrity of a diskette’s file directory, and
optionally, to repair certain types of damage to the directory.

===
DIRCHECK [FROM] :dr [TO] filespec/devicespec (param=exp)

":dr" is the drive specification of the disk drive containing the
diskette whose directory is to be examined

"filespec/devicespec" is the optional output file or device to which all messages
concerning the state of the diskette’s directory are routed.

The allowable parameters for DIRCHECK are:

CYL0 Instructs DIRCHECK to ignore a possible "extraneous or unassigned gran"
error on Model I double-density diskette bootstrap files

FILES Instructs DIRCHECK to repair faulty file directory entries, if any

GAT Instructs DIRCHECK to repair a faulty Granule Allocation Table, if
necessary

HIT Instructs DIRCHECK to repair a faulty Hash Index Table, if necessary

Abbreviations:

CYL0 C
FILES F
GAT G
HIT H
===

The DIRCHECK utility may be used to automatically examine a diskette directory
and report any errors or inconsistencies within the directory. The simplest form of the
DIRCHECK command is:

DIRCHECK :dr

where ":dr" is the drive specification of a disk drive containing the diskette whose
directory is to be examined. DIRCHECK will read the diskette directory and display a
list of any errors found on the video display. After the list of errors, if any,
DIRCHECK will print "DIRCHECK complete, xxx total errors", where "xxx" is the
number of directory errors found by the DIRCHECK program.

The list of errors may also be directed to any other DOSPLUS character-oriented
device, or to a file, by specifying an optional output channel. For example, the
DIRCHECK command:

DIRCHECK :2 TO @PR

will output the list of directory errors to the lineprinter.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-12

DIRCHECK is also capable of repairing certain directory errors. The parameters
FILES, GAT, and HIT are used to inform DIRCHECK of which portion(s) of the diskette
directory should be repaired. If the FILES parameter is specified, DIRCHECK will
repair any errors in the file entry table of the diskette directory. Likewise, if the GAT
or HIT parameters are provided, DIRCHECK will fix any errors encountered in the
respective table. If any of the parameters are omitted, DIRCHECK will report, but will
not repair, any errors discovered in the respective area of the directory.

Note that DIRCHECK (or any "directory fixing" program) is incapable of repairing
certain directory discrepancies, listed below:

Error Possible cure
Locked gran assigned to file Kill offending file
Granule multiply assigned Kill offending file
Granule assigned past cyl count Kill offending file
BOOT/SYS not found Restore BOOT/SYS file to diskette
BOOT/SYS not assigned space Restore BOOT/SYS file to diskette
DIR/SYS not found Restore DIR/SYS file to diskette
DIR/SYS not assigned space Restore DIR/SYS file to diskette

Also note that although many directory errors can be repaired by DIRCHECK, it is
possible that certain files whose directory information was in error may be adversely
affected.

Another parameter is present in DIRCHECK, called CYL0. This parameter is for use on
Model I double-density DOSPLUS diskettes which have a single-density cylinder 0. On
such diskettes, the file BOOT/SYS does not occupy as many grans as are allocated in
the granule allocation table. This will result in an "extraneous or unassigned gran"
error, even though the diskette is perfectly normal. The CYL0 parameter instructs
DIRCHECK to ignore this special case with cylinder 0, although it does not suppress
the same error message should the same error occur on some other cylinder.

NOTE: On floppy diskettes, DIRCHECK will set the surface count for the
diskette according to the current CONFIG settings for the appropriate
drive if the GAT parameter is used. That is, if drive 1 is CONFIGed for
SIDES=2 at the time a DIRCHECK :1,GAT is performed, DIRCHECK will
write information to the GAT which indicates that the diskette is a
double-sided diskette.

This feature may be used to good advantage when converting DOSPLUS
3.4/4.0-style double-sided floppy diskettes to DOSPLUS 3.5 format.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-13

DISKDUMP

This is a machine-language disk sector display/modify utility.

===
DISKDUMP filespec <ENTER>

"filespec" is the name of the file to be examined/modified.
===

If no filespec is given on the DISKDUMP command line, the program will prompt for
a filename by displaying the asterisk prompt.

Enter the file name and include all extensions and passwords, if any. DISKDUMP
will now display the first sector of a file. The following commands are available:

Key Function
; Advance one sector
- Go back one sector
+ Advance to end of file
= Go to beginning of file
F Find hexadecimal value
G Go to specified sector
M Enter modify mode
P Locate address in load module file
@ xx Fill "xx" bytes with 00 byte, starting at current cursor location
@ xxyy Fill "yy" bytes with "xx" byte, starting at current cursor location

A sector display will look like this :

02 00: FF7B 6F0A 003A 93FB 2020 2020 2050 6174 .{o..:.. Pat
06 10: 6368 2070 726F 6772 616D 2066 6F72 2044 ch program for D

20: 6F73 706C 7573 204D 6F64 656C 2049 4949 osplus Model III
30: 009C 6F14 003A 93FB 2020 2020 2050 726F ..o..:.. Pro
40: 6772 616D 6D65 7220 3A20 4D52 4C2F 4D53 grammar : MRL/MS
50: 5300 3F70 1E00 3A93 FB20 2020 2020 506C S.?p..:.. Pl
60: 6561 7365 206D 616B 6520 6365 7274 6169 ease make certai
70: 6E20 7468 6973 2069 7320 7573 6564 206F n this is used o
80: 6E20 7468 6520 7072 6F70 6572 206D 6163 n the proper mac
90: 6869 6E65 0A09 0909 2020 2020 2020 2020 hine....
A0: 284D 6F64 656C 2049 202D 204D 6F64 656C (Model I - Model
B0: 2049 4949 292E 2020 416C 736F 206D 6168 III). Also mak
C0: 6520 6365 7274 6169 6E20 7468 6174 2074 e certain that t
D0: 6865 0A20 2020 2020 2020 2076 6572 7369 he. versi
E0: 6F6E 206E 756D 6265 7273 206D 6174 6368 on numbers match
F0: 202E 2E2E 00A3 7028 003A 93FB 2020 2020p(.:..

The two-digit number in the upper left-hand corner of the screen indicates the disk
drive device number which the file is resident upon. Note that this is not the disk drive
specification, or name; it is the drive device number, and may have a value of 0-7.

Immediately below the drive device number is the number of the physical record
currently displayed.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-14

Slightly indented from the left side of the display is a column of two-digit
hexadecimal numbers. These numbers indicate the relative byte number of the first
byte displayed on each line. For example, in the DISKDUMP display above, the fifth
row down from the top begins with the number 40. This means that the first byte on
that line is relative byte 40H, the next is relative byte 41H, the eleventh byte is 4AH,
etc.

To the right of the row numbers is the actual information contained within the
physical record itself. This information is displayed in hexadecimal by default, in eight
groups of two bytes each. This hexadecimal display may be exchanged for an ASCII
character display by pressing the <CLEAR> key on the TRS-80 keyboard.

Either the next or the previous physical record in the file may be displayed by
pressing the semicolon, ";", key (for the next record) or the minus, "-", key (for the
previous record. If an attempt is made to display a record outside the limits of the
file, the command will be ignored.

The first record or the last record in the file may be displayed at any time by
pressing the equal, "=", key (for the first record) or the plus, "+", key (for the last
record).

DISKDUMP may display any given record if the "G" command is used. Simply press
the "G" key, followed by the desired record number, in hexadecimal. After pressing
<ENTER>, DISKDUMP will display the proper record.

DISKDUMP’s "F" command is used to find any occurrences of any given hexadecimal
value within a physical record. In order to find the occurrences of a byte, type "G"
followed by a two-digit hexadecimal value (if in the hexadecimal display mode) or a
single ASCII character (if in the ASCII display mode), and press <ENTER>. DISKDUMP
will now flash a graphics block in the position occupied by any matching bytes within
the record. To abort the "find" display, press any key.

Physical records may be edited by entering DISKDUMP’s modify mode. To enter the
modify mode, press the "M" key from the record display mode. A block graphics cursor
will appear in the upper left-hand corner of the record display. This cursor may be
moved about the sector display at will with the four arrow keys on the TRS-80
keyboard. When the cursor is positioned over a byte that is to be modified, simply
enter the two-digit hex value (in the hexadecimal display mode) or the single ASCII
character (if in the ASCII display mode) which the byte is to be changed to. The cursor
will automatically advance to the next byte within the record, moving to the next line
of the record display if necessary. When all changes are complete, press the <ENTER>
key to write the updated record to diskette. If it is not desired to save the changes to
diskette, the <BREAK> key may be depressed to cancel all changes.

When editing program files save in load-module format, the "P" command can be
extremely useful. By typing "P" followed by a hexadecimal address will cause
DISKDUMP to search the file for the byte which will load into the specified address in
RAM. When DISKDUMP finds the byte, it will automatically enter the modify mode and
position the cursor on the proper byte. If DISKDUMP is unable to locate the address,
the sector display will be cleared and the message "Invalid data" will be displayed on
the screen. DISKDUMP will then return to the filename prompt.

The "@" command is used to fill a record or a portion of a record with a
user-defined byte. The simplest form of this command is:

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-15

@ xx

where "xx" is a two-digit hexadecimal value which defines the number of bytes that
are to be filled (starting at the current cursor location) with a 00 byte. A slightly
more complex form of this command is:

@ xxyy

where "yy" is a two-digit hexadecimal value which defines the number of bytes to be
filled (starting at the current cursor position) with the byte defined by "xx".

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-16

DISKZAP

This utility is the DOSPLUS disk sector editor. DISKZAP can be used to display,
modify, copy, or verify diskette sectors as well as format diskette tracks.
===
DISKZAP

There are no parameters for this utility
===

When executed, the DISKZAP utility will display its command menu on the video
screen:

* Set
Fill
Copy
Print
Verify
Format
Display

This is the MAIN MENU. It lists all the sub-options and allows you to move
between them. DISKZAP will default to certain parameters for each drive:

35 (Model I) or 40 (Model III) cylinders
10 (Model I) or 18 (Model III) sectors on track 0
Single (Model I) or double (Model III) density track 0
10 (Model I) or 18 (Model III) sectors on all remaining tracks
All remaining tracks single (Model I) or double density (Model III)

Any of these may be altered via the "Set" sub-option. The asterisk that appears to
the left of the "Display" option on power-up is the "control cursor". Whichever
sub-option it is positioned next to is the one that will be invoked when the <ENTER>
key is pressed. It may be moved up and down the list by pressing the <up arrow> and
<down arrow> keys. To exit DISKZAP, from the main menu press "O" (as in "Out").

Set (Alter disk drive parameters)

DISKZAP powers up with the control cursor positioned for this sub-option. If the
default parameters shown above are proper for the diskette you wish to work with,
then you may proceed directly to the sub-option of your choice and begin the desired
operation. If the diskette’s characteristics differ from the default parameters, then you
need to use the Set sub-option to alter the drive parameters.

To invoke this sub-option, as with any of the sub-options, simply position the
control cursor to the left of the word "Set" and press ENTER. The first question to be
asked will be :

Drivespec ?

Respond to this with the drivespec of the drive that you are configuring. After
setting the drive, you will be asked :

Cylinder count ?

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-17

Answer this question with the number of cylinders on the disk that you are
configuring. Enter the true cylinder count for the diskette. This parameter is
interested in how many tracks are on the DISK, not how many your drive is capable of.

The next prompt is:

Surface count ?

Enter the number of data recording surfaces on he diskette in question. For a
single-sided diskette, the proper value should be 1, and for a double-sided diskette, it
should be 2. For rigid drives, this parameter will vary according to individual
configuration.

Now DISKZAP will query:

CYL 0 sec/trk ?

This is requesting the number of sectors on track zero. The DISKZAP defaults to
the proper sector count for 5-1/4" single-density diskettes, 10 (on the Model I) or for
5-1/4" double-density diskettes, 18 (on the Model III). If the diskette which is to be
operated upon has a cylinder 0 sector count that differs from the default, enter the
proper value now.

After the cylinder 0 sector count has been provided, DISKZAP will prompt with:

CYL 0 density ?

This parameter allows you to configure the density of cylinder 0 separately from
the cylinder 0 sector count. Reply to this with an "5" for single density or a "0" for
double density.

Note that Model I DOSPLUS 3.5 system disks use a single density track zero. This
is required by the ROM bootstrap loader. DOSPLUS 3.5 data diskettes, however, format
track zero as double density so that the granules not actually USED by the bootstrap
can be freed to the system for data storage.

Following your definition of track 0, you will be given the opportunity to configure
those same two parameters for all other tracks on the diskette.

The first query is :

Sectors/track ?

Answer this query with a value (0-255) to indicate how many sectors there are on
all the remaining tracks. The standard for 5-1/4" diskettes, of course, will be 10
sectors per track in single density and 18 sectors per track in double density. However,
there is the chance that some system could be using more or less sectors on the track
without altering the density that the floppy disk controller works in. This parameter
gives you the ability to configure for any eventuality.

After configuring for the number of sectors, you will be queried as to the density
of the remaining tracks. You will be asked :

Track density ?

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-18

Respond to this question with either "S" for single density or "D" for double
density, depending, of course, on the density of the disk.

When using the set option, you only respond to as many prompts as are pertinent to
you. For example, if all you wanted to do was change the diskette’s track count, you
could go to the set option and alter the track count. Then you could press BREAK and
return the command mode immediately. There is no need to step through prompts that
are irrelevant.

It is with this in mind that we have designed the set option. The parameters we
felt you were going to use the most (cylinder count, surface count, etc.) are the first
question which DISKZAP asks, such that they may be altered quickly and allow the
user to avoid the rest of the prompts with the BREAK key.

Because pressing ENTER leaves the parameter unchanged instead of re-loading the
original default, you do not need to re-enter a parameter that is set the way that you
want it. Set will retain this drive configuration for as long as DISKZAP is in operation,
but must be re-configured upon each new entry of the program.

Fill (Fill sectors with specified byte)

This option will allow the user to fill a sector with any particular byte that may
be desired. This is useful when it is desired to erase completely old data from a sector
without re-formatting the entire disk.

To invoke this sub-option, place the control cursor to the left of the word "Fill" in
the main menu and press ENTER.

The first question to be asked is :

Drivespec ?

Reply to this with the name of the drive that contains the diskette to he operated
on. Any valid drivespec will be allowed here. After answering that question, you will
be asked :

Cylinder ?

Answer this question with the track number that contains the first (or only) sector to
be filled. This cylinder number is entered in hexadecimal.

Once the cylinder is entered, you will be asked :

Sector ?

Reply to this query with the number of the first (or only) sector to be filled.

The next prompt will be :

Sector count ?

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-19

Respond to this with a value that represents the number of sectors, beginning with
the sector specified in the preceding questions, to be filled. This cont must be entered
in decimal, and may assume any value from 1 to 255. 1 is the default.

The final question will be :

Fill data ?

Answer this question with the byte that you wish to have the sector filled with.
This one-byte value must be entered in hexadecimal. Pressing ENTER at this prompt
will cause DISKZAP to use the default fill value, which is zero.

For example, if you wanted to fill tracks 4 and 5 of a particular double density
diskette with the hexadecimal value "E5", you would answer the questions in the
following manner :

Drive ? 0
Cylinder ? 4
Sector ? 0
Sector count ? 60
Fill data ? E5

After inputting all data and pressing ENTER on the last prompt, the drive will run
and DISKZAP will display the track and sector number as it fills each sector.

Copy (Copy sectors)

This function will allow you to copy sectors from one disk to another or from one
part of a disk to another. To invoke this command, place the control cursor to the left
of the word "Copy" in the main menu and press ENTER. The first question to be asked
is :

Drivespec ?

Answer this with the drivespec of the SOURCE drive. Next, you will be asked :

Cylinder ?

Answer this with the cylinder number that contains the first (or only) SOURCE
SECTOR. This is the sector that is to be copied (or the first of many, whichever you
desire). After answering that question, you will be asked :

Sector ?

This is prompting you for the number of the first (or only) source sector. After this
is entered, you will be prompted for :

Drivespec ?

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-20

This time it is seeking the drivespec of the DESTINATION DRIVE (the drive to
which you wish to copy).

The next prompt is :

Cylinder ?

Answer this with the number of the track on the destination drive that contains
the first (or only) DESTINATION SECTOR.

After answering that, you will be queried :

Sector ?

This is prompting you for the number of the first (or only) destination sector. It
does NOT necessarily have to be the same as the source sector (i.e. you can copy the
last two sectors of track 4 on drive 0 into the first two sectors of track 7 on drive 1).

The last piece of data required will be :

Sector count ?

This prompt is seeking the number of sectors that you wish to copy. Enter the
sector count in decimal.

Note that when you are using COPY, you are defining a "block" of sectors. You
specify the starting point of this block on both the SOURCE and DESTINATION drives.
The "sector count" prompt allows you to define the length of the block. Pressing
ENTER will copy only a single sector. But, it must be a CONTIGUOUS block. You are
copying sequentially from the source sector to the destination sector for the number of
sectors you specify. What this means is, if you wish to copy 50 sectors, skip 200, and
copy 50 more, you will have to copy each block of 50 separately. You may, if you
wish, locate them beside each other on the destination drive, but they must be copied
independently.

For example, if you wished to copy track 2, sector 5 of drive 0 into track 3,
sector 12 of drive 1, you would answer the prompts in the following manner :

Drivespec ? 0
Cylinder ? 2
Sector ? 5
Drivespec ? 1
Cylinder ? 3
Sector ? 12
Sector count ? 1

If you wished to copy an entire Model III DOSPLUS 3.5, 40 double-density diskette
from drive 0 to drive 1, you would answer the prompts in the following manner :

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-21

Drivespec ? 0
Cylinder ? 0
Sector ? 0
Drivespec ? 1
Cylinder ? 0
Sector ? 0
Sector count ? 720

After answering the "sector count" query and pressing ENTER, DISKZAP will begin
the copy. When copying sectors, DISKZAP will seek to read in as many sectors as it
can (up to one complete track) before writing them, as opposed to reading and writing
a single sector at a time.

When copying a single sector, there will be no operational difference. However,
when copying more than a track (especially an entire disk), it makes LARGE
difference. DISKZAP will also displays the track and sector number of each sector as
it is copied (both the SOURCE sector as it is read and the DESTINATION sector as it
is written).

If DISKZAP encounters an error during the sector copy routine, it will pause and
display the error discovered. It will also ask if you wish to continue. ft would then
write as much of the source sector as it could read into the proper destination sector
and proceed from there. This will allow you to copy as much data as is absolutely
possible from a disk without having to work around known bad sectors. This "proceed
after error" feature becomes a key one in repairing blown diskettes. If you can copy a
complete track save one sector, then you have only lost 256 bytes of data as opposed
to potentially much more.

Print (Print hardcopy of selected sectors)

This command will create printed copy of the contents of specified sectors. To
invoke this option, position the control cursor to the left of the word "Print" in the
main menu and press ENTER.

The first question asked will be :

Drivespec ?

Answer this with the drivespec of the drive that contains the first sector to be
printed. Next you will be asked :

Cylinder ?

Answer with the number of the cylinder that contains the first (or only) sector to
be printed. Following that, you will be queried :

Sector ?

Enter the number of the first (or only) SECTOR TO BE PRINTED. Finally, you will
be prompted :

Sector count ?

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-22

Reply to this with the number of sectors that you wish to print. Remember, just as
with copy, you are dealing with contiguous blocks ONLY! You may not print 5 sectors
on track 0 and then 5 on track 11 without printing them both independently of one
another.

For instance, in order to print out all the directory sectors (assuming the directory
was on track 11 hex) from the double density diskette in drive 0, you would :

Drivespec ? 0
Cylinder ? 11
Sector ? 0
Sector count ? 18

As each sector is printed, it will be displayed on the screen. You may tell by
examining the track and sector indicators in the upper left hand corner of the screen
which sector is currently being printed.

Please note that DISKZAP does NOT check for printer ready status. If you engage
the print option and there is no printer available, DISKZAP will simply "lock up" and
force you to either make a printer available or reset the machine.

Verify (Read and check specified sectors)

This option will allow you to read and verify any specified sectors on the disk. It
will check each sector for accuracy by verifying the CRC byte. If it encounters an
error, it will pause with the correct error message. Pressing ENTER will cause it to
continue verifying.

To invoke this option, as with any other, position the control cursor to the left of
the word "Verify" and press ENTER. The first question asked will be :

Drivespec ?

Reply to this question with the drivespec of the drive that contains the diskette
that you wish to verify. The next question asked will be :

Cylinder ?

This is prompting you for the cylinder number that contains the sector you wish to
begin verifying at. When verifying an entire diskette, you may press ENTER at this
prompt to select track 0. After answering that, you will be asked :

Sector ?

This is asking you for the sector number on the above specified track that you
wish to begin verifying at. This would allow you to begin verifying with the last two
sectors of track 5. Following that, you will be prompted :

Sector count ?

This is seeking the number of sectors, in decimal, you wish to verify. Remember, if
you specify more sectors for a disk than you have configured for in "Set", it will wrap
around from the last configured track and begin again at track 0, sector 0 and
continue from there. That is why it’s important to configure for the correct track

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-23

count before beginning with any diskette.

The final query that DISKZAP will ask is:

Ignore data AM ?

This question requires a yes/no answer. When answered with a "Y", DISKZAP will
not display a message to inform the operator that a special type of data address mark,
which is reserved for use by the DOSPLUS directory, has been detected. If the question
is answered with an "N", DISKZAP will print the following message and pause until a
key is depressed whenever the special address mark is encountered:

AM/WRITE FAULT

While you are verifying a diskette, you may abort and return to the main menu by
holding down the BREAK key.

As an example, suppose it were desired to verify a 35-track, single-density diskette
in drive 1. The following data would be provided to the Verify command :

Drive ? 1
Track ? 0
Sector ? 0
Sector count ? 350

Once you have answered the final question and pressed ENTER, DISKZAP will
begin reading the specified sectors. It will display the track and sector number as it
verifies each sector. As each sector is read, the CRC value is calculated and checked
and any errors reported.

Format (Format a selected track or tracks)

This sub-option allows you to format a track or series of tracks. You may, if you
wish, use it to reformat a track somewhere in the middle of a disk to repair a
non-readable sector. To invoke this option, position the control cursor to the left of
the word "Format" in the main menu and press ENTER.

The first question is :

Drivespec ?

This is prompting you for the drivespec of the drive that contains the disk you
wish to format a track on. After answering that, you will be queried :

Cylinder ?

Respond to this with the number of the cylinder at which you wish to begin
formatting. The next question is :

Cylinder count ?

This is seeking the information as to how many cylinders you desire to format.
Pressing ENTER at this prompt will default to one track.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-24

The final question under the Format command is:

Interleave factor ?

The interleave factor determines the order in which sectors are numbered on the
diskette, and can have a profound effect on disk access speed. The normal values for
sector interleave factor are 2 for 5-1/4" single-density diskettes, and 3 for 5-1/4"
double-density diskettes.

Please note that the DISKZAP Format command is not interchangeable with the
DOSPLUS utility FORMAT. The DISKZAP Format command is simply capable of
performing cylinder formatting; the FORMAT utility not only formats a diskette but
also initializes the diskette with a great deal of system information, including a
bootstrap and disk directory.

Display (Display or modify diskette sectors)

This is perhaps the most often used option in DISKZAP, and the heart of the disk
editor. DISKZAP uses a full screen editor that has cursor wraparound.

To invoke this sub-option, position the control cursor to the left of the word
"Display" in the main menu and press ENTER.

The first question you will be asked is :

Drivespec ?

Answer this query with the drivespec of the drive that contains the diskette with
the sector you wish to display/modify. The next question is :

Cylinder ?

This is prompting you for the number of the cylinder on the disk that contains the
sector you wish to examine.

The final question is :

Sector ?

Reply to this with the number of the sector you wish to display.

After typing in the sector number and pressing ENTER, you should see a display
that looks something like this :

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-25

06 00: 54BE 2320 0100 FC53 0510 F7E1 BFC9 E118 T.# ...S........
04 10: 03CD 1954 10FB 18CC E5B7 ED52 E1C9 CD1B ...T.......R....
02 20: 00C2 D355 C9CD 1300 C2D3 55C9 DD21 C156 ...U......U..!.V

30: DDCB 0046 203F CD19 54FE 02DD CB00 9620 ...F ?..T.......
40: 04DD CB00 D6FE 20D2 CB55 FE03 DDCB 008EU......
50: 3004 DDCB 00CE CD19 543D 3DDD 7701 CD19 0.......T== w...
60: 54DD 7702 CD19 54DD 7703 DDCB 00C6 B7DD T.w...T.w.......
70: CB00 5620 15CD 1954 DD35 0120 04DD CB00 ..V ...T.5.
80: 86DD CB00 4E21 0000 37C8 DD6E 02DD 6603N!..7..n..f.
90: DD34 02C0 DD34 03C9 3AA9 57FE 8028 103E .4...4..: W..(.>
A0: 2ACD 3300 063F 21C5 56CD 4000 D818 1F11 *.3..?!.V.@.....
B0: A957 21C5 5606 40CD 1300 2807 FE1C C2D3 .W!.V.@...(.....
C0: 5537 C977 23FE 0D28 0510 ECC3 C855 21C5 U7.w#..(.....U!.
D0: 563E 2EBE 28C2 0641 E5CD F354 CD56 55ED V>..(..A...T.VU.
E0: 5305 57E1 E506 46CD F354 1107 57CD 0955 S.W...F..T..W..U
F0: E1E5 0643 CDF3 5411 4757 CD09 55E1 C97E ...C..T.GW..U..~

At the upper left-hand corner is a one-byte hexadecimal value which relates the
logical device number of the disk drive currently addressed. Note that this is a device
number and not a drive specification. The number listed immediately below this is the
current cylinder number, and below that is the current sector number. The column of
digits slightly indented from the left margin are the BEGINNING BYTE INDICATORS.
Each one of those indicates the number of the first byte in that row. Then there are
rows of 16 bytes each (10 hex). This is the HEXADECIMAL DISPLAY AREA. These are
set in groupings of two bytes, such that you have eight columns of two separated by
spaces. Immediately to the right of the hexadecimal portion of the sector display is the
ASCII DISPLAY AREA. There are 16 ASCII characters on a row corresponding to the
bytes in the hexadecimal display row immediately to its left. Non-ASCII characters will
be displayed as periods.

At this point, you have several options, each of which is controlled by a single
keystroke. They are

Key Function

; Increment display position one sector
+ Increment display position one cylinder
- Decrement display position one sector
= Decrement display position one cylinder
BREAK Return to main menu
M Enter modify mode

If you select "M" to enter the modify mode, the display will change slightly and
you will have several other options.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-26

If DISKZAP encounters an error during a sector read in the display mode, it will
pause and display the error discovered. It will also ask you if you wish to continue. If
you respond "Y", it will display as much of the sector as it could read. You may then
enter the modify mode and make any corrections possible before re-writing it. The
sector will be re-written to the disk reflecting any corrections you may have made.
That means there will no longer be a read error from system level. It does not mean
that the data is now 100% correct. It is correct only to the level that were able to
repair it, but it will read as it is now without an error. This "continue after error"
feature will allow you to rescue bad sectors in part or in whole, where otherwise you
would have had no chance of recovering the data.

When you enter the modify mode, a graphic block cursor will appear over the byte
in the upper left hand corner. You move the cursor about within the sector by using
the arrow keys. Whatever byte is the graphic block cursor is currently positioned over
is referred to as the CURRENT CURSOR LOCATION. This is the byte that will be
affected should you enter a change.

At this point, you have several options, each of which is controlled by a single
keystroke. They are

Key Function

right arrow Increment cursor position one byte
down arrow Increment cursor position one row
left arrow Decrement cursor position one byte
up arrow Decrement cursor position one row
BREAK Aborts modify mode and returns you to the main menu

without re-writing the sector. Restores original contents.
ENTER Terminate modification mode and returns you to the display mode

after writing the modified sector to the disk.
CLEAR Toggles sector display between hexadecimal and ASCII character

display mode
@ xx Fills the entire sector, starting from the current cursor position,

with "00" bytes.
@ xxyy Fills "yy" bytes within the current sector from current cursor

position with data byte "yy"

To modify a byte, position the cursor over the proper byte and enter the two-digit
hexadecimal value (if in the hex display mode) or single-character value (if in the
ASCII character display mode) which the byte is to be changed to. When you finish
modifying one byte, the cursor will move onto the next. If that was that last byte of a
row, the cursor will move onto the first byte of the NEXT row. The only exception is
the last byte of the last row. After modifying it, the cursor will stay right where it is.
To begin with the next sector, write this one back to the disk with ENTER, advance to
the next sector with ";", enter the modify mode again with "M", and return to
modifying.

NOTE: As a general rule, DISKZAP expects all cylinder and sector addresses as well as
fill data to be entered in hexadecimal format. Cylinder and sector
counts, on the other hand, are assumed to be entered in decimal.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-27

FORMAT

This utility allows you to organize a diskette and prepare it to receive data.

===
FORMAT :dr (param=exp...)

":dr" specifies the drive containing the disk to be formatted. If this is not
given at the command line, FORMAT will prompt for it.

"param" is the optional action parameter that modifies the effect of the command.

The allowable parameters are:

DATE="string" Allows you to set the format date from the command line. This
should be expressed as a quoted literal up to eight characters in
length. You are not restricted to numeric input. If this is not
given in the command line and the system date is not set,
FORMAT will prompt you for it.

PW="string" Disk Master Password. This parameter allows you to specify
the Disk’s master password from the command line. This should be
expressed as a quoted literal up to eight characters in length.

NAME="string" Allows you to specify the disk name from the command line. This
should again be expressed as a quoted literal and may be up to
eight characters in length.

CYLS=value Number of cylinders. This allows you to specify the number of
cylinders to format the disk to. This should be expressed as a
numeric value, not a quoted literal.

SIDES=value Number of sides. This allows you to specify single or double
headed format from the command line. This should also be
expressed as a value (either 1 or 2), no quotes are needed.

DEN="string" Track density. This parameter allows you to specify the format
density from the command line. It should be expressed as a single
character quoted literal. Either an "S" for single density or a "D"
for double density.

USE="string" This allows you to override the prompt "Diskette contains data,
Use or not?" that appears when the disk to be formatted is not
blank. This is your only warning, so using this parameter can be
dangerous if used without caution. This parameter should be
expressed as a string (either Y or N).

The default values will be obtained by pressing ENTER when prompted for one of
the above. You will be prompted for any fields not filled from the command line. The
defaults are :

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-28

DATE 01/01/80
PW No password
NAME No name
CYLS 40
SIDES 1
DEN Single Density (Model I) Double Density (Model III)
USE No

Abbreviations :

DATE D
PW P
NAME N
CYLS C
SIDES S
DEN DE
USE U
===

The FORMAT utility is used to organize the diskette into tracks and sectors and
prepare it to receive data. You will use this both in formatting new disks and in
"starting over" with a clean slate on old ones. All disks must be formatted before they
can be used by the system. If is NOT, however, necessary to format a disk before
backing up to it (see the utility program BACKUP). BACKUP will format the
destination disk if it is blank.

The disk to be formatted may be either blank or contain data. If you format a disk
that already contains data, any data on that disk will be permanently lost. When you
format a disk, DOSPLUS 3.5 will check the disk for flawed granules. If it discovers
any areas of the disk during format that are bad, it will "lock out" those areas and
prevent the system from attempting to use them.

To format a disk, type "FORMAT" from the DOS command mode and press ENTER.
The first message to appear will be :

Target drivespec ?

Enter the drivespec of the drive that contains the disk you wish to format. You
will then be asked :

Diskette name ?

Enter the name you wish to assign to that disk. Any characters are legal (numeric
or alphabetic). You have a maximum of eight characters. Following that, you will see :

Format date ?

Enter today’s date. You may, if you wish, use this field for something else. It will
be displayed whenever you execute a CAT, DIR, or FREE upon that disk. DOSPLUS
3.5 doesn’t use the disk date for anything, so this area is free for you to use. Eight
characters maximum. May be alphabetic or numeric. After entering this, FORMAT will
prompt you :

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-29

Master password ?

Enter the desired Disk Master Password. This password will be used for a variety
of functions later. Pressing ENTER will default to "null password", but from then on
you will not be able to assign effective file protection. The Disk Master Password will
always override the file password. If a Disk Master Password is NOT set, then
specifying no password will ALWAYS get you into a file. We therefore recommend
that the Disk Master Password always be set. Maximum of eight characters. Once you
have answered that prompt, you will see :

Number of cylinders (35-96) ?

Enter the number of cylinders you to which you wish to format the disk. Enter the
number of cylinders desired or press ENTER to default to 35 on the Model I, or 40 on
the Model III. After that, you will be queried :

Number of sides ?

Enter "1" for single sided drives or "2" for double sided drives. Remember that
single or double sided is limited by your drive hardware. Simply answering this prompt
"2" on a machine with single-sided drives is NOT going to give you a double sided
disk. After answering this, you will be asked :

Single or double density ?

Enter "S" for single density or "D" for double. Pressing ENTER defaults to "S" on
the Model I and "D" on the Model III. DOSPLUS 3.5 formats 10 sectors per track in
single density and 18 in double.

After you have answered all these questions, DOSPLUS 3.5 will proceed with the
format. If the diskette was not blank, you will be warned :

Diskette contains data, use or not ?

Enter "Y" to proceed or "N" to abort. Pressing BREAK will also abort.

If the disk was blank, or you have signaled FORMAT to use it anyway, you will
see the track number displayed as first they are formatted and then verified. When
the procedure is complete, you will see :

Insert SYSTEM disk (ENTER)

flashing on the screen. Make certain that a system disk is inserted and then press
ENTER to return to DOSPLUS 3.5.

Any of those questions that you answered from the command line via the
parameters listed would not have been asked. FORMAT only prompts for what it
doesn’t know. If the system date is set, the "Format date" question will not be asked.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-30

HELP

The HELP utility on DOSPLUS 3.5 is intended to provide a means of quick
reference to the proper syntax and valid parameters for DOSPLUS 3.5 library commands
and some of the often-used utility programs.

===
HELP
HELP [FROM] command [TO] filespec/@devicespec

where "command" is the name of a DOSPLUS 3.5 library command or
utility described in the PATCH utility.

===

The HELP program will provide information on the following commands:

APPEND ASSIGN ATTRIB AUTO BOOT
BREAK BUILD CAT CLEAR CLOCK
CLS CONFIG COPY CREATE DATE
DEBUG DIR DO DUMP ERROR
FILTER FORCE FORMS FREE I
JOIN KILL LIB LIST LOAD
PAUSE PROT RENAME RESET RS232
SCREEN SYSTEM TIME VERIFY

and the following utilities:

BACKUP CONVERT DIRCHECK DISKDUMP FORMAT
MAP PATCH RESTORE SYSGEN

To display the HELP available for any command or program, type HELP followed by
the command or program name, separated from the HELP by a space. For example,
typing:

HELP COPY

will result in:

COPY [FROM] fs/ds [TO] fs/ds (param=exp,...)
COPY [FROM] fs [TO] :dr (param=exp,...)
COPY [FROM] :dr [TO] :dr [USING] wildmask (param=exp,...)

DPW='string' ECHO=switch INVIS=switch KILL=switch
MOD=switch OVER=switch PROMPT=switch QUERY=switch
SPW='string' TINY=switch NEW=switch OLD=switch

If HELP is requested for a any command or program not listed in the above list,
HELP will display a list of valid commands and programs.

Note that HELP may send output to any device or file. For instance, typing:

HELP ATTRIB TO @PR

will output the HELP information on the ATTRIB command to the printer.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-31

MAP

The MAP utility provides a list, by cylinder and sector, of the areas allocated to
files on a diskette.

===
MAP [FROM] :dr [TO] filespec/@devicespec [USING] wildmask (param=exp)

":dr" is a disk drive specification

"filespec/@devicespec" is a file or character-oriented device to which the output
from MAP will be sent

"wildmask" is a valid DOSPLUS wildcard specification

The allowable parameters are:

SYSTEM= Include system files in MAP listing

INVIS= Include invisible files in MAP listing

HEX= Provide cylinder & sector numbers in hexadecimal

Abbreviations:
SYSTEM S
INVIS I
HEX H
===

The MAP command may provide a file-by-file list of diskette space allocation. To
display all files on a diskette, and the areas occupied by them, type:

MAP :dr

where ":dr" is the drive number which you wish to MAP. The screen will display
something like the following:

DOS:3.50 01/26/83
RS/DVR 001,006 - 001,011
TRAP/CMD 001,012 - 001,017
FILE/DVR 003,000 - 003,005
DO/DVR 000,006 - 000,011
KI/DVR 000,012 - 000,017
PR/DVR 001,000 - 001,005

Each filename is followed by a set of numbers. Take, for example, the case of
RS/DVR, in the listing above. The MAP tells us that RS/DVR begins on cylinder 1,
sector 6 and continues through cylinder 1, sector 11. Large files may contain more
than one segment of this sort. For instance, in the MAP shown below, the file FDAT is
divided into five separate segments:

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-32

Utility 01/31/83
FDAT 012,000 - 017,005

018,012 - 019,017
021,000 - 025,017
027,012 - 029,017
034,000 - 036,011

Note that the MAP utility can provide information in hexadecimal notation as well
as decimal, if the HEX parameter is specified. The first example, above, would appear
like this in hexadecimal format:

DOS:3.50 01/26/83
RS/DVR 01,06 - 01,0B
TRAP/CMD 01,0C - 01,11
FILE/DVR 03,00 - 03,05
DO/DVR 00,06 - 00,0B
KI/DVR 00,0C - 00,11
PR/DVR 01,00 - 01,05

The SYSTEM and INVIS parameters may be used to cause the MAP utility to
display a MAP of system files and invisible files, respectively.

The MAP utility will accept a wildmask specification. This means that if you are
only interested in displaying a MAP a one file, or of a class of files, MAP can
accommodate you. For instance, to display a MAP of all files on drive 3 ending with the
/CMD extension, issue the command:

MAP */CMD:3

Output from MAP is normally sent to the video display, but it may be re-directed to
any other device, or to a file. For instance, to obtain a printout of a MAP of all files
on drive 2, type:

MAP :2 @PR (SYS,INV)

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-33

PATCH

The PATCH/CMD file provided on DOSPLUS 3.5 is a utility program which is used
to apply patches, or modifications to files saved in load module format. The PATCH
utility may use patch files, which contain information instructing the PATCH utility
what modification to install, or PATCH will accept patch information from the
keyboard in an interactive mode.

===
PATCH filespec1 filespec2
PATCH filespec1
PATCH filespec1 patname (KILL)

"filespec1" is the name of a load-module format file

"filespec2" is the name of a patch file

"patname" is the name of a patch to be removed.

The allowable parameters are:

KILL=switch Used to inform PATCH to remove a patch from a file

Abbreviations:
KILL K
===

The first form is used when a patch file is to be provided to the PATCH utility. In
this form, "filespec1" is the name of the load-module format file which is to be
patched, and "filespec2" is the name of the file containing the patch information.

Patch files consist of one or more patch information lines. A patch information line
has the following format:

A=xxxxH,F=xxxxxxxx,C=xxxxxxxx

The three parameters, A, F, and C, may be specified in any order. The A
parameter is used to specify the address within the load-module file at which the patch
is to be installed. This value may be given in binary, octal, decimal, or hexadecimal, by
appending a B, O, D, or H, respectively, to the value. If no letter is appended to the
value, decimal is assumed. If the address given with the A parameter cannot be located
within the load-module file, the PATCH utility will display the message "Address not
found", and will return to the DOS command level.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-34

The F parameter is used to specify an optional string of hexadecimal or character
values which PATCH will attempt to find at the address specified by the A parameter
before applying any patch to the file. If matching bytes are found within the load
module file at the proper address, PATCH will proceed. If the bytes are not found in
the proper location, PATCH will return the message "String not found", and will abort
to the DOS command level. As mentioned above, the "find" string is optional within the
patch line. The F parameter itself is not. This means that even if it is not desired to
check for a certain pattern of bytes before applying a patch, the F parameter must
still be present in the patch line. For instance, if we desired to apply a patch to a
program at address 5481H, changing the bytes CD 98 55 to 00 00 00, we might supply
this patch line:

A=5481H,F=CD9855,C=000000

However, if we were not interested in the current contents of the three bytes
starting at 5481H, we would use this patch line:

A=5481H,F=,C=000000

If a hexadecimal string is specified, spaces between individual bytes are optional.
Therefore, either of the two following patch lines are valid:

A=7438H,F=11 32 71,C=11 35 71
A=7438H,F=113271,C=113571

As mentioned above, the F parameter may accept a string of character values as
well as hexadecimal values. The character string must be enclosed in either single or
double quotation marks, as below:

A=65AFH,F ="Exit to TRSDOS",C ="Exit to System"
A=539CH,F='Drive # (0-3):',C='Drive # (0-7):'

The C parameter is used to specify a hexadecimal or character string which is to
be placed at the address specified by the A parameter. As with the F parameter, the
hexadecimal string may contain optional spaces between byte values, and character
strings must be contained within either single or double quotation marks.

Comment lines, as well as patch lines, may be provided to the PATCH program.
Comment lines are ignored by the PATCH utility, but are useful to document the
intended purpose of the patch. A comment line is any line beginning with a period, ".", symbol.
A typical patch file containing comment lines is shown below:

.This patch is for the EZPUTER/CMD program

.produced by Jones Computing.
A=67ADH,F=C30000,C =760000
A=7E3D,F=4940,C=1144
.end of patch

Patch files may be constructed with the BUILD command under DOSPLUS 3.5, or
with a word processor.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-35

To reiterate, the second form of command used to enter the PATCH utility is:

PATCH filespec

After the PATCH program loads into RAM, the program will prompt with the
asterisk, "*", symbol. Patch lines identical in format to those used in a patch file
should now be entered from the keyboard. After all patches have been keyed in, press
the <BREAK> key to install the patches.

When PATCH installs modifications to a program, it assigns a name to the set of
modifications. In the case of patches applied with a patch file, the patch name
assigned is the filename (excluding any extension, password, or drivespec). For
instance, if the following command is executed:

PATCH TERMINAL/CMD TERM3/PAT

the name assigned to the patch will be "TERM3". If a file is patched using patch lines
entered from the keyboard, the name "*NONAME*" will be assigned to the patch.

Patch names are important for another function of the PATCH utility. This
function allows a patch to be removed from a load-module file. In order to remove a
patch, use the following command:

PATCH filespec patname (KILL)

where "filespec" is the name of the load module file from which to remove the patch,
and "patname" is the name of the patch to be removed. PATCH will search the file for
the proper patch, and remove it if it is present. If no patch by that name has been
applied to the file, PATCH will display the error message "Patch not found".

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-36

RESTORE

The RESTORE utility is used to reclaim files which have been KILLed.

===
RESTORE filespec

"filespec" is the name of a KILLed file.
===

Note that RESTORE cannot reclaim KILLed file. Certain conditions must be
met:

(1) The disk space originally allocated to the file must not have been
reassigned to another file.

(2) The primary and any extended directory entries for the file must not have
been altered in any way.

If either condition is not met, RESTORE will issue the message "Disk space has
been re-allocated", and will abort.

When attempting to recover a file, RESTORE will search all available drives
(unless a drive specification is explicitly provided in the command line) for the file. If
RESTORE is able to recover the file, the utility will exit to DOS, and the RESTOREd
file will be immediately useable.

NOTE: When attempting to recover a file, RESTORE will reclaim the first
occurrence of the proper filename in a diskette directory. If the same
filename has been created and KILLed several times upon a diskette,
RESTORE may not recover the same occurrence of the file as was
intended, If this is the case, the improper file should be RENAMEd and
KILLed. The RESTORE process may then be repeated until the proper file
is recovered.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-37

SYSGEN

This utility is used to place the DOSPLUS operating system upon any
DOSPLUS-compatible media, such as rigid drives or double-sided floppy diskettes.

===
SYSGEN :dr filespec (param=exp)

":dr" is the drivespec of the disk drive containing the media to be SYSGENed

"filespec" is the name of an optional bootstrap program to be placed on the diskette

Allowable parameters are:

XFER=value Used to specify an address to which control will be transferred
after initial system reset. Used in conjunction with an alternate
system driver.

Abbreviations:
XFER X
===

SYSGEN allows the user to place a DOSPLUS operating system on any type of
DOSPLUS-compatible media, including 8 diskettes, double-sided diskettes, and rigid
drives. In order to SYSGEN any drive, the drive must be properly configured (see the
CONFIG library command) and the media must be formatted (see the FORMAT utility).

The simplest form of SYSGEN is:

SYSGEN :dr

where ":dr" is the drivespec of the disk drive containing the media to receive the
DOSPLUS system files. If this command is executed, SYSGEN will place all of the
DOSPLUS 3.5 system files on the formatted diskette, and once complete, the diskette
will be able to serve as a DOSPLUS system disk.

The optional filespec in the SYSGEN command line allows the user to place a
special bootstrap program beginning on cylinder 0, sector 0 of the SYSGENed diskette.
For example, if it were desired to SYSGEN a diskette in drive 2 and to place the
special bootstrap program 8INCH/CIM on the diskette, the following command would be
used:

SYSGEN :2 8INCH/CIM

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-38

The optional parameter, XFER, is used in conjunction with the special bootstrap
program. If the bootstrap contains an alternate system driver program, the XFER
parameter is used to provide DOSPLUS 3.5 with an address which it will transfer
control to immediately after system reset and initialization. To SYSGEN a diskette on
drive 4 with the bootstrap file NEWBOOT and an XFER address of 5200H, the
following command would be used:

SYSGEN :4 NEWBOOT (XFER=5200H)

Specific instructions on bootstrap programs and the proper XFER addresses will be
provided with the appropriate drivers and bootstrap files.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-39

TAPE

This utility will transfer a system tape to disk, transfer a disk object file to system
tape, or relocate these files, writing them back to whichever media the operator
specifies.

===
TAPE

There are no parameters for this utility
===

Once the tape utility is loaded in, the program header will be displayed and TAPE
will prompt the operator with an asterisk, "*". Any valid TAPE utility command may
now be entered. The commands are as follows :

Command Function
B Adjust Baud rate (Model III only)
H Print help list
I Re-Initialize program
L Load a disk file
M Map out program area
O Offset program
Q Exit to DOSPLUS
R Read a system tape
S Save a disk file
W Write a system tape

"B" allows you to adjust the baud rate for cassette generation. The syntax is
simply "B L" to set it to low speed (500 baud) or "B H" to set it to high speed (1500
baud). Remember, only Model III can read a 1500 baud tape. If you are going to take
this to a Model I, write it out at 500 baud.

The "H", or help command prints displays a list of the valid TAPE commands.

"I" will re-initialize the tape utility. The syntax is simply "I". There are no
parameters. If you do not use this option, when you load your next file it will bring it
in memory along with your current file. This means that it is possible for you to
append two programs together. The are several conditions, though. The programs must
be relocatable and written in a fashion that would allow such a joining. The way you
would handle it is to load in the first file, offset it (to move it out of the way), load
in the second file, offset the entire thing (if needed), and write the entire thing out
under one filename.

"L" will load a disk file into memory. The syntax is "L filespec" (where filespec is
a standard DOSPLUS file specification). It does nothing other than load the file into
memory. For any information regarding the file’s load and execute addresses, you must
use the map option.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-40

"M" will map out the load and execute addresses of all files currently in memory.
The syntax is simply "M" or "M-P". The optional "-P" indicates that it should output
the map to both the screen and the line printer. There are no other parameters. It will
display the program name (as you typed it in), and then will display all program and
data areas. It uses the format "address-address" and displays each segment separately.
Then it will give you the program transfer address (the address the execution begins
at) and the current offset. Each segment will be displayed twice. The left-hand column
is the original segment and will remain unchanged. The right hand column is the offset
segment and will change to reflect the offset currently in effect.

"O" will offset all currently loaded program and data segments to the specified
amount. The syntax is "O nnnn" where "nnnn" is the amount you wish to offset the
modules. Remember, this is NOT the address you wish it to be offset to, it IS the
offset amount. For example, if a program loaded in at hex 8C00 and the O command is
used to offset it 1000 hex bytes ("O 1000"), it will now load in at hex 9C00. Please
note that tape works only with hexadecimal values. If you type in a value greater than
four digits, only the last four will be used. For 99% of standard usage, an offset of hex
1000 (i.e. O 1000) will work very well.

"R" will read a system tape. The syntax is "R filename" (where filename is the
tape filename). That is all this command does, to manipulate any of the data read in
you must refer to the map and offset commands.

"S" will save the file currently in memory to disk. The syntax is "S filespec" or "S
filespec-A". The "filespec" is a standard Dosplus file specification. The "-A" is the
optional syntax to indicate that you wish the tape utility to append a module to disable
DOS upon program load. If for example, your program HAS to load in at hex 4E00
(below DOS user memory), you would save it with the "-A" parameter. Upon loading,
the module would reset the I/O vectors to the ROM and then re-locate the program to
the specified load address and transfer control. This is primarily for moving tape-based
games or other programs that may not allow you the liberty of relocating them when
you move them to disk. For most applications, the appendage (i.e. "-A") will be
required.

"W" is the command to write a system tape. The syntax is "W filename" or "W
filename-A". The "filename" is a standard system tape filename. The "-A" appendage is
the same as described under write (see above). For most applications, the appendage
will be needed.

Note that the TAPE utility can be used to relocate programs and then dump them
back to the same media from which it was taken (disk-to-disk, tape-to-tape). In this
way, the TAPE utility has many more applications than simple tape-to-disk (or
vice-versa) transfer.

TAPE can also be used to determine where a program loads in memory. This can be
a time-saving function when it is necessary to know where a machine-language program
loads into RAM.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Utilities - Page 3-41

TRAP

The TRAP utility is a machine-language program which intercepts disk I/O errors
and allows the operator to determine what action to take in the event of an error.

===
TRAP

There are no parameters for this utility.
===

The TRAP utility is invoked by simply typing "TRAP" at the DOSPLUS command
level. It will install itself into high memory, much like a device driver. Once resident,
TRAP intercepts many disk I/O errors before the error condition is returned to the
program requesting disk access. If an error occurs, TRAP will allow the operating
system to report the error as per usual, but then it will display the following prompt
for the operator:

Abort, Continue, Retry, Ignore?

The operator may abort the current operation and return to the DOSPLUS command
level by typing "A" and pressing ENTER.

By typing "C", for continue, TRAP will return error status to the program
requesting disk access. The program will then handle the error in its normal manner.

TRAP may be instructed to repeat the error-causing disk I/O function by entering
an "R", for retry. If the I/O operation is successfully carried out upon retrying, the
TRAP will not intervene and the program will proceed as if no error occurred. If the
error re-occurs, TRAP will once again intercept the error.

By entering "I", for ignore, TRAP will return to the disk I/O-requesting program
without informing the program that an error has occurred. In some circumstances, this
may be desirable to gain access to portions of a diskette that would be
otherwise unreadable.

Note that once the TRAP program is installed, it remains active until a system
reset or until a new /CFG file is loaded which does not contain the TRAP program.

CO-DIR 2.1 - Cursor Oriented Directory Version 2.1
Copyright (c) 1982 by Hunt K. Brand

Picotrin Technology Inc.
3531 San Castle Blvd.
Lantana, Fl. 33462

TABLE OF CONTENTS

Chapter 1

1.1 INTRODUCTION...1-1
1.2 MANUAL NOTATION......................................1-1
1.3 SOUND ...1-1
1.4 PASSWORD...1-2

Chapter 2

2.1 SETTING UP THE SYSTEM................................2-1
2.2 PROGRAMS...2-1
2.3 ONE DRIVE USERS......................................2-1
2.4 TWO OR MORE DRIVE USERS..............................2-1
2.5 CONFIGURE THE SYSTEM.................................2-1
2.6 TRANSFER CO-DIR 2.1 TO YOUR DOS DISK.................2-1
2.7 RENAME CO-DIR 2.1....................................2-1

Chapter 3

3.1 OPERATION..3-1
3.2 USING CO-DIR 2.1.....................................3-1
3.3 CURSOR CONTROL.......................................3-2
3.4 CO-DIR 2.1 DIRECTORY BUFFER..........................3-2
3.5 BUFFER FULL..3-3
3.6 TURN OFF THE CLOCK...................................3-3

Chapter 4

4.1 COMMAND OUTLINE.......................................
4.2 COMMANDS...4-1
4.3 COMMAND DESCRIPTIONS.................................4-1
4.4 <ENTER> - EXECUTE FILE...............................4-1
4.5 <A> - CO-DIR DIRECTORY WITH A,I OPTIONS..............4-1
4.6 <C> - COPY FILE TO SPECIFIED DRIVE...................4-2
4.7 DEFAULT DRIVE NUMBER...........................4-2
4.8 EXAMPLE OF COPY................................4-2
4.9 <D> - CO-DIR DIRECTORY...............................4-3
4.10 <F> - FREE...4-3
4.11 <G> - ALLOCATION DISPLAY.............................4-3
4.12 <H> - HELP...4-4
4.13 <J> - JOB CONTROL....................................4-4
4.14 <K> - KILL FILE......................................4-5
4.15 EXAMPLE OF KILL................................4-5
4.16 <L> - LIST FILE......................................4-5
4.17 <M> - MODIFY FILE....................................4-6
4.18 <O> - LOAD FILE......................................4-6
4.19 <P> - PRINT FILE ON PRINTER..........................4-7
4.20 <R> - RENAME FILE....................................4-7
4.21 <S> - SEARCH FOR FILE OR EXTENSION OF FILE...........4-8

4.22 SEARCH BY FILE NAME............................4-8
4.23 SEARCH BY EXTENSION............................4-9
4.24 SEARCH BUFFER..................................4-9
4.25 <Z> - ZERO (CLEAR) FILE..............................4-10

4.26 PASSWORD ACCESS......................................4-10

Chapter 5

5.0 TIPS & GENERAL COMMENTS..............................5-1
5.1 LAST PAGE..5-1
5.2 LOADING SPEED..5-1
5.3 TECHNICAL OUTLINE....................................5-1

1-1

Chapter 1

1.1 INTRODUCTION:

CO-DIR 2.1 - Cursor Oriented Directory Version 2.1

CO-DIR 2.1 is a utility program which allows you to perform, with one or
two key strokes (no need to type in file names), almost all the DOS commands
relating to individual files on a disk. CO-DIR 2.1 allows you to process the files
as they are listed on a disk Directory screen, by using a pair of blinking cursors.
To use CO-DIR 2.1, simply type CODIR instead of DIR or CAT.

DOS commands and built-in commands which are supported include: Copy,
Directory, Free, Help, Do file, Kill, List, Load, Modify, Print, Rename, Search, and
Zero. Each of these commands are discussed in detail within the documentation.

CO-DIR 2.1 is not a program which will be used once in a while. It will be
used almost every time you boot up your DOS since most of the DOS functions you
would use can be done with CO-DIR 2.1 much faster and easier.

Every page you see while the Directory is being listed is saved in memory so
you can scroll the Directory pages just like a word processor. Pressing <SHIFT>
<UP ARROW> will cause the cursors to move to the top left hand side of the
screen and if more than one Directory page is in memory, will move the first page
onto the screen.

All options (except <ENTER>) display a prompt (Yes/No questions or Drive #)
on the Command line (last line of screen),
i.e. Copy to which drive?

1.2 MANUAL NOTATION:
All capital letters or words enclosed in left and right brackets represent

individual keys on the key board. Any two together represent keys that should be
pressed together.
i.e. <SHIFT> <UP ARROW>

Press the shift key and the up arrow key together.
<ENTER>

Press the enter key.

1.3 SOUND:
To take advantage of CO-DIR’S optional sound, you must have a Radio Shack

"Mini-Amplifier", (Radio Shack Catalog # 277-108) or its equivalent, hooked up to
the AUX plug (the large gray one) of the cassette cable. Using the SOUND option
causes low tones if function was completed. High tones mean an error in
instruction or, CO-DIR was unable to perform function. Warning tones for Kill,
Print, and Zero commands are also generated.

1-2

NOTES:
Be sure and read the section on BUFFER prior to using
CO-DIR 2.1.

The DOS CLOCK should not be active (displayed on the
screen) while using CO-DIR.

1.4 PASSWORD:
If a file is password protected you can still access it, just hold down the

<SHIFT> key when choosing your option, i.e. if you press <SHIET> <L> ,CO-DIR
will ask for a password at the Command line then append the password to the file
for you before listing it.

2-1

Chapter 2

2.1 SETTING UP THE SYSTEM:

2.2 PROGRAMS:
CO-DIR 2.1 contains two files: CODIR/CMD, CODIR2/MOD.

2.3 ONE DRIVE USERS:
If you have only one drive you will need to copy over CODIR/CMD and

CODIR2/MOD (CODIR/CMD is 3 grans long, CODIR2/MOD is 2 grans long).

2.4 TWO OR MORE DRIVE USERS:
If you have more than one drive you can leave the programs on any disk

while configuring to your system.

2.5 CONFIGURE THE SYSTEM:
Run the BASIC program CODIR2/MOD and answer the questions. This will

allow you to activate or de-activate most of the command functions (among other
things). You will then have a copy of CODIR/CMD designed for your particular
needs and system.

2.6 TRANSFER CO-DIR 2.1 TO YOUR DOS DISK:
Although you can use CO-DIR no matter what disk it is saved on, it is

better to copy it over to your DOS disk. This will allow it to load faster when
you activate it. If it were saved on a separate drive, the DOS would have to look
for it on each drive until it found it; if CO-DIR is on the DOS disk, the DOS will
find it as soon as it starts looking.

The only program you need to copy over to your DOS disk is CODIR/CMD.
CODIR2/MOD will rarely be used, therefore you can save it on any disk and only insert that disk
when you need to modify CO-DIR 2.1.

2.7 RENAME CO-DIR 2.1:
CO-DIR 2.1 is supplied on your disk with the file name of CODIR/CMD.

You can rename it to any legal file name of any length (be sure to keep the /CMD
extension), i.e. DIRECT/CMD, D1!CMD, HELLO/CMD, etc.

If you do rename the CO-DIR file, try to make the first character of the
name a "D" since the <D> Directory command in CO-DIR is activated by pressing a
"D". This will prevent you from having to press two different keys for the same
function, i.e. If you renamed CODIR/CMD to C/CMD then you might press <C>
while CO-DIR is active expecting a Directory command but you would get the
Copy command.

NOTE:
Do not change the Copyright notice displayed when CO-DIR
2.1 loads itself. If you do modify the title line, the computer
will not function properly and you will be warned to re-boot
the system - CO-DIR will not allow itself to be used if this
line is changed.

At this point you should have modified CO-DIR 2.1 using CODIR2/MOD and
transferred it to your DOS disk. You are now ready to begin using CO-DIR 2.1.

3-1

Chapter 3

3.1 OPERATION:

######################## SPECIAL NOTE #######################

CO-DIR 2.1 is designed to be used from DOS only – not
from BASIC. DO NOT USE CO-DIR 2.1 FROM BASIC.

######################## SPECIAL NOTE #######################

Normally during a CAT command, DOS PROMPT (the message your DOS
displays when it is ready for another command) will appear after all the files
have been displayed (whether or not you had to press <ENTER> or the <SPACE BAR>
to accomplish this for multi-page listings). If you press the <BREAK> key the
listing will stop before all the files have been displayed, and DOS Prompt will
appear. In any of these examples DOS Prompt appears after the information is
listed, or you stop the listing by pressing the <BREAK> key.

3.2 USING CO-DIR 2.1:
To use CO-DIR 2.1 simply type CODIR instead of DIR or CAT. All legal

CAT commands are accepted. Here are some examples:

CODIR (i)
CO-DIR (CAT type) Directory of drive 0 with
invisible files.

CODIR :2
CO-DIR (CAT type) Directory of drive 2.

If you type CODIR instead of DIR or CAT, a normal Directory will follow,
just as described above except a small graphic block will appear in the upper right
hand corner of the screen and stay there until the Directory is stopped manually
or normally finishes. Short beeps will be heard through the cassette port as each
line is saved. The small graphic block shows that the CO-DIR 2.1 BUFFER is
active and saving all information listed in a memory buffer so you can scroll up to
files that have scrolled off the screen during the listing of the Directory.

Once the files are listed, instead of the normal DOS prompt appearing like it
does after a normal Directory listing, CO-DIR 2.1 will display this message at the
bottom of the screen:

CO-DIR 2.1 - Cursor Oriented DIR. (C) 1982 by Hunt K. Brand.

Two cursors will begin to blink over the first file listed on the Directory
screen. CO-DIR is now ready to accept commands.

To exit CO-DIR and return to DOS, press the <BREAK> or <CLEAR> key
while the cursors are blinking over a file name. If the Directory listed had no
files in it, CO-DIR would automatically exit to DOS.

3-2

3.3 CURSOR CONTROL:
Once CO-DIR 2.1 is active, two cursors will blink over the first file listed

at the top of the screen. You can move the cursor over any file you want to
process by pressing the arrow keys in any combination. If you press the <DOWN
ARROW> and the cursors move to the bottom of the screen, the files listed on
the screen will begin to scroll up (if there are more files in the buffer). The same
holds true for moving the cursor up. Press <SHIFT> <UP ARROW> to move the
cursors over the first file listed on the first page of the Directory - the top of
the Directory. The SEARCH command can help you find (position the cursors over)
a particular file (see SEARCH in Chapter 4).

Killed (files marked as killed using the <K>ILL option) may not be processed
using CO-DIR 2.1 so the cursors will usually skip over them as it moves.

To force the cursors to stop over a system or killed file that they would
normally skip over, hold down the space bar in conjunction with the arrow keys.
This is usually used so you can move the cursors over a file which is next to a
killed or system file.

3.4 CO-DIR 2.1 DIRECTORY BUFFER:
Whenever you activate CO-DIR, a memory buffer is opened and will remain

open until the Directory listing is stopped manually or completed normally. To
indicate that the buffer is open, a small graphic block will appear in the upper
right hand corner of the screen, and short high tones will be heard as each line
of Directory information is listed. Each file name listed on the screen is saved in
the buffer so it can be recalled later as you move the cursors, or search for a
file name.

At the end of the listing a short low tone will be heard to indicate that the
buffer is closed and the graphic block will turn off.

A common procedure is to hold down the <ENTER> key until all pages of a
Directory are listed (since you can always scroll up to see files which were
listed). The buffer will close and CO-DIR will wait for you to release the
<ENTER> key before activating the cursors over the first file. Once the cursors
are blinking, the <ENTER> key will function as described in the COMMANDS
section of chapter 4).

The buffer can be closed manually by pressing the <BREAK> key. Since the
<BREAK> key is also used to stop a Directory listing, the end of the Directory
listing (which turns off the buffer) and the pressing of the <BREAK> key (which
also turns off the buffer) usually occur simultaneously.

Since the buffer is closed the instant the <BREAK> key is pressed, you
should not press the <BREAK> key until the current page of Directory information
is listed. If you pressed the <BREAK> key while the files were being listed near
the top of the screen or in the middle, the rest of the files would still list
normally until the DOS stopped the Directory listing. As soon as CO-DIR activated
itself, all the files which were listed after you pressed the <BREAK> key and
before the DOS stopped the listing, would be erased. This is because they were
not saved in the buffer. This causes no harm to the computer or the remaining
files being processed, just bear this in mind when you press the <BREAK> key.

3-3

3.5 BUFFER FULL:
The memory buffer will save the files listed in memory up to the top of

memory as marked by the DOS Himem pointers.

If the buffer is filled before all the files are listed, the buffer will turn
itself off and all subsequent files will not be saved in the buffer until the
Directory listing stops. Since you were probably looking for a particular file and
wanted to continue the search even after CO-DIR turned off the buffer (indicated
by the graphic block going off and a short high tone) CO-DIR will perform the
following:

After the Directory listing is stopped, CO-DIR will transfer the last set of
files (the ones on the screen after the listing was stopped) into the top of the
memory buffer. This will cause some of the files saved previously to be lost but
will allow you to process the files on the last page as well as most of the files
which were saved in the buffer before the buffer turned off.

3.6 TURN OFF THE CLOCK:
Since the buffer is constantly updated (saving the screen to the buffer) as

you modify files on the screen, the DOS CLOCK should not be on (displaying the
time in the upper right hand corner). If it is, CO-DIR will save it in the buffer
every time you scroll the screen - erasing over parts of file names!!! - To avoid
this problem, make sure the CLOCK is off before calling up CODIR/CMD.

4.1 COMMAND OUTLINE:

COMMAND KEY FUNCTION
==

<ENTER> .. EXECUTE file - if no CMD extension is found, assume
file is BASIC so load BASIC then run file.

<SPACE>&
<ENTER> .. Force CO-DIR to EXECUTE file as CMD even if no CMD

extension is found.

<BREAK> or
<CLEAR> .. EXIT CO-DIR (cursors must be on a file).

<A> Get CO-DIR DIRECTORY of specified drive using A,I
options.

<C> COPY file to specified drive.

<D> Get CO-DIR DIRECTORY of specified drive.
Pressing <SHIFT> <D> causes invisible files to be
listed, also.

<F> FREE, asks for drive number then shows a map of that
drive.

<H> HELP, Display all command keys on command line,
i.e. shows ...<ENTER> A C D F C H J K L M O P R S Z.

<J> JOB CONTROL, Activates a DO just like typing "DO
filename".

<K> KILL file.

<L> LIST file on video (restore screen afterward).

<M> MODIFY file. Uses DISKDUMP. CO-DIR automatically
adds the name of the file to be processed.

<O> LOAD file. Load /CMD or /CIM type file to memory.

<P> PRINT file to printer.

<R> RENAME file. Type in new name on Command line.

<S> SEARCH for file or extension.

<V> VIEW copyright and license notice (screen restored).

<Z> ZERO file. Performs a CLEAR on specified file.

4-1

4.2 COMMANDS:
There are 14 command keys displayed by the <H>ELP option (which is one of

the commands). The exit and execute commands will be described first then each
of the other commands will be described in alphabetical order based on the key
which activates it.

4.3 COMMAND DESCRIPTIONS:
The "Required response" line under each command heading in this chapter

indicates what CO-DIR expects as a response after you press that command key.
The "Exit command" line indicates what keys you may press to cancel the
requested command.

All commands except <ENTER> - execute, <J>OB CONTROL, and <L>OAD,
allow CO-DIR to remain active in memory so you can process several files on
several different drives without having to reload CO-DIR after each function.

4.4 <ENTER> - EXECUTE FILE

Required response : none
Exit command : none

To execute a program (it must be a program and not a data file), move the
cursors over the program you would like to execute then press the <ENTER> key.
If the program has not been marked as killed (see <K> - KILL) and is not a
system file (a file with a ISYS extension), the screen will clear and the program
name will be printed at the top of the screen, then CO-DIR will deactivate itself
and the program will automatically be loaded and executed.

If the program does not have a CMD extension, CO-DIR assumes it is a Basic
program and will automatically load Basic, opening three files (or the number of
files that were set using CODIR2/MOD), then it will run the Basic program.

To force CO-DIR to treat a file as a CMD even if it does not have a CMD
extension, press the <SPACE BAR> and hold it down while you press the <ENTER>
key. If the file needs a password, press <SHIFT> <ENTER> to type in the
password (see PASSWORD ACCESS below). Type in the password then hold down
the <SPACE BAR> before pressing <ENTER> at the end of the password, this will
cause CO-DIR to append the password onto the end of the file then it will
execute the file.

4.5 <A> - CO-DIR DIRECTORY WITH A,I OPTIONS

Required response : <ENTER> or drive number
Exit command : any other key (except <SPACE>)

Pressing <A> will cause the following message to appear on the command
line:

CO-DIR Directory of which drive (d)?

Press the drive number required, or <ENTER> to use the default drive
number (spaces are ignored). Press any other key to cancel the command. (See
DEFAULT DRIVE NUMBER under <C> - COPY FILE below for explanation of
default drive numbers). The screen will clear and CO-DIR will display a Directory
of the specified drive with Invisible files and Allocation (A,I). If there are no
files on the specified disk, CO-DIR will exit to DOS.

4-2

4.6 <C> - COPY FILE TO SPECIFIED DRIVE

Required response : <ENTER> or drive number other than current drive
number (You can’t copy to the same drive)

Exit command : any other key (except <SPACE>) or current drive number

To copy a file from one disk to another, move the cursor over the file you
want to copy then press the <C> key. A small graphic block will appear to the
right of the file which will be copied and the following message will appear on
the command line:

Copy to which drive (d)?

Press the number of the drive you want to transfer the file to or <ENTER>
to use the default drive number (spaces are ignored). Pressing any other key will
cancel the command.

If you press a legal drive number then CO-DIR will begin to copy the file to
the specified drive (using the same file name). The small graphic block next to
the file will be replaced with the number you pressed and the command line will
display the actual command being preformed. If the copy is successful a low tone
will sound and the drive number that the file was just copied to will remain just
to the right of the file name to show that it was copied to that particular drive.

4.7 DEFAULT DRIVE NUMBER:
When you use an option which requires a drive number as a response, the

last part of the prompt line will be:

..... which drive (d)?

Options which require a drive number
are <C>OPY and <D>IRECTORY.

Other options which require a drive number are:
<F>REE option.

The small "d" between the brackets will be a number between 0 and 3 or
whatever you set the maximum drive number to be with CODIR2/MOD. Pressing
<ENTER> will cause CO-DIR to use the number "d" as your response to the
question. If you press a number other than "d" that number will become the new
default drive number until you exit CO-DIR or press a new number.

If you press an illegal drive number (one that is too big) CO-DIR will make a
short high tone to indicate an error and the command will be cancelled causing
the cursors to resume blinking over whatever file they were over before you
pressed <C>.

4.8 EXAMPLE OF COPY:
If you are looking at the Directory of drive 0 and you want to copy a file

called JULY/DAT, over to drive 1, follow this procedure: Move the cursors over
the file JULY/DAT then press <C> and answer the drive question by pressing <1>.
The command line will then display the following message:

Copy JULY/DAT:0 :1

The graphic block to the right of JULY/DAT will be replaced by a 1 (to
show that the file is being copied to drive 1 and CO-DIR will begin to copy that
file over to drive 1. If you had pressed 0 the request would have been canceled

4-3

since you can’t copy a file to the same drive you are looking at, and in this
example we are looking at drive 0. After the file is copied, the cursors will
resume blinking over the file you just copied and the 1 will still be on the screen
next to that file to show you that the file was copied over to drive 1.

4.9 <D> - CO-DIR DIRECTORY
<SHIFT> <D> - CO-DIR DIRECTORY INCLUDING INVISIBLE FILES

Required response : <ENTER> or drive number
Exit command : any other key (except <SPACE>)

Pressing <D> for normal Directory, or <SHIFT> <D> for normal Directory
including invisible files, will cause the following message to appear:

CO-DIR Directory of which drive (d)?

Press the required drive number (spaces are ignored) or <ENTER> to use the
default drive number (see DEFAULT DRIVE NUMBER under <C> - COPY FILE
section above).

If you press a legal drive number the screen will clear and a Directory of
the specified drive will appear. If there are no files on the disk, CO-DIR will
exit to DOS.

4.10 <F> - FREE : DOSPLUS will ask for a drive number then show
a Free Space Map of that drive

Required response : <ENTER> or drive number
Exit command : any other key (except <SPACE>)

Users will see the following message:

Free space map of which drive (d)?

Press drive number (spaces are ignored) or <ENTER> for default drive number
(see DEFAULT DRIVE NUMBER under <C> - COPY FILE section above), any other
key to exit command. If a legal drive number was chosen, a Free space map of
that drive will be shown. A low tone will be heard to indicate that the function
is completed and the following message will appear on the command line:

Press <BREAK or CLEAR> for DOS, any other key for CO-DIR

If you press <BREAK or CLEAR> CO-DIR will exit to DOS, otherwise the
Directory page that was displayed before the Free command will be displayed and
the cursors will be blinking over the same file they were over before the Free
command.

4.11 <G> - GRANULE ALLOCATION, DISPLAY FILE SIZE

Required response : <Y>
Exit response : any other key

This command will display a file’s size in kilobytes. This will prove useful in
determining whether or not a file is too large for the remaining free space on a
disk BEFORE executing a COPY command.

Position the cursor over the file you wish to interrogate and press <G>.

4-4

You will see :

Display file size (allocation) ?

Reply with a <Y> to view the size of the file.

The display will change :

File FILENAME/EXT:D is : nnK

"nnK" will be the file size in kilobytes. If this figure is "<K", it indicates
that the file is LESS than one kilobyte in length.

4.12 <H> - HELP, DISPLAY COMMAND KEYS

Required response : none
Exit command : none

By pressing <H> the following line will be displayed:

Choices: <SHIFT> Password:<ENTER> A C D F G H J K L M O P R S V Z

In either case a low tone will be heard and the cursors will continue to
blink over the file they were over before the command.

NOTE:
If you have deactivated any of the above options using
CODIR2/MOD, they will not be displayed.

4.13 <J> - DO FILE ACTIVATION

Required response :
Exit command : any other key

This command allows you do activate a Do file.

Position the cursors over the DO control file (the one which will be
activated with a Do command) then press <J>.

The following message will appear on the command line:

Do (activate) file?

Pressing <Y> will cause CO-DIR to clear the screen and the following
message will appear at the top of the screen:

Do filename

Where filename is the name of the file which will be activated, CO-DIR
will then deactivate itself and the file will be activated.

4-5

4.14 <K> - KILL FILE

Required response : <Y>
Exit command : any other key

To kill a file, move the cursors over the file you want to kill then press
<K>. A sharp tone will sound. This same tone is used with the <P> and <Z> to
attract you attention that a potentially dangerous command is about to be
performed (you don’t want to kill a file by accident).

A graphic block will appear to the right of the file which will be killed.
Press <Y> to kill the file. Pressing any other key will cancel the request.

If you press <Y> the graphic block next to the file will be replaced with an
asterisk (*) to indicate that the file will be killed, If the file is killed, a low
tone will be heard to indicate completion of the command.

4.15 EXAMPLE OF KILL:

If you are looking at a Directory of drive 1 and you want to kill a file
called DATA/OLD, follow this procedure: Move the cursors over the file then press
<K>, then press <Y>. CO-DIR will attempt to kill the file on*U that*U drive*U
and if all goes well (no write protect tabs etc.), a low tone will be heard and an
asterisk (*) will appear on the right hand side of the file and remain there to
indicate that the file was killed. The cursors will automatically move down over
the next file available if there is one, otherwise they will remain blinking over
the file you just killed.

The asterisk marks the file as Killed. All options dealing with files can not
be preformed on that file from this point on (you can’t List, Rename, Copy etc. a
file which is no longer there). For example, if you move the cursors over the
killed file and press L to list it, CO-DIR will ignore the command.

4.16 <L> - LIST FILE

Required response : <Y>
Exit command : any other key

This list is different from the BASIC list. CO-DIR uses the DOS library
command LIST, not the BASIC list command. This command is mainly for viewing
text files (word processor files). To list a file, move the cursor over the file you
want to list then press the <L> key. The following message will appear on the
command line:

List file?

Press <Y> to list the file, any other key to exit. If you press <Y> the
screen will clear and the following message will be displayed on the top line of
the video:

List filename

"filename" will be the name of the file you are listing. The file will then
be listed.

You can pause the listing by pressing <SPACE BAR> then any other key to
continue. To stop the listing before it would normally stop, press the <BREAK>
key.

4-6

After the listing (whether you stopped it ahead of time or not) a low tone
will sound and the following message will appear:

Press <BREAK or CLEAR> for DOS, any other key for CO-DIR

If you press <BREAK or CLEAR> CO-DIR will exit to DOS, otherwise the
Directory page that was displayed before the List command will be displayed and
the cursors will be blinking over the same file that was just listed.

4.17 <M> - MODIFY FILE

Required response : <Y>
Exit command : any other key

This option allows you to modify the specified file using the file editors
supplied with your DOS diskette. MODIFY causes the program DISKDUMP to be
loaded and automatically displays the first sector of the file you want to modify.

CAUTION:
This option is supplied as a convenience for people who know
how to use the programs above. If you have never used
these programs you should turn off this option using the
CODIR2/MOD program. A file can be damaged badly by
using DISKDUMP if this program is not used correctly!

To use the <M> option, users need DISKDUMP in one of the drives. If you
have renamed DISKDUMP you will need to rename them to their normal names.

Users will see:

Diskdump file?

Respond with a <Y> to modify the file, any other key to cancel the
command. After you modify the file and exit the program the following message
will appear:

Press <BREAK or CLEAR> for DOS, any other key for CO-DIR

If you press <BREAK or CLEAR> CO-DIR will exit to DOS, otherwise the
Directory page that was displayed before the Modify command will be displayed
and the cursors will be blinking over the file you just modified.

4.18 <O> - LOAD FILE

Required response : <Y>
Exit command : any other key

This command loads the file into memory. The DOS library command LOAD
is used, not the BASIC load command. Move the cursors over the file you want
to load then press <O>. The following message will appear on the command line:

Load File??

The double question marks (??) are purposely displayed to help differentiate

4-7

between the <L>IST command because you may press <L> for LOAD instead of
<O>.

Press <Y> to load the file into memory. CO-DIR deactivates itself after this
command because the file being loaded may use the same memory area used by
CO-DIR. After this command the DOS prompt will appear.

4.19 <P> - PRINT FILE ON PRINTER

Required response : <Y> and printer available
Exit command : any other key

This command will print the file to a printer. It is just like the LIST
command except the output is sent to the printer. After pressing <P> the
following message will appear on the command line:

Print file? (check printer)

If you have a printer hooked up and ready to receive the data then press
<Y>. If you don’t have a printer and press <Y> the computer will lock up (just as
it does when an LPRINT command in BASIC is used without a printer).

After the file is printed, a low tone will sound to indicate completion of the
command and the cursors will resume blinking over the file just printed.

4.20 <R> - RENAME FILE

Required response : new file name
Exit command : <BREAK>, <CLEAR>, <SHIFT> <LEFT ARROW> or <ENTER>

if nothing was typed

After pressing <R> the following message will appear on the command line:

Rename to / /

The slashes represents thin vertical graphic lines which will appear on the
screen. These lines indicate how much room you have to enter the new file name.

To rename the file, type in the new name then press <ENTER>. You can
use the <LEFT ARROW> to erase mistakes. If you try to pass the graphic
borders by erasing too much or typing in too long a file name, a short high pitch
sound will indicate an error. Spaces and most non-alphanumeric characters are not
accepted, a sound will also be generated if you try to type these characters.

After you type in the new name and press <ENTER>, the old file name on
the screen will be changed to the name just typed in and the file will be
renamed. If there are no errors (i.e. bad file name, file already exist, etc) a low
tone will sound to indicate completion of the command and a R will appear to the
right of the file just renamed. The cursors will then blink over the file just
renamed.

To exit the RENAME command press <SHIFT> <LEFT ARROW> or <BREAK>
or <CLEAR> or press <ENTER> when there is no characters in the RENAME area
(between the slashes //).

4-8

4.21 <S> - SEARCH (FROM CURSOR POSITION DOWN) FOR FILE OR
EXTENSION OF FILE ON CURRENT DIRECTORY BEING PROCESSED

Required response : <ENTER> or search string and cursors positioned where
search should begin. To search the entire Directory you must press <SHIFT> <UP
ARROW> before choosing the search option.

Exit command : <BREAK>, <CLEAR>, <SHIFT> <LEFT ARROW>

This command allows you to search through the files listed on the current
Directory being processed for a particular file or part of that file. If the file is
found, the cursors will begin blinking over that file.

After pressing <S> the following message will appear on the command line:

Search for / /

The slashes represent thin vertical graphic lines which will appear on the
screen. These lines indicate how much room you have to enter the search string.

There are two types of searches:
1) Search by File Name or part of that name.
2) Search by Extension or part of that extension.

4.22 SEARCH BY FILE NAME:
Position the cursors at the top of the Directory (by pressing <SHIFT> <UP

ARROW>) or anywhere within the Directory page you want the search to begin.
Type in the search string then press <ENTER>; pressing <ENTER> without any text
will cause a search to begin using the last search string you typed in (see
SEARCH BUFFER below).

This search will compare each character you type in with the corresponding
character of the file name. In other words, the first character you type in should
be what you expect the first character of the file to be, the second character
you type should match the second character of the file name, etc. If you do not
know what a particular character will be for a particular position you can type a
question mark (?) and CO-DIR will skip to the next character as it searches the
file name.

Here are some examples of what search string could be typed in for CO-DIR
to find the example file (even if others are found beforehand it will eventually
stop on the required file). There is also an example of one that would not.

File needed: FRIDAY5/F4

YOU TYPE RESULT

FRIDAY/F4 <ENTER> Success:
Will stop on any file with the
same first ten characters
i.e. FRIDAY5/F4A

F <ENTER> Success:
Will stop on first file with
"F" as a first character.

??I <ENTER> Success:
Will stop on first file with a
third character of "I".

4-9

F?I???/F <ENTER> Success

DAY <ENTER> ===> FAIL:
This will cause CO-DIR to search
for the first file which first
three characters are DAY.

???DAY <ENTER> Success:
Will stop on first file with
DAY as the 4th 5th and 6th
characters.

4.23 SEARCH BY EXTENSION:

Type a slash (/) as the first character and type in up to three characters of
the extension then press <ENTER>, pressing <ENTER> with no characters pressed
to search using the last search string used (See SEARCH BUFFER below).

This search is just like search by File Name except CO-DIR will first scan
the file name until it finds a slash / and will then begin to compare character by
character. Any file which has this extension will be found regardless of how long
the first part of the file name is.

Here are some examples of search by Extension:

YOU TYPE RESULT
/??D <ENTER> Will stop on first file having

a "D" as a third
character of its extension.
i.e. HELLOPTI/QWD, C/SRD, GAME/CMD
etc.

/ <ENTER> Will stop on first file with any
extension.

/C <ENTER> Will stop on first file having a
"C" as the first character of the extension.

4.24 SEARCH BUFFER:

CO-DIR remembers whatever you searched for last. For example, if you
typed in FR to look for FRIDAY/F4 and the cursors stopped on FROM/TXT;
simply press <S> then press <ENTER> with no text. CO-DIR will display FR on
the command line to show what it is looking for and will stop on the next file
which begins with "FR".

The search string you typed in will remain in the Search Buffer until you type in
a new search string or exit CO-DIR. You can go from drive to drive (by using
the <D> command) looking for your file and simply press <S> then <ENTER> to
look for it over and over again until you find it.

The Search Buffer is set to all question marks (?) when you first activate
CO-DIR. If you press <S> and <ENTER> with just question marks in the Search
Buffer, CO-DIR will stop on the next file, no matter what it is.

4-10

4.25 <Z> - ZERO (CLEAR) FILE

Required response : <Y>
Exit command : any other key

This command will perform a DOSPLUS library command CLEAR on the
specified file.

CAUTION:
This will cause the entire contents of the file to be replaced
with zeros! Use extreme caution with this option. Once you
zero out a file there is no way to recover the data that
used to be there (you can’t restore it).

The CLEAR command does not kill the file, it modifies it destroying all
data. This is something you may want to do to sensitive data before killing it.
If you simply kill the file, the data will remain on the disk until that space is
used by some other file. To be sure the data can not be used again, use the <Z>
command then use the <K> command to kill it.

To Zero a file, place the cursor over the file to be zeroed then press <Z>.
A long sharp tone will sound to get your attention since this command will destroy
the data on the file. The following message will appear on the command line:

Clear (Zero!) file????

If you press <Y> the file will be cleared and a Z will appear to the right of
the file to indicate that it has been filled with zeros, then the cursors will
resume blinking over the file you just processed.

4.26 PASSWORD ACCESS:

If you need to process a file which is password protected, simply press then
<SHIFT> key and hold it down then press the key for the command you would like
to perform. The following message will appear on the command line:

Password : / /

Type in the password (See <R> - RENAME for an explanation of how to
enter characters between the slashes / / and how to exit the command). Once
you type in the password, the normal command prompt will appear on the command
line. If you activate the function, the password you typed in will be appended to
the end of the file before the function is preformed. If you cancel the command
then the password will not be used.

CO-DIR does not remember passwords so you will need to type in a password
each time it is needed.

NOTE: Pressing <SHIFT> with the following options will have
no effect: <A>, <F>, <H>, <S>. Pressing <SHIFT> with the
<D> option will cause invisible files to be listed, you will not
be asked to enter a password.

5-1

Chapter 5

5.0 TIPS & GENERAL COMMENTS:

5.1 LAST PAGE:
To move the cursors onto the last page of the Directory Buffer, use the

<S>EARCH option. Press <S> then type <@> or <;> then press <ENTER>, since
CO-DIR will not find any file that starts with "@" or ";" it will search through
the entire buffer leaving the cursors on the last file of the last page.

5.2 LOADING SPEED:
If a file is saved on consecutive tracks, it may be loaded from disk a little

faster. You may be able to increase the loading speed of CO-DIR by making sure
it is saved on consecutive tracks. The fewer programs which are on the disk
when you copy D/CMD on to that disk, the greater the chance CO-DIR will be on
consecutive tracks; bear this in mind when you are copying D/CMD onto one of
your Dos diskettes.

To see if CO-DIR is not on consecutive tracks, LIST it. If the listing pauses
and you hear the disk head moving, CO-DIR is not on consecutive tracks (use the
MAP option to check).

5.3 TECHNICAL OUTLINE:
CO-DIR 2.0’S loading address is 8000 Hex. The Directory memory buffer

begins at 9000 Hex and will use a minimum of 1K bytes.

Job Control Language

Job Control Language Table of Contents

Section Page

I. Job Control Language 4-1
Invoking JCL 4-1
The Keyboard Queue 4-2

II. JCL Program Structure 4-3
JCL Commands 4-4
JCL Variables 4-4

Special Variables 4-5
JCL Labels 4-5
JCL Remarks 4-6

III. The JCL Command Set 4-7
/DOS 4-7
/EXIT 4-8
/READ 4-8
/TYPE 4-9
/PRINT 4-10
/IF 4-10
/GOTO 4-12
/QUEUE 4-12
/QLOAD 4-13
/PURGE 4-14
/JUMP 4-14
/RESUME 4-15
/CANCEL 4-15
/RUN 4-16
/DEBUG 4-16
/VOFF 4-17
/OPTION 4-17

DSP 4-17
JCL 4-17
QUEUE 4-18
QBYTE 4-18
DO 4-18
CHR 4-18

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-1

I. - Job Control Language

DOSPLUS 3.5 contains a powerful utility program called JCL, which stands for Job
Control Language. Actually, JCL is more than a utility program; it is a comprehensive
computer language designed to control the operation of the computer’s DOS or
applications programs. JCL can allow the computer to perform complex, interactive
tasks completely unattended. JCL can form the foundation for a user-friendly or
menu-driven "front-end" for more complex programs. JCL can even be used to create
mini-utility programs for use from the operating system command level.

Invoking JCL

In order to execute JCL procedures, the JCL system must be installed on DOSPLUS
3.5. The general syntax to invoke JCL is as follows:

JCL (PROC=xx,QUEUE=xx)

The optional PROC parameter is used by JCL to determine the size of the
procedure buffer area. This is the region of memory which contains JCL program text.
The default size of the procedure buffer is 768 bytes. This size may be altered with
the PROC parameter, up to a maximum of 4096 bytes.

The optional QUEUE parameter controls the size of the keyboard queue (see
below). The default size of the queue is 256 bytes, but the QUEUE parameter may be
used to alter the size of this buffer up to a maximum of 4096 bytes.

In order to execute any JCL procedure, use the following syntax:

EX jclprog <exp1> <exp2> <exp3>

That is, type the letters "EX", followed by a space, and the name of the JCL
program file. The extension /JCL is assumed. Any number of optional parameters may
be typed after the JCL program name, and these values may be read by the JCL
procedure if desired.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-2

The Keyboard Queue

The heart of the DOSPLUS job control language is the keyboard queue. The
keyboard queue is simply an area of memory maintained by the JCL system. JCL
provides commands to place data into and retrieve data from the keyboard queue. The
purpose of the queue is to substitute the characters in the keyboard queue for any
characters typed on the TRS-80’s keyboard. This means that if there is any data in the
keyboard queue, any program that attempts to fetch data from the computer’s keyboard
will receive characters from the keyboard queue instead. Once the keyboard queue is
emptied, any data requested from the keyboard will be fetched from the keyboard. For
instance, assume the following data is present in the queue:

BASIC <enter>
LOAD"CALC/BAS" <enter>
LLIST <enter>

If the computer is at the DOSPLUS command level, it will request a line of data
from the keyboard. Since there is data in the keyboard queue, JCL will provide that
data first. Therefore, with DOSPLUS at the command level, it will receive the
characters 'BASIC', followed by a carriage return. The DOS will then load and execute
the Disk BASIC interpreter. Once BASIC is loaded, it will print its 'READY' prompt
and request a line of data from the keyboard. Since there is still data in the keyboard
queue (only the line 'BASIC <enter>' having been expended at this point), JCL will
return the characters 'LOAD"CALC/BAS"', followed again by a carriage return. This will
cause BASIC to load the file named CALC/BAS into memory. After completing
that operation, BASIC will once again request a line from the keyboard. One line,
'LLIST <enter>' remains in the queue, and that line is returned to BASIC. BASIC will
now execute that command, and finishing with it, request another line from the
keyboard. Since the queue is now empty, JCL will not substitute any characters from
the queue, and only actual keyboard input will be accepted.

This example illustrates the purpose of the keyboard queue - to provide a
substitute for keyboard input. Since JCL allows the user to control what data is placed
in the queue, a JCL program can be written to free an operator from the tedious chore
of typing monotonous command sequences. And since JCL has decision-making
capabilities, it can work in conjunction with an operator, modifying its actions based on
the operator’s responses.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-3

II. - JCL Program Structure

Like any programming language, JCL has its own program components and
structure. All JCL programs are composed of one or more JCL statements. A JCL
statement may consist of a JCL command, a variable assignment, a label, or a remark.

JCL program files may consist of numbered or non-numbered lines. The BASIC line
editor may be used to create JCL program files if the programs are saved in ASCII
format (using the SAVE"filespec",A syntax). The first line of a JCL program file must
contain the name of the JCL program, and it must match the name of the program file.
For example, the JCL program file named KILLTXT/JCL might contain the following
data:

KILLTEXT
/TYPE ENTER DRIVE NUMBER
/READ $D
/DOS KILL */TXT:$D,E
/EXIT

If the first line of the JCL program file does not match the filename, JCL will
report an error. This procedure identification line may also be used to read the values
of any variables that may be present on the command line passing control to JCL. For
instance, if the command:

EX PURGE APR MAY JUN JUL AUG

is executed, a JCL program may pick up the data following the JCL filename (APR,
MAY, etc.) with an implicit /READ by including variable names in the procedure
identification line, as shown below:

PURGE $FIL1 $FIL2 $FIL3 $FIL4 $FIL5

When JCL executes this procedure, the variables $FIL1 through $FIL5 will contain
the values present on the command line.

It is important to note that all JCL command words must be suffixed with a space,
and JCL operators (=, EQ, NE, GT, GE, LT, LE) must be prefixed and suffixed with a
space.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-4

JCL Commands

The DOSPLUS 3.5 job control language features 17 JCL commands (each of which
is explained in section III). Commands inform JCL to perform some action involving
modifying the contents of the keyboard queue, outputting or accepting data to or from
the outside world, modifying program flow, etc. All JCL commands must be prefixed
with a slash symbol, '/'. Many commands can accept some argument, and some
commands require an argument, which should follow the command name, separated by a
space.

JCL Variables

JCL allows the use of variables. All variables must be prefixed with the dollar sign
symbol, '$'. Variable names may be from 1-8 characters in length, and may contain any
combination of letters and numerals. JCL variables may store as few as 0, and as many
as 8 characters each.

Before JCL executes a program line, it first scans the line to locate any variables.
When a variable is found, JCL removes the variable name from the line and replaces it
with the value of that variable. For example, let us assume that the variable
$FILENAME has the value 'SCHEDULE' assigned to it. The JCL statement:

/DOS LIST $FILENAME

would be evaluated by JCL to read:

/DOS LIST SCHEDULE

Values may be given to JCL variables either by the /READ command (see section
III) or by the assignment operator, '='. For instance, the JCL statement:

$DSCMD = RS232

would assign the value 'RS232' to the variable $DSCMD.

Variables may be added together, or concatenated, by simply placing the variable
names next to each other. Examine the following JCL program:

TESTPROG
$A = FILE
$B = NAME
$C = AB

In this program the value of the variable $C will be set to 'FILENAME'. Variables
and literals may be combined in much the same fashion:

FILNAM
$A = FILE
$B = DAT
$C = $A/$B

In this case, the variable $C will have the value 'FILE/DAT'.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-5

When naming variables, remember that JCL is only concerned with significant
characters in the variable name. This means that, as far as JCL is concerned, the
variable names FILE and FILENAME are identical, since the whole of the name FILE
may be found within FILENAME. When it is necessary to use similar variable names, be
certain that no variable name is wholly contained within another. For instance,
although QUERY and QUERY1 are identical to JCL, QUERY0 and QUERY1 are not.

Special Variables

JCL provides two special variables whose value is set by the JCL system itself.
These variables may be used within JCL procedures to great advantage.

The first special variable is $ERR. This variable is set upon return from any DOS
library command or other program. If no error has occurred, this variable should have
the value "00". If any error was encountered, $ERR will contain the error code, in
decimal, corresponding to the error. $ERR is used within JCL procedures to detect and
trap errors.

The other special variable provided by JCL is $LEVEL. JCL procedures can request
other JCL procedures, which may in turn call other JCL procedures, and so on. The
$LEVEL variable indicates at which level the current procedure is executing. The top
level is level 1. If a level 1 JCL program were to call another JCL program, the
second program would have a $LEVEL value of 2. If this program requested some other
JCL program, that program would set $LEVEL to 3. As each JCL procedure terminates
and returns to the upper-level procedure, the $LEVEL variable is decremented to
reflect the level currently being executed. Up to 9 levels may be used within JCL.

JCL Labels

JCL allows the use of labels to identify blocks of JCL program text. The format of
a JCL label statement is:

-label

That is, a label statement is always prefixed with a minus symbol, '-'. The label
itself may be from 1 to 8 characters in length, and may contain any combination of
letters and numerals.

When assigning labels, remember that JCL is only concerned with significant
characters in the label name. This means that, as far as JCL is concerned, the label
names LOOP and LOOP1 are identical, since the whole of the name LOOP may be
found within LOOP1. When it is necessary to use similar label names, be certain that
no label name is wholly contained within another. For instance, although ERROR and
ERROR1 are identical to JCL, ERROR0 and ERROR1 are not.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-6

JCL Remarks

The JCL system allows the use of remarks, or comment statements within a
program. Remarks are not executed by JCL; their only purpose is to allow the
programmer to include comments concerning the JCL program in the program text
itself. Remark lines should begin with a period, '.'. All subsequent characters (to the
end of the line) will be ignored by JCL. For example, look at the following program:

JCLPROG
.This program is used to perform a
.global kill of all /TXT files
/TYPE Press enter to kill all /TXT files

The lines beginning with a period simply describe the purpose of the program, or
document the workings of sections of program code.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-7

III. - The JCL Command Set

The DOSPLUS 3.5 job control language contains 17 JCL commands. Each command
initiates a particular action within JCL, resulting in a change in the JCL program’s
status, execution flow, input or output with the outside world, etc. Each JCL command
is detailed below.

===
/DOS

General format: /DOS <expression>

The /DOS command is one of the most often-used commands in JCL. Its purpose is
to allow JCL to pass a DOSPLUS command line to the DOSPLUS command interpreter.
As an example, the command:

/DOS DIR :1

would cause JCL to instruct DOSPLUS to perform a directory on the diskette mounted
in drive number 1. Variables may be used with the /DOS command, as they may be used
with any JCL command. Assuming the variable $DRIVE to have the value ':3', the JCL
statement:

/DOS FREE $DRIVE

would be evaluated as:

/DOS FREE :3

and therefore display a free space map on the diskette mounted in drive 3.

The /DOS command may be used to execute programs from the DOS command level
as well. For instance, the command:

/DOS BACKUP :0 :1,USE=Y,DATE="01/31/83"

would cause the BACKUP program to be executed.
===

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-8

===
/EXIT

General format: /EXIT

The /EXIT command is used to terminate execution of a JCL procedure. When the
/EXIT is executed, JCL returns control to the next upper-level JCL procedure, if any,
or to the DOS command level if there are no upper-level procedures pending.
===

===
/READ

General format: /READ $varl $var2 $var3

This command is used to accept input from the keyboard or the keyboard queue.
The data is placed into one or more JCL variables. When the /READ command is
executed, JCL will retrieve a line from the keyboard queue, or it will wait for a line
to be entered on the keyboard. When /READ scans a line, it considers the space
character as a delimiter; that is, when /READ assigns values to variables, it regards
the space as a terminating character. Take, for example, the command:

/READ $A1 $A2 $A3

If this command is used to /READ the line:

DATAFILE :0 :3

the variables will take on the following values:

$A1= DATAFILE
$A2= :0
$A3= :3

Many other characters are also considered delimiters, such as the slash, "/", the
colon, ":", comma, ",", and the period, ".". For instance, if the following statement:

/READ $FILENAME $EXTEN $PW $DRIVE

is executed, and the following data is supplied:

PAYROLL/DAT.PAYDAY:3

JCL will assign the following values to each variable:

$FILENAME= PAYROLL
$EXTEN= DAT
$PW= PAYDAY
$DRIVE= 3

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-9

Note that each time the /READ command is executed, an entire line of input is
expended. Therefore, if the command:

/READ $VARI $VAR2

is executed on a line such as:

FILENAM1 FILENAM2 FILENAM3 :1

the variables $VAR1 and $VAR2 will contain the values "FILENAM1" and "FILENAM2",
respectively. The rest of the data on the line, "FILENAM3" and ":1", however, will be
lost. Subsequent /READs will read in data from new lines, not from the remainder of
the expended line.

If a /READ command attempts to acquire more data than is present on a line, such
as would be the case with the statement:

/READ $VAR1 $VAR2 $VAR3

and the data:

TRANSACT/DAT

any fields which are not satisfied will become null; that is, they will contain no data.
In the example above, $VAR1 would contain "TRANSACT", and $VAR2 would have the
value "DAT". $VAR3, however, would be null.
===

===
/TYPE

General format: /TYPE <expression>

The /TYPE JCL command is used to display messages on the computer’s video
display. For example, the command:

/TYPE Press (ENTER) when ready

will display the message "Press (ENTER) when ready" on the computer’s screen. Of
course, variables may be used in conjunction with the /TYPE command. Examine the
following JCL procedure:

/TYPE Enter filename:
.Read filename from keyboard
/READ $FILE
.Use CRUNCH utility on file
/DOS CRUNCH $FILE/BAS $FILE/CRN
.Display message for operator
/TYPE File: $FILE CRUNCHed
/EXIT

This is a simple JCL program which will print the message "Enter filename:" on the
CRT, prompting the operator to enter a filename. The filename is placed in the
variable $FILE, and then the CRUNCH utility is used to compress the file specified by

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-10

$FILE (with the /BAS extension added) into another file specified by $FILE (with the
extension /CRN added). After the operation is complete, the JCL program types the
message "File: filespec CRUNCHed" on the screen, where "filespec" is the value of the
variable $FILE.

The /TYPE command may be used without any text or variable to provide a blank
line on the video display.
===

===
/PRINT

General format: /PRINT <expression>

The /PRINT command function much as the /TYPE command, above, except the
output generated by /PRINT is directed to the system lineprinter instead of the video
display. For example, the command:

/PRINT Deleted Files:

will print the message "Deleted Files:" on the lineprinter. As with /TYPE, variables are
often used with the /PRINT command:

/PRINT Error code $ERR during file COPY

will print the message "Error code xx during file copy" on the lineprinter, where "xx"
is the current value of the special variable $ERR.

The /PRINT command may be used without text or variables to provide a blank line
on the printer.
===

===
/IF

General format: /IF <exp1> <relation> <exp2> /JCL command

The /IF command allows JCL to make logical comparisons of JCL variables and to
make decisions based on the outcome of the comparisons. The /IF command recognizes
six relational operators: EQ (equality), NE (non-equality), GE (greater than or equal to),
GT (greater than), LE (less than or equal to), and LT (less than). These relational
operators may be used to compare any two JCL expressions which may be composed of
JCL variables and/or constants. Examine the following JCL procedure:

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-11

LISTER
.This JCL program produces ASCII file
.listings on the CRT or lineprinter.
/TYPE FILE LISTER
/TYPE
/TYPE Enter file name:
/READ $FILE
/TYPE Listing to video or printer? (V/P):
/READ $OUTPUT
/IF .$OUTPUT EQ .V /DOS LIST $FILE
/IF .$OUTPUT EQ .P /DOS LIST $FILE TO @PR
/EXIT

In this program, the variable $OUTPUT is used to determine whether a file listing
should be outputted to the video screen or to the system lineprinter. When a logical
condition is true, JCL will execute the JCL command following the /IF command. This
JCL command is contained within the same statement as the /IF command itself. If the
logical condition specified by the /IF is not true, JCL will skip the remainder of the
/IF statement and continue with the next statement in the procedure. The following
simple program illustrates the mechanics of the /IF command:

IFPROG
/TVPE DIRECTORY OR CATALOG (D/C)?
/READ $DIRCAT
/IF .$DIRCAT EQ .D /DOS DIR :0
/IF .$DIRCAT EQ .C /DOS CAT :0
/EXIT

In this example, if the condition $DIRCAT = D is true, JCL will execute the
command /DOS DIR :0. If $DIRCAT is not equal to D and is equal to C, JCL will
execute the next statement, /DOS CAT :0.

Note the use of the period symbol in the /IF statements above. This is to guard
against the possibility of a null variable in the /IF command. Whenever there is a
possibility of a null variable (such as those variables whose values are taken from the
keyboard or the queue), the JCL program must make provision for such an eventuality.
For example, examine the JCL statements below:

/READ $INPUT
/IF $INPUT EQ QUIT /EXIT

If the variable $INPUT is null (this can occur if the operator simply presses
<ENTER> when prompted for input), JCL will substitute the null value of $INPUT into
the line before executing it, yielding:

/IF EQ QUIT /EXIT

This is, needless to say, meaningless. By placing any character (in addition to the
values to be compared) on both sides of the /IF statement, we prevent the possibility
of such an error without altering the outcome of the logical test. Modifying the
previous example, we obtain:

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-12

/READ $INPUT
/IF .$INPUT EQ .QUIT /EXIT

Now, if the variable $INPUT assumes a null value, JCL will evaluate the line as:

/IF . EQ .QUIT /EXIT

This is valid, and in this case, the condition is false ("." <> ".QUIT").
===

===
/GOTO

General format: /GOTO -label

This command is used to alter normal program flow. With it, program execution
may be diverted to any label within a JCL procedure. /GOTO is often used in
conjunction with the /IF command, above. For example:

GOTOPROG
-LOOP
/TYPE Enter drive #:
/READ $DRIVE
/IF .$DRIVE EQ . /GOTO -ALLDONE
-LOOP1
/DOS CAT :$DRIVE
/IF ERR NE 00 /GOTO ERROR
/GOTO LOOP
-ERROR
/TYPE
/TYPE Error code $ERR has occurred.
/TYPE Abort or Re-try (A/R):
/READ $INPUT
/IF .$INPUT EQ .R /GOTO -LOOP1
/TYPE Operation aborted
/EXIT
-ALLDONE
/TYPE Procedure terminated
/EXIT

In this program, the /GOTO command is used with the /IF command in order to
perform a complex series of JCL commands if an /IF condition is met.
===

===
/QUEUE

General format: /QUEUE <expression>

The /QUEUE command provides a means of placing data into the keyboard queue.
For instance, to place the data "BASIC -F:3" into the queue, execute the command:

/QUEUE BASIC -F:3

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-13

Variables may be used with the /QUEUE command. The routine below illustrates the
use of variables with the /QUEUE command:

/TYPE Enter filename to list:
/READ $FILE $EXT $DRIVE
.create any needed delimiters
/IF .$EXT NE . $SLASH = /
/IF .$DRIVE NE. $COLON = :
.load queue with BASIC commands
/QUEUE LOAD"$FILE$SLASHEXTCOLON$DRIVE"
/QUEUE LPRINT "$FILE - Program listing"
/QUEUE LPRINT
/QUEUE LLIST
.set FORMS and enter BASIC
/DOS FORMS (P=66,L=60,W=80)
/DOS BASIC
/EXIT

This program uses the /QUEUE command to place BASIC commands in the keyboard
queue. In the example, this is used to create titled BASIC program listings.
===

===
/QLOAD

General format: /QLOAD filespec

This command is used to load the keyboard queue with data stored in a disk file.
For example, a file could be created with the BUILD command under DOSPLUS (or with
a word processor) that contains filenames. A JCL procedure such as that one shown
below can load the filenames into the keyboard queue and perform some useful
function, such as setting the INV flag with the DOSPLUS ATTRIB command:

INVIS $FILE
-GETFIL
/IF .$FILE NE . /GOTO -FILOK
/TYPE Enter filename:
/READ $FILE
/GOTO -GETFIL
-FILOK
/QLOAD $FILE
/QUEUE ???
-MAKINV
/READ $FILNAM $EXT $DRIVE
/IF $FILNAM EQ ??? /GOTO -ALLDONE
$SLASH =
$COLON=
/IF .$EXT NE . $SLASH = /
/IF .$DRIVE NE . $COLON = :
/DOS ATTRIB $FILNAM$SLASHEXTCOLON$DRIVE,INV
/GOTO -MAKINV
-ALLDONE
/TYPE Procedure complete
/EXIT

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-14

The /QLOAD command assumes an extension of /TXT on all files unless otherwise
specified.
===

===
/PURGE

General format: /PURGE

The /PURGE command performs the simple function of emptying, or purging, the
keyboard queue. Any data in the queue before /PURGE is destroyed. The command is
useful when a JCL procedure has placed data into the queue, that for one reason or
another, needs to be removed from the queue (such as an early, abnormal procedure
termination).
===

===
/JUMP

General format: /QUEUE /JUMP -label

The /JUMP command is not a command in the same sense as a /GOTO, a /TYPE, or
an /IF. Rather, the /JUMP command is used in conjunction with the /QUEUE command
to place a special character in the keyboard queue. When the special character is
retrieved from the queue by another program, JCL will interrupt program execution
and transfer control to a user-specified label within the JCL procedure. To illustrate,
consider the JCL program below:

JUMPPROG
/TYPE Entering BASIC . . .
/TYPE
/QUEUE /JUMP -LOADPROG
/DOS BASIC
/EXIT
.intercept BASIC here
-LOADPROG
/TYPE Enter program to edit:
/READ $FILENAM
/QUEUE LOAD"$FILENAM"
/QUEUE CMD"SR","PRINT","LPRINT"
/RESUME

This program will load the DOSPLUS 3.5 Disk BASIC interpreter. Since the /JUMP
command is loaded into the queue, the next time BASIC attempts to retrieve a
character from the keyboard driver, it will receive the /JUMP command, causing JCL
to take control. In this case, control is transferred to the label -LOADPROG, and the
routine located there replaces all PRINT commands in the BASIC program with
LPRINTs.
===

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-15

===
/RESUME

General format: /RESUME

The /RESUME command is used to return back into a program interrupted with the
/JUMP command, above. After any desired /JCL processing has taken place, execution
of the /RESUME command will cause JCL to transfer control back to the interrupted
program at the point JCL intervened. The program example shown under /JUMP
illustrates the use of the /RESUME command.
===

===
/CANCEL

General format: /CANCEL

The purpose of the /CANCEL command is to allow a JCL procedure which is
entered through the /JUMP command to avoid returning to the intercepted program.
When the /CANCEL command is executed, JCL returns into the JCL procedure at the
line following the command during which the /JUMP command was read from the queue.

For example:

PATCH
/TYPE Enter the name of the
/TYPE file to be patched:
/READ $FN $DR
/IF .$DR NE . $DLIM = :
.install patch data in queue
/QUEUE A=4411H,F=,C=00E0
/QUEUE /JUMP -ANYMORE
.invoke patch utility
/DOS PATCH FN/CMDDLIM$DR
/TYPE Patch procedure completed
/EXIT
-ANYMORE
/TYPE Mandatory patch(es) installed
/TYPE Do you have any other patches
/TYPE to apply to $FN/CMD (Y/N):
/READ $YESNO
/IF .$YESNO EQ .N /CANCEL
/IF .$YESNO NE .Y /GOTO -ANYMORE
/TYPE Transferring control to Patch
/TYPE utility . . . press <BREAK>
/TYPE when all patches installed.
/TYPE
/RESUME

===

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-16

===
/RUN

General format: /RUN filespec <exp1> <exp2> <exp3>

The /RUN command is used within a JCL procedure to execute another JCL
program. When another JCL procedure is executed using the /RUN command, the
current JCL procedure’s status is saved (including all variables) and the special
variable $LEVEL is incremented by one. Since each JCL procedure has a totally
separate set of variables (even if the variables have the same name), the only means
with which the JCL programs may communicate with one another is through the
keyboard queue. Optional parameters may be passed to a JCL program by including
them on the /RUN command line. These variables are picked up in the procedure
identification line, as previously described.

The following program, which creates five files on a user-specified drive,
illustrates the use of the /RUN command:

RECURSV $DR
/IF .$DR NE . /GOTO -CREATE
/TYPE %% Missing drive # %%
/EXIT
-CREATE
/TYPE Creating file TEST$LEVEL/DAT:$DR
/DOS CREATE TEST$LEVEL/DAT:$DR
/IF $ERR EQ 00 /GOTO -NOERR
/TYPE %% Error $ERR has occurred %%
/TYPE %% Procedure aborted %%
/EXIT
-NOERR
/IF $LEVEL NE 5 /RUN RECURSV $DR
/EXIT

===

===
/DEBUG

General format: /DEBUG

This command is used to invoke DOSPLUS 3.5’s DEBUG monitor. When the /DEBUG
command is executed, the DEBUG monitor will immediately load and assume control of
the computer.
===

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-17

===
/VOFF

General format: /VOFF

/VOFF is used with the /QUEUE command in order to suppress the usual display of
data read from the keyboard queue. If the /VOFF is placed into the queue before the
data to be read is placed in the queue, the automatic display will be suppressed. For
example, if the command "/QUEUE BASIC" is executed, the queue will be loaded with
the data "BASIC". If the computer then returns to the DOS command level, the word
"BASIC" will be displayed, and the DOS will load and execute the program. If, however,
the command "/QUEUE /VOFF" is given before "/QUEUE BASIC", the word "BASIC" will
not be displayed when it is read from the queue.
===

===
/OPTION

General format: /OPTION <param>/switch <param>/switch <param>/switch

This command is actually six commands in one. It allows a JCL program to (1)
enable or disable output to the video display, (2) enable or disable the JCL statement
trace, (3) turn the queue on or off, (4) enable or disable the queue for single-character
requests, (5) direct all displayed data into the queue, or (6) recognize or ignore special
characters.

Each subcommand under the /OPTION command may be turned on or off by
specifying a switch after the subcommand name. For instance:

/OPTION QUEUE/Y
/OPTION JCL/N
/OPTION DSP/N

The switch, as shown above, consists of a single character, either "Y" (for yes) or
"N" (for no), separated from the subcommand name by a slash, "/". Note that several
subcommands may be specified on with a single /OPTION command:

/OPTION DSP/N QUEUE/N DQ/Y

DSP

This subcommand controls whether any data is displayed on the computer’s CRT.
Normally, the DSP parameter is on, but if the "/OPTION DSP/N" command is executed,
all output to the video display is halted until the "/OPTION DSP/Y" command is
issued.

JCL

The JCL subcommand, when enabled, causes JCL to print a trace of its activities
while JCL procedures execute. This means that JCL will list each statement before it
is executed, and it is a very handy aid for debugging JCL programs. The trace is
enabled by executing "OPTION JCL/Y" and it may be disabled by the command
"OPTION JCL/N".

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-18

QUEUE

This subcommand is used to turn the keyboard queue on and off. In other words,
executing the command "OPTION QUEUE/N" will disable the keyboard queue, and any
keyboard input requests that may occur while the queue is off must be serviced by the
keyboard itself. When the queue is on (its normal state), data in the queue is used to
service keyboard data requests.

QBYTE

Many programs require the user to press a single key to perform some function. An
example would be the following BASIC program:

10 PRINT"PRESS (A) TO ABORT, (C) TO CONTINUE"
20 A$=INKEY$:IF A$="" THEN 20
30 IF A$="A" GOTO 1000
40 IF A$="C" GOTO 2000
50 GOTO 20

This program waits for the operator to press either the "A" or the "C" key to
perform some operation. The QBYTE subcommand is used to enable or disable the
queue from responding to such single-character requests. If "/OPTION QBYTE/N" is
executed, the keyboard queue will not provide characters to satisfy single-character
requests. Requests for complete lines of data are unaffected.

DQ

The DQ subcommand is used to copy all data output to the video display into the
queue. For instance, look at the following program:

QCAT
/OPTION DQ/Y
/DOS CAT :1
/OPTION DQ/N
/TYPE File catalog stored in queue

This program will place a copy of the file catalog of drive 1 into the keyboard
queue. Please note that DQ will still place displayed data into the queue even if the
command "/OPTION DSP/N" has been executed. Although the data is not physically
displayed on the CRT, it will still be directed into the queue.

CHR

The CHR subcommand is used to determine how JCL handles "special characters"
read from the keyboard queue. Special characters are any characters other than the
alphanumeric set (A-Z, a-z, & 0-9). When the command "/OPTION CHR/N" is executed,
special characters in the queue are treated as delimiters; that is, they terminate any
data being /READ, and they are skipped. Normally, special characters may be /READ
into a JCL variable, with the exception of those characters previously mentioned
(slash, colon, period, comma).

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Page – 4-19

N O T E S

N O T E S

Disk Basic

Disk BASIC Table of contents

Section Page #
Introduction 5-1
Entering BASIC (file allocation) 5-1
Model I cassette I/O notice 5-3
General commands and functions 5-4

&H (hexadecimal conversion) 5-4
DEF FN 5-5
DEFUSR 5-6
INSTR 5-7
LINE INPUT 5-8
MID$= 5-9
=MID$ 5-10
USR 5-11

Disk related functions 5-13
File manipulation

KILL 5-14
LOAD 5-15
MERGE 5-17
RUN 5-18
SAVE 5-19

File access
Initializing files 5-20
OPEN 5-21
CLOSE 5-24
INPUT # 5-25
LINE INPUT # 5-27
PRINT # 5-28
FIELD 5-30
GET 5-32
PUT 5-33
LSET 5-34
RSET 5-34
MKI$ 3-35
MKS$ 5-35
MKD$ 5-35
CVI 5-36
CVS 5-36
CVD 5-36
EOF 5-37
LOF 5-38
LOC 5-39

BASIC Error codes 5-40
CMD Functions 5-41

Extended Disk BASIC 5-42
CMD 5-43
DI 5-44
DU 5-44
Shorthand 5-45
RENUM 5-46
TAB 5-48
REF 5-49
CMD"M" (simple variable dynamic dump) 5-50
SR (global search and replace) 5-51
CMD"O" (BASIC array sort routine) 5-52
INPUT@ (controlled screen input) 5-54
Label addressing (indirect branching) 5-56

Detailed error flags 5-57

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-1

Disk BASIC

Introduction

What is "Disk BASIC"? Disk BASIC is simply that, a set of enhancements to the
Level II ROM BASIC that is resident upon the disk. It contains features to allow
input/output to disk files for data storage and will allow you to load and run BASIC
programs that are stored on the disk. In addition, Disk BASIC will allow many new
commands not present in ROM BASIC. Disk BASIC comes in two forms : BASIC and
TBASIC.

This manual is designed to document those features contained in these Disk BASICs.
For functions concerning the ROM BASIC, you should refer to your Radio Shack
owner’s manual (for the Model I - "Level II BASIC manual" or for the Model III -
"Model III Operations and BASIC Language Reference manual") for descriptions of
these commands.

This manual is divided into two major sections. The first section is the standard
functions of Disk BASIC that appear in both BASIC and TBASIC. The second section
covers those enhanced functions found only in Extended Disk BASIC. The first section
is further divided into groups of commands. There are general commands, program file
handling commands, and data file handling commands.

There are several files on the disk needed for BASIC and its assorted functions. The
following list details the files and their function. Those not needed may be killed.

Filename Function

BASIC/CMD The actual Extended Disk BASIC program file.
TBASIC/CMD The Tiny Disk BASIC program file.
ERROR/OVL The error message overlay used by extended BASIC

for its long form error messages. If this program is
removed from the disk, both BASIC and TBASIC will
use the same abbreviated style of error messages.

RENUM/CMD Extended BASIC program renumberer.
REF/CMD Extended BASIC program cross referencer.
SR/CMD Extended BASIC Global search and replace utility.
O/CMD Extended BASIC array sort utility.

The actual operation of RENUM, REF, SR, and O will be detailed in the section of
the BASIC manual devoted to the extended features.

Entering BASIC

To execute Disk BASIC, from the DOS command mode type either "BASIC" or
"TBASIC" depending on which version you desire. The differences are

BASIC Extended features & DOS commands. Uses "overlay"
structure for enhancements and error messages.

TBASIC Memory efficient, leaving you with as much free
memory as possible. Command compatible with most
programs. When loaded, TBASIC is completely
memory resident, no overlays are used.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-2

You must specify, upon calling BASIC, the number of files (greater than one) you
expect to use and the amount of memory (if any) that you wish to protect from BASIC.
This is true for either BASIC or TBASIC. There is a method of permanently altering
the default for the number of files, but we will cover that later. The DOSPLUS
distribution copy of BASIC and TBASIC default to 1 file buffer allocated.

If you are not going to be opening any data files while running your program and
desire the extra memory, you may specify "0" files when executing BASIC or TBASIC.

===

You use the following general syntax :

BASIC filespec-F:nn-M:nnnn

filespec is an optional file specification. BASIC will load and
execute this file after loading itself.

-F:nn is the number of files you expect to be using at one time
(can be from 0-15). You may not specify a higher file number
during an OPEN than you specify here.

-M:nnnn is the highest memory address that BASIC will use. You
must use this to protect any machine language routines that you
might wish to load into high memory. This cannot exceed the high
memory address.

===

Some examples (in these examples, we will use the program name "BASIC". you may
however, substitute "TBASIC" for any of these and the syntax is still proper.) :

BASIC

Load BASIC with 1 file, no protected memory.

BASIC *

Re-enter BASIC (in the event you exited to DOS and have not changed user memory
while there), with your program intact. Files allocated and memory protected will be
the same as when BASIC was exited. Note that upon re-entry, BASIC will commence
listing the program lines as confirmation of the successful return to BASIC. You may
stop this listing by pressing BREAK.

BASIC filespec

Load BASIC and run the BASIC program specified by "filespec".

BASIC -F:3

Load BASIC and allocate 3 files.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-3

BASIC -M:61000

Load BASIC and protect Memory above 61000 decimal.

BASIC filespec-F:3-M:61000

Load BASIC, allocate 3 files, protect memory above 61000 decimal, and load and run
the specified BASIC program.

BASIC PAYROLL/BAS-F:4

This will load BASIC, and run PAYROLL/BAS allocating 4 files.

Note : Once you have entered BASIC, in order to alter the memory protection or
number of file buffers allocated, you must reload BASIC with the new parameters. This
may be done by returning to DOS and re-entering BASIC or, in extended BASIC, using
the CMD"DOS command" function to reload BASIC from within BASIC.

Upon entering Disk BASIC, you will see the header :

DOSPLUS - Extended Z80 Disk BASIC - Ver 1.7
(c) 1983, Micro-Systems Software Inc.

READY
>

or

DOSPLUS - Tiny Disk BASIC - Ver 1.7
(c) 1983, Micro-Systems Software Inc.

READY
>

depending on which version (BASIC or TBASIC) you executed.

Once you have entered Disk BASIC, you can return to DOS by simply typing "CMD"
and pressing ENTER. For compatibility’s sake, "CMD'S'" will also work. If you have
exited BASIC in error, you may immediately re-enter BASIC with "BASIC *" and not
harm your program or data in memory. This will not apply if you have executed any
operation after exiting BASIC that may have corrupted the information still in memory.
Therefore, as a rule, always be sure to save off any program resident before returning
to DOS.

Note to Model I users

In order for BASIC or TBASIC to operate correctly with cassette I/O, you will need
to turn off the interrupts before any cassette I/O and turn them back on when I/O is
complete. This includes the loading and saving of programs.

You accomplish this by using the CMD"T" function to turn interrupts off and
CMD"R" to turn them back on. These commands may be issued from the command line
in the direct mode or from a program line. On the Model III, this is not needed.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-4

General commands and functions

&H (hex constant)

This function will allow you to work directly with hexadecimal values. In the case of
memory addresses, this is sometimes convenient. &H is used as a prefix for the number
that immediately follows it.

The general command form is :

&Hdddd

dddd is a one to four digit hexadecimal value.

The constant always represents a signed integer. Therefore any number greater than
&H7FFF will be interpreted as a negative quantity. For example :

Hex number Decimal value

&H1 1
&H2 2
&H5200 20992
&H7FFF 32767
&H8000 -32768
&H8001 -32767
&H8002 -32766
&HFFFE -2
&HFFFF -1

Hexadecimal values may not be entered in response to an INPUT statement nor
included as numeric data in a DATA statement.

Examples

PRINT &H5200

This will print the value 20992 on the screen.

POKE &H3C00,6

This will poke a decimal 65 to the beginning address of video memory.

A=PEEK(&H37E8)

This will read the value of the printer status byte into "A".

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-5

DEF FN (define function)

This feature lets you create your own implicit functions. From then on, you need only
call that function by name and the function you defined will automatically be
performed.

The general command form is:

DEF FN name(var)=exp

name is the variable that will be used as the name of the function.
This must be of the same variable type as the variable to be
returned from the function (i.e. string, integer, etc.)

var is the variable or variables to be passed to the function. These
are dummy variables, used to indicate to the function the number
and type of variables it may expect in the function.

exp is the desired function.

Once a function is defined, you may call it simply by referencing "name" prefixed
with "FN". When defining functions, bear in mind that you are limited to one
statement. All defined functions are a single statement.

The type of variable specified in the "name" position determines the type of
variable that will be returned by the function. For example, if "name" was "RN!", the
value stored in it would always be single precision even if the function involved only
integers.

On the other hand, the type of variable(s) specified in "var" determine what types
of variables will be used with the actual function. For example, if "var" was "X%,F$",
the function would expect to be passed two variables. The first an integer and the
second a string. Therefore, "var" may be thought of a simply a place holding variable.

For example :

DEF FN TV#(X!)=TC!*FA%*100

will ALWAYS return a double precision value in no matter what the precision of the
variable used in the actual calculation. It will expect to receive a one single precision
variable upon being called. After the DEF FN statement, all you must do to implement
it is enter the statement :

V#=FN TV#(TC!)

"V#" will contain the result of "(TC!*FA%/100)". It doesn’t matter what variable
name you use to pass information to the function or what variable name you use to
store the result. For example, "Q#=FN TV#(D!)" would have worked just as well. The
variable passed to the function is needed only as a vehicle for giving the function
needed data. The important item is the function name, not the result variable or the
entry variable. The function must be defined with at least one argument, even if this
argument is not actually used to pass a value to the function.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-6

DEFUSR (define entry address for user machine language subroutine)

This will allow you to define the entry point for your machine language USR routines
(USR routines are explained later in this section).

The general command form is:

DEFUSR n=address

n is the USR routine number. It is a number between 0 and 9. If it
is omitted, 0 will be assumed. You will later reference your
routine via this number.

address is the address of the machine language routine’s entry
address.

Examples

DEFUSR0=&HFF00

This will set the entry point of USR routine number 0 to hex FF00 (dec 65280).
When your program calls USR0, control will pass to the subroutine located at hex
FF00. Note that if the address is greater than 32767, and you wish to express it in
decimal form, you must use the form "address-65536" when determining the value to be
used in the statement.

To get a USR routine into RAM, you can either have the actual opcodes in a DATA
statement (in decimal form, of course) and then POKE them into memory or you can
use an Assembler to create a disk file from source code and then load it into RAM via
CMD"LOAD filespec" (from Extended Disk BASIC).

In either case, make certain that you protect the area of memory that the routine is
destined for by using the "-M:nnnn" syntax. If you do not, then BASIC may overlay the
routine by using the area for string storage or workspace of some kind.

Refer to the section on USR routines for further detail on user routines.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-7

INSTR (string search function)

This will allow you to search any string for a specified sub-string.

The general command form is:

INSTR(pos,targ$,sub$)

pos is the position in the string at which you wish the search to
begin. If omitted, position 1 will be assumed. Position 1 is defined
as the first character of the string.

targ$ is the name of the string to be searched.

sub$ is the sub-string you want to search for.

INSTR will search a specified target string for a specified sub-string starting at
a specified position. You may omit the starting position, if you like, and INSTR will begin
with the first character of the target string. If INSTR finds the sub-string within the
search string, it will return the starting position of the sub-string, otherwise, it will
return a zero.

INSTR will also return a zero if either the target or search string is a null, or if
you have specified an illegal value for the starting position.

Note : The entire sub-string MUST be contained within the search string, or zero is
returned. Also, it will find only the FIRST occurrence of the sub-string, starting at the
position you specify.

Examples

(assume A$="TEST ONE")

Search expression Resultant A

A=INSTR(A$,"ONE") 6
A=INSTR(A$,"one") 0
A=INSTR(A$,"123") 0
A=INSTR(A$," ") 5
A=INSTR(3,"123123","12") 4

Note that in the second example, "one" was not found because the letters "ONE" in
the target string are in upper case. INSTR does not ignore case.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-8

LINE INPUT (input a line of text from keyboard)

This function allows you to input an entire line of text from the keyboard including all
characters that normally serve as delimiters. It functions in the same manner as INPUT
except that only ENTER serves as a delimiter.

The general command form is:

LINE INPUT"prompt";var$

Prompt is the prompt to be displayed on the screen. It is optional.

var$ is the name of the string in which you wish LINE INPUT to
return you the information.

It differs from INPUT in that :

* When waiting for input, no question mark is displayed.
* Each line input statement can assign a value to only ONE variable.
* Commas and quotes will be accepted as part of the string input.
* Leading blanks are not ignored, they become part of "var$".
* The only way to terminate the string input is to press ENTER.

LINE INPUT is used when you wish to input a string that contains data normally
considered string terminators by the INPUT command (see INPUT).

LINE INPUT will serve well in the event that you need to input a string that
includes leading blanks, commas, and quotes.

Examples

LINE INPUT AS

This will input A$ without displaying any prompts or question marks.

LINE INPUT"Type in last name, first ";N$

This will print the prompt on the screen and accept any input into N$. Commas will
not terminate the input string.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-9

MID$= (replace portion of a string)

This statement lets you replace any part of a string with a specified sub-string,
giving you a powerful string editing capability.

The general command form is:

MID$(var$,pos,len)=rep$

var$ is the name of the string to be edited.

pos is the starting position for the replacement.

len specifies how many characters will be replaced.

"rep$" is the string you wish to replace "var$" with.

Note : The length of "var$" is never changed. If "rep$" is longer than "var$", the extra
characters at the right of "rep$" will be ignored. However, if you specify the number
of characters to be replaced, and this number is larger than the replacement string,
then the length of the replacement string overrides the length you specified (e.g. it
will not replace more characters than are in "rep$").

The "len" parameter may be omitted. If it is, the length of "rep$" will serve as the
"len" parameter. Please note also that this is only BASIC function that can appear on
the left side of the "=" sign.

Examples

(assume A$="ABCDEFG")

Expression Resultant A$

MID$(A$,3,4)="12345" AB1234G
MID$(A$,1,2)="" ABCDEFG
MID$(A$,5)="12345" ABCD123
MID$(A$,5)="01" ABCD01G
MID$(A$,1,3)="***" ***DEFG

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-10

=MID$ (duplicate a portion of a string)

This function allows you to duplicate a portion of a string into another string without
affecting the first string at all.

The general command form is:

new$=MID$(old$,pos,len)

new$ is the string we will create in this operation.

old$ is the original string containing the information we want to
duplicate.

pos is the point of "old$" that we wish to start duplicating
information from.

len is the number of characters to duplicate.

This demonstrates the other function of MID$. MID$ can also appear on the right
hand side of the "=" symbol. For example, you can say :

B$=MID$(A$,2,3)

This would set B$ equal to three characters of A$ beginning with the second
character without affecting A$ at all. In this manner, MID$ becomes an effective
method on interrogating each element or sub-string in a string, determining whether or
not it needs to be altered, and then replacing it if needed. MID$ is a very powerful
and extremely useful BASIC programming tool.

For example, if we wanted to determine if a date input was in the "MM/DD/YY"
format, we could use the two forms of MID$ to make certain that the third and sixth
characters of the input string were slash marks ("/").

Assume that DATE$="01/02.83". We would execute the following statements :

SL$="/"
IF SL$<>MID$(DATE$,3,1) THEN MID$(DATE$,3,1)=SL$
IF SL$<>MID$(DATE$,6,l) THEN MID$(DATE$,6,1)=SL$

The first statement creates a string to be used for comparison, and if needed,
replacement. The second statement checks the third character of the screen to
determine if it is a slash mark. If it is not, the character is replace with a slash mark.
The third statement does the same thing for the sixth character. When these three
statements had been executed, DATE$ would equal "01/02/83". Note that in the first
part of the statements, MID$ appears on the right hand side of the "=" and in the second, on the
left.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-11

USR n (call to user’s external subroutine)

This feature allows you to transfer control from BASIC to a machine language
subroutine located somewhere in memory.

The general command form is:

USR n(var)

n is the USR routine number. It may be from 0-9. If omitted, 0 is
assumed.

var is the variable to be passed to the USR routine.

When a USR call is encountered in your program, control is transferred to the USR
routine at the address specified in your DEFUSR statement. This address specifies the
entry point to your machine language routine.

Note : If you should attempt to call a USR routine before entering a DEFUSR
statement, the error "Illegal function call" will occur.

You can pass one argument directly to and from the routine via the USR call itself,
and others can be POKEed into RAM, manipulated by the USR routine, and then
PEEKed out by BASIC after returning.

For example :

A=USR1(X)

This passes the value in "X" to the USR routine number one. This USR routine must
be defined earlier in the program.

To pass arguments :

POKE values into reserved locations of memory and the machine language routine
may retrieve them when it needs them. Have the machine language routine also store
its results in reserved memory and the when BASIC gets control back, you can PEEK
out the values stored there. This is the ONLY way to pass two or more arguments back
and forth from a USR routine.

You can pass one argument as the value from the USR routine, then use special
ROM calls to get this argument and return a value to BASIC. This method is limited to
sending one variable to and from the routine.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-12

Technical notes

Upon entry to your USR routine, DOSPLUS Disk BASIC will have set up the
following information for you :

A= variable type
HL=> floating point accumulator
DE=> string address

The A register will contain a value that indicates the type of variable passed as an
argument. They are :

Value Type

2 Integer
3 String
4 Single precision
8 Double precision

The HL register pair will point to the floating point accumulator. For numeric
arguments, this will contain the actual value.

The DE register pair will point to the string address when a type 3 variable is
present. Therefore, if the A register contains a 3, the DE register tells you where to
find the string.

At the location DE points to, you will find three bytes of information. The first
byte is the length of the string and the second and third bytes contain the actual
location of the string in memory (LSB/MSB format).

ROM calls

When passing integer variables to and from your USR routine, there are two ROM
calls that may be of service. They are as follows :

CALL 0A7FH Puts the USR argument in the HL register pair; H
contains the msb, L contains the lsb. This CALL
should be the first instruction of your routine (if you
are going to seek to pull the argument from BASIC).

JP 0A9AH This sends the integer stored in HL to the output
variable of the USR routine. If you don’t care about
the result of the routine, you may simply execute a
"RET" to get back to BASIC instead of this jump.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-13

Disk related functions

This next section will cover those functions directly relating to disk I/O.

There are really two areas to this. The first is file manipulation. The second is file access. File
manipulation deals with addressing the file as a whole entity, while file access concerns itself
with addressing specific records within the file. We will cover each in turn.

Commands under file manipulation

KILL Delete a program or data file from the disk.
LOAD Load a BASIC program from the disk.
MERGE Merge an ASCII-format BASIC program on disk with

one currently resident.
RUN Load and execute a BASIC program stored on the

disk.
SAVE Write the BASIC program currently resident to disk.

Commands and functions under file access

Commands

OPEN Open a file for access.
CLOSE Close access to the file.
INPUT# Read from a file in sequential mode.
LINE INPUT# Input a line of data from a file in sequential mode.
PRINT# Write to a file in sequential mode.
GET Read from a file in random access mode.
PUT Write to a file in random access mode.
FIELD Assign field sizes and names to a random access

record buffer.
LSET Place value in specified buffer field, adding blanks

on the right side to fill field.
RSET Place value in specified buffer field, adding blanks

on the left side to fill field.

Functions

CVD Restore double precision number to numeric form
after reading from a file.

CVS Restore single precision number to numeric form
after reading from a file.

CVI Restore integer to numeric form after reading from a
file.

EOF Check to see if "end of file" was encountered during.
LOF Return number of logical records in a file.
MKD$ Convert double precision number to an eight byte

string so that it can be written to a file.
MKI$ Convert integer number to a two byte string so it

can be written to a file.
MKS$ Convert single precision value to a four byte string

so that it can be written to a file.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-14

KILL (delete a program or data file from the disk)

This command will kill a program or data file from the disk.

The general command form is:

KILL"filespec"

filespec is a standard DOSPLUS file specification.

This command functions essentially the same as the DOSPLUS library command KILL
(with the exception that you may not use BASIC’s KILL to kill a device). If no drive
specification is made during the calling of the command, it will do a global search and
delete the first occurrence of the file. If the specified file is not found, a "File not
found" error will be returned.

Examples

KILL"PAYROLL/BAS"

This command will search for the program "PAYROLL/BAS" delete it.

KILL"ACCREC/DAT:2"

This will seek to delete the file "ACCREC/DAT" from drive 2. If it does not find
the file on drive 2, an error will be generated.

Note : Do not KILL an open file. Although DOSPLUS will make provision for this and
the diskette will not be permanently harmed, it is NOT a good programming practice
and should not be done.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-15

LOAD (load a BASIC program file from disk into memory)

This command will allow you to load BASIC programs stored in either the standard
compressed format OR ASCII format from the disk into memory.

The general command form is:

LOAD "filespec",option

filespec is a standard DOSPLUS file specification.

option is one or more of three special options you may engage.

Your options are:

Option Effect

R Runs program after loading. Any open files will not
be closed.

V Preserves all currently set string and numeric
variables. FIELD statements are also preserved.

line number If the "R" option is used at the same time, program
execution will begin with that line.

A simple LOAD without any options will wipe out any BASIC program currently
resident, clears all set variables, and closes the files. To load a file with the "R"
option still wipes out the current resident program and all set variables, but it does
not close the files before it runs the new program. When you load a file with the "V"
option it wipes the old program out and closes the files, but does not clear all
currently set variables. Using the "R" and "V" options together will only overlay the
resident program. All variables, FIELD statements, file buffers, etc. will be unaffected.

A standard load and a load without the "R" option both return to the direct
command mode when complete. LOAD"filespec",R is the same as RUN"filespec",R (see
RUN).

If you use the "R" and "V" options together, you will have "chained" two programs
(i.e. branch from one module to the next without loss of variables or having to re-open
the files).

If you attempt to load a non-BASIC file the statement "Direct statement in file"
will result.

ASCII loads will be much slower than the standard loads because ASCII must be
loaded a byte at a time and each byte must be interpreted separately (ASCII loads are
treated just as if the data were being typed in from the keyboard). You do not need to
specify ASCII format when loading, only when saving. If any line of the program
exceeds 240 characters in length, the error "Direct statement in file" will occur.
Because of the lack of tokenized keywords in an ASCII file, program lines have a
tendency to expand in length when saved in ASCII.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-16

Examples

LOAD"ACCREC/MOD"

This command will load the first occurrence of ACCREC/MOD that it finds.

LOAD"ACCREC/MOD",V

This will load the first occurrence of ACCREC/MOD it finds but preserving all the
variables from the previous program.

LOAD"ACCREC/MOD:2",R ,V

This will chain the program ACCREC/MOD from drive two with the current program
in memory without closing files or destroying variables.

LOAD"ACCREC/MOD",R,100

This command will load the file ACCREC/MOD and run the program starting at line
number 100. Had you not specified the "R" option, the line number would have been
ignored.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-17

MERGE (merge a program from disk with resident program)

This command allows you to merge a disk file stored in ASCII format with a program
currently resident in RAM.

The general command form is:

MERGE"filespec",option

filespec is a standard DOSPLUS file specification defining a file
saved in ASCII format (see SAVE).

option is an optional switch that instructs MERGE not to interrupt
program execution after the new file is loaded.

Merge is similar to load except that the resident program is not cleared out before
the new program is loaded. Instead, the new program is merged in with the old one.

The program lines from the new program will be inserted into their respective
positions in the old program. Any new line numbers that are the same as resident line
numbers currently existing will overlay the current lines.

MERGE provides a convenient method of putting modular programs together. For
example, often used BASIC subroutines can be saved on the disk in ASCII format and
merged in to the program to save re-typing them.

Normally, MERGE ceases program operation and returns to the command level after
loading the specified file. However, you may include the "R" option to indicate that
you wish to continue after the MERGE. Please note that all files will be closed and all
variables erased even if you specify the "R" option. All this option does is prevent
MERGE from ceasing program execution.

Programs to be merged must be saved in ASCII format.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-18

RUN (load and execute a program from the disk)

This command will load and execute a file from the disk.

The general command form is:

RUN"filespec",option

filespec is a standard DOSPLUS file specification.

option is one of three special options you may engage.

Your options are:

Option Effect

R Any open files will not be closed.
V Preserves all currently set string and numeric

variables. FIELD statements are also preserved.
line number Runs the program starting at the specified line

number.

When this command is selected, any currently resident program will be replaced by
the program specified.

If you enter "RUN'filespec',R,V" you will have truly chained the program to be run
with the program in memory. The program in memory WILL be replaced, but the
variables set by the resident program will not be cleared, nor will the files opened by
the resident program be closed when the new program is loaded and run.

Examples

RUN"TSTPGM/BAS"

This command will search for the first occurrence of the file TSTPGM/BAS and
upon locating it, load it and run the program.

RUN"TSTPGM/BAS:1"

This command will search for the file TSTPGM/BAS only on drive 1. If it is not
located, a "File not found" error will result.

RUN"TSTPGM/BAS:1",R,100

This command will load and execute the file TSTPGM/BAS from drive 1. Any files
opened by the resident program will remain open and execution will begin at line 100.

Note : When using the "line number" option, if a non-existent line number is specified,
program execution will begin at the next line. If the end of text is encountered first,
you will be returned to the BASIC command level.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-19

SAVE (save resident program as a disk file)

This command allows you to save your BASIC programs on disk. You can save the
program in either compressed or ASCII format.

The general command form is:

SAVE"filespec",A

filespec is a standard DOSPLUS file specification.

,A is the special option you may engage to save a file in ASCII
format.

BASIC programs are stored on the disk in two formats : compressed and ASCII. The
compressed format uses less disk space and will load and save faster than ASCII. This
is the same format as BASIC uses to store the program in RAM. Be advised that if you
save a program to a disk and a file by that name is already existing, that file will be
lost as the program you are saving will over-write it.

Using the ASCII format allows you to do certain things that compressed format will
not. For example

* The MERGE command requires that the file be saved in ASCII.
* You can use the library command LIST to print the file from DOS.
* Programs to be used with many compilers must be saved in ASCII.
* Files created will be compatible with other systems for conversion.

To separate your compressed programs from ASCII, you could append the "/BAS"
extension for a compressed program and "/TXT" for an ASCII file.

Examples

SAVE"PAYROLL/BAS:2"

This command will save the program "PAYROLL/BAS" in compressed format on drive
2.

SAVE"TOBECOMP/TXT",A

This will save the file TOBECOMP/TXT on the first drive that has available space
and is not write protected.

Note : You may use SAVE from a BASIC program. The program will then save itself
and continue. This is useful for self-modifying programs.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-20

File access

This next Section is dedicated to file access commands. As stated earlier, these are
the commands that are used to deal with the file and access the actual records of the
file. File manipulative commands, such as those just covered, dealt with the file as a
whole entity. We will be addressing here those commands that allow you to deal with
the file in part (as records).

Initializing files

When you entered Disk BASIC you should have been thinking ahead to this moment.
Before running a program, you should have an idea of how many files that program is
going to require. The number you specify when entering BASIC is the highest allowed
file number.

Each file is assigned a number between 1-15. You will reference it by this number
when opening the files. If you had entered BASIC by using the syntax :

BASIC -F:3

you would have three files numbered 1,2,3.

A file buffer is a Sort of holding tank for data. All data going to or from the disk
must be passed through a file buffer. The fact that you have PUT a logical record into
a buffer does not necessarily mean that it has actually been physically written to the
disk. When you access a file, you must tell BASIC which buffer to use, what type of
I/O you intend, and what the logical record length is.

These items are handled by opening and closing a file.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-21

OPEN (open a random or sequential disk file)

This command allows you to assign a file number to a file and initialize it for I/O.

The general command form is:

OPEN"mode",filnum,"filespec",lrl

"mode" is the type of I/O that you intend for the file. Only the
first character is important and will be used. If it is a literal, it
must be encased in quotes.

filnum is the file number (1-15) that you wish to assign this file.
This can also be a variable if you wish.

"filespec" is the standard DOSPLUS file specification of the file
that you are initializing.

lrl is the logical record length of the file. This is a value between
1 and 256. Only 1-255 may be specified. The default value is 256,
and if it is desired, the lrl parameter should be omitted.

This will initialize a file I/O buffer for disk access. Let’s examine each parameter
in more detail.

The "mode" parameter is the access mode for the file. There are three :

Character Mode

R Random access mode
I Sequential input mode
O Sequential output mode
E Sequential output extension mode
D Direct access mode (equivalent of "R")

If a file opened for random access, "R", does not exist, BASIC will create it. If it
does exist, merely opening it does not affect existing data. The file could be closed
immediately without harming the data.

If a file opened for sequential input, "I", does not exist, BASIC will return with an
error. You cannot input from a file that does not exist. You also cannot input more
data from a file than exists. If you try and read a record from a random access file
and that record is not there, BASIC will return a buffer full of zeros. If you attempt
this with a sequential input file, you will receive an "Input past end" error.

If a file opened for sequential output, "O", does not exist, BASIC will create the
file. When using this mode, exercise caution that you do not unwittingly erase the
current contents of a file. For example, if you were to close the file again
immediately, the directory entry will be updated as if the file has no information in it.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-22

The sequential output extension mode, "E", is identical to the standard sequential
output mode except that when it opens a file, BASIC positions to the end of file and
all new data is added from that point. This allows you to add data to a sequential file
without having to load the file into memory, add the new data, and write the file back
to the disk. Using this mode with a file will not result in the loss of current data.

The "filnum" parameter is the desired buffer number. This may be either an integer
constant or variable. It cannot be greater than 15. It also cannot be greater than the
number you specify when entering BASIC.

Once a file has been opened with a particular file number, that file number may not
be used to open another file until the current one is closed. However, under DOSPLUS
BASIC, you may specify another buffer for the same file using another number if this
is desired.

The "filespec" parameter is the standard DOSPLUS file specification (see File and
Device specifications) that you wish to open for input or output.

The "In" parameter controls the logical record length of the file to be accessed. A
physical record is defined as being one disk sector or 256 bytes. The number of logical
records is not always equal to the number of physical records. It can be greater, but it
will never be smaller. Logical record length is only used with random access files.
Sequential files will always use a directory logical record length of 256. The file
blocking is handled internally.

You do not have the option of specifying a logical record length greater than 256
bytes. You may specify a logical record length as small as one byte. Logical records
can and do span sectors. The DOS will handle all needed file blocking for you and
maintain the specified logical record length.

If you have a logical record length of 64, you would have four logical records for
every one physical record. This means that you would have to write, via the PUT
command, four records before one disk buffer is filled up and the data is automatically
transferred to disk and the buffer cleared for more input/output. DOSPLUS only writes
to the disk when it HAS to. Unless the buffer is full or you CLOSE the buffer,
DOSPLUS will write to the buffer in memory, greatly increasing the I/O speed.

Examples

OPEN"O",1,"DAILY/DAT"

This will open for sequential output the file DAILY/DAT on the first non-write
protected drive. If the file does not exist, it will be created. If it is already there, the
previous contents will be lost. File one will be assigned for access.

OPEN"I",2,"COINFO/DAT:2"

This will seek to open for sequential input the file COINFO/DAT on drive 2. If the
file does not exist, an error will be returned. File two will be assigned for access.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-23

OPEN"R",l,"DATABASE/ASC:3",24

This will open for random access the file DATABASE/ASC on drive 3. If the file
does not exist, it will be created. If the file does exist, previous contents are not
necessarily destroyed. The file has a logical record length of 24 and will use file one
for access.

OPEN"E",l,"INVDATA:3"

This command will open the file INVDATA on drive 3 for sequential output, but
instead of having to re-write the entire file, you will already be positioned to the end
of file. You may now extend it sequentially.

Note : While a file is open, you will reference it by file number. The filename itself
appears only when you open the file.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-24

CLOSE (close any or all open disk files)

The CLOSE function allows you to close any specific file, a set of files, or all files at
once.

The general command form is:

CLOSE filnum,filnum,filnum...

filnum is the file number you wish to close. You may specify
numbers between 1 and 15. If numbers are omitted, all open files
will be closed.

If you attempt to close a buffer that was not opened, the statement will simply
have no effect. When a file is closed, its directory entry is updated.

Examples

CLOSE 1,2,3

This will close file buffers 1, 2, and 3. These numbers may now be re-assigned to
other files with further open statements.

CLOSE

This command will close all currently open files.

The following actions will cause the files to close :

Function Action

NEW Erasing a program currently in memory.
RUN Executing a new program.
MERGE Merging two BASIC programs.
EDIT Editing a program line.
CLEAR Clear string space.

Also adding, editing, or deleting program lines and the use of certain Extended Disk
BASIC CMD features.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-25

INPUT # (input information from a sequential disk file)

This command is what you will use to read data from a sequential disk file.

The general command form is:

INPUT# filnum,var,var,var...

filnum is the file buffer number of the file that has been opened
for sequential input.

var is the variable that you wish to use to contain the information
read in from the file. You may specify as many of these as you
wish.

The statement inputs data from a file that has been opened for sequential input.
When the file is opened, a pointer is set to the beginning of the file. As data is read,
this pointer is advanced. If you wish to reset this pointer to the beginning of the file,
you must close the file and re-open it.

The format of the data on the disk is not important, nor is the length of the
individual elements. The sequential read will continue until a terminating character is
reached or until it has reached the end of file.

To read data successfully, you must know what form the data will take. Consider
this : BASIC ignores leading blanks when inputting data from disk. It assumes the first
non-blank character to be the start of the data item. It will continue to read until a
terminating character is reached. Terminating characters vary as to whether you are
reading string or numeric data.

Numeric terminators

End of file
255th character
, (comma)
carriage return (ENTER or CHR$(13))
blank/carriage return

Quoted string terminators

End of file
255th character
"(quote)
"/blank/, (quote followed by a space and a comma)
"/blank/carriage return

Un-quoted string terminators

End of file
255th character
,
carriage return

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-26

If the first character of data is a double quote, then BASIC treats it as a quoted
string variable. All subsequent data (carriage returns and all) will be read into the string until the
next double quote.

If the first character of the string is not a double quote, then the string is treated
as a non-quoted string, and data is read up till the first terminator. Double quotes are
treated as data.

When inputting numeric variables from the disk, BASIC will evaluate them in the
same manner as the VAL function. What this means is that if the first character of a
variable in non-numeric for any reason, the variable will be assigned a value of zero.

Technical notes :

When putting a comma on the disk to be used as a terminator, the comma MUST be
a literal. That is, when you print the comma to the disk, it must be encased in quotes.

Also, if a carriage return is PRECEDED by a linefeed, both will be ignored as
terminating characters.

Attempting to input a variable after the internal pointer has reached the end of file
from the directory will cause an "Input past end" error.

When BASIC encounters a terminating character, it will scan ahead and attempt to
read in as many terminators as it can. This is to make certain that the pointer is
accurately set to the beginning of the next variable. It will always seek to take in the
largest set possible.

Disk BASIC always reads in a file in 256 byte blocks. The drives will not necessarily
run between each read. The current buffer may contain enough data for several
variables.

The drives will not come on when a file is closed from sequential input. There is no
need to update the directory entry when a file is only being read.

Examples

INPUT# 1,A

This command will attempt to read the numeric variable "A" from the file that is
defined for file number one.

INPUT# 2,A$,B#,C%,D$

This will try to input first a string (A$), then a double precision number (B#), then a
integer (C%) and then finally another string (D$) from the file specified by buffer two.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-27

LINE INPUT # (input a line from a disk file into a variable)

Inputs a complete line of text sequentially from the disk. This included all punctuation
or normal terminators.

The general command form is:

LINE INPUT# filnum,var

filnum is the file buffer number of the file that has been opened
for sequential input.

var is the variable name of the variable to be used to store the
string.

This function relates to INPUT# in the same manner as LINE INPUT relates to
INPUT. This function reads an entire "line" of string data into the specified variable.

LINE INPUT # will read everything from the first character of the file up to :

* A carriage return not preceded by a linefeed.
* End of file.
* The 255th character (inclusive).

Other terminating characters will simply be included in the string.

If the data were a BASIC program saved in ASCII, each line input would read a
different line each time you did a line input. For example, after you did a "LINE
INPUT# 1,A$" (assuming that the program had been OPENed with buffer one), you
would have the first line of the program in "A$". Every time you looped back through
that statement you would get the next line of the program in "A$". If you made this a
string array, you could read the whole program as data.

Example

LINE INPUT# 1,D$

This will read from the file assigned buffer one and store the data read in the
variable in "D$".

Note : In DOSPLUS BASIC, when a carriage return is followed by a linefeed, the
linefeed will NOT be considered as a terminator and will be included in the next input.
DOSPLUS BASIC does not output a linefeed after every carriage return during
sequential output.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-28

PRINT # (output data to a sequential file)

This command will output data to a file that has been opened for sequential output.

The general command form is:

PRINT# filnum,USING format$,var,del,var...

filnum is the file buffer number of the file that has been opened
for sequential output.

USING format$ is the optional format string to define the data
format for the print. It will operate in the same manner as the
PRINT USING function of ROM BASIC.

var is the variable that contains the data you wish to write.

del is the delimiter that must be placed between each variable
that is to be written. This may be a semi colon.

This function will write data sequentially to a specified file. When you first open a
file for sequential disk output a pointer is set to the beginning of the file. Therefore,
your first PRINT statement places data at the beginning of the file and advances
sequentially with each following statement.

PRINT# does not compress the data in any way before writing it to the disk.
Everything that is written out is in ASCII format. Even numeric data is written out in
ASCII. Because the data is in ASCII and the function is the same as a standard PRINT,
punctuation in the actual PRINT# statement is very important. Semi-colons and commas
have the same effect (if not encased in quotes) as they do in a regular print to the
screen.

For example, if you do a "PRINT #1,A$,B$", the variables "A$" and "B$" will be
"tabbed" on the disk. That is, they will be printed with the same number of blanks
between them as if they were printed to the screen and tabbed over. If you did a
"PRINT #1,A$;B$", the variables "A$" and "B$" will follow each other with no spaces
in between.

Now, in the case of numeric data, this would be fine because a trailing blank is a
delimiter, but in the case of string data, you will want to have an explicit delimiter on
the disk. To do this, you would enter something like :

PRINT #1,A$;",";B$

That would print a comma between each piece of data on the disk. And a comma
being a string delimiter, all would be well. Except in the case of a line input. For that,
you really need a carriage return between each one. In that case, do this :

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-29

PRINT #l,A$;CHR$(13);B$

That prints a carriage return (CHR$(13)) between each entry, and that takes care of
a line input. Remember, the first character printed in string data is the delimiter that
will affect whether or not it is treated as quoted or unquoted string data when read
back via an INPUT or LINE INPUT. You can use the CHR$ function to imbed any sort
of control code in the text that you would like.

Also, because this function is identical to the PRINT statement for video output,
you also have the USING option. It will operate in the identical manner to the USING
statement for a PRINT to the screen. That is, you will define a field to be used for
the output data format. For example (when A=123.456) :

PRINT #l,USING"####.##",A

would produce "123.46" on the disk, the same as it would on the screen. This is
useful for padding string and rounding numeric output.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-30

FIELD (partition the buffer used with a random file)

This will allow you to organize a random file buffer into fields defined by variables so
that I/O to the file can begin.

The general command form is:

FIELD filnum,num AS var$,num AS var$...

filnum is the file buffer number specified at time of OPEN.

num is the length for the field.

var$ is the variable name for the field.

You may specify as many fields as you have need for. Before you can field a file,
you must first open it randomly. This assigns it the buffer number specified during a
field (i.e. filnum). After you field it, data is ready to pass back and forth from the disk
via GET and PUT.

As defined when we talked about OPEN, a random file buffer may have any number
of bytes up to 256. But in order to be useable, it must be in variables that can be
manipulated. These variables will all be string. Numbers are packed in and converted
out of strings by the string packing functions discussed later in the section.

You may re-field as many times as you wish. A field statement does not change the
contents of the buffer, it merely changes the manner in which you are allowed access
to them. Two or more file buffers can access the same file. Two or more field
statements can affect the same buffer area. You may also use a FOR-NEXT loop to
field a buffer, especially in the case of an array.

When you assign a variable a name in a field statement, that variable does not use
up any string space. The strings are set to point into the file buffer. You do not need
to figure in field statements when calculating how much string space to clear for a
program.

Now, if you access a variable name on the left side of an equals sign outside the
field statement, you remove it from the field statement and place it in the normal
variable area. For example, if you :

FIELD 1,23 AS A$

and then later in the same program :

A$=B$

the field variable will be nullified and A$ will be a standard string variable.

After you field a file, you read data from it via the GET statement. You use LSET
or RSET to place the data in the fielded buffer so that you can write it to the disk
via the PUT command.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-31

Examples

FIELD 1,23 AS A$,24 AS B$,132 AS FNME$

FIELD 2,100 AS FIRST$,155 AS SECOND$

Remember, if you field a file that you have not opened, you will get a "Bad file
mode" error. If you field more variables than you have space for in the buffer, you will
get a "Field overflow" error.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-32

GET (read a record from a random file)

This command reads a record from a random file and increments the "current" record
pointer.

The general command form is:

GET filnum,recnum

filnum is the file buffer number.

recnum is the logical record number. If you leave this off, the
next logical record will be read.

This statement will read data from the disk into a file buffer. You must first have
opened the file and then you may read from it. Before the data is useful, you must
field the buffer. After all this, you may get a record and make efficient use of the
data.

When BASIC encounters a GET statement, it goes out to the disk and reads in the
specified record. If no record is specified, the "current" record is read. In this case,
the "current" record is one higher than the last record accessed.

Examples

GET 1,1

GET 6

If you get a record with a number higher than the number of the end of file record,
BASIC will return a buffer full of zeros and no error will be reported. You may avoid
this by first checking the length of file with the LOF function.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-33

PUT (output to a random access disk file)

This command allows you to write a logical record to a disk file that has been opened
randomly.

The general command form is:

PUT filnum,recnum

filnum is the file buffer number.

recnum is the specific logical record number that you wish to
write. If omitted, the "current" record will be used.

This statement transfers data from the file buffer in RAM to the disk file for
permanent recording. Before you can PUT a record, you must have opened and fielded
the file, LSET or RSET all the data into the buffer, and then you will be ready to
place the buffer onto the disk.

The "current" record is the record one higher than the record last accessed.

Example

PUT 1,2

This command will write the second record of the file.

If the record number you PUT is higher than the length of file record, than the
record you PUT becomes the new end of file record. This means that if you "PUT
1,500", not only must it write ALL the way out to record 500, but it must leave space
for records 1-499 also. This can eat up disk space in a hurry.

You cannot put a record with the number 0 or with a negative number.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-34

LSET and RSET (place data into an open file’s buffer)

This command allows you to place data into a random file’s buffer when the file is
open. These commands must be used before the PUT command is executed.

The general command form is:

LSET var$=exp$
RSET var$=exp$

var$ is the variable that has been defined via the field statement.

exp$ is the string expression to be placed into the buffer.

When using random files, all data must be stored as string data. This means that any
non-string data must be converted before storing. To convert numeric data to string,
use the commands MKI$, MKS$, or MKD$. Once you have converted all data into
strings, then you may proceed with the storing of this data.

These two statements place string data into a random file buffer before writing it
to the disk. Before you can use these commands, the file must be opened and the
buffer fielded. Since you are dealing with string data only, any numeric data must be
converted at this point.

If you use LSET, it will pad the data into the field variable with trailing blanks. If
you use RSET, the blanks will be leading. In the case of either, if the string is too
long (i.e. longer than the variable field length), it will be truncated on the right hand
side.

The manner in which they justify data into the buffer is the ONLY difference
between LSET and RSET. LSET will always left justify the data and RSET will always
right justify the data.

Examples

LSET A$=FD$

This command this takes the data currently in FD$ and left justifies it into the file
variable A$.

RSET A$=FD$

This will accomplish an identical result with the exception that the data will be
right justified into the buffer.

LSET A$=MKI$(DT%)

This takes the integer "DT%" and packs it into a two bytes string which it then
places in the file variable A$. Reference the data conversion command MKI$ later in
this manual.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-35

MKI$, MKS$, and MKD$ (convert numeric data into strings)

Place numeric data into a string for entering into a random file buffer.

The general command form is:

MKI$(exp)
MKS$(exp)
MKD$(exp)

exp is the numeric expression to be converted.

These functions take numeric data and alter it into a string. They alter the internal
"data-type specifier" so that numeric data can be placed in a string variable.

Function Returns

MKI$ Two byte string
MKS$ Four byte string
MKD$ Eight byte string

Function Level of precision

MKI$ Integer
MKS$ Single precision
MKD$ Double precision

Examples

A$=MKI$(12)

"A$" will now contain a two byte representation of the integer value 12.

B$=MKD$(1234567.809)

"B$" will now contain an eight byte representation of the double precision value
1234567.809.

Once data is altered in this manner, you may convert it back via the conversion
statements CVI, CVS, and CVD.

Bear in mind that you can use LSET and RSET in conjunction with these commands
to convert a numeric value into string and place it into the buffer all at the same
time. For example :

LSET FS$=MKS$(1234)

This command will place the four byte string representation of the value 1234
directly into the file buffer as assigned by the file variable FS$.

Note : In the case of ASCII string data, no conversion is needed. For example, you
would simply "LSET A$=ZP$" (assuming ZP$ to be a standard string variable), and then
PUT the buffer to disk.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-36

CVI, CVS, and CVD (convert string data into numeric values)

This command allows you to return numeric values stored as strings in a random file to
their standard form.

The general command form is:

CVI(var$)
CVS(var$)
CVD(var$)

var$ is the string variable that is to be converted.

These functions are used to retrieve data after it has been stored into string form.
They are the exact inverse of their previously discussed counterparts.

Function Inverses

CVI MKI$
CVS MKS$
CVD MKD$

If the length of the strings to be converted is less than what the functions are
seeking, the error "Illegal function call" will result. If the length is greater, extra
characters will be ignored.

Function Length of string

CVI Two byte
CVS Four byte
CVD Eight byte

Examples

In the previous section we showed the example "A$=MKI$(12)". If we now use
"DEC%=CVI(A$)", the variable "DEC%" would become equal to 12.

P#=CVD(TX$)

This will convert the eight byte string "TX$" into a double precision variable (i.e.
"P#").

You can use these conversion functions in a mathematical expression (as opposed to
the strings that you store on the disk). Suppose that your year to date payroll figures
are in a variable "YTD$". It is an eight byte double precision value. You then have a
single precision value for the year to date taxes in the variable "TT!". If you try to u
se "NET!=YTD$-TT!", you will get a "Type mismatch" error. After all, YTD$ is a
string. However, you can use "NET!=CVD(YTD$)-TT!" and get a perfectly accurate
figure. You can also use the conversion value directly or assign the value to a
temporary variable.

Note : In the case of ASCII string data, no conversion is needed. You would simply use
"ZP$=A$" (if A$ was an ASCII file variable).

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-37

EOF (determine if end of file has been reached)

This command affords you end of file detection. By using the command, you may be
returned a value that indicates whether a particular open file buffer is currently
positioned at the last record in the file.

The general command form is:

EOF(filnum)

filnum is the file buffer number of the file you are interrogating.

This feature checks to see whether or not you are at the end of a file (i.e. whether
or not all the characters in a file have been accessed). This allows you to avoid "Input
past end" errors in sequential input.

As long as "filnum" is the buffer number for an active (open) file, then EOF will
return a 0 (logic false) if the last record has not been read and a -1 (logic true) if it
has.

For example, you could have a program similar to this :

10 OPEN"I",1,"PAYROLL/DAT:1"
20 IF EOF(1) THEN CLOSE:GOTO 100
30 INPUT #1, A$
40 B$(I)A$:I=I+1:GOTO 20
100 REM:REST OF PROGRAM ….

Because EOF returns either a logical true (-1) or a logical false (0), you do not need
to check "IF EOF(1)=-1". Simply the logical true/false is sufficient for the IF-THEN
statement and it is faster.

The above example would avoid having an "Input past end" error when reading data
into the array. It would check before every read to see if it is at the end of file.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-38

LOF (determine the number of records in a file)

This command will return the highest logical record number in any given file.

The general command form is:

LOF(filnum)

filnum is the file buffer number of the file being interrogated.

This function tells you the highest (and last) record number in a file. It will work
with both random and sequential files.

However, with a random file, it gives you the number of LOGICAL records. This is
only equal to the number of sectors in the file if the logical record length is equal to
256. If it is not, then the LOF will be greater than the number of sectors. In a
sequential file, though, BASIC does not know how the data is stored on the disk. With
sequential files, LOF simply returns the number of physical sectors.

Often in random access, you wish to look at every record in a file. That program
might look something like this :

10 OPEN"R",I ,"NAME/INX:2",12
20 FIELD 1,10 AS FNME$,2 AS REC$
30 FOR I=1 TO LOF(1)
40 GET 1,I
50 IF SEARCH$=NAME$ THEN GET 2,CVI(REC$):GOTO 100
60 NEXT I
70 PRINT"NOT FOUND!":CLOSE:GOTO 1000
100 REM:REST OF PROGRAM ….

In this manner, you would be certain of looking at all the records.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-39

LOC (determine last record accessed)

This command returns the actual record number of the record last accessed.

The general command form is:

LOC(filnum)

filnum is the file buffer number of the file being interrogated.

This function gives you the record number that you last accessed from the file
buffer specified in the argument.

Examples

PUT 1,LOC(1)

This will put the data in file buffer number one into the record last accessed from
that file.

PRINT LOC(2)

This will display the last record number accessed in file buffer number two.

Note : This command is only accurate when working with random files. It deals with
logical records.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-40

Disk BASIC error codes

DOSPLUS Disk BASIC provides you with a complete set of error codes that will
indicate exactly what error has occurred. These values may obtained via the ERR
function as described in the ROM BASIC manual. The codes are :

Error ERR Error
Code Value Message

1 0 NEXT without FOR
2 2 Syntax error
3 4 RETURN without GOSUB
4 6 Out of DATA
5 8 Illegal function call
6 10 Overflow
7 12 Out of memory
8 14 Undefined line number
9 16 Subscript out of range
10 18 Redimensioned array
11 20 Division by zero
12 22 Illegal direct
13 24 Type mismatch
14 26 Out of string space
15 28 String too long
16 30 String formula too complex
17 32 Can’t continue
18 34 No RESUME
19 36 RESUME without error
20 38 Unprintable error
21 40 Missing operand
22 42 Bad file data
23 44 DISK BASIC feature
24 46 Undefined user function
51 100 FIELD overflow
52 102 Internal error
53 104 Bad file number
54 106 File not found
55 108 Bad file mode
56 110 File already open
58 114 Disk I/O error
59 116 File already exists
62 122 Disk full
63 124 Input past end
64 126 Bad record number
65 128 Bad file name
66 130 Mode-mismatch
67 132 Direct statement in file
68 134 Too many files
69 136 Disk write protected
70 138 File access DENIED

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-41

CMD (execute a BASIC command function)

These command functions allow you to perform certain special functions from within
BASIC.

The general command form is:

CMD"option"

option is the single character option that determines which
function will be engaged.

Do not confuse this with the extended BASIC CMD function. This function in
extended BASIC will allow you to perform DOS commands from BASIC and return to
BASIC. At this point we are only concerned with those functions that are standard to
both TBASIC and BASIC. The extended form of the command will be covered in the
extended BASIC manual.

Commands and options

CMD

This command will return you to DOSPLUS.

CMD"D"

Engage and enter the system debugger.

CMD"E"

Display the last DOSPLUS error message. Many errors that the DOS differentiates
between will cause the same error message in BASIC. This command will allow you to
interrogate the DOSPLUS error library, which is more extensive than that of BASIC,
for clarification.

CMD"R"

Enable interrupts. On the Model I, this command should be performed after tape I/O.
See CMD"T" for further details.

CMD"S"

This command will also return you to DOSPLUS.

CMD"T"

Disable interrupts. On the Model I, this must be done before any tape I/O. After the
tape I/O, you will have to turn the interrupts back on via CMD"T". On the Model III,
this function is performed automatically by the cassette loader routine.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-42

Extended Disk BASIC features

This section will cover those features found only in extended BASIC. The previously
documented commands will be found both in TBASIC and BASIC, but the commands
documented from here forward will require Extended Disk BASIC.

Command Function

CMD DOS commands from BASIC
DI Delete and Insert (BASIC program line)
DU Duplicate (BASIC program line)
Shorthand Shorthand commands
RENUM Renumber BASIC program text
TAB Expanded TAB function
TRON Expanded trace function
REF Reference variables, line numbers, or keywords
CMD"M" Dynamic variable display
SR Global editing of BASIC text
CMD"O" BASIC array sort
INPUT@ Controlled Screen Input (string)
Labels Indirect label addressing
Error messages Detailed error message display

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-43

CMD" (use DOS command from BASIC)

This command will allow you to utilize DOSPLUS library commands and certain utilities
from BASIC and return to DOS without exiting BASIC or disturbing resident programs
and variables.

The general command form is:

CMD"DOS command"

DOS command is any library command or utility.

The CMD function has been enhanced in Extended Disk BASIC to allow you to
execute any DOS command from BASIC and return to your BASIC program with your
program and all variables intact. By the use of this function you can execute any of
the DOS commands and continue the operation of your program. This can even be done
under program control. "DOS command" can be a literal in quotes, OR it can be a
BASIC string variable.

Examples

CMD"DIR"
is equal to
CMDD$

When D$="DIR". This means that you can build your DOS commands into a BASIC
string and do your own error checking before passing them to DOSPLUS.

CMD"CLEAR "+FS$+" (DATA=E5H)"

Assuming FS$="TEST/DAT", this statement will fill the file TEST/DAT with E5 hex.
Notice the use of a BASIC string variable as a DOS command. Notice also the "+"
between the variable and the literals. You must use this if you are combining the two.

CMD"FREE :2 TO @PR"

This will output a free space map of drive 2 to the line printer.

CMD"LOAD SUBROUT/OBJ:3"

This will load the file SUBROUT/OBJ and return control to BASIC.

CMD"JOIN @DO @PR"

This will duplicate video output to the line printer.

Note : Certain of the DOSPLUS commands and utilities may use memory outside of the
normal DOS command overlay area (such as DIR or CAT with the alphabetical option).
This might cause disruption of the BASIC program currently resident. Exercise caution
when using this option.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-44

DI (delete and insert BASIC program line)

This command will allow you to remove a BASIC program line from one location and
insert it in another.

The general command form is:

DI pln,nln

pln is the present line number.

nln is the new line number.

This command is used to delete a line number in a BASIC program and insert that
line into the program at another point.

Example

DI 100,122

This will copy line 100 to line 122 and then delete line 100.

DU (duplicate BASIC program line)

This command will duplicate a BASIC program line from one location to another.

The general command form is:

DU pln,nln

pln is the present line number.

nln is the new line number.

This command is used to copy a line number in a BASIC program to another point in
the program. The line will now exist at both the old and the new point.

Example

DU 100,122

This will copy line 100 to line 122 and still preserve line 100.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-45

SHORTHAND (command abbreviations)

Several new EDIT commands have been added to make it much easier to edit your
BASIC programs. You also have certain direct commands in shorthand now. In addition
to the standard TRS-80 edit commands, you now have the following:

Command Function
; (Semi colon) List first line of program
shift up arrow List first line of program
/ (Slash mark) List last line of program
down arrow List next line of program
up arrow List preceding line of program
L Abbreviation for LIST (L10-20)
D Abbreviation for DELETE (D10-20)
E Abbreviation for EDIT (E10)
G Abbreviation for GOTO (G 100)
A Abbreviation for AUTO (A10,5)
N Abbreviation for NAME (N TEST)
R or R" Abbreviation for RUN (R"GAME1/BAS")
L" Abbreviation for LOAD (L"T1/BAS:1")
S" Abbreviation for SAVE (S"LOAN/BAS")
K" Abbreviation for KILL (K"PAY/DAT")
. (PERIOD) List current line of program
, (COMMA) Edit current line of program.

These are valid for BASIC only. Use of the above shorthand commands with TBASIC
will only result in syntax errors.

Please be certain that any of these commands using non-alphabetic appear as the
first character on a line. They must also be the first character typed for that line. In
other words, if you already typed a character and backspaced, you should still press
ENTER to get a "fresh" command line before using shorthand commands.

Alphabetic shorthand characters (L,E,D,L",S,etc...) may appear anywhere within a
program line. When BASIC encounters them, it will expand them to their normal state.

Also, when using the arrow keys to list program lines, occasionally a line will
exceed 240 characters in length. When this happens, it will not be listed correctly. Use
standard LIST or LLIST to display that line. The line is not harmed in the least.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-46

RENUM (renumber BASIC text)

This allows you to renumber the lines in your BASIC program.

The general command form is:

CMD"RENUM",nln,inc,sln,eln

nln is the new line number. This is what you wish to call the new
line number that your renumbered text will begin with. The default
line number is 10.

inc is the increment you wish to use. The default value is 10.

sln is the line number that you wish to begin renumbering at.
Default value is the beginning of the text.

eln is the line number that you wish to stop renumbering at.
Default value is the end of text.

This renumbering utility will change the number of all BASIC lines and all
references to these lines in the program. It will check the line numbering of a BASIC
program and if it finds any unlisted line number error it will print an ERROR
MESSAGE. To use RENUM, you must first load the program to be renumbered into
memory.

The renumberer DOES NOT do a block move of text!

Note : You may also specify an exclamation point in place of the above listed
parameters. This will cause RENUM to check the text for numbering errors such as an
non-existent line number. When it finds it, it will print the error message. This feature
checks the text only! It will not renumber it.

Examples

CMD"RENUM",!

This will check the text for any errors.

CMD"RENUM",10,5

This will renumber the entire text, calling the first line 10 and incrementing by
fives. (10, 15, 20, 25, etc.)

CMD"RENUM",100,10,80,150

This will renumber the block of text beginning at line 80 and ending at line 150. It
will start with line 100 and increment by 10. Please note : If this would cause the text
being changed to overlay another line, RENUM will abort with an error. It will NOT
move a block of text.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-47

To move a block of text, delete all but the block you wish to move. Then renumber
that block to where you want it and save it to disk under a temporary file name
(maybe MOVE/ASC) is ASCII format. Then re-load the program you are working on and
MERGE in the temporary file (see MERGE).

If you wish to allow one of the parameters to default, simply don’t include it.
However, you still must place a comma in its place if you wish to use further
parameters. For example :

CMD"RENUM",10,,5,20

The "inc" space is blank and so will use the default value of 10. The only exception
is when you have included all the parameters you wanted. For example :

CMD"RENUM",10

Notice that there are no "place-holding" commas. Because the "nln" slot was the
only one used, we could stop there.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-48

TAB (TAB to the line printer)

This command will allow you to tab to positions greater than 64 when using LPRINT.

The general command form is:

LPRINT TAB(pos)

pos is the desired tab position (0-255). For reference, see LPRINT
in your Level II manual.

This command will allow you to space out further on the line printer than is possible
under ROM BASIC. If you are using it with a PRINT command to place an entry on the
video screen, it will work the same way that it does in ROM BASIC.

However, if you are using it with a LPRINT command to print an entry on your
printer, you can now specify a TAB larger than 64. For example, to print at the 100th
character position on your printer you would

LPRINT TAB(100)

This would TAB over 100 spaces before beginning to print. This new feature will
make it much easier to format your printer output. LPRINT TABs up to 255 are now
legal.

TRON (single step trace function)

This command allows you to engage the system "single stepper".

The general command form is:

TRON

There are no parameters.

This is entered exactly as in ROM BASIC. However, you now single step through a
BASIC program one statement at a time. You press any key every time you want to
execute the next statement or the <BREAK> key to abort.

The TRON in TBASIC still functions in the old manner. Entering a direct command
while in the TRON mode will cause the command to be displayed with a colon in front
of it. For example :

RUN

While in the TRON mode will produce ":RUN" on the display. This is normal.

To disengage this function, type "TROFF" and press ENTER.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-49

REF (reference BASIC program text)

This command gives you a comprehensive BASIC program cross referencer.

The general command form is:

CMD"REF",option,option...

option can be any of the parameters legal for this command.

Parameter Function

S= Single variable, line, or keyword
V All variables
L All line numbers
K All keywords
P Printer output

This will allow you to reference your BASIC program for line numbers (L), variables
(V), or keywords (K). For example

CMD"REF",K,L,V

This will reference the program for all three. If you specify a P also
(CMD"REF",K,L,V,P), it will do the same thing, but it will output it to the line printer.
Please note that any ASCII numbers occurring in text will be referenced as line
numbers.

To display a single variable you use the "S=" syntax. For example :

CMD"REF",S=A

Every time the variable "A" occurs in the text will be listed for you. It becomes as
specific as you are. For example :

CMD"REF",S=A$

will only hunt up references to the variable "A" when it is being used as a string
variable. And still further :

CMD"REF",S=A$(

will look up only references to "A" as an ARRAY string variable. It will also take
complex variable names like :

CMD"REF",S=FINDIT

This will look for all occurrences of the variable "FI". The same syntax applies for a
single line number or a single keyword. For example :

CMD"REF",S=PRINT

Will reference all the PRINT statements.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-50

CMD"M" (dynamic variable dump)

This feature will instantly display all the simple variables currently allocated, and what
values they currently hold.

The general command form is:

CMD"M"

You can stop the listing with shift , and abort with <BREAK>.

If no variables are set, nothing will be displayed. This is NOT a reference utility.
Use REF for that. Also, variables will be PRINTed to the screen. Any video control
codes will have their standard effect.

To obtain hard copy, enter :

CMD"M",P

This will dump the variables to the printer.

It will not display arrays. Simple variables only.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-51

SR (global editing of BASIC text)

This command allows you to search for and display or replace any ASCII string literal
or expression that occurs in BASIC text.

The general command form is:

CMD"SR",sexp,rexp,sln-eln

sexp is the search expression. This can be any valid string
expression, a literal, or a combination of both string variables AND
literals.

rexp is the replace expression. This can also be any valid string
expression, literal, or combination of both.

sln-eln are the optional starting and ending line number. This
allows you to restrict your editing to one block of text. If not
present, it will be a global edit of the entire text. If you specify
"sln" only, it will do only that line number. If you specify "sln-", it
will begin at that line number and go to the end of text.

This is a great programmer’s tool. It will search for and display or replace any
string variable or expression. To engage it, type CMD"SR" (for search and replace)
followed by a literal ASCII string, OR any character string or other string variable.

After it alters a line, it will list that line showing the change. It operates in two
modes : Search mode and Search and Replace mode.

For example, if you type

CMD"SR","Test"

It will look through the text and list every line with the word "Test" in it. If you
type :

CMD"SR","Test","NewTest"

It will look through the text and every time that it finds the word "Test", it will
replace it with the word "NewTest". If you type :

CMD"SR","Test","NewTest",100-200

It will confine this procedure to lines 100 through 200.

You can also use a combination of variables and literals. For example :

CMD"SR",":",CHR$(10)+":"

This will go through the whole text and insert a line feed in front of every colon.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-52

CMD"O" (sort BASIC arrays)

This command allows you to sort BASIC arrays of any type in ascending or descending
order.

The general command form is:

CMD"O",exp,+ or - AN(se)+KA-KA,TA,TA

,exp, expression to indicate number of elements to be sorted
(integer).

+ or - indicates primary key array to be sorted in ascending or
descending order. Optional, if omitted ascending order will be
assumed.

AN(se) primary key array. Subscript indicates starting element
number.

+KA next key array. Plus (+) indicates ascending order.

-KA next key array. Minus (-) indicates descending order.

,TA First tag array.

,TA Next tag array.

A "key" array is defined as being an array that CMD"O" will consider when sorting.
A "tag" array, on the other hand, is simply "along for the ride". When CMD"O" finds
two elements of a key array that need to be swapped, it will swap the corresponding
elements of all other key arrays and all tag arrays.

You must completely define all "KEY" arrays prior to defining "TAG" arrays. Please
note that all key arrays are preceded with a plus (+) or a minus (-). Do not use
commas. After you append the first array with a comma, CMD"O" will assume that you
are beginning the tag arrays and will consider no more key arrays.

Differing from this is the PRIMARY KEY ARRAY. The primary key array is
separated from the element count by a comma for TRSDOS compatibility. If you wish
descending order, you may insert an optional minus (-) between the comma and the
primary key array name. A plus (+) is also legal but not needed as ascending order is
assumed.

Example

CMD"O",100,A$(1)+B$-C$,D$,E$,F$

This command line would instruct CMD"O" to sort 100 elements of string array
beginning with the first element in the array "A$". If it finds a match there, it will
attempt to sort by the corresponding two elements in "B$". If it finds a match there, it
will sort by the corresponding two elements in "C$". However, "C$" is sorted in
descending order. Any time that it swaps an element in any of the key arrays, it swaps
it in all the other key arrays and then it also swaps the corresponding elements in
"D$", "E$"; and "F$" (although the order of these is not important).

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-53

The "corresponding element" is defined as being those elements with the same
position number. For example, the corresponding elements in the above example would
be :

* A$(1) - B$(1) - C$(1) - D$(1) - E$(1) - F$(1)
* A$(9) - B$(9) - C$(9) - D$(9) - E$(9) - F$(9)

This sort is also capable of sorting integer, single precision, and double precision
arrays. You may mix and match arrays. For example, to return to the sort command
above, you could make "C$", "C#" with no problem. The syntax is identical.

Example

CMD"O",N%,A$(1)

This will function exactly the same as TRSDOS CMD"O". It will sort "A$" in
ascending order starting at element one and proceeding for "N%" elements.

Technical notes : You cannot operate this sort from TBASIC. Also, please note that
the arrays may ONLY be single dimension and you may not specify a starting element
number for any array other than the primary key array.

Sample use

This sample program will create a sorted index for a mailing list.

5 CLEAR 2000:CLS
10 OPEN"R",1,"MAIL/DAT",52
20 FIELD 1,10 AS DUMMY$,20 AS FNME$
30 EF=LOF(1):DIM A$(EF),RN%(EF)
40 FOR I=1TOEF
50 GET 1,I
60 A$(I)=FNME$:RN%(I)=LOC(1):NEXT I
70 CLOSE
80 CMD"O",EF,A$(1),RN%
90 OPEN"R",1,"MAIL/INX",2
100 FIELD 1,2 AS NR%
110 FOR I=1TOEF
120 LSET NR%=MKI$(RN%(I)):PUT 1,I:NEXT I
130 CLOSE

After this, whenever you want an alphabetical listing of your file, simply open the
file "MAIL/INX". Those two byte records contain integer record numbers. Get each
record in turn and then get the data record that it points to. Print that data and you
will have an alphabetical listing.

When using this sort, you may have up to ten key arrays and twenty tag arrays for
a maximum of thirty arrays total.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-54

INPUT@ (controlled screen input)

This command allows you to input string data from anywhere on the screen with
control of format and character entry.

The general command form is:

INPUT@ <pos> ,"prompt",fl,it;var$

<pos> is the screen position you wish to input at. It will begin
here with the prompt string if one is specified.

,"prompt" is the prompt message you wish to have displayed on the
screen in front of your input field. This must be a literal.

,fl is an integer expression that defines field length.

,it item type flag. Should be "$" for alphanumeric or "#" for
numeric. If you append an asterisk to this, you set the "return on
full field" mode. This may be a literal OR an expression.

;var$ string variable that data typed into the input field is passed
to BASIC in. Must be a string even if input was restricted to
numeric only. Note that this option is separated by a semi colon.
This is NOT an option. A comma will not work in that location.

This utility will serve to replace many of the tiresome INKEY$ subroutines that you
now have to use. Your current routines (using INKEY$) are being slowed down by
BASIC’s string handling functions. That fact that you are collecting data via a
subroutine that handles strings and is interpreted in BASIC results in very slow
keyboard response. INPUT@ will banish these problems.

Although INPUT@ does only limited error checking of itself, it does allow you to do
as complex an error check as you wish later.

Your parameters are :

"<pos>" (Screen position). This can be anywhere from 0 to 1023. It is the same as a
PRINT@ location. Whatever this value is, that is the location that INPUT@ will print
the prompt string. If no prompt string was defined, then INPUT@ will put the input
field start at that location.

',"prompt"' (Prompt message). This must be a literal. It will be printed at the
location specified by <pos>. If this is not specified, it will be skipped and the input
field will begin at that position instead.

",fl" (Field length). This defines the length of your input field. In can be a value
between 1 and 240. INPUT@ will create a visible field of underline characters for this
field. It will NOT allow you to overtype the field. Unless you set the "return on full
field" option (described next), it will simply pause and refuse to except any more
characters.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-55

",it" (Item type). This controls what type of input will be allowed. You may use a literal or a
string expression here. You have two options :

* "$" - Any alphanumeric characters
* "#" - Numeric characters only

"Numeric" characters are defined as :

0-9, decimal (.), plus (+), or minus (-)

By appending an asterisk to the field type specifier, you set the "return on full
field" mode. That means when the last character in the field in entered, the statement
proceeds. Otherwise, it will wait for an ENTER or CLEAR to be pressed to proceed.
For example :

"$*" - Alphanumeric field, return when full.

If ENTER or CLEAR alone is pressed (i.e. no input), the return variable will be
equal to ASCII 13 or ASCII 31 depending on which key was pressed. Otherwise, this
will be suppressed in the actual input data (e.g. if you enter "Test", this will return
"Test" and not "Test"+CHR$(13)).

";var$" (Return variable). This is a string variable that you specify for INPUT@ to
return the input field to you in. It MUST be a string. Even if you input numeric only, it
will still come to you as a string and you must get the VAL of it (see VAL in your
Level II manual). This variable must be set off from the list by a semi colon. A comma
will not work.

Examples

INPUT@512,"Type in your name : ",20,"$";NA$

This will print the defined string at screen position 512, and then print a 20
character field of underlines after it and accept any alphanumeric data into it. It will
wait until ENTER or CLEAR is pressed to exit and will return the input data in "NA$".

INPUT@256,40,"$*";SI$

This will not print a prompt string because one was not defined. With INPUT@, it is
not necessary to leave in the extra comma. Simply ignore the prompt field if you don’t
wish to use it. It will print a 40 character field at screen position 256 and terminate
when the 40th character is typed.

The return on full field is useful when you are prompting for a single key entry and
you wish to preclude the continual pressing of the ENTER key. You simply define a
field length of one and to return when field full and as soon as they type a key, off
you go.

While inputting data, you may use the following :

* Repeating keys.
* Backspace.
* Erase line (shift back arrow).

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-56

Label addressing (indirect branching within BASIC programs)

This function allows you to use indirect addressing within your BASIC programs. To
accomplish this, we replaced the NAME function of BASIC with our own.

The general command form is:

NAME label
GOTO label
GOSUB label

NAME assigns the specified label to the line on which the NAME
statement appears. After that, you reference the label EXACTLY
as you would a line number using GOTO and GOSUB statements.

Labels may now be used in place of line numbers. This frees you from having to
remember the exact line number that a particular subroutine was located at. Simply
assign the subroutine a unique name and reference it by that.

The only restrictions are : (1) labels may NOT contain any reserved words and (2)
labels may not exceed 240 characters in length.

We have also altered BASIC’s RENUM function such that it will not regard labels
when renumbering a program.

Please note that a label must be the first statement on a line. For example :

10 NAME TEST:FOR A=1 TO 10
20 Other program here ...
100 GOTO TEST

The NAME statement is the first item on the line. If this is not the case, the name
statement will be regarded as a comment and any attempt to reference it will result in
an error.

Examples

10 CLEAR 1000 : DEFINT I
20 NAME START
Other program lines ...
1000 GOTO START

In this example, line 20 has been assigned the label "START". Later, at line 1000,
the program issues the command to "GOTO START". This would send program control
back to line 20.

10 NAME DEFFNTESTER

This is an example of an invalid label. This label contains the reserved word
"DEFFN". BASIC will reject this as a label.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Disk BASIC – Page 5-57

Error messages (detailed error message display)

This feature of DOSPLUS BASIC is not really a command in the usual sense, but rather
is a manner in which the system functions that deserves to be documented.

When an error occurs under Extended Disk BASIC, the error message will be printed
on the screen along with the offending statement. An arrow will identify the statement
that contains the error.

For example :

10 FOR I=1 TO 10
20 PRINT "THIS IS A TEST",
30 X=C+2 : NEXT J

In this example, there is a "NEXT without FOR" error in line 30. Our loop is
controlled by the variable I and we issue a "NEXT J" command.

The printout will appear something like this :

NEXT without FOR in 30
--> : NEXT J

The arrow always points to the statement that contains the error, no matter how
large the line. It does not point to the element within the statement that is incorrect.
That is for you to determine.

Drivers and Filters

DOSPLUS 3.5 Drivers and Filters Manual Table of Contents

Section Page
Name Number

Drivers KI/DVR 6-1
DO/DVR 6-4
PR/DVR 6-5
RS/DVR 6-8
FILE/DVR 6-9

Filters DVORAK/FLT 6-11
EPSON/FLT 6-12

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-1

KI/DVR

This is the DOSPLUS keyboard driver which offers features such as variable
keyboard debounce and repeat delay, variable key repeat rate, MacroKeys, and
character filtering.

===
ASSIGN [FROM] @KI [TO] KI/DVR [USING] filespec (param=exp)

"filespec" is the name of an optional Macrokey definition file

Allowable parameters are:

DB=value Debounce delay

RD=value Delay before key repeat begins

RR=value Key repeat rate

Abbreviations:
DB D
===

The DOSPLUS 3.5 keyboard driver offers many special features. Like all DOSPLUS
device drivers, it supports character translation using tables installed with the
DOSPLUS FILTER command.

The KI/DVR program also provides for access to all standard ASCII codes with the
TRS-80 keyboard. The standard TRS-80 keyboard does not provide keys for many
special characters in the ASCII character set, but with KI/DVR these characters can
be entered from the keyboard. The usual ASCII control codes, control-A through
control-Z, may be typed by depressing the <SHIFT>-<DOWN ARROW> key pair at the
same time as the alphabetic key whose control character is to be generated. For
example, to generate a control-R, press <SHIFT>-<DOWN ARROW> and R.

The ASCII codes not present on the TRS-80 keyboard are generated in much the
same manner as control characters; that is, by depressing the <SHIFT>-<DOWN
ARROW> keys and another key. The table below details which control keys generate
which characters:

Key Character
Control-6 ^
Control-7 ~
Control-8 [
Control-9]
Control-0 |
Control-- _
Control-; DEL, 7FH
Control-/ \
Control-, {
Control-. }

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-2

When installing the KI/DVR program with the ASSIGN command, certain timing
values may be specified. The first, DB, is used to determine the amount of delay used
to suppress multiple characters due to keybounce. Normally, the default value of this
parameter will be sufficient, but it may be altered for more or less effect if desired.
Note that the value of the DB parameter is not directly proportional to the amount of
delay achieved. Rather, the delay is proportional to the product of the least significant
byte of the delay and the most significant byte of the delay. Also note that this
relationship holds for the other two timing parameters available under KI/DVR.

The RD parameter allows the operator to specify the amount of time that elapses
before the keyboard driver begins the auto-repeat function. The default value of this
parameter should be suitable for almost every situation, but if desired, this value may
be changed with the RD parameter.

The rate at which the auto-repeat feature operates may be altered from the
default by the use of the RR parameter. Once again, the default value will most likely
be close to optimum, but the RR parameter provides a means of tailoring the driver’s
"feel" in any manner desired.

The DOSPLUS keyboard driver provides a feature called "Macrokeys". MacroKeys
are programmable keys which may contain any number of pre-defined keystrokes. For
instance, we might define the "D" key to contain the keystrokes "DIR :1 (S,I,A)". Now,
by pressing the <CLEAR> key followed by the "D" key, the entire string of characters,
"DIR :1 (S,I,A)" will be quickly and automatically entered into the current input line.

Before KI/DVR can use MacroKeys, a MacroKey definition file must be created.
This file may be created using the DOSPLUS BUILD command, or with a word
processor. MacroKey definition files consist of one or more Macrokey definition lines,
each of which have the following format:

X=string

where "x" is any key, and "string" is the set of keystrokes which the key "x" shall
represent. To enter the example above, of the "D" key containing the characters "DIR
:1 (S,I,A)", the following line would be entered:

D=DIR :1 (S,I,A)\

The backslash character as shown in the line above is used by KI/DVR to represent
a carriage return, or the <ENTER> key. Any time it is desired to include a carriage
return in a MacroKey, type the backslash character (control-/).

Note that MacroKey definition files may also contain comment lines. Comment lines
begin with a period symbol, ".", and are ignored by the keyboard driver.

To use a MacroKey after defining the file and installing the KI/DVR program, press
the <CLEAR> key followed by the Macrokey associated with the keystroke sequence
to be used. Each time a program requests a character from the keyboard driver, the
driver will supply a character from the MacroKey until all the characters in the
MacroKey are exhausted, at which time characters will once again be accepted from
the keyboard. If it is necessary to use the <CLEAR> key, simply press the <CLEAR>
key twice.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-3

MacroKeys may be "linked" together by using the tilde symbol, "~", followed by
another MacroKey. For example, take the following two MacroKey definitions:

B=BASIC\LOAD"MYPROG/BAS"\~L
L=CMD"FORMS P=66,L=60,W=80"\LLIST\

Using the "L" MacroKey will result in the FORMS command being executed from
BASIC and will cause an LLIST of a BASIC program in memory to take place. If the
"B" MacroKey is used, it will load and execute BASIC from DOS and load the BASIC
program MYPROG/BAS. The "L" characters in the MacroKey instruct the keyboard
driver to link into the "L" MacroKey and carry on as if <CLEAR>-L had been pressed.

Use caution when linking MacroKeys together; specifically, avoid creating loops in
which a MacroKey links back into itself or links into another MacroKey which
eventually links back into the first MacroKey. Such loops cannot be terminated, and
may be exited only by a system reset.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-4

DO/DVR

This is the DOSPLUS video display driver program. It offers character translation
on both the Model J and Model III, and allows use of a special cursor character and
lower case support on the Model I.

===
ASSIGN [FROM] @DO [TO] DO/DVR

Allowable parameters are:

UCASE=switch Enables/disables lower-case support (Model I only)

BLINK=value Set cursor blink rate (Model I only)

Abbreviations:
UCASE U
BLINK B
===

The DOSPLUS display driver supports character translation with tables installed
using the DOSPLUS FILTER command. On the Model 1 TRS-80, it also provides the
ability to use a cursor character other than the standard underline, cursor blink, and
lower-case support. All of these features are quite automatic, and the operator need
only perform the ASSIGN command shown above.

The UCASE parameter, if included in the command line, will cause DO/DVR to
translate all lower-case alphabetic characters to upper-case before displaying them.

The BLINK parameter provides a means of setting the cursor blink rate. The
parameter may he set to any value from 1 to 15, 1 being the fastest rate and 15 being
the slowest.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-5

PR/DVR

This is the DOSPLUS printer driver, which offers both parallel and serial printer
support, spooling, automatic pagination, indent, and other features.

===
ASSIGN [FROM] @PR [TO] PR/DVR (param=exp)

Allowable parameters are:

LF=switch Determines whether linefeeds are sent to printer after carriage
returns

NULL=switch Determines whether printer will advance a line when a null line is
printed

SPOOL=value Optional spool buffer size

MAX=value Optional number of attempts to output character to printer during
spooler interrupt

INDENT=value Number of spaces to indent text

XLATE=switch Determines whether form feed characters are translated

SERIAL=switch Determines whether parallel or serial driver is used

DELAY=value Optional number of null characters after LF or CR

CTS=switch Optional handshaking parameter

DSR=switch Optional handshaking parameter

CD=switch Optional handshaking parameter

RI=switch Optional handshaking parameter

INVERT=switch Determines whether serial printer handshaking is normal or
inverted

Abbreviations:
LF L
NULL N
SPOOL SP
MAX M
INDENT I
XLATE X
SERIAL S
DELAY D
CTS C
DSR DS
RI R
INVERT INV
===

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-6

The DOSPLUS printer driver offers unparalleled flexibility and versatility. Beside
supporting the powerful filter table structure of DOSPLUS 3.5, it offers spooling,
indent, serial or parallel printer support, and other sophisticated features.

Many printers require that the computer send a linefeed character following each
carriage return. If the LF parameter is used, the printer driver will provide linefeeds
after each carriage return. This parameter defaults to off.

The NULL parameter is used to inform the driver whether or not it should ignore
null print lines; that is, lines that consist of a carriage return and nothing more. When
set, the NULL parameter will cause the printer driver to ignore null lines. If the NULL
parameter is off, null lines will result in a linefeed on the printer. The NULL
parameter defaults to off.

The SPOOL parameter may be used to specify the size, in bytes, of an optional
printer spool buffer. If no value is specified for SPOOL, no printer spooling takes
place. If some value is given for SPOOL, the driver will allocate space in memory for
the spool buffer, and all output to the printer will pass through the spooler. Spooled
printer output means that the computer may output data to the spool buffer faster
than the printer itself can accept data.

The MAX parameter is used in conjunction with the SPOOL command to determine
how often data is sent to the line printer. On the Model I, the spooler attempts to
output data to the printer 40 times each second; on the Model III, it attempts to
output data 30 times each second. The MAX parameter determines how many attempts
are made to output a character to the printer each of those 30 or 40 times per second.
Generally speaking, the more output attempts that are made, the faster the spooler
will output data to the printer. However, the as the number of printer output attempts
increases, overall system efficiency declines.

The INDENT parameter provides a means of effectively moving the left margin of
the printer over any given number of character spaces. For example, if INDENT=10 is
specified, this would cause the printer driver to begin each printed line indented 10
characters from the actual left margin of the printer. This parameter defaults to an
indent of 0.

The XLATE parameter determines whether form feed and vertical tab characters
are translated by the driver into the proper number of linefeed characters to position
the printer at top-of-form, or if the form feed and vertical tab codes are passed to the
printer unchanged. "Intelligent" printers which are capable of performing top-of-form
operations may operate with the XLATE parameter turned off, and printer that cannot
perform a top-of-form will require the XLATE parameter on. The XLATE parameter
defaults to ON.

The DOSPLUS printer driver supports serial printers as well as parallel printers. By
default, the driver uses a parallel printer driver, but by specifying the SERIAL
parameter, the serial driver takes effect. With the serial driver engaged, all printer
output is directed to the TRS-80’s RS232 port. The RS232 parameters (baud rate, word
length, stop bits, etc.) must be set with the RS232 library command.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-7

If the serial driver is to be used, the DELAY parameter may be specified in order
to make the driver send any number (from 1-255) null characters following linefeeds
and carriage returns. Many printers require some number of nulls after receipt of
linefeeds and carriage returns in order for the printer mechanism to complete the
time-consuming operations. Setting the DELAY parameter to the printer’s recommended
number of nulls will accommodate such printers.

Four parameters, CTS, DSR, CD, and RI, are used to specify to the serial driver
which of the four RS232 status lines must be high (or low) before characters are
transmitted to the serial printer. Since many printers signal the computer when they
are ready to receive data by changing the status of one or more of these sense lines,
these parameters provide a means of informing the driver which lines it should monitor.
For example, if data should only be sent to a certain printer when the CTS and DSR
lines are high, the driver assignment might be as follows:

ASSIGN @PR PR/DVR,SERIAL,CTS,DSR

The INVERT parameter is used in conjunction with the four handshaking parameters
to specify to the driver whether the indicated handshaking lines should be in a high or
a low state before data is sent. Normally, the TRS-80 operates in an inverted logic
state, although various printers may differ in this respect.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-8

RS/DVR

This is the DOSPLUS RS232 serial interface driver program. Like all DOSPLUS 3.5
drivers, it performs any character translation called for tables installed with the
DOSPLUS FILTER command.

===
ASSIGN [FROM] @RS [TO] RS/DVR

There are no parameters for this driver
===

Note that DOSPLUS does not normally have any RS232 driver routines installed
until the above ASSIGN is performed or a /CFG file containing the driver, and
therefore the driver must be installed before any I/O is attempted using the RS232
interface.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-9

FILE/DVR

This driver allows a file resident on a disk drive to act as a disk drive device
itself, and is especially useful on rigid drives.

===
ASSIGN [FROM] :dr [TO] FILE/DVR [USING] filespec (param=exp)

":dr" is a disk drive specification

"filespec" is a file containing a "file disk"

Allowable parameters are:

SIZE=value Informs FILE/DVR to initialize a library file of specified size

INST=switch Informs FILE/DVR to install itself into the operating system

Abbreviations:
SIZE S
INST I
===

The FILE/DVR program is installed into the DOSPLUS system as a disk drive device
driver, and its purpose is to allow a file contained on some disk drive to act as if it
were a disk drive itself. In essence, FILE/DVR allows DOSPLUS to have disk drives
within disk drives.

For example, if the command:

ASSIGN :7 FILE/DVR FDISK:1

were executed, drive 7 would actually exist as a file called FDISK (such files are
referred to as "file disks") which is resident on drive 1. So, drive 7 is not a physical
disk drive at all; it is a disk file which exists on some disk drive, and the FILE/DVR
program performs the task of making the disk file act as if it is a disk drive device.

The INST parameter in FILE/DVR is used to tell the driver that it should install
itself into the DOSPLUS system. FILE/DVR is somewhat different in this respect from
most other drivers which automatically install themselves into the system when the
ASSIGN command is executed. For reasons we’ll examine later, we will sometimes wish
to ASSIGN a drive device to the FILE/DVR program without installing FILE/DVR in
memory. If the INST parameter is present in the ASSIGN command, FILE/DVR will
install itself into the DOSPLUS system. The INST parameter must be used if FILE/DVR
has not already been installed on the system. For example, if FILE/DVR has not yet
been installed, and we wish to ASSIGN drive 3 to the file disk named LIBRARY/ONE
on drive 4, we might use the command:

ASSIGN :3 LIBRARY/ONE:4 (INST)

This command will cause FILE/DVR to install itself on DOSPLUS and all disk accesses
to drive 3 will be directed to the file disk named LIBRARY/ONE on drive 4.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-10

The disk files which we term file disks are created by the FILE/DVR program using
the SIZE parameter. With the SIZE parameter we (a) inform FILE/DVR that we wish to
create a new file disk, and (b) specify how large we wish the file to be. The value
supplied for the SIZE parameter is the desired file disk size in kilobytes. The file
creation and the ASSIGN may be performed as one operation. For instance, let’s
ASSIGN drive 2 to the file disk MYFILES on drive 7, and that we wish MYFILES to be
50 kilobytes in length. The proper command would be:

ASSIGN :2 FILE/DVR MYFILES:7,INST,SIZE=50

Note the use of the INST parameter, which implies that FILE/DVR has not been
previously installed.

Once a disk drive device is ASSIGNed to a file disk, the drive device will function
almost exactly as if it were an actual disk drive (except for floppy disk-only functions,
such as BACKUP or FORMAT). In fact, you can display a directory or a catalog of the
"diskette", read and write files, use the DIRCHECK utility, etc.

After the FILE/DVR program has been installed, additional drives may be ASSIGNed
to file disks. For example, assume that FILE/DVR has already been installed in the
system, and that we now wish to ASSIGN drive 5 to a file disk named CMDFILES on
drive 3. The proper command would be:

ASSIGN :5 FILE/DVR CMDFILES:3

Note that the INST parameter was omitted from this command as the FILE/DVR
program had already been installed in the system.

The primary use of FILE/DVR is on rigid drives, although it is useful on floppy
systems as well. FILE/DVR makes possible very efficient use of available disk space,
while maximizing directory space. Each file disk may contain up to 48 directory
entries, yet the file disk itself occupies only one (more if the file is segmented)
directory entry on the diskette upon which it is resident.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-11

DVORAK/FLT

This is a filter file intended for-use with the keyboard, @KI, device.

===

FILTER [FROM] @KI [TO] DVORAK/FLT

===
This keyboard filter will redefine the TRS-80 keyboard to conform to the layout of

the highly efficient Dvorak style keyboard.

DOSPLUS 3.5 – Model I/III Disk Operating System – User’s Manual

Drivers/Filters – Page 6-12

EPSON/ELT

This is a filter file intended for use with the printer, @PR, device.

===

FILTER [FROM] @PR [TO] EPSON/FLT

===
This filter file is used with EPSON MX-80 printers in order to translate those

character codes which lie in the 128-191 region (TRS-80 block graphics) into codes in
the 140-223 region, which the EPSON printer uses to display the TRS-80’s graphics
characters.

N O T E S

N O T E S

N O T E S

N O T E S

Technical Information

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/1

This portion of the DOSPLUS 3.5 manual contains information concerning internal
system routines, data storage areas, and diskette formats. This information is useful to
the machine-language programmer wishing to write software for use under DOSPLUS
3.5.

This manual is divided into several sections:

Section Subject Page

I. Rigid drive partitioning T/2
II. System files T/4
III. Directory structure T/6

GAT organization T/6
HIT organization T/9
File entry organization T/10

IV. System disk BOOT/SYS sector 2 data T/13
V. DCB Table & DCB organization T/14

@KI DCB T/17
@DO DCB T/17
@PR DCB T/17
RS232 initialization DCB T/17

VI. FCB Structure T/18
VII. DCT Organization T/20
VIII. System entry points T/23

File handling routines T/24
System control routines T/30
Interrupt chain routines T/33
Miscellaneous system routines T/36
Internal system vectors T/44
Useful ROM routines T/48

IX. Important memory addresses T/50
X. Writing drivers for DOSPLUS 3.5 T/53

Disk drivers T/54
Device drivers T/55

XI. DOSPLUS 3.5 Error codes T/56
XII. Technical glossary T/58

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/2

I. - Rigid Drive Partitioning

With DOSPLUS 3.5, it is possible to partition, or segregate, a single rigid drive into
two or more volumes. Each volume may then be used as if it were a totally
independent disk drive. This feature of DOSPLUS 3.5 has several important uses:

1. It makes possible the use of rigid drives with a cylinder count in excess
of 200 (the maximum allowable cylinder count under DOSPLUS 3.5) by
providing a means of partitioning the drive into two or more volumes
with a cylinder count less than or equal to 200.

2. It allows the user to sub-divide a rather large rigid drive into smaller
volumes. Each separate volume may then be assigned a certain function
by the user, i.e., one volume for Accounts Receivable programs & data,
another volume for payroll information, and yet another for mailing list
data.

3. The user may choose to maximize either disk access speed or disk space
allocation efficiency by partitioning the drive by cylinder offset or head offset.

Before discussing the effects and advantages of drive partitioning any further, we
should understand a little about how partitioning is accomplished. We should begin by
describing the basic operation of rigid drives.

A rigid drive consists of one or more flat magnetic disks spinning at high speed.
These individual disks are called platters. Each platter has two recording surfaces,
one on the top and the other on the bottom. As the platter spins, a read/write head
on a movable arm hovers over each surface. The head may be positioned over any of
several (usually about 150-400) concentric circular tracks. All like-numbered tracks
make up a cylinder. For instance, a drive may contain 3 platters, and therefore 6
surfaces. Each surface may contain 306 concentric tracks. The first track on each
surface makes up cylinder #0. The 51st track on each surface, taken together, is
cylinder #50, and cylinder #284 is composed of the six tracks numbered 283. At any
one moment, all of the read/write heads on the rigid drive are positioned over all of
the tracks of some cylinder.

As we have seen, each cylinder is numbered. One way we may partition a drive is
by specifying the cylinder number at which each volume begins. For example, if it is
desired to partition a 2-platter, 152-cylinder drive into 2 equal-size volumes, we could
do this by indicating a cylinder offset using the CONFIG command. The first volume
of the rigid drive would begin at cylinder 0, and therefore, the cylinder offset would
be 0. The second volume of the drive would begin at cylinder 76, half the total
number of cylinders on the drive. Therefore, the cylinder offset for the second volume
should be 76. In this way, we have created two 2-platter, 76-cylinder volumes.

Another way to partition a drive is by specifying a head offset. As explained
above, rigid drives have a number of read/write heads, each used to record or retrieve
data from one surface of the drive. By indicating a head offset, we tell DOSPLUS
which surface is the first surface belonging to a volume. To take an example, imagine
3-platter (6-surface), 152-cylinder drive. Let us partition this drive into three
equal-size volumes, using the head offset method. Since we have 6 surfaces, we may
assign 2 surfaces to each of the three volumes. The first volume would have a head
offset of 0, since it will use heads 0 and 1. The second volume, using heads 2 and 3,
will have a head offset of 2, and to the third volume we will assign an offset of 4.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/3

We have now created, in effect, three 2-surface, 152 cylinder volumes.

Getting back to the advantages of drive partitioning mentioned above, in the first
instance we mentioned that drive partitioning allows DOSPLUS 3.5 to use rigid drives
with a cylinder count in excess of 200. DOSPLUS, being a TRSDOS-compatible system,
may address up to 200 cylinders per volume (see the explanation of the GAT, section
III). If, for example, we attempted to address a 230-cylinder drive as a single volume,
only 200 of the cylinders on the drive could actually be accessed by DOSPLUS,
thereby wasting 30 cylinders of available storage. With partitioning, however, we may
address the drive as two 115-cylinder drives, or one 115-cylinder drive, one
57-cylinder drive, and a 58-cylinder drive, or any other combination desired. In this
way, all of the drivers potential capacity is accessible.

The second advantage of drive partitioning, although less technical in nature, is a
matter of convenience. Rigid drives afford a great deal of storage - literally millions
or tens of millions of bytes. However, it is often annoying to find that all of your
files are lumped together on a single rigid drive volume. When using floppy diskettes,
most users categorize the diskettes by the type of programs and files contained
thereon. Typically, one might have a diskette that contains inventory data and
programs, another diskette that holds engineering programs, and a diskette with word
processor text files. Partitioning makes it possible for the rigid drive user to set aside
individual volumes of a single drive for specific purposes. Take, for example, the case
of a 152-cylinder hard drive. By partitioning it into four 38-cylinder volumes, the user
may allocate one volume to word processing, another volume to accounting programs
and data, a volume to a mailing list database, and still have one left over for general
use.

Partitioning also affects how DOSPLUS 3.5 allocates space to its files. When
DOSPLUS creates space on a diskette for a file, it allocates that space in units called
granules, or grans. The size of a granule is determined, in part, by the way in which a
drive is partitioned. When partitioning a drive using the cylinder offset method, all of
the like-numbered tracks on the drive comprise a cylinder, and therefore, a cylinder
contains a great many sectors. When partitioning by the head offset method, less
tracks belong to each cylinder, and less sectors are contained in the cylinder.
Generally speaking, the greater the number of sectors per cylinder, the larger
DOSPLUS will calculate the granule size to be. Smaller granule sizes result in more
efficient use of disk space, but also result in more frequent space allocation when
dealing with files of changing size.

The cylinder offset method also maximizes disk access speed by ensuring that the
largest cylinder possible is being used (remember that an entire cylinder is accessible
at any one time by the read/write heads). The greater the amount of storage
immediately available to the hard drive (that is, with no need to re-position the heads), the
faster the disk access time. When partitioning by head offset, the size of
the cylinder is minimized, and the number of cylinders generally maximized. This
results in a great deal of head movement, and slower disk access.

In light of these facts, it can be seen that rigid drive partitioning must always be
a compromise between access time and storage efficiency. If many small files are to
be stored on the rigid drive, it may be advantageous to minimize cylinder size by
using the head offset method of partitioning. If storage efficiency is not so important,
or if the files to be stored on the rigid drive are few and large, the cylinder offset
method will afford greater speed. Of course, the two methods may be combined to
achieve both a small granule size and good access speed.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/4

II. - System Files

The DOSPLUS 3.5 system is constructed on an overlay scheme. This means that
only portions of the complete operating system are resident in the computer’s RAM at
any given moment. Because of this overlay concept, the operating system may offer
many powerful and sophisticated features, since the actual amount of available
memory is not an absolutely limiting factor.

DOSPLUS 3.5 is composed of several system files. These system files are divided
into three groups:

1. The system executive, SYS0. This is the program that handles the loading and
execution of the other system programs, basic I/O to and from the floppy disk
drives and other system devices, and provides other functions that must be
permanently resident in RAM. SYS0 must be present on all DOSPLUS 3.5 system
diskettes for proper operation. SYS0 resides from 4000H-4DFFH.

2. The low overlay group, SYS1-SYS8. These system modules perform basic system
functions such as command evaluation, file and device OPENs and CLOSEs,
READs and WRITEs, error messages, and other middle-level functions. The low
overlay group occupies the region between 4E00H-51FFH. All low overlay group
system files should be present on all DOSPLUS 3.5 system diskettes, or improper
operation can result.

3. The high overlay group, SYS9-SYS16. The files contain DOSPLUS’s library
commands, such as DIR, COPY, DO, etc. The high overlay group is resident in
the area 5200H-5BFFH. If desired, the user may delete modules from this group,
but only at risk. Once a module is deleted, those library commands contained in
that module will cease to function, and if any such command is attempted, the
system’s proper behavior cannot be guaranteed.

The following table details the functions of each of the overlay programs:

Low overlay group

System File Function(s)

SYS1 Command interpreter, filespec evaluation routines.
SYS2 OPEN@, INIT@, hash code, trapdoor code generation.
SYS3 CLOSE@, KILL@.
SYS4 Granule system - allocates disk space.
SYS5 Error posting & trap
SYS6 DEBUG monitor package.
SYS7 EVAL@, WILD@.
SYS8 RAMDIR@, CAT@, FILPTR@, SORT@.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/5

High overlay group

System File Function(s)

SYS9 CAT, DIR, FREE.
SYS10 APPEND, COPY, LIST.
SYS11 ASSIGN, FILTER, FORCE, JOIN, RESET.
SYS12 AUTO, BREAK, CLOCK, DATE, DEBUG, ERROR, I, LIB,

PAUSE, SCREEN, TIME, VERIFY.
SYS13 DO, FORMS, RS232.
SYS14 ATTRIB, KILL, PROT.
SYS15 BUILD, CLEAR, CREATE, DUMP, LOAD, RENAME.
SYS16 CONFIG, SYSTEM.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/6

III. - Directory Structure

Each DOSPLUS 3.5 diskette, whether it is a system disk or a data disk, contains a
file called DIR/SYS, the diskette directory. The directory contains information that
describes the names, location, length, protection status, and other important attributes
of all the files present on the diskette. The directory is composed of three tables:

1. The granule allocation table, or GAT. The GAT contains information concerning
free and allocated space on the diskette as well as other assorted data.

2. The hash index table, or HIT. The HIT contains the hash codes for each file in
the diskette’s directory, and it is used by the system to locate a file in the
diskette directory.

3. The file entry table. This table, usually several sectors in length, contains
information on individual files, such as the filename, extension, password code,
protection level, file length, etc.

GAT Organization

The granule allocation table, or GAT, is located in sector 0 of the file DIR/SYS,
and is one sector in length. As the name implies, the GAT contains information about
the allocation of granules; that is, the GAT tells us which granules are used and
which are not currently allocated. The GAT also contains other information, which
will be presented below.

Before launching into an explanation of the allocation table, let us define the term
granule. A granule is the smallest unit of storage that the operating system may
assign to a file. The actual size of a granule, in sectors, varies with the nature of the
diskette being considered. On floppy disks, the following table applies:

Diskette Granule Size
Type (Sectors/Gran)

5" SDEN SSIDE/DSIDE 5
5" DDEN SSIDE/DSIDE 6
8" SDEN SSIDE/DSIDE 8
8" DDEN SSIDE 6
8" DDEN DSIDE 10

(SDEN=Single density, DDEN=Double density,
SSIDE=Single sided, DSIDE=Double sided)

On rigid drives, the granule size is computed by the operating system. The granule
size is calculated from the sectors/track and number of sides information set with the
CONFIG command to yield the smallest possible granule size (within the dual
constraints that the number of sectors/cylinder must be evenly divisible by the granule
size, and that no more than 8 granules/cylinder may exist).

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/7

Whenever DOSPLUS 3.5 assigns disk space to a file, it does so in terms of granules.
For instance, if we were to create a file 1286 bytes long on a 5" DDEN diskette
(granule size=6 sectors, from the table above), DOSPLUS would assign an entire
granule to the file, 1536 bytes. In this way, files may be expanded without
continuously allocating more sectors to the file. It is the purpose of the GAT to
maintain a record of which granules have been assigned to files and which granules
are free for allocation.

The allocation table provides a map of all granules on the diskette. Starting at
byte 00H and continuing through byte 5FH (for floppy configurations), each byte in the
table corresponds to an individual cylinder on the diskette. For instance, byte 00H
represents cylinder 0, byte 13H corresponds to cylinder 13H (or 19 decimal), and so on.
Each bit within the byte is used to indicate which granules within the cylinder are
allocated or free. Bit 0 relates the status of granule 0, bit 3 represents granule 3,
etc. A reset bit (logic 0) indicates a free granule, and a set bit (logic 1) indicates an
allocated, or used granule.

Referring to the sample GAT in figure 1, examine byte 06H. This byte has the
value FBH. Converting this byte into its binary equivalent, we get:

FBH = 1111 1011

Recalling that a set bit indicates allocated, or unavailable granules, and that a
reset bit indicates free granules, we can see that cylinder 06H has a single free
granule, and it is granule number 2. All of the other granules on the cylinder are
allocated or otherwise unavailable. Non-existent granules are flagged as allocated in
this table.

Taking another example, look at byte 26H in the allocation table. This byte has a
value of F8H, and converting into binary representation:

F8H = 1111 1000

This time, we can see that cylinder 26H has three free granules, numbers 0, 1, & 2.

On rigid drive configurations, the allocation table is larger, to allow for the
greater number of cylinders available on rigid drives. The allocation table then
extends from byte 00H through byte C7H. In the case of rigid drives, the granule
lock-out table (see below) is not implemented, and locked-out granules are simply
treated as allocated granules.

Bytes 60H through BFH are called the lock-out table. This table is similar in
structure to the allocation table, but its purpose is somewhat different. During
formatting of a floppy diskette, flaws are sometimes found in certain areas of the
media. Rather than discard the entire diskette as unusable, DOSPLUS 3.5 will lock
out, or render inaccessible, the flawed granule(s). It is the purpose of the lock-out
table to map these flawed, locked-out granules. Once again, each byte in the lock-out
table corresponds to a cylinder on the diskette, and each bit within each byte of the
table represents a single granule on a cylinder. A set bit indicates a locked-out
granule, and a reset bit indicates a useable granule. All granules marked as locked-out
are also mapped as allocated in the allocation table during format. As is the case with
the allocation table, any non-existent grans are mapped as locked-out.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/8

Following the lock-out table, byte CBH contains a DOS version number which may
be used to determine what version of the DOSPLUS operating system originally
formatted the diskette. This version number is stored as a single byte BCD value. The
leftmost 4 bits represent the operating system version number, and the rightmost 4
bits provide the release number. Therefore, all diskettes formatted under DOSPLUS 3.5
will bear a version code of 35H.

Byte CCH contains a value that indicates the formatted cylinder count of the
diskette. Thirty-five is added to this value to obtain the actual cylinder count on the
diskette. For example, in figure 1, this byte contains an 05H. Adding 35, we discover
that the sample GAT belongs to a 40-track diskette.

Byte CDH, bit 5 is used to indicate single- or double-sided diskettes. Bit 5 set
indicates a double-sided diskette. Reset, it means single-sided. The remaining bits are
reserved for future use.

The trapdoor code for the diskette master password is stored in bytes CEH and
CFH.

The diskette name is located in bytes D0H-D7H, followed by the date field in bytes
D8H-DFH. Both fields are left-justified and padded with blanks on the right. In the
sample GAT, the diskette name is "DOS 3.5" and the date is "01/18/83".

The remainder of the GAT sector, bytes E0H-FFH are used to store the AUTO
command executed upon boot-up. This can be any ASCII string, terminated with a
carriage return, 0DH. In the sample GAT, the AUTO command string has been set to
STARTUP. If a carriage return is present in the first byte of the AUTO command
field, the diskette effectively has no AUTO command set.

NOTE: It is possible to place an auto command on the GAT of a data disk, either
using the DOSPLUS command AUTO, or by means of a user program. However, the
AUTO command is only executed from the system disk used to boot the computer. The
AUTO command stored on a data diskette will be preserved when and if the diskette
is SYSGENed, at which time the AUTO command will become active.

Sample Granule Allocation Table

00: FFFF FFFF FFFF FBF8 FFF8 F9F8 FBF8 FFFF
10: FFFF FFFF FFFF FFFF FFF9 FFF9 FFF9 FFFF
20: FBF8 F8F8 F8F8 F8F8 FFFF FFFF FFFF FFFF
30: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
40: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
50: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
60: F8F8 F8F8 F8F8 FBF8 F8F8 F8F8 F8F8 F8F8
70: F8F8 F8F8 F8F8 F8F8 F8F8 F8F8 F8F8 F8F8
80: F8F8 F8F8 F8F8 F8F8 FFFF FFFF FFFF FFFF
90: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
A0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
B0: FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
C0: FFFF FFFF FFFF FFFF FFFF FF35 0500 96425...B
D0: 444F 5320 332E 3520 3031 2F31 382F 3833 DOS 3.5 01/18/83
E0: 5354 4152 5455 500D 2020 2020 2020 2020 STARTUP.
F0: 2020 2020 2020 2020 2020 2020 2020 2020

Figure 1

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/9

HIT Organization

The hash index table, or HIT is located in sector 1 of the file DIR/SYS, and is one
sector in length. DOSPLUS 3.5 uses the HIT to locate files in the directory. When a
file is created, the operating system generates a 1-byte hash code from the filename
and extension. This hash code has a value between 01H and FFH (a code of 00H
indicates an unused HIT entry). The hash code is then placed into some location in the
HIT. The location of the hash code is used to determine the location of the file
primary directory entry. Whenever DOSPLUS searches for that file in the future, it
first calculates the hash code and searches for a matching hash code in the HIT. When
a matching code is found, the system reads the proper file directory entry and, since
there may be more than one matching hash code in the HIT, compares the actual
filenames. If the names do not match, the system continues to search the HIT for
another matching hash code (different filenames may yield identical hash codes). Using
this hashing method, the operating system can locate any file entry in the directory
very quickly, as opposed to a sequential search of the directory file.

As mentioned above, the position of a hash code entry in the HIT table is used to
determine the location of the file’s primary directory entry. The position of the hash
code in the HIT is referred to as the logical file number, or LFN. For example, let us
assume that the hash code generated for the filename TEST/TXT is 30H. Referring to
the sample HIT in figure 2, we see that there is an entry at byte 4BH that contains a
30H (and in this case, there is only one matching code in the table). Therefore, the
logical file number for the file TEST/TXT is 4BH.

Sample Hash Index Table

00: A2C4 2E2F 2C2D 2A2B 2829 2627 27A7 26A6 .../,-*+()&''.&.
10: 25A5 2400 00C1 0000 00F2 C400 0000 A6D9 %.$.............
20: 0000 0000 0000 EE00 00E2 4BDF 5200 3800K.R.8.
30: 0000 0000 0000 0000 0000 0000 0000 0096
40: 47F8 0000 D4C2 F686 E800 B130 4800 9EBA G..........0H...
50: FE00 5EB7 C4E4 00C4 0000 0000 EC00 001C ..^.............
60: 0000 0000 0000 43C4 AF00 0029 EA00 00A0C....)....
70: 0000 0014 0000 0000 0000 0000 0000 0000
80: 00D2 00E9 C344 4007 0000 8E4B 9200 0044D@....K...D
90: 00F0 0000 00D8 0000 0000 2600 C500 0000&.....
A0: 0000 00A6 0000 8044 0000 0000 0000 0000D........
B0: 0000 0000 0000 0000 0000 0000 0000 0000
C0: 0000 00BE 00AF 00B3 F44D 0000 00E8 0000M......
D0: 0000 00C3 0000 0000 00C6 7300 0000 0056s....V
E0: 0000 0000 0000 0029 0000 0000 00C3 0000)........
F0: 0000 00FB 0000 0000 0000 0000 0000 00000.....

Figure 2

The LFN contains two pieces of information: The directory sector number, and the directory
entry number. The LFN may be broken down as follows:

LFNByte: 0 1 0 0 1 0 1 1
| |

Entry # Sector #-2

That is, bits 0-4 provide the sector number offset (add 2 for the actual sector
number) containing the directory entry, and bits 5-7 indicate the proper entry within
the sector. In the previous example, the position of the hash code located at 4BH

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/10

number) containing the directory entry, and bits 5-7 indicate the proper entry within
the sector. In the previous example, the position of the hash code located at 4BH
indicates that the file primary directory entry is located on directory sector 0DH in
entry 2.

File Entry Organization

File directory entries are stored in the file DIR/SYS starting at sector 2 and
continuing for the remainder of the file. Each sector contains eight 32-byte directory
entries, which begin at relative bytes 00H, 20H, 40H, 60H, 80H, A0H, C0H, and E0H.
An entry may be either of two types: File primary directory entries (FPDE), or file
extended directory entries (FXDE). The general structure of both types of entries are
similar:

Description Description
Byte (FPDE) (FXDE)

Entry+00H Flags Flags
Bit: 7: 0=FPDE, 1=FXDE Bit 7: - Same -

6: 0=User file, 1=System file Bit 6: - Unused -
5: Reserved Bit 5: - Unused -
4: 0=KILLed file, 1=Active file Bit 4: - Same -
3: 0=Visible file, 1=Invisible file Bit 3: - Unused -

Bits 0-2: Protection level, 0-7 Bits 0-2: - Unused -

Entry+01H Flags Reverse linking LFN
Bit: 7: 0=Shrinkab1e, 1=Non-shrinkable pointer

6: 0=File unmodified, 1=File modified
5: Reserved
4: Reserved

Bits 0-3: Month

Entry+02H Date information - Unused -
Bits 3-7: Day
Bits 0-2: Year-1980

Entry+03H End of file byte - Unused -
Entry+04H Logical record length (0=256) - Unused -
Entry+05H Filename, 8 characters, left-justified - Unused -
Entry+0DH Extension, 3 characters, left-justified - Unused -
Entry+10H Access password trapdoor code, 2 bytes - Unused -
Entry+12H Update password trapdoor code, 2 bytes - Unused -
Entry+14H Ending record number, 2 bytes - Unused -
Entry+16H Segment descriptor list, 8 bytes - Same -
Entry+1EH Seg. desc. terminator/linking LFN, 2 bytes - Same -

Entry+00H

This byte contains the file’s protection level and several flags. Bit 7, when set,
flags an entry as a file extended directory entry (FXDE). Extended entries are
required when a file a large enough or segmented enough to require more segment

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/11

descriptors than a single directory entry can provide. FXDE’s do not contain any
information in bytes 02-15H, but byte 01H does contain a logical file number which
points to the file’s previous FPDE or FXDE.

Bit 6 is used to differentiate between system files and user files. Only DOSPLUS
3.5 /SYS modules normally have this bit set. For all other files, this bit should
be reset.

Bit 4 is used to indicate whether a directory entry belongs to a currently active
file, in which case the bit is set, or if it belongs to a KILLed file, in which case the
bit is reset. Under DOSPLUS 3.5, directory entries are not destroyed when files are
killed; they are merely marked as KILLed. This allows the RESTORE utility to
reconstruct the file if desired. Note that KILLed directory entries may be re-used by
the system as required.

Bit 3 flags the visible/invisible status of the file. When set, the file is invisible;
when reset, the file is visible.

Bits 0-2 contain the protection level of the file, which may assume any value from
0-7.

Entry+01H

In a FPDE, this byte contains two flags and a portion of the date of the file’s last
update. Bit 7 reflects the file’s shrinkable/non-shrinkable status. Normally, DOSPLUS
3.5 will allow files to decrease in size, or shrink, if so instructed by a user program.
If bit 7 is set, this automatic file shrinkage will be inhibited. When reset, the system
will reduce the size of the file if needed.

Bit 6 is used to indicate if a file has been modified, or written to, since the last
time this flag was cleared (i.e., during a BACKUP, ATTRIB fs (MOD=N), etc.). When
this bit is set, the file has been modified, and when reset, no new data has been
written to the file.

Bits 0-3 are used to store the month portion of the date of the last file update.
This value will normally fall between 1 and 12, indicating a date from January through
December.

As mentioned above, this byte is also used in FXDE’s as a reverse linking LFN.
That is, this byte will hold the logical file number of the directory entry that linked
into the FXDE.

Entry+02H

This byte contains the balance of the file’s date information. Bits 3-7 contain the
day of the month, and bits 0-2 contain the year. All year information is based on a
starting year of 1980. Therefore, if this byte contained the value 7BH, this would
represent the 15th day of the month (the month is stored in REC+01H) in 1983.

Entry+03H

The value of this byte indicates how many bytes the file extends into its final
record. For instance, a file of logical record length 37 with 65 records is 2405 bytes
long. Such a file would completely fill 9 256-byte sectors, and a portion of a tenth

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/12

sector. This byte is used to tell us how much of that final sector is used. In this
example, the file would extend 101 bytes into the last sector, and therefore the
end-of-file (EOF) byte would be 64H (100 decimal). An EOF byte of 0 means that the
entire sector is filled.

Entry+04H

This byte contains the logical record length, or LRL, with which the file was
originally created. A value of zero indicates a LRL of 256.

Entry+05H

The 8-character filename is stored in the bytes entry+05H through entry+0CH. The
filename is left-justified and padded with blanks on the right.

Entry+0DH

The 3-character extension is contained in entry+0DH through entry+0FH. The
extension is left-justified and padded with blanks on the right.

Entry+10H

This two-byte value contains the trapdoor code for the file’s update password.

Entry+12H

This two-byte value contains the trapdoor code for the file’s access password.

Entry+14H

These two bytes contain the total number of sectors occupied by the file. Both
complete and partial sectors are included in this count.

Entry+16H

The bytes from entry+16H through entry+1DH make up the segment descriptor list.
The segment descriptor list is a set of four 2-byte values that describe the location of
the various portions, or segments, of the file. The first byte of each set of two
contains the cylinder number at which the segment begins. The second byte contains
two pieces of information: Bits 5-7 indicate the granule number within the cylinder at
which the segment begins, and bits 0-4 contain the number of contiguous granules that
are in the segment. This value is offset by 1; that is, a count of 0 means that the
segment contains 1 granule, a count of 27 means that the segment contains 28
granules, etc.

If the first byte of any of the four segment descriptors is FFH, the file has no
more segments. If none of the four descriptors contains an FFH, then the two bytes at
entry+1EH and entry+1FH must contain either the FFH termination code or a link to a
FXDE.

Entry+1EH

The purpose of these two final bytes of the directory entry is to (a) signal the end
of the segment descriptor list, or (b) provide a pointer to a file extended directory

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/13

entry which contains another segment descriptor list. If entry+1EH contains an FFH,
then there are no more segment descriptors to follow. If the value is an FEH, the
following byte contains a logical file number which points to a FXDE containing more
segment descriptors.

IV. - BOOT/SYS Organization

All DOSPLUS 3.5 diskettes, both system and data disks, contain a file named
BOOT/SYS. This system file occupies the first few sectors on each diskette. On data
diskettes, the BOOT/SYS file contains information about the location of the diskette’s
directory. System diskettes and rigid drives contain more data in the BOOT/SYS file.
Before describing the contents of the file, let us explore the purpose of BOOT/SYS.

In the case of system disks, the first and foremost responsibility of the BOOT/SYS
file, or bootstrap, is to provide a small program which is used to load the DOSPLUS
3.5 system file SYS0/SYS. When the computer is booted, a routine in the machine’s
ROM reads a sector from cylinder 0 of the system diskette (sector 0 on Model-I
TRS-80’s, sector 1 on Model-III’s) into RAM at 4200H on the Model-I, 4300H on the
Model-III. This sector should contain a Z-80 object code program, not to exceed 256
bytes in length, saved in core image format. Since data diskettes are not needed to
boot the computer, the bootstrap program is not present in the BOOT/SYS file of such
diskettes.

After loading the 256-byte sector from BOOT/SYS, the ROM will transfer control
to the program loaded at 4200H (Model-I) or 4300H (Model-III). This 256-byte bootstrap
program must now perform several functions:

(a) It must read sector 2 of the bootstrap file into RAM, to obtain the important
perishable DCT information on the system disk. This information is of great
consequence when reading subsequent information from the diskette.

(b) It must read any alternate system driver program from sectors 3 - x into RAM
for execution after SYS0 is loaded and initialized (optional).

(c) It must locate and load the SYS0/SYS file, and transfer program control to it.

The actual bootstrap program is only part of the information contained in the
BOOT/SYS file. Sector 0, byte 02H always contains a value that indicates the cylinder
which contains the diskette’s directory. For instance, if a diskette’s directory were
located on cylinder 20, this byte would have a value of 14H (20 decimal). On previous
versions of DOSPLUS, bit 7 of this byte would be set to indicate a double-density
diskette, and reset to indicate single-density. This convention is no longer followed,
but compatibility with older disks may be maintained by ignoring the status of bit 7.

Sector 2 of the bootstrap file contains a great deal of information. Beginning at
byte 00H and continuing through byte 08H is a duplicate of the perishable portion of
the drive control table (DCT) for the diskette. See section VII of this manual for
details on the DCT. Floppy data diskettes do not contain a DCT in the BOOT/SYS
file.

Sector 2, byte 10H contains several flags. Bits 4-7 are reserved for future use. Bit
3 controls whether or not DOSPLUS 3.5 will prompt the operator to input the current
time upon boot-up. Set, this bit instructs the DOS to prompt for the time; reset, the

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/14

time question is skipped. Bit 2 performs a similar function for the date prompt. If this
bit is set, the operator will be asked to enter the date; if reset, the question will not
be asked. Bit 1 determines whether DOSPLUS 3.5 will display the graphic DOSPLUS
"billboard" logo on the CRT when booted. If set, the logo will be displayed, if reset,
the display will be suppressed.

Bit 0 of byte 10H is used to flag the presence of an alternate system driver. If set,
this means that the bootstrap program loads a special disk device driver program into
RAM during the bootup process. The system uses this bit in conjunction with the word
stored in bytes 11H and 12H. When bit 0 of byte 10H is set, the system will transfer
control to the address specified by the two bytes stored in 11H and 12H. If bit 0 is
not set, bytes 11H and 12H are ignored.

Byte 13H controls the blink/no blink status of the cursor. If this is a non-zero
value, the cursor will blink on and off. The cursor will remain steadily on if this byte
contains a zero.

Byte 14H contains the value of the character used as a cursor.

Byte 15H holds the caps status to be used after bootup. That is, it determines
whether alphabetic keys will produce upper- or lower-case letters in the unshifted
mode. If this byte contains a non-zero value, unshifted keys will produce upper-case
letters. If the byte is a zero, lower-case will result.

Byte 16H is the default step rate code for all floppy drives. Unless a drive has
been re-CONFIGured with a new step rate code or /CFG file, this byte will determine
the rate at which the drive’s head stepper motor is operated.

Byte 17H and 18H are used to output a user-specified value to a user-specified
port upon bootup. Byte 17H contains the port address, and byte 18H contain the value
to be output to the port.

V. - DCB Table & DCB Organization

Device Control Blocks (DCBs)

A device control block, or DCB, is an area of RAM that contains certain data that
is used to control the flow of data to and from character-oriented devices. Six
devices are available under DOSPLUS 3.5: @KI (the keyboard), @DO (the video
display), @PR (the printer), @RS (the RS232 serial interface), and two user-defined
devices, @U1 & @U2.

DCBs may be of varying length, but they do share a common structure, which is
diagrammed below:

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/15

Address Data

DCB+00H DCB type flags
Bit 7: Extended DCB. 0=Normal, 1=Extended
Bit 6: FILTER flag. 0=No FILTER, 1=FILTER
Bit 5: JOIN flag. 0=No JOIN, 1=JOINed
Bit 4: FORCE flag. 0=No FORCE, 1=FORCEd
Bit 3: NIL flag. 0=Active, 1=NIL
Bit 2: Ctl type. 0=No control I/O, 1=Control I/O
Bit 1: Output type. 0=No output, 1=Output
Bit 0: Input type. 0=No input, 1=Input

DCB+01H 2-byte driver address

The first byte of all DCBs contains 8 flags that describe the current status of the
device. Bit 7 is used to indicate that one or more of three special conditions are in
effect: the device is JOINed to another device or file, the device is FORCEd to
another device or file, or the device is NIL. If any one (or more) of these conditions
are true, bit 7 will be set. Otherwise the bit will be reset.

Bit 6 is used to inform the device driver that a filter table is installed for the
device and that it is active. It is the driver’s responsibility to translate any
characters passing to or from the device through the filter table.

Bit 5 is set whenever the device is currently JOINed to another device or a
file. When this bit is set, bit 7 must also be set or the JOIN will not be performed.

Bit 4 is used to flag an active FORCE to another device or a file. If bit 4 is set,
bit 7 must also be set or the FORCE will be ignored.

Bit 3 is used to indicate that a device is currently NIL. A NIL device does not
output characters, nor does it pass any input characters. If bit 3 is set to flag a NIL,
bit 7 must be set or the NIL will have no effect.

Bits 0 through 2 are used to indicate the type of I/O that a driver is capable of
performing. Bit 2, when set, means that the driver is capable of accepting or
providing control data. By control, we mean any data transfer operation that does not
fall into the classifications of input or output. Control data transfers are typically
used to set or query the status of devices.

Bit 1 flags a driver as capable of accepting data for output to a device. A printer
driver, for example, would have this bit set, meaning that the driver accepts data for
output to the printer.

Bit 0 indicates that a driver can provide data that is input from a device. A
keyboard driver would be an example of such a device; it receives data from a device
and passes it back to the requesting program.

The second and third bytes of a DCB contain the address of the device driver
program. In order to pass data to a device, or accept data from a device, a program
points a Z-80 register pair to the address of the proper DCB. A call is then made to a
subroutine, called character input/output, or CIO. This routine prepares for input or
output from or to the device and then transfers control to the driver address
contained in the DCB.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/16

During an active JOIN or FILTER, the contents of DCB+01H and DCB+02H are
replaced with a pointer to the destination DCB (in the case of a FORCE) or with the
address of the linking device’s ENTRY+04H position in the DCBTBL (in the case of a
JOIN). The old driver address, and the original contents of DCB+00H (the DCB type)
are preserved in the DCB table, described below.

The DCB Table

DOSPLUS 3.5 maintains a table that references the DCBs of all six
character-oriented system devices. This table, called DCBTBL, consists of six 11-byte
entries. Each entry has the following structure:

Byte Data
0,1 DCB address
2,3 Filter table address
4,5 Linking DCB address
6,7 Driver address (if JOINed, FORCEd)
8 DCB type (if JOINed, FORCEd)
9,10 Device name, 2 character

Bytes 0 & 1 contain a pointer to the actual device control block. If this pointer
contains a value of FFFFH, the device has no currently defined DCB.

Bytes 2 & 3 point to any filter table that may be installed in RAM for the device.
Refer to section X, Writing Drivers for DOSPLUS 3.5 for details on the filter table.

Bytes 4 & 5 are used during a JOIN to point to the address of the linked device’s
DCB. For instance, if the @KI device were JOINed to the @RS device, this byte in
@KI’s DCBTBL entry would contain a pointer to the @RS DCB.

Bytes 6 & 7 are used during an active JOIN or FORCE to store the device driver
address. This address is displaced from the DCB during a JOIN or FORCE when a
linking device DCBTBL ENTRY+04H address is installed (for a JOIN), or when the
address of a destination DCB is inserted (for a FORCE).

Byte 8 stores the device’s DCB type as it was before a FORCE, JOIN, or a KILL
modifies it. It is used to restore the status of the DCB type after FORCE, JOIN, or NIL
have been terminated.

The last two bytes in each DCBTBL entry contain the two-character name of the
device. The device name is left-justified and padded with a blank if less than two
characters in length.

DOSPLUS 3.5 supports six character-oriented devices. Two of these devices, @U1 &
@U2 are user-defined and have no pre-defined DCB area within the system. @RS also
has no fixed DCB address within the DOS. The three remaining devices, @KI, @DO, &
@PR all have DCB locations reserved in system RAM. If desired, the user may
relocate and redefine the DCBs. The information presented below refers to the
standard location of these DCBs and the meaning of the information within them.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/17

===
Device name: @KI
DCB address: 4015H

Byte Meaning
DCB+00H DCB type (1 byte)
DCB+01H Driver address (2 bytes)
DCB+03H Reserved (1 byte)
DCB+04H Caps lock switch. Zero=No caps, Non-zero=Caps (1 byte)
DCB+05H Cursor blink count. (1 byte)
DCB+06H Cursor blink status. Zero=Off, Non-zero=On (1 byte)
DCB+07H Cursor blink switch. Zero=Blink, Non-Zero=No blink (1 byte)

===
Device name: @DO
DCB address: 401DH

Byte Meaning
DCB+00H DCB type (1 byte)
DCB+01H Driver address (2 bytes)
DCB+03H Cursor position (1 byte)
DCB+05H Cursor switch. Zero=Off, Non-zero=On (1 byte)
DCB+06H Cursor character (1 byte)
DCB+07H Special chr./tabs switch. Zero=Tabs, Non-zero=Special (1 byte)

(Model-III only)
===
Device name: @PR
DCB address: 4025H

Byte Meaning
DCB+00H DCB type (1 byte)
DCB+01H Driver address (2 bytes)
DCB+03H Page length, in lines (1 byte)
DCB+04H Lines printed (1 byte)
DCB+05H Character count (1 byte)
DCB+06H Maximum width (1 byte)
DCB+07H Maximum lines/page (1 byte)

===
In addition, there exists on the Model-III version of DOSPLUS 3.5, an RS232

initialization DCB, which is arranged as follows:

DCB address: 41F5H

Byte Meaning
DCB+00H DCB type (1 byte)
DCB+01H Driver address (2 bytes)
DCB+03H Baud rate code - MSN=Transmit rate, LSN=Receive rate (1 byte)
DCB+04H UART configuration code (1 byte)
DCB+05H Wait switch. Zero=No wait, Non-zero=Wait. (1 byte)

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/18

VI. - FCB Structure

One of the most important functions of a disk operating system is the manipulation
of disk data files. Under DOSPLUS 3.5, data files are accessed via the various system
file handling routines, described in section VIII of this manual. Each time a system
routine performs a function on a file, it references that file through a portion of
RAM known as a file control block, or FCB. In this respect, the FCB is much like a
DCB; it is used to control the flow of data to or from the file. In fact, DCBs and
FCBs can be interchanged for character I/O functions (see GET@ and PUT@, section
VIII).

All file control blocks have a common structure. Before a file is OPENed or INITed
for I/O, the DCB is a 32-byte area of RAM that should contain the filename,
extension (if any), password (if any), and drivespec (if needed) of the file to be
referenced. This filespec should be terminated with a carriage return (0DH) or an ETX
character (03H). After an OPEN or INIT, the FCB contains the following information:

Byte Meaning
FCB+00H FCB Type, 80H (1 byte)
FCB+01H Flags (1 byte)

Bit 7: Blocked records
Bit 6: Random access
Bit 5: Buffer=NRN
Bit 4: Buffer updated
Bit 3: Reserved
Bits 0-2: Access code

FCB+02H Flags (1 byte)
Bit 7: Non-shrinkable file
Bit 6: Modify flag
Bits 0-5: Reserved

FCB+03H File I/O buffer address (2 bytes)
FCB+05H Next record number offset (1 byte)
FCB+06H Device # (1 byte)
FCB+07H Logical file number (1 byte)
FCB+08H End of file byte (1 byte)
FCB+09H Logical record length (1 byte)
FCB+0AH Next record number (2 bytes)
FCB+0CH Ending record number (2 bytes)
FCB+0EH Segment descriptor list (17 bytes)

The byte located at FCB+00H is called the FCB type byte, and it is used to
distinguish an FCB from a DCB. In the case of an FCB, this byte will always have the
value 80H. DCB type bytes (located at DCB+00H) may never assume this value.

FCB+01H contains several flags reflecting the status of the file. Bit 7 indicates
that the file is made up of blocked records. A blocked record is a logical record
which shares a physical record with one or more other logical records. When bit 7 is
set, it means that the DOS is automatically performing record blocking (placing
multiple logical records into a single physical record) and unblocking (retrieving
individual logical records from a physical record). User programs sometimes reset this
bit to force the operating system to write an entire physical record to diskette when
working with logical records of less than 256 bytes in length.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/19

Bit 6 flags the mode in which a file is accessed. When a file is first OPENed or
INITed, this flag is reset, indicating sequential access. The flag is set when a random
access operation is performed on the file (the POSN@ system routine). If a file is
written to and this flag reset, the operating system will shrink the length of the file
to reflect the last byte written.

If the file I/O buffer specified at time of OPEN or INIT contains the next logical
record in the file, bit 5 will be set. If the buffer does not contain the next record,
the bit will be reset to indicate that the operating system must perform a READ to
access that record.

Bit 4 is used to indicate that the contents of the file I/O buffer have been updated
or modified since the last READ or WRITE from or to the file.

Bits 0-2 contain the access level code under which the file was OPENed. For
instance, imagine a file called TEST/CMD that has an update password of "PW" and an
access password of "TEST", and the protection level is set to 5. When this file is
OPENed as "TEST/CMD.PW", the access level code in the FCB will contain the value
0, to indicate total access. If the file is opened with the filespec "TEST/CMD.TEST",
the access level code will contain a 5, reflecting the protection level authorized by
the access password.

FCB+01H contains two more important flags. Bit 7 is used to inform the operating
system that it should not attempt to shrink the file at CLOSE time if the length of
the file has decreased.

Bit 6 is set whenever the file has been written to, or modified. If no data has been
output to the file, this bit will remain reset.

FCB+03H and FCB+04H point to a 256-byte file I/O buffer which is specified at
the time of OPEN or INIT. All data transferred between the computer and the file
must pass through this buffer.

FCB+05H is a single-byte value that contains an offset to the beginning of the
next logical record within the current physical record. If the beginning of the next
logical record lies at the start of the next physical record, this byte will have a value
of 0.

FCB+06H contains the drive device number upon which the file is resident.

FCB+07H is a one byte value which reflects the logical file number, or LFN, of the
file’s primary directory entry.

FCB+08H contains the end of file byte, or EOF. This byte tells the operating
system how far the file extends into the final sector of the file. A value of 0 means
that the entire sector is occupied by the file.

FCB+09H is the logical record length of the file, as determined by OPEN or INIT.
Files with an LRL of 256 will contain a 0 in this byte.

FCB+0AH and FCB+0BH contain the next record number, or NRN. This is simply the
number of the next physical record in the file.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/20

FCB+0CH and FCB+0DH contain the total number of complete sectors in the file.
Please note that partial sectors are not included in this count.

FCB+0EH through FCB+1FH contain a segment descriptor list used by the operating
system to retrieve portions of the file from diskette.

VII. - DCT Organization

DOSPLUS 3.5 maintains eight drive control tables, or DCTs, in which all of the
information pertaining to each disk drive device in the system is stored. Since these
DCTs may be located at any location in RAM, DOSPLUS provides a table, called
DCBTBL, which contains the addresses of each DCT. DCTTBL consists of eight 4-byte
entries arranged as follows:

Byte Meaning

ENTRY+00H Pointer to DCT (2 bytes)
ENTRY+02H Device name (2 bytes)

The first two bytes of a DCTTBL entry point to the actual location of the DCT. If
this pointer has a value of FFFFH, the drive currently has no DCT assigned to it.

The next, and last, two bytes of a DCTTBL entry contain the two-character name
of the drive. If the name is less than two characters in length, the rightmost
character is padded with a blank.

The DCT itself is a 20-byte long region of RAM which contains all of the
information necessary for the operating system and its associated disk drive device
drivers to operate the drive. The following information details the structure of the
DCTs used by DOSPLUS 3.5’s drivers. The individual user may create a DCT using any
structure desired, assuming drivers are written to interface to such DCTs, but we
encourage the use of this standard DCT arrangement, as the CONFIG library command
assumes the following structure is used:

Non-perishable DCT information
Byte Meaning
DCT+00H DCT type (1 byte)
DCT+01H Driver address (2 bytes)
DCT+03H Flags (1 byte)

Bit 7: 5"/8" switch. 0=5", 1=8"
Bit 6: Write protect. 0=No prot., 1=Protected
Bit 5: Floppy/rigid switch. 0=Floppy, 1=Rigid
Bit 4: Motor delay switch. 0=No delay, 1=Delay
Bit 3: Head load delay switch. 0=No delay, 1=Delay
Bit 2: Skip switch. 0=No skip, 1=Skip
Bit 1: Fixed/removable switch. 0=Fixed, 1=Removable
Bit 0: Log disk switch. 0=No log, 1=Log disk

DCT+04H Step rate code (1 byte)
DCT+05H Head offset (1 byte)
DCT+06H Cylinder offset (2 bytes)
DCT+08H Sector offset (1 byte)
DCT+09H Head location (1 byte)
DCT+0AH Physical drive number (1 byte)

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/21

Perishable DCT information
Byte Meaning
DCT+0BH Flags (1 byte)

Bit 7: Single/double density switch. 0=Single, 1=Double
Bit 6: Directory protect switch. 0=No prot., 1=Protected
Bit 0-5: Reserved

DCT+0CH Surface count (1 byte)
DCT+0DH Sectors/track (1 byte)
DCT+0EH Directory length (1 byte)
DCT+0FH Sectors/gran (1 byte)
DCT+10H Grans/cylinder (1 byte)
DCT+11H Sectors/cylinder (1 byte)
DCT+12H Directory location (1 byte)
DCT+13H Cylinder count (1 byte)

As can be seen from the table, the DCT is divided into two parts, termed the
Non-perishable and the perishable data. Non-perishable data includes the address of
the device driver and most of the physical characteristics of the drive. Perishable
data includes that information which is peculiar to the actual diskette, such as
density, directory location, surface count, etc. Note that perishable data is subject to
automatic change after log-in of a disk drive.

Non-perishable data

DCT+00H is called the DCB type byte. This is analogous to the DCB and FCB type
byte previously discussed, and is used to identify the DCT entry and distinguish it
from an FCB or DCB. The normal value of this byte, for an active drive, is 40H. If
the drive device is NIL, bit 3 will also be set, yielding a value of 48H.

DCT+01H and DCT+02H contain the address of the disk drive device driver
program.

DCT+03H contains eight flags that describe the status of the drive device. Bit 7 is
used to flag whether the drive is a 5 inch or and 8 inch drive. Reset, 5 inch is
indicated, and set, 8 inch.

Bit 6 is used as a software write protect switch. When this bit is set, it means
that the user has set the WP parameter for this drive using the CONFIG command. It
is the responsibility of the driver to respond to this bit.

Bit 5 is used to indicate whether the DCT describes a floppy drive or a rigid
drive. When reset, a floppy drive is described, and when set, a rigid drive description is
contained in the DCT.

Bit 4 is used to inform the driver whether a drive requires a delay after the drive
motor is started. When set, the driver should provide a delay.

Bit 3 indicates to the disk device driver whether or not a delay is required for
read/write head loading. When set, the driver should provide a delay.

When Bit 2 is set, it instructs the device driver to step the read/write head twice
as far as normal when seeking any specified cylinder. This allows DOSPLUS 3.5 to
read and write 40-cylinder floppy diskettes in 80-cylinder drives.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/22

Bit 1 is used to inform the device driver whether a rigid disk is of the fixed or
removable type. When set, this bit indicates a removable type.

Bit 0 instructs the driver to log the diskette during the next access to the drive.
Logging the diskette means that the driver will re-read information (such as side
count) from the diskette during the next read or write operation on the drive.

DCT+04H contains the step rate code for the drive.

DCT+05H is a one-byte value that contains the head offset for partitioned volumes
as specified under the CONFIG library command.

DCT+06H and DCT+07H contain the two-byte cylinder offset for partitioned
volumes.

DCT+08H contains a one-byte sector offset. The sector offset is simply the
beginning sector number on a diskette track.

DCT+09H contains the current cylinder number over which the drive’s read/write
head(s) are located.

DCT+0AH is the physical drive number of the disk drive device.

Perishable data

DCT+0BH contains flags relating to the nature of the diskette in the disk drive. Bit
7 of this byte indicates the recording density of the diskette. Set, this bit flags
double-density media, and reset it means that single-density media is in use.

Bit 6 is used to indicate whether the diskette possesses a protected directory. A
protected directory is a directory which is recorded with a special data address mark.
Normally, floppy diskette directories are protected, but rigid drives often do not have
facilities to create special address marks. Therefore, this bit informs the driver what
type of directory to expect when reading a diskette.

DCT+0CH is a one-byte value that contains the number of surfaces present on a
diskette.

DCT+0DH contains the number of sectors on each track of the diskette.

DCT+0EH is a one-byte value that contains the length of the diskette directory.

DCT+0FH contains the granule size that applies to the drive, in sectors/granule.

DCT+10H is the number of granules present per cylinder.

DCT+11H contains the total number of sectors per cylinder

DCT+12H is a one-byte value that contains an offset from the beginning cylinder of
the volume (DCT+06H and DCT+07H) to the directory cylinder.

DCT+13H contains the total number of cylinders for the diskette or volume.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/23

VIII. - System Entry Points

DOSPLUS 3.5 provides the user with many system functions that can be used to
good advantage in applications programs, which are detailed in the following pages.

Routine name Address Page
Name Model I Model III Number
ABORT@ 4030H 4030H T/30
BKSP@ 4445H 4445H T/28
CAT@ 445AH 4419H T/33
CKEOF@ 4451H 4457H T/29
CLOSE@ 4428H 4428H T/25
CMD@ 4400H 4400H T/32
CMNDI@ 4405H 4405H T/32
DEBUG@ 440DH 440DH T/32
DISKIO% 4485H 4488H T/44
DIVD@ 444EH 4451H T/36
DSP@ 0033H 0033H T/49
DSPLY@ 4467H 4467H T/38
ERROR@ 4409H 4409H T/32
EVAL@ 4479H 4479H T/39
EXIT@ 402DH 402DH T/30
FEXT@ 4473H 444BH T/29
FILPTR@ 4454H 428DH T/30
FSPEC@ 441CH 441CH T/24
GET@ 0013H 0013H T/48
GTDATE@ 4470H 4470H T/39
GTTIME@ 446DH 446DH T/38
INIT@ 4420H 4420H T/24
KBD@ 002BH 002BH T/48
KEY@ 0049H 0049H T/49
KEYIN@ 0040H 0040H T/49
KILL@ 442CH 442CH T/25
LOAD@ 4430H 4430H T/26
LOCDCB% 4488H 44A0H T/46
LOCDCT% 448BH 44A3H T/47
LOCDEV@ 447FH 447FH T/42
MULT@ 444BH 444EH T/36
OPEN@ 4424H 4424H T/25
PARAM@ 4476H 4454H T/37
PEOF@ 4448H 4448H T/28
POSN@ 4442H 4442H T/28
PRINT@ 446AH 446AH T/38
PRT@ 003BH 003BH T/49
PUT@ 001BH 001BH T/48
RAMDIR@ 4457H 4290H T/31
READ@ 4436H 4436H T/26
RESET@ 4413H 4416H T/35
REW@ 443FH 443FH T/27
RUN@ 4433H 4433H T/26
SET@ 4410H 4413H T/34
SORT@ 4482H 4482H T/43
VER@ 443CH 443CH T/27
WILD@ 447CH 447CH T/42
WRITE@ 4439H 4439H T/27

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/24

File Handling Routines

All file-handling routines require that the DE register pair point to a valid
DOSPLUS 3.5 DCB or FCB (see sections V & VI of this manual). Note that many
file-handling routines (FSPEC@, OPEN@, CLOSE@, KILL@) are useful for both file and
character-oriented devices.

===
FSPEC@
Address: 441CH (Model I & III)

FSPEC@ is used to move a file or device specification from one area in RAM
(typically a command line buffer) into a DCB or FCB. FSPEC@ moves the file or
device specification character by character until (a) a terminating character (space,
comma, semicolon, carriage return, etc.) is encountered, or (b) an invalid specification
character is found. If an invalid character is encountered, FSPEC@ will terminate
with an error. FSPEC@ will ignore leading spaces, commas, or the delimiter words
FROM, TO, & USING. Note that FSPEC@ does not return a specific error code, but
merely error status.

ENTRY: DE=> FCB or DCB to accept file or device spec
HL=> RAM buffer containing file or device specification

EXIT: BC is altered
DE=> file/device specification, terminated with ETX (ASCII 03)
HL=> Next field in buffer
Flags: Z=No error, NZ=Error
If NZ, A=Offending character

===

===
INIT@
Address: 4420H (Model I & III)

INIT@ is used to OPEN files and devices for I/O, and may also create new files on
a diskette. Before INIT@ is called, the DE register pair should point to a 32-byte FCB
or DCB containing the name of the file or device to be OPENed (or created and
OPENed, in the case of a new file). If a file is being INITed, the HL register pair must
point to a 256-byte I/O buffer, and the B register contains the logical record length
under which the file is to be OPENed. A value of 0 indicates an LRL of 256. Upon
return from INIT@, the Z register contains error status, and the A register contains
the error code, if any.

ENTRY: B = Logical record length
DE=> FCB or DCB
HL=> 256-byte file I/O buffer

EXIT: A = Error code
Flags: Z=No error, NZ=Error

C=File created
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/25

===
OPEN@
Address: 4424H (Model I & III)

OPEN@ functions in much the same manner as INIT@, with the exception that
OPEN@ will not create a new file. If an attempt is made to OPEN a file that does not
exist, OPEN@ will return a "file not found" error.

ENTRY: B = Logical record length
DE=> FCB or DCB
HL=> 256-byte file I/O buffer

EXIT: A = Error code
Flags: Z=No error, NZ=Error

===

===
CLOSE@
Address: 4428H (Model I & III)

This routine is used to terminate all I/O to and from a file or device. When
CLOSE@ is called, any data that remains in the disk I/O buffer is written to the file,
and the length of file is updated, if necessary. CLOSE@ should always be used after a
file has been written to, but it is not necessary to use CLOSE@ if data has only been
read from the file.

After calling CLOSE@, the FCB or DCB will once again contain the name of
the file or device, and in the case of a file, the drive number upon which the file is
resident. The password is not restored into the FCB.

ENTRY: DE=> OPEN FCB or DCB

EXIT: A = Error code
Flags: Z=No error, NZ=Error -

===

===
KILL@
Address: 442CH (Model I & III)

This routine is used to delete a file from a diskette, freeing the disk space
occupied by the file. The file’s directory entry is not destroyed by KILL@, and
therefore the file may be recovered at a later time with the RESTORE utility. Note
that KILL@ must be used with an open FCB, not a closed FCB. After the execution of
KILL@, the contents of the FCB are destroyed. Please note that KILL@ cannot be
used to kill system devices.

ENTRY: DE=> Open FCB

EXIT: A = Error code
Flags: Z=No error, NZ=Error

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/26

===
LOAD@
Address: 4430H (Model I & III)

This routine will load an object file into RAM. The file must be saved on diskette
in load file format. Upon entry to LOAD@, DE should point to an FCB containing the
name of the file to be loaded. After exit from LOAD@, the HL register pair will
contain the transfer address of the load format file.

ENTRY: DE=> Unopen FCB

EXIT: A= Error code
HL= Program transfer address
Flags: Z=No error, NZ=Error

===

===
RUN@
Address: 4433H (Model I & III)

RUN@ works in the same manner as LOAD@, loading object files in load file format
into RAM. After loading the file into memory, RUN@ also automatically begins
execution of the program file at the file’s transfer address.

ENTRY: DE=> Unopen FCB

EXIT: Control transferred to program file, if successful
If unsuccessful, routine exits to DOS through ABORT@

===

===
READ@
Address: 4436H (Model I & III)

This routine is used to read a single logical record from a file into RAM. DE points
to the open file control block, and HL points to a user data record. The user data
record is not necessary if the file is OPENed with an LRL of 256. In this case, the
record is read into the file I/O buffer specified by the user program at time of OPEN
or INIT. If the LRL of the file is other than 256, the user must specify a buffer of
length=LRL to contain the record to be read from disk.

ENTRY: DE=> Open FCB
If LRL<>256

HL=> User data area to receive file record
If LRL=256

HL is ignored, data placed in file I/O buffer

EXIT: A= Error code
Flags: Z=No error, NZ=Error

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/27

===
WRITE@
Address: 4439H (Model I & III)

WRITE@ is used to write a single logical record to a file. If the file was OPENed
or INITed with a logical record length of 256, the data in the file’s I/O buffer, also
specified at OPEN or INIT, is written to the file. If the LRL <> 256, then the HL
register pair is used to point to a user data record containing the data to be written
to the file. As always, the DE register pair points to the open FCB.

ENTRY: DE=> Open FCB
If LRL <> 256

HL=> User data record to be written to file
If LRL 256

HL is ignored

EXIT: A= Error code
Flags: Z=No error, NZ=Error

===

===
VER@
Address: 443CH (Model I & III)

The VER@ routine functions exactly as the WRITE@ routine, above. In addition,
VER@ reads the record after writing to the file in order to verify that the write
operation was successful. If the record cannot be properly read, an error is reported.

ENTRY: DE=> Open FCB
If LRL <> 256

HL=> User data record to be written to file
If LRL = 256

HL is ignored

EXIT: A= Error code
Flags: Z=No error, NZ=Error

===

===
REW@
Address: 443FH (Model I & III)

REW@ is used to position the file’s next record pointer to the first logical record
in the file. Before adjusting the contents of the FCB, REW@ writes any residual data
in the file I/O buffer to disk.

ENTRY: DE=> Open FCB

EXIT: A= Error code
Flags: Z=No error, NZ=Error

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/28

===
POSN@
Address: 4442H (Model I & III)

This routine allows the user to position a file’s next record pointer to any logical
record desired. POSN@ will, of course, write any residual data in the file’s blocking
buffer to disk before moving to a new record. Note that the use of this routine is the
only way the random access mode may be set for a file.

ENTRY: BC= Logical record number
DE=> Open FCB

EXIT: A= Error code
Flags: Z=No error, NZ=Error

===

===
BKSP@
Address: 4445H (Model I & III)

BKSP@ is used to position a file’s next record pointer to the previous logical
record, after writing any residual data in the file’s blocking buffer to disk. For
instance, if the current record number for a file is 89, executing the BKSP@ routine
would backspace the file one record, to number 88. Note that BKSP@ will not read
the record into RAM; it merely adjusts the information in the FCB such that the next
record read (or written) is the previous record. Note that if one attempts to BKSP@
from record 0, this will result in a current logical record number of FFFFH, or 65,535,
and most likely, an end-of-file error.

ENTRY: DE=> Open FCB

EXIT: A= Error Code
Flags: Z=No error, NZ=Error

===

===
PEOF@
Address: 4448H (Model I & III)

PEOF@ is used to position the file’s next record pointer to the record following
the last record in the file. This is useful when it is desired to lengthen a file without
first reading the entire file into RAM. Note that PEOF@ normally returns error code
1CH, end-of-file. This error should be ignored, and other errors handled normally. As
all other positioning routines, PEOF@ writes any residual data in the file’s I/O buffer
to disk before moving on to another record.

ENTRY: DE=> Open FCB

EXIT: A= Error code
Flags: Z=No error, NZ=Error

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/29

===
FEXT@
Address: 4473H (Model I) & 444BH (Model III)

FEXT@ is used to append a file extension to a filename. On entry to FEXT@, the
DE register pair should point to the unopen FCB containing a valid DOSPLUS filename
(extension, password, and drivespec optional), and the HL register pair should point to
a 3 byte file extension. If the extension is less than 3 characters in length, it should
be terminated with an ASCII 03H (ETX) or 0DH (CR). When FEXT@ is executed, it will
add the extension to the filespec. If the filespec already contained an extension,
FEXT@ will have no effect.

Note that the address of this routine is different for the Model I and Model III
versions of DOSPLUS. The Model I entry point is valid under both Model I & III
DOSPLUS, however, the Model III entry point is not valid on the Model I.

ENTRY: DE=> Unopen FCB
HL=> File extension text

EXIT: A= Error code
BC is altered
Flags: Z=Extension added, NZ=Extension not added

===

===
CKEOF@
Address: 4451H (Model I) & 4457H (Model III)

CKEOF@ provides a method of testing for end-of-file; that is, CKEOF@ will return
status in the flags register which indicates whether the file’s next record pointer is
currently at the end of the file.

Note that if CKEOF@ determines that the file is indeed at the end of file, an
error code will be returned in the A register: 1CH or 1DH, both indicating that the
end of the file has been reached.

Also note that CKEOF@ is present at different locations on the Model I and III.

ENTRY: DE=> Open FCB

EXIT: A= Error code
Flags: Z=Not EOF, NZ=EOF

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/30

System Control Routines

This group of system entry points allow the user to return from a running program
to the DOS command prompt, to pass commands to the operating system, display error
messages, enter the DEBUG monitor, and display a diskette directory.

===
EXIT@
Address: 402DH (Model I & III)

Executing a jump to this routine will return the computer to the DOSPLUS
command level. Note that the user need not preserve the stack when terminating a
program via the EXIT@ vector, since the DOS re-initializes the stack on entry to
EXIT@.
===

===
ABORT@
Address: 4030H (Model I & III)

The ABORT@ vector functions in a manner similar to that of EXIT@, but if
ABORT@ is used to exit a program on a DOS error condition, ABORT@ will invoke the
DEBUG monitor, if it is active. In the event of no error, or DEBUG inactive, ABORT@
has the same effect as EXIT@. User programs should exit through this vector upon
abnormal program termination.
===

===
FILPTR@
Address: 4454H (Model I) & 428DH (Model III)

FILPTR@ is used to obtain two pieces of information concerning files: The drive
upon which the file is resident, and the logical file number (LFN) of its primary
directory entry.

Note that the address of this routine is not identical for Model I and Model III
DOSPLUS.

ENTRY: DE=> Open FCB

EXIT: A= Error code
B= Drive device number (0-7)
C= Logical file number
Flags: Z=No error, NZ=Error

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/31

===
RAMDIR@
Address: 4457H (Model I) & 4290H (Model III)

The RAMDIR@ routine allows a user program to examine the contents of one or
more file directory entries, or to determine the amount of free and allocated space
present on a diskette.

Note that the address for RAMDIR@ is not identical for Model I and Model III
DOSPLUS.

ENTRY: B= Drive device number (0-7)
C= Function switch (0, 1-254, 255)
HL=> RAM buffer

If C=0: All FPDE’s will be read into the RAM buffer specified by HL. The buffer
size must be adequate to contain the total number of active FPDE’s on
the diskette. The maximum buffer size may be calculated from:

Bufsiz = (!(Dirsiz-2) x 8" x 22) + 1

where Dirsiz is the size of the diskette’s directory in sectors.

Each directory entry in the buffer is constructed on the following format:

ENTRY+00H:15-character filename, extension, and drivespec. The string
is left-justified and padded with spaces on the right.

ENTRY+0FH:Protection level, 0-6.
ENTRY+10H:EOF byte.
ENTRY+11H:Logical record length.
ENTRY+12H:Ending record number (2-byte, LSB, MSB).
ENTRY+14H:Unused.

The last directory entry in the buffer is followed by an ASCII 2BH, "+",
to mark the end of the list.

If C=1-254: single directory entry is read into a 22-byte RAM buffer specified by
the HL register pair. The structure of the directory entry is the same as
above.

If C=255: Four bytes of free-space information are stored in a RAM buffer pointed
to by the HL register pair. The first two bytes represent the number of
kilobytes of disk space allocated to files on the diskette, and the last two
bytes are the number of kilobytes free on the diskette. Both values are
stored in LSB, MSB format.

EXIT: A= Error code
Flags: Z=No error, NZ=Error

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/32

===
CMD@
Address: 4400H (Model I & III)

A jump to the CMD@ vector results in an exit to. the DOSPLUS command level, as
does EXIT@.
===

===
CMNDI@
Address: 4405H (Model I & III)

This routine is the DOSPLUS command interpreter. The user may pass a valid
DOSPLUS command line (pointed to by the HL register pair) to CMNDI@, and DOSPLUS
will execute the command, returning to the calling program afterward. If an error is
encountered during execution of the command, CMNDI@ will return to the DOSPLUS
command level through the ABORT@ routine.

ENTRY: HL=> Command buffer, terminated with a carriage return, ASCII 0DH.
===

===
ERROR@
Address: 4409H (Model I & III)

This routine posts, or displays, DOSPLUS error messages. The error message number
to display is passed to ERROR@ in bits 0-5 of the A register. Bit 6 controls whether
DOSPLUS will print a normal or emphasized error message. An emphasized error
message is framed in asterisks; ** File not found **• The normal error message is
produced when bit 6 is set, and the emphasized message when bit 6 is reset. Bit 7
controls whether the ERROR@ routine returns to the calling program or exits to the
DOSPLUS command level through the ABORT@ routine. When set, ERROR@ returns to
the calling program; when reset, ERROR@ exits through the ABORT@ vector.

ENTRY: A= Error code
===

===
DEBUG@
Address: 440DH (Model I & III)

This routine invokes the DEBUG monitor, regardless of the active or inactive status
of the monitor.
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/33

===
CAT@
Address: 445AH (Model I) & 4419H (Model III)

This routine is used to display a diskette directory. The drive number whose
directory is to be displayed may be specified in either of two ways: (a) An
ASCII-encoded drive device number "0" through "7" may be loaded into the RAM
location 442BH (Model I) or 4271H (Model III), or (b) the binary drive device number
may be loaded into the C register. Method (a) is compatible with TRSDOS; method (b)
makes better sense.

ENTRY: C= Binary drive device number, 0 - 7
OR

(442BH)= ASCII-encoded drive device number, "0" - "7" (Model I)
OR

(4271H)= ASCII-encoded drive device number, "0" - "7" (Model III)
===

Interrupt Chain Routines

DOSPLUS 3.5 provides two routines that are used to insert and delete user
interrupt routines from the system’s interrupt chain. The interrupt chain is a series of
two-byte pointers maintained by DOSPLUS. Each pointer in the interrupt chain is
referred to as an interrupt slot. These pointers are used to point to task blocks, which
consist of a pointer to the actual interrupt processing task and any other information
required by the interrupt routine.

Upon entry to the interrupt task, the IX register will point to the first byte of the
interrupt task block. For instance, examine the routine below:

LD A,0 ;INT SLOT #0, 133.33 MS
LD DE,INTTSK ;INT TASK BLOCK
CALL SET@ ;INSERT TASK INTO INT CHAIN
.
.
.

INTTSK DEFW TASK ;POINTER TO TASK ADDRESS
COUNT DEFW 0 ;COUNTER WORD
;
TASK LD L,(IX+2) ;GET COUNTER LSB

LD H,(IX+3) ;GET MSB
INC HL ;INC COUNT
LD DE,2250 ;COUNT=2250?
PUSH HL ;SAVE COUNT
OR A ;CLEAR CARRY
SBC HL,DE ;COMPARE HL&DE
POP HL ;RESTORE COUNT
JR NZ,TASK1 ;COUNT<>2250
CALL BEEPER ;MAKE A NOISE
LD HL,0 ;RESTART COUNT

TASK1 LD (IX+2),L ;PUT COUNTER LSB BACK
LD (IX+3),H ;PUT MSB BACK
RET

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/34

This is a trivial routine that will make a beeping noise (generated by the imaginary
routine BEEPER) once every five minutes (2250 x 133.33 mS). Note how the interrupt
task can take advantage of the IX register pointing to the task block. It is common
practice to locate any variables used by the interrupt task in the task block to
simplify the interrupt task’s job.

DOSPLUS actually provides two interrupt chains: a fast chain and a slow chain. On
the TRS-80, the real-time clock, or RTC, generates interrupts several times each
second. The RTC on the Model I generates 40 interrupts per second (each 25
milliseconds) and the Model III RTC generates 30 interrupts per second (each 33.33
mS). The fast interrupt chain is entered each 25 mS on the Model I and each 33.33 mS
on the Model III. There are 2 slots in the Model I’s fast interrupt chain, numbered 4 &
5. Four slots are allocated to the Model III’s fast interrupt chain, numbered 4-7.

The slow interrupt chain is only entered each 100 mS on the Model I, 133.33 mS on
the Model III. Both the Model I and III have four slow interrupt chain slots, numbered
0-3.

The table below contains information regarding which interrupt slots are used by
DOSPLUS to perform certain tasks. Those marked FREE are not used by the system,
and may be used by user programs without sacrificing DOS features.

Interrupt chain slot allocation table - Model I & III DOSPLUS 3.5

Slot # Model I Model III

0 FREE 100 mS FREE 133 mS
1 @DO driver cursor blink 100 mS FREE 133 mS
2 Clock display 100 mS FREE 133 mS
3 Time update 100 mS FREE 133 mS
4 FREE 25 mS FREE 33 mS
5 @PR driver spooler 25 mS FREE 33 mS
6 N/A @PR driver spooler 33 mS
7 N/A ROM int. tasks 33 mS

===
SET@
Address: 4410H (Model I) & 4413H (Model III)

SET@ is used to insert a pointer into DOSPLUS’s interrupt chain. This pointer must
point to an interrupt task block which in turn points to the actual interrupt processing
task. Before entry to the interrupt task, all registers have been saved on the stack
(NOTE: Under Model I DOSPLUS, the IY register is not saved on the stack), and the
user program need only execute a RET instruction after the interrupt task is complete.

Note that the SET@ entry point is different for Model I and Model III DOSPLUS.

ENTRY: A= Interrupt slot number
DE=> Interrupt task block

EXIT: BC is altered
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/35

===
RESET@
Address: 4413H (Model I) & 4416H (Model III)

The RESET@ routine is used to remove a task from the interrupt chain.

Note that RESET@ has different entry points on Model I and III DOSPLUS

ENTRY: A= Slot number containing task to be removed.

EXIT: BC is altered
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/36

Miscellaneous System Routines

DOSPLUS 3.5 provides many useful routines that do not fall into any handy
category, including the parameter parser and command evaluator, the wildcard
evaluator, the sort routine, arithmetic routines, and others.

===
MULT@
Address: 444BH (Model I) & 444EH (Model III)

This routine will perform a 16-bit by 8-bit multiplication. Note that this routine is
not located at the same address on both the Model I and Model III versions of
DOSPLUS.

ENTRY: A= Multiplier
HL Multiplicand

EXIT: A= LSB
L= NSB
H= MSB

===

===
DIVD@
Address: 444EH (Model I) & 4451H (Model III)

DIVD@ will perform a 16-bit by 8-bit division. Note that DIVD@ is located at
different addresses on the Model I and Model III.

ENTRY: A= Divisor
HL= Dividend

EXIT: A= Remainder
HL= Quotient

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/37

===
PARAM@
Address: 4476H (Model I) & 4454H (Model III)

This routine is used to scan a parameter field for parameters and their values. For
instance, the command line:

DUMP TEST/CMD (START=7000H,END=71FFH,TRA=7120H)

contains three parameters in its parameter field, START, END, and TRA, whose values
are 700011, 71FFH, and 7120H respectively. It is PARAM@’s job to scan such a line
and assign values to each parameter.

PARAM@ requires a parameter block. The parameter block consists of a series of
entries, each of which contains a 6-byte parameter name, left justified and padded
with blanks, and a 2-byte pointer. The pointer is used to indicate to PARAM@ where
the value of the parameter is to be stored in RAM. The parameter block is terminated
with a 00H. A typical parameter block is illustrated below:

PRMBLK DEFM 'START ' ;START PARAM
DEFW SRTVAL ;POINTER
DEFM 'END ' ;END PARAM
DEFW ENDVAL ;POINTER
DEFM 'TRA ' ;TRA PARAM
DEFW TRAVAL ;POINTER
DEFB 0 ;END OF BLOCK

This is a parameter block that might be used for the DUMP example given above.
In this case, the value of START (7000H) would be stored in the RAM location labeled
SRTVAL, END (71FFH) would be placed in ENDVAL, and TRA (7120H) would be loaded
into the address labeled TRAVAL.

If PARAM@ encounters a word in the parameter field which does not occur in its
parameter list, it will return with NZ status to indicate that a parameter error has
been detected, and the character causing the error will appear in the A register. Note
that PARAM@ does not return an error code.

PARAM@ may accept either numeric or logical values. A numeric value is one such
as "DATA=82". A logical value is one which has a "YES/ON" (TRUE) or "NO/OFF"
(FALSE) value, such as "PARITY=NO". Note that if a parameter is given without a
value, as in "DIR :3 (SYS)", the parameter, in this case SYS, is assigned a logical
value of YES. A logical value of TRUE is represented by placing an FFFFH in the
parameter’s value, and a value of FALSE is signaled by a 0000H.

PARAM@ will skip any leading spaces or commas preceding the parameter field.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/38

Note that PARAM@ has different locations on the Model I and Model III versions
of DOSPLUS. The Model I address may be used under Model III DOSPLUS, but the
Model III address may not be used under Model I DOSPLUS.

ENTRY: DE=> Parameter block
HL=> Parameter field text

EXIT: BC is altered
Flags: Z=No error, NZ=Error

===

===
DSPLY@
Address: 4467H (Model I & III)

This routine allows a user program to display an entire block of text on the video
display (subject to FORCE and JOIN). Two terminating characters are available for
this routine: ASCII 03H (ETX), which terminates the block display and leaves the
cursor in its current position, and ASCII 0DH (CR), which is displayed, and then
terminates the block display

ENTRY: HL=> Text to be displayed, terminated with 03H or 0DH.
===

===
PRINT@
Address: 446AH (Model I & III)

PRINT@ is used to print a block of text on the printer (@PR), subject to any
FORCEing or JOINing currently in effect. The block of text to be printed may be
terminated with either an ASCII 03H (ETX), or with an ASCII 0DH (CR) which causes
the printer to begin a new line.

ENTRY: HL=> Text to be printed, terminated with a 03H or 0DH.
===

===
GTTIME@
Address: 446DH (Model I & III)

This routine will create an ASCII string representing the current system time in a
user-specified area of RAM in the format HH:MM:SS.

ENTRY: HL=> 8-byte ASCII text buffer
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/39

===
GTDATE@
Address: 4470H (Model I & III)

This routine will create an ASCII string representation of the current system data
in a user-specified area of RAM in the format MM/DD/YY.

ENTRY: HL> 8-byte ASCII text buffer
===

===
EVAL@
Address: 4479H (Model I & III)

This is the DOSPLUS command evaluator. This routine scans a command line for the
source (FROM), destination (TO), wildmask (USING), and parameter fields, placing the
value of each in user-specified regions of RAM.

Normally, EVAL@ assigns the fields in the order FROM, TO, USING as it scans the
command line from left to right. Therefore, the line:

COPY :1 :0 /TXT (ECHO)

would be evaluated with ":1" as the source field, ":0" as the destination, and "/TXT"
as the wildmask. The parameter field is always signaled by a comma or a left
parenthesis. The order in which the fields are placed on the command line may be
modified by the use of the FROM, TO, or USING delimiters, or by the use of wildcard
characters. For instance, the line:

COPY TO :0 USING /TXT FROM :1 (ECHO)

is evaluated identically to the first example, since the FROM, TO, and USING
delimiters instructed EVAL@ which fields were which. Likewise, any field containing a
wildcard character is assumed to be the wildmask, or USING, field. The line:

COPY !/TXT:1 :0 (ECHO)

is evaluated the same as the first two examples. When EVAL@ encounters the
"!/TXT", it immediately places it into the wildmask field, since it contains a wildcard
character. EVAL@ then continues with its normal order, placing ":1" into the source
field and ":0" into the destination field.

In order to perform its function, EVAL@ requires a block of data that instructs it
where to place the data from the various fields. This is called the evaluation block,
and it is a 9-byte area of RAM containing a 1-byte flag, and four 2-byte pointers
arranged as follows:

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/40

EVBLK+00H Flag byte
Bit 3: Parameter field filled
Bit 2: Wildmask field filled (USING)
Bit 1: Destination field filled (TO)
Bit 0: Source field filled (FROM)

EVBLK+01H Source DCB pointer
EVBLK+03H Destination DCB pointer
EVBLK+05H Wildmask DCB pointer
EVBLK+07H Parameter block pointer

After executing EVAL@, the flag byte contains four flags that indicate which
fields were detected on the command line and moved into the appropriate DCB, or
parameter value address in the case of parameters.

The source, destination, and wildmask DCBs are 33-byte regions of RAM which
consist of a 1-byte flag and a 32-byte DCB. The flag byte contains the following
information:

Bit 7: Devicespec in field
Bit 6: Filespec in field
Bit 5: Filespec contains wildcard characters
Bit 4: Reserved
Bit 3: Device field contains drivespec
Bits 0-2: Device number

After executing EVAL@, the contents of the fields are placed in their respective
DCBs, and the flag byte can be used to detect what type of information is in each
DCB. Bit 7, when set, indicates that the DCB contains a device specification. The
device specification may be the name of a character-oriented device, such as @PR, or
a disk drive device, such as :1. If it is a disk drive device name, it may be contained
with a filespec, such as FILE/DAT:2.

Bit 6 indicates that the DCII contains a file specification, and bit 5 is set if the
filespec contains wildcard characters.

Bit 3 is set if the device specification flagged with bit 7 belongs to a disk drive
device.

Bits 0-2 contain the logical device number of any device contained in the DCB.
This device number may be used in conjunction with the LOCDCB% and LOCDCT%
routines detailed elsewhere in this manual.

The parameter block used for EVAL@ is slightly different than that used by
PARAM@. The EVAL@ parameter block consists of one or more parameter entries,
each of which are nine bytes in length, as illustrated below:

PRMBLK+00H 6-byte parameter name
PRMBLK+06H 2-byte pointer
PRMBLK+08H 1-byte type specifier

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/41

The first eight bytes are identical to those used by PARAM@, the first six bytes
containing a left-justified parameter name, padded with blanks, and the next two
bytes containing a pointer to a location in RAM in which to place the value of the
parameter. The EVAL@ parameter block has an additional byte, after the parameter
value address pointer, which specifies to EVAL@ what type of values are acceptable
for each parameter.

This byte is called the type specifier, and it contains three flags as shown below:

Bit 7: String value
Bit 6: Numeric value
Bit 5: Logical value

String values must be enclosed in either single or double quotation marks, and the
beginning address of the string value is placed in the parameter value address
specified in the parameter block. Numeric values may be given in decimal or
hexadecimal and may cover the range 0-65535 decimal or 0000H-FFFFH. The value is
placed in the parameter value address. Logical values may be specified as "YES or
ON" (TRUE) or as "NO or OFF" (FALSE). If a logical parameter is given without a
logical value, as in "DIR :1 (INV)", the parameter value is assumed to be TRUE. A
TRUE value is represented in the parameter value address a an FFFFH, and a FALSE
value as 0000H.

If a command line attempts to set a parameter to a type not specified in the type
specification byte, EVAL@ will return an error.

Note that if it is not desired to use a parameter block in conjunction with EVAL@,
the parameter block pointer in the evaluation block must point to a 00H byte.

ENTRY: HL=> Command line text, terminated with ASCII 0311, or 0DH.
IX=> Evaluation block

EXIT: A= Error code
IX=> Evaluation flags
Flags: Z=No error, NZ=Error

Note: If an error occurs, the HL register will point to the character causing the error.
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/42

===
WILD@
Address: 447CH (Model I & III)

WILD@ is used to compare a file specification to a wildmask and return a status
flag which indicates whether the filespec matches the wildmask. WILD@ actually
performs two functions: The first function involves setting the wildmask to be used in
any following comparisons, and the second function is the actual filespec/wildmask
comparison. The filespec or wildmask provided to WILD@ must be properly terminated
with an ASCII 03H (ETX) or 0DH (CR).

ENTRY: B= Function switch
If B=0, then compare filespec with wildmask
If B=1, then set new wildmask

HL=> Filespec to compare, or wildmask to set

EXIT: Flags: If B=0, Z=Filespec matches wildmask, NZ=Filespec does not match
If B=1, Z=Wildmask set, NZ=Invalid wildmask

===

===
LOCDEV@
Address: 447FH (Model I & III)

This routine will return a device number, given a device specification. Since all
devices under DOSPLUS 3.5 may be renamed at will, this routine is very handy when it
is necessary to determine what device number is referred to by any given device
name. The device number may in turn be used to located the DCB or DCT belonging to
the device by means of the LOCDCB% and LOCDCT% routines. The device number is
returned in the A register, bits 0-2. Bit 3 of the device number is set if the device is
a disk drive device, and reset if it is not.

ENTRY: DE=> 2-character device name prefixed with "@" or ":"

EXIT: A= Bit 3: Disk drive device flag
Bits 0-2: Device number

Flags: Z=Device located, NZ=Device not found
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/43

===
SORT@
Address: 4482H (Model I & III)

This routine will sort a block of memory composed of any number of entries of
user-defined length. All entries in the list to be sorted must be of the same length.
The key upon which the sort is performed may be in any position within the entry, and
may be of any length up to and including the entire length of the entry.

ENTRY: B= Offset from beginning of entry to sort key
C= Length of list entries
DE=> 1st byte of last entry in list
H= Sort switch. H=0: Ascending sort, H<>0: Descending sort
L= Length of sort key
IX=> 1st byte of first entry in list

EXIT: A= Error code
Flags: Z=No error, NZ=Error

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/44

Internal System Vectors

Three very useful routines fall into this category: The disk sector I/O system, and
two routines used to locate system DCBs and DCTs.

===
DISKIO%

Address: 4485H (Model 1) & 4488H (Model III)

This routine is DOSPLUS 3.5’s disk sector I/O system. With it, user programs can
directly access any cylinder and sector on any drive. The DISKIO% routine has ten
basic functions, listed below:

Function Function Function
Code Name Description
0 DCHECK Check for drive ready
1 DHOME Home & initialize drive
2 DSEEK Position read/write head over cylinder
3 DREAD Read a sector
4 DVERF Verify a sector
5 DWRITE Write a sector
6 SREAD Read a directory sector
7 SWRITE Write a directory sector
8 DWRITA Write a system sector
9 DFORMT Format a track/cylinder

All DISKIO% functions require the same entry information and provide the same
exit conditions, given below.

ENTRY: A= Function code
C= Drive device number (0-7)
D= Cylinder number
E= Logical sector number
HL=> 256-byte disk I/O buffer

EXIT: A= Error code
Flags: Z=No error, NZ=Error

With all of the ten DISKIO% functions, the proper function code, taken from the
table above, is loaded into the A register.

The C register should contain the disk drive device number (the number returned
by the LOCDEV@ and EVAL@ routines, or, the position of the drive’s DCTTBL entry).

The D register contains the cylinder number. In the case of partitioned rigid drives,
this cylinder number is the offset from the beginning cylinder of the volume - it is not
the actual physical cylinder number.

The sector number is contained in the E register. The sector number is an offset
from the beginning sector number on the cylinder. The disk device driver must add the
sector offset stored in the drive’s DCT to obtain the actual physical sector number.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/45

The HL register pair must point to a 256-byte disk I/O buffer. Any data to be
written to disk must be placed in this buffer, and all data read from the disk will
appear here.

DCHECK

The DCHECK function is used to test the disk drive to determine its state of
readiness. For this function, only the function code and drive device number need be
specified. upon return from DCHECK, the flag status will be Z if the drive is ready
for I/O, and NZ if the drive is not ready. The C flag will also be set if the drive is
write-protected.

DHOME

The DHOME function causes the drive to home itself, or bring the drive’s
read/write head into position over logical cylinder 0. Like DCHECK, DHOME requires
only the function code and drive device number to be specified upon entry to the
routine.

DSEEK

DSEEK is used to position a drive’s read/write head over a specified logical
cylinder number. The function code, device number, and of course cylinder number
must be provided upon entry to DSEEK.

DREAD

This function is used to read a specified sector from disk. The sector data will be
placed in the disk I/O buffer pointed to by the HL register pair.

DVERF

This function is similar to DREAD, above, in that it will read a sector from disk
into a 256-byte buffer specified by HL. The difference lies in the fact that if an error
is encountered during DVERF, the I/O driver does not re-try, or re-read the sector.
Rather, it immediately aborts and reports an error.

DWRITE

DWRITE is used to write a sector to diskette. The data is taken from the 256-byte
disk I/O buffer pointed to be the HL register pair upon entry to DWRITE.

SREAD

The SREAD function will read a single sector from a diskette’s directory cylinder.
Only the function code, device number, and sector number need be specified for
SREAD, as it will automatically locate the directory cylinder. The data read from the
directory sector will be placed in the disk I/O buffer indicated by the HL register
pair.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/46

SREAD performs another important function under DOSPLUS 3.5. When an SREAD
is executed, the routine initializes the perishable portion of the drive’s DCT if the log
disk flag (DCT+03H, bit 0) is set. On floppy diskettes, this means reading the DCT
with data stored in the driver itself, as well as reading the diskette’s GAT to
determine whether the diskette is single- or double-sided. With this information the
surface count data in the DCT is updated.

On rigid drives, the SREAD DCT initialization is simpler. SREAD merely needs to
read the perishable DCT information stored in sector 2 of the BOOT/SYS file located
on cylinder 0, sector 2, and load that information into the DCT.

SWRITE

The SWRITE function is used to write a sector to the diskette’s directory. Only
the function code, device number, and sector number need be specified upon entry to
SWRITE, as the function will locate the diskette’s directory automatically. The data
written to the directory sector is taken from the disk I/O buffer pointed to by HL.

DWRTEA

The DWRTEA function is used to write a sector to any specified cylinder and
sector address, and in this fashion it is similar to the DWRITE function described
above. The difference between the two functions lies in the fact the DWRTEA writes
a protected or locked sector reserved for use by the directory. This is typically used
by disk formatter program when creating a diskette directory.

DFORMT

The DFORMT function is used to format any specified track or cylinder on a drive.
Whether a single track or an entire cylinder (in the case of multi-surface
diskettes/rigid drives) is formatted is a function of the disk drive device driver.
The standard floppy driver supplied with DOSPLUS 3.5 formats a single track.
===

===
LOCDCB%
Address: 4488H (Model I) & 44A0H (Model III)

This routine may be used to locate the device control block of any
character-oriented device. LOCDCB% will return the address of any of the six
character-oriented I/O devices, given the device number. This is most useful, since
DOSPLUS 3.5 allows user programs to relocate DCBs to any region of RAM, and
indeed, certain devices have no DCB address until such time as a driver is ASSIGNed
to them. If LOCDCB% is used on a device that has no DCB currently defined, the DCB
address returned will be FFFFH.

Please note that this routine resides in different locations on the Model I and
Model III version of DOSPLUS.

ENTRY: A= Device number (0-7)

EXIT: DE=> Device control block
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/47

===
LOCDCT%
Address: 448BH (Model I) & 44A3H (Model III)

This routine is used to locate the drive control table for any of the eight disk
drive devices supported under DOSPLUS 3.5. Since DOSPLUS allows user program to
relocate existing DCTs and define new DCTs, this routine is of great usefulness.

ENTRY: A= Disk drive device number

EXIT: IY=> Drive control table
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/48

Useful ROM Routines

In addition to the many DOSPLUS system entry points, the TRS-80’s ROM provides
several very handy routines, some of which are discussed below:

===
GET@
Address: 0013H (Model I & III)

This is part of the character input/output, or CIO system of the TRS-80’s ROM.
The GET@ routine is used to fetch a single byte, or character, from any system
device or file. When fetching data from a device, any error status returned by GET@
should be ignored.

ENTRY: DE=> DCB or open FCB

EXIT: A= Character from device or file
Flags: Unknown if device (dependent on driver)

If file, Z=No error, NZ=Error, with error code in A register
===

===
PUT@
Address: 001BH (Model I & III)

This routine is the character output portion of the system’s character I/O routine.
With it, a single byte may be output to any character-oriented device or to a file.
When outputting data to a device any error status returned from PUT@ should be
ignored.

ENTRY: A= Character to output to device/file
DE=> DCB or open FCB

EXIT: Flags: Unknown if device (dependent on driver)
If file, Z=No error, NZ=Error, with error code in A register

===

===
KBD@
Address: 002BH (Model I & III)

This routine is used to fetch a single character from the keyboard driver.
Typically, the driver will return status in the Z flag, although this is dependent on the
particular keyboard driver in use. The standard ROM keyboard driver, and the driver
furnished with DOSPLUS 3.5 will return NZ status if a character is found, and Z
status if no character is present.

EXIT: A= Key depressed
DE is altered

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/49

===
DSP@
Address: 0033H (Model I & III)

This routine will output a single character to the system’s display driver.

ENTRY: A= Character to display

EXIT: DE is altered
===

===
PRT@
Address: 003BH (Model I & III)

PRT@ will output a single character to the printer driver.

ENTRY: A= Character to print

EXIT: DE is altered
===

===
KEYIN@
Address: 0040H (Model I & III)

The KEYIN@ routine is used to accept an entire line of input from the TRS-80’s
keyboard, terminating when <ENTER> or <BREAK> is pressed.

ENTRY: B= Maximum input length
HL=> Input buffer

EXIT: B= # of characters entered, less terminator
C= Maximum input length
DE is altered
Flags: Z if null entry

C if <BREAK> pressed
===

===
KEY@
Address: 0049H (Model I & III)

The INKEY@ routine will scan the keyboard for a keystroke, much as KBD@ does,
but INKEY@ does not return to the calling program until a keystroke is received.

EXIT: A= Key pressed
DE is altered

===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/50

IX. - Important Memory Addresses

There are several data areas in DOSPLUS 3.5 that can be of use to those writing
programs for use under DOSPLUS. Note that those addresses marked with an asterisk,
"*", are subject to change in future versions of DOSPLUS.

===
BREAK$
Address: 4312H (Model I) & 42ADH (Model III)

This address contains the break key vector, or that location to which program
control is transferred when the keyboard driver senses that the <BREAK> key has
been depressed. It is a 3-byte area that normally contains a Z-80 RET instruction, but
user programs may install a vector to any routine desired.
===

===
DATE$
Address: 4044H (Model I) & 421AH (Model III)

This 3-byte area contains the system date, stored in year-day-month order.
===

===
DODCB$ *
Address: 435AH (Model I) & 42A9H (Model III)

This 2-byte pointer contains the address of the 288-byte (32-byte FCB followed by
a 256-byte I/O buffer) block of high RAM assigned by the system for use by DO files.
Bit 6 in SFLAG1, below, is used to flag whether a DO block has been assigned.
===

===
HMEM$
Address: 4049H (Model I) & 4411H (Model III)

This 2-byte value contains a pointer to the highest free address in user RAM at
any given time. This value is changed from time to time as various drivers, filters, and
programs are loaded into high memory. It is the responsibility of every program
running under DOSPLUS to respect the HMEM$ value; that is, no program must make
use of the area of memory above that value contained in HMEM$.
===

===
INPBUF$
Address: 4318H (Model I) & 4225H (Model III)

This is the DOSPLUS command buffer area. All commands typed at the DOSPLUS
command level are placed in this 64-character buffer.
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/51

===
OVLYH$ *
Address: 430BH (Model I) & 429EH (Model III)

This byte contains a value which indicates which of DOSPLUS 3.5’s high overlay
group /SYS files is currently resident in RAM. The most significant 4 bits of
this byte contain the system number less 1. User programs use this byte primarily to
force the system to re-load a system file by placing an FFH in OVLYH$.
===

===
OVLYL$ *
Address: 430AH (Model I) & 429DH (Model III)

This byte contains a value which indicates which of DOSPLUS 3.5’s low overlay
group /SYS files is currently resident in RAM. The most significant 4 bits of
this byte contain the system number less 1. User programs use this byte primarily to
force the system to re-load a system file by placing an FFH in OVLYL$.
===

===
SFLAG1$ *
Address: 4302H (Model I) & 4297 H (Model III)

This byte contains eight flags that reflect the current status of the system:

Bit Meaning
7 Reserved
6 DO block allocated
5 Active DO flag
4 Reserved
3 Verify flag
2 Debug flag
1 Run access flag
0 Break key disable flag

Bit 6 is used by the system to note whether a 288-byte block of RAM has been
assigned in high RAM for use by the DO command.

Bit 5 is set whenever an DO file is currently active, informing the keyboard driver
to accept data from the DO file.

Bit 3 is set to instruct the operating system to perform read-after-write
verification of all data written to disk.

Bit 2, when set, activates the DEBUG monitor.

Bit 1 is set by the operating system during execution of the RUN@ system routine,
in order to prevent "File access denied due to password protection" errors when
attempting to execute file with run-only protection status.

Bit 0, when set, disables the <BREAK> key such that no keycode is returned when
the <BREAK> key is depressed.
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/52

===
TIME$
Address: 4041H (Model I) & 4217H (Model III)

This 3-byte area contains the system time stored in seconds-minutes-hours order.
===

===
OSVER$
Address: 403EH (Model I only)

This address holds a 1-byte DOS version number, which is stored in BCD format.
The most significant 4 bits contain the DOS version number, and the least significant
4 bits contain the release number.
===

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/53

X. - Writing Drivers for DOSPLUS 3.5

DOSPLUS 3.5 allows the user to write device drivers, or programs that interface
with he operating system to control external I/O equipment, such as disk drives,
printers, card readers, etc. This section of the manual contains all of the information
a programmer needs to know about interfacing a device driver to DOSPLUS 3.5.

Writing device drivers for DOSPLUS 3.5 is a simple task for any programmer
familiar with Z-80 assembly language programming. DOSPLUS itself performs much of
the work for the programmer, providing filter tables, a complete FORCE and JOIN
capability within the system’s character I/O routines, a flexible and powerful DCT and
DCB structure, etc.

All drivers are installed in RAM using the DOSPLUS command ASSIGN. The general
form of the command is:

ASSIGN (FROM) @ds/:dr (TO) filespec (param=exp,param=exp, . . .)

where "@ds/:dr" is a device specification either one of the six character-oriented
devices (@KI, @DO, @PR, @RS, @U1, @U2) or one of the eight disk drive devices (:0
through :7), and "filespec" is the file specification belonging to a driver program for
the particular device. The ASSIGN command loads the device driver program into RAM
and transfers control to it. Upon entry to the driver program, the following registers
contain important and useful information:

ENTRY: BC=> Lowest available address in user RAM
DE=> Highest available address in user RAM
HL=> Next field in DOSPLUS command line following driver name
IX=> DCB or DCT for device
IY=> DCBTBL or DCTTBL entry for device

It is now the responsibility of the driver program to relocate itself into high
memory and to adjust HMEM$ in order to protect itself. The driver should also insert
its entry point into the device’s DCB or DCT at DCB+01H & DCB+02H or DCT+01H &
DCT+02H, as well as initializing any DCT or DCB data that the driver may require.

If a device does not have a DCB or a DCT defined at the time of ASSIGN,
DOSPLUS will create a 20-byte DCB/DCT in high RAM for the device. This address
will be automatically inserted into the DCBTBL or DCTTBL before control is passed
to the driver program, and the address of the newly created DCB/DCT will be present
in the IX register.

If a device does have a currently existing DCB or DCT, the driver program is free
to relocate that DCB/DCT to any other region of RAM by simply modifying the
DCB/DCT pointer address at IY+00 and IY+01 upon entry to the driver program.

The driver program may be passed parameters on the DOSPLUS command line which
it may pick up by use of FSPEC@ and PARAM@ or by EVAL@.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/54

Disk Drivers

DOSPLUS 3.5 disk drivers must support the ten functions explained in section VIII
under the system routine DISKIO%. To recap, these functions are:

Function Function Function
Code Name Description
0 DCHECK Check for drive ready
1 DHOME Home & initialize drive
2 DSEEK Position read/write head over cylinder
3 DREAD Read a sector
4 DVERF Verify a sector
5 DWRITE Write a sector
6 SREAD Read a directory sector
7 SWRITE Write a directory sector
8 DWRITA Write a system sector
9 DFORMT Format a track/cylinder

When the operating system transfers control to the disk driver, the Z-80 registers
contain the following information:

ENTRY: A= Function code (0-9)
C= Device number (0-7)
D= Logical cylinder number
E= Logical sector number
HL=> 256-byte disk I/O buffer
IY=> Device DCT

From this information, the driver must perform the function requested by the
calling program (consult section VIII, DISKIO% for descriptions of each function). The
driver may make use of any registers necessary, as the operating system saves the
contents of all registers before calling the driver and restores them afterward. The
driver should return an error code in the A register if an error occurs. The driver
must set the Z flag if no error occurs, and set NZ status if an error was encountered.

A sample disk drive device driver is reproduced in this manual, and it serves as a
good model of driver structure and execution.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/55

Character-oriented Device Drivers

Drivers for the six character-oriented devices are typically much simpler than disk
drive device drivers. Such drivers need only support one, two, or all three of the basic
character I/O functions performed by CIO: Input, Output, and Control I/O.

After CIO transfers program control to the driver, the 1-80 registers contain the
following data:

ENTRY: B= I/O type
Bit 2: Control I/O
Bit 1: Output
Bit 0: Input

C= Character for output
IX=> Device control block
Flags: Z=Write operation, NZ=Read operation

Drivers may use any registers required, as the CIO system saves all registers
(except IY) before entering the driver and restores them upon return from the driver.
The driver should return any characters read from the device in the A register.

Note that in the case of character input from a device, it is good practice to
return a status flag in order to inform the calling program whether a character was
available at the device. Typically, drivers set the Z flag if no character was
available, and set NZ status if a character was fetched. Many programs make the
assumption that the driver does return a useable status flag, and therefore the
practice is advisable.

Character I/O drivers are responsible for performing filtering, or translation of
character values. The DCBTBL entry for each character-oriented device contains a
pointer to a filter table, and the DCB itself contains a bit in the DCB type byte
which indicates to the driver whether filtration should be performed. When this bit
(bit 6 of DCB+00H) is set, the driver should perform character translation on all bytes
passing to or from the driver.

The device filter table, pointed in the DCBTBL by bytes ENTRY+02H and
ENTRY+03H, is of variable length. The first byte of the table contains the number of
entries in the table. A value of 0 indicates a 256-entry filter table. Following the
length byte is a series of filter table entries, each two bytes in length. The first byte
of the entry is the value of the character to be filtered, and the second byte is the
value of the character into which it will be translated. Any characters not in the
filter table should be passed by the driver unchanged.

A sample RS232 serial driver is included in this manual to provide an example of
character-I/O device driver structure and execution.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/56

XI. - DOSPLUS 3.5 Error Codes

The following is a list of the error codes generated by DOSPLUS 3.5 and the associated error
messages.

Dec Hex Error Message
0 00 No error found
1 01 Crc error during header read
2 02 Seek error during read
3 03 Lost data during read
4 04 Crc error during read
5 05 Data record not found during read
6 06 Attempted to read locked/deleted data record
7 07 Attempted to read system data record
8 08 Drive not available
9 09 Crc error during header write
10 0A Seek error during write
11 0B Lost data during write
12 0C Crc error during write
13 0D Data record not found during write
14 0E Write fault on disk drive
15 0F Write protected disk
16 10 Illegal logical file number
17 11 Directory read error
18 12 Directory write error
19 13 Improper file name
20 14 Gat read error
21 15 Gat write error
22 16 Hit read error
23 17 Hit write error
24 18 File not in directory
25 19 File access denied due to password protection
26 1A Directory space full
27 1B Disk space full
28 1C Attempted to read past eof
29 1D Attempted to read outside of file limits
30 1E Directory full can’t extend file
31 1F Program not found
32 20 Improper drive number
33 21 No memory space available
34 22 Attempted to use non program file as a program
35 23 Memory fault during program load

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/57

36 24 Attempted to load read only memory
37 25 Illegal access attempted to protected file
38 26 I/O attempted to unopen file
39 27 Device in use
40 28 Protected system device
41 29 Device not available
42 2A No device space available
43 2B Illegal devicespec
44 2C Illegal filespec
45 2D Invalid data provided
46 2E Invalid parameter
47 2F I/O field not found
48 30 Terminated
49 31 File already exists
50 32 Device already exists

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/58

XII. - Technical Glossary

Alternate System Driver

The alternate system driver is a disk drive or device driver program which is
stored as part of the system disk’s bootstrap program, and it is stored beginning on
sector 3 of the BOOT/SYS program. It is the responsibility of the bootstrap program to
load the alternate system driver into RAM. After initialization, DOSPLUS will transfer
control to the driver, which may then install itself into DOSPLUS 3.5.

Boot

(1) To reset, or restart the computer, resulting in the operating system being
re-loaded from diskette. (2) Abbreviation for bootstrap; refers to the file BOOT/SYS.

Blocked Records

Logical records whose length is less than the length of a physical sector. Under
DOSPLUS 3.5, two or more such records are placed into a single physical record on
disk.

Blocking Buffer

A 256-byte area of RAM which is used by DOSPLUS to manipulate the data within
a physical record during reads and writes from and to a disk file.

Buffer

A broad term which refers to any area of memory used to hold meaningful data.

Cylinder

An artificial diskette structure used by DOSPLUS 3.5 to describe, access, and
partition disk drives. A cylinder consists of one or more diskette tracks on a single
disk drive over which the drive’s read/write heads may be simultaneously positioned.

Data Disk

A diskette formatted by DOSPLUS which does not contain the DOSPLUS operating
system, suitable for program and data storage but unable to act as a system diskette.

DCB

Abbreviation for Device Control Block. An area of RAM whose purpose is to store
important information concerning a DOSPLUS character-oriented device, including I/O
type and driver location.

DCT

Abbreviation for Drive Control Block. An area of RAM whose purpose is to store
important information concerning DOSPLUS disk drive devices, including driver address.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/59

Device

A broad term which usually refers to some external peripheral I/O unit, such as a
lineprinter or a disk drive. Under DOSPLUS 3.5, two general classifications of devices
exist: (1) Disk drive devices, and (2) Character-oriented devices. Disk drive devices are
concerned with reading and writing physical records (length>1 byte) from and to some
peripheral. Character-oriented devices may accept or provide a single byte of data at
a time.

EOF

Abbreviation for End-Of-File. (1) Refers to the byte in a file’s primary directory
entry or FCB which specifies how many bytes a file extends into its final physical
record. (2) The last byte in a file; The PEOF@ routine positions to EOF.

ERN

Abbreviation for Ending Record Number. This number, found in a file’s primary
directory entry or FCB, is the number of the final physical record in the file. Records
are numbered starting with 0.

FCB

Abbreviation for File Control Block. An area of memory which contains important
information for file I/O. Before OPENing a file, the FCB contains the file
specification. After the OPEN and before CLOSEing the file, the FCB contains
information concerning the file’s current record position and other data.

GAT

Abbreviation for Granule Allocation Table. The first sector of the file DIR/SYS,
which contains information about the used and unused areas of a diskette, and other
miscellaneous data.

Granule

An artificial unit of storage, some multiple of 1 physical record in length. A
granule is the smallest unit of diskette space which the DOS may allocate to a file.
Often abbreviated to gran.

Hash Code

A 1-byte value calculated from a file specification by a hashing algorithm. Used by
the operating system to quickly locate files in a diskette directory.

Hashing

The process of converting a key field (such as a disk file specification) into a
numeric value by performing a series of operations, known as a hashing algorithm, upon
the key.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/60

HIT

Abbreviation for Hash Index Table. Contained in the second sector of the file
DIR/SYS, the HIT is used to store the hash codes calculated for each filename present
in the directory. The position of the hash code within the HIT corresponds to the
location of the file’s primary directory entry.

LFN

Abbreviation for Logical File Number. The LFN is a single-byte value which
indicates the directory sector number and offset from the beginning of the sector in
which a file directory entry may be found.

Load Module Format

A special file format created by the DOSPLUS DUMP command and most TRS-80
assembler programs. Load module format files contain information instructing the
operating system where in RAM file data should be placed.

Library

In reference to DOSPLUS, the set of 39 commands intrinsic to the DOSPLUS
operating system; Library commands as opposed to utility programs.

Lock-out Table

This table, located on the first sector of the DIR/SYS file, contains information
concerning which granules on a diskette are useable and which are unusable, or
locked-out.

Log

To "log in a diskette"; refers to the process in which DOSPLUS 3.5 determines the
location of the directory cylinder, density, surface count, and other information
pertaining to a diskette.

Logical Record

A contiguous block of data read from or written to a file, usually representing
some meaningful information. Under DOSPLUS 3.5, a logical record may be of a
different length than a physical record.

Logical Record Length

(1) Refers to the number of bytes contained in a logical record. (2) Refers to the
byte in a file’s primary directory entry or FCB which specifies the logical record
length with which the file was originally created or OPENed, respectively. Often
abbreviated LRL.

LSB

Abbreviation for Least Significant Byte. In a 16-bit value, the LSB is the byte
which occupies the rightmost 8 bits.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/61

Master Password

A 1-8 character string which may be used to access any file upon a diskette.

MSB

Abbreviation for Most Significant Byte. In a 16-bit value, the MSB is the byte
which occupies the leftmost 8 bits.

NIL

An inactive state which disk drive and character-oriented devices may assume
before being ASSIGNed to a driver or after being KILLed. In the case of a disk driver
device, the NIL condition causes the drive to respond as "not ready", and in the case
of character-oriented devices, the device ignores output data and provides no input
data.

NRN

Abbreviation for Next Record Number. A 2-byte value contained in the FCB which
indicates the number of the next physical record in the file.

Overlay

A program module designed to occupy the same area of memory as other programs.
Only one overlay program, such as the DOSPLUS 3.5 low and high overlay groups, may
occupy any area of RAM at any given time, and it is the responsibility of an overlay
loader program to supervise the loading or overlays as they are needed.

Password

A 1-8 character field which is used to obtain access to protected files.

Physical Record

The smallest unit of data which may be read from or written to a disk drive
device. This is typically 256 bytes, although it may vary depending on the type of
hard ware employed.

Platter

On a rigid drive, a flat, cylindrical disk which is rotated at high speed and
contains two recording surfaces; one on the top surface and one on the bottom surface.

Pointer

A general term for any value which is used to reference another value, especially
a 2-byte word which contains the address of some other data.

Random Access

A mode in which file data may be read or written in any order desired, as opposed
to sequential access.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/62

Read/Write Head

A component of a disk drive which may be positioned over any concentric track on
a diskette. The read/write head is responsible for picking up the magnetic information
stored on the diskette, and for recording new information on the diskette.

Re-try

To repeat a disk I/O operation that resulted in an error. DOSPLUS 3.5
automatically re-tries when it encounters an error when attempting to read a physical
record from disk.

Sector

The smallest unit of data which may be read from or written to a disk drive
device. Also referred to as a physical record.

Segment

A portion of a disk file, described by an entry in the segment descriptor list in a
file’s directory entry. Segments are contiguous blocks of granules that do not exceed
32 granules in length.

Sequential Access

A mode in which data may only be read from or written to a file in linear order;
the first record must be read before the second, the second before the third, etc.

Software Write Protect

A flag which may be set with the DOSPLUS library command CONFIG, or thorough
user software, which informs a disk drive device driver program that the diskette
should not be written to.

System Files

Files which have the system attribute set as part of the file protection status.
Normally, users may not create files with the system attribute.

Track

A single circular magnetic recording area on a diskette. Diskettes generally contain
many circular tracks.

Trapdoor Code

Under DOSPLUS 3.5, the trapdoor code is a two-byte value generated from the 8
character file access and update passwords.

User Files

Any file which does not have the system attribute set.

DOSPLUS 3.5 - Model I/III Disk Operating System - Technical Manual

Page - T/63

User Record

A 1-255 byte area of RAM used to contain a logical record to be read from or
written to a disk file. The DOS uses this user record in conjunction with the blocking
buffer in order to block and deblock records in blocked files.

Vector

A small portion of memory, usually on the order a few bytes, which contains
machine instructions or data used to divert program flow to another area of RAM.

Volume

A logical disk drive; on a rigid drive, a single partition of the physical drive.

Disk Drive Device Driver Example

; THIS DRIVER IS DESIGNED FOR THE WD1000 HARD
; DRIVE CONTROLLER.
;
; THIS PACKAGE CONSISTS OF TEN ROUTINES:
;
; 0 - $DCHECK - CHECK DRIVE READY
; 1 - $DHOME - HOME/INITIALIZE DRIVE
; 2 - $DSEEK - SEEK SPECIFIED ADDRESS
; 3 - $DREAD - READ SECTOR W/SEEK
; 4 - $DVERF - VERIFY SECTOR W/SEEK
; 5 - $DWRITE - WRITE SECTOR W/SEEK
; 6 - $SREAD - READ SYSTEM SECTOR W/SEEK
; 7 - $SWRITE - WRITE SYSTEM SECTOR W/SEEK
; 9 - $DWRTEA - WRITE SECTOR W/AM
; 8 - $DFORMT - FORMAT TRACK W/SEEK
;
; LOCAL EQUIVALENCES
;
DREAD# EQU 3 ;READ SECTOR
DVERF# EQU 4 ;WRITE SECTOR
ETX EQU 3 ;ASCII ETX
LF EQU 10 ;ASCII L/F
CR EQU 13 ;ASCII C/R
;
; HARDWARE ADDRESSING
;
BASE EQU 10H ;HDC BASE ADDRESS
HD#D EQU BASE ;HDC DATA REGISTER
HD#E EQU BASE+1 ;HDC ERROR REGISTER
HD#W EQU BASE+1 ;HDC WRITE PRECOMP
HD#X EQU BASE+2 ;HDC SECTOR COUNT
HD#S EQU BASE+3 ;HDC SECTOR REGISTER
HD#L EQU BASE+4 ;HDC CYLINDER LOW
HD#H EQU BASE+5 ;HDC CYLINDER HIGH
HD#Q EQU BASE+6 ;HDC SIZE/HEAD/DRIVE
HD#C EQU BASE+7 ;HDC COMMAND/STATUS
;
; WD-1000 COMMANDS
;
HREST EQU 00010000B ;RESTORE & INIT
HREAD EQU 00100000B ;READ SECTOR
HWRTE EQU 00110000B ;WRITE SECTOR
HFRMT EQU 01010000B ;FORMAT TRACK
HSEEK EQU 01110000B ;SEEK ADDRESS

;
; INITIALIZATION CODE SEQUENCE
;
; ENT BC => LOW$
; DE => HIGH$
; HL => COMMAND LINE
; IX => DCT
; IY => DCT DESCRIPTOR
;

ORG 5200H
;
START PUSH DE ;SAVE HIGH

LD HL,TITLE ;'DRIVER TITLE'
CALL DSPLY@ ;LEN+TERM
POP HL ;HL > HIGH$

;
; FETCH MEMORY FROM DOS
;

LD BC,ENDDVR-BEGDVR
OR A ;CLR CRY
SBC HL,BC ;HIGH$-LEN DRIVER
LD (HMEM$),HL ;NEW TOP MEM
INC HL ;HL => BLOCK

;
PUSH HL ;SAVE => START FREE
LD BC,BEGDVR
OR A
SBC HL,BC ;HL = OFFSET
LD C,L
LD B,H ;BC = OFFSET

;
; ADJUST DRIVER ADDRESSES
;

LD IY,TABLE ;IY => ADD TABLE
LD A,27 ;ENTRY COUNT

ADJ1 LD L,(IY+0)
LD H,(IY+1) ;HL => ADD LOCATION
LD E,(HL)
INC HL
LD D,(HL) ;DE = ADDRESS
EX DE,HL ;HL = ADDRESS
ADD HL,BC ;HL NEW ADDRESS
EX DE,HL ;DE NEW ADDRESS
LD (HL),D
DEC HL
LD (HL),E ;SET NEW ADD
LD DE,2 ;OFFSET
ADD IY,DE ;IY => NEXT ADD
DEC A ;DONE?
JR NZ,ADJ1 ;IF NOT
POP DE ;DE => START FREE

;
;INSTALL DRIVER HERE
;

LD (IX+1),E ;ADD TO DCT
LD (IX+2),D ;ADD TO DCT
LD HL,BEGDVR ;HL => DRIVER
LD BC,ENDDVR-BEGDVR
LDIR ;MOVE!
RES 7,(IX+3) ;5"
SET 5,(IX+3) ;HD
RES 1,(IX+3) ;FIXED
LD (IX+4),6 ;STEP 6
SET 0,(IX+3) ;LOG IT!
RES 3,(IX+0) ;DEVICE ACTIVE

;
LD HL,MES1 ;'DRIVER INSTALLED AT'
CALL DSPLY@
LD L,(IX+1)
LD H,(IX+2) ;HL => DRIVER
CALL BINHEX ;BIN TO HEX CONV
LD A,CR ;C/R
CALL DSP@ ;OUTPUT
RET

;
; BIN TO ASCII HEX OUTPUT
;
; ENT HL = BINARY WORD
;
BINHEX LD A,H ;MSB

CALL OHEX1 ;OUTPUT
LD A,L ;LSB

OHEX0 CALL OHEX1 ;OUTPUT
LD A,'H' ;HEX ADDRESS
JP DSP@ ;OUTPUT

;
OHEX1 PUSH AF ;SAVE BYTE

RRA
RRA
RRA
RRA ;MSB TO LSB
CALL OHEX2 ;OUTPUT DIGIT
POP AF ;GET BYTE

OHEX2 AND 0FH ;LSB
ADD A,90H
DAA
ADC A,40H ;CONVERT TRICK
DAA
JP DSP@ ;OUTPUT

;
; TABLE OF NON-RELOCATABLE ADDRESSES
;
TABLE DEFW RL1

DEFW RL2
DEFW RL3
DEFW RL4
DEFW RL5
DEFW RL6
DEFW RL7
DEFW RL8
DEFW RL9
DEFW RL10
DEFW RL11
DEFW RL12
DEFW RL13
DEFW RL14
DEFW RL15
DEFW RL16
DEFW RL17
DEFW RL18
DEFW RL19
DEFW RL20
DEFW RL21
DEFW RL22
DEFW RL23
DEFW RL24
DEFW RL25
DEFW RL26
DEFW RL27

;
; MESSAGES AND TEXT STRINGS
;
TITLE DEFM 'WD/DVR - DOSPLUS Rigid disk driver - 3.50'

DEFB LF
DEFM '(c) Copyright 1983, Micro-Systems Software Inc.'
DEFB LF
DEFB CR

;
MES1 DEFM 'Driver installed at '

DEFB ETX
;
; FLOPPY/HARD DRIVER ENTRY
;
BEGDVR EQU $
HCODE BIT 5,(IY+3) ;HARD?

JR NZ,HCODE1 ;IF YES
LD A,8 ;DRIVE NOT AVAILABLE
OR A ;NZ STATUS
RET

;
HCODE1 PUSH HL ;SAVE BUFFER

LD HL,DTABLE ;ROUTINE TABLE
RL17 EQU $-2

ADD A,A ;* 2
ADD A,L
LD L,A ;HL > ENTRY
JR NC,$+3
INC H
LD A,(HL) ;LSB
INC HL ;NEXT
LD H,(HL) ;MSB
LD L,A ;HL => ROUTINE
EX (SP),HL ;RESTORE BUFFER
RET ;GO!

;
DTABLE DEFW DCHECK ;CHECK DRIVE READY
RL18 EQU $-2

DEFW DHOME ;HOME/INIT DRIVE
RL19 EQU $-2

DEFW DSEEK ;SEEK ADDRESS
RL20 EQU $-2

DEFW DREAD ;READ SECTOR
RL21 EQU $-2

DEFW DVERF ;VERIFY SECTOR
RL22 EQU $-2

DEFW DWRITE ;WRITE SECTOR
RL23 EQU $-2

DEFW SREAD ;READ SYSTEM SECTOR
RL24 EQU $-2

DEFW SWRITE ;WRITE SYSTEM SECTOR
RL25 EQU $-2

DEFW DWRIT1 ;WRITE ALT SECTOR
RL26 EQU $-2

DEFW DFORM ;FORMAT TRACK
RL27 EQU $-2
;
; $DCHECK - CHECK DRIVE READY
;
; ENT IY=> DCT
;
; EXT Z SET IF DRIVE READY
; C SET IF WRITE PROT
;
DCHECK LD E,0 ;E = SECTOR

CALL UPTASK ;UPDATE TASK FILE
RL1 EQU $-2

IN A,(HD#C) ;GET STATUS
CPL ;INVERT
AND 40H ;READY?
RET NZ ;NOT AVAIL
LD A,(IY+3) ;GET SOFT WP
RLCA ;WP TO 7
AND 80H ;WP ONLY
ADD A,A ;WP TO CRY
RET

;
; $SREAD - READ SYSTEM SECTOR
;
; ENT E = SECTOR (0-3 IF DCT ASSUMED)
; IY => DCT (ASSUMED)
; HL => I/O BUFFER
;
; EXT IY => CORRECT DCT
;
SREAD BIT 0,(IY+3) ;LOG DISK?

CALL NZ,SREAD3 ;IF YES
RL2 EQU $-2

RET NZ ;IF ERROR
LD D,(IY+18) ;DIR CYLINDER
LD A,DREAD# ;DREAD
CALL DISKIO% ;DO IT!
RET

;
SREAD3 CALL REGSAV% ;SAVE REGISTERS

LD DE,0<8+2 ;CYL,SEC
CALL DHOME ;HOME DRIVE

RL3 EQU $-2
LD A,DVERF# ;DVERF
CALL DISKIO% ;DO IT!
RET NZ ;IF ERROR

;
LD A,(HL) ;GET 1ST CHAR
CP 'D' ;'DCT' ?
LD A,17 ;DIR READ ERROR
RET NZ ;IF ERROR
RES 0,(IY+3) ;DISK LOGGED
INC HL ;NEXT
INC HL
INC HL ;HL => DATA
LD DE,11 ;OFFSET
ADD IY,DE ;IY => DCT PERISH
PUSH IY
POP DE ;DE => DCT PERISH
LD BC,9 ;COUNT
LDIR ;MOVE!
XOR A ;NO ERROR
RET

;
; $DHOME - SEEK TRACK 0
;
; ENT IY => DCT
;
DHOME LD A,HREST+3 ;STEP

CALL HFCNW ;HOME
RL4 EQU $-2

LD A,(IY+4) ;GET STEP
OR HREST ;RESTORE CMD
CALL HFCNW ;ISSUE CMD

RL5 EQU $-2
LD (IY+9),0 ;HEAD AT 0
RET

;
; $DSEEK - DISK SEEK FUNCTION
;
; ENT DE = CYL,SEC
; IY => DCT
;
DSEEK LD A,(IY+4) ;STEP RATE

OR HSEEK ;SEEK COMMAND
CALL HFCNW ;ISSUE CMD

RL6 EQU $-2
LD (IY+9),D ;SET CYL
RET ;SEEK COMMAND

;
; READ SECTOR ROUTINES
;
; ENT B = LSN HIGH
; E = LSN LOW
; D = CYLINDER
; HL => I/O BUFFER
;
DREAD CALL DIOP
RL7 EQU $-2

DEFB HREAD ;HDC READ
DEFB 5 ;RETRY COUNT
DEFB 50 ;ERROR OFFSET
DEFB 1 ;I/O TYPE

;
DVERF CALL DIOP
RL8 EQU $-2

DEFB HREAD ;HDC READ
DEFB 2 ;RETRY COUNT
DEFB 50 ;ERROR OFFSET
DEFB 1 ;I/O TYPE

;
; WRITE SECTOR ROUTINES
;
; ENT B = LSN HIGH
; E = LSN LOW
; D = CYLINDER
; HL => I/O BUFFER
;
DWRITE CALL DIOP
RL9 EQU $-2

DEFB HWRTE ;HDC WRITE
DEFB 5 ;RETRY COUNT
DEFB 50 ;ERROR OFFSET
DEFB 2 ;I/O TYPE

;
SWRITE LD D,(IY+18) ;DIR TRACK
DWRIT1 CALL DIOP
RL10 EQU $-2

DEFB HWRTE ;HDC WRITE
DEFB 5 ;RETRY COUNT
DEFB 50 ;ERROR OFFSET
DEFB 2 ;I/O TYPE

;
; FORMAT TRACK ROUTINE
; ENT B = LSN HIGH
; E = LSN LOW
; D = CYLINDER
; HL => I/O BUFFER
;
DFORM CALL DIOP
RL11 EQU $-2

DEFB HFRMT ;HDC FORMAT
DEFB 1 ;RETRY COUNT
DEFB 108 ;ERROR OFFSET
DEFB 4 ;I/O TYPE

;
; DISK I/O OPERATION
;
; ENT B = LSN HIGH
; E = LSN LOW
; D = CYLINDER
; HL => I/O BUFFER
; IY => DRIVE CONTROL TABLE
; SP => FDC FUNCTION
; SP+1 => RETRY COUNT
; SP+2 => ERROR CODE OFFSET
; SP+3 => XFER OPCODE
;
DIOP POP IX ;IX => INFO

BIT 0,(IX+3) ;INPUT?
JR NZ,$+9 ;IF YES
LD A,(IY+3) ;GET FLAGS
AND 40H ;WP?
JR NZ,DIOERR ;ERROR!

;
; WINCHESTER I/O ROUTINE
;
IOP1 CALL UPTASK ;UPDATE TASK FILE
RL12 EQU $-2

LD BC,0<8+HD#D ;COUNT & DATA REG
LD A,(IX+0) ;HDC COMMAND
OUT (HD#C),A ;ISSUE CMD
BIT 0,(IX+3) ;INPUT?
JR NZ,DIOP2 ;IF YES

;
; HD OUTPUT OPERATION
;

OTIR ;WRITE DATA
CALL HBUSY ;WAIT TIL READY

RL13 EQU $-2
JR DIOP3 ;ALL DONE!

;
; HD INPUT OPERATION
;
DIOP2 CALL HBUSY ;WAIT TIL READY
RL14 EQU $-2

INIR ;READ DATA

;
; GET HD ERROR STATUS
;
DIOP3 IN A,(HD#E) ;GET ERROR CODE

LD B,A ;B = CODE
IN A,(HD#C) ;GET STATUS
AND 1 ;ERROR?
RET Z ;IF NOT

;
DIOERR LD A,(IX+2) ;ERROR OFFSET
DIOER1 RRC B ;BIT TO CRY

RET C ;ANY?
INC A ;ERROR CODE
JR DIOER1 ;TIL FOUND

;
; UPDATE HARD DISK TASK FILE
;
; ENT B = LSN HIGH
; E = LSN LOW
; D = CYLINDER NUMBER
; IY => DCT
;
UPTASK PUSH DE ;SAVE

LD A,(IY+6) ;CYL OFFSET
ADD A,D ;CYLINDER
OUT (HD#L),A ;SET CYL LOW
LD A,(IY+7) ;CYL OFFSET
ADC A,0 ;MSB
OUT (HD#H),A ;SET CYL HIGH
LD A,(IY+13) ;SEC/TRACK
CALL SDIVD% ;GET SRFCE,SEC
LD D,A ;D = HEAD
LD A,(IY+8) ;SECTOR OFFSET
ADD A,E
OUT (HD#S),A ;SET SECTOR
LD A,(IY+10) ;BINARY DRIVE
RLCA
RLCA
RLCA ;TO BITS 3-5
ADD A,(IY+5) ;HEAD OFFSET
ADD A,D ;+ HEAD
OUT (HD#Q),A ;SET SIZE/DRIVE/HEAD
POP DE ;RESTORE
RET

;
; ISSUE HD FUNCTION & WAIT
;
; ENT A = DISK FUNCTION
; IY => DCT
;
HFCNW PUSH AF ;SAVE CMD

CALL UPTASK ;UPDATE TASK FILE
RL15 EQU $-2

POP AF ;GET CMD
OUT (HD#C),A ;ISSUE CMD
CALL HBUSY ;WAIT TIL READY

RL16 EQU $-2
IN A,(HD#C) ;GET STATUS
AND 1 ;ERROR?
RET Z ;IF NOT
IN A,(HD#E) ;A = ERROR
RET

;
; WAIT FOR HDC READY
;
HBUSY IN A,(HD#C) ;HDC STATUS

RLCA ;BUSY?
JR C,HBUSY ;WAIT
RET

ENDDVR EQU $
;

END START

Character-oriented Device Driver Example

;
; MODEL I/III RS232 DRIVER
;
ENT# EQU 1
;
; CHARACTER DEFINITIONS
;
ETX EQU 3
LF EQU 10
CR EQU 13
;
; HARDWARE ADDRESSES
;
RSTAT EQU 0EAH ;UART STAT PORT
RDATA EQU 0EBH ;RS232 DATA PORT
;
; INITIALIZATION CODE SEQUENCE
;
; ENT BC => LOW$
; DE => HIGH$
; HL => COMMAND LINE
; IX => DCB
; IY => DCB DESCRIPTOR
;

ORG 5200H
;
START PUSH DE ;SAVE HIGH

LD HL,TITLE ;'DRIVER TITLE'
CALL DSPLY@ ;LEN+TERM

;
; FETCH MEMORY FROM DOS
;

POP HL ;GET HIGH$
LD BC,ENDDVR-BEGDVR
OR A ;CLR CRY
SBC HL,BC ;HIGH$-LEN DRIVER
LD (HMEM$),HL ;NEW TOP MEM
INC HL ;HL => BLOCK

;
PUSH HL ;SAVE => START FREE
LD BC,BEGDVR
OR A
SBC HL,BC ;HL = OFFSET
LD C,L
LD B,H ;BC = OFFSET

;
LD (MOD00),IY ;PUT DCBTBL ENTRY IN PRG

;
; ADJUST DRIVER ADDRESSES
;

LD IY,TABLE ;IY => ADD TABLE
LD A,ENT# ;ENTRY COUNT

ADJ1 LD L,(IY+0)
LD H,(IY+1) ;HL => ADD LOCATION
LD E,(HL)
INC HL
LD D,(HL) ;DE = ADDRESS
EX DE,HL ;HL = ADDRESS
ADD HL,BC ;HL = NEW ADDRESS
EX DE,HL ;DE = NEW ADDRESS
LD (HL),D
DEC HL
LD (HL),E ;SET NEW ADD
LD DE,2 ;OFFSET
ADD IY,DE ;IY => NEXT ADD
DEC A ;DONE?
JR NZ,ADJ1 ;IF NOT
POP DE ;DE => START FREE

;
; INSTALL DRIVER HERE
;

LD A,40H ;GET FILTER STAT
AND (IX+0) ;FROM OLD DCB
OR 3 ;SET INPUT/OUTPUT TYPE
LD (IX+0),A ;AND REPLACE IN DCB
LD (IX+1),E ;ADD TO DCB
LD (IX+2),D ;ADD TO DCB
LD HL,BEGDVR ;HL => DRIVER
LD BC,ENDDVR-BEGDVR
LDIR ;MOVE!

;
LD HL,MES1 ;'DRIVER INSTALLED AT'
CALL DSPLY@
LD L,(IX+1)
LD H,(IX+2) ;HL => DRIVER
CALL BINHEX ;BIN TO HEX CONV
LD A,CR ;C/R
CALL DSP@ ;OUTPUT

;
RET

;
; BIN TO ASCII HEX OUTPUT
;
; ENT HL = BINARY WORD
;
BINHEX LD A,H ;MSB

CALL OHEX1 ;OUTPUT
LD A,L ;LSB

OHEX0 CALL OHEX1 ;OUTPUT
LD A,'H' ;HEX ADDRESS
JP DSP@ ;OUTPUT

;
OHEX1 PUSH AF ;SAVE BYTE

RRA
RRA
RRA
RRA ;MSB TO LSB
CALL OHEX2 ;OUTPUT DIGIT
POP AF ;GET BYTE

OHEX2 AND 0FH ;LSB
ADD A,90H
DAA
ADC A,40H ;CONVERT TRICK
DAA
JP DSP@ ;OUTPUT

;
; TABLE OF NON-RELOCATABLE ADDRESSES
;
TABLE DEFW REF00
;
; MESSAGES AND TEXT STRINGS
;
TITLE DEFM 'RS/DVR - DOSPLUS RS232 driver - 3.50'

DEFB LF
DEFM '(c) Copyright 1983, Micro-Systems Software Inc.'
DEFB LF
DEFB CR

;
MES1 DEFM 'Driver installed at '

DEFB ETX
;
; RS232 DRIVER
;
; ENT: C=CHR TO OUTPUT
; IX=>DCB
;
; DETERMINE INPUT OR OUTPUT
;
BEGDVR EQU $

PUSH IY ;SAVE REG
MOD00 EQU $+2

LD IY,$-$;GET DCB TABLE ENTRY
LD L,(IY+2) ;GET FILTER ADDR
LD H,(IY+3)
POP IY ;RESTORE
BIT 1,B ;OUTPUT OPERATION?
JR NZ,RSOUT ;YES

;
; INPUT BYTE FROM RS232
;
RSIN0 IN A,(RSTAT) ;RX REG FULL?

AND 80H ;WELL?
RET Z ;IF, EFTY
IN A,(RDATA) ;GET DATA BYTE
JR RFLT ;FILTER CHR AND RETURN

;
; OUTPUT BYTE TO RS232
;
RSOUT IN A,(RSTAT) ;TX REG EVTY?

AND 40H ;WELL?
JR Z,RSOUT ;WAIT FOR EMPTY
LD A,C ;GET CHR

REF00 EQU $+1
CALL RFLT ;FILTER CHR
OUT (RDATA),A ;XMIT CHR
RET

;
; FILTER CHR
;
RFLT BIT 6,(IX+0) ;FILTER?

RET Z ;NO
LD B,(HL) ;GET TABLE LENGTH
INC HL ;HL=>TABLE ENTRIES

RFLT0 CP (HL) ;MATCH?
INC HL ;HL=>XLATED VALUE
JR NZ,RFLT1 ;NO MATCH
LD A,(HL) ;GET XLATED CHR

RFLT1 INC HL ;HL=>NEXT ENTRY
JR Z,RFLT2 ;IF MATCH
DJNZ RFLT0 ;TILL DONE

RFLT2 OR A ;NZ STAT
RET

;
ENDDVR EQU $

END START

N O T E S

N O T E S

	User’s manual addendum
	A note to all previous owners of DOSPLUS
	Methods of configuring the system
	NOTICE TO ALL MODEL I USERS
	Manual omissions

	DOSPLUS 3.5 - Model I/III Disk Operating System - User’s manual
	DOS Operations
	Introduction
	General manual syntax
	First time operation
	Overview
	File, drive, and device specifications
	Detailed explanation of the command line

	Library Commands
	DOSPLUS 3.5 Library of commands
	APPEND
	ASSIGN
	ATTRIB
	AUTO
	BOOT
	BREAK
	BUILD
	CAT
	CLEAR
	CLOCK
	CLS
	CONFIG
	COPY
	CREATE
	DATE
	DEBUG
	DIR
	DO
	DUMP
	ERROR
	FILTER
	FORCE
	FORMS
	FREE
	I
	JOIN
	KILL

	UTILITIES
	BACKUP
	CONVERT
	DIRCHECK
	DISKDUMP
	DISKZAP
	FORMAT
	HELP
	MAP
	PATCH
	RESTORE
	SYSGEN
	TAPE
	TRAP
	CO-DIR 2.1 - Cursor Oriented Directory Version 2.1

	Job Control Language
	I. - Job Control Language
	II. - JCL Program Structure
	III. - The JCL Command Set

	Disk Basic
	Disk BASIC Table of contents
	Introduction
	General commands and functions
	Disk related functions
	File access
	Disk BASIC error codes
	Extended Disk BASIC features

	Drivers and Filters
	DOSPLUS 3.5 Drivers and Filters Manual Table of Contents

	Technical Information

