Build This Economy
Floppy Disk Interface

The floppy disk drive offers the advanced
computer hobbyist tremendous potential fora
high performance computer system. With
one or more floppy disk drives, an interface,
and the proper operating sofiware, the
hobbyist can store hundreds of different
programs on a single disk. Each of the
programs can be given a name such as
STARTREK, BASIC or EDIT, and a pro-
gram can be run simply by typing its name,
for instance “RUN EDIT"”. With this inter-
face, the program can be brought into the
computer at speeds of up to 31,250 bytes
per second (for programs less than 5000
bytes long in the proper format). Each disk
will store over 300,000 bytes of programs,
computer music, Dazzler graphics, ASCII
text, synthesized speech thesaurus or data of
any form, and any data on the disk can be
accessed in at most one second, typically in
less than one quarter second. ln fact, the
draft of this article was written and edited

Dr Kenneth B Walles
General Electric, Nola Park
2623 Fenwick Rd

University Heights OH 44118

using mass storage on a disk drive in my
personal home computer system. The entire
article takes up less than seven percent of
one floppy disk, and the time saved in the
retyping of successive revisions of the article
was tremendous, {Groan! Do [wish | had a
floppy disk, CRT display, HYPERTEXT
software and input scanners in my office . ..
CH]

Floppy disks also allow the quick assem-
bly of large programs, without having to
start, stop and rewind cassette players.
Proper software allows a single floppy disk
drive to merge several data files into onc
ardered file {for the updating of mailing lists
or financial records), an operation which
would take several cassette recorders on a
cassette based operating system.

All of the features mentioned are the
potentials of a floppy disk computer system.
Far a personal computing user to realize
these potentials, he or she needs bolh

Fhoto 1: The author’s disk
drive and interface board
shown removed from the
system, The fnnovex drive
is at left, with a diskeite
S\ poartially inserted in the
:‘ front door and the elec-
tronics board for the drive
shown in an “open’’ posi-
tion. The interface board
is at the end of @ multicon-
ductor twisted pair cable,
and a separate cable Is
used for drive power.

About the Author ' R

Dr Welles is an enthusiastic personal computing user, with a faﬁ?y welf
developed system. Al the time he wrote the current article, his_system
included. an Altair processor, 14 K programmabie memafy! 5 Kol 2908
ROM, and 2 Innovex floppy drives interfaced £6 the system. Mis i‘z’qneous,
peripherals include homebrew versions of a paper tape reader, television
display, ;. modified office Selectric - tvpewriter output,. vector graphics,
television- camera input, and TV dazzler outputs amongmthers:-‘ rain
interests .are image processing, pattern recogriition, comipiiter graphiics-and’
robotics. The entire text of his draft was typed and edited on his systém, with
hard copy output printed on the Selectric as the draft text submiﬂed]

"BYTE. [At some yet to be determmed future date, we’ll e}unmate paper
dchine

step and have authors such as Dr Welles simply send an approprlate '
readable representation of their articles . . , CH] :

hardware and software. This article covers a
hardware interface for floppy disk drive
units.

Until recently, only the well financed
hobbyist could afford a floppy disk drive for
a personal system. In addition to the $650
to $1000 cost of the drive unit, one was also
forced to spend from $300 to $1500C for a
floppy disk drive controller. The high price
of the controller buys a very intelligent
electronic device, however. A single com-
mand from the computer causes the con-
troller to seek a particular track on one of
up to four disk drive units, load the head,
find the desired sector, format and read or
write the data, calculate the CRC {Cyclic
Redundancy Check), determine if the trans-
fer had been successful, and retry the trans-
fer in the event of a read or write error. The
design of such an intelligent controller is
based on the old school, 1BM/360 approach
that processor time is too valuable to waste
doing the housekeeping for a peripheral
device. A perscnal computing user, on the
other hand, has lots of processor time,
limited funds, and consequently a different
philosophy. One of the original reasons for
the development of microprocessors was to
perform in software all of those functions
that would normally (and expensively} have
to be designed in hardware. In this vein, in
collaboration with W R Hemsath of
Cornell University, | have designed and built
a floppy disk drive interface which incor-
porates minimal hardware, and yet does not
sacrifice the flexibility needed to read and
write various data fermats. This interface
consists of only 17 integrated circuits, only
one of which is a special purpose chip. The
total cost of the chips is less than $25. The
design shown here will interface up to eight
floppy disk drives to an 8080 processor. In

order to properly describe the design and
function of the interface, let us first review
briefly what steps are required to transfer
data to or from a floppy disk.

Disk Drive Operation

In operation, a disk is inserted into the
drive and the access door is closed. The act
of closing the door engages the disk onto the
spindle, and the disk is then rotated at 360
RPM. A stepper motor drives the magnetic
data transfer head radially in and out to 77
discrete positions, the outermost called track
0 and the one nearest the center of the disk
called track 76. Normally, the head does not
touch the spinning disk, but is positioned a
small distance away from it. When data is to
be read or written, a maodified relay is
energized allowing a spring loaded pressure
pad 1o press the flexible disk into contact
with the head. Timing holes punched in the
floppy disk pass by a photo detector and
generate a series of pulses. These “‘sector
pulses’ are used to determine which one of
32 segments or sectors of the disk is cur-
rently passing the head. Use of such holes to
define sectors is called “‘hard sectoring” in
disk drive jargon. The pulses are used to
signal the approximate starting point of each
sector. Data is read from and written to the
disk in a manner quite similar to the reading
and writing of data on magnetic cassettes. In
normal operation, each of these 32 sectors
will stare slightly over 1024 data bits, or 128
bytes. To write data onto a particular track
and sector of the disk, the following opera-
tions must take place:

1. The head is moved in or out to the
desired track.

2. The pressure pad is [oaded, pressing
the disk against the head.

35

USER'S SYSTEM INNOVEX
SERIES 200
. DIHSKE'IS'TE
=5 o DRIV
STEP s
RE
DIRECTION Us
RI5 - PO2
FILE UNSAFE Lo
— e RS
FILE UNSAFE RESET La
—————— R4
—— .
DEVICE SELECT L3
L - RI3
INDE X Ls
__ RS
! TRACK ZERO _ L2
‘ _ RI2
WRITE CURRENT SELECT La)
R21
AEAD LOAD LI
— Ri8
WRITE GATE 7
— R7
READY LB
——— R8
SEPARATED DATA L7
I — RI7 (READ DATA)
~ SEPARATED CLOCK LG
. RI9
WRITE DATA LID
. RIO
WRITE PROTECT L
— RIG
I ZECTOR (MODEL 220) Lia
+24VDC R4
R2,L2
¢ :i::‘;c RET RE,L3
T R20,L 20
RIL LY
+ LOGIC GND RI,LI,R22,L22.1
J; 3,6 ~———
= POG IS A USER 5
ENOSF;I'?!LLED OIF;TION 4_ POS
FOR RADIAL POWER —_—
DISTRIBUTION o OPTIONAL |
,J; AC INPUT '3
FR R
AME_GROUND 2 AC POWER
AC INPUT , CONNECTOR PO4
DENOTES DENOTES DENOTES
FRAME SHIELDED t TWISTED
GROUND CABLE PAIR

Figure 1. This diagram,
redrawn from the Innovex
Series 200-M Maintenance
Manual, shows all of the
TTL level signal lines that
must be passed between
the disk drive and the con-
trofling interface,

The signals sent to the drive from the interface
are;

. Device Select: When this line is high, all
commands from the interface are ignored by the
drive, and all signais from this drive unit are put
into & high impedance state. If several drives are
used, all of the input and output signals may be
tied together an a common bus with the exception
of the device select lines. By pulling only one of
the sevaral device sslect lines low, the interface
selects that particular disk drive to send commands
to and receive data from.

Step: A low going pulse on this line causes the
head positioning motor to move the data transfer
head in or out one track.’

Direction: During 2 step pulss, if this line is
high then the head moves out one track (towards

36

track 0). If this line is low, then the head will move
in one track.
Head L.oad: When this line is low, the pressure

.pad brings the spinning disk in contact with the

data transfer head.
Write Current Select: Because the surface veloc-
ity of the disk relative to the head varies from the

. outermost to the innermost track, the density of

the data on the disk will elso vary. To compensate
for this variation, the write current select line
varies the amount of current used to write dataas a
function of the track being written. This line must
bie low when writing data onto tracks 0 to 43, and
high for tracks 44 to 76.

Write Gate: Pulling this line low enables the
data on the write data line to ba sent to the head
and recorded onto the disk.

Write Data: Data 1o be written on the disk must
be serialized and sent cut on the write data tine as
a series of low going clock pulses {one pulse every
4 us} separating the presence {a 1 data bit] or
absence (a 0 data bit) of a low pgoing data pulse.
Figure 2 shows the write data signal used to send
the data bit string 10100 .

File Unsafe Rsset: This line is pulsed low just
before a write operation is to take place. The pulse
resets the file unsafe status to a safe (write
enabled) conditian, thereby aliowing the write
operation to be performed,

The signals sent to the interface by the disk
drive are:

File Unsafe: A low signal on this line indicates
that an error condition existed when a write
operation was attempted, When file unsafe goes
low, na writing can be dons on the disk, preventing
the lass of previously written data due to some
errar condition.

Track Zero: When the data transfer head is
positioned at track 0, this line goes low, enabling
the computer to calibrate the head position. When
the head is at tracks 1 1o 76, this line is high.

Index: A 500 us low going pulse appears on this

line to signify that the index hole has just come

into position under the photodetector. This pulse
is used by the computer to determine which sector

- is sactor Q,

Sector: A 500 us low going pulse appears on
this line each time a sector hole [not an index hole)
passes under the photodetector. 32 pulses occur
every revolution, and these - puises are used to
determine the approximate starting positions of
the various data sectors.

Ready: When AC and logic power are present at
the disk drive and a disk is loaded, the ready line
goes low.

Separated Clock: When previously written data
is being read from the disk, the clock is recovered
from the data stream, and is presented on this line
as a series of 200 ns low going pulses. The
recovered clock pulses come approximately every
4 us with variations due to the changes in drive
motor speed.

Separated Data: The serial data coming from
the disk during a read is indicated by the presence
{(a 1 data bit) or absence {a O data bit) of a 200 ns
low going pulse on the separated data line, betwean
adjacent separated clock pulses.

Write Protect is an aptional. signal that is not
used in this interface. On a disk drive with this
option added, the user can write protect the data
on a disk by punching out or uncovering a write
protect hole in the disk jacket. A write protected
disk cannot be written onto.

3. Sufficient settling time is allowed for
the head movement and pressure pad
loading to fully stabilize.

4, Delay until the start of the sector
pulse which corresponds to the desired
sector.

5, Turn on the WRITE GATE of the disk

drive to allow data to be written,

. Write 64 0 bits (16 bytes of 0).

. Write a single synchronizing byte (sync

byte).

. Write the desired data bytes.

. Write 64 O bits.

. Turn off the WRITE GATE to prevent

any more data from being written,

11. Unload the pressure pad.

~ o

oW po

Because the disk drive records data seri-
ally, steps 7 and 8 require that each byte
being written must be sent out as a series of
8 bits, with one bit being sent out every
4 us, and with no skipped bits between bytes,

Reading data from the disk requires a
similar series of operations:

1. The head is moved to the desired
track.

2. The pressure pad is loaded.

3. Settling time is allowed for movement
and loading.

4. Wait for the start of the sector pulse
corresponding to the desired sector,

5. Search for the first occurrence of the
sync byte,

6. Read in the desired data.

7. Unload the pressure pad.

Searching for the sync byte entails shift-
ing the incoming serial data into a 8 bit byte
and comparing the result of each shift with
what the sync byte should be, every time
that a new bit is read (every 4 us). When a
match is found, then the data bit stream that
follows is broken into bytes on every eighth
bit, using the sync byie boundary to define
the data byte boundaries that come after the
sync byte,

From the proceeding lists of read and
write procedures, two things become appar-
ent; First, the speed required for shifting
data in and out (1 bit every 4 us} is too fast
for most microprocessors to handle under
software control {and searching for the sync
byte is more time consuming still!), Second,
all of the other operations (stepping the
head from track to track, loading the head,
searching for the proper sector pulse and
turning the write gate on and off) are easily
within the capabilities of microprocessor
software control. Therefore a minimum
hardware interface should control all of the
functions which are not time-critical,
through software and a simple input and

CLOCK

L)73 p—
DATA ‘ DATA

b [+]

CLOCK

2ps l._

DATA DATA DATA

g

CLOCK CLOCK

Figure 2: The timing of data cells on the disk. Each bit cell is framed by a
clock pulse on either side. If the data is 1, a pulse appears in the middle of the
4 us cell width; if the data is 0, no pufse appears in the middfe of the cell. The
waveform in this example hus 5 cells with the pattern of data needed for the

string 107100.

latched output port. The remaining func-
tions then determine the major portion of
the design.

The disk drive we used for this interface
is an Innovex 220 hard sectored flexible disk
drive, and the signal lines required to operate
the drive are typical of most floppy disk
drives. There are 15 standard TTL level
signals required to operate the model 220
drive, 8 from the interface to the drive, and
7 from the drive to the interface. The signal
names and functions for the interface are
summarized in figure 1.

Figures 3 and 4 show the circuitry of the
floppy disk interface. The circuit has 6
major sections: processor 10 instruction
decode, instruction latch to disk drive, status
load from disk drive, head load-unload,
USRT transmit, and USRT receive.

Table 1: Semontics of the OUT 243 instruction. This table lists each
accumulator bit, along with its meaning when used to transfer data to the
disk interface in the OUT 243 instruction of an 8080. (In a different wiring
of the |0 instruction decoder, or in a different computer, the same format
could be used for the actual data transfer.)

Bit

MbBhWK-=0

OUT 243 INSTRUCTION

Signal Name

Write Current Select
File Unsafe Reset
Direction

Write Gate

Step Track

Drive Select

Polarity in Accumuiator

1 for tracks 0 to 43, O for track 44 10 76
0 to 1 to O transition causes reset

1 for step in, O for step out

1 enables the drive to write

0 to 1 to O transition steps one track
000 selects drive 0, 111 for drive 7

Table 2: Semantics of the IN 241 instruction. This fable lists the status bits
read by the IN 241 instruction of an 8080 using this interface.

Bit

~NFRWNaD

IN 241 INSTRUCTION

Signal Name

Track Zero
File Unsafe
Ready
Sector Hole
Index Hole
Head Loaded
Unused

37

Polarity in Accumulator

D means the head is at track O

0 means file unsafe condition exists

0 means disk drive is ready

1 to O transition marks start of each sector
0 means that the next sector is sector O

1 means that the head is still loaded
Always 1

and 1C4 form the input command decoder, IC10 sets up the data from the disk into a format acceptable to the USRT. ICIT and
IC12 put the data from the USRT into the proper format for the disk drive. A list of all integrated circuits with power

Figure 3: This diagram shows the major portion of the disk drive interface. ICI and 1C2 form the output command decoder. 1C3
connections is found in table 3.

rObL i
_ %2079
1 M il 1 M ENIA' VI gny wivd oot <(6¥] %3012
" ! : G3NIBWOD = y1¥d 311dM I
' X m Nploah! :aL 06] 200
_ I ' 1 LNId'21D 22
_ I _ _ viv0 H = saLf=3 ov] 900
| 1 !
e _ E 8¢] 500
AXIAR AONId L1231 vivd oSl = 13534 +AaL = 8¢l voa
edL g 8] coaq
zNid‘2io 2303 z2ai b— B8] 20a
I8GN S E] —<5g] 100
9NId ‘1 20 o 0aL o} 9¢] 004
_{za0 rOIbL “
1wal)
. 6 G
ZNIdIEDl 8D 304 |
_
€ NId 1121 vo 8dN !
I “
rOIbL
UL UL UUUIUU UL ©HE @08 80 | e L’ gl o
sng 00IS " A <1l HMd
srig—al e 37 >«m+ _ < b : 28
WVHOVIG ONIWIL O] N 2 Gb] 1N0S
AS +
_ 0sl =1 3 |
i (.1, Sl viva OSL 9 9 a | 15]
| VAVA 3X2071D _ ? S A v |
| v 53n19) e] T £ _
LANY, 00b2 9¢ NG £l (1x31
_ Su_lnx\ v oud ol (@ye < 33¢%) |
| i 55y 2 a I 4001 !
| s K4 dntE SaL =< 21 bt 1HOHS |
_ = NOILY3S oy L 1o vh— SMOTTY |
| v LIWSNYHL 2==lec _ Gl HWIlE1
o) 50 avolble¢ 020 b——m—————————] 4 2L} 3ni7 |
I g 9 5 NOIL33S vay Wv 2ol Aav3y |
_ Z <] 3AI323d Zl 6 8 |
1 o] [+ %2070 3wWvna € Sl ey B s £ BEbL
_ - oTes NMT | pOIPL Vs - 0l n rt- !
i as |~ M T Al &l ¢ z|8 © .E A0¥d
(32072 IWvad z €1 = 8 —— 5
_ 5 HLIM 1V ZovL $61bL AG+ _
i SINIBWOD) 21921 Nl AS+ $| 9€ID) ez1pe _
| .80, 00%ZL 1M i
| P4 I 124 pF— AG+
_ o L —<3%] dNIs
_ sgps |°F! 8 w_ €8] cuav
t H0H e w.
Wya g € ¢ 3dd 5 A ¢ IS <2§] suav
HOI 8 ®
EFAEL S t mm._u . AG+ v L <&3] suav
I 2 oIy I 3 s P oerL €
| AG+ c
=49
%2010 L 3| oM — 23 FO FT _
Q3ivivads Um_ M 5 b
_ 500! v__n_ Gl g¥ = =1€ ! 18} cuav
IMS Z b 9
| 4dosb 0S$2S =22 b vu_u_@ IS] <{08] 1Mav
| AG+ LAY oL 2 V
| oS 304 or _ 0 v i L 2 6] OHdY
“ 5au |55 {£€> 910
“ . E_u_ saufgs 28> s1a
_ o8 £2ibL bl {i&> v1a
| cas [&> s10
AG+ >
vivda __,_ 4 “o_uo_ . <04d e i£> e
Q3ivuvads & &]" S ave <2 L5 o —{¥e> 110
i Vool 9) 003 == —{s&> olIa
“ A 440/t “
AG+
s3aia | 3ov4nHaLNI 2ovan3uN | yoss3
Msia | Msia R Hee #s1d | -204d

38

P/ I‘ ,\ .,

o \Q

——

Photo 2: The author'’s system. The processor Is an Altair, and other peripherals include a homebrew Selectric typewriter
interface

Processor 10 Instruction Decode

1C1 and IC2 decode output instructions
to the interface. Executing the 8080 instruc-
tions OUT 240, OUT 241, ... OUT 247
(240 to 247 decimal) cause 500 ns low
pulses on the output lines 0 to 7 of 1C2,
These pulses can be used to latch data from
the output data bus lines DOQ to DO7 into

Table 3: Integrated circuit power wiring list.
This table lists each integrated circuit in the
floppy disk interface, afong with its power
wiring pins.

Number Type +8 Vv GND
161 74130 14 7
102 74142 16 8
1C3 74130 14 7
14 74L42 14 7
iC5 74L5175 16 B
1C& 74L5175 16 8
IC7 7442 16 8
1C8 8097 16 8
ICO 74123 16 8
1IC10 74123 16 8
1C11 74183 16 8
1C12 7442 16 8
1C13 74123 16 8
ic14 7438 14 7
IC15 7400 14 7
1C16 74L04 14 7
1C17 52350 2 1

Mota: T4LX X and 74LSX X types may be replaced
by F4¥ X; 8097 may be replaced by 3T97,

various registers, or to trigger specific func-
tions {as will be shown later).

IC3 and IC4 form the input instruction
decoder for the instructions IN 240 to IN
247 in a similar manner to the output
decoder, The pulses on the output lines of
IC4 are used to gate data onto the input data
bus lines DI0 to DI7 and into the accumula-
tor. Again, the pulses may be used to trigger
specific functions that are not data input
operations, [In adapting this design to a non
8080 based computer, this decoding logic
would have to be modified CH]

Instruction Latch to Disk Drive

Execution of an OUT 243 causes the
contents of the B0B0’s accumulator to be
loaded into IC5 and 1C6. The 5 least
significant bits are used to send the low
speed control signals to the disk drive. Table
1 shows the allocation and the polarity of
these bits as they appear in the accumulator.
The three most significant bits are used by
IC7 to select one of up to eight different
drives which may be attached to each
interface.

Status Load from Disk Drive

Execution of an IN 241 instruction en-
ables 1C8 to load the current status of the
selected disk drive onto processor input data

39

lines DIO to D15. Table 2 shows the alloca-
tion and polarity of these bits as they are
loaded in the accumulator. The two most
significant bits are unused, and will always
show Ts.

second pulse width. Executing an OUT 245
instruction initiates this pulse and loads the
disk drive head, regardless of the contents of
the accumulator. If another OUT 245 in-
struction is executed within 2 seconds of the

first OUT 245, then the head will remain
loaded for a further 2 seconds. The head will
unload 2 seconds after the last OUT 245

Head Load-Unload

{C9 is a retriggerable one shot with a 2

Figure 4: This diagram shows the circuitry used to perform all of the low speed functions of the disk drive. IC8 is a 6 bit input
port, and IC5 and 1C6 are an 8 bit latched output port. 1C7 selects one of up to 8 disk drives on the system, and 1C9 controls the
loading of the disk’s data transfer head for a read or write operation.

I DISK DISK | DISK
: INTERFACE INTERFACE :DRWE
I +5V I
! Ic8 l
| 8097 |
: ——— 180 i
| ~
DIO <g5}— 3| <1 :2 <(17) TRACK O
1
| | | 180 {
l 51 |4 I —
DIl <g4 I I <9] FILE UNSAFE
]
\ | I 180 :
l d ls [I
oIz <ai | I —<18] READY
[| | 180 =
' 9 | [1o
D13 <&z} : l <{14] SECTOR HOLE
i 180 !
I | | I
! il j12 L
DI4 < | I <5] INDEX HOLE
|
|
: I I I
13| |14 |
DI5 I
| ol |
1 FIG3 T I
I A DRIVE STATUS ENABLE s |
| +5vV :
| 220uF @ ——————— —
| 33K ¥ Tueap Loap ONESHOT_} : FOR MULTIPLE DRIVES
1 | APPROX 2 SECONDS, l Y WIRE TO CORRESPONDING PIN
| 15)4 | RETRIGGERABLE _: I OF £4CH DRIVE
FIGS . T T T T T
' HEAD LOAD CUE | I3__1_HEAD LOAD STATUS |
I (¢ A Q I
I t]ice |
| +5V 74123 |
| [—
2 =|4 r READ LOAD |
: ¢—+ ® LR {Lie> HEAD LOAD
FIG3
| (3)-HEADLOADCLEAR |3 {
} [
I
4 =13
DOO (36> WRITE CURRENT
3¢ o 9 —2D> ceecr
! 5 _is 1 —_—
! 74175 ! RESET
| ~|n
Do2 (88 21o a | —{L15> DIRECTION
] 1
L 13 =|1a L
Do3 [83 D Q —{(7> WRITE GATE
1 FIG3 y LoLX CLR :
I (8)— 9 |
' |
R DISK | DIsK
poc (65 INTERFACE | DRIVES
] _ﬁ_j_'. |
i o [CLK CLR] 5 I
po4 [38> D a = {Le> STEP TRACK)
[}
5 7 E) 7442 ! \
DOS5 39 Dyce @ A O —{Li3> DRIVE O SELECT
i 74175 e {(i3> DRIVE | SELECT
DO [40 2lp o L2 R L3> DRIVE 2 SELECT
' 3 5 3 L3> DRIVE 3 SELECT | ONE SECECT 1O PIN LI3
po7 (30 p__Q E PR £ (L3> BRIVE 4 SeLect (OF BEACH DRIVE USED
i 5|8 {03> DRIVE 5 SELECT
7
PROCESSOR I DISK 2o 65 L3> DRIVE 6 SELECT
(S100 BUS) | INTERFACE /7‘; 7 LI3> DRIVE 7 SELECT

[i
1 DRIVE SELECT |
|

40

(load head) instruction. This 2 second
pause allows the head to stay loaded during
successive reads and writes to the disk, but
will automatically unload the head after 2
seconds without any disk activity. Alter-
natively, an OUT 246 instruction will cause
the head to be unloaded immediately if and
when that is desired. This automatic head
unload feature minimizes wear on the floppy
disk. If it were not present in some hardware
or software form, the head would be con-
tinuously in contact, wearing out disks quite
quickly if your machine ran 24 hours a day.

TDS Transmit Data Strobe

An OUT 240 instruction of this interface puts a
pulee on the TDS ling which lbads the atoumulator
into the USAT transmitter buffer through proc-
essor date output lines TDO to TD7. The USRT
then shifts this deta byte out gnto TSO {Transmit
Sarial Out). One bit’is shifted onto Y50 for sach
puise on TCP {Transmit Clock Pulse}.

TBMT Transmit Buffer Empty

Whensver the tra'nsrnlttef' buffer is readv'to
receive another byte {from an OUT 240 instruc-
tion), the TBMT line goes- high. CE

TFS Transmit Fill Strobe

An OQUT 241 puts a pulse on the: TFS line
which loads the accumulator into the USRT fill
buffer. If new data is not sent to the transmit data
buffer by an OUT 240 soon after a TBMT signal,
then the USRT has no data to Sénd out 6n the TSO
ling. In this case, data from the transmit fill buffer
is sant out in piace of the mmlng data

RSS Receiver Sync Bytu Strobe

An OUT 242 pulses the RSS line which loads
the accumulator into the USAT sync Byte buffer,
for usa at the beginning of a data read operation.

AR Receiver Reset

An IN 243 causes the recaiver section of the
USRT to be reset into the '"Search for Sync Byte"
mode. The received serial data stream. enters on
RSI {Receive Serial Input), and is clocked into the
raceived data buffer by the RCP (Receive Clock
Pulse} line. When the data byte.in the received data
buffer matches the bivte in thé sync’ tha buffer,
the RDA (Recsived Data Availabie) line goes high.
After this happens, a new byte is put inta the
received data buffer after. ever_y gight’ clack pulses
on RCP,

RDE Received Data Enable - ‘

An IN 240 instruction pilses the' RDE line.
This puts the data in the USRT received data
buffer onto data lines RDO to RD7, and it is
loaded into the accumulator:: 3n this ‘manner, the
8080 brings in the data read from the disk.

SWE Status Word Enable

An IN 242 pulses the SWE Itne wh:ch loads the
USRT status word into the accumulator to ex-
amine for data ready, or to find possible errors, .

The USRT

The abbreviation USRT stands for Uni-
versal Synchronous Receiver Transmitter;
this chip really is quite universal. Although it
was originally developed for data trans-
mission over phone link, wire link, and some
types of tape drive, the 52350 USRT per-
forms all of the needed high speed data
transfers to and from the disk with almost
no modification. Before discussing the
operation of the USRT transmit and receive
sections of the interface as a whole, take a
look at the functions of the USRT itself, as

Figure 5: This is a block diagram of the USRT integrated circuit, the AMI
§2350. The information here is redrawn from the original contained in AMI’s
data sheet on the device. The USRT integrated circuit is the heart of this
inexpensive floppy disk interface, performing dall of the high speed data
manipufations needed to read and write data from and to the disk drive. The
USRT was not intended to be used as a floppy disk interface when it was
originally designed. But as demonstrated by this article, a little ingenuity can
often come up with surprisingly versatile applications of standard integraied

circuits for use in high speed data communications.

GND VCC

D7 D6 D5 D4 D3 D2 Ot DO
]I Iz 22 |21 {20 N9 |18 |17 |6 _[IS
INPUT DATA BUS
—_38 —
TOS * L , 24 173
&z 2 TRANSMITTER | TRANSMITTER |
HOLDING. FILL
NDBI REGISTER REGISTER
40l |controL | s
NDBZ | REGISTER : U
POE
MULTIPLEXER
NPB : U
36 TRANSMITTER - &
TeR I SHIFT REGISTER - = T50
RR
RCP 1
TIMING - RECEIVER N\ :
g| | ano '—_‘l sYNE"w C'-
TBNT CONTROL - REGISTER | . . 23
COMPARATOR { - fe——— 23 7%
FCT __ — 7
RPE 0 it RECEIVER SHIFT REGISTER
11
RDA 12 ' -
3% swe
RECEIWER OUTPUT REGISTER
RESET-—4 L) L‘) - OUTRUT TRi-STATE DRIVERS 35 x5e
— : o
25 26 |27 28 |29 {30 |3i 32 (33

- RS1 . RD7 RD6 RDY R'.'|4 RD3 RD2 RN RDQ

TBMT FCTi

41

! ;“SCR RPE/RCR RDA- -

A printed circuit board is
available for the advanced
hobbyist to construct his or
her own interface, The printed
circuit board fits into a single
Altair {or generic equivalent)
slot, and supports the circuit
described in this article with
two additions:

1. Eight head load cir-
cuits allow multiple
drives to load heads
simultaneously.

2. Space is provided for
a 1702 type PROM,
to allow the user to
load the operating
system fram the disk
without toagling in
any data,

The printed circuit and
documentation only {no ICs
or sockets) are available for
$35 from KB Welles, 2623
Fenwick Rd, University
Haights OH 44118,

denoted by the various signal lines. Figure 5
shows a block diagram of the 52330, along
with captions detailing these lines and their
relation to the interface as a whole.

USRT Transmit

After the disk drive head has been loaded
and the desired track and sector found, the
write gate is turped on and data from the
processor may be sent to the transmit
section of the USRT through an OQUT 240
instruction. 1C11 divides the Altair 2 MHz
clock by 8 to give the 250 kHz clock
required by the disk drive. This clock is fed
into TCP, and IC12 combines the data from
the transmitter serial output line and an-
other clock phase into the proper write data
format required by the disk drive as seen in
figure 2,

USRT Receive

IC10 is simply used as a pulse stretcher
for the separated data and separated clock
from the disk drive, The data pulse is
expanded to overlap the falling edge of the
clock pulse. This overlap allows the data to
be read properly by the USRT. When a byte
of data has been received {as denoted by the
receiver data available line), an IN 240 in-
struction will load the received data into the
accumulator,

Software Timing

The article to this point has shown how
data can be transferred between the proc-
essor and the disk drive in the correct
format, but nothing has been said about the
ability of the 8080 to send or receive data at
the proper rate. A 250 kHz bit rate is one
byte of data in or out every 32 us under
ideal conditions. If the drive motor speed
variations are taken into account, this figure
can be as low as 30 ps per byte on a read
operation, Since 8080 instructions take from
2 to 7us to execute (assuming a 2 MHz
clock and fast memory), this restricts the
read loop to very few instructions. I it is
desired to transfer more than 256 bytes in or
out at any one time, the read loop might
look like:

Symbolic Execution
Instruction Time
LOOPA: INSTATUS 5.0us
ANI DATAREADY 3.5 us
JZ LOOPA 5.0 us
IN DATA 5.0 us
MOV M,A 3.5 us
INX H 2.5us
DCX B 2.5 us

42

MOV A B 2.5 s

ORAC 2.0 us

JNZ LOOPA 5.0 us
36.5 us

In the above example the HL register is
used to point to the data buffer, and the BC
register is the number of bytes to be read.
The total time of the loop, 36.5 s, i5 6.5 (s
too long for the worst case data read.
Obviously this program will not read data in
properly.

By eliminating two lines of code the loop
is reduced to a total time of 28 us as shown
in the following example. This is quite ample
for the interface and allows additional lee-
way for the possibility of dynamic memory’s
introducing a wait state during the loop.

Symbolic Execution

Instruction Time
LOOPB: IN DATAWAIT
{IN 244) 5.0us
IN DATA

{IN 240} 5.0us
MOV M,A 3.5us
INX H 2.5us
DCX B 2.5us
MOV AB 2.5us
ORAC 20us
JNZ LOOPB 50us
28.0us

Obviously this version of the routine will
not work without some special “trick.” In
this case, the trick is that the first three lines
of LOOPA have been replaced with the first
line of LOOPB and some special hardware,
The first three lines of LOOPA prevented
the IN DATA statement from reading data
before data was available, In LOOPB, the IN
DATAWAIT is an [N 244 instruction. This
triggers 1C13b, a one shot, which puts the
8080 into a slow memory wait state by
pulling the Altair’s PRDY line low. When
data is ready for input, the RDA line of the
USRT resets IC13b and allows the LOOPRB
routine to continue. During normal execu-
tion of a read operation, the 8080 does a
4 1s wait between lines 1 and 2 of LOOPB.
This wait state serves to synchronize the
reading of the disk data with its availability.
Any amount of data from a partial segment
to an entire track may be input with this
routine.

If some hardware failure should occur,
and data stops coming into the USRT, then
RDA will never go high. If no data arrives
after 3 ms, then IC13b completes the one
shot cycle and releases the 8080 wait state.
This feature prevents a hardware failure in
the disk drive or interface from hanging the

processor up in an endless wait state,
Whether a read operation is successful or
not, the end of the [oop is reached when the
BC register pair's count is decremented to
zero and the JNZ condition no longer
pertains.

In order to write data, a sofiware output
leop similar to LOOPB is employed:

Symbolic Execution

Instruction Time
LOOPC: OUT DATAWAIT
{OUT 244) 5.0us
MOV A M 3.5us
OUT DATA

{OUT 240) 5.00us
INX H 2.5 us
DCX B 2.5us
MOV A,B 2.5us
ORAC 2.0us
JNZ LOOPC 5.0 us
28.0us

With this output loop, the 3080 can
maintain the data rate required to transmit
data to the disk properly. A similar hardware
synchronization trick is also used in this
case.

Final Hardware Notes

The circuit shown in figures 3 and 4 was
developed for use with an Innovex 220
drive. The 220 has multiple options which
can be selected by jumpers on the circuit
board. The options required for use with this
interface are:

1. Radial Interrupt Disabled (Link E

installed)

2. Radial Rotation Sensing Disabled

(Two Link Es installed)

3. Read Data Option Disabled {Link A

installed)

4, Write Protect Option Disabled {Link H

installed)

5. Stepper Power Option (Link E

installed)

6, Radial Head Load Disabled {Link E

installed)

The selected options allow multiple drives
to be used with the interface, While up to
eight disk drives can be connected in paraliel
(with the exception of the device select
lines), the shorting clip on the P07 line must
be removed from all but the last disk drive
on the bus (PO7 connects the bus termina-
tion resistors to +5 V). In addition, the user
must provide power supplies for the follow-
ing voltages and currents:

+5 V|, 800 mA for each drive

=5V, 75 mA for each drive

+24 V +/-2 V, 1.4 A for the first drive,

0.1 A moere for each additional drive

Conclusion

The small number of ICs in this circuit
{17) and their low cost and easy availability
puts the construction of this circuit within
the abilities of many intermediate and ad-
vanced computer hobbyists and experi-
menters. The addition of a disk drive to the
average home systemn will increase the overall
system usefulness many times. By reducing
the time required for software generation to
a fraction of that on a cassette or paper tape
system, software throughput and sophistica-
tion of the typical personal computing user
{and professional) will typically double or
triple.

| currently have two drives running on
an Altair system, and a complete disk
operating system existing in 2 K of PROM
that allows operating with up to 240
different named files on each disk. Loading
BASIC takes only 6 seconds, and loading
STARTREK using CLOAD takes only 3
more seconds, The disk drive and operating
systemn has increased software generation at
least fourfold, and made the system much
more enjoyable to use.m

ARE YOU BUYING A SYSTEM?

BEFORE YOU DO
SEND FOR OUR LITERATURE.
COMPARE OUR SPECIFICA-
TIONS WITH OUR COMPETI-
TORS® KITS AND ASSEMBLED
SYSTEMS!

YOU WILL SEE

THE BABY! 1 SYSTEM IS NOT A
BABY WHEN IT COMES TO
HARDWARE AND PERFOR-
MANCE

BUTIT IS WHEN IT COMES TO

PRICE!
COMPARE TODAY
THEN BUY A
BABY! I MICROCOMPUTER

STM SYSTEMS, INC.

P.O. BOX 248

MONT VERNON, N.H. 03057
K 603-673-2581

/BABY! | MICROCOMPUTER,

J

