
Eco-C C Compiler
Copyright (c) 1982,1983 by Ecosoft Inc.

P.O. box 68602
Indianapolis, IN 46268

(317)255-6476

j-

Software Problem Report

If you encounter any errors that you believe to be in the
Eco-C compiler, please report them as soon as possible.

Eco-C License Number:
Please describe your:

Operating System:

Computer (including amount of memoryf disk drivesf etc.):

Please describe the problem as clearly as possible. If you
can supply us with a copy on disk (8" SD if possible) of the
program that produced the error, it will help us to correct it.
Detailing the sequence of events leading up to the problem may
also prove useful. If you are using some method of "getting
around the problem", please describe it. We will try to correct
any problems as quickly as possible.

61

\

Getting Started

Making .a Working Copy

The first thing you should do is make a working copy of the
Eco-C C Compiler disk. If you u&e the CP/M PIP utility, the
sequence is to place your CP/M disk with PIP.COM on it in drive A
and a blank, formatted and SYSGENed disk in B. (We have used <CR>
to signify pressing the RETURN key.)

A>PIP <CR>
* (now place the Eco-C disk in A)

(and enter the following line)
B:«A:*.*[OV3 <CR>

r
> \

Note that the end of the command has a bracket ("[") followed by
the letters "0" and "V". This informs PIP that you are copying a
binary (non-ASCII) file (the "0" option) and verify ("V") that it
is a good copy.

J

After the copy is completed, place the original disk you
received from Ecosoft in a safe place and use the copy from now
on. You will need the following files when compiling a program:

CP.COM Macro Preprocessor
XC.COM C Compiler
XM.COM Code Generator
CE.COM Error Reports
CODE.PA Data Maps

, ERR.PA " "
; STDIO.H Standard Definitions

*.REL Library Routines (All of them)
M80.COM Microsoft 's Macro Assembler
L80.COM " Linker

%~J" We have supplied some of the C library functions (discussed
later) in source code. These files have a ".C" f i le extention
(e.g., STRLEN.C). These do not have to reside on your working
disk and may be omitted to conserve disk space. The files listed
above, however, must be on the working disk.

When you use the compiler, each compiled program generates
(on its own) TOKEN.CWK and PCODE.CWK as intermediate files during
compilation. These files are erased automatically as the compila-
tion progresses. There must be su f f i c i en t disk space for them

k dur ing compilation, however. Their length varies wi th program

size.

If you have sufficient disk capacity, you probably will want
to place your text editor on the disk, too (e.g., the editor on
your CP/M disk is named ED.COM). If you use a screen editor like
MicroPro's Wordstar, be sure you write your programs in the "non-
document" mode.

Do not write programs using the file names mentioned above.

If Disk Space is a Problem

Some disk systems, especially the 5 1/4" disks, may not be
able to hold all of the required files on one disk. If this is
the case, the files may have a maximum split as follows:

DISK1 - CP.COM, XC.COM, XM.COM, CE.COM, CODE.PA, ERR.PA

DISK2 - M80.COM

DISK3 - L80.COM, CFF.REL, CIF.REL, CFC.REL, CIC.REL, ECC.RELr
EC2.REL

Using the split above, the compiler itself resides on DISK1,
the assembler (M80) on DISK2, and the linker (L80) and the neces-
sary library functions are on DISK3. Obviously, DISK2 has a
considerable amount of unused disk space. Therefore, DISK2 could
be used for the source file (*.C), compiler output (*.MAC) and
assembler output (*.REL). Depending on disk size, groupings of
the above disks may be done. For example, on a North Star system
DISK2 and DISK3 typically would be combined into one disk (e.g.,
a DISK2).

System Requirements

The Eco-C C Compiler requires a m i n i m u m of 52K of f r e e
memory and a minimum of 250K of disk storage. As suggested above,
this disk storage may be split over two or more drives.

Having made a w o r k i n g copy of the Eco-C compiler, you are
ready to write and compile a C program.

Features of Eco-C

Before you start using the compiler, you should know what is
and is not supported in the current release (Rel. 1.41). (If you
are just getting started with the C language and need an easy-to-
read text on Cf we would suggest the £ Programming guide by Dr.
Jack Purdum (Que Corp.). If you are an experienced programmer,
Ul£ £ Programming Language by Kernighan and Ritchie (Prentice-
Hall) is considered the technical reference manual on C. Both
books are available in most B. Dalton book stores. The Purdum
text is also available from Ecosoft. References to the Purdum
text appear in a number of places in this manual.)

The full C syntax is supported except;

a. bi t f ie lds
b.initializers. While globals cannot be initialized

at this time, they are cleared to 0 by the compiler.
(Purdum, Figure 6.13, p. 135)

c. parametized macros (Purdum, p. 239. We are working
on initializers and parametized macros at the
present time. If your license agreement is on file
at the time they are finished, you will receive the
new release automatically. There is no charge.)

d. tline macro preprocessor directive
e. in compound expression following a f i f , macro ex-

pansion is not done (Purdum, p.238)

Most of the above will be available in subsequent releases of the
compiler. No charge to licensed users will be made for updates to
the compiler dur ing the f i rs t year it is on the market (i.e.,
through March, 1984). You must have a signed license agreement on
file to be eligible for these updates.

Facts, Suggestions and Programming Hints

Given below is a list of specifications and suggestions that
may prove useful when using the Eco-C C Compiler. Some items in
the list represent syntactic-semantic rules of the C language
that are not obeyed by other compilers. Because of our strict
adherance to the rules of C, we may generate an e r ro r message
that goes undetected by other compilers. We think you will f ind
our strict compliance to the rules of C to be an asset.

Other items in the list are suggestions that help generate

more efficient C code. Most of these suggestions simply reflect
the internal construction of the compiler and the code it gen-
erates.

1. The C keyword "unsigned" should only be used as an "ad-
jective" with the integer (int) data type. Attemps to use unsign-
ed long, unsigned char and unsigned short data types will gen-
erate an error message (Purdura, p. 119).

2. Some C functions [e.g., putcOl give the programmer a
choice as to where program input and output (i.e.,, I/O) are to be
directed. Normally, input comes from the keyboard (stdin) while
program output (stdout) and error messges (stderr) are sent to
the CRT, and the printer serves as the standard list device
(stdlst). We have defined these "standard I/O devices" for use
with the Eco-C compiler in the CP/M environment as follows:

stdin • keyboard
stdout » CRT
stderr » CRT

stdlist » printer

(fdO)
(fdl)
(fd2)
(fd3)

(The fd's following each device is treated as a pointer variable
that may be used for referencing the devices (e.g. putc(c,
stdout). Details of how these pointers may be used are found in
Chapter 8 and its appendix in the Purdum text, pp. 163-94. The
file named IN IT. ASM controls the number of files that are avail-
able for use in a program [CP/M file control blocks or fob's],
the number of I/O buffers [iob's] available, plus setting the
stack.)

3. On function calls:
a. A function parameter of type float is automatically

promoted to double and short or char data types become an int
(Purdum, pp. 120-123).

b. Given the choice of char or int as a parameter in a
funct ion call, use an int. It avoids internal conversions, thus
improving speed.

4. To initialize a pointer (e.g., x_ptr) to a funct ion
[e.g., f u n c l O l , the syntax must be:

x_ptr * &funcl;

5. A structure or union name can only have two things done
with them: 1) take its address with the address operator in front
of it, or 2) have a period and a member name following its name
(Purdum, p. 143).

6. Binding of structure members to a structure is absolute.
If a pointer is to a structure si and now you want to use that
pointer with a different structure named s2, you must cast the
pointer to s2 or the compiler will generate an error message
(Purdum, pp. 148-150).

7. If a function is not recursive (Purdum, p.6) , you are
usually better off to declare variables as static rather than
auto or register (Purdum, pp. 59-63). It generates more efficient
code.

8. When using a large "switch" statement, place the most
likely case last and the least likely first.

9. Currently, we do support nested comments. The term "nes-
ted" means that we allow a comment to appear within a comment.

10. tinclude's may be nested only two deep. That is, a pro-
gram can have a finclude statement in it that calls in a second
file with a finclude in it. The file called in by the second
file, however, cannot have a tinclude statement in it (Purdum,
p.94) .

11. The double data type variables can have up to 17 signifi-
cant digits. The range for the exponent is E-38 to E+38. Only
binary arithmetic is supported.

12. At the present time, floating point and long constants
are combined at run time rather than compile time.

13. All program source files (e.g., TEST.C) must terminate
with a carriage-return, linefeed pair (CR-LF). Failure to observe
this will cause the error handler to produce strange results. In
other words, when you get to the "bottom" of a program, press the
RETURN key an extra time.

14. Character to integer conversions do not perform sign
expansion.

15. If multiple assignments are possible, use them. For
example, if i and j are integers that are to be set to 0, it is
more efficient to set them with i=j=0; than to set each one
separately.

16. You must explicitly call the fcloseO function when using
disk file I/O before the closing brace in mainO is reached. The
current release of the compiler does not do this automatically.

The error handler treats all errors as fatal; there is no
"cascading" of false error messages. When you do get an error,
you will find that it does diagnose the error correctly.

We think you will find the Eco-C compiler more "UNIX-like"
than most on the market. Further, it performs its error checking
in strict compliance with the syntax presented in K&R and Purdum.
Finally, we have adhered to the function definitions presented in
K&R and Purdum as much as possible in a CP/M environment. Pro-
grams written with the Eco-C compiler can be taken easily to a
UNIX environment. Equally important, a program from the UNIX
environment can be compiled under Eco-C with few, if any, chan-
ges.

Osing the Eco-C C Compiler

Writing the Source Program

The first step is to write the C program using a text edi-
tor. (CP/M provides an editor stored on disk as ED.COM.) Be sure
you do not use the "document mode" on some editors (e.g., Word-
star). The document mode can turn the high bit ON and produce
mysterious results on occasion.

Mote: when writing your source programs, keep in mind that a
variable in C may contain as many characters as you wish, but the
compiler currently will only recognize the first six as being
significant because the assembler (M80) and linker (L80) only
recognize six characters.

In producing output to the assembler, the compiler performs
the following conversions on variable names:

a. All variable names (or identifiers) of one or two charac-
ters have a leading ampersand (8) added to it. This is done to
avoid conflict with register names (e.g., A —> §A).

b. Lower case is converted to upper case.

c. The underscore is converted to a question mark.

The normal secondary file name, or extention, given to a
CP/M C source program is ".C" (e.g., TEST.C). This is not a

requirement, however. You may use any file extention you wish. In
subsequent discussion/ we will assume that your program is saved
on the disk as a ".C" source f i le , however.

Compiling the Program

Assuming the compiler and the source program (e.g., TEST.C)
are on drive A, the compiler is envoked by:

A>CP TEST <CR> /* Assumes a ".C" extention */

The program supplies the f i le extention of ".C" if one is not
supplied when the compiler is envoked. If you supply a file
extention (e.g., ".XXX"), it overrides the default (",C").

A different source disk may be specified. For example,

A>CP B:TEST <CR>

If you have a small 5 1/4" disk system, drive B might contain the
disk with the M80 assembler (see the earlier discussion on the
maximum split the compiler may have across disks). The output of
the compiler will be written to drive B in this case, too.

The compiler automatically loads and runs the next two
passes (XC and XM) if no errors are detected. The output of the
f inal pass (i.e., XM) is an assembly language source fi le (e.g.,
TEST.MAC). This can be examined and modified if you wish.

Compiler Switches

-i This switch tells the compiler to use the integer
version of the pr intfO function. It avoids pulling in the float-
ing point library whenever p r in t fO is used. If your program does
not use floating point numbers, this option will produce smaller
code size and may execute faster.

For example, suppose a source program is named TEST.C. To
use the compiler wi th this option, it would be invoked wi th the
following command line arguments:

A>CP TEST -I

causing the TEST program to use the integer version of pr intfO.
Note that lower case letters may be used if you wish (i.e., you
may use: cp test -i).

-c This switch uses the l ibrary where getcharO and
putcharO do direct BDOS calls to CP/M for input/output (I/O)
rather than through getcO and putcO. This prevents console I/O
from going through the file handlers thus generating smaller code
size. It is envoked with the following command line arguments:

A>cp test -c

Again, upper or lower case letters may be used.

-o This switch is used to change the name of the output <
file and the drive on which it is written. For example:

A>cp test -o b:test
A>cp test -ob:test ^

Both examples above are allowed. If a file type is added to the
file name the default type of '.MAC' will not be used. That is,
the example above causes the assembler output of the compiler to
be found on drive B as TEST.MAC. If the command line arguments
are:

A>cp test -o b:test.asm

the output file on drive B is named TEST.ASM.

-b This switch is used to turn off most of the messages
and statistics the compiler generates during compilation.

-snnn This switch is used to control selection of the
system libraries at link time. There are 10 reserved system
libraries (0 through 9). Each number following the -s will cause
the designated libraries to be searched in order from high to low
number. That is, the option -s!35 will search SLIB5, SLIB3 and
SLIB1 in that order. These libraries are reserved for Ecosoft and
should not be altered by the user. (For example, the Transcen-
dental library is stored on the disk as SLIBO.REL.) For example:

8

J

A>cp test -sO

(Note that this switch avoids having to explicitly link in the
SLIBO file via: A>180 test,slibO,test/n/e.)

-unnn This switch is used to control selection of the user-
defined libraries. These work the same as the system libraries
(via the -s option), but are for use by the programmer. For
proper use, these libraries must be named ULIBO.REL through
ULIB9.REL. User libraries are searched before system libraries.

-nS or -nU These two options are variations on ;the above
and cause a series of libraries to be searched. For example, -5U
causes ULIB5.REL through ULIBO.REL to be searched, in that order.
These options, therefore, search all libraries starting with the
digit specified and working towards the 0 library.

NOTE: All or part of the switches may be used when compiling
a program. Each switch option in the command line must be sepa-
rated one f rom the other by a blank space; their order is not
important. Example:

A>cp test -i -c
or

; A>cp test -c -i

produce identical results.

Assembling the Program

The assembler output file from the compiler (e.g., TEST.MAC)
becomes the input file to the assembler. Your package includes
Microsoft's Macro 80 assembler. It is envoked with the following
command:

A>M80 -TEST /* Note blank space */

Since M80 has a default file extention of .MAC, the assembler may
be used with or without the .MAC extention. If the input file to
the assembler uses something other than .MAC, it must be supplied
when M80 is run (e.g., M80 =TEST.ASM).

The output f i le f r o m the assembler is named TEST.REL. Fur-
ther details about using M80 are in the Microsoft manual. NOTE:
there must be a blank space between M80 and the equal sign (=)

when the assembler is envoked.

Linking the Program

The .REL (i.e., RELocatable) file from the assembler is then
linked to the standard library routines (e.g., CFF.REL, EC2.REL,
etc.) by using the Microsoft linker (L80). A typical link would
be:

A>L80 TEST,TEST/N/E

which causes TEST.REL to be the input file and produces an output
file named TEST.COM. TEST.COM becomes the executable C program.
The standard library routines are automatically searched.

If you wanted the input file TEST.REL to have a command file
name of PRICE.COM, the syntax would be:

A>L80 TESTfPRICE/N/E

Linking in Your Own Functions

Suppose that you have compiled and assembled a function you
wrote with the name DATE.C. The assembler would have generated a
REL file named DATE.REL. Now you want to link the function into a
program named TEST.C. The command arguments would be:

A>L80 TEST,DATE,TEST/n/e -f
* * A -*S

I I I
input .REL file I output .COM file

I
.REL function(s) to be linked with program ^
each separated from the other by a comma

The first file name following L80 on the command line is the
input file (.RED. The last file name (before the Vn/e") is the
output (.COM) program file name. In between these two file names
are any (.RED function(s) you want to link in with the program.
Each must be separated from the other by a comma.

Additional details on L80 and its options are found in the
Microsoft manual.

10

Reading and Writing Data files

We have attempted to make file input and output (i.e., I/O)
as consistent with the UNIX operating system as possible given
the differences between it and CP/M. Below is an example of
writing to and then reading from a file using the Eco-C compiler.
Both programs in source are included on your distribution disk.

If all of this seems unfamiliar, consult Purduro, Chapter 8
and its appendix.

/* Writing an ASCII Data File */

tinclude "stdio.h"
fdefine CLEARS 12
Sdefine MAX 1000

mainO

/* Include file overhead info */
/* Clear screen for ADDS Viewpoint */
/* Maximum number of characters */

int i; • • •
char c; ' •'"'• ---.;:
FILE *fp;

putchar (CLEARS) ; /* Clear the screen */

{if <(fp » f open ("TEXT. TXT", "w")) -* NOLL)
puts("Can't open TEXT. TXT");
exit(-l); /* Signals an Error */

puts ("Enter line of text and press RETURN:\n");
for (i = 0; (c • getcharO) 1= '\n' && i < MAX; ++i)

putc(c, f p) ;
putc(CPMEOF, fp); /* Must write end-of-file */

f close (fp); /* Must close */

The program begins with the tinclude preprocessor directive
to include the file I/O information needed to work with disk
files. The ^defines are used to define the clear screen code (you
may prefer using an octal constant '\014') for an ADDS Viewpoint
and set the maximum number of characters that can be entered.

The mainO function marks the beginning of the program and
several variables are declared. The FILE typedef refers to the
structure that is defined in stdio.h and is used to establish
pointers to fp and fopenO. Generally, high-level file I/O will
require the FILE declarations to be present in every program that
works with disk files. The call to put char (CLEARS) simply clears

11

the screen in preparation for entering the text.

If your te rminal requires two or more characters to clear
the screen, change the fde f ine to be a string intead of a con-
stant and change the putchar (CLEARS) statement to a puts (CLEARS).
For example, if you are using a SOROC terminal which uses an
escape (27 decimal = 033 octal) followed by an asterisk (*), the
#define would be: tdefine CLEARS "\033*". You would then use
puts(CLEARS) instead of putchar(CLEARS) since we are now treating
CLEARS as a string.

The if statement attempts to open a text f i le using the name
TEXT.TXT in the ASCII "write" mode. If the f i le cannot be opened
(i.e., fp re turns a N U L L) , a message is displayed that the file
cannot be opened and the program is aborted by the call to
ex i tO . The -1 argument in the exitO funct ion call is used to
signal that some error occurred.

^

If all went well, the file pointer fp serves as our link -,
with the f i le that was just opened (e.g., TEXT.TXT). A prompt
asks the user to enter a line of text, pressing RETURN when they
have finished. Calls to getcharO take the characters f r o m the
keyboard and assign them to c. A check is made to see if the
character was a newline (i.e., a '\n' which corresponds to pres- ^
sing RETURN) or if i exceeds the max imum number of characters
allowed (MAX).

If the tests are passed, a call to putcO places character c
into the buffer associated with fp. The for loop continues until
MAX - 1 characters or RETURN is entered. When that happens, a
final call is made to putcO using the CP/M end-of-file (OxlA) as
the character. This is necessary when using the ASCII mode for
disk files.

A call to fcloseO wri tes the b u f f e r to the disk and closes
the file and the program ends.

NOTE: you must call fcloseO before the closing brace in -^
mainO is reached. The current release does not do this automati- ^
cally.

Reading an ASCII Text File

The p r o g r a m to read the text f i le just created closely
follows the program used to write the file. Notice that mainO is
called w i t h two arguments : argc and argv. The argc var iable is
used to count the number of command line arguments (argument
counter) used when the program was envoked. The argvt l variable
is an array of pointers that points to the command line arguments

12

were entered. (Purdum, pp. 170-73.)

For example, to read the TEXT.TXT file, this program is
\ envoked with:

A>READFILE TEXT.TXT<CR>

where the <CR> represents pressing RETURN.

/* Reading an ASCII data file */

tinclude "stdio.h" /* Pull in the overhead info again */
fdefine CLEARS 12 /* Clear screen for ADDS viewpoint */

main(argc, argv)
^ _ int argc;

char *argvll;

int cy
FILE *fp;

^ putchar(CLEARS);

if (argc 1- 2) {
printf("I need to know the file name.\n\n");
printf("Use:\n\nA>READFILE FILENAME.XXX")j

J exit(-l);
}

if ((fp «= f open (argv til, "r")) »« NULL) {
printf("Can't open file: %s", argvtll);
exit(-l);

while((c = getc(fp)) 1= EOF)
.̂ putchar(c);

fclose(fp);
}

There are two arguments (argc « 2) and two pointers in
'-"•' argv[] (argvtOl pointing to READFILE and argvlll pointing to

TEXT.TXT). In the program, the argc is checked to make sure that
two arguments were supplied when the program was envoked. If argc
is not equal to 2, an error message is given and the program
aborts.

If the argument count is correct, we try to open the file in
the ASCII "r"ead mode. If the file pointer (fp) returned from the
call to fopenO is a NULL, an error message is given and the
program aborts.

u If a valid file pointer is returned, the while loop does

13

repeated calls to getcO and assigns the character in the buffer
to c. The call to putcharO displays the characters on the CRT.
This continues until the end-of-file (EOF) is sensed, whereupon
the file is closed and the program ends. You will notice that the
variable c is defined as an integer. This is necessary because
sign expansion is not performed on char to int conversions. If
the variable c were defined as a char, EOF will never be found by
the prograa.

It may be a worthwhile excercise to list stdio.h to see how
the various symbolic constants are defined (e.g., FILE, NULL,
EOF, etc.).

14

What to Do if You Run Out of Memory

Unlike many other C compilers that are available, the Eco-C
compiler does not require the entire source code of the program
to reside in memory. Even so, it is possible to "run out of
memory". Usually, this is caused by overflowing the symbol table
space.

Space for the symbol table is allocated dynamically. As auto
variables are compiled, they are treated as temporaries and
"discarded" after the function has been compiled. Very long
programs with a large number of global variables (i.e., extern
storage class) or a very large function with many auto-type
variables are the most likely to cause the symbol table to over-
flow.

If this happens, all is not lost. Simply break the source
program into two separate source programs and then compile and
link each of them together. Keep in mind that you may have to
duplicate certain parts of the program (e.g., finclude STDIO.H).

For example, suppose your source program TEST.C runs out of
memory during a compile. Further assume that you inspect TEST.C
and find that the program can be split in half after a function
definition named rootO.

Using your editor, create a new file called TEST1.C; this
will be a new file. Now read in TEST.C and delete all of the
lines f rom the beginning of the program to the start of the
definit ion of rootO. TEST1.C should now contain the "second
half" of TEST.C. Save TEST1.C on disk. Now load TEST.C and delete
everything from the definition of the rootO function to the end
of the program and save it on disk.

Having done the above, TEST.C contains the "first half" of
the original program and TEST1.C contains the "second half". Now
compile and assemble the two separately and then link them to-
gether to form one program. The sequence might look like:

A>cp TEST
A>cp TEST1
A>m80 =TEST
A>m80 =TEST1
A>180 TEST,TESTl,TEST/n/e

which creates an executable program named TEST.COM with both
"halves" linked together.

15

Standard Library of C Functions

Listed below are the functions that comprise the Eco-C
Standard Function Library. Each function is described by name
with any argument list that might be necessary for the function
call. If the function returns a data type other than integer
(i.e., int), the data type returned preceeds the function name.
The functions are arranged in alphabetical order for easier
reference.

allocO

char *alloc(u) /* Request for storage */
unsigned u;

Returns a pointer to u bytes of storage, where each byte is able
to store one char. If the request for u bytes of storage cannot
be satisfied, the pointer returned equals NULL (i.e., zero).
Therefore, a non-zero pointer value returned from the call to
allocO means that u bytes of consecutive storage are available.

atoiO

int atoi(s) /* Return integer of string */
char *s;

Returns the integer value of the string pointed to by "*s". This
function permits the input string to be in decimal, hex or octal
using the standard C syntax for such values (e.g., "Oxff").

>«*4

atolO

long atol(s) . /* Return long of string */
char *s; —*

Functions in the same manner as atoiO, except the returned value
is a long rather than an int.

16

biosO

int bios(offset, be) /* BIOS call */
unsigned offset, be;

Variable "offset" is CP/M jump table entry wanted from warm boot
entry point. Returns contents of the accumulator. Variable "be"
is what is moved to the BC register pair before the call.

callocO

char *calloc(count, size) /* Request storage */
unsigned count, size;

«

Returns a pointer to sufficient storage for "count" items, each
of which requires "size" bytes of storage. If the request is
successful, each byte is initialized to NULL. If the request for
storage cannot be satisfied, the pointer returned equals NULL
(i.e., zero). The pointer returned, therefore, can be tested to
see if the request was satisfied.

decinalO

long decimal(s) /* Return long of decimal */
char *s;

Returns the long value of a "decimal" string pointed to by "*s"

dintO

double dint(d) /* Integral value of double */
double d;

Returns the integral value of the double "d". The function "trun-
cates" a double at the decimal point.

17

drandO

double drandO /* random number - double */

Generates a random number with a value between 0 and 1 and is
returned as a double. - ,

drandlO

double drandl(d) /* random number - log dis. */
double d;

Generates a random number with a value between 0 and 1 that is
logrithmically distributed. The value returned is a double. Range
is between 1 and exp(d).

exitO

int exit(i) /* terminate a program */ -"
int i;

Used to terminate a program. A non-zero value for "i" is normally
used to indicate that some error occurred when this function was
called.

f close ()

int fclose(fp) /* close a file */
FILE *fp;

Function f i r s t calls f f l u s h O to f lush the contents of the
b u f f e r and then closes the f i le associated with the "fp" f i le
pointer. This frees "fp" for use with another file if desired.

feofO

int f e o f (f p) /* Sense EOF */
FILE *fp;

Returns a non-zero value when end-of-file has been sensed with
the input stream associated with the fp pointer.

18

ferror()

int ferror(fp)
FILE *fp:

/* Sense error */

This function returns a non-zero value when an error occurs while
reading or writing to the input stream associated with the
pointer fp. The error condition exists until the file has been
closed.

fflushO

int fflush(fp)
FILE *fp;

/* write buffer to disk */

Writes the current contents of the buffer associate with •fp" to
the disk (including the EOF indicator).

fgetsO

char *fgets(s, i, fp)
char *s;
int i;
FILE *fp;

/* get string from file */

Reads "i" characters f r o m fp and places them into the character
array "s". The function terminates upon reading: (1) a null
character (' N O ') , (2) and end-of-file indicator, or (3) i-1
characters. The character string at "s" is null terminated ('\0')
upon return. The function returns a pointer to the string, or
zero if end-of-file or an error occurred.

filenoO

int fileno(fp)
FILE *fp;

/* Get file descriptor */

Returns the integer number of the "fd" associated wi th the f i le
pointed to by pointer variable fp.

19

_fillbuff<)

int _fillbuff(fp) /* read buffer of data */
FILE *fp;

Used to replentish the buffer associated with fp and returns the
next character or EOF.

_flushbuf()

int _flushbuf(c, fp) /* flush buffer */
char c;
FILE *fp;

W

Flushes the bu f f e r associated with fp and then writes the
character "c" into the buffer .

fopenO

FILE *fopen(name, mode) /* open file */
char *name, *mode;

Open the f i le "name" for use in the "mode" f i le operation.There
are three fundamental modes of operation:

"a" Open for appending. The file is opened for writing
to an ASCII file. It starts appending at CPMEOF.

"ab" Open for appending. The file is opened for writing
to a binary file. It starts appending at the next
sector boundary.

"r" Open for reading. The file must already exist to use
this mode. ASCII text files have carriage-return r
line-feed (i.e., <CRXLF» adjustment.

"rb" Open for binary reading. No <CRXLF> adjustments.

"w" Open for writing. Any existing file with the same
"name" is destroyed and a new file is created. The
contents of the old file are lost. Does <CRXLF>
adjustment.

"wb" Open for binary writing. No <CRXLF> adjustments.

20

Upon a successful open, the function returns a pointer (e.g., fp)
to the opened file. If an error occurred, NULL is returned.

fprintfO

int fprint(fp, control, arg)
FILE *fp;
char *control, arg;

/* formatted - files */

Formatted printing from a file, where "fp" is the pointer for the
associated file to be used. See printf () for options.

fputsO

int fputs(s, fp)
char *s;
FILE *fp;

/* Put a character out */

Takes the character array pointed to by "s" and puts it to the
output designated by "fp".

freeO

int free(c)
char *c;

/* Release storage area */

The function call frees (i.e., de-allocates) the region of stor-
age pointed to by "c", thus making that area of storage available
for re-use. The function assumes that the pointer "c" was first
obtained by a call to allocO.

fscanf ()

int fscanf(fp, control, arg)
FILE *fp;
char *control, *arg;

/* Input from a file */

Reads by calls to getc(fp) and attempts to fill the specified
arguments as specified by the control string. Arguments must be
pointers. (For information about the nature of the arguments and
options for the control spring, see the scanfO function discus-
sed below.) Note that fp must be a valid file pointer to a file
that has been opened for reading.

21

The function returns: -1 if end of file is detected by getcO, a
0 if no arguments match or none were supplied, or an integer
number equal to the number of valid arguments matched.

ftoaO

int ftoa(sf d, prec, type) /* Float to ASCII (or DTOA) */
char *s;
double d;
int prec, type; >

Converts a floating point number "d" into an ASCII string and
stores the result in "s". Up to 17 significant digits of preci-
sion may be requested (i.e., prec = 17). Note that precision
refers to the number of places after the decimal point. The
"type" variable may be 'g1, 'e1 or 'f tsee discussion of the
printfO function]; otherwise the floating point number is free-
form. The string ("s") must be large enough to hold the character
representation of the resulting number plus one more byte for the
NULL. Since only a double may be passed to this function, it is
also dtoaO.

getcO

int getc(fp) /* Read character from file */
FILE *fp;

Reads a character from the input stream associated with "fp". The
character is normally returned as a positive integer although it
may return EOF upon reading end-of-file or ERR (-1) if an error
occurred during the read. If the file is opened in the ASCII
mode, CPMEOF is converted to EOF by getcO.

getcharO

int getcharO /* Get character from stdin */

Reads a single character from stdin. stdin defaults to the
terminal.

22

getdO

double getd(fp) /* Get double */
FILE *fp;

Returns a double from the file associated with pointer fp.

getlO

long getl(fp) /* Get long */
FILE *fp;

Returns a long from the file associated with pointer fp.

getsO

char *gets(buff) /* Get a string from sdtin */
char *buff;

Get a string from stdin and place it in the buffer pointed to by
"*buff". If input is f rom the console, '\r' is used to sense the
end of the input string; otherwise a newline '\n' is used.

getwO

int getw(fp) /* Get next word from file */
FILE *fp;

Reads the next word, or integer, f rom the file associated with
fp. The word is returned if a successful read is done, but may
also return EOF upon reading end-of-file or ERR if an error
occurred during the read.

hex()

long hex(s) /* Return long from hexs */
char *s;

Convert the hex string pointed to by "*s" into a long data type.

23

irandO

int irandO /* random number - int */

Generates a positive random number as an integer.

isalnuaO

int isalnum(c) /* Is letter or digit */
char c;

Returns non-zero if variable c is a letter or a digit.

isalphaO

int isalpha(c) /* Is c alphabetic character */
char c;

If the character "c" is an alphabetic character/ TRUE (i.e./ 1)
is returned; otherwise FALSE (i.e./ 0) is returned.

isasciiO

int isascii(c) /* Is it ASCII */
char c;

Returns a non-zero value if variable c is in the ASCII character
set. Since ASCII does not use the high bit/ c must have a value
of decimal 127 or less to return a non-zero value.

iscntrlO

int iscntrl(c) /* Is control character */
char c;

Returns a non-zero value if the variable c is a control charac-
ter.

24

isdigitO

int isdigit(i) /* Is i a digit */
int i;

If the character "i" is a digit, TRUE (1) is returned; otherwise
FALSE (0) is returned.

islowerO

int islower(c) /* Is c lower case letter */
char c;

If the character "c" is a lower-case alphabetic character, TRUE
(1) is returned; otherwise FALSE (0) is returned.

isprintO

^ int isprint(c) /* Is it printable char */
char c;

^ Returns a non-zero value if variable c is a printable character.

ispunct()

int ispunct(c) /* Is it punctuation */
char c;

Returns a non-zero value if the variable c is a punctuation
character; not a space, letter, digit or control character.

isspaceO

int isspace(c) /* Is c white space */
char c;

If the character "c" is a tab C\t ') , a space (' '), a newline
(' \ n ') or a c a r r i a g e r e t u r n C \ r ') , T R U E (1) is r e t u r n e d ;
otherwise FALSE (0) is returned.

25

isupper()

int isupper(c) /* Is c in upper case */
char c;

If the character "c" is an upper-case letter, TRUE (1) is
returned: otherwise FALSE (0) is returned.

IrandO

long IrandO /* random number - long */

Generates a positive random number as a long.
«

ItoaO

int ltoa(str, Ig) /* long to ASCII */
char *str;
long Ig;

Converts the variable "Ig" to an ASCII string, which is NULL
terminated.

octal()

long octal(s) /* Return long of octal str */
char *s;

Returns long of the octal string pointed to by "*s".

printfO

int printf(control, arg) /* Formatted printing */
char *control, arg;

Used for formatted printing on selected output device (e.g.,
stdout). The conversion character is the percent sign (%).The
options available are:

A minus sign before the conversion control character
indicates that the output is to be left-justified.

26

printf("%-d", x); ,

~"\ will left-justify the contents of variable "x".

nn A digit string consisting of "nn" digits following the
conversion character and proceeding the control
character specifies the minimum field width to be used
for printing. If padding is required (i.e., number is
smaller thanthe width) blanks areusedunlessthe
first digit is a zero which causes padding with zeros.

printf("%12d", x);

prints the variable "x" in a field of 12 positions. It
may also be used with a decimal point:

._ printf("%6.2f", x) ?

which prints in a field width of 6 places and reserves
two places after the decimal point.

The field width specifier may also be used with string
" data.

. . printf("%25s"f str); . .. ,

which prints the first 25 characters of the string
J variable "str" (right-justified).

1 States that the data item is a long rather than an int.
(This is the letter "l"r not a one).

printf("%ld", x);

The conversion characters available are:

d The data item is printed in decimal notation.

o The data item is printed in octal notation (unsigned).

x The data item is printed in hexadecimal notation (un-
signed) .

u The data item is printed in unsigned decimal notation.

c The data item is printed as a single character.

s Thedataitem is a string. The itemmustbenull term-
inated or have a width specification equal to or less
than the length of the string.

27

e The data item is a float or double and is printed in
scientific notation. Default precision is 6 digits,
but may be modified with an "nn" specifier.

f The data item is a float or double and is printed in
decimal notation with a default precision of 6 digits,
The precision may be changed with an "nn" specifier.

g Select the shorter of options e or f (i.e., use the
one with the shortest width).

The conversion characters may be in upper or lower case letters
(they are converted to lower case during the parse of the control
string). For additional details, see Purdum, pp.103-05.

putcO

int putc(cr fp) /* Output a character */
char c;
FILE *fp;

Outputs the character "c" to the stream pointed to by "fp" and
returns the character "c".

putcharO

int putchar(c) /* Send character to stdout */
char c;

Outputs the character "c" to stdout which is normally the con-
sole. (This function calls putcO with "c" and stdout as its
arguments.)

putdO

int putd(d, fp) /* Write a douole */
double d;
FILE *fp;

Writes the double variable d to the file associated with fp.

28

J

putlO

int putKl, fp) /* Write a long */
double 1;
FILE *fp;

Writes the long variable 1 to the file associated with fp.

putsO

int puts(s) /* Prints string */
char *s;

Displays the string pointed to by "s" on the console. It assumes
the string is NULL terminated.

putwO

int putw(u, fp) > /* Output a word */
unsigned u;
FILE *fp;

Outputs the unsigned integer word "u" to the stream pointed to by
"fp". This function is accomplished by calls to putcO with the
lower byte sent first followed by the high byte. "Word" is taken
to be two bytes in length.

scanf ()

scanf(control, arg) /* Formatted input */
char *controlf *arg;

Reads the input from calls to getcharO and places the input into
the arguments (arg) supplied with the results determined by the
control string. It serves a purpose similar to printfO, but uses
input instead of output.

The control string uses the percent sign (%) for conversion
purposes, just as p r i n t f O does. A second special conversion
character is the asterisk (*) which indicates that an input is to
be ignored, or "skipped over", wi th no assignment made to the
associated variable. The control string may also contain digits
to indicate the maximum field width for a given input.

29

In addition, the following permissible conversion characters are
permitted in the control string.

d = a decimal integer

o » an octal integer

x = a hexadecimal integer

h = a "short" integer (treated as an int)

c = a single character

s » a character string

f = a floating point number

7
If the first three conversion characters in the list (d, o, x)
are preceeded by an ell (I)/ the variable is taken to be a long
data type rather than an int.

Note that arguments must be pointers to their respective vari- ^
ables and that their data type must match that specified in the
control string. That is:

scanf("%5d", &num);

places a maximum of five digits entered by the user into the
integer variable named num. If num is a float, all kinds of
problems can arise. Arrays do not need the "address of" operator
(&) in front of their name, since arrays are not copied in func-
tion calls (i.e., functions receive the address of the array
variable, not a copy). For additional details on scanfO, see
Purdum, pp.105-07. ^

The function returns: -1 if end of file is returned by getcharO,
a 0 if the first argument is invalid or no arguments are sup-
plied, or the number of valid arguements that were matched.

Keep in mind that scanfO is a complex function and, hence,
generates quite a bit of code. If a simpler input function will
do, using it will probably save code space.

30

sprintf()

int sprintf(s, control, arg) /* format to string */
char *s, *control, arg;

Function is similar to printfO, but the output is placed in the
string pointed to by "s" instead of the console. See printfO for
options available.

srandO

int srand(lg) /* Seed random number generator*/
long Ig;

Seeds the random number generator. If the argument "Ig" equals 0,
a prompt is issued that tells the user to press any key. When the
key is pressed, the value held in the generator at that point
becomes the seed for the random number generator. (Numbers are
being generated while the user thinks about pressing a key.) If
the argument "Ig" is a value other than 0, that number becomes
the seed for the random number generator. This allows pseudo
(repeatable) random numbers to be generated. If "Ig" is lf random
seeds are generated until the key is pressed, at which time the
seed is set and returned. (This option lets a program seed be
generated without a prompt.)

sscanf ()

int sscanf(sf control, arg) /* Input from string */
char *s, *control, *arg;

Gets the characters from the string pointed to by s and attempts
to place the input into the arguments pointed to by arg according
to the conversions specified in the control string (control). As
will all members of the "scanfO" family, the type of pointer
must match the associated data type specified in the control
string. The options available are detailed in the discussion of
the scanfO function above.

The function returns an integer equal to; -1 if NULL (machine 0)
is reached in the input string (s) , 0 if none of the arguments
are matched or none were supplied, otherwise the number of valid
arguments that were matched.

31

strcatO

int strcat(s, t) /* Concatenate strings */
char *s, *t;

The string pointed to by "t" is concatenated (i.e., added) onto
the end of the string pointed to by "s". It is the programmer's
responsibility to ensure that the character array pointed to by
"s" is large enough to hold both "s* and the appended string at
"t" (including the NULL terminator '\0').

strcmpO

int strcmp(sf t) /* Compare strings */
char *s, *t;

>-
Compares the two strings "s" and "t" character-by-character. If
the two strings match, a value of zero is returned. Otherwise,
the function returns the result of the subtraction of the charac-
ter in "t" from the character in "s". For example, if the match
fails on the fifth character and sE4] » 'A1 and t[4] » 'B1, -1 is -̂
returned (i.e., 'A' in ASCII - 65, 'B1 in ASCII - 66; therefore,
-1 » 65 - 66). It follows that a negative value is returned if
the ASCII value in "t" is greater than the ASCII value in "s".
Positive values are returned when the ASCII value in "t" is less
than the ASCII value in "s".

strcpyO

int strcpy(dest, src) . /* Copy a string */
char *destf *src; ... _ ^

Copies the string pointed to by "src" (i.e., the source string)
into the location pointed to by "dest" (i.e., the destination
string). It is the programmer's responsibility to ensure that the
destination is suff ic ient ly large to hold a copy of the source -^
string (including the null terminator '\0').

32

strlenO

int strlen(p) /* Find string length */
char *p;

Determines the length of the string pointed to by "p". It returns
an integer number equal to the number of bytes read before read-
ing the null terminator (' \0 ') . The null terminator is not in-
cluded in determining the length of the string.

tolotrerQ

int tolower(c) "-"•" ' /* Convert to lower case */
char c;

Returns the lower-case equivalent of "c" if "c" was in upper
case. Otherwise it returns "c" unchanged.

toupperO

int toupper(c) . - /* Convert to upper case */
char c;

Returns the upper-case equivalent of "c* if "c" was in lower
case. Otherwise it returns "c" unchanged.

ungetcO

int ungetc(cr fp) . /* Character pushback */
char c;
FILE *fp;

Pushes back the character "c" to the file associated with pointer
"fp". Only one is allowed by access.

33

Assembly Language Functions

The fol lowing is a list of funct ions wri t ten in assembly
language for maximum speed and are available to the user. These
are part of the EC2.REL disk file.

atofO

double atof(s) /* Convert ASCII to double */
char *s;

Converts the ASCII string referenced by s, to a double which is
returned.

__bdos()

int _bdos(call,val) /* CPM BDOS call */
int val,call;

Does a CP/M bdos call and returns the answer.

chain ()

chain (s) /* Load and run a program chain ("filename") */
char *s;

Loads and executes the program stored on disk pointed to by s.
You may, of course, use the filename in quotes.

closeO

int close(fd) /* Close file associated with fd */
int fd;

Close the file associated with the fd file descriptor.

34

create)

int creat(s,mode) /* Create a file named str */
char *s;

>. int mode;

Creates a file with the name pointed to by s. It can only be
created for the write mode (mode «1).

_exit()

_exit() /* Warm Boot */

Causes the program to execute a jump to memory location 0 (JP 0)

_ftoa<)

int _ftoa(B,db) /* Convert double to ASCII */
char *s;
double db;

, i t r * -
Dsed by atofC) to do conversions.

inpO

int inp(port) /* Read port */
int port;

Returns the value read from the port specified.

IseekO

int lseek(fd, offset, origin) /* Random access */
int fd r origin;
long offset;

Move to position "offset" within the fi le associated with "fd"
relative to the location given by "origin". The variable "origin"
may assume three values: 0 specifies that "offset" is measured
f r o m the beginning of the file, 1 measures f r o m the current
position in the file, and 2 measures f rom the end of file. No
error checking is done.

openO

int open(s,mode) /* Open file named str */
char *s;
int mode;

Opens the f i le named is the character ar ray pointed to by s fo r
one of the following modes: 0 = readingf 1 » writing, 2 » reading
or writing.

outpO

int outp(port,val) /* Send to port */
int port, val;

*̂ ^

Outputs the dat in "val" to the specified "port".

readO

int read(fd, buf, n) /* Read device */
char *buf;
int fd, n;

Attempts to read "n" bytes of data from the file associated with
"fd" into the buffer ("buff"). It will return -1 if an error
occured or EOF if end-of-file is read. If fd equals Or the con-
sole is read to string length or a CR is sensed and returns the
number of characters found. It does not do NULL termination and
CR is not included in the count, fd's 1, 2, and 3 are illegal.

rsvstkO

int rsvstk(size) /* space betwen stack and sbrk */
unsigned size;

Returns the number of bytes between last used segment of memory
and the stack.

36

sbrkO

char *sbrk(u) /* Return u bytes of storage */
unsigned u;

Returns a pointer to u bytes of storage if available, zero
otherwise.

setae* ()

int setmem(ptr,len,val) /* Pill memory with value */
char *ptr;
int val;
unsigned lenj

Fills memory from "ptr" for length Men" with the value of "val1

writeO

int write<fd,buf,n) " /* Write to device */
char *buf»
int fpf n;

Write n bytes of data from buf fe r buf to the fi le associated with
fd. (Purdum, p. 181). If file i/o then n must be multiple of 128.

37

Machine Constants

What fo l lows is a list of constants that have been defined
in the compiler and are available to the user. All have been set
to machine precision and, hence, are doubles. To use them in a
program, they should be declared as:

extern double CONSTANT_NAME;

before used. Obviously, no other variables should use these
names.

Constant Name Meaning

_FPMAX Maximum floating point number (machine in-
finity).

_FPONE Floating point one (1.0).

_10E1 10 (Ten to the first power). . ^

_10E2 100

_J.OE4 10,000

_10E8 100,000,000

_10E16 10,000,000,000,000,000

_10E32 100,000,000,000,000,000,000,000,000,000,000

*** The following are in SLIBO.REL; use -sO switch option ***

_pi pi to machine infinity

_pi_2 < pi divided by 2 -~—J
__pi_4 pi divided by 4

_16 16

_inv2 1 divided by 2

_inv4 1 divided by 4

_inv!6 1 divided by 16

38

_loge log(e)

--V _tsqr3 2 minus the square root of 3

_sqrt3 square root of 3

_sqrt5 square root of .5

39

II

Assembler Language Function Interface

Assembly language routines may be written and called by the
C" program or other assembler language functions. There exist
several support routines that may be used to simplify assembler
language interface.

$RTN - will return the value pointed to by the HL
register pair to the calling function.

$RETVAL - will return the value contained in the DE
register pair to the calling function. If
a long was requested then the value will
be padded.

$RETM1 - will return a -1 to the calling program.

$PE - calls the function pointed to by the HL
register pair using parameters following
the call and information contained in the
called function.

$PPARM - pushes the parameter addressed in HL
for the length in BC.

All variables of length 2 are processed by value while all
others are processed by address. If a 2 byte integer value is to
be passed as a parameter, its value is pushed on the stack. If
the length is greater than 2 bytes, the address of the variable
is loaded into the HL register pair and $PPARM is used. On return
from a function, if the return value was length 2, its value is
in the HL register pair. If it is longer than 2 bytes, it has
been moved to the variable specified at call time and the address
of that variable is in the HL register pair.

When a function is defined, the first word in the function
following the function name is the amount of stack space required
for working storage by the function. This is expressed as a
negative value. This stack space is the equivalent to auto
variables. The code for the function immediately follows this
word. For example:

FAKE:: DEFW -8
LD IX,0
etc.
LD HL,ANSWER
JP $RTN##

states that 8 bytes of working stack storage are required by the
function FAKE. The stack will always contain 8 bytes of

40

administrative data prior to the requested storage.

The stack looks like this:

^ + OLD STACK
) 1 parameter n I

•» +
I parameter n-1 I

I parameter 1

I requested working storage I
4 --------------------------- +
I 8 bytes of administration I
H --------------------------- + CURRENT STACK

' The adminstrat ive data on the stack consists of the
following:

STACK - Address of where to return value.
STACK+2 - Length to return.
STACK+4 - Address of calling program.
STACK+6 - Address of old stack.

Invoking a function in Assembler Language

To invoke a function in assembler language the following
convention is used.

LD HL,FUNCNAME
CALL $FE«*
DEFW old stack offset
DEFW return value address offset
DEFB return value length

All offsets are positive. All return values must first be stored
on the stack. For example, to do an assembler language call
equivalent to the following "C" call

double atof () ;
/* code of some kind... */

a=atof (b) ;

the equivalent assembler code is:

LO H L , @ B ;address of B
LD BC,8 ;length of B
CALL $PPARMf# ;push it
LD HL,ATOF#f ;address of ATOP
CALL $FE## ;call it
DEFW 8 ;offset for return value
DEFW 8 ;old stack offset
DEFB 8 ;length to return

Using IMIT.ASM

The fi le INIT.ASM is used to change the number of iob's and
fcb's and to set the stack pointer. To change the number of iob's ~~/
and fcb'Sr change the number in the EQU statement to the desired
number. To change the stack pointer r change the code that ini-
tializes the stack. After INIT.ASM has been assembled, it must be
linked in explicitly. For example:

^~s

A>180 test,init,test/n/e<CR>

Below is a copy of INIT.ASM mod i f i ed for 10 fi les in
addition to stdinr stdout, stderr, and stdlst. The stack has also
been altered to reside at high memory rather than bottom of bdos.

.Z80
INCLUDE FCB.MAP

NFCB EQU 10 ;SET FILES TO 10
INCLUDE FCB.ASM
INCLUDE IOB.ASM ^
CSEG

$INIT:: POP BC
LD HL,0 ;SET STACK TO TOP OF MEMORY
LD SP,HL
PUSH BC ^
RET
END

Remember that, when INIT.ASM is assembled, the following
files must be available on the disk:

FCB.MAP
FCB.ASM
IOB.ASM

42

Naming Conventions

In order to prevent conflicts with the assembler registers
all variables of two characters or less have a prefix character
of 6. For example:

A -> @A
BC -> 8BC
Al -> 8A1

In addition to the above convention, all underscores are
translated to question marks. For example:

_AB -> ?AB
A_B -> A?B

Creating Libraries

Custom l ibraries may be generated for use with the Eco-C
Compiler. What is presented here is an outline of the procedure
necessary to establish your own library of C functions. Complete
information is contained in your MACRO 80 documentation.

First, each function to be included in the library should be
compiled and assembled individually just as you would with any C
program. The output from the assembler (M80) will be a series of
REL files; one for each function.

At this point LIB80 is used to consolidate these files into
a l ibrary. The fo l lowing sequence of commands illustrates the
creation of a l ibrary called OWN, containing two modules (.REL
files) called ONE.REL and TWO.REL respectively.

A>LIB80 <CR>

*OW№=ONE,TWO <CR>

*\E^ <CR>

A> /* < Control returned to CP/M */

Note: in creating a library, the order of the modules is
important due to a linker restriction. Any module which referen-
ces an external label in another module must be included before
the module containing the reference. For example, if file
ONE.REL references a label in file TWO.REL, the above library
generation is correct.

43

On the other hand, if TWO.REL contained a reference to a
label contained in file ONE.REL, the above library construction
would cause an error message to be generated by the linker (L80).
The linker makes only one pass through the libraries and there-
fore cannot find any external label referenced in a file "in
front of it" in the link sequence.

When creating a library? you can request LIB80 to inform you
of any unresolved errors the linker might encounter in searching
the library. If you wish to check OWN for possible unresolved
references, the sequence is:

A>LIB80 <CR>

*OWN/U <CR>

LIB80 will then list all unresolved references (i.e., globals).

If you want a listing of the modules in a library with
information concerning entry points and external references, the
following command will cause that listing to be generated on the
screen.

A>LIB80 <CR>

*OWN/L <CR>

The LIB80 manual contains further information on how to use
other commands to alter or create libraries.

44

-*
JJ

CP/M I/O Interface

Since the standard C library was written to exist in the
UNIX environment, implementing the same library in a CP/M envir-
onment presents several problems. In implementing the library
for the Eco-C Compiler the following approach was used.

The system routines, such as readO , wr i t eO, openO, and
createO are contained in the user program but should be viewed
as part of the operating system. In the UNIX environment, readO
and wri teO may have a count specification of any size when
dealing with files. The fcb's are maintained by these "system"
routines and contain information in addition to the fcb proper.
It is intended that the fcb's be transparent to the user and
therefore cannot be referenced by the user. I

The _iob's maintain a UNIX f o r m a t and are defined in
"stdio.h". An additional flag (_BFLAG) is used to determine if
I/O is to do conversions on carriage-return, line-feed (CR LF).
If the JBFLAG is set, no translation takes place. If the "_BFLAG"
is cleared, the following translations take place.

• .
1. All input with the exception of _fd«»0 will strip all

<CR>'s from the input stream; it does not matter if a <LF> fol-
lows. The other choice was to look for a <LF> and then do an
ungetcO if it is not an <LF>. This would make ungetcO unreli-
able for use by the program. The ungetcO function is only in-
sured to work once, and this once was used by getcO, not the
user.

It was decided to make ungetcO available for the user
program at the expense of an extra <CR> being stripped. In a file
where this is critical, the program may be opened in binary mode
(e.g., "rb" and "wb") which causes all <CR>'s processed by the
user's program.

2. When input is from _fd==0, a <CR> is taken as the end of
input. At this point a <LF> is echoed to the screen and '\n'
returned to the user program.

3. On all output, '\n' translates to <CR> <LF> and '\r'
remains as <CR>.

Note: In the non-binary mode, the CP/M EOF indicator (Oxla)
must be checked for explicitly on getcO and written explicitly
before closing the file. EOF is only returned at physical end of
file.

45

Floating Point Notes

In the Eco-C compiler, a f loating point number consists of
two parts: 1) the mantissa and 2) the exponent. The mantissa uses
56 bits. All f loating point numbers are normalized. (Therefore ,
since the high bit is always 1, if the Most Significant Bit [MSB]
of the mantissa is 0, it is a negative number . If it is a nega-
tive number [i.e., MSB=0], it is set to 1 before exponent adjust-
ment is done.) The mantissa is expressed as a fraction, which
means the most s ignif icant bit is interpreted as 1/2, the next
bit is 1/4, then 1/8 and so on. The series formed by the mantissa
bits may be viewed as (from most to least significant):

1/2~1, 1/2*2, l/2~3, . . ., 1/2*55, 1/2*56

The exponent is 8 bits and is an integer with a 128 offset
and represents powers of 2 (i.e., binary) . A zero exponent is
used for the number 0.0. To illustrate, 2 raised to the 0 power
is 128, 2 to the 1st becomes 129, and 2 to the -1 is 127. The
range for the exponent is 2 to the -127 through 2 to the +127.

Taken collectively, a floating point number is represented
as:

.mantissa * ((2 raised to the power of exponent) - 128)

If we assume that a f loat ing point number is stored in
memory starting at memory address lOOOh, its representation might
be depicted as:

1000 1001 1002 1003 1004 1005 1006 1007
+ + + + + + + + +
I I I I I I I I I
+ + + + + + + + +

" \ /
I MSB LSB
I \ mantissa /

exponent

Using the scheme immediately above, the fol lowing represent

46

floating point numbers (in hexadecimal):

Value

1.0
-1.0

.5
85.0

-85.0

Hex

81 80 00 00 00 00 00 00
81 00 00 00 00 00 00 00
80 80 00 00 00 00 00 00
87 aa 00 00 00 00 00 00
87 2a 00 00 00 00 00 00

The range of the floating point representation is:

2.9387358770557187 E-39

to

1.7014118346046922 E+38

For those that want to interface with the floating point
packager the following assembly language functions should prove
useful. In each case, the function is called with the address of
the f irst operand (opl) in the HL register pair and the address
of the second operand (op2) in the DE register pair. The function
returns with the answer in the floating point accumulator
($FPACC) which is pointed to by the HL register pair.

$ADDD Add X$FPACC - opl + Op2)

$SUBD Subtract ($FPACC • opl - op2)

$MOD Multiply ($FPACQ« opl - Op2)

$DVD Divide ($FPACC = opl / op2)

(Note that $FPACC is the address of the 8-byte floating point
accumulator. $FPMAX is the address of the constant that is equal
to the maximum floating point number and $fpone is the address of
a constant equal to a floating point 1 and may be used to incre-
ment a floating point number.)

47

Error Messages

Any error in the source program is detected by the Syntactic
Parser pass. To illustrate how this works, suppose you tried to
compile the following "do-nothing" program:

mainO
{

char wrong /* need semicolon at end of line */

Assume further that we have named this program ERROR.C. The error
message generated will look like:

Error in Pile: ERROR.C Line: 4 Char: 1 Error: 1002 Token: }
Expected type specifier, typedef name, [(; ,
) » or : instead of }.

If you look at the program, we forgot to add the semicolon after
the character variable named "wrong". The compiler found the
character "}" when it expected to find something else. (A list of
possibilities is given as part of the error message.)

Since predictive parsing is used, we must look "backwards"
f rom the point where the error was detected to find the error.
Since the error was the f irst character in line 4, the e r ro r must
have been caused by something near the end of line 3. Inspection
of line 3 shows that we forgot the semicolon in the declaration
of "wrong".

Many of the messages will tell you what should have been
found in the program where the er ror occurred. You will also note
that some of the error messages have more than one number assoc-
iated with them. This is so we can tell exactly where the mes-
sages is generated within the error handler.

You might want to w r i t e a few programs wi th known e r rors in
them to "get a feel" as to how they are handled by the e r ror

48

. >

J

handler. All errors are treated as fatal so there will be no
cascading of false error messages. We think you will find that
the error handler pinpoints the source of the error. We have
listed pages references from the C Programming Guide (Purdum) for
further information about the nature of the error.

49

Error code Meaning
Number(s)

1
Internal Error - an attempt was made to create a temporary
variable of an illegal type. Check source code for legality
of statement.

2
A type specifier/ storage class specifier or function declar-
ation was expected instead of .

(p.46, p.53, 128)

A comma or semicolon was expected instead of .
(p.34, p.242)

-Y
4 1009 1015

An identifier, (o r * was expected instead of .
(p.132, p.242, p.241)

A semicolon was expected instead of
(p.8, p.242)

A closing parenthesis was expected instead of
(p.9, p.241)

An opening parenthesis was expected instead of
(p. 10, p. 241)

8
A closing brace was expected instead of _ .

(p. 10, p. 242)

9
A closing bracket was expected instead of _ .

(p. 65, p. 242)

10
A parameter (argument) list was expected instead of

(p. 9, p. 46)

50

11 1011 1012

An opening brace was expected instead of .
(p.10)

12
A parameter declaration list or opening brace was

expected instead of .
(pp.9-10, p.242)

13
The parameter (argument) declaration list is in error,

(p.46)

14
An array size was expected but found .

(p.65)

15
^ _ A structure or union tag or opening brace was
^ expected but found .

(p.149, p.158, p.10)

16
A type specifier was expected but found .

— (p.46)
* - - ' . - ' " - • . _ . • • •' , » 7 ~

17
A statement or declaration was expected but found .

^ (p.249, p.244)

18
A type specifier or storage class specifier was expected

but found .
(p.46, p.53)

19
,• A storage class specifier was expected but found .
^ (p.53)

20
An attempt was made to "goto" an illegal label name.

, (p.112)

21
An attempt was made to perform an illegal "break" or "continue1

(p.36, p.37)

22
The "while" is missing from a "do(>while" statement,

(p.29)

51

23
A multiply defined "default" was found in the "switch",

(p.116)

24
Multiply defined label,

(p.113)

25
An identifier, opening parenthesis or constant was
expected in the expression instead of .

(p.132, p.10, p.29)

26
Variable is undefined,

(p.13)

27
Illegal indirection or array reference,

(p.76, p.87)

28
Expected a comma or closing parenthesis instead of .

(p.34, p.9)

29
Internal Error - illegal multiplier.

30
Illegal bitwise operand. •

(p.25)

31
Illegal pointer arithmetic,

(p.71)

32 • -- - "
Illegal floating point operation,

(p.117)

33
Illegal negation,

(p.25)

34
Illegal logical not operation,

(p.25)

35
Internal Error - illegal constant.

52

36
Symbol multiply defined.

37
\̂ Pointer is not to a structure or union in p->x or type
' initial field is not a structure or union in i.x.

(p.150, p.143)

38
A subfield of the name referenced does not exist in the

structure or union in i.s or p->s.
(p.140)

39
Input file not found.

40
A colon was expected in ternary *?_:" but was not found,

(p.125)

^ 41
The results of the two expressions in ternary "?_:" were

not of a legal combination.
(p.125)

^ 42
A non-zero integer constant was mixed with a pointer in the

ternary "?_:" expression,
(p.125)

3 43
Out of memory.

44
Illegal address of (&id).

(p.74)

46
Illegal use of struct or union as source operand.

^ (p.137, p.158)

47
Attempted assignment to a constant,

(p.86)

^ 48
Illegal assignment to structure, union, function name or

array name,
(p.137, p.158, p.86)

49
Attempt to "type" a parameter which is undefined in the

function declaration,
(p.46)

53

51

52

53

60

1000

1001

1002

1003

1006

1007

1010

A structure, union oc function data type was specified
illegally.

(p.137, p.158)

A referenced structure or union tag has not been defined,
(p.149, p.158)

An external data definition and the current data definition
do not match,
(p.58)

Initializers not currently supported,
(p.140)

Expected type specifier, [{ ;)
(p.46, pp.241-42)

or : instead of

A declarator delimiter (e.g, * , or ;), parameter declaratior
for a function or (was expected instead of .

(p.242)

Expected type specifier, typedef name, [(; ,
) » or : instead of .

(p.46, p.241-242)

Expected type specifier, typedef name, [{ ; ,
) = or : instead of .

(p.46, p.241-242)

Expected identifier, * (or : in structure or
union declaration instead of .

(p.150, p.158)

Expected : ; or , instead of
(p.46, p.241-242)

Expected = ; or , instead of
(p.46, p.241-242)

in declaration list,

1016
Compiler doesn't handle function name as pointer yet.

For now:

54

Define variable as pointer to function
then equate it to address of function name,
i.e. a=&getc;
(p.71)

Operator Precedence
(Highest to lowest)

1 -> () II
2 ++ i - (cast) * & sizeof
3 * / %
4 +
5 « »
6 < < - > > -

7 — I-8 & /* bitwise AND */
9

10 I
11 &&
12 I I ,-
13 ?:
14 m +« -« ** /» %« «- »- &« *« I-
15 ,

55

Appendix A

Trancendental Library

This appendix describes the fcrancendental functions that are
included in the Eco-C compiler. These func t ions are found in
Standard Library Zero (SLIBO.REL) and are envoked at compile time
wi th the -SO option as described earlier. Note that all values
re turned are doubles. The calling funct ion , of course, must be
aware of this fact (Purdum, pp.205-06).

sqrt(z)

double sqrt(x) /* Square root of x */
double x;

Returns the square root of the (positive) value of x. If x is not
a valid argument (e.g., a negative number), the return value is
0.

ln(z)

double ln(x) /* Natural log of x */
double x;

Returns the natural logarithm of the value of x.

log(z)

double log(x) /* Base 10 log of x */
double x;

Returns the base 10 logarithm of the value of x.

ezp(z)

double exp(x) /* e to power x */
double x;

Returns (the constant) e raised to the power of the value of x.

56

power(x,y)

double power(xfy) /* x to power y */
double x,y;

Returns the value of x raised to the power of y.

sinCx)

double sin(x) /* sin of x */
double x;

Returns the sine of x, where the value of x is expressed in
radians.

«• \

cos(x)

double cos(x) - /* cosine of x V
double x;

Returns the cosine of x, where the value of x is expressed in
radians.

tan(z)

double tan(x) /* tangent of x */
double x; - ~

Returns the tangent of x, where the value of x is expressed in
radians.

cotan (z)

double cotan (x) /* cotangent of x */
double x;

Returns the cotangent of x, where the value of x is expressed in
radians.

asin(z)

double asin(x) /* arc sine of x */
double x;

Returns the arc sine of x, where the returned value of x is
expressesd in radians.

57

acos(z)

double acos(x) /* arc cosine of x */
double x;

R e t u r n s the arc cosine of x, w h e r e the r e t u r n e d va lue is
expressed in radians.

atan(z)

double atan(x) /* arc tangent of x */
double x;

Returns the arc tangent of x, where the returned value is expres-
sed in radians.

sinh(x)

double sinh(x) /* hyperbolic sine of x */
double x;

Returns the hyperbolic sine of x where x is expressed in radians.

cosh(z)

double cosh(x) /* hyperbolic cosine of x */
double x;

Returns the hyperbolic cosine of x r where x is expressed in
radians.

tanh(z)

double tanh(x) /* hyperbolic tangent of x */
double x;

Returns the hyperbolic tangent of x, where x is expressed in
radians.

atan2(x,y)

double atan2(x,y) /* arctangent of x over y */
double x, y;

Returns arctangent of x divided by y, where r if y equals 0 and
x not equal to 0, it r e tu rns pi divided by 2. If both are 0, it
returns 0.

58

SOFTWARE LICENSE AGREEMENT

BETWEEN: Ecosoft Inc. License No. f-.C-
P.O. Box 68602
Indianapolis, IN 46268

("Ecosoft")

and

("Licensee")

Ecosoft grants to licensee a nontransferabler nonexclusive
license to use the ' TM
program (the "Software") subject to the terms and conditions of
this Agreement.

1. Licensee may not t ransfer , assign, or sublicense either
the Software, manuals or documentation supplied with the
Software.

2. Licensee may make backup copies of the Software provided
EACH BACKUP COPY CONTAINS THE ECOSOFT COPYRIGHT NOTICE. IN NO
EVENT SHALL LICENSEE MAKE COPIES OF ANY PORTION OF THE MANUALS
AND/OR DOCUMENTATION ACCOMPANYING THE SOFTWARE WITHOUT PRIOR
WRITTEN CONSENT OF ECOSOFT.

a. Licensee may use the Eco-C C Compiler for commercial
use, provided that the Ecosoft copyright notice (i.e., Eco-C,
Copyright 1983 by Ecosoft Inc.) appears near the beginning of the
program source code and documentation.

3. Violation of the terms of this Agreement are cause for
this license to be terminated by Ecosoft without notice. In the
event Ecosoft elects .to terminate, by sending written notifica-
ti'on to Licensee at the address indicated on Ecosoft's records,
by registered or certified mail, Licensee shall, within five (5)
days fol lowing receipt of such notification, re turn to Ecosoft
the original media upon which the Software is recorded along with
all manuals and/or documentation relating to the Software. Licen-
see shall provide a written statement attesting that no copies of
the Software have been retained in any form.

4. This license is granted by Ecosoft on an "AS IS" basis.
ECOSOFT MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE, UNINTERRUPTED OR
THAT ANY PROGRAM DEFECT WILL BE CORRECTED. ECOSOFT MAKES NO
WARRANTY WITH RESPECT TO THE MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR USE OF THE SOFTWARE.

IN NO EVENT SHALL ECOSOFT BE LIABLE FOR ANY DIRECT, INDI-
RECT, SPECIAL OR CONSEQUENTIAL DAMAGES CAUSED OR ALLEGED TO BE
CAUSED DIRECTLY OR INDIRECTLY BY THE SOFTWARE, INCLUDING BUT NOT

. • ..' .
59

LIMITED TO LOSS OF BUSINESS, ANTICIPATION OP PROFITS OR INTERRUP-
TION OF SERVICES.

5. This Agreement shall be construed according to the laws
of the State of Indiana and contains the entire Agreement of the
parties. No representations, promises, agreements or understand-
ings, written or oral, not contained herein shall be of any force
or effect. No change or modification of this Agreement shall be
valid or binding unless it is in writing and signed by the party
to be charged.

IN WITNESS WHEREOF, Ecosoft and Licensee have executed this
Agreement this day of , 198 .

ECOSOFT, INC. ,

"Ecosoft"

By:.
Jack J. Purdum, President

"Licensee"

By:.

Itst.

Dealer:

60

