—

££G3200 G

enie

‘ S
R o eiyts wos b oA e bl - - s PR LY e e : ‘

PR

SR

D e
= etk

R

S B oo e —
oA i g s RS S

[Tty
= S TR et
T e

T
e

PR L

T S
porea e b

Eeacs’

Copyright (c) 1982 by EACA Computer Ltd. All rights reserved.
No part of this publication may be reproduced, transmitted,
transcribed, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without the prior written permission of EACA Computer
Ltd., EACA Industrial Building, 13 Chong Yip St., Kwun Tong,
Kowloon, Hong Kong.

Disclaimer

EACA Computer Ltd. makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.
Further, EACA Computer Ltd. reserves the right to revise this
publication and to make changes from time to time in the content
hereof without obligation of EACA Computer Ltd. to notify any
person of such revision or changes.

EG3200

GENIE 1lI

BASIC MANUAL

Eeace’

1982

77-2005101-01

CONTENTS

INTRODUCTION

CHAPTER 1 : GENERAL INFORMATON ABOUT GENIE III BASIC.
CHAPTER 2 : GENIE III BASIC COMMANDS AND STATEMENTS.
CHAPTER 3 : GENIE III BASIC FUNCTIONS

CHAPTER 4 : BASIC EDITOR.

APPENDIX A : ERROR CODE AND MESSAGE.

PAGE 1

INTRODUCTION

INTRODUCTION: =~

This manual is a reference for GENIE 1III BASIC
language. The manual 1is directed to those who have
previously acquired some familiarity with computer
programming and who wish to wuse this as a guide for the
language BASIC.

This manual consists of four chapters plus an
appendix. The first 1is an introductory chapter provides
an understanding and information about GENIE III BASIC
language. Chapter two describes the commands and
statements that are available in this systenm. Chapter
three contains all the functions that can be wused by
this system. Each function 1is discussed, providing
the relative merits of various techniques and usage.

PAGE 1ii

GENERAL INFORMATION

CHAPTER ONE

GENERAL INFORMATION ABOUT GENIE III

BASIC 1is chosen as the fundamental high level
porgramming language of our GENIE III system., Most of the
BASIC features come from the DISK BASIC of NEWDOS/8¢
version 2 which is our operating system, However, some
modifications to the BASIC are required to suit our display
format, 80 x 24 and 64 x 16 format.

If the GENIE III's system diskette loaded is 64-mode,
64 x 16 display format is assumed. Similarly, 89 x 24
display format 1is adopted of the system diskette loaded
is 8@-mode. '

There are two kinds of BASIC that can be used in this
system; Microsoft Extended Level II Basic and NEWDOS BASIC,

Procedure of entering BASIC:
(1) LEVEL II BASIC:= LEVEL II BASIC can be entered
by pressing the BREAK key first and switching
ON the power of the system, provided that the
system diskette has been placed in drive 0.
Another way is to press both BREAK and RESET
keys at the same time after the system has
entered the DOS level.
(2) NEWDOS BASIC:- NEWDOS BASIC can be entered
by the typing in the command "BASIC" to the
system in DOS level.

PAGE 1-1

GENERAL INFORMATION

Table 1-A (a)=(b) 1lists all the commands and state
ments that are available in GENIE III BASIC.

NOTE: All of them can be used by NEWDOS BASIC,
however, only those with "*" are available in Level 1II
BASIC,.

TABLE 1-A: BASIC COMMANDS AND STATEMENTS

Table 1-A (a): Active Commands

ACTIVE COMMANDS:

* AUTO * CLEAR CLOSE
cMD"C™ CMD"E" CMD"S"
CMD"doscmd” CONT * DELETE

* EDIT END ERROR

* LIST * LLIST LOAD
MERGE * NEW REF
RENEW RENUM * RUN
RUN"program" SAVE

* TROFF * TRON KILL

PAGE 1-2

*

* % ¥ ¥

* ¥ ¥ % * *

GENERAL INFORMATION

Table 1-A (b): Programming commands and statements.

PROGRAMMING COMMANDS AND STATEMENTS:

CLEAR
CMD"F=POPN"
CMD"F=KEEP"
CMD"F=5s"
DATA
DEFINT
DEFUSR
FIELD

GO SUB
IF-THEN
INPUT

LINE INPUT
LSET
ON-GOTO
PRINT

PRINT @
READ
RESTORE
STOP

* ¥ % % * ¥ ¥

* ¥ * ¥ *

CMD"F=POPS"
CMD"F=SASZ"
CMD"F" ,DELETE
CMD"J"
DEFDBL
DEFSNG

DIM

FOR=-NEXT

GO TO
IN=-THEN=-ELSE
INPUT#

LINE INPUT#
MIDS -
ON-GOSUB
PRINT TAB
PRINT #

REM

RETURN

* % ¥ ¥ ¥ ¥ ¥ *

*

CMD"F=POPR"
CMD"F=ERASE"
CMD"F=SWAP"
cMD"O"

DEF FN
DEFSTR

END

GET

IF

INKEYS

LET

LPRINT
ON-ERROR-GOTO
OPEN

PRINT USING
PUT

RESUME

RESET

PAGE 1-3

GENERAL INFORMATION

TABLE 1-B (a)=(d) 1lists all the functions that are
avail=-able in GENIE III BASIC,

NOTE: All of them can be used by NEWDOS BASIC, however
only those with an "*" are available in Level II BASIC.

Table 1-B (a) String Functions:

* ASC * CHRS CVD
CVI Ccvs INSTR
* LEFTS LEN * MIDS
MKD$ MKIS MKS$
* RIGHTS T o* STRS. * STRINGS
* VAL VARPTR

Table 1-B (b): Arithematic Functions

* ABS * ATN * CDBL
* CINT * C0Ss * CSNG
* EXP * FIX * INT
* LOG * RANDOM * RND
* SGN * SIN * SQR
* TAN

PAGE 1-4

* * ¥ *

GENERAL INFORMATION

Table 1-B (c): Graphic Functions

*

POINT * RESET

Table 1=-B (d): Speéial Function :

&H
INP
MEM
POKE
USR

&0 EOF
LOC LOF
ouT * PEEK
POS TIMES

PAGE 1-5

COMMANDS AND STATEMENTS

CHAPTER TWO

GENIE III COMMANDS AND STATEMENTS

This chapter describes all the
functions available in GENIE III System.

In the syntax notation, all items
letters enclosed in angle brackets (<>) are
by the user. All punctuations (except angle

commmands and

in 1lower case
to be provided
brackets) and

capital letters must be input exactly as shown.

PAGE 2-1

2.1 AUTO

SYNTAX: (a)
(b)
(c)

EXPLANATION: .

REMARK:

COMMANDS AND STATEMENTS

AUTO
AUTO <line=-number>
AUTO <line-number>,<increment>

This command automatically sets the line-
numbers before each source lines is entered.
If the user only types in AUTO followed by
the NEW LINE key, the beginning line number
will be set at 10, with each increment of 14.
The option permits the user to specify the
beginning 1line number as well as the
increment desired between lines.

The user may enter his program statement
right after the line number.

Everytime the user hits the NEW LINE key, the
computer will increase the 1line number. The
AUTO command will remain in operation until
the BREAK key 1is hit, Note that whenever
AUTO brings up a 1line that has been used
previously, there will be as asterisk appear
right next to the line number.

If the user does not want to alter that line,
hit the BREAK key to turn off the AUTO

function.

EXAMPLE:

AUTO
Then the line numbers 10, 20, 30, ¢.... wWill
be generated.

AUTO 2,2
It generates line numbers 2,4,6,¢c00..

PAGE 2-2

COMMANDS AND STATEMENTS

2.2 CLEAR (active command)

SYNTAX: (a) CLEAR
(b) CLEAR <number-of-bytes>

EXPLANATION: This active command clears a specific number
- of bytes for string storage. If the option
(a) 1is used the computer will reset all
numeric wvaribles to zero, and all string
variables to null. When the option (b) is
taken, it perfroms similarly as option (a),
in addition, a specified number of bytes is
cleared for string storage.

NOTE: When the user turns on the computer, a CLEAR
50 command is performed automatically.

EXAMPLE: CLEAR 100
Reset all numeric varibles to zero, and all
string variables to null. Then <clear 100
bytes of memory for string storage.

2.3 CLEAR (programming command)

SYNTAX: CLEAR n

EXPLANATION: This statement sets all varibles to zero.
If number n is specified, the computer sets n
bytes of space for string storage.

REMARK: The CLEAR statement becomes <critical during
program execution, because an OUT-of-string-
Space error will occur, if the amount of
string storage cleared 1is less than the
greater number of characters stored in string
variables.

EXAMPLE: 10 CLEAR 1000

Clear 1000 bytes of memory space for string
storage.

PAGE 2-3

COMMANDS AND STATEMENTS

2.4 CLOSE

SYNTAX: CLOSE <numd>,<nUmM>, ceceecee

EXPLANATION: This statement terminates the file assignment
to a particular file through the specified
buffer(s). <num> is the number, 1 to 15,
‘refers to the files' buffer number under which
the file was OPENED,
A close with no argument closes all open

files,
EXAMPLE: CLOSE 2,4,8
or
CLOSE
2.5 cmpc®

SYNTAX: CMD"C"

EXPLANATION: This command with no argument is wused to
compress out all spaces from the program text,
except for those within strings, and deletes
all remarks from the text, 1including those 1lines

which are entirely remarks.

EXAMPLE: The statement

49 IF Y=X GO TO 60

After the active command CMD"C", the text will
become .

49 IFY=XGOTO6%

PAGE 2-4

COMMANDS AND STATEMENTS

2.6 CMD"E"

SYNTAX: CMD"E"
EXPLANATION: This command displays the DOS error messages

associated the 1latest DOS error encountered
by BASIC.

2.7 CMD"F=POPS"

SYNTAX: CMD"F=POPS"

EXPLANATION: This statement purges all returns and FOR-
NEXT controls.

REMARK : The purpose of this statement is to allow

the program to "escape" of complex coding
and return to BASIC's first level.

2.8 CMD"F=POPR"

SYNTAX: CMD"F=POPR"

EXPLANATION: This statement purges the current GOSUB level
with any remaining FOR=-NEXTS for that level.
The control will pass to the statement
following the CMD"F=POPR" statement.

PAGE 2-5

COMMANDS AND STATEMENTS

2.9 CMD"F=POPN"

SYNTAX: CMD"

or

F=POPN"

CMD"F=POPN"<variable-name>

EXPLANATION:

REMARK:

The CMD"F=POPN" purges the most recently
located FOR=NEXT's control data. This is the
same as "NEXT" where the loop limit is passed.
If the <variable-name> option is used,
the FOR=NEXT loop Jjoined with <variable-name>
is purged along with any other FOR-NEXT loops
established while <variable-name>'s loop was
outstanding.

Execution continues with the statement
following the CMD"F=POPN" or CMD"F=POPN"
variable-name> ststement.

2.190 CMD"F=SASZ"

SYNTAX: CMD"F=SASZ",<expression>

EXPLANATION:

REMARK:

EXAMPLE:

This statement changes the string area size
without affecting or clearing the variables.

<expression> must be a value 1large enough
for the string.
An error occurs if <expression> 1is too small
or too large.

CMD"F=SASZ" , 300

PAGE 2-6

COMMANDS AND STATEMENTS

2.11 CMD"F=ERASE"

SYNTAX: CMD"F=ERASE",<list-of-variables>

EXPLANATION: This statement clears the specified
variables.
REMARK: If a specified variable is within an array

the entire array 1is cleared. However the
size remain the same.

EXAMPLE: 50 CMD"F=ERASE" ,ABB,BBC

2.12 CMD"F=KEEP"

SYNTAX: CMD"F=KEEP",<list-of-variables>

EXPLANATION: This statement clears all variables except:
(1) those specified in the
<list-of-variablea>;
(2) specially defined variables, for example,
those defined by a DEFFN statement.

REMARK: The size of string area remains the same.
If <list-of-variables> is omitted, all
variables are cleared; except the special
one.

The entire array will not clear if a
specified variable name is within that array.

EXAMPLE: 200 CMD"F=KEEP" ,ABS$,CCY,A#

PAGE 2-7

COMMANDS ‘AND STATEMENTS

2.13 CMD"F" ,DELETE

SYNTAX: CMD"F",DELETE <line-1>-<line-2>

EXPLANATION: This statement deletes the text 1lines from
<line=1> to <line=2> during program execution.,

REMARK: The DEFFN variables for DEFFN statement in
the delete range are cleared, however, all
other variables are kept as before.

NOTE: CMD"F" ,DELETE must not be
(a) a direct statement
(b) include in a DEFFN statement
(c) include in a subroutine or a FOR=NEXT
loop.
CMD"F" ,DELETE must be
(a) last statement on its text line
(b) followed by the text line where
execution will continue after the
delete.

EXAMPLE: 100 CMD"F" ,DELETE 1000-1500

PAGE 2-8

2.14

COMMANDS AND STATEMENTS

CMD"F=SWAP"

SYNTAX: CMD"F=SWAP",<variable-1l>,<variable-2>

EXPLANATION: The CMD"F=SWAP" 1is used to exchange the value

of <variable-=1> with that of <variable=2>,

REMARK: <variable-=l1> and <variable=2> must be the
same type.

EXAMPLE: 209 CMD"F=SWAP" ,AS,BS

2.15 CMD"F=Ss"

SYNTAX: (a) CMD"F=ss"

(b) CMD"F=SS",<line-number>
(c) CMD"F=Ss",N

EXPLANATION: The CMD"F=SS" is used to perform single step

through program execution. The (a) and (b)
formats set BASIC into single step mode,
while (c). format turns off the single step
mode. (b) format specifies the 1line to start
single step.

REMARK: When the program is executed in the single

step mode, a "@" displays at the upper

right top corner of the screen. For @ is

the 1line number for the next 1line to be
executed. In order to get to next step, press
the NEW LINE key.

The single stepping turns off as it comes to

a CMD"F=SS",N statement.

PAGE 2-9

COMMANDS AND STATEMENTS

2.16 CMD"J"

SYNTAX: CMD"J",<date=-1>,<date-=2>

EXPLANATION: The CMD"J" 1is a Calendar Date Conversion
statement. This 1is wused to convert the ex-
pression <date-=1> to the appropriate format
and puts the result 1in the string variable
<date-2>,

Two conditions :

(a) If <date-1> is mm/dd/yy then <date-=2> |is
stored in ddd format;

(b) if <date-1> 1is vyy/ddd then <date=2> is
stored in mm/dd/yy format.

where '
mm is the month of the year from @1 to 12
dd is the day of the month from 41 to 31
ddd is the day-of-the-year from @1 to 366
yy is the year of the 20-century from @0

to 99.

PAGE 2-10

COMMANDS AND STATEMENTS

2.17 CMD"O"

SYNTAX: (a)
or
(b)

EXPLANATION:

EXAMPLE:

CMD"O” ,<n>,<av-l>,<av-2>o ee 000 oo
CMD"0",<n>,*<iav=1>,<av=2>,<av=3>ccce e

The cCMD"O" command is used to sort
array in the main memory. <n> specifies the
number of element in each of the array parti-
cipating in the sort. A maximum of 9 arrays
may be specified.

Format (a): It is a direct sort meaning that
the elements of all 1 to 9 arrays are moved
around to adjust to the desired sort order.
<av-1>, the arrray-variable-l, must be speci-
fied while <av=-2>, the array-variable-2, and
up are optional.

For each array, the resulting order 1is the
same. For example, if the 4th element of
array 1 (<av=1>) 1is sorted 1into the 6th
element slot, then for each of the other
arrays, if any, the 4th element is also placed
into the 6th element slot.

Format (b): It is an indirect sort. <iav=-1>
must be an integer array variable. <iav-1>
and <av-2> must be specified while <av-3> and
up are optional. Format (b) 1is different
from Format (a), is that, only the n element
of array <iav-1> are sorted; the other arrays
are in same order as before. In other words,
during sorting only array <iav=1> is altered
but <av-2> and up are not altered.

19 DIM A$(20), AMT(30), BB(39)
20 x=10
99 CMD"O" ,X<AS$(0) ,AMT(9)

15¢ CMD"O",X,*BB(2) ,AMT(3) ,AS$(5)

.

PAGE 2-11

COMMANDS AND STATEMENTS

2.18 CMD"s"

SYNTAX: ‘CMD"S“

EXPLANATION: This statement with no argument allows BASIC
to exist DISK BASIC and return to DOS READY
state.

REMARK: If it 1is in the form of CMD"S=<doscmd>",where
<doscmd> is the DOS command, then the
following steps occur:

1. It is moved into the DOS command bpuffer
and BASIC released.

2. The <doscmd> placed into the DQOS buffer
is executed immediately without "DOS
READY" displays on the screen.

3. After the completion of the command, the
control returns to DOS READY state.

2.19 CMD"doscmd"

SYNTAX: CMD"<DOS=command>"

EXPLANATION: The statement allows BASIC to carry out DOS's
command. BASIC moves the command to DOS's
command buffer, When the specified command
is completed, control returns to BASIC mode.

EXAMPLE: CMD"DIR 2"
will list a directory on disk drive @

CMD"COPY ABC:¢ :1"

will copy ABC in disk drive @ onto disk drive
1.

PAGE 2-12

COMMANDS AND STATEMENTS

2.20 CONT

SYNTAX: CONT

EXPLANATION: This command continues the program execution,
at the point where the execution has been
stopped by the BREAK key or a STOP statement
within the program.

PAGE 2-13

COMMANDS AND STATEMENTS

2.21 DATA

SYNTAX:

DATA <list-of-items>

EXPLANATION: This statement defines data items to be read

REMARK:

EXAMPLE:

2.22

SYNTAX:

by READ statement.

The item 1list will be accessed by the
computer sequentially, starting with the
first item in the first DATA statement, and
ending with the 1last item 1in the last DATA
statement.

The items can be string or numeric value.

The order of values 1in a DATA statement must
match up with the variable types in the READ
statement.

30 READ A,B,CS$
40 DATA 11,56,"SENTENCE"

DEFDBL

DEFDBL <letter-range>

EXPLANATION: A DEFDBL statement declares (treat and store)

REMARK:

EXAMPLE:

that the variable names beginning with the
letter(s) specified will be double precision.

However, a type declaration character can
over=-ride this type definition, Double
precision allows 17 digits of precision,
while only 16 digits are displayed when a
double precision variable is print.

19 DEFDBL M-P,G

Causes variables beginning with one of the
letters M through P, or G to become double
precision.

PAGE 2-14

2.23 DEF FN

COMMANDS AND STATEMENTS

SYNTAX: DEF FN name <argument>=<expression>

EXPLANATION:

EXAMPLE:

A user-created implicit function is defined
with the name FN name. The defined implicit
function will automatically be performed when
the name is called. The function must be
composed of the 1letters FN followed by a
valid level II variable name.

20 DEF FNBB (Y) = Y/2
This statement defines a function FNBB(Y)
which divides Y by 2.
Thus the statement
409 X=FNBB(4)
would set X to the value 2,

PAGE 2-15

2.24 DEFINT

COMMANDS AND STATEMENTS

SYNTAX: DEFINT <letter-range>

EXPLANATION:

REMARK:

NOTE:

EXAMPLE:

Variable names that begin with letters
specified within the 1letter range, will be
treated and stored as integers.

Defining a variable name as an integer not
only saves memory space, but also saves
computer time, because integer calculation is
faster than single or double precision
calculation.,

Integers can only take on values between
-32768 and +32767 inclusive.

16 DEFINT X,Y,Z

After the computer has executed line 10, all
variables beginning with the letters X,Y, or
Z will be treated as integers. Therefore,
X2, X3, YA, YB, 2I, ZJ will become integer
variables, Except that X1#, X2#, will be
still double precision variables, because
type declarations always over-ride DEF
statements.

50 DEFINT A - D
This statement defines variables beginning

with letter A,B,C, or D to be integer
variables.

PAGE 2-16

