Canon

ASロIOOM ASロIOTC

FIELD SERVICE MANUAL

```
Chapter 1 Outline
Chapter 2 Specifications
Chapter 3 Disassembly/Reassembly and Nomenclature of
Each Section
Chapter 4 Installation
Chapter 5 Replacement and Ajustment of Units
Chapter 6 Periodic Maintenance
Chapter 7 Troubleshooting
Chapter 8 Appendix
```


PREFACE

Differences between first and this version and as shown in following table:

Model No. 0XXXXX	Model No. 1XXXXX
Three P.C.B.'s in MAIN UNIT 1. CPU P.C.B. (1) Basic memory of 256KB (2) Optional memory 1) Chip expansion (memory) 128 KB each 2. I/O CONT P.C.B. 3. CRT CONT-X P.C.B.	Two P.C.B.'s in MAIN UNIT 1. $\mathrm{CPU}+\mathrm{I} / 0-\mathrm{CONT}$ P.C.B. (1) Original Formen CPU+I/O-CONT (2) Basic memory 128 KB (3) Optional memory 1) Expansion board (memory) 128 KB , 256 KB or 384 KB 2) RS 232C-2 expansion 3) RTC expansion 2. CRT-CONT2-X (1) Gate array (2) Option (B/W display) 1) Chip expansion (VRAM) 32KB (3) Additional functions of optional memory is for B / W display 1) Partial high brightness 2) Partial blink
1. Memory chip expansion 128 KB 2. RS232C on I/O MOTHER 3. CENTRONICS interface 4. COMMUNICATION interface 5. POINTING DEVICE	1. Memory board expansion 128 KB , 256 KB or 384 KB 2. RS 232 C on $\mathrm{I} / 0$ MOTHER RS232C-2 on CPU + I/O-CONT 3. CNT I/F-2 on I/O MOTHER (CENTRONICS) 4. SIO on I/O MOTHER (Communication) 5. VIDEO RAM chip expansion 32 KB for B / W display 6. POINTING DEVICE

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |

Introduction

This service manual is applicable only to the specified models as shown below. Abbreviations of models are listed in Table l.1.1.

Chapter 1 Outline

```
1.1 Configurations
    1.1.1 System configuration
    1.1.2 Models
    1.1.3 Software configuration
1.2 Description of Functions
    1.2.1 CPU
    1.2.2 I/O CONT (I/O Controller)
    1.2.3 DISPLAY CONT (Display Controller)
    1.2.4 KEYBOARD
    1.2.5 5" FDD
    1.2.6 8" FDD
    1.2.7 PRINTER
    1.2.8 I/O MOTHER (option)
    1.2.9 RS232C (option)
    1.2.10 CENTRONICS (option)
    1.2.11 COMMUNICATION (option)
    1.2.12.CURRENT LOOP (option)
    1.2.13 5" HARD DISK (option)
```


Chapter 1 Outline

1.1 Configurations

1.1.1 System Configuration

Fig. 1.1.1 System Configurations

Table 1.1.1

Note: KSR for AP400/500 is applicable

	Option	Mode1	Symbol	Configuration \& outline	Remarks
*1		Optional memory A-1020	E71-0270	- 128KB RAM board	To CPU+I/OCONT P.C.B.
		Optional memory A-1021	E71-0280	. 256KB RAM board	
		Optional memory A-1022	E71-0290	- 384KB RAM board	
	RTC	Real time clock A-1002	E71-0310	- With calendar, watch and battery	
	RS 232C-2	$\begin{aligned} & \text { Serial data interface } \\ & \text { A-1500II } \end{aligned}$		- RS-232-C interface	
$\stackrel{\rightharpoonup}{\omega}$	VRAM	Video memory A-1004	E71-0320	- For B/W display	$\begin{aligned} & \text { To CRT-CONT2- } \\ & \text { B/W } \end{aligned}$
	I/O MOTHER	Expansion board A-1010	E71-0210	- I/O optional MOTHER board	To A-1011
	RS232C	$\begin{aligned} & \text { Serial data interface } \\ & \text { A-1500 } \end{aligned}$	E71-0150	- RS-232C interface	
	CENTRONICS	Parallel data interface A-1502	E71-0190	- CENTRONICS interface	
	$\begin{aligned} & \text { COMMUNICA- } \\ & \text { TION } \end{aligned}$	$\begin{aligned} & \text { Communication interface } \\ & \text { A-1503 } \end{aligned}$	E71-0180	- Transmission	
*2	5" HARD DISK	Hard disk A-1350	E71-0331	- 5 " hard disk + mini drive x 1 - File capacity of hard disk 8.4 MB - Transfer rate of hard disk max. 500kB	$\begin{aligned} & \text { H. DISK I/F: } \\ & \text { to A-1011 } \end{aligned}$
	P.D.	Pointing device A-1100	E71-0260	- Smooth cursor shift device	
*1	CURRENT LOOP	$\begin{aligned} & \text { Current loop interface } \\ & \text { A-1505 } \end{aligned}$	S13-1010	Interface of data transmission by current mode	

*1 Available from April 1983
*2 Available from May 1983

1.1.3 Software Configuration

1.2 Functional Description

'With AS-100M and AS-100C, the 16 -bit μ processor 8088 dat bus $=$ 8 bits is used as a CPU. To assure each model of good universality over programming, both $\mathrm{CP} / \mathrm{M}-86$ and MS-DOS of a general-use type are applied for operating system.

The CRT display (B / W or color) is of a full graphic design.
It displays all images including characters with picture dots.

Fig. 1.2.1. Functional Block Diagram

1.2.1 CPU

16-bit processor 8088 executes the microprogram which has been loaded previously from floppy disks into the system memory RAM , and the ROM (8 KB) to control the entire functions.

- Initialization of hardware other than FDD controller
- Initial checks (1) RAM check
(2) ROM check
(3) Timer check
(4) Key check
. Clearing of VRAM in display controller
. Initialization of hardware for FDD controller
. OS loading from the system media into RAM by DMA controller
1
Operation of OS (CP/M-86, MS-DOS)
. Henceforth management under OS.

System memory map under the OS

Fig. 1.2.2 System Memory Configuration

SYSTEM BUS

A system bus is used for 16 -bit processor 8088 to control the entire system. The system bus consists of a 20-bit address bus with 1 MB address space, 8-bit data bus, and a control bus for read/write control and system bus controlled by a microprogram.

The memory area appropriated for 8088 processor is divided into two as shown in Fig. 1.2.3; One is the system memory area and the other is I/O memory area.

This memory area division is performed automatically within the same address area of 20 bits - 1 MB by a microprogram.

Fig. 1.2.3

Option involved in the CUP

System memory (RAM) ... Up to 512 KB (max.) by expansion of each bord $128,256,384 K B$.

Real Time Clock (RTC) ... Data and time control. It functions by backup of battery when power OFF.

1.2.2 I/O CONT

I/O CONT modifies the system bus into the I/O bus in order to control the circuit of device, option device and desplay controller which are connected to I / O bus.

Device controllers inside I/O controller is connected to I/O bus, and address is designated to a certain I/O memory area.

Modified is connected with DISPLAY CONT and optional device controller as I/O BUS.

Option in I/O CONT

RS232C-2 ------ Serial data interface output to OPT5 port.

1.2.3 DISPLAY CONT

When video memory data (VRAM) [black/white display: 32KB x 1 (VRAM-B) and color display: 32KB x 3 (VRAM-B.G.R)] Black/white or color display gives a full graphic presentation of characters or figures. Display control too graphic display controller (GDC) is $\mu \mathrm{PD} 7220 \mathrm{D}$. $32 \mathrm{~KB} \times 1$ or $32 \mathrm{~KB} \times 3$ VRAM is accessable on a time sharing basis either the GDC or the CPU via the I/O bus.

Picture structure of both black/white and color display is as shown in Fig.].2.4.

Fig. 1.2.4

For black/white and color displays, a pallet display system is employed and eight different patterns made from 1 or 3 VRAMs enhances display performance. Fig. 1.2 .5 shows pallet display system concept.

Fig. 1.2.5

Eight different patterns previously set on pallets $0 \sim 7$ are selected according to VRAM output which is sent out synchronously with the dot timing of a can sweep signal of separately display.

Black/white display

Referring to Fig. 1.2.5, dot timing is as in Table 1.2.1.
Table 1.2.1

Bit output		Selected pallet	Output to display	
R	G			No display
-	-	0	Pallet 0	Normal display
-	-	-	Pallet 1	

Option VRAM-G included

| - | 1 | 0 | Pallet 2 |
| :---: | :---: | :---: | :---: | Partial high brightness display

Color display

Like the black/white display, depending on the contents of selected pallets, six different chromatic signals, semi red, red, semi green, green, semi blue and blue are output.

For a half-tone chromatic display, two chromatic signals of a primary color and a semi color are required but no combination is available between a primary and a semi color of same color type.

Therefore, a display with 27 different colors is possible as shown in Fig. 1.2.6.

Fig. 1.2 .6

Referring to Fig. 1.2.5, eight different patterns are.selected in advance on the pallets; therefore, eight colors be selected differently from the 27 colors.

Option in DISPLAY CONT

VRAM Optional chip of $32 \mathrm{~KB} \times 1$ for B / W display

1.2.4 KEYBOARD

I/O CONT

KEY BOARD

Fig. 1.2.7 Block diagram of the keyboard

8401 processor is used for key code generation control and has a 1 KB ROM incorporated to control the timing of key code generation, selected key code designation, and serial output. The key matrix comprises of 13 sampling timings, KSO ~ KS12 and key code KDO ~ KD7 of 8 bits, thus, $13 \times 8=104$ different keys can be discriminated. Pointing device is connected onto key matrix with eight keys of 104 appropriated for pointing device.

Concept of key code generation

Key data are generated respectively when a key is pressed and released, then, serially transferred to key input circuit. CPU converts key data into internal codes. When key release time exceeds 640 ms , CPU automatically generates an internal code continuously as repeat mode.

KEY BOARD option
Pointing device Carsol control for graphic.

1.2 .5 5" FDD

The 5" FDD has two built-in MDD-220 units and is connected to
I/O controller via FDD controller, using a star chain.

FDD controller also drives the $8^{\prime \prime}$ FDD (YD-180 x 2) with same bus line; therefore, 5" FDD incorporates an interface circuit consisting of VFO circuit, condition generator circuit, bus driver/ receiver circuit for common application of one same bus. Power supply is provided from main unit separately from signal bus.

$1.2 .68^{\prime \prime}$ FDD

Except for the following, $8^{\prime \prime}$ FDD is the same as $5^{\prime \prime}$ FDD (MDD220 x 2).

Drive
YD-180 x 2 (daisy chain)
Interface circuit VFO circuit
Power source Built-in

1.2.7 PRINTER

Refer to PRINTER TECHNICAL GUIDE.

1.2.8 I/O MOTHER (option)

The I/O MOTHER is for optional interface and devices to be connected to I/O bus. I/O mother keeps a 96 KB system memory area for optional use and a 3-port (OPT2, OPT3, OPT4) for optional interface addressed in $I / 0$ memory area.

The following optional device and interface are connected to I/O MOTHER.

```
o System memory area (90000H - A7FFFH) ... Option use
o I/O memory area
```

I/0 memory area is normally allocated to meet the respective port select and status read, for optional interface-use by three ports.

CPU recognizes the optional interface connected to each port through status read, and I/O memory area is allocated for individual interfaces via port select.

Table 1.2.2

Note: A0 ~ A8 are address buses.

Optional port	Option interface	
OPT2	RS232C	CENTRONICS CURRENT LOOP
OPT3	RS232C	COMMUNICATION CURRENT LOOP
OPT4	RS232C	H.DISK I/F CURRENT LOOP

```
1.2.9 RS232C (option)
RS232C serial interface connected to I/O MOTHER.
```

1.2.10 CENTRONICS (Option)

CENTRONICS interface connected to I/O MOTHER.
1.2.11 COMMUNICATION (Option)

COMMUNICATION interface connected to I/O MOTHER
1.2.12 CURRENT LOOP (Option)

CURRENT LOOP interface connected to I/O MOTHER.
1.2.13 5" HARD DISK (option)

5" HARD DISK consists of a M4863 hard disk, a MDD220 and power supply unit.

M4863 connects to H.DISK interface circuit which provides in MAIN UNIT through the disk controller built-in M4863. MDD-220 connects to FDD CONT through 5"FDD interface circuit.

Chapter 2 Specifications

2.1 MAIN UNIT2.2 5" FDD$2.38^{\prime \prime}$ FDD
2.4 KEYBOARD
2.5 PRINTER
2.6 Option Interface
2.7 Option (Others)
2.8 General Specification

Chapter 2 Specifications

2.1 MAIN UNIT

Items	Description					Remarks		
CRT		Color		Green				
		VRAM		$32 \mathrm{~KB} \times 1$				
		Other function		Partial reverse				
	$\begin{aligned} & H \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	Color		8 colors selectable from 27 colors.				
		Output system		Pallet display system				
		VRAM		32KB $\times 3 /$ screen				
MAIN MEMORY	Capacity			256! KB max. 512 KB		Option memory for every expansion of 128 KB		
	Cycle time			330 ns				
	Element			MOS LSI - 64 KB dynamic RAM				
	User memory			32 KB				
Options	VRM set 128/256/384KB MEMORY BOARD RS 232C-1/RS 232C-2 interface CENTRONICS/COMMUNICATION interface RTC set CURRENT LOOP interface HARD DISK interface					Refer to 2.6. Refer to 2.6. Refer to 2.7. Refer to 2:6.		
Power Source	Inp		Vol		AC115V $\pm 10 \%$ AC120V $\pm 10 \%$ AC230V $\pm 10 \%$ AC240V $\pm 10 \%$	OC: Over Current Protection		
			Fre	ncy	$48 \sim 440 \mathrm{~Hz}$			
			Pha		Single phase, 2-wire			
	Output		+5V		Max 8A OC provided			
			+12		Max 2.5A "			
			-12		Max 0.1A			
			Connector		CN3: $+5 \mathrm{~V}, \pm 12 \mathrm{~V}, \mathrm{GND}$	For main unit		
			CN4: $+5 \mathrm{~V}, \pm 12 \mathrm{~V}, \mathrm{GND}$	For options				
			CN5: $+5 \mathrm{~V},+12 \mathrm{~V}, \mathrm{GND}$	For 5" FDD				
	Eff enc	$i c i-$			60\%			

2.2 5" FDD

Items	Description		Remark
Size (mm)			

$2.38^{\prime \prime}$ FDD

Item	Description		Remarks
Size (mm)			

Media: Canon specified MDD-256D (256B/sector)

2.4 KEYBOARD

Items	Description	Remarks
Size (mm)		$\begin{aligned} & 4.5^{\circ} \sim 8.5^{\circ} \\ & \text { angle adjust- } \\ & \text { able } \end{aligned}$
Weight	2.2 kg	
Power consumption	Included in the CPU power consumption	
Type of keys	See Fig. 2.4.1	
Data transfer speed	$3.6 \mathrm{~Kb} / \mathrm{S}$	

Fig. 2.4.1 Keyboard

[^0]
2.6 Option Interfaces

RS232C

Items	Description	Remarks
Inter-connection circuit	$A A, A B, B A, B B, C A, C B, C C, C F, D D$ (Conform to EIA RS-232-C and CCITT V-24)	
Signal level	$\pm 12 \mathrm{~V}$	
Data format	$5,6,7$ or 8 bits +1 or 2 stop bit + odd/even parity or none.	
Data transfer speed	110 ~ 9600 BPS (1) Asynchronous data transfer (2) 2-wire or 4-wire public/leased line (3) Inter-connection (max. 15 m) with terminal equipment	

CENTRONICS

Item	Description
Interface	Conforms to interface produced by CENTRONICS Co., standard
Data format	Parallel data Bit configuration ... 7 or 8 bits

COMMUNICATION

	Synchronization mode	SYN system/start-stop system
	Baud rate	$300,600,1200,2400,48009600$ MODEM synchronization
	Error control	CRC check horizontal/vertical parity
	Communication system	Half-duplex/full duplex
	Applicable lines	Public leased communication line
	Line configuration	2-wire/4-wire system
	Line interface	MODEM interface(JIS C6361)

CURRENT LOOP

Available soon

2.7 Other Options

POINTING DEVICE

Item	Description	Remark
Size (mm)		
Weight	0.2 kg	
Power consumption	Included in CPU	
Transfer rate	Conforms to keyboard	

R T C

Item	Description	Remark
LSI used	HD 146818 (Real time clock + RAM)	
Accuracy	$50 \mathrm{sec} / \mathrm{month}$	
Power supply	1. DC $5 \mathrm{~V} \pm 10 \%$ (At operating) 2. Min 3.0VDC (Back up)	
BATTERY	More than 36 hours operation after the battery is fully recharged. (Recharging time;40 hours)	

5" HARD DISK

Item	Description	Remark
Size (mm)		
Weight	14 kg	
Power Consumption	65 W	
Hereinafter describes the HARD DISK DRIVE		
Total Memory	8.68 MB	Refer to mini floppy disk specification page 2-2. 6 A
Track	$9.216 \mathrm{~KB} /$ track	
Sector	$1240 \mathrm{~B} /$ sector	
No. Sector in Track	9 sector/track	
Cylinder	157 (user area)	
No. of Track	960	
Recording Density	7900 bPi	
Recording Method	MFM	
Data Transmission Speed	$625 \mathrm{~KB} / \mathrm{sec}$. (MAX)	
Avarage Access Time	75 m sec .	
Disk Revolution	3600 v.p.m.	
Start up	15 sec .	
Error rate	$10^{-12} / \mathrm{b} \quad 10^{-12} / \mathrm{SEEK}$	
Power	$+12 \mathrm{~V} \quad 2 \mathrm{~A}(\mathrm{MAX} .4 .0 \mathrm{~A}) \quad+5 \mathrm{~V} \quad 1.6$	

2.8 General Specification

Chapter 3 Disassembly/Reassembly and Nomenclature of Each Section

3.1 MAIN UNIT
3.1.1 External view
3.1.2 Internal view
3.2 KEYBOARD
3.2.1 External view
3.2.2 Internal view
3.3 5" FDD
3.3.1 External view
3.3.2 Internal view
3.4 8" FDD
3.4.1 External view
3.4.2 Internal view
3.5 PRINTER

Chapter 3 Disassembly/Assembly and Nomenclature of Each Section

3.1 MAIN UNIT is same as black/white and color

3.1.1 External View

Fig. 3.1.1 Front View

Fig. 3.1.2 Rear View
(1) Removal procedure of housing frame cover
(1) Remove three retaining screws from rear cover.
*l A-plate to cover option interface connector
*2 B-plate to cover opiion interface connector
*3 3C-Plate to cover optional interface connector

Fig. 3.1.3
(2) Remove hook from upper cover first, then, disconnect CENTRONICS internal cable from CPU+I/O-CONT P.C.B, and fan internal cable from rear cover.
(3) Remove three grounding cables (Fig. 3.1.3) which are.clamped to power supply unit, then, remove rear cover.

Fig. 3.1 .4
(4) Remove two retaining screws from the upper cover, and slightly pull the upper cover toward yourself, lifting it and removing it.

3.1.2 Internal View

Fig. 3.1.5

Fig. 3.1.6

3.2 KEYBOARD

3.2.1 External View

Fig. 3.1.7

Fig. 3.1.8
(1) Removal procedure of bottom cover
(1) Bottom cover is removed first, five retaining screws from bottom cover, and loosening three retaining screws of rear cover.

Fig. 3.1.9

3.3 5" FDD

3.3.1 External View

Fig. 3.3.1

Fig. 3.3.2
(1) Removal procedure of housing plate

Fig. 3.3.3
(1) Insert shipping sheet $5^{\prime \prime}$ into MD.D-220.
(2) Loosen two retaining screws (Fig. 3.3.3) at the left of front housing plate.
(3) Remove one retaining screw from rear cover, and two retaining screws (Fig. 3.3.3) from bottom plate.

3.3.2 Internal View

Fig. 3.3 .4 shows the inside of $5^{\prime \prime}$ FDD with housing removed.

Fig. 3.3.4

$3.48^{\prime \prime}$ FDD

3.4.1 External View

Fig. 3.4 .1

Fig. 3.4.2
(1) Removal procedure of housing plate
(1) Insert the shipping sheet $8^{\prime \prime}$ into YD-180.
(2) Remove two retaining screws (Fig. 3.4.2) from rear cover.
(3) Remove four retaining screws (Fig. 3.4.3) from bottom cover.
(4) Pull housing toward yourself while slightly lifting it.

Fig. 3.4.3

3.4.2 Internal View

Fig. 3.4.4

3.5 PRINTER

Refer to "PRINTER TECHNICAL GUIDE".

Chapter 4 Installation

4.1 Installation
4.2 Installation Procedure
4.2.1 Unpacking
4.2.2 Switch setting and confirmation
4.2.3 Cable connections
4.2.4 Turning-ON power supply, brightness adjustment, and
speaker output adjustment
4.2.5 Execution of test program and confirmation
4.3 Installation of Options
4.3.1 I/O MOTHER-E P.C.B
4.3.2 Optiona interface
4.3.3 Video Memory
4.3.4 Option Memory Board
4.3.5 Pointing Device

Chapter 4 Installation

4.1 Installation

For details regarding installation, refer to paragraph 2.8
"General Specifications".

Table 4.1.1

MAIN UNIT		Wattages	8' FDD	Wattages	PRINTER	Wattages
$\begin{aligned} & 115 \mathrm{~V} \\ & 120 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 240 \mathrm{~V} \end{aligned}$	B/W	125 W	$\begin{aligned} & 115 \mathrm{~V} \\ & 120 \mathrm{~V} \\ & 230 \mathrm{~V} \\ & 240 \mathrm{l} \end{aligned}$	50W	A-1200	MAX. 85W
	COLOR	150 W			A-1210	MAX. 25W
Both the keyboard and the 5" FDD are included in the MAIN UNIT.					X-8220A	MAX. 90W
					$\begin{aligned} & \text { AP400/ } \\ & 500 \text { KSR } \end{aligned}$	MAX. 85W

Table 4.1.2 For $115 \mathrm{~V}, 120 \mathrm{~V}, 230 \mathrm{~V}, 240 \mathrm{~V}$

Model		$\frac{\text { Wattages }}{125 W}$	Model		Wactages	Model		Wattages	Model		Wactages
$\begin{aligned} & \text { M.UNIT } \\ & \text { S" }_{\text {FDDD }} \end{aligned}$	B/W		M.UNIT 8" FDD	B/W	175W	$\begin{aligned} & \text { M.UNIT } \\ & + \\ & 5^{\prime \prime}+8^{\prime \prime} \text { FDD } \end{aligned}$	B/W	175W	M.UNIT$8^{\prime \prime+}+8^{\prime \prime} \text { FDD }$	B/W	2254
	COLOR	150W		COLOR	200W		COLOR	200W		COLOR	2504

Note At least three power receptacles are required.

Never connect the system directly to an AC line receptacle or to a noise-generating machine such as induction motor, electrostatic copy machine etc. The equipment should not be exposed to direct sunlight.

Fig. 4.1.1

4.2 Installation Procedure

(1) Unpacking includes confirmation of component parts) \rightarrow
(2) Switch setting and confirmation \rightarrow (3) Cable connections \rightarrow
(4) Turning-on power supply, brightness adjustment, and speaker output adjustment \rightarrow (5) Execution of test program

Refer to paragraph 4.3 for the method of installing options.

4.2.1 Unpacking (including confirmation of the component parts)

(1) Unpacking
(1) MAIN UNIT (BLACK/WHITE, COLOR)

Fig. 4.2.1
(2) KEYBOARD

Fig. 4.2.2
(3) $5^{\prime \prime} \mathrm{FDD}$

Fig. 4.2.3

Fig. 4.2.4
(4) $8^{\prime \prime}$ FDD

Fig. 4.2.5
(2) Confirmation of the component parts
(1)

	AS-100M C	AS KEY ASCII A-1111	MINI FLOPPY A-1300	FLOPPY A-1330
Model	0	0	0	0
Power cord	0			0
Dust cover	0			
Instruction manual	0		0	0
Packing material	0	0	0	0
Grounding cable			0	
FDD cable			0	0
Device No. seal plate C				0
Device No. seal plate D		0		0
Overlay				0

Table 4.2.1
(2)

$\begin{aligned} & \text { EX. BOARD II } \\ & \text { A-1011 } \end{aligned}$	I/O-MOTHER-E P.C.B and mounting place with a locking support
$\begin{gathered} \text { SERIAL I/F } \\ \text { A-1500 } \end{gathered}$	RS232C P.C.B, 25P mounting plates A and B
$\begin{aligned} & \text { OP. MEMORY } \\ & \text { A-1020 128K } \\ & \text { A-1021 } 256 \mathrm{~K} \\ & \text { A-1022 } 384 \mathrm{~K} \end{aligned}$	Expansion memory board and four retaining screws
VEDEO RAM A-1004	Expansion video memory chip 16
COMMUN. I/F $A-1503$	SIO P.C.B
PARALLEL I/F A-1502 II	CNT-I/F-2 P.C. B
$\begin{aligned} & \text { SERIAL I/F } \\ & \text { A-1500 II } \end{aligned}$	RS 232C-2 P.C.B, RS 232C-2 cable and four retaining screws
$\begin{gathered} \text { CLOCK SET } \\ \text { A-1002 } \end{gathered}$	Available soon
POINTING DEVICE $A-1100$	POINTING DEVICE
$\begin{aligned} & \text { CURRENT LOOP I/F } \\ & \text { A-1050 } \end{aligned}$	Available soon

Table 4.2.2

4.2.2 Switch setting and confirmation

Switch setting is required only the following four kinds of system configuration.

1 MAIN UNIT (B/W, COLOR) + 5" FDD
2 MAIN UNIT (B/W, COLOR) + 8' FDD
3 MAIN UNIT (B/W, COLOR) + 5" FDD $+8^{\prime \prime}$ FDD
4 MAIN UNIT (B/W, COLOR) + 8' FDD + 8' FDD

Necessary to confirm and set the switches in the P.C.B according to each system configuration.
(1) Description of the switch bits in each P.C.B
(1) $\mathrm{CPU}+\mathrm{I} / O-\mathrm{CONT}$ P.C.B
o SW1 (Printed name)

$$
\begin{cases}\text { ON: } & 0 \\ \mathrm{OFF}: & 1\end{cases}
$$

Table 4.2.3
(2) I/O-CONT P.C.B
o SW2 (Printed name)

	1	2	3	4	5	6	7	8
At the time of factory-shipment	OFF	OFF	OFF	ON	ON	X	OFF	OFF

(3) 5"-FDD-I/F P.C.B
o SW1

Table 4.2.5
(4) $8^{\prime \prime}-\mathrm{FDD}-\mathrm{I} / \mathrm{F}$ P.C.B
o SW1

Table 4.2.6

Refer to paragraph (3) that the switches in respective P.C.B. inside are present MDD-220 and YD-180.
(2) Switch setting for MAIN UNIT
(1) MAIN UNIT (B/W, COLOR) + 5' FDD
(2) MAIN UNIT (B/W, COLOR) $+8^{\prime \prime}$ FDD

Unnecessary to set the switches, only confirm the swithes.
Refer to each table in paragraph (1).
(3) MAIN UNIT $(B / W, \operatorname{COLOR})+5^{\prime \prime} \mathrm{FDD}(\mathrm{A}, \mathrm{B})+8^{\prime \prime} \operatorname{FDD}(\mathrm{C}, \mathrm{D})$
(4) MAIN UNIT $(B / W, \operatorname{COLOR})+8^{\prime \prime} \operatorname{FDD}(A, B)+8^{\prime \prime} \operatorname{FDD}(C, D)$

In each of above system configurations, it is necessary to set swithces located in following P.C.B.

1) $8^{\prime \prime}$ FDD-I/F P.C.B (C and D sides)

Fig. 4.2.7

Set following switches of SW1 switch in $8^{\prime \prime}$ FDD-I/F P.C.B to specified positions.

No. $5 \rightarrow$ "OFF"
No. $6 \rightarrow$ "ON"
No. $7 \rightarrow$ "OFF"
No. $8 \rightarrow$ "ON"

The switches specifded in each of P.C.B, other than those above must go through only the confirmation for normally.
(3) Setting and confirmation of P.C.B switches in disk drive.
(1) $\mathrm{MDD}-220$

Table 4.2.7

- SW2

These switches are set to the positions as specified in Table.
These switches are set to the positions as specified in Table.

Table 4.2.8
o SW3

These switches are set to the positions as specified in Table.

Table 4.2.9
Note: Disk drives A and B switches are set in same position.
(2) $Y D-180$

Disk drive B (D) Disk drive A (C)

Fig. 4.2 .10

Fig. 4.2 .11

Set the jumper plug and terminator of each disk drive as shown in the table below. Fig. 4.2.10 shows the disk drive location, and Fig. 4.2.11 shows respective positions of jumper plug and terminator.

Disk drive	Terminator	VFO timing	Data transfer system	Device select
A(C)	Provided	Fig. 4.2.12	Fig. 4.2.13	Fig. 4.2.14
	B(C)			Fig. 4.2.15

Table 4.2.10

Fig. 4.2.12 VFO timing

Fig. 4.2.14 DEVICE SELECT A (C) Fig. 4.2.15 DEVICE SELECT B (D)

4.2.3 Cable connections

The installation of AS-100 Series is done with connections of seven cables which are FDD cable (for $5^{\prime \prime}$ and $8^{\prime \prime}$ FDDs), centronics cable, KEYBOARD cable, $5^{\prime \prime}$ or $8^{\prime \prime}$ FDD power cable, printer cable, MAIN UNIT power cable, and grounding cable.

The printer to be installed on MAIN UNIT is either DOT IMPACT PRINTER A-1200 or COLOR PRINTER A-1210.
(1) Installation of 5" FDD

Fig. 4.2 .16
(2) Installation of $8^{\prime \prime}$ FDD

(1) FDD cable
(2) Centronics cable
(3) KEYBOARD cable
(4) 8" FDD power cable
(5) Printer power cable
(6) MAIN UNIT power cable
(7) Grounding cable

Fig. 4.2.17
(3) Installation of $5^{\prime \prime} \& 8^{\prime \prime}$ EDs

When both $5^{\prime \prime}$ and $8^{\prime \prime}$ FDDs are installed, use FDD expansion cable for two floppy disk drives instead of 1 shown in paragraph 4.2.16.

(1) FDD expansion cable
(2) Centronics cable
(3) KEYBOARD cable
(4) $5^{\prime \prime}$ FDD power cable
(5) Printer power cable
(6) MAIN UNIT power cable
(7) Grounding cable
(8) 8" FDD power cable

Fig. 4.2.18
(4) Installation of two $8^{\prime \prime}$ EDs

Fig. 4.2.19

The following is the installation procedure.

Fig. 4.2 .20
(1) After unpacking, set MAIN UNIT power switch to OFF (set downward). Then, remove $5^{\prime \prime}$ FDD mounting hole cover caps from MAIN UNIT. See Fig. 3.1.1.
(2) Confirm set position of P.C.B switch in MAIN UNIT and $5^{\prime \prime}$-FDD I/F P.C.B. See paragraph 4.2.3. Then mount $5^{\prime \prime}$ FDD on*5" FDD boss of properly with $5^{\prime \prime}$ FDD mounting holes of MAIN UNIT.
(3) Connect keyboard cable, centronics and FDD cable to respective connectors of MAIN UNIT as in Fig. 4.2.20.
(4) Clamp both centronics cable and FDD cable, with connector lock pins.
(5) Connect $5^{\prime \prime}$ FDD power cable to its corresponding connector of MAIN UNIT, and connect MAIN UNIT power cable to power supply receptacle of MAIN UNIT.
(6) Power switch of printer should be OFF, then connect each power supply cable to its AC plug socket.
(7) Attach grounding cable of printer to lower side of printer power supply cable, and clamp it to grounding cable connection position of MAIN UNIT together with grounding cable of 5" FDD.

Fig. 4,2,21
(1) After unpacking, set power switch of MAIN UNIT and 8" FDD to OFF, confirm set positions of P.C.B switches in MAIN UNIT and $8^{\prime \prime}$ FDD-I/F P.C.B. See parapraph 4.2.3. Connect KEYBOARD cable, centronics cable, and $8^{\prime \prime}$ FDD cable to respective conneectors of MAIN UNIT, as in Fig. 4.2.21.
(2) Clamp both centronics cable and $8^{\prime \prime}$ FDD cable with connector lock pins.
(3) Connect main unit power supply cable and $8^{\prime \prime}$ FDD power supply cable to their corresponding receptacle.
(4) After checking that printer power switch set to OFF, connect printer power supply cable to AC power receptacle.
(5) Clamp printer grounding cable to the part below printer power supply cable. Then, lock it together with $8^{\prime \prime}$ FDD grounding cable with grounding cable retaining screw of MAIN UNIT.

MAIN UNIT + 5" FDD + 8" FDD

Installation is the same as in MAIN UNIT +5" FDD or the MAIN UNIT +8" FDD, except for the application of a FDD expansion cable for FDD connector 1 , as in Fig. 4.2.18.

Fig. 4.2 .22
Note: Attach device seals C and D to positions marked A and B on the . front of 8 " FDD.

MAIN UNIT + 8" FDD + 8" FDD

Refer to installation of MAIN UNIT $+8^{\prime \prime}$ FDD.

Fig. 4.2 .23
Note: Attach device seals C and D to positions marked A and B on the front of 8 " FDD. Refer to " a " of Fig. 4.2.23.
4.2.4 Turning-on of power supply, brightness adjustment, and speaker output adjustment

1. Turning-on of power supply.

When 5" FDD is to be connected to MAIN UNIT according to following sequence.
(1) Turning-on power supply
(1) Turn on power supply to printer.
(2) Set system media to 5" FDD.
(3) Turn on power supply to MAIN UNIT.
(2) Turning-off power supply
(1) Turn off printer power supply.
(2) Turn off MAIN UNIT power supply.

When $8^{\prime \prime}$ FDD is to be connected to MAIN UNIT
(1) Turn on power supply
(1) Turn on power supply to printer.
(2) Turn on power supply to $8^{\prime \prime}$ FDD.
(3) Set system media to 8" FDD.
(4) Turn on power supply to MAIN UNIT.
(2) Turning-off power supply
(1) Turn off printer power supply.
(2) Turn off $8^{\prime \prime}$ power supply.
(3) Turn off MAIN UNIT power supply.
2. Brightness adjustment

Approximately 15 minutes after power supply is turned on MAIN UNIT and with brightness control knob on left front of MAIN UNIT panel, adjust brightness of CRT display.
3. Speaker output adjustment

Remove the rear cover of MAIN UNIT (see paragraph 3.1 of Chapter 3). Remove system media after $O S$ is loaded in, then adjust speaker tone with entering keys by the speaker output control knob on I/O-CONT-P.C.B. as in Fig. 3.1.4.
4.2.5 Execution of test program and confirmation Refer to "TEST PROGRAM OPERATIONAL MANUAL" separately provided for details regarding the execution of a test program.

4.3 Installation of Options

4.3.1 I/O-MOTHER-E P.C.B

(1) Remove both rear cover and upper cover. See paragraph 3.1.
(2) Referring to paragraph 5.2.2 of Chapter 5, pull out power supply unit half its entire depth, and disconnect each cable.

(For $115,120 \mathrm{~V}$)

(For 230,240V)
Fig. 4.3.1
(3) Install the I/O MOTHER mounting plate, using three retaining screws as shown in Fig. 4.3.1.

(For 115.120V)

(For 230,240V)

Fig. 4.3.2
(4) Clamp I/O-MOTHER-E P.C.B. to I/O MOTHER mounting plate, with six retaining screws, in Fig. 4.3.2.
(5) Connect I/O MOTHER DC cable of I/O-MOTHER-E P.C.B. to No. 4 connector (Fig. 5.2.4) of switching regulator.
(6) Lock grounding cable from I/O-MOTHER-E P.C.B. to chassis of power supply unit, as in Fig. 5.2.2.
(7) Rass I/O MOTHER internal cable between MOTHERBOARD rack and CRT unit.
(8) Connect I/O MOTHER internal cable to I/O MOTHER connector (Fig. 3.1.5) on MOTHERVOARD with alignment \mathbf{A} mark.
4.3.2. Optional interface

The installation location varies with each option interface as shown in Fig. 1.1.1.
(1) Serial data interface

For serial data interface, two types are available, one to be connected to I/O-MOTHER-E P.C.B., and the other to CPU+I/O-CONT P.C.B.
i) RS232C P.C.B.

However, be careful because the 25 P mounting plate of RS232C P.C.B. is different according to the location. (The rear side of each 25 P mounting plate has an A mark.) No. 2 and 3 marked \rightarrow Make sure whether or not 25 P mounton rear panel ing plate A (alphanumeric mark: EA4-0079) is fitted to RS232C P.C.B.

No. 4 marked on \rightarrow Exchange 25P mounting plate A to B rear panel
(1) Remove both rear and upper covers. See paragraph 3.1 of Chapter 3.
(2) Pull out power supply unit half its depth (paragraph 5.2.2), and remove power supply unit reingorcement mount with four retaining screws as in Fig. 4.3.3.
(3) Remove cover plate clamped to power supply unit with two retaining screws.

Fig.4.3.3
Retaining screws of power supply unit reinforcement mount
(4) Referring to paragraph 4.3.1 of Chapter 4, install I/O MOTHER mounting plate and I/O-MOTHER-E P.C.B.
(5) As in Fig. 4.3.4, fit R8232C P.C.B to I/O-MOTHER-E E.C.B

Fig. 4.3.4
(6) Fix power supply unit reinforcement mount in position, and clamp grounding cable from I/O-MOTHER-E P.C.B. to chassis of power supply unit (see Fig. 5.2.2).

Fig. 4.3.5
ii) RS232C-2 P.C.B.

RS232C-2 P.C.B. is connected to CPU+I/O-CONT P.C.B. with only No. 5 marked on rear panel.
(1) Remove rear and upper covers. Refer to 3.1.
(2) Remove CPU+I/O-CONT P.C.B. from MAIN UNIT by reference to 5.2.1.

Fig. 4.3.6 CPU+I/O-CONT P.C.B
(3) As in Fig. 4.3.6, connect RS232C 2 P.C.B. to CPU+I/O-CONT P.C.B while paying attention to the connector. (Fix it using two screws on soldered side of CPU-I/O-CONT P.C.B.)

Fig. 4.3.7
(4) As in Fig. 4.3.7, remove the palte to cover option interface connector.

Fig. 4.3.8

As in Fig. 4.3.8, connect RS 232C-2 cable to RS 232C 2 P.C.B.

Fig. 4.3.9

As in Fig. 4.3.9, fix connector with 2 screws.
(1) Pin assignment

RS232C Port (See Fig. 4.3.5 and 4.3.9)

Pin	Signal		EIA Signal
1	FG (Protective Ground)	AA	
2	TXD (Transmitted Data)	Transmission data from DEVICE	BA
3	RXD (Received Data)	Receiving data to DEVICE	BB
4	RTS (Request to Send)	Data transmission REQUEST	CA
5	CTS (Clear to Send)	AS-100 is ready for sending	CB
6	DSR (Data Set Ready)	AS-100 READY	CC
7	SG (Signal Ground)	AB	
8	DCD (Received Line Signal Detector) Carrier detector	CF	
20	TRDY (Data terminal Ready) DEVICE READY	CD	

Note: Other pins are none connector.
(2) Connections

Fig. 4.3 .6

* Connect device as in Fig. 4.3.6.
* When the device has not some of the signals such as TXD, CTS and DCD, these signals are required no connection.
(2) Parallel data interface CNT I/F P.C.B.

For CNT I/F-2 P.C.B, number 2 marked on the rear panel is only connectable.

Connection method is the same as for RS232C P.C.B.
(3) Communication interface (SIO P.C.B)

For SIO P.C.B, number 3 marked on the rear panel is only connectable.

Connection method is the same as for RS232C P.C.B.
(4) SIO PCB SWITCH

SW (Printed name)

4.3.3 VIDEO MEMORY

Video memory expansion is performed only for B / W display.
When the video memory is added, the "CPU $+I / O-C O U N T " P . C . B$. and the JP circuit of the "CPT-CONT2-B/W" P.C.B are required to be switched.
(1) Remove the rear and upper covers. (Refer to 3.1 in Chapter 3.)
(2) Remove CRT-CONT2-B/W P.C.B. from MAIN UNIT by

Fig. 4.3.11
(3) Expansion area of option video memory is provided with socket for 16 additional video memory chips (32 KB).

Note: Pay attention direction of each video memory chip prior to expansion.
(4) After the additional installation has been completed, solder the JP circuit of (a) section illustrated in Fig. 4.3.11 as in Fig. 4.3.12.

(5) Remove CPU + I/O-CONT P.C.B from MAIN UNIT and set SW2 No. 5 located on CPU + I/O-CONT P.C.B to "OFF". (Refer to 1.2 .2 of Chapter 1).

4.3.4 Optional Memory Board

Three kinds, board I, board II and board III are available for optional memory boards. Expansion memory capacity is different in $128 \mathrm{~KB}, 256 \mathrm{~KB}$ and 384 KB types.

(1) Optional memory board expansion
(2) RS 232C-2 P.C.B. expansion
(3) RTC expansion

Fig. 4.3.12 CPU+I/O-CONT P.C.B.
(1) Remove rear and upper covers. See paragraph 3.1 of Chapter 3.
(2) Remove CPU + I/O-CONT P.C.B from MAIN UNIT by referring to 5.2 .2 in Chapter 5.
(3) As in Fig. 4.3.13, attach memory board to CPU+I/O-CONT P.C.B. with care in connecting connector. Attach it with 4 screws on soldered side of $\mathrm{CPU}+\mathrm{I} / 0-\mathrm{CONT}$ P.C.B.

Fig. 4.3.13
4.3.5 Pointing Device
Connect pointing device connector to its position on KEYBOARD.
(See Fig. 3.1.7.)

Chapter 5 Replacement and Adjustment of Units
5.1 Unit configuration
5.2 MAIN UNIT
5.2.1 P.C.B
5.2.2 Power supply unit
5.2.3 CRT unit
5.2.4 Fuse replacement
5.3 KEYBOARD
5.3.1 KEYBOARD
5.3.2 Key top
$5.45^{\prime \prime}$ FDD
5.4.1 MDD-220

5-4.2 5" FDD-I/F

5-5 $8^{\prime \prime}$ FDD
5.5.1 YD-180
5.5.2 $8^{\prime \prime} \mathrm{FDD}-\mathrm{I} / \mathrm{F}$
5.5.3 Power supply unit

Chapter 5 Replacement of Units and Adjustment after Replacement

Prior to replacing each units, turn off power switch and unplug power cord from receptacle.

5.1 Unit configuration and general assembly

Refer to APPENDIX.

5.2 MAIN UNIT

5.2.1 P.C.B

Fig. 5.2.1
(1) $\mathrm{CPU}+\mathrm{I} / 0-\mathrm{CONT}$ P.C.B.
(1) First remove rear and upper covers (see paragraph 3.1 of Chapter 3). Then, disconnect CRT internal cable from CRT-CONT2-B/W P.C.B.
(2) Disconnect grounding cables from individual P.C.B. and chassis of power supply unit.
(3) Disconnect FDD internal cable from $C P U+I / 0-C O N T$ P.C.B.
(4) Remove CPU+I/O-CONT P.C.B from MAIN UNIT.
(5) After confirming switch set position for CPU+I/OCONT P.C.B (see paragraph 4.2.2), connect it in reverse order of above steps.
(2) CRT-CONT 2-B/W P.C.B.
(1) First remove rear and upper covers (see paragraph 3.1). Then, disconnect CRT internal cable from CRT-CONT2-B/W P.C.B.
(2) Disconnect the grounding cables, which are extending from individual P.C.Bs, from the chassis of the power supply unit.
(3) Remove CRT-CONT2-B/W P.C.B from MAIN UNIT.
(4) Connect spare CRT-CONT2-B/W P.C.B in reverse order of above steps.

Color Display
(1) CPU+I/O-CONT P.C.B
(1) First remove rear and upper covers (see paragraph 3.1). Then, disconnect CRT internal cable from CRT unit.
(2) ~(5) Same as for B / W display
(2) CRT-CONT2-C
(1) Remove rear and upper covers (see paragraph 3.1). Then, disconnect CRT internal cable from CRT unit. (2) ~(4) Same as for B / W display
[Adjustment]
Test program check of operation.

5.2.2 Power supply unit

Procedure of power supply unit replacement is the same for B / W and color displays
(1) SWITCHING REGULATOR
(1) Remove both rear and upper covers (see paragraph 3.1.1 of Chapter 3).
(2) Disconnect FDD internal cable from CPU+I/O-CONT P.C.B
(3) Disconnect grounding cables which are attached to individual P.C.Bs, power supply unit, and MOTHERBOARD RACK.

Mount a grounding cable from 2/0 MOTHER-E P.C.B.

Grounding cables from MOTHERBOARD RACK and MOTHERBOARD

Grounding cables from individual
P.C.Bs

Fig. 5.2.2
(4) Remove two retaining screws from power supply unit. Fig. 5.2.3 shows location of these retaining screws.

Fig. 5.2.3
(5) Pull out power supply unit half its depth as in Fig. 5.2.4. Then, disconnect 5" FDD internal cable and MOTHERBOARD DC cable from SWITCHING REGULATOR.

Fig. 5.2.4
(6) Pull out power source unit from MAIN UNIT, and disconnect AC input cable and grounding cable (Fig. 5.2.5) from SWITCHING REGULATOR.
(7) Remove four retaining screws of SWITCHING REGULATOR to remove it. (Fig. 5.2.5).

(For $230,240 \mathrm{~V}$)

Fig. 5.2 .5
(8) Mount replaced SWITCHING REGULATOR in position, and connect both AC input cable and grounding cable to SWITCHING REGULATOR and $5^{\prime \prime}$ FDD connector to red CN5.

[Adjustment]

Fig. 5.2.6

Adjust VR1 of SWITCHING REGULATOR shown in Fig. 5.2.6, with insulated screwdriver so that +5 V of MOTHERBOARD will be +5.1 V .

Use an insulated screw driver since high voltage are applied to heat sink and collector of transistors having caution labe.

Connectors	Connector No.	$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Voltage
5" FDD internal power supply connector	CN5	1	+12V
		2	GND
		3	GND
		4	+5V
I/O MOTHER power supply connector	CN4	1	-12V
		2	+12V
		3	GND
		4	+5V
MOTHERBOARD power supply connector	CN3	1	-12V
		2	+12V
		3	GND
		4	+5V

Table 5.2.1

5.2.3 CRT unit

Black/White display

(1) Remove both rear and upper covers (see paragraph 3.1)
(2) Disconnect brightness control VR cable and CRT power supply cable from CRT unit and CRT internal cable from CRT-CONT 2 B/W P.C.B.
(3) As shown in Fig. 5.2.7, mark set position of CRT unit.
(4) Remove five retaining screws (Fig. 5.2.7) of CRT Unit, and remove it from MAIN UNIT.

Fig. 5.2.7
(5) Remove shield plate from removed CRT unit by loosing two retaining screws.
(6) Fit shield plate to spare CRT unit.
(7) Mount spare CRT unit to MAIN UNIT, and tighten retaining screws while aligning it to marked set position.
(8) Connect disconnected cables.

Color display

(1) Remove both rear and upper covers as in paragraph 3.1 of chapter 3.
(2) Disconnect brightness control VR, CRT internal cable and CRT power supply cables from CRT unit in Fig. 5.2.8.

Fig. 5. 2.8
(3) Set position mark of CRT unit.
(4) Remove four retaining screws of CRT unit. (Fig. 5.2.8)
(5) Cut off the band binding key internal cables which are fixed at the front of CRT unit, and take out the fan cable.
(6) Remove CRT unit from MAIN UNIT, then remove the shield plate from CRT unit by two retaining screws.
(7) Fit shield plate to spare CRT unit.
(8) Mount spare CRT unit to MAIN UNIT, and tighten retaining screws while aligning it to the marked set position.
(9) Connect all disconnected cables.
[Adjustment] (Same for B / W and COLOR')
Confirm the operation with a test program

5.2.4 Fuse replacement

(1) Keyboard fuse on MOTHERBOARD
(1) Remove both rear and upper covers (see paragraph 3.2).
(2) Replace fuse shown in Fig. 5.2.9 on MOTHERBOARD.

Fig. 5.2.9
(2) 5" FDD fuse
(1) Remove both rear and upper covers (see paragraph 3.2).
(2) Pull out power supply unit about half its depth. Refer to 5.2.2.
(3) Replace two 5A fuses as in Fig. 5.2.10.

Fig. 5.2.10 (For $120,230,240 \mathrm{~V}$)

5.3 KEYBOARD

5.3.1 KEYBOARD (outer cover)

(1) Remove outer cover according to paragraph 5.3.2.
(2) Care should be taken not to accidentally cut pointing device cable inside keyboard in removal.

5.3.2 KEY TOP

(1) Remove key top requiring replacing as shown in Fig. 5.2.11.

Fgi. 5.2.11
(2) Apply adhesive to rear side of key top, and set it on its corresponding key stem, firmly pressing key top against stem.
5.4.1 Mini floppy disk drive (MDD-220)
(1) Replacement

Fig. 5.4.1
(1) Insert shipping sheet $5^{\prime \prime}$ into MDD-220
(2) Remove housing plate (see (1) of paragraph 3.3.1)
(3) Disconnect MFDD signal cable and MFDD DC cable from each MDD-220.
(4) Remove four retaining screws in Fig. 5.4.1 from mounting plate.
(5) Remove MFDD retaining screws of defective mini floppy disk drive A or B , to remove it from its mounting plate.

Fig. 5.4 .2
(6) Check set position of DIP switch of replacing mini floppy disk drive (see (3) or paragraph 4.2.2), mount mini floppy disk drive according to dismounting reverse procedure.
(2) Adjustment

Check the operation a test program.

5.4.2 5" FDD-I/F P.C.B.

(1) Replacement
(1) Remove housing plate ((1) of paragraph 3.3.1).
(2) Disconnect both MFDD signal cable and MFDD DC cable from mini floppy disk drives A and B.
(3) Disconnect grounding cable from $5^{\prime \prime}$ FDD-I/F P.C.B.
(4) Remove five retaining screws from $5^{\prime \prime}$ FDD-I/F.
(5) Remove $5^{\prime \prime}$ FDD power cable clamp from two retaining screws from chassis of 5" FDD-I/F P.C.B.
(6) After confirming set positions of $5^{\prime \prime}$ FDD-I/F P.C.B. switches (see (2) of paragraph 4.2.2), mount the replaced 5" FDD-I/F P.C.B. according to dismount reverse procedure.

Fig. 5.4.3
(2) Adjustment

Check the operation with a test program.

$5.58^{\prime \prime}$ FDD

5.5.1 Floppy disk drive (YD-180)
(1) Replacement
(1) Insert shipping sheet $8^{\prime \prime}$ into YD-180.
(2) Remove outer cover (see (1) or paragraph 3.4.1).
(3) Take out SFD signal cable from tie band.
(4) Disconnect SFD signal cable and DC cable from 8" FDD-I/F PCB.
(5) Disconnect DC cable from YD-180 and also fan DC cable.
(6) Remove six retaining screws specified in Fig. 5.5.1.

Fig. 5.5.1
(7) Disconnect SFDD signal cable from YD-180.
(8) Remove six retaining screws of floppy disk drive mounting plate (A).

Fig. 5.5.2
(9) Remove defective YD-180 from floppy disk drive mounting plate (B).

(10) After confirming set positions of replacing YD-180 switches (3) of paragraph 4.2.2 , mount YD-180 in removal reverse procedure.
(2) Adjustment

Confirm the operation with a test program.
5.5.2 $8^{\prime \prime}$ FDD-I/F P.C.B.
(1) Replacement

(1) Remove housing plate ((1) of paragraph 3.4.1).
(2) Disconnect grounding cable from $8^{\prime \prime}$ FDD-I/F P.C.B.
(3) Disconnect FDD signal cable and DC cable from 8" FDD-I/F P.C.B.
(4) Disconnect SFDD cable from YD-180.
(5) Remove four locking support from 8" FDD-I/F P.C.B.
(6) After confirming set positions of replacing 8" FDD-I/F P.C.B switches (see paragraph 4.2.2), mount $8^{\prime \prime}$ FDD-I/F P.C.B according to opposite removal procedure.
(2) Adjustment

Confirm the operation with a test program.

5.5.3 Power supply unit

> 5.5.1 Referring to (2) ~ (6) of paragraph 5.5.1 (1) remove power supply unit.

Fig. 5.5.5

Replacement of power supply unit

(1) Disconnect all cables from power supply unit.
(2) Remove four retaining screws from rear side of base plate to remove power supply unit.

(3) Mount replacing power supply unit in the reverse way to the removal.

1) Replace two 5 A fuses $8^{\prime \prime}$ FDD as in Fig. 5.5.7.

Fig. 5.5.7

Table 5.5.1

Cables	Pin No.	Cable color	Voltage	Destination
SFDD DC cable	1	Red	+24V	YD-180 x 2
	2	Blue	GND	
	3	Yellow	+5V	
	4	Black	GND	
	6	Brown	GND	
P.C.B. DC cable	1	Yellow	+5V	8'-FDD-I/F P.C.B.
	2	B1ack	GND	
FAN DC cable	1	B1ue	GND	FAN
	2	Red	+24V	

(For 120,230,240V)
Fig. 5.5.8

Adjust the VR101 with an insulated screw-driver so that +5 V may be obtained at the +5 V terminal of the power supply.

Chapter 6 Periodical Maintenance

$6.15^{\prime \prime}$ FDD
6.1.1 Periodical maintenance items
6.1.2 Periodical maintenance
$6.28^{\prime \prime}$ FDD
6.2.1 Periodical maintenance
6.2.2 Periodical maintenance
6.3 PRINTER

Chapter 6 Periodical Maintenance

Following units require periodical maintenance.
(1) $5^{\prime \prime}$ FDD (MDD-220) Yearly
(2) $8^{\prime \prime}$ FDD (YDD-180) Yearly
(3) PRINTER

Following tools are necessary for periodical maintenance.

1) CLEANING DISKETTE 5"
2) CLEANING DISKETTE 8"

Periodical maintenance includes cleaning MAIN UNIT and other devices.
6.1 5" FDD (MDD-220)
6.1.1 Periodical maintenance items

> (1) Cleaning head Yearly
6.1.2 Periodical maintenance procedure

With CLEANING DISKETTE 5", clean head of $5^{\prime \prime}$ FDD for 5 seconds while running "TRK ADJ" test program.

For details regarding TRK ADJ test program, refer to "TEST PROGRAM OPERATIONAL MANUAL" provided separately.

6.2 8" FDD (YD-180)

6.2.1 Periodical maintenance items
(1) Cleaning head Yealy
6.2.2 Periodical maintenance procedure

With CLEANING DISDETTE 8", clean head of $8^{\prime \prime}$ FDD for 1 minute while running TRK ADJ test program.

For details regarding TRK ADJ test program, refer to the "TEST PROGRAM OPERATIONAL MANUAL" provided separately.
6.3 PRINTER Refer to certain printer "TECHNICAL GUIDE".

Chapter 7 Troubleshooting

7.1 At System Up.
7.1.1 Error message 1
7.2 OS control error
7.3 System and μ debugger commands
7.3.1 MSDOS system command
7.3.2 CP/M-86 system command
7.4 DCOPY (media copy program) operation
7.1 At System Up.

Fig. 7.1.1

7.1.1 Error message 1

When a trouble is detected in initial check of self-analysis, CRT display displays the following error message:
(1) RAM ERR AT $\frac{\operatorname{XXXX}}{1} \frac{\mathrm{XXXX}^{2}}{L}$ Off set

Remedy: Replace CPU + I/O-CONT P.C.B
Optional memory P.C.B
(2) ERR CODE $=X X$

$\begin{array}{c}\text { Error } \\ \text { code No. }\end{array}$	Cause	Remedy
02	ROM check sum error	$\begin{array}{l}\text { Replace ROM } \\ \text { Replace CPU-E P.C.B. } \\ 03 \\ 04\end{array}$

Key circuit error\end{array} \quad $$
\begin{array}{l}\text { Replace I/O CONT P.C.B. } \\
\text { Replace KEYBOARD }\end{array}
$$\right]\)

Table 7.1.1
7.2 OS control error

For error correction, refer ot CP/M Users 'Guide or MSDOS Users' Guide. After troubleshooting, always apply a test program to the system.

7.3 System and μ-debugger commands

Two MSDOS and CP/M-86 system commands are available, depending on the application of $O S$ control.

Command concerning to hardware are described here, and for other commands and their details, see MSDOS User's Guide or CP/M-86 User's Guide.
μ-debugger commands are debugger commands designated in firmware.

7.3.1 MSDOS system commands

(1) Control character commands

Each of control character commands is entered by combination of CRTL key with some specific key. Each of these commands is applicable even when the CRT display is not showing system prompt (for $\overline{\mathrm{ex}} . \mathrm{A}>$).

Control characters	Description of controls
CTRL-C	Return ot system from execution program (control is effective when input of program output.
CTRL-P	Halt hard copy operation.
CTRL-P	Restart hard copy operation.
CTRL-S	Temporary stop (release is by any key).
CTRL-CANCEL	Same as CTRL-C (command clears previous data entry).
CTRL-ALTER-DELETE	Software reset (excecute at IPL)
CTRL- S -CLEAR	Hard copy.

(2) Built-in commands

The built-in commands is entered only when CRT display is showing system prompt (For ex. A >) which are used in combination with certain parameters.

System Prompt	1st parameter	2nd parameter
$\underset{\mathrm{A}^{>} \underset{\mathrm{A}}{\leftrightarrows} \mathrm{C}}{\mathrm{C}}$	CE: FILE NAME.	DEVICE: FILE NAME. EX$\left.\begin{array}{ll}\begin{array}{l}\text { 2nd file name } \\ \text { (can be omitted) }\end{array} & \begin{array}{l}\text { Up to } 3 \\ \text { alphanumeric } \\ \text { characters }\end{array} \\ \text { File name } & \begin{array}{l}8 \text { alphanumeric } \\ \text { characters, } \\ \text { starting with }\end{array} \\ \text { an alphabetical } \\ \text { character }\end{array}\right\}$: Given with one Device nameof alphabetical (can be omitted) characters from A to D

For file name and EX, wild card " \ddagger " and character conversion symbol "?" are avaukable.

Command entry is terminated by pressing a key or ENTER key.

2nd file name	Comment
BAT	Batch file
COM	Command file
EXE	User-program object

Table 7.3.2

COPY (File Copy)

COPY —1st parameter - 2nd parameter (2nd parameter is omissible.)

Contents of the lst parameter file are copied in 2nd parameter file.

- 2nd parameter file, a new file is prepared.
- When 2nd parameter is omitted,
lst parameter matches current device $-\infty$ - Error
lst parameter unmatches current device $---\rightarrow$ Copy onto current device
. Command ends with message "O File(s) Copied" at error.

DEL (File Delete)
DEL -1 st parameter
1st parameter file is deleted.

DIR (Directory Display)
DIR -1 st parameter
(lst parameter is omissible.)

Directory of lst parameter file is desplayed.

- When lst parameter is omitted, directory for all files is displayed.

REN (File Rename)
REN - l.st parameter - 2nd parameter

Name of lst parameter file is renamed into 2nd parameter file name.

- The 2nd parameter device name is omitted.
- Both the wild card (*) and the character conversion symbol (?) cannot be used with 1st parameter.

TYPE (Type File Contents)
TYPE -1st parameter
Contents of lst parameter file are displayed in character format.

DATE (Date Entry) (Media must be set as required.)
DATE
Current date is MM-DD-YYYY
Enter a new date:

Current date display and registration of new date.
. When there is no reregistration only enter ENTRY key.

- For a misinput, "INVALID DATE" is displayed and requests re-entry.

TIME (Time Entry) (Media must be set as required.)
TIME
Current time is HH:MM:SS:CC.
Enter a new time:

Current time display and registration of new time.

- When there is no reregistration, only enter ENTRY key.
. For misinput, "INVALID TIME" is desplayed and request re-entry.

FORMAT (Formatter)
FORMAT ـ1st parameter

Initialize media of lst parameter device.
. lst parameter is only device name.
. 5" floppy disk 512 bytes/sector
8" floppy disk 1024 bytes/sector

7.3.2 CP/M-86 system commands

(1) Control character commands

Characters	Description
CTRL-C	Current program under specified console is suspended.
CTRL-E	Returns printer carriage, but this command is not transferred to $\mathrm{CP} / \mathrm{M}-86$.
CTRL-H	Back space
CTRL-J	Ends data input and line feed.
CTRL-M	Similar to command of carriage return.
CTRL-P	This command echoes all commands designated from the console to the printer. When this command is input once more, it stops echoing the via console commands to the printer. This command is effective only when the printer is connected to the computer system.
CTRL-R	Current command typed in again, CTRL-R command is serviceable after pressing RUN or DEL key.
CTRL-S	Temporarily stops output of list into console, however, same command is input once more, the output is resumed. Console list.
CTRL-U	Deletes line. While at the same time, CRT display shows $\%$, with console moving down by one line and waiting for a new command.
CTRL-X	All characters in line with are deleted.
CTRL-Z	String or field separator.

Table 7.3.3
(2) Built-in commands

The built-in commands can be entered only when CRT display is showing system prompt (for ex. A>) which are in combination with some parameters.

For file name and EX, the wild card "*" and the character conversion symbol "?" are available.

Command entry ends by pressing \square or ENTER key.
ENTER key.

2nd file names	Comment
SUB	Batch file
COM	User-prepared object
SYS	Module of the $C P / M-86$

Table 7.3.4

DIR (Directory Display)

DIR-1st parameter

Directory of lst parameter file is displayed.

- When lst parameter is omitted, all directories of user numbers (specified by user command) of current device are displayed; however, SYS file is not displayed.

DIRS (System Directory Display)
DIRS -1 st parameter
DIRS is the same as DIR, except for SYS file display.

ERA (File Erase)

ERA -1 st parameter
1st parameter file is deleted.

- Enter Y or N while
"ALL=Y/N ?" is displayed.

REN (File Rename)
REN - 1st parameter $=$ 2nd parameter
lst parameter file name is renamed in 2nd parameter
file name.

- Note that designation of lst parameter device name must be the same as 2nd parameter device name.

TYPE (Type File Contents)

TYPE -1 st parameter
The contents of lst parameter file are displayed in character format.

USER (User Number)
USER - $\mathrm{n} \quad \mathrm{n}=0 \sim 15$
CRT display shows a current user number; n, the user number is changed by entering parameter n.

Following commands are available only when system media is set as required.

COPY DISK (Copy Disk)

COPY DISK

Entire contents of one floppy disk are copied onto another floppy disk. Enter following parameters after entering this command.

Enter Source Disk Drive (A-D)?
Destination Disk Drive (A-D)
Is this what you want to do (Y / N)?
Copy another disk (Y/N)?

PIP (Peripheral Interchange Program)
PIP -1 st parameter $-G n=2 n d$ parameter
(n of Gn is a user number)
Contents of 2 nd parameter file are copied in 1st
parameter file.

- When 1st parameter represents a device number only, 2nd parameter is copied as it is.
- When $G n$ is not designated, copy onto a current user number file.

STAT (Status Display)
STAT $\sim d:$ (d_{d} means drive number)
CRT display shows floppy disk status.
. When " d "is not designated, the status of each of the entire usable floppy disk drives is displayed.

- Status over the usable area is given in the K-byte unit.

STAT - lst parameter - SIZE
Attribute of file is displayed as follows:
. When SIZE is omitted, the file size is not displayed.

File size	No. of records	File capacity (File	$\begin{aligned} & \frac{\text { FCB }}{n} \text { number } \\ & \text { Control Block) } \end{aligned}$
Attribute	File name		
STAT - 1st	rameter $-\begin{aligned} & \text { R0 } \\ & \text { RW }\end{aligned}$	SYS	

SYS: System access
These two cannot be specified DIR: Directory access at the same time.

Specify attribute of file
. No omission of both RO/RW and SYS/DIR.

$$
\begin{aligned}
& \text { STAT } \sim \mathrm{d}: \backsim \text { DSK: } \\
& \text { USR: }
\end{aligned}
$$

Status of the designated floppy disk drive (DSK) or a user number (USR) is displayed.

STAT ـVAL:

CRT display displays a general type of STAT command and a physical device name.

Commands are also applied in other means. For details, see CP/M Users' Guide.

TOD (Time or Date)
TOD $\operatorname{TIME}_{\mathrm{P}}^{\mathrm{TIME}} \mathrm{SPEC}$

Current date and time display and exchange them.
. TIME SPEC is designated in format of MM/DD/YY, HH:MM:SS.

- With P parameter, the date and time are displayed continuously (display stops by entering any key).

FORMAT (Formatter)
FORMAT \sim lst parameter
Media of lst parameter device is initialized.

- lst parameter is only device name.
. 5" floppy disk 512 bytes/sector
8" floppy disk 1024 bytes/sector

7.3.3 μ-debugger commands

The $\mu^{-d e b u g g e r ~ i s ~ b u i l t ~ i n ~ R O M ~ o f ~ C P U . ~ T h e ~ v e c t o r ~ t a b l e s ~}$ other than those of single step, NMI, and break point and addresses from $400 \mathrm{H} \sim \mathrm{FFFFF}_{\mathrm{H}}$ (address from $350_{\mathrm{H}} \sim 3 \mathrm{FF}_{\mathrm{H}}$ is appropriated for μ-debugger) within system memory area are accessibled.

I/O memory area except in DISPLAY CONT are also accessible.
(1) Command table

Commands and their meanings	Key operations (See abbreviations)
B (Boot)	$\mathrm{B}[<\mathrm{N}\rangle$] [D]<CR>
D (Display Memory)	$\mathrm{D}[\mathrm{W}]<\mathrm{ADDR}>[,<\mathrm{ADDR2} 2>]<\mathrm{CR}>$
G (Go)	G<CS : IP><0LD> \langle ADDR> $[,<B R K>]]<C R>$
I (Port Input)	$\mathrm{I}[\mathrm{W}]<\mathrm{PORT}><\mathrm{CR} /$, >
N (Single Step)	$\mathrm{N}<\mathrm{CS}:$ IP><OLD $>[<A D D R>]<\mathrm{CR} /$, >
0 (Port Output)	O [W]<PORT> , <NEW><CR/ , >
R (Read Hex File)	$\mathrm{R}[$ <BIAS>] <CR>
S (Substitute Memory)	$\mathrm{S}[\mathrm{W}]<\mathrm{ADDR}>,<\mathrm{OLD}>[<\mathrm{NEW}>]<\mathrm{CR} / \mathrm{l}$ >
X (Examine/Modify Register)	$\mathrm{X}<\mathrm{CR}>\mathrm{X}<\mathrm{REG}><\mathrm{OLD}>[<\mathrm{NEW}$ >]<CR/,>

Table 7.3.5
Any of alphabetical characters within [] can be omitted from designation.

Underlined alphabetic characters are debugger outputs.
Any of alphabetical characters within < >
is an abbreviation.

Abbreviations

D:

Sometimes specified with a BOOT command which signifies that a debugger return is effected after ending Boot.

W:

Sometimes specified after a command which signifies that the contents of operation to be done with this command are word unit. If W is not designated, the contents above are byte unit.
<ADDR>
For address which designates address both segment and offset. When an omission is made from specified segment, contents of CS are specified. The specification with numeric value in hexadecimal notation of four digits. The name <REG> register is specified for a numeric value.
(Example)

<ADDR2>
For 2nd address with value of segment given with a <ADDR>, therefore, the designation is of an address only with numeric value in hexadecimal within four digits. The name of the register is specified for a numeric value.
<BIAS>

Represents bias at program loading with designation of a numeric value in hexadecimal and within four digits. The name of the register is a designatable for a numeric value. <BRK>

Signifies break point with designation been the same as <ADDR>.
<CR>
Key entry of carriage return.
<CR/,>
For key entry of carriage return or comma. When the carriage return key is entered, μ-debugger is waiting for command entry. On the other hand, if comma key is entered, the same command will be executed at succeeding address. The succeeding address remarked here signifies the following.

- Current address +1 (however, I and 0 commands are excluded) in the case of the byte access command.
. Current address +2 in the case of the word access command.
- Current address + number of bytes of the executed command in the case of the single step command.
CS:IP
For display message with contents of code segment and instruction pointer displayed in hexadecimal and within four digits.
<N>
Designated Boot device No. with $n=0$ corresponding to drive A.
<NEW>
New data is to be loaded into each register or memory. Depending on command, data is designated in hexadecimal and with two or four digits.
<OLD>
Read data in each register or memory. The data is displayed in the hexadecimal and with two or four digits, depending on the command.
<PORT>
Designated port address in hexadecimal with four digits.
<REG>

Each register of 8088 is indicated with two alphabetical characters as in the TAble below:

Register Name	Abbreviation
Accumulator	AX
Base	BX
Count	CX
Data	DX
Stack Pointer	SP
Base Pointer	BP
Source Index	SI
Destination Index	DI
Code Segment	CS
Data Segment	DS
Stack Segment	SS
Extra Segment	ES
Instruction Pointer	IP
Flag	FL

Table 7.3.6
(2) Operation Procedure

START

Following two methods are available for starting debugger.
(1) Turn on power switch of MAIN UNIT without media setting in drive "A". At this CRT display gives the message of debugger start and it successively indicates " $*$ " and waiting for debugger command entry.
(2) Press STOP key when running. Contents of CS and IP are displayed in hexadecimal with four digits following "@". Then, CRT display shows " $*$ " for command entry. Initial display of each content is not always given on the left side or the *-display area of CRT screen.

COMMANDS

B (Boot)
B [<N>][D]<CR>
Initial boot is performed with the floppy disk drive "A". N is fixed to " 0 ". If D has been designated, a debugger returns into initial boot.

D (Display Memory)
$\mathrm{D}[\mathrm{W}]<A D D R>[,<A D D R 2>]<C R>$
Contents of respective addresses from <ADDR> to <ADDR2> are displayed in word or byte unit. If <ADDR2> is omitted, address contents of <ADDR> are displayed. Both segment and address concerned are displayed, prior to the display.

```
When address <ADDR2> is smaller than that of <ADDR>, error message
is displayed.
G (Go)
G<CS:IP><OLD>[<ADDR>[,<BRK>]]<CR>
Execute the program
If=<CS:IP> is set execution begins at the address specified to
execution start at address specified, enter <CR>, or to change
execution address, enter <ADDRESS> as specified, to set break
point, enter <CR> after <BRK> input. When <BRK> is designated,
following message BR@<CS:IP> displayed and returns to command.
I (Port Input)
I[W]<PORT><CR/,>
When contents of designated port are displayed, then enter
<CR/,>. When comma is entered, contents of the same port is
displayed at a time difference of same displayed port.
N (Single Step)
N<CS:IP><OLD>[<ADDR>]<CR/ ,>
Contents of designated CS and IP are displayed in hexadecimal
and with four digits. Enter <CR/,> to execute single step.
To change the address of the program execution, enter <ADDR>
with its entry, and next instruction CS and IP is displayed
after current instruction has been executed.
O (Port Output)
O[W]<PORT>,<NEW><CR/,>
Data set at designated port. If comma is entered,
```

the hyphen is displayed, allowing the succeeding data to be set at the same port (at this time, the designated same port is given some time difference).

R (Read Hex File)
R[<BIAS>]<CR>
Data of Intel Hexa Format is transferred from RS-232C inside I/O controller to memory. When <BIAS> is designated, each load address $+<$ BLAS $>$ is done before data load.

S (Substitute Memory)
$S[W]<A D D R>,<O L D>[<N E W>]<C R /,>$
Contents of the address <ADDR> are displayed. To examine the contents, enter <CR/,> and change the contents, enter <NEW> before <CR/,> entry.

* Execute read-after-write check.

X (Examine/Modify Register)
$\mathrm{X}<\mathrm{CR}>\mathrm{X}<\mathrm{REG}><\mathrm{OLD}>[<\mathrm{NEW}>]<\mathrm{CR} /$,>
When $X C R$ is only designated, name and contents of each register are displayed. If REG is entered, contents of a designated register is displayed. To modify the register contents, enter <CR/,>. To modify register contents, enter <NEW> and then, <CR/,>. When comma is entered, the contents of register with succeeding priority are displayed according to the Table of REG (sequence of register contents display is $A X \rightarrow F L$).

ERROR PROCESS

```
Error message "#" is displayed when command entry or operator
error occurs and line change is performed for command re-
entry. If numeric value of some digits is greater than
specified, particular digits at the head part of numeric are
cut off with no error message displayed.
Once an misinput happens, no correction step is possible ex-
cept to intentionally make an error.
For example; Enter misinput "@" then error message "#" for
command re-entry appears.
(Entry is only for alphanumeric.)
```

7.4 D COPY (media copy program) operation Execute program "D COPY" to copy a test program. For details of D COPY operation, refer to TEST PROGRAM OPERATIONAL MANUAL.

Chapter 8 Appendix

8.1 Unit Configuration and General Wiring
8.1 Unit Configurations and General Wiring

MFD DC

Pin No.	Wire's color	
2	GREEN	(+5 SV
1	RED	(GND)
3	WHITE	(GND)
4	BLACK	(+12 V)

$D C(A)$ - $D C(B)$

Pin No.	Who's color	
1	ORANGE	(412V)
2	BLUE	(GND)
3	BLACK	(GND)
4	YELLOW	(4SV)

CANON INC.

COPYRIGHT
(C) 1983

BY
CANON INC.
Printed in Japan Feb. 1983

EY8-6072-222

[^0]: 2.5 PRINTER

 Refer to "PRINTER TECHNICAL GUIDE".

