
FOREWORD

This manual covers the specifications and use of the hardware and
software of the TF-20 Flexible Disk Unit designed exclusively for use with
the HX-20 portable computer. To get the fullest use from your TF-20,
please read this manual carefully before attempting to operate the unit.

TABLE OF CONTENTS

FOREWARD... i

1. INTRODUCTION 1-1
1.1 Sequential Files and Random Access Files..1-2
1.2 Flexible Disks...1-2

2. GETTING STARTED.. 2-1
2.1 Unpacking... 2-1
2.2 Names of Parts..2-2
2.3 Hardware Configuration...2-2
2.4 Operation... 2-4

3. DISKS...... ..3-1
3.1 Disk Format... 3-1
3.2 System and Non-System Disks.. 3-2
3.3 FRMAT, SYSGEN and COPY..3-3
3.4 Cautions when Replacing Disks.......... .. 3-4
3.5 Care and Handling of Flexible Disks...3-6
3.6 Cautions on placement of Disk Drive.. 3-9

4. DISK BASIC.. 4-1
4.1 Disk BASIC Features... 4-2
4.2 Booting Disk BASIC... 4-3
4.3 Disk BASIC Syntax... 4-5
4.4 Commands and Statements.. 4-6
4.5 Disk BASIC Functions.. 4-31
4.6 COPY Utility... 4-36
4.7 Error Processing..4-39

5. HARDWARE... 5-1
5.1 Hardware Configuration.. 5-1
5.2 Interface Signals... 5-2
5.3 Interface Level.. 5-3

APPENDIXES
A ERROR CODES
B DISK DRIVE ENVIRONMENTAL CONDITIONS
C POWER REFQUIREMENTS AND OUTLINE DIMENSIONS
D DISK SPECIFICATIONS AND ENVIRONMENTAL CONDITIONS

Commands and Statements

CLOSE.......................................4-6
DSKO$.......................................4-7
FIELD...4-9
FILES...4-10
FILNUM........................ 4-11
FRMAT.....................................4-12
GET..........................4-13
IN P U T#.................................... 4-14
KILL....4-15
LINE IN P U T#.......................... 4-15
LIST...4-16
LOAD...4-16
LOADM 4-17
MERGE.............4-18
LSET, RSET.......... 4-19
NAME................................ 4-20
OPEN.................... 4-21
P R IN T#.................................... 4-22
PRINT# USING....................... 4-23
PUT.. 4-24
RESET.......................................4-25
RUN...4-26
SAVE 4-27
SAVEM..................................... 4-28
WHILE...WEND....................... 4-29
SYSGEN................................... 4-30

Functions

CVI, CVS, CVD......................... 4-31
DSKF...4-32
DSKI$..4-32
EOF..4-33
INPUTS..................................... 4-33
LOC..4-34
LOF..4-34
MKI$, MKS$, MKD$............... 4-35

IV

1. INTRODUCTION

1.1 Sequential Files and Random Access Files

There are essentially two ways in which data can be accessed (stored and
retrieved). These are sequential and random access files.
As the name suggests, sequential files are files in which the data are
stored in sequence. Therefore, to retrieve data from the file, the data must
be read in sequence and unwanted data must be passed over until the
desired data is reached. Among the advantages of sequential files is the
fact that, since the data are stored in sequence, the only restriction on the
length of a file is the amount of memory available on the storage medium.
The simple configuration of sequential files also makes them quite easy to
understand and to handle. The main drawback of sequential files is thdt
because unwanted data must be passed, they are quite slow compared
with random access files. The cassette tapes used in the external cassette
and the microcassette drive of the HX-20 are both sequential storages.
In a random access file, it is possible to go directly to the location in the
storage medium which you wish to read or write. This saves a great deal of
time and makes random access files faster to access than sequential files.
However, for random access files, in order to be able to locate data easily,
it is necessary that all records (the basic unit for handling data in files) be
the same length.
In Disk BASIC (the name of the version of BASIC used to operate the
TF-20), the fixed length of records is 128 bytes. To fix the length of the
variables used in a random access file, the FIELD statement is necessary.
LSET and RSET statements are used to store data in the random buffer;
The advantage of random access files is that they are very fast and the
disadvantages are that they use memory less efficiently than sequential
files and must be configured with some care. The TF-20 can be used for
both sequential and random access storage.

1.2 Flexible Disks

Flexible disks are a lightweight, low-cost storage medium. When the disk
is inserted in the disk drive, it is rotated at a speed of the 300 RPM by the
spindle in the spindle hole. Access is performed through the read/write
access holes by twin read/write heads located on either side of the disk in
the drive. The flexible disks used in the TF-20 are double-sided disks which
measure 5 1/4" dia. and have an available total storage capacity of 278K
bytes. The figure below shows the external view of the disks used in the
TF-20.

Along with the advantages of flexible disks, there are certain conditions
which must be met concerning their use. Primarily, these fall under the
heading of the care with which flexible disks must be treated. The density
with which data is magnetically recorded on a disk, while being the source
of its efficiency and economy, is also the reason why care must be
exercised in the handling of disks. Careless handling of disks can result in
lost or useless data and programs.

1-2

Disks are housed in a protective jacket that serves to clean the recording
surface and protect it from dust and other contaminants. The recording
surface should never be exposed to oils (including that on your fingers),
solvents or a dusty atmosphere. Any of these can destroy the data and
programs stored on the disk. The same applies to extreme temperatures
or sudden fluctuations in temperature or humidity. Because the disks
record data magnetically, disks should never be used or stored near
magnets or in a strong magnetic field, such as that produced by a
television set. For details of the recording format and complete warnings
for use, refer to Chapter 3, Disks.

2. GETTING STARTED

2.1 Unpacking

When unpacking the TF-20, make sure that all of the following items are
included.

All packing materials should be saved for reshipment of the TF-20.

2.2 Names of Parts

Front panel Rear panel

Push buttons

Drive select in­
dicator
(LED) (illumi­
nates when
the correspond­
ing drive
is selected and
the head
starts moving.)

.Not used (See
NOTE below.)

— DIN 6-pin (female)
L-/ connector (to HX-20)

Q ------ DIN 5-pin (female)
connector

—— (to other terminal)

b-J — Power switch

Drive 6
Drive A

Power indicator
(red LED illuminates
when power is applied.)

NOTE:
The Interface on the rear panel of the TF-20 is not used.

Fig. 2.2 Names of Parts

AC cable

2.3 Hardware Configuration

Up to two TF-20 floppy disk units, each housing two drives, can be
connected together in a daisy chain with the HX-20. In Disk BASIC, the
designation of the drives of the first unit are drives A and B and those in the
second unit, drives C and D. The drive names are determined by the
setting of the DIP switches located inside the housing of the TF-20. The
factory setting is for drives A and B and the user must reset the DIP
switches himself when he adds a second unit. The procedure for adding a
second TF-20 is as follows.

(1) Loosen the four screws located on the lower edge of the cover of the
second TF-20. Change the setting of DIP switch 4 to OFF. DIP switch 4
is located on the rear, lefthand side of the PC board (in front of the 5-pin
interface connector). The location of DIP switch 4 is shown in the Fia
2.3.

Fig. 2.3 Right-side View of TF-20

When DIP switch 4 has been set to the OFF position, the disk drive can
be used as the second drive. The device names will be "C :" and "D :".

(2) Connect the DIN 5-pin end of cable #707 to the 5-pip connector of the
first TF-20.

(3) Connect the DIN 6-pin end of cable #707 to the 6-pin connector of the
second TF-20. "Daisy chaining", as this connection is.called, of the
HX-20 to two TF-20 drives is shown in the figure below.

Fig. 2.4 Daisy Chaining the HX-20 to Two TF-20 Units

2.4 Operation

(1) DIP switch setting of the HX-20
Before starting up, DIP switch 4 of the HX-20 must be turned ON. If it is
not turned ON, you will not be able to boot Disk BASIC even if the TF-20
units are correctly connected to the HX-20.

(2) Turning the power ON and OFF

The power of the HX-20 must be turned ON after power has been applied
to all the terminals. The power of the HX-20 must be turned OFF before
turning OFF the power of any of the terminals.
Remove any disks set in the TF-20 before turning the power ON or OFF.

(3) Setting disks in the disk drive

The procedure for setting disks in the disk drive is as follows.

STEP 1
Insert the disk into the disk drive so that the write protect notch is at the
top of the disk and the identification label is facing right.

STEP 2
When the disk is inserted, you will hear a sound as the eject lock lever
catches.

^ Push buttons

— Eject lock lever

Drive A: flexible disk in set position

Drive B: flexible disk not set

Fig. 2.6 Setting Disks in the Drive (2)

E P S O N J
.T F -a £ l 1Î!

A 1—r
F

POQER n D
i l

STEP 3
Press the push button slowly and carefully to the ON position. The disk is
now set in the drive.

(4) Removing disks from the disk drive

The procedure for removing disks from the disk drive is as follows.

STEP 1
Check to make sure that the drive select indicator is not illuminated before
pressing the push button. If the drive select indicator is illuminated,
execute CLOSE or RESET statement before you eject the disk. The drive
select indicator will turn off a few seconds after the execution of one of the
above statements.

STEP 2
Firmly press the push button of the disk drive from which you wish to eject
the disk. The push button will return to the OFF position and the disk will
be ejected 2-3 cm from the drive.

CAUTIONS
1) Insert the disk into the drive slowly and carefully.
2) Check the orientation o f the disk (write protect notch up, identification

label to the right) before settting the disk in the drive. (If the orientation
of the disk is not correct, the TF-20 will not operate.)

3) Always remove disks from the drive after checking to make sure that
the drive select indicator is extinguished. If you eject a disk while the
drive select indicator is illuminated, you risk losing the data stored on
your disk.

3. DISKS

3.1 Disk Format

The flexible disks used in the TF-20 are double-sided, double-density
flexible disks. Double-sided means that data may be stored on both sides
(sides 0 and 1) of the disks by means of the read/write heads operating
through the access holes. Double density refers to the density with which
data can be stored on the disks.
The recording surface of the flexible disk is divided into 40 concentric
bands, called tracks. These are referred to, from the outermost to the
innermost, as tracks 0 to 39.
Each track is further divided into 16 sectors. These are the basic physical
unit of data storage on the disk. A t the start of each sector is an area that
shows the start of the sector and contains the address data for the sector.
This is referred to as the identification or ID field. The ID field is followed by
the data field. This is where the data which the user wishes to store is
actually written. The amount of data that can be stored in a single sector is
256 bytes, or 4K bytes (1K byte = 1,024 bytes) per track for a total capacity
of 320K bytes for the entire disk.

Of this total, tracks 0 through 3 (sides 0 and 1) are used as the system area
(for the operating system of the TF-20), the first 8 sectors of track 4 (side 0)
are used as the directory area and track 39 is reserved. Thus, the file area
available for the user is 278K bytes. If the disk is a system disk, the amount
will be reduced by the 8K bytes occupied by the system program (which
operates Disk BASIC in the HX-20).
For each flexible disk, 64 directory areas are reserved. Thus, the'maximum
number of files that can be created on a single disk is 64. Flowever, a new
directory area is required for every 256 records (32K bytes) of a file and this
will have an effect on the total number of files that can be created.

3.2 System and Non-System Disks

The disks which can be used in the TF-20 are divided into system and
non-system disks. The differences between the two are as follows.

(1) System disks

A system disk is one which contains the system program for Disk BASIC.
To boot Disk BASIC (that is, to load it into the RAM of the HX-20), the
system disk must be set in disk drive A. As the system program is written
in the user area of the disk, the total amount of data that can be stored on a
system disk is somewhat (8K bytes) less than can be stored on a
non-system disk.
In the system disk, two files, "BOOT80.SYS" and "DBASIC.SYS" are
reserved for the system program. These files are write-protected and will
not be displayed by the FILES statement. However, the user should note
that he cannot create files using these two filenames.

(2) Non-system disks

Non-system disks contain only those programs and data which the user
has stored on them. Compared with system disks, there is more area
available for use by the user.

3.3 FRMAT, SYSGEN and COPY

These two commands and one utility program are used to perform
necessary operations to your disks: to format them, to create new system
disks and to create backup disks.

(1) FRMAT

Before a disk can be used, the address data must be written into the ID
field and all other data necessary for data storage must be present on the
disk. The process of writing this data to the disk is called initilization. Disks
supplied by EPSON are already initialized and can be used immediately as
non-system disks. However, disks other than those supplied by EPSON or
those on which data has been destroyed must be initialized by the user.
This is done by the FRMAT command.
To format a disk to be usable in the TF-20, input FRMAT followed by the
drive name in which the disk you wish to format is set. When a disk is
formatted, all of the data on the disk (including the system program) will be
destroyed. Therefore, the HX-20 asks for confirmation by displaying the
message "Are you sure?". Input "Y" from the keyboard if you wish to
execute the statement and "N " if you wish to cancel. See 4.4 Commands
and Statements for details.

(2) SYSGEN

This command is one of the two methods available for creating new
system disks. Since SYSGEN copies only the system area and files whose
file type is ".SYS", it does not affect any of the other files on the disk and
can be used to convert a non-system disk which you are already using into
a system disk.
To create a new system disk, place the current system disk in drive A and
the disk which you wish to make into the new system disk in drive B. As
with the FRMAT command, the HX-20 will ask for confirmation before
executing SYSGEN.
For disks that were used as system disks in another system, you must first
execute-a FRMAT command before executing SYSGEN. If the disk set in
drive B is different from the disk previously set in drive B, you must
execute a RESET command before you can execute SYSGEN. See 3.4
Cautions when Replacing Disks and 4.4 Commands and Statements for
details.

(3) COPY

This is a utility program that can be used to copy files or whole disks. By
copying whole disks, it can be used to create new system disks. The entire
contents of the disk set in drive A can be copied to the disk in drive B (or
similarly, from C to D if two TF-20 disk units are being used). The copy
utility can also be used to copy single files as selected by the user. See 4.6
Copy Utility, for details.

3.4 Cautions when Replacing Disks

Before changing the disks set in the disk drive, it is imperative that you first
execute a CLOSE statement. If the CLOSE statement is not executed, the
data in the buffer will not be written as intended to the current disk and
may be accidentally written to the next disk inserted in the drive.
Disk BASIC protects disks against this kind of accident by write protecting
all newly inserted disks. If an attempt is made to write data to a disk that
has been write-protected, a "Disk write protected" error will occur.

The function of the RESET command is to cancel this protection and
prepare the disk drive for a new disk. However, it should be noted that the
RESET command initializes the disk system and that the contents of any
disk open at the time of its execution will be lost. See 4.4 Commands and
Statements.
There are also dangers associated with rebooting Disk BASIC after you
have left Disk BASIC by such means as turning OFF the power switch of
the HX-20 or pressing the ifliaum key in the middle of program
processing.
Rebooting Disk BASIC without turning the power of the TF-20 OFF or
when an operation in the TF-20 has been halted results in the same
conditions as when files have been left open. Therefore, inserting a disk at
such a time poses a similar risk of the data on the disk being destroyed. It
is a good idea to execute a RESET command after rebooting Disk BASIC
under the abovementioned conditions.

3.5 Care and Handling of Flexible Disks

As mentioned earlier, the nature of flexible disks requires that they be
handled with a certain amount of care. Please read carefully and observe
the below-listed precautions to get the maximum use and service life from
your flexible disks.

1. Never touch the magnetic recording
surface of the disks. The oil from
fingerprints on a disk can cause data
errors.

2. Never clean the disks with alcohol,
freon or other solvents. The data on the
disks can be lost if the disk is exposed
to the fumes of volatile substances.

3. Store and use your disks away from
magnets and magnetic fields such or
those created by a TV. Never hold your
disks together with a magnetic paper­
weight. Exposure to a magnetic field
can cause the magnetically recorded
data on the disk to be lost.

-a

4. Although flexible disks are flexible and
can be easily bent, they should never
be bent in half or folded. Doing so will
render them useless.

5. Never press the disks or leave them
under heavy books, etc. Such treat­
ment will distort the disks and make
them useless.

6. Never use paper clips to hold your
flexible disks together. This will also
distort their shape and be a source of
errors.

7. Be careful when writing on the Iden­
tification labels of the disks. Do not use
a ball-point pen or pencil to write on the
labels after they have been affixed to
the disk. A felt-tip pen can be used In
such a case and will not damage the
disk provided that you do not press too
hard when writing.

8. Do not use an eraser to erase the
Identification labels. This creates
gummy residue that can damage the
disks.

9. Place the Identification label correctly
in the upper right-hand corner of the
disk. Do not affix new labels on top of
old ones. The clearances in the disk
drive are minimal and this can be a
source of error.

10. Set the disks in the drive slowly and
carefully. Forcing the disks or handling
them roughly can ruin them for use.

11. Always use the protective envelopes
provided with the disks. These en­
velopes protect the disks from dust
and scratches.

lE M U

12. Store the disks vertically in the stor­
age box. Disks that are left lying about
will warp and eventually become un­
usable.

13. Avoid sudden changes in temperature
(more than 20°C within an hour).

The TF-20 is a precision instrument. The following cautions should be
observed concerning its placement and use.

1. Do not place the disk drive near a heat source or where it will be
exposed to direct sunlight.

2. Avoid use or storage of the disk drive where it will be exposed to
extreme temperatures or to extreme temperature fluctuations.

3. When using the disk drive continuously for a long period of time, pay
careful attention to the ambient temperature.

4. To protect the disk drive against overheating, it has been provided with
ventilation holes. Always use the disk drive in a well-ventilated
environment and be sure that nothing is placed on top of the drive and
that the ventilation holes are not blocked.

5. Avoid use of the disk drive in a very humid atmosphere or where it will
be exposed to oily or metallic dust.

6. The TF-20 is composed of precision parts. Place it where it will be
protected from shock and excessive vibration.

7. Place the disk drive as shown in Fig. 3.2. Do not place it on its side.
Position it as near the horizontal as possible.

8. The TF-20 may malfunction if it is placed near machinery that generates
a strong magnetic field. Do not expose the disk drive to magnets or
magnetic fields.

9. Do not use an AC outlet which is being used for equipment (such as
large motors) that generates electrical noise.

10. Use a commercial AC 100V power source. If the voltage is too high or
too low, it can be a source of malfunction.

11. When transporting the TF-20, always insert the transport protection
sheets in the drives to protect the read/write heads. (In an emergency,
flexible disks can be used for this purpose, although there is a strong
risk that the disks will be damaged.) Always tranport the disk drive in
the packing in which it came.

4. DISK BASIC

Disk BASIC is an expansion of the ROM BASIC which is normally used to
run the HX-20. The interpreter for this expansion is supplied as the system
program on the system disk.
When the TF-20 is connected to the HX-20, starting up BASIC will cause
the expansion interpreter to be loaded from the disk into the RAM of the
HX-20. Then, until the HX-20 returns to the menu, the expansion
interpreter will function along with the interpreter already in the ROM to
effect the necessary processing for I/O to the disks and for the newly
added commands, statements and functions of Disk BASIC. The proces­
sing of the previously existing functions continues to be handled by the
interpreter in the ROM.

All of the commands, statements and functions of ROM BASIC are still
available for use in Disk BASIC. In addition, Disk BASIC adds the following
features.

(1) I/O to disks

The device names for the first TF-20 connected are "A :" and "B :", and
those for a second TF-20, if connected, are "C :" and "D :". These device
names can be used for any of the ROM version commands and
statements related to I/O. The only exception is the LOAD? command.

(2) Protect SAVE

When the P option is specified in a SAVE statement, the program saved
will be protected from listing and saving.

(3) Features added to ROM BASIC

Commands and Statements Functions

*DSKO$
FIELD

*FILNUM
*FRMAT
GET
KILL
LSET, RSET
NAME
PUT

*RESET
*SYSGEN
WHILE...WEND

CVI, CVD, CVS
*DSKF
*DSKI$

LOC
LOF
MKI$, MKD$, MKS$

'Features unique to HX-20 Disk BASIC.

4.2 Booting Disk BASIC

(1) Hardware checklist

Before attempting to boot Disk BASIC, make sure that the following
hardware conditions have been established.

• DIP switch 4 of the HX-20 is ON.
• Daisy chain cable #707 is correctly connected to the TF-20 and the

HX-20.
• Power is applied to all peripheral equipment before the power of the

HX-20 is turned ON.

After making all of the above checks, carefully set the system disk in drive
A. When you do so, the indicator lamp on the TF-20 will turn on and off and
DOS will be loaded into the RAM of the TF-20. Next, start up BASIC in the
HX-20. The indicator lamp on the disk drive will again turn on and off and
Disk BASIC will be booted in the HX-20. When Disk BASIC has been
successfully booted, the display of the HX-20 will look like this.

DISK-BASIC U-1.0
Copyright 1982 by
Microsoft & EPSON
Pi: 8 But«*
2

(2) Problems in booting

If, instead of Disk BASIC, you find that you have activated the ROM BASIC
of the HX-20 (that is, if the display is the same as is always displayed when
you start up the HX-20), or if the message "CANNOT LOAD" is displayed,
the source of the trouble could be any one of the following.

(a) A non-system disk has been set in drive A.
(b) The HX-20 and the TF-20 are not properly connected.
(c) There is a malfunction in the TF-20.

If the message "OUT OF MEMORY" is displayed and ROM BASIC is
initialized, this means that there are too many BASIC programs and/or
RAM files stored in the RAM and there is no area left to load Disk BASIC.

NOTE:
To start up BASIC in the HX-20 in order to boot Disk BASIC, any o f the
methods normally used to start up BASIC is fine. You can press the [2] key
to select BASIC from the menu, or you can select one o f the BASIC
programs from the menu. You can even use the Monitor K command to
enter BASIC directly when power is applied. Disk BASIC can be loaded
correctly regardless o f the method used to start BASIC.

4.3 Disk BASIC Syntax

File descriptor

File descriptors for disks are expressed in the following format.

"[<device name>:] [< filenam e>]"

(a) Device name
In Disk BASIC,, in addition to the device names that could be used in ROM
BASIC, you can now use device names "A :", "B :", "C :" and "D :" to
specify the disk.

TF-20 (1) Left-hand drive "A :" (default device)
Right-hand drive "B :"

TF-20 (2) Left-hand drive "C:"
Right-hand drive "D :"

In Disk BASIC, the default device is always drive A. The only exceptions
are FRMAT and LOAD?. The default device for FRMAT is "B :" and the
function of the LOAD? command remains unchanged from ROM BASIC;
either "CASO:" or "CAS1:" will be selected.

(b) Filename
Filenames in Disk BASIC are expressed in the following format.

< filenam e> [,<file type>]

As in ROM BASIC, <filename> is a string with a maximum length of 8
characters composed of any of the characters with character codes in the
range 1 to 254 with the exceptions of period [.], colon [:], parentheses [()]
and question mark [?].
< file type> when used for any device other than the disk is a string of up
to three characters composed of the same character set that can be used
in the specification of the filename. However, if the specified device is one
of the disk drives, character codes in which the value of the MSB is 1
cannot be used in the <file type>. If such a character is used, the MSB will
be changed to 0.

4.4 Commands and Statements

The commands and statements used in Disk BASIC are as follows.

Function To close file(s).

Form at CLOSE [[#]<file number>,[#]<file number>...]]
Example CLOSE #3

Remarks CLOSE closes a file specified by <file number>. <file
number> is the number under which the file was opened.
The file may then be reopened using the same or a different
file number; likewise, that file number may now be reused to
open any file.
A CLOSE statement without <file number> closes all files
opened at the time of executing the statement. # before
<file number> may be omitted. Note that END and NEW
statements always close all files automatically but a STOP
statement does not close any files.
When an output file has been opened, the file must be
closed in order to correctly complete the output processing
of the data remaining in the buffer. After CLEAR, LOGIN,
NEW, DELETE, WIDTH, LOAD, RUN, or MERGE is ex­
ecuted, or a program is edited, all the files being open at that
time will be closed.

(See OPEN.)

DSKO$
Function

Example
Remarks

To write data directly to a disk.

DSKO$ <drive name>, <track No.>, <sector No.>,
<string expression>

DSKO$ “A :", 1, 5, A$

This command is a disk output command to write the
contents of <string expression> to a specified location on
the disk in the drive indicated by <drive name>. Data write
is in units of one record (128 bytes) and is physically written
to the first or second half (128 bytes) of a single sector.
The length for <string expression> is 128 characters. If a
string longer than this length is used, the first 128 bytes of
data will be accepted and the remainder will be ignored. If
fewer than 128 characters are input, an FC error will occur.
To store data which is less than 128 bytes, the remaining
bytes should be padded with dummy data (00H) as is done in
the following program.

5 CLEAR 500
10 A$="123456"
20 A$=LEFT$< At+STRINGt <1
27,CHR$<0>),128)
30 DSKOt "A:",8,105At

<drive name> can be "A :", "B :", "C :" or "D :".
<track No.> can be any integer from 0 to 39.
<sector No.> can be any integer from 1 to 64.

NOTE:
In this command, <sector No.> refers to a logical sector (the
amount of data transferred in a single logical I/O operation) or
one record (128 bytes). As the length o f the physical sectors
is 256 bytes, <sector No.> 1 indicates the first half of the
first physical sector, <sector No.> 2 indicates the second
half o f the first physical sector, etc. This pattern is continued
in the following manner.

Physical Sector <sector No.>
SideO 1 First half 1

Second half 2
2 F irst half 3

Second half 4

16 First half 31
Second half 32

Side 1 1 F irst half 33
Second half 34

16 F irst half 63
Second half 64

(See DSKI$.)

FIELD
Function

E xam ple

R em arks

To define the field of the random file buffer.

FIELD [#] <file IMo.>, <field length> AS <string
variable> [,<field length> AS <string variable>...]

FIELD #1, 20 AS A$, 35 AS B$

Before data can be written into (PUT) or read from (GET) the
random file buffer, the FIELD statement must be executed.
< file No.> is the number specified by the OPEN statement
when the file was opened and <field length> is the number
of characters assigned to <string variable>. The total
number of characters assigned as <field length> by the
FIELD statement cannot exceed 128. If it does, a "Field
overflow" error will occur.

(See OPEN, GET, PUT, LSET/RSET.)

Function

Exam ple

R em arks

To display the filenames in the specified device.

FILES [<file descriptor>]

FILES "B: * . BAS"

When the device specified in <file descrip to r is not the
TF-20, (i.e., "CASO:", " C A S 1 o r "PACO:"), the FILES
statement displays the names of the files in the specified
device in the format described in the BASIC Reference
Manual.
When the device specified by <file descrip to r is the disk
unit ("A :", "B :", "C :" or "D:"), only those files which
conform to the <filename> and <file type> specified in the
<file descrip to r will be displayed. If only the device is
specified, all of the files on that disk will be displayed in the
following format:

filename, file type

At this time, in addition to the characters that can normally be
used to specify the range of the file, question mark [?] and
asterisk [*] can also be used within the <file descrip to r.
Any character will be accepted in the position which is
occupied by the question mark, and any <filename> or
<file type> will be accepted as conforming to a <filename>
or <file type> which begins with an asterisk.

FILNUM
Function

Exam ple
Remarks

To specify the number of file control blocks (FCB) that can be
used in a disk file.

FILNUM <No. of FCB>

FILNUM 5

FILNUM specifies the number of files that can be opened
simultaneously during the execution of a BASIC program.
When a disk file is opened, for each file, a 143-byte file
control block (FCB) is necessary. FILNUM specifies in
advance the size of the area to be reserved for the FCBs.
<No. of FCB> can be a value from 1 to 15. When FILNUM is
executed, all files open at that time are closed. Also, data
specified by the DEFINT and ON ERROR statements
become invalid.

(See OPEN and CLOSE.)

FRMAT
Function

Example
Remarks

To format the disk.

FRMAT [<drive name>]

FRMAT "A:"

The FRMAT statement formats the disk in the specified disk
drive.
<drive name> is a string with a value of "A :" through "D :".
If omitted, drive "B :" is assumed. The computer will print
the statement "Are you sure?" to ask for confirmation. Input
"Y" from the keyboard if you wish to execute the statement
and "N " if you wish to cancel.
When using a non-EPSON disk for the first time, formatting
is necessary before use. It is also necessary when you wish
to reuse a disk on which data has been destroyed and which
can no longer be read.
At the same time that the disk is formatted, the directories
are also initialized so that it can be used immediately as a
non-system disk. Also, it must be kept in mind that the
FRMAT statement destroys all the data currently on the disk.

Function

Format

Remarks

To read one record from a random disk file into the random
buffer.

GET [#] <file No.> [,<record No.>]

GET #1, 3
<file number> is the number under which the file was
opened by the OPEN statement. If crecord No.> is
specified, that record will be read. If it is omitted, the record
immediately following the record used in the most recent
GET or PUT statement will be read, crecord No.> must be in
the range of 1 to 32767. If it is not, a "Bad record number",
"OV" or "FC" error will occur. Also, if a crecord No.> which
exceeds the size of the current file, or is in a block whose
area has not been reserved, is specified, a dummy record
(data 00H) will be read by the GET statement. The file
specified in the GET statement must have been opened as a
random file.

(See FIELD, OPEN, PUT.)

INPUT#
Function

Example
Remarks

To read a single item of data from a sequential file and assign
it to a variable.

INPUT# <file No.>, cvariable list>

INPUT# 1, A, B$

<file No.> is the number used when the file was opened for
input by the OPEN statement, cvariable list> lists the
variables to which the data is to be assigned. However, the
type of the variables must match that of the data which is
assigned to them. The format of the data items in the file will
vary depending on the input device. For devices other than
the disk drive, see BASIC Reference Manual.
When numeric data is input, space, CR (ODH), LF (OAH), etc.,
at the beginning of the line is ignored and any other initial
character is taken as the start or numeric data. Numeric data
is delimited by spaces, CR (ODH) or commas [,]. When
string data is input, space, CR (ODH), LF (OAH), etc., at the
beginning of the line is ignored and any other initial character
is taken as the start of string data. When the initial character
is a quotation mark ["], all data until the next quotation mark
will be read as a single item of string data. When the initial
character of the string is not a quotation mark, that string is
delimited by commas or CR. If the end of the file (EOF) is
reached before the start of numeric or string data read, an IE
will occur. If EOF is reached in the middle of data read, that
data item will be delimited at that point. Also, if an attempt is
made to read invalid characters into a numeric variable, or
invalid delimiters are used, a BD error will occur.

(See PRINT#, LINE INPUT# and OPEN.)

KILL
Function To delete a file from the disk.

Form a t KILL <file descriptor

Example KILL "BiTEST.BAS"

Remarks <file descrip to r must indicate a disk file. A KILL statement
should not be executed for a currently open file. If it is, the
results cannot be guaranteed. A KILL statement is effective
for all types of disk files (BASIC program, BASIC data and
machine language program files).

LINE INPUT#
Function To read an entire line from a sequential data file to a string

variable.

Form a t LINE INPUT#<file n u m b e r, < string variable>

Example LINE INPUT#1, A$
Remarks LINE INPUT# inputs an entire line of characters (255

characters max.) up to a carriage return from a sequential file
without the use of delimiters and assigns it to <string
variables
<file n u m b e r is the number under which the file was
opened by an OPEN statement. <string variable> is the
variable name to which the line will be assigned.
LINE INPUT# is especially useful if each line of a data file has
been broken into fields, or if a BASIC program saved in ASCII
mode is being read as data by another program.

(See INPUT#.)

LIST
Function
Form at

Example
Remarks

To output a program list to the specified file.

LIST <file descriptor> [,[<line number>]
[- [d in e nu m b er]!!

LIST "B:TEST.ASC", 30-80

The function of LIST when followed by a file descriptor is the
same as ASCII format SAVE. When a string or string variable
is used to specify the file, it must always be enclosed by
double quotation marks.

LOAD
Function To load a program file Into the memory.

Form a t LOAD [cfile descriptor [,R]]

Example LOAD "B:PROG1 .ASC"

Remarks This command loads the program file specified by c file
descrip to r into the memory. When LOAD is executed, all
open files are closed and all current variables are deleted.
However, if the c R > option (i.e., load and run) is used with
LOAD, all open files are left open and the program is run
immediately after it is loaded.
If c file descrip to r is omitted, the first file of the default
device is loaded. LOAD retains the programs currently
residing in the memory until the specified file is found and
actual loading begins.
Before executing LOAD, use the STAT command to check
the area currently logged in.
Attempting to LOAD in an area which has been named by a
TITLE statement, will result in the occurrence of a PP
("Protected program") error.

(See SAVE.)

LOADM
Function

Example
Remarks

To load a machine language program file into the memory.

LOADM [<file descriptor>][,[offset value][,R]]

LOADM "B:ABC"

The file to be loaded should be a machine language program
file created by the monitor function or the SAVEM command.
If < file descrip to r is omitted, the first file of the default
device is loaded.
coffset va!ue> is added to the top address specified by the
SAVEM command and loading begins at the resulting
address.
If the <R > option is specified, after the machine language
subroutine is loaded into the memory, program execution
begins at <execution starting address> specified by the
SAVEM command. If <R > is not specified, the HX-20
returns to BASIC command level after the machine language
program has been loaded.
However, with a SAVEM command, the contents of the
memory can be created as a file. If < R > is used with a
LOADM command in a case other than machine language
program file, the CPU will interpret this file as a machine
language program file and will execute loading accordingly. If
this happens, the BASIC programs and RAM files may be
destroyed. Please be careful when specifying < R > option,
co ffse t value> cannot be specified when the machine
language subroutine is not relocatable, i.e., if it cannot be
executed when it is loaded at a location different from that at
which it was saved. However, as the CPU performs no check
to determine whether coffset value> is permitted or not,
there may be cases in which a file is moved to a different
address by the coffset value> even though the file contains
the memory data.
With LOADM, "COMO:" cannot be specified as a device
name.

(See SAVEM.)

MERGE
Function

Example
Remarks

To merge a specified program file into the program currently
in memory.

MERGE [<file descriptor>[,R]]

MERGE "A:PROG3.ASC"

MERGE command merges the program file specified by
<file descrip to r into the program in the memory area
currently logged in. The specified file must have been saved
in ASCII format. If not, a BF ("Bad file mode") error occurs.
If <file descrip to r is omitted, the first file of the default
device will be read. If any lines in the file have the same line
numbers as lines in the program in the memory, the lines in
the file will replace the corresponding lines in the memory. If
the option R is specified, the merged program will be
executed after the MERGE operation. BASIC always returns
to command level after executing a MERGE command.
When a MERGE command is executed, all files open at that
time are closed and all variables are cleared. However, if
<R > is specified, MERGE is executed with the files being
left open.

(See SAVE.)

Function |
Form a t B

Examples

To store left- or right-justified data in the random file buffer.

LSET <string variable> = <string>
RSET <string variable> = <string>

LSET A$ = "EPSON"
RSET B$ = "TF-20"

To store data in the random file buffer, RSET or LSET must
be used.
When the length of <string> is shorter than the length
assigned to <string variable> in the FIELD statement, the
string will be left- or right-justified (padded with spaces) to fill
the assigned length for the variable.
If the length of <string> is greater than that assigned in the
FIELD statement, the excess length on the right end of the
string will be lost whether the statement executed is LSET or
RSET. Before numeric values can be stored in the random
file buffer, they must first be type-converted to strings by the
MKI$, MKS$ or MKD$ functions. LSET and RSET can also be
used for strings which have not been allocated to the random
file buffer by the FIELD statement.

NAME
Function

Example
Remarks

To change the name of a disk file.

NAME ccurrent file descriptor> AS
<new file descriptor

NAME "TEST" AS "TEST 1"

The file specified in ccurrent file descrip to r must exist in
the specified disk and the file specified in <new file
descrip to r must not already exist in the specified disk. If
these conditions are not met, an NE or "File already exists"
error will occur. Also, the device specified in both the current
and the new file descriptor must be the same. NAME
statements should not be executed against files which are
currently open. The results of such an execution cannot be
guaranteed.

OPEN
Function

Example
Remarks

To open a file for I/O.

OPEN <m ode>, [#] <file No.>, <file descriptor

OPEN "R", # 1, "B:TEST.DAT"

This statement opens the file specified by <file descrip to r
under the specified <file No.>. The OPEN statement
allocates buffer area for I/O. For disks, a single FOB is
assigned for each file, regardless of mode. Therefore, as
many files as were specified in the FILNUM statement can
be opened simultaneously. <mode> may be "0 " , "I" or
"FT.

0 . . . sequential output mode
1 . . . sequential input mode
R . . . random I/O mode

R can only be used for a disk file. When a disk file is opened
in either the 0 or R mode, if the file does not exist on the
specified file, a new file will be created. If the file already
exists, that file will be used, in which case the next PRINT#
statement in the 0 mode will output data to the file starting
at its beginning and all the data in the file will be lost.
When a disk file is opened in the I mode, if the specified file
does not exist, an NE error will occur.
More than one OPEN statement, each with a different <file
No.> can be used at the same time in relation to a single file.
However, when output is performed to the file, it cannot be
open under any other <file No.>. The results of outputting to
a single file using multiple file numbers cannot be guaran­
teed.

(See CLOSE and FILNUM.)

PRINT#
Function
Form at
Example

To output data to a sequential file.

PRINT# <file No.> [,<expression>]

PRINT# 1, A$

Remarks <file No.> is the number specified when the file was
opened for sequential output.
<expression> is the string or numeric data to be output to
the file. The format in which the data wiH be output varies
depending on the device used for output. For the output
format for devices other than the disk drive, refer to the
BASIC Reference Manual.
The format output to the file is exactly the same as that
output to the display with the PRINT statement. However, as
the length of the output line is unlimited, CR or LF are not
output automatically.

(See INPUT#.)

PRINT# USING
Function

Form at

To write strings and numerics into a sequential file using a
specified format.

PRINT#<file number>, USING<"format string">;
[<expression>[<expression>. •]]

Example PRINT#1, USING " # # # " ;A

Remarks PRINT# USING writes string or numeric expressions into the
sequential file specified by <file number> using the format
specified by <"form at string">. For <"form at string''>,
refer to PRINT USING.
PRINT# USING outputs data in almost the same format as
that for output to the display screen. Therefore, when
reading a data file output by a PRINT USING, the data will not
be delimited unless you use delimiters; commas for numeric
expressions and double quotation marks for string expres­
sions.
In general, if the data does not end with a colon or
semicolon, carriage return and line feed will be output.
However, if the output device is "CASO:" or " C A S 1 o n l y
carriage return will be output.

(See OPEN and PRINT#.)

PUT
Function

Example
Remarks

To write one record from the random file buffer into the
random disk file.

PUT [#] <file No.> [,< record l\lo.>]

PUT# 1, 3

<file No.> is the number specified in the OPEN statement
when the file was opened.
If crecord No.> is specified, the data will be written into that
record. If it is omitted, the record immediately following the
record used in the most recent GET or PUT statement will be
written to. crecord No.> must be in the range of 1 to 32767.
If it is not, a "Bad record number", "OV" or "FC" error will
occur.
The file against which the PUT statement is executed must
have been opened in the random mode.

(See GET, FIELD and OPEN)

plfflWBBI To enable the replacement of a disk.

RESET [cdrive name>]

RESET "C:"
Format

Remarks The disk system (OS) of the TF-20 protects disks against data
loss caused by careless replacement procedures by auto­
matically write protecting disks when they are inserted. Any
attempt to write on such a disk will result in a "Disk write
protected" error. To reset the system and cancel this
protection, a RESET statement must be Executed after a disk
has been replaced. <drive name> can be "A :", "B :", "C :"
or "D :". ("C:" and "D :" can only be specified if a second
TF-20 is connected.)
If "A. " or "B :" are specified, the first TF-20 is reset and the
disks set in either drive can be replaced. In the same way, if
"C :" or "D :" is specified, the second TF-20 will be reset,
allowing you to replace either of the disks set in that unit. If
<drive name> is omitted, "A :" is assumed.
Removing a disk from the drive while there are files still open
for output is not recommended as you risk losing the data on
the disk. Also, as the RESET statement initializes the
system, the contents of any files open when RESET is
executed will be lost. Therefore, always execute a CLOSE
statement before a RESET to make sure that all open files
are closed.
When executing a RESET statement for "A :" and "B :", a
disk must be set in drive A. In the same way, when
executing a RESET statement for "C :" and "D :", a disk must
be set in drive B. If there is not, a DU error will occur.

Sample Programs:

(Direct mode)
CLOSE
(replace the disk)
RESET

(Program mode)
100 CLOSE
110 PRINT "REPLACE DISK
AND PRESS ANV KEV"
120 A$=INPUT*<1>
130 RESET

RUN
Function To start program execution.

Format RUN <file descriptor>[,R]
Example RUN "B:TEST"

Remarks When this command is input the program specified by <file
descrip to r is loaded into the memory and then program
execution begins.
For a disk file, if the device name is omitted, "A :" is
assumed.
Execution of a RUN command clears all variables and closes
all open files before loading the designated program.
However, if the <R > option is used with this command, all
data files remain OPEN.
Before executing a RUN command, use a STAT command to
check the program area currently logged in.

Example
Remarks

SAVE <file descriptor> [,A
,V
,P

]

SAVE "B:PRG",A

If the A option is specified, BASIC will save the program in
ASCII format. Otherwise, the program will be saved in
compressed binary format. ASCII format requires more time
and memory but is required when inputting files with the
MERGE command. The A option is also used when the
program saved is to be used as data.
The < V > option may be used when a microcassette
recorder is being used as an auxiliary memory. In this case,
after the SAVE is executed, the tape will automatically be
rewound to the beginning of the program and program
verification (CRC check) will be performed. If <device>
other than the microcassette recorder is specified, the <V >
option will be ignored.
If the P option is specified. Disk BASIC will save the program
in coded binary format. When a program that has been
protected in this way is loaded, any attempt to execute a
LIST or SAVE command, or to edit the program, will result in
a PP error. The P option is effective for devices other than
the disk. However, if a protect saved program is loaded
when Disk BASIC has not been booted, it will be loaded in
code and execution will not be possible.

(See LOAD.)

SAVEM
Function

Example
Remarks

To save the memory contents on a specified file.

SAVEM <file descriptors <top address>,
<bottom address>, <execution starting address>
[,V]

SAVEM "B:ABC", &HOBOO, &HOCOO, &HOBOO

SAVEM saves a machine language program or memory
contents on a specified file.
<top address> and <bottom address> indicate the range of
the memory contents to be saved on the specified file.
If the < V > option is specified, program verification (CRC
check) is performed after SAVEM is executed. If a device
other than the microcassette recorder is used, the < V >
option will be ignored.
Execution of machine language program loaded into the
memory by a LOADM command will begin at <execution
starting address>. Even if the data saved is not a machine
language program <execution starting address> cannot be
omitted and the same value as the <top address> must be
set.

(See LOADM.)

WHILE . . . WEND
Function
Form at

To conditionally execute the statements in a loop.

WHILE <expression>

[cloop statements>]

Example
WEND

WHILE l<5

Remarks
WEND

If the condition in <expression> is true, the <statements>
will be executed until the WEND is encountered. Then,
BASIC returns to the WHILE statement and evaluates it. If it
is still true, the same operation is repeated. If it is no longer
true, program execution moves to the statement immediate­
ly following the WEND statement. WHILE . . . WEND loops
can be nested as deeply as the capacity of the memory will
allow. Each WEND will correspond to the nearest previous
WHILE. A WHILE without a WEND will cause a WE error and
a WEND without a WHILE will result in a WH error.

Example
Remarks

SYSGEN

SYSGEN

Before executing the SYSGEN statement, first place the
source system disk in drive A and the disk which you wish to
make into the new system disk in drive B. The HX-20 will
confirm by asking "Are you sure?" At this point, if you wish
to execute the statement, input "Y" from the keyboard, and
if you wish to cancel execution, input "N". As the SYSGEN
statement copies only the system area and files whose file
type is "SYS", it has no effect on other files in the disk. This
makes it possible to change a non-system disk into a system
disk. If your version of disk BASIC has changed, you can
upgrade the earlier system disk by copying the new system
disk onto it.
To make disks that were used with another system into
system disks, execute a FRMAT statement before executing
the SYSGEN statement. If the disk set in drive B is different
from the disk previously set in drive B, a "Disk write
protected" error will occur if you do not execute a RESET
statement after setting the new disk. If the disk set in drive A
is not a system disk, an NE error will occur. Also, if the disk
set in drive B does not have enough disk or directory space
to copy the program file, a "Directory full" or "Disk full" error
will occur.

4.5 Disk BASIC Functions

CVI,
Function

Example

Remarks

CVS, CVD
To convert string data back to numeric data.

CVI <2-byte string>
CVS <4-byte string >
CVD <8-byte string>

A%=CVI (A$)
B!=CVS (B$)
C#=CVD (C$)

These functions reconvert numeric data converted to string
type by MKI$, MKS$ and MKD$.
CVI converts a 2-byte string into an integer, CVS converts a
4-byte string into a single precision number and CVD
converts an 8-byte string into a double precision number.
If the length of the string is less than that required for each
function, an FC error will occur. If the length of the string is
greater than that required, only the necessary length will be
taken from the beginning of the string.

(See MKI$, MKS$, MKD$.)

DSKF
Function To return the free area remaining on the disk.

Form at DSKF (<drive name>)

Example PRINT DSKF ("A:")

Remarks DSKF returns the amount of free area in the disk set in the|
specified disk drive in units of kilobytes. j
<drive name> is a string with a value of "A :" through "D :". (
If the RESET statement is not executed after the disk is
replaced, DSKF will not return a correct value, so caution is
advised.
Also, as the memory area for BASIC DOS is allocated in
2K-byte units, called blocks, the value returned by DSKF will
change in multiples of two.

DSKI$
Function To read data directly from the disk.

Form at DSKI$ (<drive name>, ctrack No.>, csector No.>)
Example A$=DSKI$ ("A:", 1, 3)

Remarks DSKI$ reads one logical sector from the specified drive and
track and returns the result as a 128-byte string.
The specification of <drive name>, ctrack No.> and
csector No.> is the same as DSKOS and, as with DSKO$,
there is no need for opening or closing.

(See DSKO$.)

Function

Fo rm a t
To return the end-of-file code.

EOF (<file number>)

Exam p le IF EOF (1) THEN CLOSE #1 ELSE GOTO 100

Rem arks The file specified by <file number> must have been opened
for the input mode. EOF checks if the file specified by <file
number> has reached its end.
EOF returns -1 (true) if the end of the file has been reached
and returns 0 (false) if not.
If the specified file is RS-232C port ("COMO:"), EOF returns
-1 when the buffer is empty and returns 0 when the buffer
is not empty. The EOF function always returns 0 (false) for
the file assigned to the keyboard..

INPUT$
I3TEWBB1 To return a string of characters read from a specified file.

1 3 M 1 INPUTS (cnumber of characters> [,[#]<file number>])

■4!Lli'il.HJ A$=INPUTS (5, #3)

IsHBEHBS INPUTS reads a string of characters in the number specified
by <number of characters> from the file specified by <file
number>. If < file number> is omitted, characters can be
input from the keyboard; but the characters input from the
keyboard are not displayed on the screen, unlike the
execution of an INPUT statement.
INPUTS is in a wait state until a string of characters .specified
by <number of characters> is all input. However, if any input
data exists in the input buffer, INPUTS reads characters from
the buffer. ______
With an INPUTS, all characters except key are read
as is. Therefore, INPUTS allows the input of characters, such
as Carriage Return (character code 13), etc., which cannot be
entered by INPUT and LINE INPUT statements.

LOC
Function

Example
Remarks

LOF
Function

Example
Remarks

To return the current record No.

LOC (<file N o .>)

PRINT LOC (1)

If the file specified in <file No.> was opened in the R mode,
the record No. of the record used in the last GET or PUT
statement is returned. If the file was opened in the I mode,
the number of logical sectors (128-byte units) read so far is
returned. If the file was opened in the O mode, the number
of sectors written so far is returned.

(See OPEN.)

Returns the largest record No. in the file.

LOF « f ile N o .»

IF R>LOF (1) THEN 100
LOF returns the largest record No. written into the specified
file.

MKI$, MKS$, MKD$
Function
Form at

Example

Remarks

To convert numeric data to string type.

MKI$ (cinteger expression>)
MKS$ (<single precision expression>)
MKD$ (<double precision expression>)

A$=MKI$ (A%)
B$=MKS$ (B!)
C$=MKD$ (C#)

All data stored in the random file buffer must be string type.
Therefore, to store numeric data in the random file buffer,
this data must first be converted to stripg type.
MKI$ converts an integer into a 2-byte string, MKS$ converts
a single precision number into a 4-byte string and MKD$
converts a double precision number into an 8-byte string.
These functions convert numeric data directly into character
codes. For example, execution of

10 A*=33
20 X=UARPTR iA’:>
30 A$=CHR$< PEEK <X> > +CHRf <PEEK<X+1>

will yield the same result as
10 A?i=33
20 A$=MKI$<A5i>

These functions can be used independent of file operations.

(See CVI, CVS, CVD.)

To protect your important programs and files against loss due to
misoperation or accident, it is always a good idea to make backup copies of
such disks. This is a utility program, supplied on the system disk, which
allows you to copy files, either by copying the entire disk or by copying only
a specific file.

Functions of the COPY utility

• To copy the entire disk
To copy the entire contents of the disk set in drive A to that set in drive B
(or from drive C to drive D).
• To copy files
To copy a single file from the disk selected by the user to specified drive.

Using the utility

(a) Loading and selection
© Load the utility using one of the following:

LOAD"COPV. UTL"
RIJN

or,
RUN "COPY. UTL"

@ The following will be displayed on the screen. Select whether you wish
to copy a disk or a file.

Copy utility U-l. @
Copyright 1982

By EPSON
volume copy — 1
File copy — 2
_ End — -"'C
Se 1 ect (1 .••'¿'•••"''C) ?

Screen 1

To copy a disk, input 1, to copy a file, input 2,
execution of the utility, input w ia s + Q

and to terminate the

(b) Copying disks
(?) Select "1" from the screen displayed in Screen 1 above.
(2) The following will be displayed asking you to make your selection of

disk drives.

Uolurne copy
From A: To Bs — 1
From C: To Ds — 2

Se I ect <1 ••''2.C) ?

Screen 2

©

To copy from drive A to drive B, input 1, from C to D, input 2. If
w l ; i l + H is input, the program will return to the screen displayed in
Screen 1 and you will again be asked to select between copying a disk
and copying a file.
If you input either 1 or 2, the following will be displayed. Check the
drive, insert the disk and press the ■nani;Ji?l key. Copying will now
begin.

Uolurne copy
From A: To Bs

Change the diskette!
Press RETURN or X -

Screen 3

©

At
CTRL

this point, if you wish to cancel the copy processing, press
+ Q and the program will return to the display shown in Screen

1 .

When copying has finished, the following message will be displayed
and control will return to the state shown in Screen 1.

Finished!
Screen 4

(c) Copying files
© Select file copy from the screen display described in Screen 1.
© The following will be displayed asking you to input the file descriptor of

the source file and the file descriptor of the destination file.

File copy__ _
From! flî SRCE. TST
To: B!PEST. TST

Screen 5
(The underlined portions are to be supplied by the user.)

The format of the file descriptor is the same as in ROM BASIC. If the
device name is omitted, drive A will be assumed. Copying can be
performed from any disk drive to any disk drive the user chooses. If
only the drive name is specified after "To:", the source file will be
copied in the new disk with the same filename. If a filename is
specified, the source file will be copied to the disk with the specified
name.
If you press only the laa iiiau» key in place of the file descriptor, the
program will return to the display shown in Screen 5.

(D When you have finished inputting the filename, the computer will ask
for confirmation. At this point, if you wish to execute the copying
operation, press the key. If you wish to cancel, press

+ Q to return to Screen 5 and input the correct filename.CTRL

If you press the laamsuB key, file copying will begin.
® When copying is finished, the following message will be displayed and

the program will return to Screen 5.

Finished!

Screen 6

(1) Error during OPEN
Remove the cause of the error and then execute another OPEN
statement.

(2) Error during output
If an error such as DU, "Disk write protected", "Disk read" or "Disk
w rite" occurs when using a PUT or PRINT# statement, close all open
files immediately. If you continue to output, the contents of the files
are not protected against possible loss.

(3) Error during input
If an error such as DU or "Disk read" occurs when executing a GET or
INPUT# statement, close all open files immediately. Again, the
contents of the files cannot be guaranteed if'you continue to input.

(4) "Disk write protected"
The only processing for this error is to execute a RESET command.
However, a RESET command will destroy all of the contents of any file
so unfortunate as to be open at the time of execution. Therefore,
before executing a RESET command, continue to execute parameter­
less CLOSE statements (i.e., CLOSE statements that do not specify a
particular file but close all the files on the disk) until the error message
is no longer displayed.

(5) DU
This error occurs when an attempt is made to access a drive which
does not contain a disk. The TF-20 containing that drive will continue to
output this error until a disk is inserted in the drive.

NOTE:
There may be instances when a READ error occurs during execution of
a PUT statement. This is because the previous GET statement has not
been correctly executed. Similarly, a WRITE error may occur during
execution o f a GET statement because o f incorrect execution of the
previous PUT statement.

5. HARDWARE

The TF-20 is an intelligent flexible disk unit incorporating a CPU, a 64K-byte
memory and I/O's. Therefore, it lightens the workload for file management
of the CPU in the host computer and reduces the amount of memory
space in the host computer to be occupied by the operating system (OS).
The TF-20 features the following:

(1) Incorporates a high-speed serial interface for connection with the
HX-20.

(2) Performs all file management by transferring necessary information to
and from the FIX-20.

5.1 Hardware Configuration

Fig. 5.1 Block Diagram

5.2 Interface Signals

(1) Interface connector to the HX-20

Interfacing with the HX-20 is carried out by daisy chaining using cable set
#707.

Connector name: DIN 6 Pin (female)

Pin No. Signal
name

Direction (as
viewed from

Flexible Disk Unit)
Description

1 RXS OUTPUT Output signal from the TF-
20. This signal is con­
nected to other terminals
or the serial input of the
HX-20.

2 PINS OUTPUT OR signal between the
PINC terminal and the
DTRA terminal of internal
serial controller /U.PD7201.
Usually, this signal is not
used.

3 TXS INPUT Serial input signal from the
HX-20 to the TF-20.

4 POUTS INPUT Input signal. This signal is
connected to the CTSA ter­
minal of internal serial con­
troller |uPD7201 through
the line receiver. "HIGH"
level of this signal enables
serial output.

5 GNDS - Ground

(2) Interface Connector to Other Terminals

Connector name: DIN 5 Pin (female)

Pin No. Signal
name

Direction (as
viewed from

Flexible Disk Unit)
Description

1 GNDC — Ground
2 TXC OUTPUT Serial signal output from

the TF-20.
3 RXC INPUT Input terminal.

When the level of this sig­
nal is "LOW", signals from
the TF-20 will be output
from RXS.

4 POUTC OUTPUT The same as POUTS sig­
nal. (Not used.)

5 PINC INPUT OR signal between this sig­
nal and the DTRA of serial
controller pPD7201 is out­
put to PINS. (Not used.)

2

5.3 Interface Level

RS-232C serial interface: Logic 1 (-3 to -27V)
Logic 0 (+3 to +27V)

NOTE:
The interface on the rear panel o f the TF-20 is not used.

APPENDIX A ERROR CODES

For Disk BASIC, the following error codes have been added.

Error code Error message
64 Directory full

The disk is full and new files cannot be created.
Each file uses a directory for every 32K bytes so this error can
also result from file expansion.

65 Too many open files
More disk files than were specified as the number of FCBs in
the FILNUM statement are being opened.

66 Disk full
The user is attempting to expand the files even though all the
disk space is being used.

67 File already exists
The filename specified as a new file in the NAME command
already exists on the disk.

68 Field overflow
The user has attempted to assign variable lengths which total to
more than the 128-byte maximum permitted in the FIELD
statement.

69 Bad record number
0 has been used as a record No. in a GET or PUT statement.

70 Disk write protected
The user has attempted to write on a disk with a write protect
label.
The user has attempted to write on a disk that has been
replaced without first executing a RESET command.

71 READ
May occur during execution of PUT. Refer to Error Processing.

72 WRITE
May occur during exection of GET. Refer to Error Processing.

A-1

APPENDIX B DISK DRIVE
ENVIRONMENTAL
CONDITIONS

Temperature
Operating state
Non-operating state

: 5 to 28°C
: —30 to 65°C

Humidity
Operating state
Non-operating state

: 20 to 80% (non-condensing)
: 5 to 85% (non-condensing)

B-1

APPENDIX C POWER REQUIREMENTS
AND OUTLINE DIMENSIONS

Power Requirements
Power Frequency : 49.5 to 60.5 Hz
Power Consumption : 40W

Outline Dimensions and Weight
Outline Dimensions : 120(W) mm x 350(D) mm x 165(H) mm
Weight : 6kg

C-1

APPENDIX D DISK SPECIFICATIONS AND
ENVIRONMENTAL
CONDITIONS

Format
No. of tracks
Track density
No. of sectors

Double-sided, double density
80 tracks (40 tracks x 2)
48TPI
16sectors/track

Temperature
Operation
Storage
Transport

10 to 50°C
4 to 53°C
—50 to 53°C

Humidity
Operation

Storage
Transport

20 to 80% RH (Max. w et bulb temperature:
29°C)
8 to 80% RH
8 to 90% RH

D-1

EPSON AMERICA, INC.
3415 Kashiwa Street
Torrance, CA 90505 U.S.A.
Phone: (213)539-9140
Telex: 182412

EPSON UK LTD
Dorland House
388 High Road,
Wembley, Middlesex. HA9 6UH, U.K.
Phone: (01)900-0466/7/8/9
Telex: 8814169

EPSON DEUTSCHLAND GmbH
Am Seestern 24
4000 Düsseldorf 11
F.R. Germany
Phone: (0211)596-1001
Telex: 8584786

EPSON ELECTRONICS
(SINGAPORE) PTE. LTD.
#09-13/#09-14, World T rade Centre,
No. 1 Maritime Square, Singapore 0409
Phone: 2786071/2

EPSON ELECTRONICS
TRADING LTD.
Room 411, Tsimshatsui Centre,
East Wing 6, Ching Yee Road
Tsimshatsui Kowloon, Hong Kong
Phone: 3-694343/4

3-7213427
3-7214331/3

Telex: 64714

EPSON ELECTRONICS TRADING LTD.
TAIWAN BRANCH
1,81F K.Y. Wealthy Bldg. 206, Nanking
E. Road, Sec, 2, Taipei, Taiwan, R.O.C.
Phone: 536-4339

536-3567

NOTICE:
* All rights reserved. Reproduction of any part of this manual in any form

whatsoever without EPSON'S express written permission is forbidden.
* The contents of this manual are subject to change without notice.
* All efforts have been made to ensure the accuracy of the contents of this manual.

However, should any errors be detected, EPSON would greatly appreciate being
informed of them.

* The above notwithstanding, EPSON can assume no responsibility for any errors
in this manual or their consequences.

* Microsoft BASIC is a trademark of Microsoft.

© Copyright 1983 by EPSON CORPORATION
Nagano, Japan

