
Platzhalter, damit als PDF das Dokument
in 2-Seiten Ansicht gelesen werden kann.

Original und zum Druck ab Seite 2.

fritz
Stempel
Platzhalter, damit als PDF das Dokument in 2-Seiten Ansicht gelesen werden kann.Original und zum Druck ab Seite 2. --This page added for reading the document on 2 pages.original and for printing from page 2

fritz
Stempel

Series 32000'

GNX — Version 4.0
C Optimizing Compiler

Reference Manual

Customer Order Number 424010516-004
May 1990

REVISION RECORD

VERSION

4.0

RELEASE DATE SUMMARY OF CHANGES

June 1990 First Release.

Support for the Application Specific Instruc
tion Set (ASIS). Function prototypes. Intro
duction of a source level profiler. Support for
the Series 32000IEP.

PREFACE

This is a reference manual for National Semiconductor Corporation’s GNX—Version 4
C optimizing compiler. The C optimizing compiler generates high-quality code for the
Series 32000® architecture, therefore improving the performance of the Series 32000
system.

The main difference between the C optimizing compiler and other compilers is the
advanced optimizing component of the compiler. The optimizer uses advanced optimi
zation techniques to improve speed or save space. This reference manual provides
guidelines for using the optimizer as well as a discussion of the compiler’s optimization
techniques. In addition, this reference manual provides information regarding the
compilation process, extensions to the C programming language, and implementation
issues.

This manual corresponds to the GNX—Version 4 C compiler.

A complete list of National Semiconductor’s international offices may be found on the
inside back cover of this manual.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

GENIX, GNX, ISE, ISE16, ISE32 and SYS32 are trademarks of National Semiconductor Corporation.

Series 32000 is a registered trademark of National Semiconductor Corporation.
UNIX is a registered trademark of AT&T.
VAX, VMS, and DEC are trademarks of Digital Equipment Corporation.

CONTENTS

Chapter 1 OVERVIEW
1.1 IN T R O D U C T IO N ... 1-1

1.2 INTENDED A U D IE N C E ... 1-2

1.3 FEATURES AND SUPPORTED LANGUAGE EXTENSIONS . . 1-3
1.3.1 Compiler Features ... 1-3
1.3.2 Supported C Language Features................................... 1-3

1.4 DOCUMENTATION C O N V E N TIO N S ... 1-4
1.4.1 General Conventions.. 1-4
1.4.2 Conventions in Syntax Descriptions............................. 1-4
1.4.3 Example Conventions.. 1-5

1.5 Incompatibilities With GNX C Compiler Version 3 1-5

Chapter 2 COMPILATION PROCESS
2.1 IN T R O D U C T IO N ... 2-1

2.2 COMPILER STRUCTURE .. 2-1

2.3 COMMAND LINE O P T IO N S ... 2-2
2.3.1 UNIX Compilation O p tio n s .. 2-2
2.3.2 VMS Compilation Q u a lifiers ... 2-9

2.4 TARGET MACHINE S P E C IF IC A T IO N 2-13

2.5 RUN-TIME C H E C K S ... 2-14
2.5.1 Parameter C h e c k .. 2-15
2.5.2 Array C h e c k s .. 2-15
2.5.3 N IL.PO INTER C hecks.. 2-16

2.6 FLOATING-POINT E M U L A T IO N ... 2-17
2.6.1 Floating-point Emulation — Native Configuration . . . 2-17
2.6.2 Floating-point Emulation — Cross-Configuration 2-17
2.6.3 Floating-Point Emulation — VAX/VMS System 2-18

2.7 ENVIRONMENT VARIABLES (FOR UNIX O N L Y).................... 2-18

Chapter 3 EXTENSIONS TO THE C LANGUAGE
3.1 IN T R O D U C T IO N ... 3-1

3.2 ANSI F E A T U R E S ... 3-1
3.2.1 Function Prototypes... 3-1
3.2.2 Volatile and Const Qualifiers... 3-2
3.2.3 Void Data T y p e ... 3-2
3.2.4 Signed K eyw ord... 3-2

CONTENTS v

3.2.5 The #pragma D irec tive ... 3-2
3.2.6 Single-Precision Floating Constants............................. 3-2
3.2.7 Unsigned Constants... 3-3
3.2.8 Enumerated T y p e s ... 3-3
3.2.9 Structure H and ling ... 3-3
3.2.10 Concatenation of Adjacent String L itera ls 3-3
3.2.11 Obsolesce of the Old Fashioned Compound Assignment 3-4
3.2.12 Obsolesce of the Old Fashioned In itialization.............. 3-4

3.3 EMBEDDED SUPPORT E X TE N S IO N S 3-4
3.3.1 Interrupt/Trap Routines Support................................... 3-4
3.3.2 Asm K eyw o rd .. 3-6
3.3.3 Intrinsic Routines.. 3-7

3.4 OTHER E X T E N S IO N S .. 3-7
3.4.1 $ Sign in Identifiers... 3-7
3.4.2 B it f ie ld s .. 3-7
3.4.3 Ident Preprocessor C om m an d 3-7

Chapter 4 IMPLEMENTATION ISSUES
4.1 IN T R O D U C T IO N .. 4-1

4.2 IMPLEMENTATION A S P E C T S ... 4-1
4.2.1 Memory Representation .. 4-1
4.2.2 External L in k a g e .. 4-2
4.2.3 Types and Conversions... 4-2
4.2.4 Variable and Structure A lignm ent................................ 4-2
4.2.5 Structure Returning Functions...................................... 4-8
4.2.6 Calling Sequ en ce.. 4-8
4.2.7 Mixed-Language Programming 4-8
4.2.8 Order of Evaluation... 4-9
4.2.9 Order of Allocation of M em ory 4-9
4.2.10 Register Variables.. 4-9
4.2.11 Floating-Point Arithmetic ... 4-10

4.3 UNDEFINED B E H A V IO R .. 4-10

Chapter 5 OPTIMIZATION TECHNIQUES
5.1 IN T R O D U C T IO N .. 5-1

5.2 THE O P T IM IZ E R .. 5-2

5.3 THE CODE G E N E R A T O R .. 5-9

5.4 MEMORY LAYOUT OPTIMIZATIONS 5-10

5.5 RUNTIME FEE D BAC K.. 5-11

Chapter 6 GUIDELINES ON USING THE OPTIMIZER
6.1 IN T R O D U C T IO N .. 6-1

vi CONTENTS

6.2 OPTIMIZATION F L A G S ... 6-1
6.2.1 Optimization Options on the Command Line — UNIX

Systems... 6-3
6.2.2 Optimization Options on the Command Line — VMS

System s... 6-3
6.2.3 Changing Default Optimization Options....................... 6-4

6.3 PORTING EXISTING C P R O G R A M S ... 6-5
6.3.1 Undetected Program E r r o r s .. 6-5
6.3.2 Compiling System Code... 6-6
6.3.3 Timing Assum ptions.. 6-7
6.3.4 Low-Level Interface... 6-7
6.3.5 Using Nonstandard Library R ou tin es.......................... 6-7
6.3.6 Reliance on Naive Algebraic Relations.......................... 6-8

6.4 DEBUGGING OF OPTIMIZED C O D E ... 6-9

6.5 IMPROVED ANNOTATION ... 6-10

6.6 ADDITIONAL GUIDELINES FOR IMPROVING CODE
Q U A L ITY ... 6-11
6.6.1 Static Functions... 6-11
6.6.2 Integer V a ria b les .. 6-11
6.6.3 Local V a ria b le s ... 6-11
6.6.4 Floating-Point Computations... 6-12
6.6.5 Pointer U s a g e .. 6-12
6.6.6 Asm Statements... 6-14
6.6.7 Register A llo ca tion ... 6-15
6.6.8 se tjm p O .. 6-15
6.6.9 Optimizing for S p a c e .. 6-16
6.6.10 Using/NOOPT (-Oo) option.. 6-16
6.6.11 Runtime Feedback Optimization................................... 6-16

6.7 COMPILATION TIME REQUIREM ENTS................................... 6-17

Chapter 7 PR O F ILE IN FO R M A TIO N

7.1 IN T R O D U C T IO N .. 7-1

7.2 GATHERING PROFILE IN FO R M A T IO N 7-2
7.2.1 The Profile Information... 7-2
7.2.2 Code Com pilation.. 7-2
7.2.3 P g e n .. 7-3
7.2.4 The PIT F i l e ... 7-3
7.2.5 The p fb _ e x i t . o (p fb _ e x i t . ob j) File 7-3
7.2.6 Compilation in the UNIX Environment.......................... 7-4
7.2.7 Compilation in the VMS Environment.......................... 7-4
7.2.8 Code E xecu tion ... 7-5
7.2.9 Disabling Profile Information Accumulation 7-5
7.2.10 Redefining Standard l ib c Symbols............................. 7-5

CONTENTS vii

7.2.11 Execution Time Considerations 7-6
7.2.12 Space Considerations.. 7-6

7.3 SPROF - THE GNX SOURCE P R O F IL E R 7-7
7.3.1 E xam p le ... 7-7
7.3.2 Running SPRO F... 7-8
7.3.3 SPROF Invocation ... 7-9
7.3.4 Counts and Basic B lo c k s .. 7-10

7.4 RUNTIME FEEDBACK O P T IM IZ A T IO N 7-11
7.4.1 Profile Information G a th erin g 7-11
7.4.2 Runtime Feedback C om pila tion 7-11

Chapter 8 IN TR IN S IC FU NCTIO NS

8.1 IN T R O D U C T IO N ... 8-1
8.1.1 Using Intrinsic Functions... 8-1

8.2 General Series 32000 Intrinsic F u n ction s 8-2
8.2.1 Single Bit Instructions.. 8-3
8.2.2 _ffs (Find First S e t) ... 8-4
8.2.3 _exti (Extract b it - fie ld).. 8-5
8.2.4 _ins (Insert B it- f ie ld).. 8-7
8.2.5 _cvtp (Convert to Bit P o in t e r) 8-9
8.2.6 abs (Absolute V a lu e) .. 8-10

8.3 CG-Core Intrinsic Functions ... 8-11
8.3.1 _extblt (External Bit Aligned Block Transfer)............... 8-13
8.3.2 BITBLT instructions.. 8-15
8.3.3 _bitwt (Bit Aligned Word Transfer) 8-19
8.3.4 _movmp (Move Multiple P a t t e r n) 8-20
8.3.5 _sbits (Set Bit S tr in g).. 8-21
8.3.6 _sbitps (Set Bit Perpendicular S tr in g).......................... 8-22
8.3.7 _tbits (Test Bit S t r in g) ... 8-23

8.4 NS32GX320 Intrinsic F u n ction s .. 8-25
8.4.1 NS32GX320 typedefs .. 8-26
8.4.2 _mulwd (Multiply Word to Double) 8-27
8.4.3 _cmuld (Complex Multiply Double) 8-28
8.4.4 _cmacd (Complex Multiply and Accumulate Double) . . 8-29
8.4.5 _mactd (Multiply and Accumulate Twice Double) 8-30

Append ix A SERIES 32000 STANDARD C ALLIN G CONVENTIONS

A .l IN T R O D U C T IO N .. A -l

A. 2 CALLING CONVENTION E L E M E N T S .. A -l

Append ix B M IXED-LANGUAGE PRO G RAM M ING

B. l IN T R O D U C T IO N .. B-l
B.1.1 Writing Mixed-Language P rogram s.............................. B-l

viii CONTENTS

B.1.2 Compiling Mixed-Language Programs............................ B-5
B.1.3 Compilation on UNIX Operating S y s te m s B-6
B.1.4 Compilation on VMS Operating S y s tem s B-7

B.2 COMPILING THE MIXED-LANGUAGE E X A M P L E B-7
B.2.1 Compiling the Example on a UNIX System B-7
B. 2.2 Compiling the Example on a VMS System B-8

B. 3 PROGRAM MODULE LISTINGS .. B-8

Appendix C ERROR DIAGNOSTICS
C. l IN T R O D U C T IO N .. C-l

C. 2 ERROR MESSAGES... C-l
C. 2.1 Error Messages Form at... C-l
C.2.2 System E rrors .. C-2
C.2.3 Limitation E rro rs .. C-2
C.2.4 Syntax E rro rs .. C-3
C.2.5 Severe E r r o r s .. C-5
C.2.6 Caution Errors ... C-5
C.2.7 Warnings ... C-6

Appendix D COMPILER OPTIONS
D. l IN T R O D U C T IO N .. D-l

Appendix E EMBEDDED PROGRAMMING HINTS
E. l IN T R O D U C T IO N .. E-l

E.2 VOLATILE AND C O N S T .. E-l
E.2.1 Const Type Q u a lif ie r .. E-l
E.2.2 Volatile Type q u a li f ie r ... E-2
E.2.3 Memory A llo ca tio n ... E-4
E.2.4 Initialized C V a r ia b le s ... E-4
E.2.5 Programming Memory Mapped D evices......................... E-5

E.3 ASM STATEM ENTS... E-6

E.4 EXAMPLES OF PROGRAMMING WITH INTRINSIC
FU N C TIO N S ... E-7
E.4.1 NS32CG16 bit instructions... E-7
E.4.2 NSGX320 specific instructions....................................... E - ll

E.5 PROGRAMMING TRAP/INTERRUPT R O U T IN E S E-12

Appendix F GLOSSARY

FIGURES

Figure 4-1. Bitfield Padd ing.. 4-6

CONTENTS ix

Figure 4-2. Alignment on B it f ie ld s .. 4-6

Figure 5-1. Relationship Between Various Optimizations........................... 5-3

Figure 5-2. Flow G ra p h ... 5-4

Figure 5-3. Example of Loop U nrolling.. 5-5

Figure 5-4. Example of Partial Redundancy Elimination . . . ‘ 5-7

Figure 7-1. Example of sp ro f O utput.. 7-7

Figure 7-2. s p ro f Data Flow D escrip tion ... 7-8

Figure B-l. Cross-Language Pa irs ... B-2

Figure E-l. Example of Linker Directive F ile .. E-4

Figure E-2. The Im a g e .. E-8

Figure E-3. The Image with the Reversed Shape.. E-9

TABLES

Table 2-1. Filename C onventions.. 2-3

Table 2-2. Target Selection Param eters.. 2-13

Table 2-3. Run-time Check Flags .. 2-14

Table 4-1. Variable A lignm ent.. 4-3

Table 6-1. Optimization Options... 6-2

Table 6-2. Changing Default Optimization Options 6-4

Table 6-3. Recognized Library Routines.. 6-8

Table 8-1. Effect of tbits on PSR L and F f l a g s .. 8-24

Table B-l. Compilers and their Associated L ib ra r ies B-6

Table D-l. UNIX Operating System O ptions.. D-2

Table D-2. VMS Operating System O ptions.. D-4

Table D-3. Options Passed to the Preprocessor — UNIX Systems................. D-5

Table D-4. Options Passed to the Preprocessor — VMS Systems................. D-6

Table D-5. Options Recognized and Passed to the L inker............................ D-6

INDEX

x CONTENTS

Chapter 1

OVERVIEW

1.1 INTRODUCTION
This manual describes National Semiconductor’s GNX—Version 4 C Optimizing Com
piler. The compiler is one of a family of compatible optimizing compilers for the
Series 32000 family of microprocessors.* The GNX—Version 4 C Compiler replaces
and makes obsoletes the previous GNX—Version 4 C Compiler. It implements the C
language as described in C Programming Language by Kemighan and Ritchie,
together with most of the important features in the ANSI C standard like function pro
totypes, const and volatile type qualifiers, and the void data type (see Section 1.3.1).
The compiler is fully compatible with the System V C compiler, a compiler derived from
the portable C compiler (pcc).

In addition, the GNX—Version 4 C Optimizing Compiler includes important exten
sions for programming embedded applications like ASIS (Application Specific Instruc
tions) support, interrupt/trap handling in C, and asm statement. The compiler is
available as a cross-support compiler running on VMS™ and UNIX® operating systems
as well as a native compiler running on Series 32000 operating systems derived from
UNIX System V, Release 3. Additional information on other tools in the Series 32000
family can be found in the GNX — Version 4 Commands and Operations Manual.

This manual is organized as follows:

• Introduction (Chapter 1)

• Compilation Process (Chapter 2)

• Extensions to the C language(Chapter 3)

• Implementation Issues (Chapter 4)

• Optimization Techniques (Chapter 5)

• Guidelines on Using the Optimizer (Chapter 6)

• Profile Information (Chapter 7)

• Intrinsic Routines (Chapter 8)

• Series 32000 Calling Standard Conventions (Appendix A)

* At this writing, the family consists of a C Optimizing Compiler, Pascal Optimizing Compiler, and
FORTRAN 77 Optimizing Compiler.

OVERVIEW 1-1

• Mixed-Language Programming (Appendix B)

• Error Messages (Appendix C)

• Compiler Options (Appendix D)

• Embedded Programming Hints (Appendix E)

• Glossary (Appendix F)

1.2 INTENDED AUDIENCE
This manual is for experienced C programmers. The information provided covers com
piler options, extensions to the standard C programming language, and implementa
tion issues. Knowledge of optimization techniques is useful but not essential; Chapter
5 provides an overview of optimization techniques used by the optimizer. And Chapter
6 provides further guidelines to help the programmer avoid problems that can occur
when using the optimizer.

Recommended C reference books include:

ANSI C standard (ANSI X3.159-1989).

Harbison, Samuel and Steele, Guy. C, A Reference Manual, 2nd. ed., Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1984.

Kemighan, Brian and Ritchie, Dennis. The C Programming Language, 2nd, ed.,
Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1989.

1-2 OVERVIEW

1.3 FEATURES AND SUPPORTED LANGUAGE EXTENSIONS

1.3.1 Compiler Features
The following are the main features of the C Optimizing Compiler:

• Accepts most ANSI C features.

• pcc compatible.

• Allows for use of Application Specific Instructions in C via intrinsic routines.

• Allows for programming of interrupt/trap handlers in C (see Section 3.3.1).

• Optimizations can be tuned to either improve speed or save space.

• Optimization level is controlled by the user.

• Code can be generated that is timed to the specific target system.

• Full support of mixed-language programming.

• User controlled alignment of variables and structure members.

• Improved structure handling.

• Assembly output can be annotated with source lines.

• Fast compilation mode.

• Advanced error handling, recovers from simple syntax errors.

1.3.2 Supported C Language Features
The compiler implements the full C language as defined in Appendix A of C Program
ming Language by Kernighan and Ritchie. In addition most of the ANSI C standard
features and important extensions for embedded programming are supported. The fol
lowing extensions are supported:

• ANSI C features:

— const for defining read-only entities.

— v o l a t i l e for sensitive variables.

— Function prototypes.

— Signed keyword.

— pragma preprocessor command (specifically a pragma that enables marking a
trap/interrupt routine).

— vo id data type.

— Structures may be assigned, passed as arguments and returned from func
tions.

OVERVIEW 1-3

— Initialization of automatic aggregated types.

— Structure/union member names need not be globally unique.

— Structure and union size is not limited.

— Unsigned constants (to save run-time conversions).

— Single-precision floating constants (to save run-time conversions).

— Enumeration datatypes can be used as “int”.

— Unsigned or signed bitfields.

All of the above extensions are discussed in Chapter 3.

1.4 DOCUMENTATION CONVENTIONS
The following documentation conventions are used in text, syntax descriptions, and
examples in describing commands and parameters.

1.4.1 General Conventions
Nonprinting characters are indicated by enclosing a name for the character in angle
brackets <>. For example, <CR> indicates the RETURN key, <ctrl/B> indicates the
character input by simultaneously pressing the control key and the B key.

Constant-width type is used within text for filenames, directories, command names and
program listings; it is also used to highlight individual numbers and letters. For exam
ple,

the C preprocessor, cpp, resides in the GNXDIR/lib directory.

1.4.2 Conventions in Syntax Descriptions
The following conventions are used in syntax descriptions:

Constant-width boldface type indicates actual user input.

Italics indicate user-supplied items. The italicized word is a generic term
for the actual operand that the user enters. For example,

cc [[option] ... [filename] ...] ...

Spaces or blanks, when present, are significant; they must be entered as
shown. Multiple blanks or horizontal tabs may be used in place of a single
blank.

{ } Large braces enclose two or more items of which one, and only one,
must be used. The items are separated from each other by a logical
OR sign “ | .”

1-4 OVERVIEW

• Large brackets enclose optional item(s).

Logical OR sign separates items of which one, and only one, may be
used.

... Three consecutive periods indicate optional repetition of the preced
ing item(s). I f a group of items can be repeated, the group is
enclosed in large parentheses “().”

,,, Three consecutive commas indicate optional repetition of the preced
ing item. Items must be separated by commas. I f a group of items
can be repeated, the group is enclosed in large parentheses “().”

() Large parentheses enclose items which need to be grouped together
for optional repetition. I f three consecutive commas or periods follow
an item, only that item may be repeated. The parentheses indicate
that the group may be repeated.

i_ j Indicates a space. i_ i is only used to indicate a specific number of
required spaces.

All other characters or symbols appearing in the syntax must be entered as
shown. Brackets, parentheses, or braces which must be entered, are smaller
than the symbols used to describe the syntax. (Compare user-entered [],
with [] which show optional items.)

1.4.3 Example Conventions
In interactive examples where both user input and system responses are shown, the
machine output is in constant-width regular type; user-entered input is in constant-
width boldface type. Output from the machine which varies (e.g. , the date) is in italic
type. For example,

— > g < CR>
B re a k p o in t 2 re a c h e d a t filename _m a in : .3
.3 p r i n t f (" h e l l o \ r \ n ") ;

1.5 Incompatibilities With GNX C Compiler Version 3
The incompatibilities with the GNX-Version 3 C compiler are:

1. s ig n e d keyword added.

GNX version 4 is extended to support the ANSI C s ig n e d type specifier. Pro
grams using this keyword in another context (i.e. as identifier or typedef names)
are not legal and will be viewed as an error.

Example:
f l o a t s ig n e d ;

OVERVIEW 1-5

The above example defines an identifier whose name is s ig n e d and will not pass
compilation.

2. C on st and v o l a t i l e type qualifiers fully suported.

The GNX version 3 C compiler includes a partial implementation of the ANSI C
c o n s t and v o l a t i l e type qualifiers. In GNX version 4 C compiler c o n s t and
v o l a t i l e are fully implemented as defined in ANSI C standard. Programs
which rely on version 3 partial implementation may compile differently in
GNX—Version 4 C .

3. -N(/TABLES on VMS) was deleted.

The compiler internal tables are allocated dynamically. Hence the -N
(/ TABLE_S IZE on VMS) no longer has any meaning. The compiler will silently
ignore this option when used.

1-6 OVERVIEW

Chapter 2

COMPILATION PROCESS

2.1 INTRODUCTION
The GNX—Version 4 C Compiler is a modular language processor consisting of five
separate programs. This chapter describes the five programs, the GNX—Version 4 C
Compiler invocation, options available to the user, and file generation during compila
tion.

2.2 COMPILER STRUCTURE
The GNX—Version 4 C Compiler’s five programs are:

• Driver

• Macro preprocessor

• C language parser (front end)

• Optimizer

• Code generator

The driver is a program that parses and interprets the command line and then sequen
tially calls each of the other programs, depending on its input programs and the com
mand line options.

The Macro preprocessor is the C preprocessor, cpp. Its input is a program file option
ally containing preprocessing commands.

The C language parser is the compiler’s front end, c c _ f e . Its input is a C program.
Its output is the same program in a proprietary intermediate form.*

The optimizer, o p t, is a true global, language-independent optimizer that uses
advanced optimization techniques to improve the code. Both its input and output are
in the same intermediate form. See Chapter 5 for more detailed information.

* The intermediate form is language-independent. This allows the same optimizer and code generator
to be used by all National Semiconductor GNX — Version 4 Compilers, i.e., the FORTRAN 77
Compiler, the Pascal Compiler, and the C Compiler.

COMPILATION PROCESS 2-1

The Series 32000 code generator, c g e n _ c o f f , generates an assembly program from a
program in the intermediate form.

The assembly program produced by the code generator must be assembled by the
Series 32000 assembler to produce an object code program. The assembler is automati
cally called by the driver program.

The user produces an executable program by running the Series 32000 linker on one or
more object code programs with run-time library archives. On UNIX systems the linker
is automatically called by the driver program. On VMS systems it must be called
separately (for further details on invocation see the GNX Commands and Operations
Manual).

2.3 COMMAND LINE OPTIONS
The GNX—Version 4 C Compiler operation is controlled by a large number of compila
tion parameters. Many of these parameters, such as the target system specification
can be permanently set by means of the GNX Target Setup (GTS) facility. For details
on how to use GTS, see the Series 32000 GNX — Version 4 Commands and Operations
manual. All compilation parameters can be specified as command line options which
override any previously existing default values.

Command line options and default values are the same for all supported host systems,
but their syntax varies from host to host. Two host systems are currently supported:
the UNIX operating system (in both cross-support and native variants) and the VMS
operating system (cross-support only). The next two sections provide details on the
various compilation parameters and their syntax on these host systems. The tables in
Appendix D summarize the various compilation options of both operating systems and
can be used as a quick reference.

2.3.1 UNIX Compilation Options
The invocation syntax of the GNX—Version 4 C Compiler under UNIX is:

cc [\option\... [filenam e]...]... (native configuration)

nmcc [[op tion]... [filenam e]...]. . . (cross-support configuration)

The compiler accepts a variable number of file arguments and compilation options. It
produces an executable file, object file(s), or assembly file(s), according to the options
specified. The files compiled are normally C program sources, but other types of files
are also recognized. A file type is recognized by its suffix. A compilation option is
recognized by the UNIX convention of a minus-sign prefix.

2-2 COMPILATION PROCESS

Filename Conventions
Files are identified by the compiler according to their suffix. Files with names ending
with . c or . i are C source programs.

Files ending with . c, pass through the macro preprocessor (cp p) before compilation.
Files ending with . i compile directly and assemble to produce object programs left in
files whose names are those of the source files with . o substituted for the given suffix.

The intermediate . o file is deleted if a C program consisting of a single file is compiled
and linked at the same time.

In support of mixed-language programming, the compiler also recognizes and compiles
appropriate files written in other programming languages. Files with a . s suffix are
assembly source programs and may be assembled (to produce . o files) and linked. Pas
cal and FORTRAN 77 source files are also recognized, and compile appropriately if
your system includes the National Semiconductor GNX — Version 4 Compiler for those
languages. The suffixes for these files are listed in Table 2-1. See Appendix B for
details on mixed-language programming.

All other files (normally . o or . a files) are compatible object programs or archives of
object programs, typically produced by previous runs of the GNX—Version 4 C Com
piler, and pass directly to the linker. The object files link into one executable file with
the default name a32 . ou t (or a . ou t in a native-support environment).

Table 2-1. Filename Conventions

FILE NAME FILE TYPE
SUFFIX

.c C source file

.i Preprocessed C source file

.f, .for FORTRAN 77 source file
.F, .FOR FORTRAN 77 source with cpp directives

.p, .pas Pascal source file
.P, .PAS Pascal source with cpp directives

.s Assembly source file

other (.0, .a, etc.) Object code or library-archive file

COMPILATION PROCESS 2-3

Compiler Options
The following is a list of the compilation options which may be specified on the invoca
tion line.* The tables in Appendix D summarize the various compilation options and
can be used as a quick reference.

-O (PERFORMS OPTIMIZATIONS)

-F flags (SPECIFIES OPTIMIZATION FLAGS)

- 0 flags (PERFORMS OPTIMIZATIONS ACCORDING TO FLAGS)
The -0 option directs the GNX—Version 4 C Compiler to perform glo
bal optimizations. The optimizer uses a variety of optimization tech
niques which ensure the fastest possible code. In certain cases, such as
when code density is of greater importance than code speed, it is neces
sary to specify optimizations. Using the -F option with the optimiza
tion flags listed in Chapter 6 sets the selected optimization flags.
Using the -F option by itself will do nothing. -0 flags is a shorthand
notation for -0 -F flags. A detailed discussion of optimization tech
niques is found in Chapter 5 and Chapter 6.

-Q (COMPILES QUICK, NO CODE)
This option allows for a quick error-checking compilation. No code is
generated.

- a (GENERATES RUN-TIME CHECKS)
This option controls the generation of code that checks for run-time
errors. See Section 2.5 for more details.

-a. flags (GENERATES RUN-TIME CHECKS)
This option controls the generation of code for selective run-time error
checks. See Section 2.5 for more details.

-g (PREPARES SYMBOLIC DEBUGGING INFORMATION)
The - g option instructs the GNX—Version 4 C Compiler to prepare
symbolic debugging information for symbolic debuggers, such as dbug.
See the discussion on debugging of optimized code in Section 6.4.
ERROR line431contains a . No matching

-P (PREPARES PROFILE INFORMATION FOR A PROGRAM PRO
FILER)
This option prepares profile information for a program profiler, such as
p r o f .

-B (GATHER PROFILE INFORMATION)
This option instructs the compiler to add special code for profile

* The GNX—Version 4 C compiler supports the System V Interface Definition (SVID) for C compilers.
Where possible, space is allowed between an option and its following flags, i.e., -oout is the same as
-o out, and -J2 is the same as -J 2. Similarly, -DHOST is equivalent to -D HOST. The notation
in this section follows traditional UNIX conventions.

2-4 COMPILATION PROCESS

s

n

C

R

o out

information gathering. See Chapter 7 for more details.

(COMPILES BUT DOES NOT LINK)
The -c option directs the GNX—Version 4 C Compiler to perform the
compilation process up to, but not including, linking. Output is left in
object files whose names end with . o. This option is useful when com
piling only a portion of a program’s modules. For example,

c c - c s a m p le .c

creates the file s a m p le . o. No executable file is created.

(COMPILES AND LEAVES ASSEMBLY FILES)
The -S option directs the GNX—Version 4 C Compiler to terminate
the compilation process before assembly. The assembly output is left in
files whose names are those of the source, with . s substituted for the
original suffix. For example,

c c -S s a m p le .c u t i l s . c

creates the files s a m p le . s and u t i l s . s. No executable or object file
is created.

(EMBEDS C SOURCE LINES AS COMMENTS IN ASSEMBLY)
This option puts the C source lines into the assembly output file as
comments. I f the optimizer is enabled, explanatory optimizer com
ments are also put into the assembly output file. Note that the -n
option is useful only in conjunction with the -S option.

(LEAVES COMMENTS IN)
The preprocessor normally removes the comments from its output. The
-C option prevents this. This option can be useful when cpp ’s output
must be examined or when the -n option is used and C comments are
required in the assembly file.

(PUTS LITERAL STRINGS IN READ-ONLY MEMORY)
C literal strings are, by default, writable and are thus allocated in the
writable data space. The -R option allocates literal strings in a read
only area.

(RENAMES THE OUTPUT FILE)
The -o option redirects the output file from the compilation process to
a file named ou t. For example,

c c s a m p le .c u t i l s . c - o sam p le

generates the executable file sam ple from the two source files, and

c c -S s a m p le .c - o n ew _sa m p le .s

COMPILATION PROCESS 2-5

generates the assembly file new _sam ple . s.

- Jwidth (ALIGNMENT W ITHIN STRUCTURES)
This option allows the user to set structure-member alignment on
bytes (width = 1), words {.width = 2), or double-words {width = 4).
Default value for width is 4 (double-word-aligned).

-w (NO WARNING DIAGNOSTICS)
The GNX—Version 4 C Optimizing Compiler normally prints warn
ings regarding inconsistencies in the input program. The -w option
suppresses these warning diagnostics. See Appendix C for a complete
list of the warning diagnostics.

-w6 6 (SUPPRESSES FORTRAN 66 WARNINGS)
This is only useful when compiling FORTRAN 77 programs.

-T (UNDEFINED VARIABLE TYPE)
This is only useful when compiling FORTRAN 77 programs.

-A (ALLOCATES VARIABLES AS STANDARD)
This option directs the compiler to adhere to the ANSI C standard,
with respect to the declaration and allocation of global variables. When
this option is used, there must be exactly one declaration of each global
variable without the keyword extern within the entire program. This
declaration is considered the definition of the variable.

-m (USES THE m4 PREPROCESSOR)
With this option, the m4 preprocessor is used on assembly and FOR
TRAN 77 files before assembling and compiling them.

-d (CASE SENSITIVITY)
This is only useful when compiling Pascal and FORTRAN 77 pro
grams.

-N [parameter] [size] (SET INTERNAL TABLE SIZE)
This option is only useful for FORTRAN programs.

- v (VERBOSE)
This option lists the subprograms of the GNX—Version 4 C Compiler
as they are executed by the driver program.

-vn (SHOWS BUT DOES NOT ACTUALLY EXECUTE)
This option lists the compiler subprograms that are called by the
compiler’s driver program, without actually executing them. This
option can be used to verify how other compiler options work.

-Kparameter (SETS TARGET CPU, FPU, OR BUSWIDTH)
The -K option allows the user to “time” the GNX—Version 4 C Com
piler by specifying the CPU, the FPU (or absence of), and/or buswidth
of the target system. See Sections 2.4 and 2.6 for more details.

-Zc (USES ALTERNATIVE LIBRARY)
This option directs the compiler to link an alternative library and

2-6 COMPILATION PROCESS

initialization file, determined by the character which follows the
option. For example,

cc -Z2 unix.c

links u n ix .o with c r t2 .o a n d l i b 2 . a .

-X (GENERATES MODULAR CODE)
This option directs the compiler to generate code that conforms to the
Series 32000 architectural feature of modularity (which allows the
modular use of external references). For further information see the
Series 32000 GNX — Version 4 Language Tools Technical Notes and
the Series 32000 Programmer’s Reference Manual.

- f (FLOATING-POINT EMULATION)
This option tells the compiler driver that there is no FPU on the target
and floating-point emulation is desired. See Section 2.6 for a discus
sion of this option and floating-point emulation.

The compiler accepts the following options and passes them to the C preprocessor.

-Dname[=def\ (DEFINES)
The -D switch defines name equal to def to the preprocessor. I f no
explicit value is given, name is defined as having the value 1. The use
of this option is equivalent to putting a “#de fin e name def’ at the
beginning of each C source file.

For example:

cc -DHOST=VAX sample.c

works as i f the following define was at the head of sam ple. c:

#define HOST VAX
-E (RUNS cpp ONLY)

This option terminates the compilation after preprocessing; only the
cpp preprocessor is invoked, and its output is sent to the standard out
put, stdout.

- I dir (SPECIFIES DIRECTORY FOR INCLUDED FILES)
This option tells to use the specified directory as the default directory
for included files. Include files that are called using double quotes, e.g.,
#include " filename", are sought first in the directory of the compiled
file, then in the directories specified by - I , and finally in directories on
a standard list (/usr/include). I f the user explicitly names the file
to be included by using the complete path, e.g., # include
"/a/m ydir/ filenam e", the named file is sought directly. I f angle
brackets are used instead of double quotes, e.g.,
#inc lude <filename>, the file is sought in the directories on a stan
dard list (/usr/include).

-M (RUNS cpp ONLY, GENERATES MAKEFILE DEPENDENCIES)
This option runs only the cpp macro preprocessor on the named C pro
grams, requests it to generate makefile dependencies and then sends
the result to the standard output, stdout. For example:

COMPILATION PROCESS 2-7

cc -M *.c > new.makefile

runs epp on all of the C programs in the current directory and gen
erates all makefile dependencies. These dependencies are then sent to
the file n e w .m a k e f i le .

-P (RUNS epp ONLY, REDIRECTS OUTPUT TO .i FILE)
This option is similar to -E , except that the output of epp is sent to a
file with a . i extension. For example:

cc -P sample.c utils.c

creates the files sa m p le , i and u t i l s , i .

-U name (UNDEFINES)
Using this option is equivalent to putting “#undef name” at the begin
ning of each C source file.

In addition, the compiler accepts the following compiler options and passes them to the
linker. See the G N X — Version 4 Linker User's Guide manual for details.

-V

-1 lib

- 3

- r

-u symname

-e epname

(LINKER VERSION)

(SPECIFIES A PROGRAM LIBRARY)

(STRIPS THE EXECUTABLE FILE OF SYMBOL TABLE AND
RELOCATION BITS)

(RETAINS RELOCATION)

(UNDEFINES SYMBOL IN SYMBOL TABLE)

(DEFINES ENTRY POINT)

(NO LOCAL SYMBOLS IN OUTPUT SYMBOL TABLE)

(RUN-TIME INITIALIZATIONS)

The following option can be used as an “escape” to pass additional options (not recog
nized by the GNX—Version 4 C Compiler) to the C preprocessor, assembler, or linker.

-wx, options (PASSES OPTIONS TO COMPILATION PHASE x)
This option passes options to the C preprocessor (x = p), the assembler
Oe = a), or the linker (x = 1). The options must be a single argument (no
embedded space, unless quoted). For example, the command,

cc -W l/-mmu382 s a m p le .c

passes the option -mmu382 to the linker.

2-8 COMPILATION PROCESS

2.3.2 VMS Compilation Qualifiers
The command line invocation syntax of the GNX—Version 4 C Compiler is as follows:

nmcc [qualifier]... filename

The normal operation of the GNX—Version 4 C Compiler compiles and assembles a
file specified on the command line to create an object file. Command qualifiers (pre
ceded by a /) are applied as necessary. Most qualifiers can be preceded by NO to
reverse their function. The usual VMS conventions regarding default filename exten
sions, case insensitivity, qualifier syntax and abbreviation rules apply. The GNX—
Version 4 C Compiler accepts only one C source file as input and produces an object
file with optional intermediate results (such as an assembly file). I f the source file has
no extension, a . C extension is assumed.

The following is a list of the compilation qualifiers which may be specified on the invo
cation line.
The tables in Appendix D summarize the various compilation qualifiers and can be
used as a quick reference.

/ [NO]ob JECT [=,filename]
This qualifier directs the compiler to leave the object code in a file
named filename. I f filename has no suffix, . OBJ is added as a suffix. I f
filename is not specified, the object code is placed in a file with the
source’s filename, with the .OBJ suffix substituted for the original
suffix. Default of this qualifier is /OBJECT. For example,

NMCC/OBJ=NEW_UTILS.OBJ UTILS.C

compiles the file u t i l s . c , and leaves the result in a file called
n ew _u tils . ob j.

The command:

NMCC/NOOBJ/ASM/OPT/ANNO SAMPLE.C

results in an annotated, optimized assembly translation of sam ple.c
and does not generate an object file.

The command NMCC/NOOBJ x .c results in a quick compilation of
x . c without producing any output. This is useful for error checking.

/ [^0]OPTIMIZE [= {flags)]
This qualifier directs the GNX—Version 4 C Compiler to perform glo
bal optimizations. A detailed discussion of the GNX—Version 4 C
Compiler optimization techniques is located in Chapter 5 and Chapter
6. Default is /NOOPTIMIZE.

COMPILATION PROCESS 2-9

/ [no Jcheck

This qualifier controls the generation of code that checks for run-time
errors. Default is /NOCHECK. See Section 2.5 for more details.

/ [NO]debug

The /DEBUG qualifier instructs the GNX—Version 4 C Compiler to
prepare symbolic debugging information for symbolic debuggers, such
as DBUG. See the discussion on debugging of optimized code in Section
6.4. Default is /NODEBUG.

/ [NO] gather (GATHER PROFILE INFORMATION)
This qualifier instructs the compiler to add special code for profile
information gathering. The default is /NOGATHER. See Chapter 7 for
more details.

/ [NO]ASM [= file name]
This qualifier directs the compiler to leave the intermediate assembly
file in a file named filename. I f filename has no suffix, .ASM is added
as a suffix. I f filename is not given, the source filename is used substi
tuting the .ASM suffix with the source filename’s suffix. Default of
this qualifier is /NOASM. For example,

NMCC/ASM=NEW_UTILS.ASM U T ILS .C

compiles the file U T ILS . C, and produces NEW _UTILS. ASM and
UTILS .OBJ.

/ [no Jannotate

This qualifier directs the compiler to put GNX—Version 4 C source
lines as comments into the assembly output file. I f the optimizer is
enabled, explanatory optimizer comments are also added into the
assembly output. Note that this qualifier is useful only in conjunction
with the /ASM qualifier. Default is /NOANNOTATE.

/ [n o] rom_ s tr in g s

C literal strings are, by default, writable and are thus allocated in the
writable data space. This qualifier directs the compiler to put all
literal strings in read-only memory.

/ALIGN [=width]
This qualifier allows the user to set structure member alignment on
bytes (width = 1), words (width = 2), or double-words (width = 4).
Default value for width is 4 (double-word-aligned). See Section 4.2.4
for details of the GNX—Version 4 C Compiler’s alignment scheme.

/ [NO]WARNING
The GNX—Version 4 C Compiler prints warnings regarding incon
sistencies found in the input program. The /NOWARNING qualifier
suppresses these warning diagnostics. Default is /w a r n in g . See
Appendix C for details on warning diagnostics.

2-10 COMPILATION PROCESS

/ [n o]STANDARD
This qualifier directs the compiler to adhere to the draft-proposed
ANSI C standard, with respect to the declaration and allocation of glo
bal variables. When /STANDARD is used, there must be exactly only
one declaration of each global variable without the keyword e x t e r n
within the entire program. This declaration is considered the
“definition” of the variable. Default is /n o s t a n d a Rd .

/TABLE_SIZE= (table_name=size [,...])
This option is only useful for compiling FORTRAN programs.

/ [NO]VERBOSE
This qualifier lists the parts of the GNX—Version 4 C Compiler as
they are called by the driver program. Default is /NOVERBOSE.

/ [no]vn

With this qualifier, the compiler lists the subprograms that are called
by the driver program, without actually executing them. This qualifier
can be used to verify how the other qualifiers work. Default is /NOVN.

/TARGET= (CPU=cpw, FPU=/pw, BUSWIDTH=6us)
The /TARGET qualifier allows the user to “tune” the GNX—Version 4
C Compiler by specifying the CPU, the FPU (or absence of), and/or
buswidth of the target system. See Sections 2.4 and 2.6 for more
details.

/ [no Jmodular

This qualifier directs the compiler to generate code that conforms to
the Series 32000 architectural feature of modularity (which allows the
use of external references). For further information see the
Series 32000 GNX — Version 4 Language Tools Technical Notes and
the Series 32000 Programmer’s Reference Manual. Default is /nomo-
DULAR.

/ [NO] error [= filename]
The /ERROR qualifier instructs the GNX—Version 4 C Compiler to
direct compilation error messages to an error log file in addition to the
standard output. I f filename has no suffix, the suffix . ERR is added. If
no destination file is given, the source filename is used, substituting
.ERR for the source filename’s suffix. Default sends the errors to the
standard output only. For instance,

NMCC /ERROR=FILEl F IL E 1 .C

creates an error log file named F I LE 1 . ERR.

COMPILATION PROCESS 2-11

/ [n o]pre_ processor

This qualifier causes the source file to be passed to the GNX C prepro
cessor before the normal processing by the GNX—Version 4 C
language parser.

Default is /PRE_PROCESSOR.

In addition, the compiler recognizes the following compiler qualifiers and passes them
to the C preprocessor. These qualifiers must be used in conjunction with the
/PRE_PROCESSOR qualifier.

/DEFINE = (nam e[=def] [,...])
The use of this option is equivalent to putting a # d e f in e name def at the
beginning of the C source file. The /DEFINE switch defines name equal to
the value def to the preprocessor. I f no explicit value is given, name is
defined as having the value 1. For example:

NMCC/PRE_PROCESSOR/DEFINE=("VAX", "TARGET_IS_NS32000") SAMPLE.C

works as i f the fo llow ing two defines w ere a t the head o f SAMPLE. C:

♦define VAX 1

♦define TARGET_IS_NS32000 1

/ [n o] comment
The preprocessor normally removes the comments from its output. The
/COMMENT qualifier prevents this. This qualifier is useful when cpp ’s out
put must be examined or when the /ANNOTATE qualifier is used and C com
ments are required in the assembly file. Default is /NOCOMMENT.

/ [no]EXPAND [= filename]
This qualifier controls whether the output of the preprocessor is saved to a
file. I f filename has no suffix, the suffix . m ac is added. I f filename is not
given, the source file name is used substituting the suffix .MAC for the
source file name’s suffix. (Default is /NOEXPAND.)

/INCLUDE = (include_dir [,...])
This qualifier tells the cpp preprocessor to use the specified directory as the
default directory for included files. Include files that are specified using dou
ble quotes, e.g., #in c lu d e " filename", are sought first in the directory of
the compiled file, then in the directories specified by the /INCLUDE option,
and finally in directories on a standard list (GNXDIR: INCLUDE). I f the user
explicitly names the file to be included by using the complete path, i.e.,
♦ in c lu d e " [MYDIR] f i l e n a m e " , the named file is sought directly. I f angle
brackets are used instead of double quotes, e.g., # in c lu d e <filename>, the
file is sought in the directories on a standard list (GNXDIR: INCLUDE).

/u n d efine= {name [,...])
Using this qualifier is equivalent to putting # u n d e f name at the beginning
of each C source file.

2-12 COMPILATION PROCESS

2.4 TARGET MACHINE SPECIFICATION
The compiler provides a way for the user to tune the code for a specific target system
by specifying its CPU, FPU and buswidth. This tuning is performed by setting per
manent defaults using the GNX Target Setup (GTS) facility, or by specifying -K
(/TARGET on VMS) on the command line. Table 2-2 lists the flags and the possible set
tings. The values for the CPU and FPU can either be the complete device name e.g.,
NS32332 or NS32081, or the last characters of the device name, e.g. 332 or c g l6 .
The absence of an FPU on the target system can be indicated by specifying em u la
t i o n or n o fp u (for more details see Section 2.6). The buswidth is specified in bytes.

Table 2-2. Target Selection Parameters

CPU (C) FPU (F) BUSWIDTH (B)

[NS321008 [NS321081 1

[NS321016 [NS321181 2

[NS32]cgl6 [NS32J381 4

[NS32]fxl6 [NS32J580

[NS32]cgl60 emulation

[NS32J032

[NS32J332

[NS321532

[NS32]gx32

[NS32]gx320

nofpu

Example: The following example specifies an NS32CG16 CPU, an NS32081 FPU,
and a buswidth of 4 bytes.

UNIX

nmcc -K C c g l6 -KF081 -KB4 tem p . c (cross-support)
or c c -K C c g l6 -KF081 -KB4 te m p .c

VMS
NMCC /TARG ET=(C PU =cgl6 ,FPU =081,B U S= 4) TEMP.C

COMPILATION PROCESS 2-13

2.5 RUN-TIME CHECKS
Run-time checks detect and report run-time errors. The compiler by default does not
generate code to perform run-time checks. I f run-time checks are required, they can be
turned on selectively or all at once on the command line by using the -a option on
UNIX systems (/CHECK qualifier on VMS).

The - a option (/CHECK qualifier on VMS) causes all run-time checks to be performed.
The full syntax for UNIX is:

-a flags
And for VMS:

/ [NO] CHECK [= (flags [, . . .])]

By adding flags, only specified checks are performed. Table 2-3 lists the flags for each
run-time error check.

Table 2-3. Run-time Check Flags

UNIX VMS CHECK PERFORMED

P PARAMETER Intrinsic routines parameters

i INDEX Index exceeding array bounds

n N IL_PO IN TER Dereferencing through a pointer to the 0 address

2-14 COMPILATION PROCESS

An example for generating all checks in the UNIX environment is:

c c - a x . c
nracc - a x . c

An example for generating only index and N IL pointer checks is:

c c - a in x . x
nmcc - a in x . c

When a run-time error occurs, a detailed message is displayed describing the file, error,
and line at which the error occurred is displayed. The program terminates after the
error information is displayed.

2.5.1 Parameter Check
The parameter check option generates code to check for incorrect parameter values on
calls to intrinsic routines (see Chapter 9). The following calls are checked:

• m ask l and mask2 parameters in b i t b l t routines. The value of the actual m askl
and mask2 parameters in a call to a b i t b l t routine must be in the range of 0 to
the maximum unsigned value of a word (65535).

• s h i f t _ v a l parameter in b i t w t routines. The value of the actual s h i f t _ v a l
parameter in a call to a b i t w t routine must be in the range of 0 to 15.

• l e n g th in e x t and in s routines. The value of the actual l e n g th parameter in
calls to e x t and in s routines must be in the range of 1 to 32.

• s r c _ a d d r and d e s t _ a d d r in e x t b l t routines. The value of the actual s r c _ a d d r
and d e s t _ a d d r parameters in calls to a e x t b l t routine must be an even number.

• w id th in e x t b l t routines. The value of the actual w id th in calls to a e x t b l t
routine must be an even number and a multiple of the value of the actual
h o r i z _ in c parameter.

• h o r i z _ in c in e x t b l t routines. The value of the actual h o r i z _ in c parameter in
calls to a e x t b l t routine must be either (+2) or (-2).

2.5.2 Array Checks
Each array index is checked to be within the array bounds (i.e. greater or equal to 0
and less then the array’s dimension).

COMPILATION PROCESS 2-15

For example, the following code:

m ain () {
i n t i n d e x , a r r a y [5] ;
in d e x = 6;
a r r a y [in d e x] = 1;

}

will result in run-time in the error message

" b a d . c " , l i n e 5 : v a lu e o f 6 i s ou t o f bounds

NOTE: Index run-time checks are generated only for arrays whose dimen
sions are known during the compilation of the file.

2.5.3 NILJPOINTER Checks
Whenever a pointer is dereferenced, a check is performed for N IL pointers. I f a N IL
pointer is dereferenced, an error message results.

For example, the following code:

m ain () {
ch a r * p t r ; = ((c h a r *) 0) ;
* p t r = 1;

}

2-16 COMPILATION PROCESS

" b a d p t r . c " , l i n e 4: t r y i n g t o d e r e f e r e n c e th r o u g h a N IL
p o i n t e r

results in the error message in run-time

2.6 FLOATING-POINT EMULATION
Two different floating point emulation options are available with the GNX—Version 4
C Compiler: H fp and f p e e . Additional information, such as the difference between
these options and the way they are implemented, can be found in Chapter 6 of the
Series 32000 GNX-Version 4 Support Libraries Reference Manual. The use of the Hfp
package is indicated by the -K F e m u la t io n compiler option
(/TARGET= (F P U = em u la t io n) on VMS). The Hfp package may be used for cross
configuration only. The use of the f p e e package is indicated by the - f o r -K Fno fpu
compiler option (/TARGET= (FPU=nofpu) on VMS). The f p e e package may be used
for cross configuration and for IEEE compatibility in native configuration. These
options may also be set permanently by using the GTS facility.

2.6.1 Floating-point Emulation — Native Configuration
There is no way to unconfigure the FPU on the SYS32/50 and no floating-point emula
tion is therefore required. To use the f p e e library you must do the following:

1. Include a call to the library routine f p i n i t _ at the beginning of the main
module.

2. Include a - l f p e field after the source and object module in the “compile” com
mand. For example,

c c f i l e l . c - l f p e - lm

where f i l e l . c is the input source file.

2.6.2 Floating-point Emulation — Cross-Configuration
In Cross-Configuration (UNIX system), floating-point emulation is achieved by using
either the - f option on the nmcc invocation line or including a call to the IN I T __
routine prior to any floating-point operations and explicitly linking files and libraries.

COMPILATION PROCESS 2-17

When - f is used on the nmcc invocation line the cross-compiler driver:

• assumes there is no FPU on the target system

• assumes that the user wants to use floating-point emulation

• generates the correct command line and passes this to the linker

For example:

nmcc - f f i l e l . c

The following is an example of explicitly linking files and libraries:

In cross host:

nmcc -c f i l e l . c
nmeld GNXD IR/ lib/ fcr tO . o f i l e l . o - I f p e -lm - l c

In native host (Series 32000/UNIX system):

nmcc - c f i l e l . c
I d G NXDIR/ lib/db_fcrtO . o f i l e l . o - ld b _ c - ld b _ fp e

2.6.3 Floating-Point Emulation — VAX/VMS System
Files and libraries must be explicitly linked to achieve floating-point emulation on a
VAX/VMS system. This is a two-step process:

nmcc f i l e l . c
nmeld g n x d i r : f c r t 0 . ob j , f i l e l . o b j , g n x d i r : l i b f p e . a, g n x d i r : l i b c . a

2.7 ENVIRONMENT VARIABLES (FOR UNIX ONLY)
On UNIX systems, in addition to the command line options, the compiler accepts several
implicit options. These can be set through the environment variables CMDDIR,
TMPDIR, LIBPATH, PITFILE, and INCLUDEPATH which are described below:

CMDDIR
The environment variable CMDDIR can be given the value of a direc
tory name, in which the driver looks for the indirectly called programs
(cpp, c c _ f e , op t , etc.). For example, i f CMDDIR
' ' / u s r / n s c / l i b ' ' , the driver will look for / u s r/ n s c / l ib / c p p ,
/ u s r / n s c / l i b / c c _ f e , etc.

TMPDIR
This environment variable redefines the location at which temporary
files are created in the compilation process: Default is /tmp. This
environment variable should be used on small systems with tiny /tmp
partitions, which overflow when compiling huge files.

2-18 COMPILATION PROCESS

LIBPATH
The environment variable LIBPATH can be defined to contain one or
more directories (separated by I f LIBPATH is defined, then
libraries will be taken from one of these directories. For example, if
LIBPATH = / u s r / m y l ib : / u s r / y o u r l i b , then libraries will be in
either / u s r/ m y l ib or / u s r / y o u r l i b .

PITFILE
The environment variable PITFILE is used to redefine the default
filename for profile information table file (PIT) used by sprof and the
compiler. See Chapter 7 for more details.

INCLUDEPATH
I f the INCLUDEPATH variable is defined (in a similar format as L IB
PATH), the standard include files (such as < s t d i o . h >) will be
searched for in its directories

AVAIL_SWAP
The environment variable AVAIL_SWAP sets the maximum swap
sapce of the optimizer in megabyte units. AVAIL_SWAP should be set
to the number of megabytes to be used. See Section 6.7 for use of the
AVAIL_SWAP environment variable.

COMPILATION PROCESS 2-19

Chapter 3

EXTENSIONS TO THE C LANGUAGE

3.1 INTRODUCTION
The GNX—Version 4 C compiler is based on the UNIX portable C compiler, pcc. All
pcc extensions to the C language (as defined by Kernighan and Ritchie) are imple
mented by the GNX—Version 4 C compiler. In addition, the compiler includes two
main types of extensions:

1. ANSI C features - Most non pre-processor features of the ANSI C Standard are
implemented.

2. Embedded support extensions - Special features to assist programming embedded
applications.

This chapter describes the extensions implemented by the GNX—Version 4 C com
piler. Section 3.2 reviews the ANSI C extensions. Section 3.3 describes the embedded
support extensions. All other extensions are presented in Section 3.4.

3.2 ANSI FEATURES
This section describes ANSI C features implemented in the GNX - Version 4 C com
piler. For more details see C - A Reference Manual (second edition) by Harbison and
Steele, and the ANSI C standard.

3.2.1 Function Prototypes
Function prototypes are fully implemented.

EXTENSIONS TO THE C LANGUAGE 3-1

3.2.2 Volatile and Const Qualifiers
v o l a t i l e and c o n s t type qualifiers are fully supported. See Appendix E for more
details.

3.2.3 Void Data Type
The v o i d data type is used as the type mark for a function that returns no result. It
may also be used in any context where the value of an expression is discarded to expli
citly indicate that a value is ignored. This is done by writing a cast to void.

The type v o i d * is used for the generic pointer and is compatible with other pointer
types.

3.2.4 Signed Keyword
The signed keyword is recognized by the compiler.

3.2.5 The #pragma Directive
The #pragma directive is recognized by the preprocessor and by the compiler. How
ever, only the use of #pragma for interrupt/trap routines will be recognized by the
compiler. Any other use of the fp ragm a directive will be ignored by the compiler.

3.2.6 Single-Precision Floating Constants
These floating constants allow the explicit specification of constants as single-precision
in order to eliminate wasteful run-time conversions. This is accomplished by append
ing an f suffix to a float constant.

Example:

fmax += 1 7 . Of

The same effect can be achieved by casting the constant to float, as in fmax +=
(f l o a t) 1 7 . 0 ; . Not using either the suffix or the cast results in both fmax and the

value 17.0 being converted to double-precision for a double-precision addition; with
the result being converted back to single-precision.

3-2 EXTENSIONS TO THE C LANGUAGE

3.2.7 Unsigned Constants
Unsigned constants allow the explicit specification of unsigned constants. This is
accomplished by appending a u suffix to a positive integer constant.

Example: "65u "

As with single-precision floating constants, unsigned constants eliminate wasteful
run-time conversions.

3.2.8 Enumerated Types
Enumerated types as defined in ANSI C standard are fully supported. In addition, a
warning is issued on assignment of different enumeration.

3.2.9 Structure Handling
The GNX—Version 4 C compiler implements the following improvements to structure
handling:

• structure assignment

• structures as function arguments and return values

• reuse of structure and union member names

• initialization of first member of a union

• initialization of au to storage class structures

NOTE: Unlike initialization of automatic scalar variables , initialization of
automatic variables is limited to initializers known at compile time.

3.2.10 Concatenation of Adjacent String Literals
According to the ANSI C standard, string literals that are adjacent tokens are con
catenated into one character string literal.

For example the following code:

ch a r s = " h e l l o "
" w o r l d " ;

p r i n t f (s) ;

EXTENSIONS TO THE C LANGUAGE 3-3

prints the message:

h e l l o w o r l d

3.2.11 Obsolesce of the Old Fashioned Compound Assignment
Since old fashioned compound assignment syntax is obsolete in ANSI C, it is no longer
recognized by the GNX compiler.

For example, the following line:

i n t _ v a r =+ 5 ; /* u sed t o be e q u i v a l e n t t o ' i n t _ v a r += 5 ' */

is flagged as an error by the compiler.

3.2.12 Obsolesce of the Old Fashioned Initialization
Since the old fashioned initialization syntax is obsolete in ANSI C, it is no longer recog
nized by the GNX compiler.

For example, the following code:

i n t i n t _ v a r 14; /* u sed t o be e q u i v a l e n t t o ' i n t i n t _ v a r = 1 4 ; '

*/

is flagged as an error by the compiler.

3.3 EMBEDDED SUPPORT EXTENSIONS

3.3.1 Interrupt/Trap Routines Support
As part of the embedded support, the GNX C compiler enables programming of trap
and interrupt handlers in C. Handlers are defined as functions in the regular C syn
tax, preceded by a #pragma directive used to mark these functions as trap/interrupt
handler routines.

Special code is produced by the compiler for the enter and exit sequence of routines
marked as interrupt/trap handlers. This code is responsible for saving the proper
registers (i.e. all registers used by the routine and scratch registers i f the routine calls
another routine) when entering an interrupt/trap routine. When the routine is exited,
the saved registers are restored and RET I (for interrupts) or RETT (for traps) is per
formed (see the Series 32000 Programmer’s Reference Manual for further details).

3-4 EXTENSIONS TO THE C LANGUAGE

This section describes the syntax and semantics of writing interrupt/traps handlers in
the GNX C Compiler. See Appendix E for more details.

INTERRUPT/TRAP HANDLER DEFINITION
The interrupt/trap handler is written as a regular C routine in the usual C function
definition syntax. For example:

v o i d h n d l r _ f o o (v o i d)

{
p r i n t f (" d i v i s i o n by z e r o ") ;
e x i t (1) ;

} ;

The function is designated as an interrupt/trap handler in the following manner (the
#pragma is used to mark an interrupt/trap handler).

Syntax for interrupts:

#pragma i n t e r r u p t (function_name [,save_regs={int_regs I all_regs}])

Syntax for traps:

#pragma t r a p (function name [,save_regs={int_regs I all_regs}])

fu n c t io n _ n a m e is the name of the function to be marked as an interrupt/trap
handler. s a v e _ r e g s can be either a l l _ r e g s (save all registers for general purpose
and floating point), or i n t _ r e g s (save only general purpose registers).

In many applications the interrupt/trap handlers do not perform floating-point opera
tions. In such applications there is no need to save the scratch floating point registers.
The option s a v e _ r e g s enables you to specify the register type to be saved (when the
handler calls another routine). The default (if s a v e _ r e g s is omitted) is i n t _ r e g s .
Options different from a l l _ r e g s or i n t _ r e g s are considered errors.

NOTE: Only the registers used in the interrupt/trap routine (and the
scratch registers i f the interrupt/trap calls another function) are
saved.

A warning is issued by the compiler i f a function is marked as an interrupt/trap
handler using the tp ragm a directive, but no definition of the function was found in the
compiled module.

Multiple tp ragm a directives with the same function name are considered errors,
unless they are identical.

EXTENSIONS TO THE C LANGUAGE 3-5

Restriction

The #pragma directive must appear before any declaration or definition of the func
tion. The placement of the #pragma interrupt/trap in any other location results
in an error message.

USING INTERRUPT/TRAP HANDLERS
It is your responsibility to install the address (or descriptor) of the interrupt/trap
handler in the proper entry of the interrupt dispatch table (see the Series 32000 Develop
ment Board Monitor Reference Manual and the example presented in Appendix E for
further information).

Calling an interrupt/trap handler directly from within the C code is not permitted.
Any attempt to do so causes an error. This is because different instructions are used
for returning from the interrupt/trap routine (RET I/RETT) and for returning from a
regular routine (RET).

Attempts to call an interrupt/trap routine from within the C code is detected by the
compiler only for calls in the same module in which the interrupt/trap routine was
defined. All other calls are not detected by the compiler.

The default exception mode is direct-exception. In order to make non direct-exception
mode possible, you should insert an asm statement ".module" before the function
definition. It is your responsibility to do so. For more details see Appendix E.

3.3.2 Asm Keyword
The keyword asm is recognized for the insertion of assembly instructions directly into
the generated instruction stream. The syntax is

asm (constant-string) ;

where constant-string is a double-quoted character string.

The keyword asm can be used within functions as a statement and outside of functions
as a global declaration. A newline character will be appended to the given string
without causing any change in the assembly code. See Appendix E for a detailed exam
ple.

3-6 EXTENSIONS TO THE C LANGUAGE

3.3.3 Intrinsic Routines
The compiler enables the use of Series 32000/ EP application specific instructions
without the need of the asm keyword, by recognizing a set of intrinsic functions known
internally to the C compiler. These intrinsic functions are used in the code as regular
C functions, but are translated to an instruction sequence containing the special
instructions and not to a function call. See Appendix E for more details.

3.4 OTHER EXTENSIONS

3.4.1 $ Sign in Identifiers

The GNX—Version 4 C compiler allows the use of $ signs in identifier names.

3.4.2 Bitfields
The GNX—Version 4 C compiler implements signed, unsigned, int, short, and char
bitfields. Due to the Series 32000 architecture, the code for unsigned bitfields is more
efficient than the code for signed bitfields.

3.4.3 Ident Preprocessor Command
A new cpp-style directive is recognized for placing strings into the . comment section
of the object file. The syntax is

#id en t constant-string

where constant-string is a double-quoted character string. The string is passed to the
assembly file with a . i d e n t directive and placed by the assembler in the . comment
section of the object file.*

* See the Series 32000 GNX — Version 4 COFF Programmer’s Guide and the Series 32000 GNX —
Version 4 Assembler Reference Manual for a description of the . comment section and the . ident
directive.

EXTENSIONS TO THE C LANGUAGE 3-7

Chapter 4

IMPLEMENTATION ISSUES

4.1 INTRODUCTION
This chapter describes compiler implementation aspects which may differ from other
compilers and which may affect code portability.

Portability issues are recognized by the C standard as issues that may differ from one
implementation to another. The following two sections discuss portability issues. Sec
tion 4.2 defines how the GNX—Version 4 C compiler behaves under the listed issues.
Section 4.3 lists issues that cause an undefined behavior of the GNX—Version 4 C
compiler.

4.2 IMPLEMENTATION ASPECTS
The following cases are aspects of this implementation.

4.2.1 Memory Representation
• The representation of the various C types in this compiler are •

C TYPE SERIES 32000 DATE TYPE

int
long
short
char
float

double

32-bit double-word
32-bit double-word
16-bit word
8-bit byte
32-bit single-precision floating-point
64-bit double-precision floating-point

• The set of values stored in a c h a r object is signed.

• The padding and alignment of members of structures as described in Section
4.2.4.

• A field of a structure can generally straddle storage unit boundaries.

• While signed bitfields are implemented, it is not recommended to use them since
their implementation is slow. Bitfields are not allowed to straddle a double-word
boundary.

IMPLEMENTATION ISSUES 4-1

4.2.2 External Linkage
• There is no limit to the number of characters in external names.

• Case distinctions are significant in an identifier with external linkage.

4.2.3 Types and Conversions
• A right shift of a signed integral type is arithmetic, i.e., the sign is maintained.

• When a negative floating-point number is converted to an integer, it is truncated
to the nearest integer that is less than or equal to it in absolute value. The result
is returned as a signed integer.

• When a double-precision entity is converted to a single-precision entity, it is con
verted to the nearest representation that will fit in a f l o a t with default round
ing performed to the nearest value.

• The presence of a f l o a t operand in an operation not containing double operands
causes a conversion of the other operand to f l o a t and the use of single-precision
arithmetic. I f double operands are present, conversion to double occurs.

4.2.4 Variable and Structure Alignment
The alignment of entities in a program is a trade-off issue. Most Series 32000 CPUs are
more efficient when dealing with entities aligned to a double-word boundary. This nor
mally makes it necessary to have some amount of padding added to a program. This
padding represents an overhead in storage space.

The GNX—Version 4 C compiler allows the user to tailor the alignment of
structures/unions and their members and, independently, the alignment of other vari
ables. Function parameters are always double-word aligned. This allows the calling of
functions across modules without dealing with alignment issues.

Alignment of Variables
E x te rn , s t a t i c , and au to variables are aligned in memory according to their size
and the buswidth setting. Table 4-1 lists variable size, buswidth, and the alignment
determined by these two parameters.

A buswidth setting of 1 means “align to 1 byte.” Variables start on a byte boundary, in
other words, there is no alignment and no padding. When allocating storage for vari
ables, bytes are allocated sequentially with no padding between bytes.

Variables of size 1 are of the C type char , variables of size 2 are of the C type s h o r t ,
and variables of size 4 or greater are of the C types i n t , lo n g , f l o a t , and d o u b le
(size 8).

4-2 IMPLEMENTATION ISSUES

Table 4-1. Variable Alignment

BUS WIDTH
VARIABLE SIZE (BYTES)

1 2 >= 4

1 byte byte byte

2 byte word word

4 byte word double-word

A buswidth setting of 2 means “align to an even byte.” Variables that are larger than 1
byte start on a word boundary. This means that there may be padding of single bytes.

A buswidth setting of 4 means “align to a double-word boundary” (a byte whose
address is divisible by four). Variables that are 2 bytes long start on a word boundary;
variables that are 4 bytes or larger in size start on a double-word boundary. This
means that there may be padding of up to three bytes.

Arrays are aligned as the alignment of their element type. Structures are aligned
according to the alignment of the largest structure members. This is affected by the
- J (/ A L IG N) option. See “Structure/Union Alignment” and “Allocation of Bit-Fields”
for more details.

Example: The arrangement of i n t i ; s h o r t s i ; c h a r c ; s h o r t s2 ;

with a buswidth of 2 or 4 is

byte
number: 0______ 1______ 2______ 3______ 4______ 5______ 6______ 7______ 8______ 9

77777 52
_______1--------- _______1_______

GX-01-0-U

Note that to align s2 to a word boundary, padding space of one byte is needed after c.
This padding does not exist with a buswidth of 1.

IMPLEMENTATION ISSUES 4-3

Example: The arrangement of

c h a r c ; i n t i ;

with a buswidth of 4 is

byte
number: 0

EHMMM
GX-02-0-U

With a buswidth of 2, the arrangement is

byte
number: 0 1 2 3 4 5

GX-03-0-U

With a buswidth of 1, there is no padding.

It is important to note that the order in memory is the same as the declaration order
only for e x t e r n and s t a t i c variables. The optimizer may reorder a u to variables in
order to minimize padding space.

Fastest code is achieved by setting the default alignment to that of the data buswidth
of the CPU (for all but the NS32008, the NS32CG16, the NS32FX16, the NS32CG160
and the NS32016). This can be accomplished by setting the BUS parameter in the tar
get specification file, or by overwriting that file on the command line with the -KB
(/TARGET) option.

Structure/Union Alignment
Structure members are aligned within the structure, relative to the beginning of the
structure, in the same way that variables are aligned in memory. In order to maintain
the alignment of the members relative to memory, the structure itself is aligned in
memory according to the alignment of its largest members. This alignment may be
controlled by putting - J (/ALIGN) on the command line.

In addition, the total size of a structure is such that it also ends on an alignment boun
dary of its largest member. This maintains the alignment of individual members in
arrays of structures. This is illustrated in the F ILE s t r u c t example at the end of
this section.

4-4 IMPLEMENTATION ISSUES

For unions, there is no padding. The alignment of the union’s largest members deter
mine the alignment of the union itself.

Allocation of Bit-Fields
To understand the way bit-fields are handled, think of the situation where a field is
fetched from memory. The number of bits fetched is determined by buswidth. For
instance, i f a bus is 2-bytes wide, then 2 bytes are fetched, even i f only the first few bits
are needed. For convenience, the number of bits fetched is called the “fetching unit.”

Note that for the purpose of structure member alignment, the align switch value (1
byte, 2 bytes, or 4 bytes) is taken as a “virtual buswidth,” even if it is different from the
actual buswidth.

A complication exists when allocating bit-fields. The complication arises from the fact
that different base types for bit-fields (c h a r s h o r t , and i n t) are supported. The
maximum length of a bit-field is the size of its base type; therefore, there may be times
when a bit-field is larger than the buswidth. When the size of the base type is larger
than the buswidth, the size of the fetching unit is considered to be the base-type size.

The precise rules for determining the start of the fetching unit are quite complicated.
In general, it is determined by the current position in the allocation of structure
members and by the base-type of the first bit-field in a group of consecutive bit-fields.

An attempt is made to pack consecutive bit-fields as much as possible, as long as the
bit-fields remain in the same fetching unit. As soon as a field “spills over” into the next
fetching unit, the alignment is set to the next memory unit (byte, word, or double-word,
according to the align switch value and the base type of the field). A hole of padding
bits remains, and the beginning of the spill-over field determines the start of a new
fetching unit for following bit-fields. Using this method, bit-fields are packed as much
as possible while still maintaining the alignment.

If, because of the bit-fields, the structure as a whole does not terminate on a byte boun
dary, padding bits are added to it to fill up to the end of the last byte it occupies. Addi
tional padding bytes may be needed to fill to the alignment boundary of the largest
structure member. This is seen in Figure 4-1. The bit-field does not quite reach the
byte boundary; therefore, padding bits are added until the byte boundary is reached.
Additional padding bytes are added to fill to the alignment boundary of the double-
word structure member.

Example: s t r u c t A {
i n t i ;
u n s ig n e d b i t f i e l d : 4/

} a;

IMPLEMENTATION ISSUES 4-5

The arrangement of a’s fields in memory will be:

bit number

0 1
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3

2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

bitfield padding ,
bits i p a d d i ng byt es

L _____________________L

Figure 4-1. Bitfield Padding

Figure 4-2 is an example of the alignment on bit-fields given the different align switch
settings. To summarize, the - J (/ALIGN) switch affects:

• the alignment and padding used for structure members and the alignment of
variables of the structure type.

• the total storage allocated to a structure by determining if, and how many, pad
ding bytes will be added after its last field.

Example: s t r u c t x {
ch a r c , d , e ;
i n t i : 24;
} ;

ALIGN = 4/2
bit number 111111111122222222223333333333444444444455555555556666
0123456789012345678901234567890123456789012345678901234567890123

c d e jjim i i i M ill
0 1

byte number
2 3 4 5 6 7

ALIGN = 1
bit number 1111111111 22222222223333333333444444444455555555556666
0123456789012345678901234567890123456789012345678901234567890123

C d e i i i

0 1 2 3 4 5 6 7
byte number

Figure 4-2. Alignment on Bitfields

4-6 IMPLEMENTATION ISSUES

CAUTION

The user must make sure that all parts of the program use the same alignment for the
same structures; otherwise, problems result. The following example illustrates this
point.

Suppose the example program includes " f o o . h " . The file " f o o . h ” contains the fol
lowing definitions:

t y p e d e f s t r u c t {
i n t
u n s ig n e d ch a r
ch a r
ch a r

} XXX;

e x t e r n XXX a r r a y [1 0] ;

Note that XXX has two char members at its end. I f align=4, any variable declared to
be of type XXX will have two padding bytes added at its end in order to make it occupy
an integral number of double-words. When align=l or align=2, no padding is per
formed.

I f a module using ” f o o . h " is compiled with align=4 and later linked with a module
compiled with align=l or align=2 that tries to use a r r a y [n] where n > 0, the result
will be wrong. This is because the two modules disagree on the size of the elements in
the array.

The solution to this problem is to make sure all modules are compiled using either the
same alignment setting or a revised header file that has been made insensitive to the
setting of the alignment switch. This is performed by including the necessary padding
to enforce equal sizes and offsets. I f the latter solution is chosen, XXX is revised to
look like:

t y p e d e f s t r u c t {
i n t
u n s ig n e d ch a r
ch a r
ch a r
s h o r t

} XXX;

No padding is added by the compiler, and the size of the structure is the same for all
switch settings.

c o u n t e r ;
* p o i n t e r ;
f l a g l ;
f l a g 2 ;
p a d d in g ;

c o u n t e r ;
* p o i n t e r ;
f l a g l ;
f l a g 2 ;

IMPLEMENTATION ISSUES 4-7

4.2.5 Structure Returning Functions
In the GNX—Version 4 C compiler, structure returning functions have a hidden argu
ment which is the address of an area the size of the returned structure. This area is
allocated by the caller and its address is passed as a first argument to the structure
returning function. Structure returning functions are, therefore, re-entrant and inter
ruptible.

NOTE: At the optimizer’s discretion, small structures (less than 5 bytes)
may be passed and/or returned in a register.

4.2.6 Calling Sequence
The standard Series 32000 calling conventions are used by the GNX—Version 4 C com
piler for calls to external routines of all languages. It is, therefore, unnecessary to use
the f o r t r a n keyword in C programs (if present, the keyword is ignored).

However, local or internal routines (functions which in C are preceded by the s t a t i c
keyword) are called by more efficient calling sequences.

The standard Series 32000 calling conventions are described in Appendix A.

NOTE: Code using the Series 32000 modularity features cannot be mixed
with code not using those features. By default, the GNX—Version 4
tools assume no modularity.

4.2.7 Mixed-Language Programming
Mixed-language programs are frequently used for a couple of reasons. First, one
language may be more convenient than another for certain tasks. Second, code sec
tions already written in another language (e.g., an already existing library function)
can be reused simply by calling them.

A programmer who wishes to mix several programming languages needs to be aware of
subtle differences between the compilation of the various languages. Appendix B
describes the issues one needs to be aware of when writing mixed-language programs
and compiling and linking such programs successfully.

4-8 IMPLEMENTATION ISSUES

4.2.8 Order of Evaluation
The evaluation order of expressions and actual parameters in the GNX—Version 4 C
compiler differs from those of other compilers. Therefore, programs that rely on a
specific order of evaluation may not rim correctly when compiled. In particular, the fol
lowing orders of evaluation are unspecified:

• The order in which expressions are evaluated.

• The order in which function arguments are evaluated.

• The order in which side effects take place. For instance, a [i + +] = i may be
evaluated as

a [i] = i ;
i + + ;

or as

t = i ;
i + + ;
a [t] = i ;

4.2.9 Order of Allocation of Memory
The order of allocation of local variables in memory is compiler-dependent. After the
optimizer of the GNX—Version 4 C compiler performs register allocation, it reorders
the local variables left in memory. This reordering reduces memory space require
ments and minimizes displacement length. User programs that rely on any order of
allocation of local variables may not run correctly. See Chapter 6.

4.2.10 Register Variables
By default, register variables, as well as other local variables, are equal candidates for
register allocation. When given complete freedom, the optimizer generally performs a
better job of register allocation than when forced to follow the programmer’s allocation
suggestions. For programs which make assumptions about variables which reside in
specific registers, an optimization flag (-Ou or - 0 -Fu on UNIX and USER_REGISTERS
on VMS) is available to enforce the p c c allocation scheme for register variables of
scalar types and of type double. See also Section 6.6.7.

IMPLEMENTATION ISSUES 4-9

4.2.11 Floating-Point Arithmetic
The floating-point arithmetic conversion rules of the GNX—Version 4 C compiler com
plies with the ANSI C standard and may differ from other C compilers.

In an operation not containing double operands, i f one of two operands is of type
f l o a t , the other operand is converted to type f l o a t and single-precision arithmetic is
used. The result of the operation is of type f l o a t . Some other compilers perform
such operations in double precision.

In old C compilers, the result of float-returning functions was actually returned in dou
ble format and placed in the F0-F1 register pair. When compiled by the GNX—Version
4 C compiler, such functions return the result in float format and place the result in
the F0 register. Note that assembly programs that interface with float-returning func
tions may now incorrectly expect a double precision result.

Float parameters, however, are passed as double because the C language semantics do
not require type identity between actual and formal parameters. Code is generated in
the called function to convert these actual double values back to float if necessary.

Floating-point constants are of type d o u b le , unless they are typecast to f l o a t or are
suffixed by the letter f or F. By preference, constants of type f l o a t should be used
in float expressions to avoid the unnecessary casting of other operands to double preci
sion. For example,

fmax += 1 7 . 5 f ;

is more efficient than

fmax += 1 7 .5 ;

The following examples are of double constants and float constants.

Example: double constants float constants

14.5e6 14.5e6f
14.5 (f l o a t) 14.5

4.3 UNDEFINED BEHAVIOR
In the following cases, the behavior of the GNX—Version 4 C compiler is undefined:

• The value of a floating-point or integer constant is not representable.

• An arithmetic conversion produces a result that cannot be represented in the
space provided. •

• A volatile object is referred to by means of a pointer to a type without the volatile
attribute.

4-10 IMPLEMENTATION ISSUES

An arithmetic operation is invalid, such as division by 0, or produces a result that
cannot be represented in the space provided, such as overflow or underflow.

A member of a union object is accessed using a member of a different type.

An object is assigned to an overlapping object.

The value of a register variable has been changed between a s e t jmp call and a
lo n g jm p call.

IMPLEMENTATION ISSUES 4-11

Chapter 5

OPTIMIZATION TECHNIQUES

5.1 INTRODUCTION
The main difference between the GNX—-Version 4 C Compiler and other compilers is
the optimizer. Recompiling and optimizing with the GNX—Version 4 C Compiler will
result in a 10 percent to 200 percent speedup for most programs, with the mean above
30 percent.

This chapter describes some of the advanced optimization techniques used by the
GNX—Version 4 C Compiler to improve speed or save space. The most important tech
niques are:

• Value propagation

• Constant folding

• Redundant assignment elimination

• Partial redundancy elimination

• Common subexpression elimination

• Flow optimizations

• Loop unrolling

• Dead-code removal

• Loop-invariant code motion

• Strength reduction

• Induction variable elimination

• Register-allocation by coloring

• Peephole optimizations

• Memory-layout optimizations

• Fixed frame

• Runtime feedback optimization

The following sections describe these techniques in more detail. For coding suggestions
and other practical guidelines on how to make best use of the optimizing aspects of the
compiler, see Chapter 6.

OPTIMIZATION TECHNIQUES 5-1

5.2 THE OPTIMIZER
The optimizer, shared by all the GNX — Version 4 Compilers, is based on advanced
optimization theory, developed over the past 15 years. Central to the optimizer is an
innovative global-data-flow-analysis technique which simplifies the optimizer’s imple
mentation. It allows the optimizer to perform some unique optimizations in addition to
standard optimizations found in other compilers. Optimizations are performed globally
on the code of a whole procedure at a time and not just in a local context.

The optimizer can be regarded as a multi-step process. Each step performs its particu
lar optimizations and provides new opportunities for the optimizations of the next step.

STEP ONE
The first step in the optimization process is to read in the source program one pro
cedure at a time and to partition this procedure into basic blocks. A basic block is a
straight line sequence of code with a branch only at the entry or exit. Some of the
optimizations performed during this step are:

• Value Propagation
Value propagation (or copy propagation) is the attempt to replace a variable with
the most recent value that has been assigned to it. This optimization is primarily
useful in the special case of constant propagation. It is important because it
creates opportunities for other optimizations. Value propagation can be turned
off by the CODE_MOTION optimization flag (-Om on UNIX systems).

• Constant Folding
I f an expression or condition consists of constants only, it is evaluated by the
optimizer into one constant, thereby avoiding this computation at run-time. The
optimizer, using algebraic properties such as the commutative, associative and
distributive law, sometimes rearranges expressions to allow constant folding of
part of an expression.

The GNX—Version 4 C Compiler also folds floating-point constant expressions.
This feature can be turned off using the NOFLOAT_FOLD option (-O c on UNIX sys
tems) of the optimizer.

• Redundant Assignment Elimination
The optimizer detects and eliminates assignments to variables which are not used
later in the program or which are assigned again before being used. This optimi
zation can often be applied as a result of value propagation.

Value propagation, constant folding, and redundant assignment elimination are
illustrated in Figure 5-1.

5-2 OPTIMIZATION TECHNIQUES

a = 4;
i f (a*8 < 0) b = 15;
e l s e b = 20;

... c o d e w h i c h u s e s b b u t n o t a ...

is translated by the GNX—Version 4 C Compiler front end into the
following intermediate code

a <- 4
i f (a*8 >= 0) go to LI
b <— 15
go to L2

L I : b 20
L 2 : . . .

which is transformed by “value propagation” into

a 4
i f (4*8 >= 0) g o to LI
b <— 15
go to L2

L I : b <— 20
L2: . . .

which after “constant folding” becomes

a <— 4
i f (t ru e) g o to LI
b <- 15
go to L2

L I : b <— 20
L 2 : . . .

“dead code removal” results in

a <— 4
go to LI

L I : b f - 20
L2: . . .

which is transformed by another “flow optimization” into

a <— 4
b i— 2 0

Since there is no further use of a, a <— 4 is a “redundant assignment:”

b <- 20

The program sequence

Figure 5-1. Relationship Between Various Optimizations

STEP TWO
The second step in the optimization process is the construction of the program’s “flow
graph.” This is a graph in which each node represents a basic block. As mentioned in
STEP ONE, a basic block is a linear segment of code with only one entry point and one
exit point. I f there is a path in the program that leads from one basic block to another,
then an “arrow” is drawn in the graph to represent this path.

OPTIMIZATION TECHNIQUES 5-3

Figure 5-2 illustrates a flow graph, representing an "if-then-else" sequence.

Figure 5-2. Flow Graph

During the construction of the flow graph, additional optimizations can be performed:

• Flow Optimizations
Flow optimizations reduce the number of branches performed in the program.
One example is to replace a branch whose target is another branch with a direct
branch to the ultimate target. This often makes the second branch redundant.
At other times code is reordered to eliminate unnecessary branches. Branches to
“return” are replaced by the return-sequence itself.

• Loop Unrolling
Loop unrolling duplicates the body of a loop. This reduces the number of times
that the loop control code is executed. Loop unrolling improves performance by
reducing the number of increment, comparison, and branch instructions.

This technique is particularly useful for small loops whose iteration control con
stitutes a significant part of loop execution time. However, because loop unrolling
does involve the duplication of the loop’s body, more space is needed.

When a loop is unrolled, it is replaced by code with the following structure:

1. Pre-Loop Code - Checks whether to enter the unrolled loop body or to branch
to the tail-code.

2. Unrolled Loop Body - The loop body duplicated a number of times.

3. Tail-Code - Performs the remaining iterations.

Based on a loop’s code size, the optimizer determines whether to perform loop
unrolling, and i f so how many times. An example of loop unrolling is shown in
Figure 5-3.

5-4 OPTIMIZATION TECHNIQUES

Code sequence for initialization of an array :

f o o (i n t j)
{

in t i ;
i n t a [100];

f o r (i = j ; i < 100; i+ +) {
a [i] = 0;

}
}

When unrolled 5 times, is equivalent to the following code sequence:

f o o (i n t j)
{

in t i ;
in t a [100];

/* p r e - lo o p code */
i = j ;
i f (i > 95) go to TAIL_CODE;

/* u n ro l l e d loop body */
f o r (; i < 95; i += 5) {

a [i] = 0;
a [i + 1] = 0;
a [i+2] = 0;
a [i+3] = 0;
a [i+4] = 0;

}

TAIL_CODE:
/* t a i l code */
f o r (; i < 100; i++)

a [i] = 0 ;
}

Figure 5-3. Example of Loop Unrolling

• Dead Code Removal
Flow optimizations are also designed to help the optimizer discover code which
will never actually be executed. Removal of this code, called “dead code removal,”
results in smaller object programs.

STEP THREE
Step three of the optimization process is called “global-data-flow-analysis.” It identifies

OPTIMIZATION TECHNIQUES 5-5

desirable global code transformations which speed program execution. Many of these
concentrate on speeding up loop execution, since most programs spend 90 percent or
more of their time in loops. Global-data-flow-analysis is the computation of a large
number of properties for each expression in the procedure.

Unlike most optimizers, which employ unrelated and separate techniques, the optim
izer centers around one innovative technique which involves the recognition of a situa
tion called “partial redundancy.” This technique is so powerful that many other optim
izations turn out to be special cases. The central idea is that it is wasteful to compute
an expression, say a*b , twice on the same path; it is often faster to save the result of
the first computation and then replace the fully redundant second computation with
the saved value. More common, however, is the case in which an expression is par
tially redundant; there is one path to an expression, which already contains a computa
tion of that expression, but another path to that same expression does not.

The following optimizations are performed by a common technique:

• Elimination of Fully Redundant Expressions
This optimization is often called “Common Subexpression Elimination.” It is rela
tively simple to avoid the recomputation of fully redundant expressions. The
optimizer saves the result of the first computation (usually in a register variable)
and uses the saved value in place of the second computation. Performance
conscious programmers sometimes do this themselves, but many cases, such as
array index and structure member calculations, are recognized only by the optim
izer.

• Partial Redundancy Elimination
A partially redundant expression can be eliminated in two steps. First, insert the
expression on the paths in which it previously did not occur; this makes the
expression fully redundant. Second, save the first computations and use the save
value to replace the redundant computation. An example of this optimization is
shown in Figure 5-4.

Partial redundancy elimination sometimes results in slightly larger code, but exe
cution is not harmed, since all inserted expressions are in parallel and only one is
actually executed.

• Loop Invariant Code Motion
I f an expression occurs within a loop and its value does not change throughout
that loop, it is called “loop invariant.” Loop invariant expressions are also par
tially redundant. This can be understood by realizing that there are two paths
into the loop body: one is through the loop entry (the first time the loop is exe
cuted), and the other is from the end of the loop, while the exit condition is false.
Loop invariant computations are, therefore, removed from the loop in the same
way: the expression is first inserted on the entry path to the loop, and then is
saved on the entry path in a register, while the redundant computation in the
loop is replaced by that register.

• Strength Reduction
This optimization globally replaces complex operations with simpler ones. This is

5-6 OPTIMIZATION TECHNIQUES

In the following code, a*b is “partially redundant” (computed twice
only i f C is true):

i f (C)
x = a*b;

e l s e
b = b+10;

y - a*b;
It is first transformed into a “fully redundant” expression

i f C = 1
x +- a*b

e l s e
b b+10
temp +- a*b

y < r - a*b

Then, as in the simple case of “redundant expression elimination,”
this is reduced to

i f C = 1
temp +- a*b
x +- temp

e l s e
b +- b+10
temp +- a*b

y +- temp

Now, the expression a*b is computed only once on any path.

Figure 5-4. Example of Partial Redundancy Elimination

primarily useful for reducing complex array-subscript computations (involving
multiplication into simpler additions).

Example: s t a t i c i n t a [1 5] ; f o r (i = 0 ; i < 1 5 ; i + = l)
a [i] = 1;

is transformed into:

f o r (i = 0 , p = a ; i< 1 5 ; i + = l , p+=4)

*P = l ;

• Induction Variable Elimination
Induction variables are variables which maintain a fixed relation to other vari
ables. The use of such variables can often be replaced by a simple transforma
tion. For instance, the example given for strength reduction can be reduced to the
following:

OPTIMIZATION TECHNIQUES 5-7

f o r (p=a ; p<a+60 ; p+=4)
*P = 1;

STEP FOUR
The fourth optimization step performed by the optimizer, and possibly the most
profitable, is the “register allocation” phase. Register allocation places variables in
machine registers instead of main memory. References to a register are always much
faster and use less code space than respective memory references.

The algorithm used by the optimizer is called the “coloring algorithm.” First, global-
flow-analysis is performed to determine the different live ranges of variables within the
procedure. A live range is the program path along which a variable has a particular
value. Generally, an assignment to a variable starts a new live range; this live range
terminates with the last use of that assigned value.

The optimizer subsequently constructs a graph as follows: each node represents a live
range; two nodes are connected i f there exists a point in the program in which the two
live ranges intersect. The allocation of registers to live ranges is now the same as
coloring the nodes of the graph so that two connected nodes have different colors. This
is a classic problem from graph theory, for which good solutions exist. I f there are not
enough registers, more frequently used variables have higher priority than less fre
quently used ones. Loop nesting is taken into account when calculating the frequency
of use, meaning that variables used inside of loops have higher priority than those that
are not.

Most optimizing compilers attempt register allocation only for true local variables, for
which there is no danger of “aliasing.” An alias occurs when there are two different
ways to access a variable. This can happen when a global variable is passed as a refer
ence parameter; the variable can be accessed through its global name, or through the
parameter alias. A common case in C is when the address of a variable is assigned to a
pointer.

The optimizer takes a more general approach by considering all variables with
appropriate data types as candidates for register allocation, including global variables,
variables whose addresses have been taken, array elements, and items pointed to by
pointers. These special candidates cannot reside in registers across procedure calls and
pointer references and, therefore, normally have lower priority than local variables.
However, instead of completely disqualifying the special candidates in advance, the
decision is made by the coloring algorithm.

Additional important optimizations performed by the register allocator are:

• Use of Safe and Scratch Registers
The Series 32000 machine registers are, by convention, divided into two groups:
registers RO through R2 and F0 through F3, the so-called “scratch” registers
which can be used as temporaries but whose values may be changed by a pro
cedure call, and the “safe” registers (R3 through R7 and F4 through F7) which are

5-8 OPTIMIZATION TECHNIQUES

guaranteed to retain their value across procedure calls. The register allocator
spends a special effort to maximize the use of scratch registers, since it is not
necessary to save these upon entry or restore them upon exit from the current
procedure. The use of scratch registers, therefore, reduces the overhead of pro
cedure calls.

• Register Parameter Allocation
The register allocator attempts to detect routines, whose parameters can be
passed in registers. This is possible for static routines only, since by definition all
the calls to such routines are visible to the optimizer. Calls to other (externally
callable) routines are subject to the standard Series 32000 calling sequence.
Passing parameters in registers is another way to reduce the overhead of pro
cedure calls.

STEP FIVE
The last optimization step consolidates the results of all previous steps by writing out
the optimized procedure in intermediate form for the separate code generator. Some
reorganization takes place during this step. Local variables which have been allocated
in registers are removed from the procedure’s activation record (frame), which is reor
dered to minimize overall frame size.

5.3 THE CODE GENERATOR
The back end (code generator) attempts to match expression trees with optimal code
sequences. It applies standard techniques to minimize the use of temporary registers,
which are necessary for the computation of the subexpressions of a tree. The main
strength of the code generator lies in the number of “peephole optimizations” it per
forms.

Peephole optimizations are machine-dependent code transformations that are per
formed by the code generator on small sequences of machine code just before emitting
the code. Some of the most important peephole transformations are listed below:

• The code for maintaining the frame of routines which have no local variables, or
whose variables are all allocated in registers, is removed.

• Case statements are optimized into binary search, linear search or table-indexed
code (using the Series 32000 CASE instruction), in order to obtain optimal code in
each situation.

• The stack and frame areas are always aligned for minimal data fetches.

• Reduction of arithmetic identities, i.e., x * l = x , x+0 = x, etc.

• Use of the ADDR instruction instead of ADD of three operands.

• Some optimizations performed in the optimizer, such as the application of the dis
tributive law of algebra, i.e., (10 + i) * 4 = 4 0 + 4 * i , provide additional opportuni
ties to the code generator to fully exploit the Series 32000's addressing modes.

OPTIMIZATION TECHNIQUES 5-9

• Use of a d d r instead of MOVZBD of small constant.

• Strength Reduction Optimizations. Use of MOV'D instead of MOVF from memory
to memory; use of index addressing mode instead of multiplication by 2, 4 or 8;
use of combinations of ADDR instructions or shift and a d d sequences instead of
multiplication by other constants up to 200.

• Fixed Frame Optimization. An important contribution of the code generator is its
ability to precompute the stack requirements of a procedure in advance. This
allows the generation of code which does not use (nor update) the FP (frame
pointer), resulting in cheaper calling sequences.

This optimization is most useful when the procedure contains many procedure
calls because it is not necessary to execute code to adjust the stack after every
call. Parameters are moved to the pre-allocated space instead of pushing them on
to the stack using the top-of-stack addressing mode. Note that when using this
optimization, the run-time stack pointer stays the same throughout the pro
cedure, and all references to local variables are relative to it and not to the FP.
Also note that since parameters are not pushed on to the stack, the evaluation
order of parameters is not defined solely by their original order.

While most optimizations are beneficial for both speed and space, some optimizations
favor one over the other. The default setting of the optimizer switch favors speed over
space in trade-off situations. The following are the effects of favoring space over speed
(by an optimization flag):

• Code is not aligned after branches.

• All returns within the code are replaced by a jump to a common return sequence.

• Certain space-expensive peephole transformations are not performed.

5.4 MEMORY LAYOUT OPTIMIZATIONS
The following memory layout optimizations are performed by the GNX—Version 4 C
Compiler:

• Frame variables that are allocated in registers are removed from the frame.

• Internal, static routines whose parameters are passed in registers have smaller
frames.

• The stack alignment is always maintained. Stack parameters are passed in
aligned positions.

• Frame variables are allocated in aligned positions. The optimizer reorders these
variables to save overall frame space. •

• Code is aligned after every unconditional jump.

5-10 OPTIMIZATION TECHNIQUES

5.5 RUNTIME FEEDBACK
The optimizer has normally no way to determine the actual runtime behavior of a pro
gram. What looks like a loop may in reality never be executed. The GNX—Version 4 C
Compiler has an option to create a statistic record of a program’s execution path. This
execution profile can then be used in a subsequent optimization pass of the same pro
gram, to improve the optimizer’s heuristic algorithms. This technique, call runtime
feedback optimization, effects mainly the following optimizations:

• Loop Unrolling

• Register Allocation

For more details on runtime feedback optimization see Section 7.4.

OPTIMIZATION TECHNIQUES 5-11

Chapter 6

GUIDELINES ON USING THE OPTIMIZER

6.1 INTRODUCTION
The following sections are provided as guidelines on using the GNX—Version 4 C
Compiler. Experienced programmers should understand this compiler’s optimization
techniques in order to:

• Learn how to port programs to the GNX—Version 4 C Compiler.

• Understand how to recognize and avoid nonportable code.

• Avoid using programming tricks that rely on the way ordinary compilers generate
code.

• Avoid performing “hand optimizations” that the optimizer does anyway.

• Avoid writing code that may prevent certain optimizations.

• Understand how to select the different command line optimization flags to
achieve optimal performance.

Please read Chapter 5 for a complete description of the optimization techniques.

6.2 OPTIMIZATION FLAGS
Optimization options available to the user are listed in Table 6-1. Default options are
marked by (*).

GUIDELINES ON USING THE OPTIMIZER 6-1

Table 6-1. Optimization Options

UNIX VMS DESCRIPTION

o NOOPT does not invoke the optimizer phase.

B RUNTIME_FEEDBACK performs runtime feedback optimization

* b NORUNTIME_FEEDBACK does not perform runtime feedback optimi
zation

c NOFLOAT_FOLD does not compute floating-point constant
expressions at compile time.

* C FLOAT_FOLD performs floating-point constant folding.

* F FIXED_FRAME uses fixed frame references, avoids use of
the FP register or the Series 32000
ENTER/EXIT instruction.

f NOFIXED_FRAME compiles for debugging: uses slower FP
and TOS addressing modes.

I NOVOLATILE applies all optimizations to all variables
(including global variables).

i VOLATILE compiles system code: assumes that all
global and static memory variables and
pointer dereferences are volatile.

L STANDARD_LIBRARIES assumes use of standard run-time library

1 NO STANDARD_LIBRARIES assumes that all routines have corrupting
side effects.

* M CODE_MOTION performs global code motion optimizations.

m NOCODE_MOTION does not perform global code motion
optimizations.

N LOOP_UNROLLING performs loop-unrolling optimizations.

* n NO LOOP_UNRO L LING does not perform loop-unrolling optimiza
tions.

U NOUSER_REGISTERS ignores user register declarations.

u USER_REGISTERS allocates user-declared register variables
in registers as done by pcc.

* R REGISTER_ALLOCATION performs the register allocation pass of the
optimizer.

r NOREGISTER_ALLOCATION does not perform the register allocation
pass of the optimizer.

* S S P E E D_0 VE R_S P ACE optimizes for speed only.

s NOSPEED_OVER_SPACE does not waste space in favor of speed.

1-9 maximal memory/swap-space available is
1 through 9 Mbytes (default: 4 Mbytes).

6-2 GUIDELINES ON USING THE OPTIMIZER

6.2.1 Optimization Options on the Command Line — U NIX Systems
The -0 option enables the optimizer. Specifying -0 on the command line results in
the fastest possible code without undue increase in code size. (-O bC F lU M n L R S) . In
special cases, such as when compiling operating system code, there may be a need to
further refine the optimization phase by specifying optimization flags. Individual
optimization flags can be specified either by using the - F option or by simply append
ing them to -0. Table 6-2 lists reasons why a particular default option might be
changed.

Even when the optimizer pass is omitted, some local optimizations are performed by
the code generator. Note that specifying the compiler debug option (- g) on the com
mand line automatically turns off the optimizer fixed frame flag (-O F) , unless other
wise specified by the user.

Also note that using the compiler target option (-KB1) favors space over speed by sav
ing alignment holes normally produced when the bus width is the default (-K B 4) .

6.2.2 Optimization Options on the Command Line — VMS Systems
The fastest possible code, without undue increase in code size, is generated by specify
ing / O P T IM IZ E on the command line. This is equivalent to entering:

/OPTIMIZE=(FIXED_FRAME, CODE_MOTION, REGISTER_ALLOCATION, FLOAT_FOLD,
SPEED_OVER_SPACE, NOVOLATILE, STANDARD_LIBRARIES, NOUSER_REGISTERS,
NOLOOP JJNROLLING,NORUNTIME_FEEDBACK)

In special cases, such as when compiling operating system code, there may be a need to
further refine the optimization phase by specifying optimization flags. Table 6-2 lists
reasons why a particular default option might be changed.

Even when the optimizer pass is omitted, some local optimizations are performed by
the code generator. Therefore, specifying /N O O PT IM IZE (which is the default for this
qualifier) is equivalent to entering:

/O P T IM IZ E R NOOPT, NOFIXED_FRAME, NOCODE_MOTION, NOREGISTER_ALLOC-ATION,
NOFLOAT_FOLD, SPEED_OVER_SPACE, NOVOLATILE,
NOSTANDARD_LIBRARIES, USER_REGISTERS,NOLOOP_UNROLLING,
NORUNTIME_FEEDBACK)

Note that specifying the compiler debug option (/DEBUG) on the command line
automatically turns off the optimizer fixed frame option (F IXED_FRAM E), unless other
wise specified by the user.

Also note that using the compiler option / T A R G E T = (B U S W ID T H =1) favors space over
speed by saving alignment holes normally produced when the bus width is the default
(BUSW IDTH=4).

GUIDELINES ON USING THE OPTIMIZER 6-3

There is normally no reason to turn off any of the optimization options; the default pro
duces the best results, see Table 6-2. Refer to Chapters 2 and 5 for more on optimiza
tion options.

6.2.3 Changing Default Optimization Options

T '{ | j\ . \ \
Km > a <y$ Table 6-2. Changing Default Optimization Options

vV

v
V o ^

\p‘J

Cp

- « o ' "

!\Y

• (>6

OPTION REASON FOR CHANGING OPTION SEE ALSO

NOFIXED_FRAME (-Of)
- Q ’Oyy (̂ ̂ '

ff .V vV * ̂ ^vUu\)

to debug the program or to compile nonport
able programs that assume knowledge of the
run-time stack.

6.3.4, 6.4

VOLATILE(-Oi) to compile system programs, such as device
drivers, which contain variables that change
or are referenced spontaneously.

6.3.2

NO_STANDARD_LIBRARIES(-01) to compile programs which re-implement stan
dard functions, in a way which does not agree
with the optimizers assumptions (i.e., have
side effects).

6.3.5

NOFLOAT_FOLD(-Oc) to compile programs whose correct execution
depends on the order in which floating-point
expressions are evaluated.

6.3.6

NOCOD E_MO TION(-Om) to compile programs which contain huge func
tions, which are a drain on the system’s
resources and are time consuming to optimize.

LOOP_UNROLLING(-ON) to compile program segments containing tight
loops which are most often executed.

6.6.9

USER_REGISTERS(-Ou) to compile programs which rely on the register
allocation scheme of pcc.

6.6.7

NOREGISTER_ALLOCATION(-Or) to run programs that cease to work when per
forming register allocation.

6.6.7

NOSPEED_OVER_SPACE(-Os) to compile programs which must fit as tightly
as possible in memory.

6.6.9

noopt (-Oo or use -Fflags
without giving -o)

when the optimizer phase is not required and
another flag needs to be turned off as well.

6.6.10

NORUNTIME_FEEDBACK (-Ob Or
use -Fflags without giving -o)

when run-time feedback is required to achieve
better optimization results based on the typi
cal behavior of the program.

6.6.11

6-4 GUIDELINES ON USING THE OPTIMIZER

6.3 PORTING EXISTING C PROGRAMS
Almost every program which runs when compiled by other C Compilers, will compile
and run on the GNX—Version 4 C Compiler without any changes in the sources. How
ever, there might be a few programs which will cease to work in the same manner as
before, when compiled by the GNX—Version 4 C Compiler. There might be other pro
grams, which seem to work when compiled without the optimizer, but which cease to
work when optimized. The following sections describe some of the reasons for this
phenomenon.

6.3.1 Undetected Program Errors
The single most common reason for a nonfunctioning program is an undetected pro
gram error, which becomes apparent only when compiling under a different compiler or
only when optimizing. Many of these errors result from the fact that the program
author relied on the way the compiler compiled, and thereby created a program which
is clearly nonportable.

The following partial list points out some of the most common problems:

• Uninitialized local variables.
Since the memory and register allocation algorithms of the GNX—Version 4 C
Compiler are very different from those of other compilers, a local variable may wind
up in a completely different place. For example, a programmer may fail to initialize
a local variable, with the assumption that, upon program start, it would certainly
contain zero. This may become false as a result of the register allocation phase of
the GNX—Version 4 C Compiler.

• Relying on memory allocation
One cannot assume that i f two variables are declared in a certain order, they will
actually be allocated in that order. A program that uses address calculations to
proceed from one declared variable to another declared variable might not work.

• Failing to declare a function
A c h a r returning function will return a value in the lower-order byte of RO,
without affecting the other bytes. A failure to declare that function where it is
used, might result in an error. For instance, assuming that g e t _ c o d e () is defined
to return a ch ar , then

m a in () {
i n t i ;
i f ((i = g e t _ c o d e ()) == 17) d o _ s o m e t h in g () ;

}

might never execute d o _ s o m e th in g even if g e t _ c o d e returns 17 since the whole
register is compared to 17, not just the low-order byte.

A similar problem exists for functions which return s h o r t or f l o a t , or those
which return a structure.

GUIDELINES ON USING THE OPTIMIZER 6-5

System code is distinguished from general “high-level” code, by the fact that it is
machine-dependent, often contains real-time aspects and interspersed asm statements,
and is often driven by asynchronous events, such as interrupts. Examples of system
code are interrupt routines, device handlers and kernel code. From the optimizer’s
point of view, ordinary looking global variables can actually be semaphores or
memory-mapped I/O, that can be affected by external events, which are not under the
optimizer’s control. Even so, it is still possible to optimize such code, by taking some
precaution, and by activating some special optimization flags. Some of these aspects
are discussed in the following sections.

• Volatile variables
Volatile variables are variables, which might be used or changed by asynchronous
events, such as I/O or interrupts. The / O P T IM IZ E = V O L A T IL E (- O i under the
UNIX operating system) qualifier treats all global variables, static variables, and
pointer dereferences as volatile, which means that they are not subject to any
optimizations. As a result, the number and nature of memory references to them
will not change. Remember that individual identifiers can be declared as volatile by
using volatile type qualifiers. The following examples demonstrate the consequences
of volatile variables and pointer dereferences.

Examples: 1. x = 17; x = 18;

I f x is volatile, both of the two assignments to x are executed even
though the first one seems redundant.

2. x = 9;
y = x + 1;

I f x is volatile, this program segment is not optimized to
y = 10;

3. *p = b + c ;

i f *p is volatile, then this results in

6.3.2 Compiling System Code

and not

movd b, REG
addd c , REG
movd REG o (

movd b, 0 (p)
addd c, 0 (p)

The difference stems from the fact that the second sequence, though fas
ter, makes two references to 0 (p) when the programmer may have
wanted only one.

6-6 GUIDELINES ON USING THE OPTIMIZER

Optimizing a program changes the timing of various constructs. In particular, delay-
loops might now run faster than before.

6.3.3 Timing Assumptions

6.3.4 Low-Level Interface
• Relying on register order

A program that relies on the fact that a given register variable resides in a
specific register must be compiled with the / O P T lM IZ E = U S E R _R E G IS T E R S flag
(-Ou on UNIX systems) turned on (see Section 6.6.7).

• Relying on frame structure
A program, that relies on a specific frame structure, must be compiled with the
FIXED_FRAM E flag turned off (- O f on UNIX systems). This includes, in particular,
programs that use the standard a l l o c a () function (which allocates space on the
user’s frame).

Referring to variables on the frame of a different function (such as the caller of
this function) by complex pointer arithmetic may also cease to work. See Appen
dix A for more details.

• Using asm statements
The code inserted by asm statements may cease to work because the surrounding
code produced by the GNX—Version 4 C Compiler will normally be different from
another compiler’s code. See Section 6.6.6.

6.3.5 Using Nonstandard Library Routines
The GNX—Version 4 C Compiler assumes by default that all the C standard
mathematical library routines listed in Table 6-3 are available as a standard run-time
library. These library routines have absolutely no access to global variables. There
fore, calls to these routines are specially recognized and marked as calls which do not
disturb optimizations of the global variables of the program. The global library vari
able e r r n o is treated as volatile, so no references to it will be optimized. This is nor
mally a safe assumption since it is unusual for a program to redefine (and thereby
hide) these standard routines. The functions a b s , f a b s , and f f a b s actually compile
into in-line code and do not generate a procedure call at all.

In addition, a set of intrinsic routines known internally to the computer are supported.
See Chapter 8.

The compiler generates a warning message whenever it compiles a program which does
redefine one of these routines. In this case the user must decide whether the redefined
routine’s behavior is consistent with the previously mentioned assumption of the
optimizer. I f it is not, the user has the choice of renaming the redefined routine (so
that calls to it are not specially recognized), or of using the NOSTANDARD_LIBRARY flag
(-0 1 on UNIX), which turns off the recognition of all library routines.

GUIDELINES ON USING THE OPTIMIZER 6-7

Table 6-3. Recognized Library Routines

abs a cos f a c o s a s in f a s i n a tan fa t a n
a tan2 fa ta n 2 cabs f c a b s c e i l f c e i l c o s
f c o s cosh f c o s h e r f f e r f e r f c f e r f c
exp f e x p fa b s f f abs fmod
f fmod fm od f f fm o d f f r e x p gamma h yp o t fh y p o t
jo j l jn ld e x p l o g f l o g l o g lO
f l o g l O modf pow fpow s in f s in s in h
f s in h s q r t f s q r t ta n f t a n tan h f t a n h

y0 y i yn

6.3.6 Reliance on Naive Algebraic Relations
Since the optimizer performs floating-point constant folding, i.e. , it rearranges expres
sions to evaluate constant subexpressions at compile time, some naive algebraic
expressions are folded away.

Example: do {
a = a * 2;

}
w h i l e ((a + 1 .0) - 1 .0 == a) ;

is optimized to

do {
a = a *2 ;

}
w h i l e (1) ;

which was not the programmer’s intention.

To maintain the program and keep the programmer’s original intention, the program
mer should use the NOFLOAT_FOLD (-O c on UNIX systems) optimization flag to
suppress the folding optimization.

6-8 GUIDELINES ON USING THE OPTIMIZER

6.4 DEBUGGING OF OPTIMIZED CODE
Most of the time, the user should not need to debug an optimized program. The major
ity of all bugs can be found before optimization is turned on. However, there are some
rare bugs which make their appearance only when the optimizer is introduced, bugs
that are difficult to find without a debugger.

The problem is that code motion optimizations and register allocation obsolete most of
the symbolic debugging information generated by the compiler. The following “rules of
thumb” can be employed when using symbolic debug information together with the
optimizer:

• Line number information is correct, but the code performed at the specified lines
may be different from non-optimized code as a result of various code motion
optimizations, such as moving loop invariant expressions out of loops.

• Symbolic information for global variables is normally correct, since global vari
ables are rarely put in registers. In particular, i f a global variable is not refer
enced within the current procedure, the value in memory is valid and the sym
bolic information is correct.

• Symbolic information for parameters is correct except in the following two cases:

1. When a parameter is allocated a register and there is an assignment to that
parameter, the symbolic information is incorrect.

2. When a parameter of a local procedure is passed in a register as a result of
an optimization, the symbolic information is incorrect. In this case, the
symbolic information of all other parameters is incorrect because their offset
within the procedure’s frame is changed.

• Symbolic information of local variables is likely to be incorrect because most of
the local variables are put in registers; the rest of the local variables are reor
dered into new frame locations, or "optimized out".

• Note that i f symbolic information is requested, then slightly different code is gen
erated. This happens because the optimizing flag FIXED_FRAM E (-O F on UNIX
systems) is automatically disabled when the /DEBUG (- g qualifier on UNIX sys
tems) is used. Specifically, the ENTER instruction is always generated at the
entry of procedures, and frame variables are referenced by FP-relative rather
than SP relative addressing mode. Without disabling this flag, symbolic debug
ging is almost impossible.

It is helpful to have an assembly listing of the program in question which has been
compiled with the /ASM (- S on UNIX systems) and the /ANNOTATE (- n on UNIX sys
tems) qualifiers. Such a listing contains comments from the optimizer regarding its
actions (see Section 6.5).

GUIDELINES ON USING THE OPTIMIZER 6-9

6.5 IMPROVED ANNOTATION

The GNX C compiler has a unique annotation feature which helps in the debugging of
an optimized code.

Upon invocation with the -n and -S flag (/ANNOTATE and /ASM on VMS), the com
piler emits the source lines into the assembly code as comments (see Section 2.3). In
addition the GNX optimizer emits annotated comments explaining its actions.

Example: The following code accumulates the first n elements of array a into the
global accumulator acc. n resides in register r4.

f o r (i = 0; i < n; i + +)
a c c += a [i] ;

The optimizer may generate the following annotated code

------------ f o r (i = 0; i < n; i+ +)
temp i n i t i a l i z e d t o &a

movqd $ (1) , r2
movd $ (0) + _a , r l

l o a d (moved up) a cc t o r3
movd _ a c c , r 3

. LL2 :
-- a c c += a [i] ;

addd 0 (r l) , r3
addqd $ (l) , r 2

temp = temp + 4 (temp in c r e m e n te d)
addqd $ (4) , r l
cmpd r 2 , r 4
b i t . LL2

s t o r e (moved down) r3 t o acc
movd r 3 , _ a c c

The actions taken by the optimizer can be inferred from the comments:

" l o a d (moved up) a c c t o r 3 " (the value of the variable acc
is first loaded into the register r3)

" tem p i n i t i a l i z e d t o &a (temp i n i t i a l i z e d) " (while per
forming strength reduction optimization, a compiler

6-10 GUIDELINES ON USING THE OPTIMIZER

pointer is initialized by the first element’s address)

" tem p = temp + 4 (temp in c r e m e n te d) " (the temporary
pointer allocated by the optimizer is updated to point to
the next element at the end of each iteration)

" s t o r e (moved down) r3 t o a c c " (the value of acc is
updated)

6.6 ADDITIONAL GUIDELINES FOR IMPROVING CODE QUALITY
Using some of the following programming guidelines results in programs that take
advantage of the GNX—Version 4 C Compiler optimizations.

6.6.1 Static Functions
It is not only good software engineering practice, but also good optimization practice
to declare all functions not called from outside the file as “static.” This allows the
optimizer to use a more efficient internal calling sequence upon calls to such routines.
This internal calling sequence uses the BSR instruction instead of the JSR or CXP
instruction and also passes parameters in registers rather than on the stack.

I f a program consists of a single file and this is discovered by the GNX—Version 4 C
Compiler (by indicating compilation and linking in one step), then all functions within
that file are automatically considered static by the compiler, resulting in the same
advantages.

6.6.2 Integer Variables
Many operators, including index calculations, are defined in C to operate on integers,
and imply a conversion when given non-integer operands. Therefore, to avoid frequent
run-time conversions from ch a r or s h o r t to i n t , integer variables, particularly
variables which serve as array-indices, should be defined as type i n t and not s h o r t
or c h a r .

6.6.3 Local Variables
Local variables should be used as much as possible, particularly when they are
employed as loop counters or array indices, as they have a better chance of being
placed in registers.

GUIDELINES ON USING THE OPTIMIZER 6-11

6.6.4 Floating-Point Computations
In programs which do not require double-precision floating-point computations, a
significant run-time improvement can be achieved by paying attention to the following
points:

• define all functions as returning float type, not double

• define all constants to be ’float’ using the f suffix or cast expressions explicitly to
float

• use the single precision version of the standard floating-point routines such as
f a b s () instead of a b s () , f s i n () instead of s in () , etc.

6.6.5 Pointer Usage
The following terms are used throughout this section.

• potential definition
A statement potentially defines a memory location i f the execution of the statement
may change the contents of that memory location.

Example:

1. A call to a function potentially defines all global variables, because
their value may change during the execution of that function.

2. Imagine the following code fragment.

e x t e r n i n t *p , * q ;

*p = 8;

The assignment statement potentially defines the memory location
*q , because q may point to the same memory location as p. The
location *p is defined, i.e., given a new value, by the assignment.
About location *q, it can only be said that it may be changed,
hence the potential definition.

• potential use
A statement “potentially uses” a memory location if it may reference (read from)
that memory location.

• address taken variable
A variable is considered “address taken” i f the address operator (&) is applied to it
within the file or i f the variable is a global variable that is visible by other files.

• volatile/non-volatile registers
By convention, the registers are divided into volatile registers (registers RO through

6-12 GUIDELINES ON USING THE OPTIMIZER

R2 and F0 through F3) and non-volatile registers (registers R3 through R7 and F4
through F7). Volatile registers may be changed by a procedure call, whereas non
volatile registers are guaranteed to retain their value across procedure calls.
Therefore, all non-volatile registers used within a procedure have to be saved at the
entry and restored at the exit of that procedure.

The optimizer does not keep track of the contents of pointers; therefore, it cannot tell,
for any given location in the program, where each pointer is pointing.

Since a pointer can point at any memory location, the optimizer makes the following
assumptions concerning pointer usage:

1. Every assignment to a “pointer dereference,” the location pointed to by a pointer,
potentially defines all other pointer dereferences and all address-taken variables.

2. Every use of a pointer dereference (i.e, a value read through a pointer) potentially
uses all other pointer dereferences and all address-taken variables. This is
because any accessible memory location is potentially read.

3. Every function call potentially defines and potentially uses all pointer derefer
ences, all address taken-variables, and all global variables. This is so because
that function’s code may, using pointers, read and/or write any accessible memory
location. O f course, any global variable may be used and/or changed.

It is advisable to keep these assumptions in mind when using pointers. In particular,
using arrays is preferable to using pointers. The following example illustrates this
point. Assume a is an array of ch a r and p is a pointer to ch ar . The two program
segments perform the same function.

Example: program segment 1

f o r (i = 0 ; i != 10 ; i + +) {
a [i] = g l o b a l _ v a r ; a [i + l] = g l o b a l _ v a r + 1;

}

program segment 2

f o r (p = & a [0] ; p != & a [10] ; p+ +) {
*P = g l o b a l _ v a r ; * (p + l) = g l o b a l _ v a r +

}
1;

In program segment 1, g l o b a l _ v a r can be put in a register. In program segment 2,
however, p may point to g l o b a l _ v a r . The first statement (* p = g l o b a l _ v a r)
potentially defines g l o b a l _ v a r ; therefore, it cannot be put in a register.

Another aspect of this same issue is that of common subexpressions. The optimizer
normally recognizes multiple uses of the same expression and saves that expression in
a temporary variable (usually a register). This cannot be performed when worst case

GUIDELINES ON USING THE OPTIMIZER 6-13

assumptions are made about potential definition of expressions (as described in the
previous section). Expressions that contain pointer dereferences or global variables are
vulnerable; therefore, i f many uses of the same expression span across procedure calls,
it is advisable to save them in local variables. In the following example:

f o o l (p - > x) ;
f o o 2 (p - > x) ;

The expression p -> x cannot be recognized by the optimizer as a common subexpres
sion because f o o l () may change its value. The following hand optimization may
help:

t = p - > x ; /* t i s l o c a l , t h e r e f o r e */
f o o l (t) ; /* n o t p o t e n t i a l l y d e f i n e d by f o o l () */
fo o 2 (t) ; /* so i t s v a lu e i s s t i l l v a l i d f o r f o o 2 ()

*/

The programmer is using his knowledge that p -> x is not changed by f o o l () to
make this optimization. The optimizer cannot do the same because it assumes the
worst case.

6.6.6 Asm Statements
Extreme care should be taken if using asm statements. I f using asm statements,
remember the following:

• The optimizer is not aware of the contents of an asm statement. Therefore, it
assumes that an asm statement potentially defines and potentially uses all of the
variables (including local variables). This means that no common subexpressions
can be recognized across an asm statement.

• In order to allow an asm statement to use a specific register (e.g., asm (" s a v e
[r 0, r 1, r2] ") ;), the optimizer de-allocates all the registers.

• The compiler usually generates code which is different from the code generated by
other compilers. This applies particularly to allocation of local variables and
parameters of static procedures.

• The code surrounding the asm statement may change as a result of changes in
other parts of the procedure.

• An asm statement that contains a branch instruction or a branch target (label)
may cause the optimizer to generate wrong code.

For the above mentioned reasons, it is strongly advised to look at the generated assem
bly code before and after inserting asm statements into a program.

6-14 GUIDELINES ON USING THE OPTIMIZER

6.6.7 Register Allocation
The C language is unique in that it allows the programmer to specify (or rather recom
mend) that some variables be allocated to machine registers. The optimizer normally
ignores these recommendations, since it turns out that in most cases the optimizer’s
own register allocation algorithms are as good as or superior to the programmer’s
recommendations. There are several reasons for this fact:

• The user can use a register for one variable only. The optimizer however allo
cates a register along live ranges of variables, making it possible for several vari
ables with non-conflicting live ranges to use the same register.

• The user can declare as a register, only local variables whose addresses are not
taken; whereas, the optimizer allocates global variables as well as variables
whose addresses are taken (where possible).

• The user can allocate variables in safe registers only. Therefore, every register
which is used has to be saved/restored at the entry/exit of the procedure. The
optimizer allocates variables that do not live across procedure calls in unsafe
registers. Therefore, these registers need not be saved/restored.

• Because of code motion optimizations, the number of references of variables may
be changed. Therefore, the choice of register variables may not be optimal. In
the following example:

i n t j ;
r e g i s t e r i n t i ;

i = j ;
i f (i == 3 || i == 4 M i == 5)

undesired effects result i f optimized with the /USER_REGISTERS flag (-Ou on
UNIX systems) The reason is that j is copy propagated and replaces all
occurrences of i . Therefore, i occupies a register for nothing, while j may end
up in memory (because either the ordinary register allocation of the optimizer is
not invoked or there are no registers left for j).

6.6.8 setjmpO
Calls to s e t jmp () are specially recognized by the compiler. Procedures that contain
calls to s e t jmp () are only partially optimized because procedure calls may end up in
a call to l o n g jm p O . Code motion optimizations are performed only within linear
code sequences (those sequences not containing branches or branch targets). Register
allocation is limited to optimizer generated temporary variables, register declared vari
ables, and variables whose live ranges do not contain function calls.

GUIDELINES ON USING THE OPTIMIZER 6-15

6.6.9 Optimizing for Space
The default behavior of the GNX—Version 4 C Compiler optimizes for optimal speed
without undue increase in code size. There are several things that can be done to
improve code density:

• Optimize with the NOSPEED_OVER_SPACE flag on (-O s on UNIX systems).

• Squeeze the data area by using smaller alignment between variables, i.e.,
/TARGET= (BUS=1) on VMS systems or -KB1 on UNIX systems.

• Do not use loop-unrolling optimization.

The optimizer has certain heuristics based on size considerations, whether to per
form loop-unrolling. These heuristics also take into account the relevant on-chip
caches. Nevertheless, i f code density is important, it is advisable not to use the
loop-unrolling optimization.

• Squeeze all structure definitions by using the /ALIGN=1 switch (-J 1 on UNIX
systems). See Section 4.2.4.

6.6.10 Using /NOOPT (-Oo) option
The /0PTIM IZE=N00PT (-O o) compiler option is used when the optimizer phase is not
required and another flag needs to be turned off as well. For instance,
/OPTIMIZE= (NOOPT, FIXED_FRAME) (-O o f) turns on fixed frame without running the
optimizer, while /OPTIMIZE^ (NOOPT, FIXED_FRAME) (- O f) turns off fixed frame but
runs the optimizer.

With /0PTIMIZE=N00PT (-O o) by itself, the optimizer is not run, but the code
generator performs all its optimizations (see Section 5.3).

6.6.11 Runtime Feedback Optimization
In the runtime feedback optimization the optimizer makes use of runtime information
collected during a previous runs of the program in order to better predict the program’s
run-time behavior. As a result, optimizations done by the compiler will be based on
assumptions closer to the real behavior of the program. Runtime feedback optimiza
tion effects mainly the following optimizations:

• Loop Unrolling

• Register Allocation

Runtime optimization is invoked by using the -OB (/0PT=RUNTIME_FEEDBACK) com
piler option. The PIT file in the current directory (or the one specified in the PITFILE
environment variable global symbol) is assumed to contain the data for the runtime
feedback option.

6-16 GUIDELINES ON USING THE OPTIMIZER

NOTE: The runtime information used for the runtime feedback optimiza
tion should represent the real run-time behavior of the program.
Otherwise, the optimizer relies on false assumptions. This may
actually cause degradation in code quality.

For more details on runtime feedback optimization see Section 7.4.

6.7 COMPILATION TIME REQUIREMENTS
Using the optimizer slows down the compilation process. It is therefore recommended
to use the optimizer only on final production versions of a program. The amounts of
resources (time and memory) vary strongly from program to program and actually
depend on the size of the routines in the compiled program file. The larger a routine,
the more time and memory needed to optimize it. This behavior is more or less qua
dratic, the optimizer needs about four times the resources to optimize a routine of 1000
lines than to optimize a routine of 500 lines.

I f time or memory requirements are unacceptable and routines cannot be reduced to
reasonable (500 lines) size, it is possible to turn off some optimizations, using the
NOCODE_MOT I ON (-Om on UNIX systems) and/or the N O R E G IST E R _A LLO C A T IO N (- O r

on UNIX systems) flags.

On UNIX host systems, an optimization flag (- 0number) is available to set an upper
limit on the memory requirements of the optimizer to a certain number of megabytes.
This can be useful on host systems without virtual memory or with a limited swap-
space configuration. I f necessary, the optimizer then skips certain optimizations on
huge routines only, in order to stay under the chosen limit. In such cases, an appropri
ate message is given. This flag is only necessary when compiling modules with
extremely large procedures (over 500 lines in a single procedure), a case when the
optimizer may need a larger swap space than the one currently available. For
instance,

-0 2

limits the optimizer to 2 Mbytes of swap space.

An alternate method for setting an upper limit on memory requirements, on native sys
tems, is to use the environment variable AVAIL_SWAP, which sets the maximum swap
space requirement of the optimizer in megabyte units. This environment variable
should be set to the number of megabytes to be used. The user can choose from 1
Mbyte to 16 Mbytes. I f the user’s choice is outside of these parameters, the default
value of 4 Mbytes is chosen. For instance,

s e t e n v AVA IL SWAP 2

GUIDELINES ON USING THE OPTIMIZER 6-17

makes 2 Mbytes of swap space the default. This can be overridden using the previ
ously described - 0number option.

6-18 GUIDELINES ON USING THE OPTIMIZER

Chapter 7

PROFILE INFORMATION

7.1 INTRODUCTION
Profile information is statistical data about the run-time behavior of a program. Such
information can be gathered by compiling the program using the -B option on UNIX
(/GATHER on VMS), and executing the compiled program with typical inputs. Each exe
cution of the compiled program results in the accumulation of profile information in a
special file. Profile information is used by the optimizer and the tool s p r o f .

The optimizer can use profile information to achieve better code optimization. Code
can be recompiled using the compiler option -OB on UNIX (/OPT=RUNTIME_FEEDBACK
on VMS).

s p r o f processes profile information and displays it as an annotated source file. You
can use s p r o f ’s output to:

• Pinpoint the most often executed sections of program code in order to determine
areas for concentrated hand optimization.

• Test the expected relative frequency of execution of different code sections.

• Provide indication of test coverage.

• Discover bugs by spotting unexpected execution of code lines.

PROFILE INFORMATION 7-1

7.2 GATHERING PROFILE INFORMATION

7.2.1 The Profile Information
Profile information is gathered for each basic block (see Section 5.2). A precise trace of
every basic block execution is recorded. From this information the execution rate of
each line can be deduced.

7.2.2 Code Compilation
When compiling a program on which we want to gather profile information additional
code is generated by the compiler. Also a profile information tables (PIT) file is
created. When the program is executed, the additional code that was generated accu
mulates profile information internally and adds it to the P IT file before the program
exits.

The extra code is generated by the compiler and the P IT file is created by the tool
pgen after the linking phase.

The following operations are performed:

1. Allocation of buffer space in the .bss section (uninitialized data). The buffer space
is used for basic block execution counters, which keep track of the number of
times each basic block is executed.

2. Insertion of extra code at the beginning of each basic block. This code increments
the proper basic block execution counter each time a block is executed.

3. Generation of additional symbolics. Additional symbolics are generated in order
to map the basic blocks in the executable file to source lines.

4. Linking of the program with the object file p f b _ e x i t . o (p f b _ e x i t . ob j on
VMS and d b _ p f b _ e x i t . o for cross compilation on a Series 32000/UNIX system).
This file includes a customized version of the standard library _ e x i t routine,
which accumulates the internally accumulated profiling information into the PIT
file at the end of each execution.

5. Creation of the PIT file. The tool pgen is invoked to create and initialize the PIT
file.

See section 7.2.4 for more information on the PIT file and section 7.2.3 for more infor
mation on pgen.

NOTE: Profile information cannot be gathered on an optimized program.
The optimizer is not to be invoked together with the profile infor
mation gathering option.

7-2 PROFILE INFORMATION

7.2.3 Pgen
The tool p g e n reads the executable file and generates the profile information table
(PIT) file that is used by s p r o f and the compiler (see Section 7.2.4).

On UNIX systems p g e n is automatically invoked by the driver when called with the
- B flag (Section 7.2.6). On VMS systems p g e n must be invoked separately after link
ing the program compiled with the /GATHER qualifier (Section 7.2.7).

7.2.4 The PIT File
The P IT (Profile Information Tables) file contains accumulated profile information.

The PIT file is created by p g e n (see Section 7.2.3) and modified by the additional code
in the p f b _ e x i t object file (Section 7.2.5) just before execution is completed.

The PIT file is used by s p r o f and by the profile feedback option. P I T is the default
name for the file in which profile information accumulates. In order to override this
default name, the environment variable (logical name on VMS) PITFILE is used. I f
PITFILE is set during profile gathering, information is accumulated to a file bearing
this name.

7.2.5 The p f b _ e x i t . o (p f b _ e x i t . ob j) File
This file must be linked with the profiled program in order to enable profile-
information accumulation. The p f b _ e x i t . o (p f b _ e x i t . ob j or p f b _ e x i t . o b j on
VMS) file includes a customized version of the _ e x i t routine of the C runtime-library,
which accumulates the profile information into the PIT file at the end of program exe
cution.

In the UNIX environment, linkage with p f b _ e x i t . o is performed automatically by the
compiler when compiling with the -B option (see Section 7.2.6). In the VMS environ
ment, linking with p f b _ e x i t . ob j must be done by the user (see Section 7.2.7).

PROFILE INFORMATION 7-3

NOTES: 1. For cross compilation on a Series 32000/15NIX system, the file is
named db_p f b _ e x i t . o .

2. In native environment, p f b _ e x i t . o uses the standard I/O
library of l i b c for writing the PIT file.
In the cross environment virtual I/O facilities of the cross C
library, which are based on debugger and monitor support, are
used.

3. For modular compilation (-X option on UNIX, /MODULAR on
VMS) a special version of the pfb_exit.o exists. On native UNIX
environment it is called X d b _ p f b _ e x i t . o, on cross
configuration UNIX environment X p f b _ e x i t . o , on VMS
environment Xp f b _ e x i t . ob j .

7.2.6 Compilation in the UNIX Environment
The syntax for compilation to gather profile information on the UNIX environment is:

nmcc -B [< p i t f i l e >] f i l e n a m e (cross-support configuration)
c c -B [< p i t f i l e >] f i l e n a m e (native configuration)

< p i t f i l e > is the name of the PIT file to be created. I f < p i t f i l e > is omitted, the
default name P IT is given. Note that there should be no space between -B and
< p i t f i l e > .

The compiler driver automatically calls all the necessary subprograms when invoked
with the -B option. This includes linking with the special p f b _ e x i t . o file (Section
7.2.5) and calling pgen (Section 7.2.3) after linking.

7.2.7 Compilation in the VMS Environment
The syntax for compilation to gather profile information on the VMS environment con
sists of three steps:

1. Compilation. Use the /GATHER compiler qualifier in the syntax:

nmcc /GATHER m y_m odu le .c

2. Link the program with p f b _ e x i t . ob j . Use the syntax:

nmeld gnxdir:crt0 . obj, gnxdir:pfb_exit. obj, -
my_module. obj, ... ,gnxdir:libc. a

7-4 PROFILE INFORMATION

The p f b _ e x i t . ob j file must appear before the standard libraries.

For modular compilation (/MODULAR) linkage is done with an object file named
X p f b _ e x i t . ob j .

3. Run the tool pgen to create the PIT file. Use the syntax

pgen < e x e c u ta b le _ n a m e > [< P I T _ f i l e _ n a m e >]

I f < P I T _ f i l e _ n a m e > is not specified, it will be named P IT by default.

7.2.8 Code Execution
The profiled program can be executed repeatedly with any desired inputs. Profile infor
mation from each execution accumulates in the PIT file.

7.2.9 Disabling Profile Information Accumulation
Profiling information will not be accumulated under any of the following conditions:

— No PIT file exists

— Read or create permission for the PIT file is denied

— The PIT file is not in the expected format

— The PIT file and executable file are incompatible

— The cumulative number of executions of a certain basic block in the profiled pro
gram exceeds the maximum count limit, which equals the maximum unsigned long
integer minus one (decimal 4294967295).

These conditions cause only the accumulation of profiling information to be disabled,
and do not affect the normal operation or semantics of the profiled program.

The PIT file can be removed or renamed temporarily in order to disable the accumula
tion of profiling information.

7.2.10 Redefining Standard l i b c Symbols
The following standard l i b c symbols (routines and variables) are used by the profile
gathering code:

_cleanup
close
errno
e tex t
e x it

PROFILE INFORMATION 7-5

fc lo s e
fg e ts
f open
fp r in t f
fputs
getenv
_ iob
mktemp
rename (lin k and unlink in native SYS-V systems)
r index (s trrch r in native SYS-V systems)
sp r in t f
sscanf
s y s _ e r r l is t
sys nerr
unlTnk

Redefining any of these symbols can cause unexpected results.

7.2.11 Execution Time Considerations
The additional code produced in each basic block for gathering profile information may
slow down a CPU-bound program by a factor of 20%-30% (without taking F0 into
account).

On cross systems where the loading of a program and F0 operations are on slow serial
lines, use of s p ro f may slow down execution significantly. This is because F0 opera
tion will be performed during the accumulation of the profiling information (just before
exiting).

7.2.12 Space Considerations
The additional code and space needed the PIT file adds approximately 20%-30% to the
original code and uninitialized data size.

Additional symbolic information is also produced. However this symbolic information
occupies only disk space and is not loaded into memory (since it is not a component of
real code or data).

7-6 PROFILE INFORMATION

7.3 SPROF - THE GNX SOURCE PROFILER
The s p r o f profiler provides high-level language information about the runtime
behavior of a program. The profile consists of an annotated listing of the source file. A
number is printed at the beginning of each line to indicate the number of times that
line was executed, s p r o f is supplied as part of the GNX—Version 4 C compiler pack
age, and runs on all cross and native GNX supported environments.

Unlike other profilers, s p r o f ’s provides information on the basic block level (see Sec
tion 5.2). This means that s p r o f does not sample the program periodically, but
instead gathers a precise trace of every basic block execution. From this information
the execution rate of each line can be deduced.

s p r o f does not provide either timing information about a program or function
caller/callee statistics. Rather, s p r o f gives an exact count of source-line executions.
A standard profiler, such as the UNIX profiler p ro f (supported by the compiler in
native environment), can be used to collect timing or caller/callee information.

7.3.1 Example

main() /*line 1*/{ /*line 2*/int i; /*line 3*//*line 4*/1 for (i = -6; i <= 7; i++) /*line 5*/14 if (i >= 0) _ /*line 6*/
8 printf("factorial(%d) = %d0,i,fact(i)) ; /*line 7*/1 } /*line 8*/

int fact(n) int n ;
{36 if (n == 0)8 return 1;

© 1 S028 return (n * fact(n - 1));
0 }

/*line/*line/*line/*line/*line/*line/*line/*line

10*/
11*/12*/13*/14*/15*/16*/17*/

Figure 7-1. Example of sp ro f Output

The number "1" annotating the first basic block on line 5 indicates that the main pro
gram was executed once. The "14" and "8" annotations of lines 6 and 7 indicate that
the body of the loop in main was executed 14 times, of which only 8 resulted in a call
to the function f a c t .

It can be deduced that the function f a c t did not returned implicitly (i.e. without using
an explicit r e tu r n) , as shown by the "0" annotation of line 17. In contrast, the func
tion main did return implicitly, as can be seen from the "1" annotation besides the
closing brace of function main (line 8).

The runtime behavior of the function f a c t is also illustrated, f a c t was called 36
times. Only 8 of these invocations were from main, therefore the remaining 28 calls
were recursive. This is further shown by the annotation of "28" on line 16.

PROFILE INFORMATION 7-7

7.3.2 Running SPROF
After program execution and accumulation of profile information in the PIT file,
s p r o f can be called to process and present profile information. Various options are
available to control the output (see Section 7.3.3).

In order to process profile information the following files must exist:

• The source file(s)

• The executable file

• The P IT file

Figure 7-2 illustrates the flow of data through s p r o f . nnm is the standard G N X util
ity for displaying the symbol table of a COFF object file (see the GNX Commands and
Operations Manual).

PIT file executable Source
Symbol Module
Table

Source-module
Source lines

BB-to-line mapping

±
Profile

Annotated
Source Module

PIT == Profile Information Table
BB == Basic Block
BBV == Basic Block Visits

Figure 7-2. sp ro f Data Flow Description

7-8 PROFILE INFORMATION

7.3.3 SPROF Invocation
The tool sp ro f is supplied as a standard part of the GNX—Version 4 C compiler
package both on UNIX and VMS.

SYNTAX (UNIX):

s p r o f - d s o u r c e _ d i r] [- e e x e c _ f i l e

- p p i t _ f i l e] [- 0 o u t p u t _ f i l e ~ \

- f [f m c < m a r g i n _ w i d t h > '] ~ \ \ _ s o u r c e _ f i l e . . .]

SYNTAX (VMS):

SPROF [/DIRECTORY= s o u r c e _ d i r] [/ E X E C U T A B L E = i e x e c _ f i l e]

[/ P I T F I L E - p i t _ f i l e] [/ O U T P U T - o u t p u t _ f i l e]
/ F O R M A T = (\ _ f o r m a t _ o p t i o n [, . . .] !
s o u r c e _ f i l e . . .]

Where:

s o u r c e _ d i r

e x e c f i l e

The directory where the source file is located. The default is the
current directory.

The name of the executable file,
name as found in the PIT file.

The default is the executable

p i t _ f i l e The name of the PIT file to be used. The default name is P I T or
the value of the environment variable PITFILE.

o u t p u t _ f i l e The name of the output file to be generated. The default is stan
dard output (SYS$OUTPUT on VMS).

s o u r c e _ f i l e The name of the source file to be profiled. The default is all
source files in the executable file that were compiled with the -B
option.

The -f options { f o r m a t _ o p t i o n on VMS) are:

f (FORMFEED on VMS)
output a FORM-FEED character between output source files

m (MARK_MARGIN on VMS)
mark the MARGIN of the source with vertical bar " I " characters,

c (COMPACT on VMS)
print counts COMPACT (the count for sequential basic blocks is
only printed if different from the previous basic block). The
default is to print counts for every basic block.

< m a rg in -w id th > (v i I D T R = m a r g i n _ w i d t h on VMS)
The width reserved for printing profiling counts. The default is 8.
A negative value will left-justify the counts.

PROFILE INFORMATION 7-9

CAU TIO N

Compatibility of the PIT file and the program source file is determined only by the
creation date of the PIT file. Therefore, a source file with the same name, and an older
date than the PIT file, but with contents different from the program source file, will not
be recognized by s p r o f as being incompatible with the PIT file. Such a situation will
result in an incorrect s p r o f output.

7.3.4 Counts and Basic Blocks
s p r o f prints basic block counts according to the following rules:

1. Print a count only for lines which start a basic block. (No count will be printed
for lines which consist of declarations or calls to a cpp macro defined to nothing.)

2. Print a count only for the first basic block of a group that is mapped to the same
line.

Example:

100 i f (a < 5) j = 3;

The count in the profiled line is the number of times the first basic block in
this line (i.e i f (a < 5)) was executed. However, the number of times the
condition was true can not be deduced from this output. This information is
provided i f the code is written in the form

100 i f (a < 5)
27 j = 3;

7-10 PROFILE INFORMATION

7.4 RUNTIME FEEDBACK OPTIMIZATION
The runtime feedback optimization option is used to enable the compiler to tune optim
izations based on statistical information on typical run-time behavior.

The optimization algorithms used by the optimizer are based on assumptions and
heuristics. However, run-time behavior may be different. In such a case, the compiler
can achieve better optimization by operating under a different set of assumptions as
suggested by the profile information.

For example, the following optimizations can be improved by using the profile feedback
option:

• Register allocation - Usually the optimizer heuristics used to determine register
allocation are based on loop nesting and conditional execution. By using the profile
information, register allocation is based on an better estimate of the use of vari
ables.

• Loop unrolling - Loop unrolling optimization enlarges code size. Therefore it is
worthwhile to optimize only those loops which are entered many times. The profile
information provides improved estimation of where this optimization should be per
formed.

For more details on these optimizations see Section 5.2.

The runtime feedback mechanism is divided into two phases, described in the following
two sections.

7.4.1 Profile Information Gathering
This phase involves compilation and program execution. It is described in detail in
Section 7.2. The profile information is collected in the P IT file (see Section 7.2.4).

NOTE: The profile information gathered in the PIT file must represent the
true run-time behavior of the program. Otherwise false assump
tions are made by the optimizer and recompilation can cause degra
dation in program performance.

7.4.2 Runtime Feedback Compilation
The runtime feedback compilation is invoked using the -OB (/RUNTIME_FEEDBACK on
VMS) compiler option. The PIT file in the current directory, or the one specified in the
PITFILE environment variable (logical name on VMS) is assumed to contain the data
for the runtime feedback option.

PROFILE INFORMATION 7-11

Chapter 8

INTRINSIC FUNCTIONS

8.1 INTRODUCTION
The GNX C compiler generally uses in its code selection the most efficient instructions
from the Series 32000 instruction set. There are, however, certain instructions which
have no natural matching C construct or that are not fully utilized by the C language.
Such instructions are in particular the Application Specific Instruction Set (ASIS) of
the NS32CG16, NS32CG160, NS32FX16 and NS32GX320 microprocessors (see the
Series 32000IEP Embedded Processor Databook) and certain standard Series 32000 instruc
tions. The GNX C compiler provides access to these instructions by means of intrinsic
functions. The NS32CG160, NS32FX16 and NS32CG16 CPUs share the same core
instructions. These microprocessors will be referred to as the CG-Core throughout this
chapter. A familiarity with ASIS instructions is assumed.

In order to use intrinsic functions, include the appropriate GNX header file cg l6 .h ,
gx320 .h or ns32 000 .h, prior to any call to the function. The function call must con
tain a parameter list compatible with the formal parameter list of the prototype. Oth
erwise it is considered a redeclaration of the function, and a proper warning message is
issued by the compiler.

Redefining an intrinsic function, i.e., defining a different function with the same name
as an intrinsic function, results in an error. However, it is possible to use intrinsic
function names for different functions by specifying the -FI or -01 option
(NO_STANDARD_LIBRARIES on VMS). (See Section 6.3.5).

Special compilation options generate various run-time checks for flagging improper
values of parameters in calls to intrinsic functions. The compilation options and the
run-time checks performed are described in Chapter 2, Section 2.5.

8.1.1 Using Intrinsic Functions
Intrinsic functions are known internally to the compiler. The syntax used for invoking
intrinsic functions is the same as for regular C functions. However, no function call will
appear in the code generated by the compiler. Instead, an instruction sequence con
taining the application specific instruction will be produced. The optimizer will
attempt to allocate parameters in the registers as needed by the instruction.

INTRINSIC FUNCTIONS 8-1

NOTE: Unlike regular functions, taking the address of an intrinsic routine
is not permitted. Any attempt to do so will results in an error mes
sage.

There is one intrinsic function for each supported special instruction. Generally the
function’s name is the instruction assembly mnemonic, with a leading underscore.
This conforms to the ANSI C convention of global identifiers with leading underscores
being reserved for implementation. The parameters and the result type of each func
tion are described in full ANSI C prototype format in special GNX header files.
Currently there are three such header files:

• n s3 2 0 0 0 .h
For the general Series 32000 instructions.

• c g l 6 . h
For the CG-Core Application Specific instructions.

• g x 3 2 0 .h
For the NS32GX320 Application Specific instructions.

A complete description of each function is given in Sections 8.3, 8.4 and 8.2, respec
tively. Examples of using the functions are provided in Appendix E.

8.2 General Series 32000 Intrinsic Functions
This section describes the special Series 32000 instructions accessible by use of intrin
sic functions. Supported instructions are divided into:

Single bits
Instructions that refer to a single bit in memory. They enable efficient set
ting (s b i t) , clearing (c b i t) , inverting (i b i t) and testing (t b i t) of a single
bit. Single bit instructions find the first set bit in a given byte, word or
double-word (f f s) , and calculate an absolute bit address (c v tp) .

Bit-Fields
Instructions that manipulate a consecutive group of bits in memory. They
include e x t , which extracts a bit-field, and in s , which inserts a bit-field.

Absolute value
Integer absolute value (abs) and floating-point absolute value (t a b s and
f tabs) .

All definitions given in this section are supplied as part of the GNX C compiler package
in the file ns32000 .h .

8-2 INTRINSIC FUNCTIONS

Single Bit Instructions

8.2.1 Single Bit Instructions

PROTOTYPE

t y p e d e f i n t _ x b i t (i n t o f f s e t ,
i n t * b a s e) ;

x b i t _ c b i t ; /* c l e a r b i t */
x b i t i b i t ; /* i n v e r t b i t */
x b i t _ s b i t ; /* s e t b i t */
x b i t t b i t ; /* t e s t b i t */

DESCRIPTION

The c b i t , i b i t and s b i t functions operate on the bit at o f f s e t bits from
base . The return value is the original value of the specified bit.

_ c b i t clears the bit to zero.

i b i t inverts the bit — zero becomes one and vice versa.

_ s b i t sets the bit to one.

The t b i t function returns the value of the bit residing at o f f s e t from base .

The appropriate instruction version (byte word or double word) is selected by the
compiler according to the type of parameter passed for o f f s e t . Calling the
functions as a procedure, such as

(v o i d) _ i b i t (. . .

will prevent the compiler from producing the code reading the original value of
the bit.

INTRINSIC FUNCTIONS 8-3

ffs (Find First Set)

8.2.2 _ffs (Find First Set)

PROTOTYPE

t y p e d e f i n t f f s b (u n s i g n e d ch a r b a se , /* f i n d f i r s t s e t b y t e
u n s ig n e d ch a r * o f f s e t) ;

t y p e d e f i n t f f s w (u n s i g n e d s h o r t b a s e , /* f i n d f i r s t s e t word
u n s ig n e d ch ar * o f f s e t) ;

t y p e d e f i n t f f s d (u n s i g n e d i n t b a s e , /* f i n d f i r s t s e t double-wc
u n s ig n e d ch a r * o f f s e t) ;

DESCRIPTION

The f f s routines search for the first set bit in base . The search starts at the
offset specified in the int pointed by o f f s e t , and proceeds in ascending order to
the first set bit or to the last bit in base.

The routines return the value of the PSR F flag. I f a set bit is found, the value of
the int pointed by o f f s e t is changed to the bit number of the bit found, and the
F flag in the PSR is cleared. I f no set bit is found, the int pointed by o f f s e t is
set to zero and the F flag in the PSR is set to 1.

Calling the functions as a procedure, such as

(v o i d) _ f f s w (. . .

will prevent the compiler from producing the code reading the PSR F flag.

NOTE: The value of the int pointed by o f f s e t must be within tha
range 0 to 7 (in f f s b routine), 0 to 15 (in f f s w routine) and
0 to 31 (in f f s d routine). Compilation with the - a a option
(/CHECK=PARAMETER on VMS) generates code to check in
run-time for this limitation.

8-4 INTRINSIC FUNCTIONS

exti (Extract bit-field)

8.2.3 _exti (Extract bit-field)

PROTOTYPE

v o i d _ e x t b (i n t o f f s e t ,
v o i d * b a s e ,
ch a r * d e s t ,
i n t l e n g t h) ;

v o i d _ e x t w (i n t o f f s e t ,
v o i d * b a s e ,
s h o r t * d e s t ,
i n t l e n g t h) ;

v o i d _ e x t d (i n t o f f s e t ,
v o i d * b a s e ,
i n t * d e s t ,
i n t l e n g t h) ;

DESCRIPTION

The e x t routines copy the bit-field specified by base , o f f s e t and l e n g t h to
the d e s t operand. The field is right justified in d e s t . High-order bits are
zero-filled i f the field is shorter than d e s t or discarded i f the field is longer than
d e s t .

The field starts at bit position

o f f s e t % 8

within the memory byte

b a se + (o f f s e t / 8)

INTRINSIC FUNCTIONS 8-5

exti (Extract bit-field) (Cont)

NOTES: 1. l e n g t h must be a constant. Otherwise the routine is not
inlined and an emulation function is called.

2. l e n g t h must be in the range 1 through 32. Compilation
with the - a a option (/CHECK=PARAMETER on VMS) will
generate code to check in run-time for this limitation.

CAUTION

Although a bit-field may contain up to 32 bits, an alignment restriction appears
for fields containing more than 25 bits. A bit-field must be composed of bits from
no more than four contiguous bytes.

I f the o f f s e t operand is a constant expression with a value in the range 0 to 7,
and l e n g t h is a constant expression, the compiler will use the short version of
the instruction (e x t s) .

8-6 INTRINSIC FUNCTIONS

ins (Insert Bit-field)

8.2.4 _ins (Insert Bit-field)

PROTOTYPE

v o i d _ i n s (i n t o f f s e t ,
u n s i g n e d i n t s r c ,

i n t * b a s e ,

i n t l e n g t h) ;

DESCRIPTION

The _ i n s routine inserts the s r c operand into the bit-field specified by b a s e ,

o f f s e t and l e n g t h . The s r c operand is right-justified in the field. High-
order bits are zero-filled if s r c is shorter than the field or discarded i f s r c is
longer than the field.

The field starts at bit position

o f f s e t % 8

within the memory byte

b a s e + (o f f s e t / 8)

l e n g t h specifies the number of bits in the field, and must be in the range 1
through 32. Compilation with the - a a option (/CHECK=PARAMETER on VMS)
will generate code to check in run-time for this limitation.

NOTES: 1. l e n g t h must be a constant. Otherwise the routine is
not inlined and an emulation function is called.

2. l e n g t h must be in the range 1 through 32. Compilation
with the - a a option (/CHECK=PARAMETER on VMS) will
generate code to check in run-time for this limitation.

INTRINSIC FUNCTIONS 8-7

ins (Insert Bit-field) (Cont)

CAUTION

Although a bit-field may contain up to 32 bits, an alignment restriction appears
for fields containing more than 25 bits. A bit-field must be composed of bits from
no more than four contiguous bytes.

I f the o f f s e t operand is a constant expression with a value in the range 0 to 7,
and l e n g t h is a constant expression, the compiler will use the short version of
the instruction (in s s) .

The appropriate version for _ i n s (in s b , in sw or in sd , for byte, word or
double-word respectively) is selected by the compiler according to the type of the
parameter passed for s r c .

8-8 INTRINSIC FUNCTIONS

cvtp (Convert to Bit Pointer)

8.2.5 _cvtp (Convert to Bit Pointer)

PROTOTYPE

i n t _ c v t p (i n t o f f s e t ,
v o i d * b a s e) ;

DESCRIPTION

The c v t p function returns the absolute bit address of the memory bit specified
by b a s e and o f f s e t . The bit address specifies the number of bits from the
first bit in the memory space (bit 0 of the byte at address 0) to the specified bit.

INTRINSIC FUNCTIONS 8-9

abs (Absolute Value)

8.2.6 abs (Absolute Value)

PROTOTYPE

i n t abs (i n t v a l) ;
d o u b le f a b s (d o u b l e v a l) ;
f l o a t f f a b s (f l o a t v a l) ;

/* i n t e g e r a b s o lu t e v a lu e */
/* d o u b le a b s o lu t e v a lu e */
/* f l o a t a b s o lu t e v a lu e */

DESCRIPTION

The abs routines return the absolute value of their parameter v a l . abs com
piles into the integer ABS instruction, f a b s compiles into the floating-point
ABSL instruction and f f a b s compiles into the floating-point ABSF instruction.
These routines differ from the other intrinsic routines: Their names do not begin
with an underscore, and the floating-point versions’ names are not the same as
the assembly mnemonic.

The reason for these differences is that the routines exist in the mathematical
library 1 ib m . a, and are declared in the header file m ath . h.

8-10 INTRINSIC FUNCTIONS

8.3 CG-Core Intrinsic Functions
The CG-Core microprocessors complements the full instruction set of the Series 32000
processor with special graphics-oriented instructions. These include Bit-aligned Block
Transfer (BITBLT) functions, line drawing, pattern replications and data compression-
expansion. In addition, an interface to an external BITBLT processing unit (BPU)
enables very fast BITBLT operations.

The CG-Core graphic instructions supported by intrinsic functions are:

bband Bit-aligned Block Transfer, 4-direction bitwise AND operation for CRT
applications.

b b f o r Bit-aligned Block Transfer, 2-direction FAST OR operation optimized
for printers.

b b o r Bit-aligned Block Transfer, general 4-direction OR operation.

b b s t o d Bit-aligned Block Transfer, 4-direction replace (Source-to-Destination)
operation.

b b x o r Bit-aligned Block Transfer, 4-direction XOR operation.

b i t w t Bit-aligned Word Transfer, for small BITBLT OR operations.

e x t b l t Drives a 4-direction, 16-function external BITBLT processing unit.
The BPUs supported are the DP8510 or DP8511 for the NS32CG16
CPU, or the on-chip BPU for the NS32CG160.

movmp Move Multiple Pattern, for pattern fill, horizontal line drawing,
memory clear.

s b i t p s Set Bit Perpendicular String, for image expansion and
horizontal/vertical/diagonal line drawing.

s b its Set Bit String, for image expansion and horizontal line drawing.

t b i t s Test Bit String, for image data compression.

In addition, the general Series 32000 instruction set includes instructions that manipu
late single bits or bit-fields in memory. These are useful for graphic operations and are
supported by intrinsic functions, as described in Section 8.4.

TERMS AND CONVENTIONS

bit alignment

bit-block

bit ordering

The ability to access any bit in memory. The Series 32000
instruction set and the CG-Core instructions enable efficient
direct access to bit-aligned data.

A rectangular sub-area of an image. A bit-block consists of y lines of x
bits, where the spacing between lines is warp bits.

Bit ordering is from the least significant to the most significant
bit. Bit positions increase left-to-right in the image.

INTRINSIC FUNCTIONS 8-11

image Images are defined as binary bit-maps, where a set bit (one)
represents a black dot, and a clear bit (zero) represents a white
dot.

Ieft-to-right A graphic operation that traverses memory in increasing
address order (see memory ordering below).

memory ordering The displayed image’s memory increases in a left-to-right, top-
to-bottom raster direction. The first byte represents the
image’s top-left corner. The Series 32000 architecture is
"little-endian" in referring to a word (16 bits) or double-word
(32 bits) — the least significant byte is stored at the lowest
address.

right-to-left A graphic operation that traverses memory in decreasing
address order (see memory ordering above).

shift The shifts in this chapter are Series 32000 logical left bit shifts.
With the imaging convention this results in image bits moving
from left to right.

warp The horizontal width of the image. Also known as raster or
pitch.

All definitions given in this section are supplied as part of the GNX C compiler package
in file cg l6 .h .

8-12 INTRINSIC FUNCTIONS

extblt (External Bit Aligned Block Transfer)

8.3.1 _extblt (External Bit Aligned Block Transfer)

PROTOTYPE

v o i d _ e x t b l t (c h a r * s r c _ a d d r , /* E x t b l t w i th o u t p r e l o a d i n g */
ch a r * d e s t _ a d d r ,
i n t a d j _ w id t h ,
i n t h e i g h t ,
i n t h o r i z _ i n c r ,
i n t a d j _ s r c _ w r a p ,
i n t a d j _ d e s t _ w r a p) ;

v o i d _ e x t b l t p (c h a r * s r c _ a d d r , /* E x t b l t w i t h p r e l o a d i n g */
ch a r * d e s t _ a d d r ,
i n t a d j _ w id t h ,
i n t h e i g h t ,
i n t h o r i z _ i n c r ,
i n t a d j _ s r c _ w r a p ,
i n t a d j _ d e s t _ w r a p) ;

PARAMETERS

s r c _ a d d r

d e s t _ a d d r

a d j _ w id t h

h e i g h t

h o r i z i n c r

The base byte-address of the source data, the value should be
even.

The base byte-address of the destination, the value should be
even.

Adjusted width of the image on which the operation is per
formed. The adjustment is the width in words of destination
data multiplied by h o r i z _ i n c r :
(w id th * h o r i z _ i n c r)

The number of lines on which the operation is performed.

The horizontal step in bytes for copying. Its value should be
+2 or -2.

ad j _ s r c _ w a r p The adjusted wrap of the source.

The adjustment is to the actual source warp in bytes minus
the width in bytes (not the adjusted width) less two:

(s o u r c e warp - (w id th in b y t e s - 2))

INTRINSIC FUNCTIONS 8-13

extblt (External Bit Aligned Block Transfer) (Cont)

a d j _ d e s t _ w a r p The adjusted wrap of the destination.

The adjustment is the actual destination warp in bytes less
the width in bytes (not the adjusted width) less two:

(d e s t i n a t i o n w a r p - (w i d t h i n b y t e s - 2))

DESCRIPTION

The two e x t b l t functions drive an external BITBLT processing unit (BPU).
The BPUs supported are the DP8510 or DP8511 for the NS32CG16 CPU, or the
on-chip BPU for the NS32CG160. The CPU supplies addresses and bus cycles
while the BPU operates on the data. For more details on the EXTBLT instruc
tion refer to the NS32CG16 or the NS32CG160 Printer/Display Processor
Programmer’s Reference Supplement.

NOTE: Compilation with the - a a option (/CHECK=PARAMETER on
VMS) will generate code to check in run-time for the follow
ing:

• "src_addr" and "dest_addr" values are even.

• "horiz_incr" is +2 or -2.

• "width" value is a multiple of "horiz_incr" and has the
same sign.

8-14 INTRINSIC FUNCTIONS

BITBLT instructions

8.3.2 BITBLT instructions

PROTOTYPE

t y p e d e f v o i d _ b b fu n c (c h a r * s r c _ a d d r ,
ch a r * d e s t _ a d d r ,
u n s ig n e d c h a r s h i f t _ v a l ,
u n s ig n e d i n t h e i g h t ,
u n s ig n e d i n t m ask l,
u n s ig n e d i n t mask2,
i n t a d j _ s r c _ w a r p ,
i n t a d j _ d e s t _ w a r p ,
u n s ig n e d s h o r t w i d t h) ;

b b fu n c _ b b f o r , /*
_ b b o r _ s , /*
_ b b o r _ d a , /*
_ b b o r _ s d a , /*

★

_bban d , /*
_b b a n d _ s , /*
_b b a n d _d a , /*
_b b a n d _sd a , /*

★

_ b b x o r , /*
_ b b x o r _ s , /*
_ b b x o r _ d a , /*
_ b b x o r _ s d a , /*

•k

_ b b s t o d , /*
_ b b s t o d _ s , /*
_ b b s t o d _ d a , /*

b b s t o d sd a ; /*

p l a i n , f a s t o r */
b b o r w i t h i n v e r t e d s o u r c e */
b b o r w i t h d e c r e a s in g a d d r e s s e s */
b b o r w i t h i n v e r t e d s o u r c e and
d e c r e a s in g a d d r e s s e s */

p l a i n bband */
bband w i t h i n v e r t e d s o u r c e */
bband w i t h d e c r e a s in g a d d r e s s e s */
bband w i t h i n v e r t e d s o u r c e and
d e c r e a s in g a d d r e s s e s */

p l a i n b b x o r */
b b x o r w i t h i n v e r t e d s o u r c e */
b b x o r w i t h d e c r e a s in g a d d r e s s e s */
b b x o r w i t h i n v e r t e d s o u r c e and
d e c r e a s in g a d d r e s s e s */

p l a i n b b s t o d */
b b s t o d w i t h i n v e r t e d s o u r c e */
b b s t o d w i t h d e c r e a s in g a d d r e s s e s */
b b s t o d w i t h i n v e r t e d s o u r c e and
d e c r e a s in g a d d r e s s e s */

INTRINSIC FUNCTIONS 8-15

BITBLT instructions (Cont)

DESCRIPTION

The BITBLT instructions perform a full two-operand, bit-aligned block transfer.
Sixteen intrinsic BITBLT functions are supplied as an interface to these instruc
tions. They are divided into four groups, according to the operator between the
source and destination bits: _ b b o r for an OR operator, _bban d for an AND
operator, _ b b x o r for a XOR operator, and _ b b s t o d for a source to destination
copy, which overwrites the destination bits.

Within each group there are four variants, resulting from the combination of:

• The direction of the transfer — increasing or decreasing addresses.
Increasing addresses indicate a left-to-right operation; decreasing
addresses indicate a right-to-left operation.

• The reading of the source data — with or without inversion. The inversion
is a logical negation of each source bit.

A separate intrinsic function is supplied for each combination of variants. These
are coded as suffixes to the function names. The suffixes are _ s for inverted
source, da for decreasing addresses, and _ s d a for inverted source and
decreasing addresses. No suffix signifies a simple version of the function (i.e. no
source inversion, increasing addresses). There are therefore 16 different
BITBLT functions, as shown in the table below:

Operator plain inverted
source

decreasing
addresses

inverted source and
decreasing addresses

AND bband bband s bband da bband sda

OR b b f o r b b o r s b b o r da b b o r sda

XOR b b x o r b b x o r s b b x o r da b b x o r sda

STOD b b s to d b b s to d s b b s to d da b b s to d sda

NOTE: No plain b b o r function is supplied since the CG-Core
b b f o r instruction has the same functionality with faster per
formance.

A bottom-to-top BITBLT operation can be performed by giving negative source
and destination warp values, and beginning from the bottom line of the image.
Thus, combined with the _ d a option, the BITBLT functions can manipulate
blocks of data beginning in any of its four corners.

All functions have the prototype given above. The parameters are the same as
the instruction operands with the following meanings:

8-16 INTRINSIC FUNCTIONS

BITBLT instructions (Cont)

• s r c _ a d d r is the base byte-address of the source bit-block

• d e s t _ a d d r is the base byte-address of the destination.

• h e i g h t is the vertical size of the bit-block, which specifies the number of
lines to be transferred.

• w id th is the horizontal size of the transferred bit block. It is the number of
whole words on one line containing the bit-block.

• m askl and mask2 are bit masks "protecting" those bits at the left and right
of the source word block that do not belong to the bit-block from affecting the
bits in the destination block. A bit set to one means that this bit should not
be protected. A clear bit means that this bit should not affect the destination
bit.

The upper 16 bits of the mask parameters must be clear, otherwise behavior
is undefined. Compilation with the - a a compiler option
(/ CHECK=PARAMETER on VMS) will generate code to check in run-time for
this condition.

• s h i f t _ v a l contains the difference between the bit offsets of the source and
destination bit-blocks, relative to the word block:

s h i f t v a l = d e s t i n a t i o n b i t o f f s e t - s o u r c e b i t o f f s e t

s h i f t _ v a l must be positive. s r c _ a d d r and d e s t _ a d d r may need to be
adjusted to ensure this.

• ad j_s rc__w arp describes the adjusted source warp. For left-to-right opera
tions the source warp must be adjusted to:

a d j _ s r c _ w a r p = s o u rc e warp - 2 * (w id th - 1)

For right-to-left operations the source warp must be adjusted to:

a d j _ s r c _ w a r p = s o u r c e warp + 2 * (w id th - 1)

• a d j _ d e s t _ w a r p describes the adjusted destination warp. For left-to-right
operations the destination warp must be adjusted to:

a d j _ d e s t _ w a r p = d e s t i n a t i o n warp - 2 * (w id th - 1)

For right-to-left operations the destination warp must be adjusted to:

a d j _ d e s t _ w a r p = d e s t i n a t i o n warp + 2 * (w id th - 1)

INTRINSIC FUNCTIONS 8-17

BITBLT instructions (Cont)

For more details about the BITBLT instructions refer to the appropriate CG-core
Processor Programmer’s Reference Supplement.

8-18 INTRINSIC FUNCTIONS

bitwt (Bit Aligned Word Transfer)

8.3.3 Jbitwt (Bit Aligned Word Transfer)

PROTOTYPE

v o i d _ b i t w t (u n s ig n e d s h o r t * * s r c _ a d d r ,
u n s ig n e d * * d e s t _ a d d r ,
i n t s h i f t v a l) ;

DESCRIPTION

The _ b i t w t function performs a bit-aligned transfer of a short int. The 16 bits
of data at * * s r c _ a d d r are read, zero extended to an unsigned int and shifted to
the left by the number of bit positions specified in s h i f t _ v a l . The 32 bits of
data at * * d e s t _ a d d r are read, ORed with the shifted source and the result is
written into * * d e s t _ a d d r . Then * s r c _ a d d r and * d e s t _ a d d r are incre
mented by two to point to the next shorts to be operated on ((b y t e *) incre
menting).

NOTE: s h i f t _ v a l must be in the range of 0 to 15. Compilation
with the - a a option (/CHECK=p a r a m e t e r on VMS) will gen
erate code to check in run-time for this limitation.

The _ b i t w t function is useful for implementing a high-speed "source OR desti
nation" BITBLT operation, when the source data is aligned such that it does not
need masking The implementation consists of a simple loop containing the
_ b i t w t function and add instructions that adjust the source and destination
warps.

INTRINSIC FUNCTIONS 8-19

_movmp (Move Multiple Pattern)

8.3.4 _movxnp (Move Multiple Pattern)

PROTOTYPE

v o i d _ m o vm p b (v o id * d e s t _ a d d r ,
i n t i n c r ,
u n s ig n e d c ou n t ,
u n s ig n e d c h a r p a t t e r n) ;

v o i d _m ovm pw (vo id * d e s t _ a d d r ,
i n t i n c r ,
u n s ig n e d c ou n t ,
u n s ig n e d s h o r t p a t t e r n) ;

v o i d _m o vm p d (v o id * d e s t _ a d d r ,
i n t i n c r ,
u n s ig n e d c o u n t ,
u n s ig n e d i n t p a t t e r n) ;

DESCRIPTION

The _movmpb function copies cou n t times the byte specified by the p a t t e r n
function to d e s t _ a d d r . Each cou n t is spaced i n c r bytes from the previous
one. Only the low order byte of p a t t e r n will be copied, i f a p a t t e r n parame
ter larger than a byte is passed.

Similarly, the _movmpw function copies the word p a t t e r n . The i n c r is in
units of bytes. I f a double-word p a t t e r n parameter is passed, only its low
order word will be copied. I f a byte p a t t e r n parameter is passed, it will be
zero-extended.

_movmpd copies the double-word p a t t e r n . I f a byte or word p a t t e r n parame
ter is passed, it will be zero-extended.

This function is useful for quickly clearing large memory blocks. For example, in
printer applications a page image can be cleared prior t o drawing the next page.
The jmovmp function can also be used for drawing horizontal lines and for
creating simple patterns.

8-20 INTRINSIC FUNCTIONS

sbits (Set Bit String)

8.3.5 _sbits (Set Bit String)

PROTOTYPE

i n t _ s b i t s (v o i d * d e s t _ a d d r ,
i n t b i t _ o f f s e t ,
u n s ig n e d r u n _ l e n g t h ,
u n s ig n e d * l o o k u p _ t a b l e) ;

DESCRIPTION

The _ s b i t s function operates on r u n _ l e n g t h consecutive bits, starting with
the bit at b i t _ o f f s e t from the byte at * d e s t _ a d d r . r u n _ l e n g t h must be
in the range 0 to 25. An OR operation is performed between these bits and a
double-word from l o o k u p _ t a b l e . The double-word used is

l o o k u p _ t a b l e [r u n _ l e n g t h + 3 2 * (b i t _ o f f s e t % 8)]

The function returns zero if r u n _ l e n g t h is 25 or less, and returns one if
r u n _ l e n g t h is 26 or greater. Calling the functions as a procedure, such as

(v o i d) _ s b i t s (. . .

will prevent the compiler from producing the code for the return value.

The l o o k u p _ t a b l e parameter is used to lookup any table. The S b i t s macro
is an interface to the most common "black" lookup table (all bits in the run will
be set). This lookup table is provided in the l i b c g l 6 . a archive. The prototype
for the S b i t s macro is:

d e f i n e _ S b i t s (a d d r , o f f s e t , l e n g t h) \
_ s b i t s ((a d d r) , (o f f s e t) , (l e n g t h) , _ s b i t s _ t b l)

e x t e r n ch a r s b i t s t b l [] ;

INTRINSIC FUNCTIONS 8-21

sbits (Set Bit String) (Cont)

8.3.6 _sbitps (Set Bit Perpendicular String)

PROTOTYPE

v o i d _ s b i t p s (v o i d * s r c _ a d d r ,
i n t * b i t _ o f f s e t ,
i n t r u n _ l e n g t h ,
i n t d e s t _ w a r p) ;

DESCRIPTION

The _ s b i t p s function sets r u n _ l e n g t h bits, starting at the bit at
* b i t _ o f f s e t from the byte at * s r c _ a d d r . The set bits are separated by
d e s t _ w a r p bits.

The function can be used to draw vertical lines by passing d e s t _ w a r p equal to
the image warp. Forty-five degree lines are drawn by d e s t _ w a r p equal to the
image warp plus or minus one. Other applications include expansion and/or
rotation of images (in conjunction with the t b i t s function) and filling.

8-22 INTRINSIC FUNCTIONS

tbits (Test Bit String)

8.3.7 _tbits (Test Bit String)

PROTOTYPE

i n t _ t b i t s O (v o i d * s r c _ a d d r , / * c o u n t a s e r i e s o f z e r o s */

i n t * b i t _ o f f s e t ,

i n t * r u n _ l e n g t h ,

i n t m a x _ r u n _ l e n g t h ,

i n t m a x _ b i t _ o f f s e t ,

u n s i g n e d i n t * F f l a g) ;

i n t _ t b i t s l (v o i d * s r c _ a d d r , / * c o u n t a s e r i e s o f o n e s */
i n t * b i t _ o f f s e t ,

i n t * r u n _ l e n g t h ,

i n t m a x _ r u n _ l e n g t h ,

i n t m a x _ b i t _ o f f s e t ,

u n s i g n e d i n t * F f l a g) ;

DESCRIPTION

The _ t b i t s O function counts the number of consecutive clear bits, starting
from the bit at * b i t _ o f f s e t from the byte at s r c _ a d d r . Counting will ter
minate either at the first set bit, or i f m a x _ r u n _ l e n g t h or m a x _ b i t _ o f f s e t

bits were tested before a set bit was found. The number of bits scanned will be
placed in * r u n _ l e n g t h , and * b i t _ o f f s e t will be the offset upon termination.

Similarly, _ t b i t s l counts the number of consecutive set bits.

Both functions return the value of the PSR L flag. Calling the functions as a
procedure, such as

(v o i d) _ t b i t s l (. . .

will prevent the compiler from producing the code for the return value.

The value of the PSR F flag is placed in the Fflag value. Calling the functions
with the macro IGNORE_PARAM (defined in the c g l 6 . h) as the actual Fflag
parameter will prevent the compiler from producing the code for assigning the
value of the PSR F flag.

INTRINSIC FUNCTIONS 8-23

tbits (Test Bit String) (Cont)

Table 8-1. Effect of tbits on PSR L and F flags

CONDITION L F NOTES

* run l e n g t h < max run l e n g t h
bit found

1 F F reflects last
bit tested

* run l e n g t h >= max run l e n g t h
bit not found

1 F F reflects last
bit tested

* b i t o f f s e t >= max b i t o f f s e t
bit not found

0 F F reflects last
bit tested

* b i t o f f s e t >= max b i t o f f s e t
on entry

0 0/1 0 for t b i t s O
1 for t b i t s l

8-24 INTRINSIC FUNCTIONS

8.4 NS32GX320 Intrinsic Functions
The NS32GX320 high-performance 32-bit microprocessor combines the full instruction
set of the Series 32000 family with the following on-chip integrated features: instruc
tion and data caches, a 2-channel DMA controller, a 15-level interrupt control unit
(ICU) and three 16-bit timers. In addition, Digital Signal Processing is supported by
four special instructions:

mulwd Multiply Word to Double

cmuld Complex Multiply Double

cmacd Complex Multiply and Accumulate Double

m actd Multiply and Accumulate Twice Double

These instructions are accessible from the GNX C compiler using the special
NS32GX320 intrinsic routines.

All prototype definitions given in this section are supplied as part of the GNX C pack
age in the file gx320 . h.

INTRINSIC FUNCTIONS 8-25

NS32GX320 typedefs

8.4.1 NS32GX320 typedefs
WCOMPLEX and DCOMPLEX are typedefs, defined for cmuld and cmacd. They desig
nate data types for fixed-point complex arithmetic.

t y p e d e f s t r u c t WCOMPLEX {
s h o r t r e ;
s h o r t im;

} WCOMPLEX;

t y p e d e f s t r u c t DCOMPLEX {
l o n g r e ;
l o n g im;

} DCOMPLEX;

SHORT2 is a typedef, defined for mactd.

t y p e d e f s t r u c t SHORT2 { /* f o r m actd */
s h o r t s i ;
s h o r t s2 ;

} SH0RT2;

8-26 INTRINSIC FUNCTIONS

mulwd (Multiply Word to Double)

8.4.2 _mulwd (Multiply Word to Double)

PROTOTYPE

i n t _ m u lw d (s h o r t s r c l , i n t * s r c 2) ;

DESCRIPTION

The _mulwd function returns the integer multiplication of s r c l operand, by
the lower 16 bits of * s r c 2 .

INTRINSIC FUNCTIONS 8-27

cmuld (Complex Multiply Double)

8.4.3 _cmuld (Complex Multiply Double)

PROTOTYPE

v o i d cmuld (WC OMPLEX

WCOMPLEX

DCOMPLEX

s r c l ,
s r c 2 ,
* r e s u l t) ;

DESCRIPTION

The _ c m u l d function assigns the complex multiplication of the source parame
ters (* s r c l and s r c 2) to ^ r e s u l t . For example

r e s u l t - > r e = s r c l . r e * s r c 2 . r e - s r c l . i m * s r c 2 . im

r e s u l t - > r e = s r c l . r e * s r c 2 . im + s r c l . i m * s r c 2 . r e

8-28 INTRINSIC FUNCTIONS

cmacd (Complex Multiply and Accumulate Double)

8.4.4 _cmacd (Complex Multiply and Accumulate Double)

PROTOTYPE

v o i d _ c m a c d (D C O M P L E X * a c c u m ,

WCOMPLEX s r c l ,
WCOMPLEX s r c 2) ;

DESCRIPTION

The _ c m a c d function accumulates the complex multiplication of the source
parameters (s r c l and s r c 2) i n t o * r e s u i t . For example

accu m -> re = a ccu m ->re + s r c l . r e * s r c 2 . r e - s r c l . i m * s r c 2 . im
a ccu m -> re = accum->im + s r c l . r e * s r c 2 . im + s r c l . im * s r c 2 . r e

INTRINSIC FUNCTIONS 8-29

mactd (Multiply and Accumulate Twice Double)

8.4.5 jmactd (Multiply and Accumulate Twice Double)

PROTOTYPE

v o i d _ m a c t d (i n t *accum,
SH0RT2 s r c l ,
SH0RT2 s r c 2) ;

DESCRIPTION

The _m a c td function accumulates the result of the two multiplications of
s r c l . s l * s r c 2 . s i and s r c l . s 2 * s r c 2 . s2 into * r e s u l t . For example

accum = accum + s r c l . s l * s r c 2 . s i + s r c l . s 2 * s r c 2 . s2

8-30 INTRINSIC FUNCTIONS

Appendix A

SERIES 32000 STANDARD CALLING CONVENTIONS

A.l INTRODUCTION
The main goal of standard calling conventions is to enable the routines of one program
to communicate with different modules, even when written in multiple programming
languages. The Series 32000 standard calling conventions support various special
language features (such as the ability to pass a variable number of arguments, which is
allowed in C), by using the different calling mechanisms of the Series 32000 architec
ture. These conventions are employed only to call “externally visible” routines. Calls
to internal routines may employ even faster calling sequences by passing arguments in
registers, for instance.

Basically, the calling sequence pushes arguments on top of the stack, executes a call
instruction, and then pops the stack, using the fewest possible instructions to execute
at the maximum speed. The following sections discuss the various aspects of the
Series 32000 standard calling conventions.

A.2 CALLING CONVENTION ELEMENTS
Elements of the standard calling sequence are as follows:

• The Argument Stack
Arguments are pushed on the stack from right to left; therefore, the leftmost
argument is pushed last. Consequently, the leftmost arguments are always at
the same offset from the frame pointer, regardless of how many arguments are
actually passed. This allows functions with a variable number of arguments to be
used.

NOTE: This does not imply that the actual parameters are always
evaluated from right to left. Programs cannot rely on the
order of parameter evaluation.

The run-time stack must be aligned to a full double-word boundary. Argument
lists always use a whole number of double-words; pointer and integer values use a
double-word (by extension, i f necessary), floating-point values use eight bytes and
are represented as long values;

structures/unions use a multiple of double-words.

SERIES 32000 STANDARD CALLING CONVENTIONS A-l

NOTE: Stack alignment is maintained by all GNX — Version 4 com
pilers through aligned allocation and de-allocation of local
variables. Interrupt routines and other assembly-written
interface routines are advised to maintain this double-word
alignment.

The caller routine must pop the arguments off the stack upon return from the
called routine.

NOTE: The compiler uses a more efficient organization of the stack
frame i f the -OF (FIXED_FRAME in VMS) optimization is
enabled. In that case, programs should not rely on the organi
zation of the stack frame.

• Saving Registers
General registers RO, R l, and R2 and floating registers F0, F l, F2, and F3 are
temporary or scratch registers whose values may be changed by a called routine.
Also included in this list of scratch registers is the long register L I of the
NS32181/NS32381/NS32580 FPU. It is not necessary to save these registers on
procedure entry or restore them before exit. I f the other registers (R3 through
R7, F4 through F7, and L3 through L7 of the NS32181/NS32381/NS32580) are
used, their values should be saved (onto the stack or in other memory locations)
by the called routine immediately upon procedure entry and restored just before
executing the return instruction. This should be performed because the caller
routine may rely on the values in these registers not changing.

NOTE: Interrupt and trap service routines are required to
save/restore all registers that they use. I f the service routine
calls another routine it must save scratch registers as well.

• Returned Value
An integer or a pointer value that returns from a function, returns in (part of)
register RO.

Floating-point values return in floating point registers: A f l o a t value is
returned in register F0. A d o u b l e value is returned in register pair F0-F1.

I f a function returns a structure or union, the calling function passes an addi
tional argument at the beginning of the argument list. This argument points to
where the called function returns the structure. The called function copies the
structure into the specified location just before returning from the function. Note
that functions that return such types must be correctly declared as such, even if
the return value is ignored. For details see Chapter 4.

A-2 SERIES 32000 STANDARD CALLING CONVENTIONS

Example:
i n t i g l o b ;
m ()
{

i n t l o c ;
a = i f u n c (l o c) ;

}

i f u n c (p i)
i n t p i ;
{

i n t i , j , k;
j = 0;
f o r (i = 1; i <= p i ; i++)

j = j + f (i) ;
re tu rn (j) ;

}

The compiler may generate the following code:

i f u n c :

. LL2 :

. LL1:

e n t e r [3,4 # A l l o c a t e l o c a l v a r i a b l e
movd - 4 (f p) , to s # Push argument
bsr i fu n c
adjspb $ (-4) # Pop argument o f f s tack
movd rO, i g l o b # Save re tu rn va lue
e x i t []
r e t $ (0)

en te r [r 3 , r 4 , r 5] , 0 # Save sa f e r e g i s t e r s
movd 8 (f p) , r5 # Load argument t o temp r e g i s t e r
movqd $ (0) , r4 # I n i t i a l i z e j
cmpqd $ (D , r 5
bgt . LL1
movqd $ (1) , r3 # I n i t i a l i z e i

movd r 3 , t o s # Push argument
bsr _ f
ad jspb 1</> # Pop argument o f f s tack
addd r0, r4 # Add r e tu rn va lu e t o j
addqd $ (1) , r3 # Increment i
cmpd r3, r5
b l e . LL2

movd r 4 , rO # Return va lue
e x i t [r 3 , r 4 , r 5] # Res to re sa f e r e g i s t e r s
r e t $ (0)

SERIES 32000 STANDARD CALLING CONVENTIONS A-3

After the enter instruction is executed by i f u n c () , the stack will look like this:

HIGH MEMORY

loc

value of l o c

return address
saved fp
saved r3
saved r4

saved r5

caller’s stack frame

callee’s stack frame

< - fp

< -- sp

LOW MEMORY

A-4 SERIES 32000 STANDARD CALLING CONVENTIONS

Appendix B

MIXED-LANGUAGE PROGRAMMING

B.l INTRODUCTION
Mixed-language programs are frequently used for a couple of reasons. First, one
language may be more convenient than another for certain tasks. Second, code sec
tions, already written in another language (e.g., an already existing library function),
can be reused by simply calling them.

A programmer who wishes to mix several programming languages needs to be aware of
subtle differences between the compilation of the various languages. The following sec
tions describe the issues the user needs to be aware of when writing mixed-language
programs and then compiling and linking such programs successfully.

B.1.1 Writing Mixed-Language Programs
The mixed-language programmer should be aware of the following topics:

• Name Sharing - Potential conflicts including permitted name-lengths, legal
characters in identifiers, compiler case sensitivity, and high-level to assembly-
level name transformations.

• Calling Conventions - The way parameters are passed to functions, which
registers must be saved, and how values are returned from functions. See Appen
dix A for details.

• Declaration Conventions - The demands that different languages impose
when referring to an outside symbol (be it a function or a variable) that is not
defined locally in the referring source file. Note that this is also true of references
to an outside symbol that is not in the same language as that of the referring
source file.

To help the programmer avoid these potential problems, a set of rules for writing
mixed-language programs has been devised. Each rule consists of a short mnemonic
name (for easy reference), the audience of interest for the rule, and a brief description
of the rule.

Figure B-l summarizes all of the rules in the context of each possible cross-language
pair.

MIXED-LANGUAGE PROGRAMMING B-l

C Pascal FORTRAN 77 Series 32000
Assembly

Series 32000
Assembly

prefix prefix
include ext
case sensitivity

prefix
suffix

ref args
case sensitivity

FORTRAN 77 suffix
ref args
case sensitivity

suffix
include ext
ref args

prefix
suffix

ref args
case sensitivity

Pascal include ext
case sensitivity

suffix
include ext
ref args

prefix
include ext
case sensitivity

C include ext
case sensitivity

suffix
ref args
case sensitivity

prefix

Figure B-l. Cross-Language Pairs

RULE 1 case sensitivity

This rule is of interest to every programmer who mixes programming
languages.

C and Series 32000 assembly are case sensitive while FORTRAN 77
and Pascal are not. Programmers who share identifiers between these
two groups of languages must take this into account. To avoid prob
lems with case sensitivity, the programmer can:

1. Take care to use case-identical identifiers in all sources and com
pile FORTRAN 77 and Pascal sources using the case-sensitive
option (/ C A S E J 3 E N S IT IV E on VMS, - d on UNIX).

2. Use only lower-case letters for identifiers which are shared with
FORTRAN 77 or Pascal since the FORTRAN 77 and Pascal com
pilers fold all identifiers to lower-case if not given the case-
sensitive option.

RULE 2 prefix

This rule is of interest to those who mix high-level languages with
assembly code.

B-2 MIXED-LANGUAGE PROGRAMMING

RULE 3

RULE 4

All compilers map high-level identifier names into assembly symbols
by prepending these names with an underscore. This ensures that
user-defined names are never identical to assembly reserved words.
For example, a high-level symbol NAME, which can be a function name,
a procedure name, or a global variable name, generates the assembly
symbol _NAME.

Assembly written code which refers to a name defined in any high-
level language should, therefore, prepend an underscore to the high-
level name. Stated from a high-level language user viewpoint, assem
bly symbols are not accessible from high-level code unless they start
with an underscore.

suffix

This rule is of interest to those who mix FORTRAN 77 with C, Pascal,
or assembly code.

The FORTRAN 77 compiler appends an underscore to each high-level
identifier name (in addition to the action described in RULE 2). The
reason for an appended underscore is to avoid clashes with standard-
library functions that are considered part of the language, e.g., the
FORTRAN 77 WRITE instruction. For example, a FORTRAN 77
identifier NAME is mapped into the assembly symbol _NA M E _.

Therefore, a C, Pascal, or assembly program that refers to an FOR
TRAN 77 identifier name should append an underscore to that name.
Stated from an FORTRAN 77 user viewpoint, it is impossible to refer
to an existing C, Pascal, or assembly symbol from FORTRAN 77 unless
the symbol terminates with an underscore.

ref args

This rule is of interest to those who mix FORTRAN 77 with other
languages.

Any language which passes an argument to a FORTRAN 77 routine
must pass its address. This is because a FORTRAN 77 argument is
always passed by reference, i.e, a routine written in FORTRAN 77
always expects addresses as arguments.

Routines not written in FORTRAN 77 cannot be called from an FOR
TRAN 77 program if the called routines expect any of their arguments
to be passed by value. Only routines which expect all their arguments
to be passed by reference can be called from FORTRAN 77.

The Pascal program must declare all FORTRAN 77 routine arguments
using var. C programs must prepend the address operator & to FOR
TRAN 77 routine arguments in the call. The C or Pascal programmer

MIXED-LANGUAGE PROGRAMMING B-3

who wants to pass an unaddressable expression (such as a constant) to
a FORTRAN 77 routine, must assign the expression to a variable and
pass the variable, by reference, as the argument.

RULE 5 include ext

This rule is of interest to Pascal programmers who want to share vari
ables between different source files which may or may not be written
in Pascal.

Pascal sources which share global variables or routines must make
these variables known to separately compiled modules. This is done by
the i m p o r t and e x p o r t attributes, or by inclusion of a .h file which
contains the variables or routines. ERROR in line number 290
incorrect number of fields line is: .if!C’Pascal’See The Series 32000
G NX-Version 4 Pascal Optim izing Compiler Reference Manual.
E R R O R line292contains a . N o matching

In addition to these rules, a few points should he noted. First, G N X —
Version 4 F O R T R A N 77 allows identifiers longer than the six character
maximum o f traditional F O R T R A N compilers. Second, the family o f
G N X — Version 4 Compilers allows the use o f underscores in
identifiers. Both o f these enhancements simplify name sharing.

Importing Routines and Variables
The general conventions of all languages must be kept in mixed-language programs.
In particular, externals must be declared in those program sections which import them.
The following are examples of declarations of external (imported) functions/procedures
and external (imported) variables in each language. The examples are in the form:

caller language: external (imported) functions /procedures
or

external (imported) variables

Example:
C: e x t e r n i n t f u n c _ () ;

or
e x t e r n i n t v a r _ n a m e _ ;

Note that the strict reference C model (ANSI C standard) is
assumed. I f the model is relaxed, then the external declarations
are not mandatory.

FORTRAN 77: INTEGER func
or

COMMON /var_name/ l o c a l _ n a m e

Pascal .h file: f u n c t i o n f u n c _ : i n t e g e r ; e x t e r n a l ;

B-4 MIXED-LANGUAGE PROGRAMMING

Pascal . h file:
import/export

Series 32000:
assembly

p r o c e d u r e p r o c _ ; e x t e r n a l ;
or

t i n c l u d e " v a r _ d e f . h "

where the file v a r _ d e f . h contains:

v a r v a r _ n a m e _ : i n t e g e r ;

i m p o r t f u n c t i o n f u n c _ : i n t e g e r ;
v a r e x p o r t i : i n t e g e r ;

. g l o b l _ f u n c _
or

. g l o b l _ v a r _ n a m e _

B.1.2 Compiling Mixed-Language Programs
After writing different program parts in different languages, keeping in mind the rules
previously mentioned, the mixed-language programmer must still link and load these
parts to make them run successfully. The following three points should be mentioned
in conjunction with the successful Unking and loading of programs.

• External library (standard or nonstandard) routines must be bound with the
user-written code that calls them.

• Initialization code which arranges to pass program parameters to the main pro
gram and then calls the main program, sometimes has to be bound with user-
written code.

• The entry point of the code, i.e., the location where the program starts executing,
should be determined.

Libraries:
The following table (Table B -l) lists libraries associated with each compiler. When pro
gramming with mixed languages, the libraries associated with the languages used
must be bound with the program during the link phase of compilation.

Initialization code and Entry-points:
Normally, the entry point of the final executable file is called s t a r t . The code that
follows this entry-point is an initialization code that prepares the run-time environ
ment and arranges parameters to be passed to the user-written main program. The
initialization object file which is linked by default is called c r t O . o. The c r t O . o file
always calls _main .

The assembly-symbol that starts the user main program is _main (the underscore is
prepended by the C compiler) in the case of C programs and _M A IN ___in Pascal or
FORTRAN 77 programs.

MIXED-LANGUAGE PROGRAMMING B-5

Table B-l. Compilers and their Associated Libraries

COMPILER (DRIVER) NAME LIBRARIES

cc (cross nmcc)
f77 (cross nf77)
pc (cross nmpc)

libc
libF77, libI77, libm, libc
libpas, libm, libc

Note that the last two compilers completely ignore the user’s main program name.
Therefore, in C, the user-written code is called directly from c r t O . o. In Pascal and
FORTRAN 77, _m a in is located in the respective standard library which performs
additional initializations before calling the user entry-point _M A IN ____.

B.1.3 Compilation on UNIX Operating Systems
National Semiconductor’s GNX tools (assembler, linker, etc.) on UNIX systems relieve a
user’s concern about external libraries, initialization code, and entry-points. This is
due to the coherence and consistency of the GNX — Version 4 Compilers and their
integration through the use of a common driver.

When using a GNX — Version 4 Compiler on a UNIX system, the user does not directly
call the compiler front end, optimizer, code generator, assembler or linker. Instead, the
calls are indirectly made through the driver program.

The driver program accepts a variable number of filename arguments and options and
knows how to identify language-specific options. The driver also identifies the
languages in which its filename arguments are written by the names of these argu
ments. Therefore, the driver can arrange to compile and bind the programs with the
needed libraries in order to run the program successfully.

The driver program used by C, Pascal and FORTRAN 77 programmers is exactly the
same program on UNIX systems, named differently for each language. The respective
driver names are cc, pc and f77 (nmcc, nmpc and n f 7 7 for cross-support).

The driver program looks at its own name in order to determine the libraries that are
to be bound with the program. In addition, the driver links additional libraries accord
ing to the name extensions of any of its filename arguments. For instance, cc also
links l i b m and l i b p a s when one of the filename arguments is a Pascal source (recog
nized by the .p , . p a s , .P o r . PAS extensions).

B-6 MIXED-LANGUAGE PROGRAMMING

The - v (/VERBOSE on VMS) option of the driver verbosely outputs all driver actions.
With this option the interested user can track problems that might arise (such as
undefined symbols from the linker).

As mentioned in the previous section, different languages use different initialization
codes that reside in language-specific standard libraries. It is necessary that the
correct language initialization code be linked with a mixed-language program. The
driver program helps do this, but it needs to know in which language the main pro
gram is written.

To ensure that the correct initialization code is linked with a mixed-language program,
the user should call the driver that corresponds to the language of the main program
module within the mixed-language program.

For example, suppose there are four source modules written in four different languages
(c_utils . c written in C, f_utils. f written in FORTRAN 77, p_utils .p written
in Pascal, and s_utils . s written in assembly language), and there is a fifth module
that has already been compiled separately (ob j . o, an object module). Assuming there
is a main program written in FORTRAN 77, the f 77 driver should be used.

f 77 m ain .f c _ u t i ls .c f _ u t i l s . f p _ u t i ls .p s _ u t i ls .s o b j.o

I f the main program is written in C, cc is used, and so on.

B.1.4 Compilation on VMS Operating Systems
Under the GNX tools on VMS systems, the linking phase is separate from the compila
tion phase; therefore, it demands separate actions from the user.

The interested user should refer to the language tools manuals (assembler, linker, etc.)
for a complete description of how to use them on VMS systems.

B.2 COMPILING THE MIXED-LANGUAGE EXAMPLE
The example listed in Section B.3 consists of a number of program modules written in
languages different from the main program which is written in C.

B.2.1 Compiling the Example on a UNIX System
To compile the program modules on a UNIX system, type the command:

nmcc c_main.c\

c_fu n .c f77_fun . f p as_fun .p asm_fun.s

This assumes that all the program modules are in the same directory. I f the program
compiles and links successfully, the result is an executable file that, when run, prints

MIXED-LANGUAGE PROGRAMMING B-7

the line “Passed OK ! ! ! ” .

B.2.2 Compiling the Example on a VMS System
To compile the modules on a VMS system, type the following commands:

nmcc c_main. c
nmcc c_fun .c
n f77 f77_fun . f
nmpc pas_fun . p
nasm asm_fun.s

After successful linking, the result is an executable file that, when run, prints the line
“P a s s e d OK ! ! ! ” .

B.3 PROGRAM MODULE LISTINGS
The different program modules are listed in this section.

B-8 MIXED-LANGUAGE PROGRAMMING

c_main.c

f \

/*---
* Example of a C program which communicates with C, Pascal,
* Fortran 77, and Assembly external functions, via direct
* calls as well as via a global variable.
* Parameter passing by reference is accomplished by passing the
* addresses of the characters variables 'a', 'b', 'c', 'd' and 'e'.
* --—---------------------------------- * j

char str_[] = "Passed OK !!!0; global ('exported') string

main() {
char a, b, c, d, e;
int three = 3; FORTRAN must get its parameters by reference

So we put this constant into a variable ...

if (c_func (&a, 0)
pas_func (&b, 2)
f77_func_(&c, &three)
asm_func (&e, 4))

&&
&&
&&

in C arrays start with 0
in Pascal they start at 1
in til, at 1
in assembly, at 0

}

printf("%c%c%c%c%c%s", a, b, c, d, e, str_+5);
Should print "Passed OK !!!"

dummy ()
{
}

V.

MIXED-LANGUAGE PROGRAMMING B-9

c_fun.c

/*
* Declaration of the public character string 'str[]' and definition
* of the C function 'c_func()'.
* Note the appending of an underscore to the external symbol 'str_'
* which is shared with FORTRAN 77.
*/

extern char str_[];

int c_func(c_ptr, index)
char *c_ptr;
int index;
{

*c_ptr = str_[index];
return 1;

}

V__J

f77_fun.f

r
c
c
c
c
c
c

V

The FORTRAN 77 function:

All parameters are passed by reference
The COMMON statement aliases the external array 'str' as 'text'

LOGICAL FUNCTION f77_func(c, index)
CHARACTER C

INTEGER index
COMMON /str/ text
CHARACTER text(15)
c = text(index)
f77_func = .TRUE.
RETURN
END

B-10 MIXED-LANGUAGE PROGRAMMING

pas_fun.p

N

(*
* The Pascal function 'pas_func()'
*)

(* 'str[]' character-array declaration *)
tinclude "str_pas.h";

(* make this function visible to outsiders ('export') *)
function pas_func(var c: char; index: integer): boolean; external;

function pas_func();
begin

c := str_[index];
pas_func := TRUE;

end;

V J

str_pas.h

(---
(* ' str(]' character-array declaration for Pascal *)
var

str_ : packed array [1..15] of char;

V___________ _ _____________ J

MIXED-LANGUAGE PROGRAMMING B-ll

asm_fun.s

(
#
The 32000 Assembly Language Function 'asm_func'
#
The function includes an artificial use of r7, to demonstrate the
need to save it upon entry and restore upon exit, as opposed to
rO, rl and r2; fO, fl, f2 and f3 which can be used freely without
saving or restoring. This is according to the Series 32000
standard calling convention.
The function return value is placed in rO, also according to the
standard calling convention.
#

.globl _str_ # Import the global str[] array.

.globl _asm_func # Export (make visible) the assembly function,

.align 4

asm func:
enter [r7], 0 # Set frame, show saving of r7
movb str_+0(12(fp)),0(8(fp)) # argument_l <— str[argument_2]
movqd $(1) ,r7 # artificial use of r7
movd r7, rO # return value <— TRUE
exit [r7] # Unwind frame, restore r7
ret $(0) # Return to caller

B-12 MIXED-LANGUAGE PROGRAMMING

Appendix C

ERROR DIAGNOSTICS

C.l INTRODUCTION
The GNX C compiler has a superior error handling mechanism. In most cases, the com
piler continues to compile when an error is found. An error message is displayed, pro
viding information on the type of error, the source filename, the line number location of
the error. Generally, the compiler attempts to minimize the effects of errors on compi
lation.

C.2 ERROR MESSAGES
Errors are divided into six categories:

1. Limitation Errors

2. System Errors

3. Severe Errors

4. Syntax Errors

5. Caution Errors

6. Warnings

C.2.1 Error Messages Format
The general syntax of an error message is

filename, l in e m:c) [category] : message
Where:

filename is the source file name.
m is the line number location of the error.
c is a lower case letter used to mark the error position on the source line.

category is the error category.

The error message is followed by an echo of the source line. The errors are marked
with the appropriate lower case letter corresponding to the error message as displayed
in the syntax.

ERROR DIAGNOSTICS C-l

Example:

" s t a m . c " , l i n e 3: a) [s e v e r e] : " j " u n d e f i n e d
b) [s e v e r e] : i l l e g a l i n d i r e c t i o n
c) [s y n t a x] : ') ' may be m i s s i n g b e f o r e ' ; '

f o r (j = 1; * i != 0; ;
---------- a -----------------b ---------c --

C.2.2 System Errors
System errors are related to the operating system or the environment in which the
compiler runs. For example:

[s y s t e m] : C a n ' t open f i l e f i l e n a m e

[s y s t e m] : Ran out o f memory

C.2.3 Limitation Errors
Limitation errors are caused by exceeding compiler limitations. Generally a limitation
error causes the suspension of code generation. In these cases the limitation message
includes "no object file produced". However, in some cases limitation messages are
warnings, and code generation continues.

The following is a complete list of limitation errors:

1. [L i m i t a t i o n] : a r r a y s i z e t o o l a r g e ; no o b j e c t f i l e p r o d u c e d

This error message is produced i f an array size exceeds the maximal number
which can be represented in 29 bits (536870911) .

2. [L i m i t a t i o n] : s t r u c t u r e t o o l a r g e ; no o b j e c t f i l e p r o d u c e d

This error message is produced i f a structure size exceeds the maximal number
which can be represented in 29 bits (536870911) .

3. [L i m i t a t i o n] : a r r a y d im e n s i o n t o o l a r g e ; no o b j e c t f i l e p r o
du ced

This error message is produced if a number greater than the maximal number
which can be represented in 29 bits (536870911) is used for an array’s dimen
sion.

4. [L i m i t a t i o n] : c u m u l a t i v e s i z e o f s t r u c t u r e members i s t o o
l a r g e ; no o b j e c t f i l e p r o d u c e d

C-2 ERROR DIAGNOSTICS

This error message is produced for structures for which the cumulative size of the
structure’s members exceeds the maximal number which can be represented in 29
bits (536870911) .

5. [L i m i t a t i o n] : n o t enough sp a c e on f rame f o r c o m p i l e r - p r o d u c e d
t e m p o r a r i e s ; no o b j e c t f i l e p r o d u c e d

This error message is produced when the cumulative size of the local variables
and the temporary variables created by the compiler for computations exceeds the
maximal number which can be represented in 29 bits (536870911) .

6. [L i m i t a t i o n] : c u m u l a t i v e s i z e o f l o c a l v a r i a b l e s i s t o o l a r g e ;
no o b j e c t f i l e p r o d u c e d

This error message is produced when the cumulative size of the local variables
and the temporary variables created by the compiler for computations exceeds the
maximal number which can be represented in 29 bits (536870911) .

7. [L i m i t a t i o n] : s i z e t o o l a r g e f o r s y m b o l i c i n f o r m a t i o n , may
c o n f u s e t h e d e b u g g e r

This error message is produced for objects (structures/unions or arrays) who’s size
is greater than the maximal number which can be represented in 16 bits
(6 5 5 3 5) . Code continues to be generated, however the operation of the debugger
may be affected.

8. [L i m i t a t i o n] : a r r a y d i m e n s i o n t o o l a r g e f o r s y m b o l i c i n f o r m a
t i o n ; may c o n f u s e t h e d e b u g g e r

This error message is produced i f a number greater than the maximal number
which can be represented in 16 bits (65535) is used for an array’s dimension.
Code continues to be generated, however the operation of the debugger may be
affected.

C.2.4 Syntax Errors
When the compiler detects a syntactic error, an attempt is made to fix the error by
internally changing the input to a syntactically legal phrase. This is done in order to
continue compilation and produce a maximum number of useful diagnostics; it should
not be used as a means to correct your program.

An error is fixed by the deletion, insertion or replacement of a token, or by the skipping
of a language phrase. The appropriate action is selected by the compiler based on the
context of the source code, semantic information and a set of heuristics. Once a suc
cessful change in the source code is introduced, a syntax error is reported to indicate
the change. I f the change does not result in a legal syntactic phrase, the compiler skips
to a point where the text is synchronized with the language syntax.

ERROR DIAGNOSTICS C-3

NOTE: In some cases the change introduced by the compiler may not be
appropriate for your source code.

Examples:

1. Token deletion

" f i l e n a m e " , l i n e 1: a) [s y n t a x] : U n e x p e c t e d
i n t i , , j ;
--------- a---

The unexpected token ’ was deleted internally in attempt to continue compila
tion.

2. Token insertion

" f i l e n a m e " , l i n e 3: a) [s y n t a x] : may be m i s s i n g b e f o r e ' } '

i = i }
--------a--

The token V was inserted before the token ’ } ’ in an attempt to continue compila
tion.

3. Token replacement

" f i l e n a m e

i + +]
------a------

l i n e 4: a) [s y n t a x] : '] ' u n e x p e c t e d , may be
more a p p r o p r i a t e

The unexpected ’] ’ token was replaced with a V in an attempt to continue compi
lation.

4. Skipping a language phrase

" s t a m . c "

x x x x ; p
---------- a-

l i n e 6: a) [s y n t a x] : U n e x p e c t e d " p " , more e r r o r s may
f o l l o w . . . s k i p p i n g u n t i l on l i n e 13

Indicates the beginning of the skipped phrase.

C-4 ERROR DIAGNOSTICS

" s t a m . c " , l i n e 13: a)

foo <) { } ;
------------ a ------------------------

[s y n t a x] :
l i n e 6)

s k i p p e d u n t i l h e r e (f r o m

Indicates the end of the skipped phrase.

NOTE: Additional errors occasionally result from the fact that part of the
program was skipped by the compiler.

C.2.5 Severe Errors
Severe errors are caused when the compiler detects semantic violations of the language
rules, where the programmer’s intention is not clear to the compiler. In this case, an
error message is displayed and code generation is terminated.
For example:

" s t a m . c " , l i n e 10:

foo(int, a){};
------- a---------------

a) [s e v e r e] : t r a d i t i o n a l and p r o t o t y p e
p a r a m e t e r s ca n n o t be m ixed

C.2.6 Caution Errors
Caution errors are issued for erroneous language constructs which the compiler either
"thinks" may be on purpose or "guesses" the programmers intention. An error message
is displayed and generation of code continues. I f the programmer is satisfied with the
compiler’s action, the program produced may be run.
For example, i f i was declared as v o l a t i l e i n t i ; :

" s t a m . c " , l i n e 2: a) [c a u t i o n] : v o l a t i l e p o i n t e r m ismatch
i n t *p = & i ;
---------------- a--

ERROR DIAGNOSTICS C-5

C.2.7 Warnings
Warning messages are issued for input which conforms to the language, but is deemed
to be inappropriate by the compiler in the context found. An error message is displayed
and generation of code continues.
For example:

" n o t r e a c h e d . c " , l i n e 8: a) [w a r n i n g] : s t a t e m e n t n o t r e a c h e d
i + + ;

-------------------------- a--

Warning messages can be disabled by the -w compiler option on UNIX systems
(/NOWARNING On VMS).

C-6 ERROR DIAGNOSTICS

Appendix D

COMPILER OPTIONS

D.l INTRODUCTION

This appendix contains tables for quick reference to the GNX—Version 4 C compiler
options. These tables list:

• Options to the compiler on UNIX systems

• Options to the compiler on VMS systems

• Options to the compiler that pass to the C preprocessor on UNIX systems

• Options to the compiler that pass to the C preprocessor on VMS systems

• Options to the compiler that pass to the linker

(Options that pass to the linker are relevant only for UNIX systems.)

COMPILER OPTIONS D-l

Table D-l. UNIX Operating System Options
Sheet 1 of 2

OPTION FUNCTION

-A Allocate variables as standard.

-aflags

-B

Generate runtime checks.

Add code for profile information gathering.

-c Suppress loading, force production of object file in file. o.

-d This option is useful only when compiling Pascal and FORTRAN 77 programs.

-Fflags

-f

Set optimization flags but do not call optimizer.

Use floating-point emulation library.

-g

-J width

Prepare symbolic debug information for debugger.

Force alignment boundary within structs to width.

-KC cpu
-KFfpu
-KBöus

Set target CPU.
Set target FPU.
Set target buswidth.

-\lib Use lib as a program library.

-m Use m4 as the preprocessor for FORTRAN 77 and assembly files.

-n Put C source lines as comments into assembly output file.

-N [flags ~\nnn This option is useful when compiling FORTRAN 77 programs.

D-2 COMPILER OPTIONS

Table D -l. UNIX Operating System Options
Sheet 2 of 2

OPTION FUNCTION

-Oflags

-X

Perform optimizations according to flags.

Generate code that conforms to the Series 32000
architectural feature of modularity.

-P

-Q

-R

Prepare profiling information for profiling.

Compile only, verify for syntax errors.

Put all literal strings in read-only memory.

-S Do not assemble, leave assembly in file.s.

-T This option is only useful when compiling FORTRAN 77 programs.

- V Verbose: list the subprograms as actually called by the driver.

-vn List the subprograms to be called, but do not actually execute them.

-Wx,options Pass options to compiler phase x. x can be p (C preprocessor), a (assembler), or 1 (linker).

-w Suppress warnings.

-w66 This option is only useful when compiling FORTRAN programs.

-Zc Use an alternate library.

COMPILER OPTIONS D-3

Table D-2. VMS Operating System Options
Sheet 1 of 2

OPTION FUNCTION

/ [NO JOBJECT [=fllename]

/ [NO JOPTIMIZE [=(flags [...])]

/CHECK [^option [,...])]

/[NOjDEBUG

/[NO]GATHER

/[NOjPROFILE

/ [NO]ASM [=filename]

/ [NO]ANNOTATE

/ [NO]ROM_STRINGS

[do not] Generate an object file during the compila
tion process.

[do not] Perform optimizations [according to flags].

Generate run-time checks.

[do not] Prepare symbolic debug information for
debugger.

[do not] Add code for profile information gathering.

[do not] Prepare profiling information for profiling.

[do not] Generate an assembler file during the com
pilation process.

[do not] Put C source lines as comments into assem
bly output file.

Put all literal strings in read-only memory.

/ALIGN [=width]

/ [NO JWARNING

/[NO] STANDARD

Force alignment boundary within structs to width.

[do not] Output warning diagnostics.

Allocate variables as standard.

D-4 COMPILER OPTIONS

Table D-2. VMS Operating System Options
Sheet 2 of 2

OPTION FUNCTION

/ [NO]PRE_PROCESSOR [do notjRun the source code through the cpp prepro
cessor.

/[NO JVERBOSE [do not] List the compiler subprograms called by the
driver.

/[NO]VN [do not] List the subprograms to be called, but do not
actually call them.

/TARGET=(CPU=cpu) Set target CPU.
/TARGET=(FPU=/pu) Set target FPU.
/TARGET=(BUSWIDTH=6us) Set target buswidth.

/ [NO JMODULAR Generate code that conforms to the Series 32000
architectural feature of modularity.

/ [NO] ERROR [=filename] [do not] Generate an error log file during the compi
lation process.

Table D-3. Options Passed to the Preprocessor — UNIX Systems

OPTION FUNCTION

-C Prevent the macro preprocessor from removing comments.

-D name=def
-D name

Define name to have the value def.
Define name to have the value 1.

-E Run only the preprocessor, send the result to stdout.

-Idir Look for include files in dir after looking in the current directory.

-M Generate makefile dependencies (cpp option).

-P Run only the preprocessor, send the result to a preprocessed source,
file.

-U name Undefine name.

COMPILER OPTIONS D-5

Table D-4. Options Passed to the Preprocessor — VMS Systems

OPTIO N FUNCTION

/ [NO] COMMENT [do not] Prevent the preprocessor from removing
comments.

/DEFINE=(rcame \=def\ [,...]) Define name to the preprocessor.

/ [NO] EXPAND [^filename] [do not] Generate a source file after preprocessing.

/INCLUDE=(mcZude_dir [,...]) Look for include files in includejdir after looking for
them in the current directory.

/UNDEFINE=(name [,...]) Undefine name to the preprocessor.

Table D-5. Options Recognized and Passed to the Linker

OPTION FUNCTION

-e epname Define epname as entry point.

-o out Name the compilation output file out.

-r Retain relocation.

-s Strip.

-u symname Undefine symname in symbol table.

-V Print linker version information.

-X Do not preserve local symbols in the symbol table.

-i Intialize variables in runtime.

D-6 COMPILER OPTIONS

Appendix E

EMBEDDED PROGRAMMING HINTS

E.l INTRODUCTION
The GNX C compiler provides certain features which allow for programming of embed
ded applications in C. These features help solve the following issues:

• full control over memory allocation - including RAM, ROM, stack space, trap and
interrupt vectors, peripheral memory-mapped control registers.

• startup actions performed at system reset - including initializing stack pointers,
configuration registers, peripheral control registers, and timers.

• initialization of RAM data variables - usually by copying from ROM or by zeroing.

• interrupt/trap handling

This appendix provides suggestions and examples for using the C compiler in embed
ded applications.

E.2 VOLATILE AND CONST
The c o n s t and v o l a t i l e type qualifiers can be used in embedded applications to
indicate ROM entities and memory mapped entities, respectively. A general overview
of the semantics and use of these qualifiers is explained below. For further detail see
Section E.2.5 and the ANSI C standard.

E.2.1 Const Type Qualifier
The value of an object (any lvalue expression) whose type includes the c o n s t qualifier
cannot be modified. The c o n s t qualifier can be used for several purposes:

1. Constant strings can be made a part of the program code and placed into
ROM.

2. Protecting variables from being changed. I f during run-time an attempt is
made to change a c o n s t variable, a trap will occur.

A non-volatile global or static object declared as c o n s t , will be allocated in read-only
memory (the . t e x t area) i f it is initialized.

EMBEDDED PROGRAMMING HINTS E-l

For example:

c o n s t i n t i = 137; /* i i s d e f i n e d as c o n s t */
i = 17; /* t h i s i s i l l e g a l ! ! */
i += 12; /* t h i s i s i l l e g a l ! ! */

The c o n s t syntax allows for the declaration of both ’constant pointers’ and ’pointers to
constants’. For example:

c o n s t c h a r * p c c ; /* p c c i s d e f i n e d as p o i n t e r t o */
/* c o n s t c h a r */

c h a r * c o n s t c p c ; /* cpc i s d e f i n e d as c o n s t p o i n t e r */
/* t o c h a r */

c o n s t c h a r * c o n s t c p c c ; /* c p c c i s d e f i n e d as c o n s t */
/* p o i n t e r t o c o n s t c h a r */

The types p o i n t e r t o c o n s t o b j e c t and c o n s t p o i n t e r t o o b j e c t , as in the
above example, have different meanings. The value of a p o i n t e r t o c o n s t o b j e c t
can be modified; however the value of the pointed object can not be modified. In con
trast, the value of a c o n s t p o i n t e r t o an o b j e c t can not be modified; however
the value of the pointed object can be modified.

For example:

c o n s t c h a r * p c c ; /* p c c i s d e f i n e d as p o i n t e r t o */
/* c o n s t c h a r */

p c c ++ ; /* t h i s i s O.K. */
* p c c = 17; /* t h i s i s an e r r o r */

E.2.2 Volatile Type qualifier
The value of an object (any lvalue expression) whose type includes the v o l a t i l e
qualifier can be used or changed by asynchronous events (such as I/O or interrupts).
Such an object should not be subject to any optimization that will change or delay
references to it.

By using the v o l a t i l e qualifier, you can specify volatile objects. Therefore, full
optimization is carried out on all other objects, including global variables and pointer
dereferences.

E-2 EMBEDDED PROGRAMMING HINTS

For example, in the following code

v o l a t i l e i n t i ;
i n t j ;

f o o () {

f o r (i = l ; i < j ; i + +) {

}
}

the compiler can put j in a register. But for i this optimization is not permitted.

The v o l a t i l e syntax allows for the declaration of both ’volatile pointers’ and
’pointers to volatiles’.

For example:

c h a r * p c ; /* pc i s d e f i n e d as p o i n t e r t o c h a r */
v o l a t i l e c h a r * p v c ; /* p v c i s d e f i n e d as p o i n t e r t o */

/* v o l a t i l e c h a r */
c h a r * v o l a t i l e v p c ; /* v p c i s d e f i n e d v o l a t i l e p o i n t e r */

/* t o c h a r */
v o l a t i l e c h a r * v o l a t i l e v p v c ;

/* v p v c i s d e f i n e d as v o l a t i l e */
/* p o i n t e r t o v o l a t i l e c h a r */

The types p o i n t e r t o v o l a t i l e o b j e c t and v o l a t i l e p o i n t e r t o o b j e c t ,
as in the above example, have different meanings. References to a p o i n t e r t o
v o l a t i l e o b j e c t can be optimized; however references to the pointed object can not
be optimized. In contrast, references to a v o l a t i l e p o i n t e r t o an o b j e c t can
not be optimized; however references to the pointed object can be optimized.

Assignment of p o i n t e r t o v o l a t i l e o b j e c t to p o i n t e r t o o b j e c t is permit
ted only if an explicit cast is used. Not using an explicit cast causes an error message.

r, , . - ", / . /

EMBEDDED PROGRAMMING HINTS E-3

For example:

p v c = p c ;
p c = v p c ;
p c = (c h a r *) v p c ;

/* 0 .K. */
/* i l l e g a l */
/* O.K. */

E.2.3 Memory Allocation
Memory allocation is performed by the operating system in native programming
environments such as UNIX. However, embedded applications require the ability to
control memory allocation. This is achieved by specifying in the linker directive file:

• the memory ranges of various program sections.

• the division of program sections into ROM and RAM.

• the sections to be copied from ROM to RAM at program startup.

A complete description of the linker directive file is provided in Chapter 3 of the GNX
Linker User’s Guide. Figure E -l is an example of a simple linker definition file for
defining two areas of memory.

E.2.4 Initialized C Variables
The C programming language allows compile-time initialization of global and static
variables. In addition, uninitialized global and static variable are defined by the C
language to have a zero value at program startup.

In native environment, initialization is handled by the compiler and the operating sys
tem. In cross environment, when loading the program with the GNX debugger, the
debugger performs these initializations. However in embedded applications, all initial
ized data resides in ROM and must be explicitly copied to RAM at program startup.
The GNX linker directive file and the GNX run-time library are used to automatically

E-4 EMBEDDED PROGRAMMING HINTS

MEMORY (
ROM : origin=0xl000 length=0x2000
RAM : origin=0xl0000 length=0x80000

SECTIONS {
.text INTO (ROM) : { M.text) }
.data INTO (RAM) : { M.data) }

F igu re E -l. Example of Linker Directive File

initialize RAM variables.

Refer to the GNX Linker User’s Guide for further details.

E.2.5 Programming Memory Mapped Devices
When writing code for the registers of memory mapped peripheral, correctly and
efficient accessing these entities can be problematic. However, the GNX C compiler
allows optimization of such code.

The v o l a t i l e qualifier should be used to specify the memory mapped entities. This
allows the optimizer to perform optimizations without changing or delaying references
to these entities.

An example of the correct way to code memory mapped entities is:

d e f i n e c t r l _ r e g * ((v o l a t i l e s h o r t *) 0 x f f e 8)

f o o ()

{
r e t u r n c t r l _ r e g ;

}

This will result in:

movxwd @(65512),rO
ret 0

NOTE: Do not define a global pointer variable, such as
v o l a t i l e s h o r t * c t r l _ r e g = (s h o r t *) CTRL_REG;
for memory mapped entities. Dereferencing such a pointer, as in
* c t r l _ r e g , will result in less efficient code.

EMBEDDED PROGRAMMING HINTS E-5

E.3 ASM STATEMENTS
The asm keyword (see Section 3.3.2) provides for the unlimited insertion of assembly
language statements into any position in the code. It is recommended to use this
feature only for actions not codeable in standard C, such as processor register manipu
lation and svc calls on Series 32000 development boards.

Extreme care should be taken especially when asm is used in conjunction with the
optimizer. See Section 6.6.6 for details.

The following example is a routine that will change the CPU status to supervisor mode
on a NS32CG16ED board:

ch a n ge_ to _su p erv iso r ()
{

The following example assumes that the s ta ck _p o in te r symbol is defined in the
linker directive file (see the GNX Linker User’s Guide for more details) as

s ta ck _p o in te r = 0 x 0 0 3 ffff0 .

The following code will load the stack pointer register with the above value:

asm("movd $ 9 ,r 0 ") ;
asm ("movd $0x55555555,r l ") ;
asm (" s v c ") ;

/* svc c a l l number 9 */
/* s e c u r ity code */

asm ("addr s ta ck _p o in te r , r 0 ") ;
a sm ("lp rd sp, r O ") ;

E-6 EMBEDDED PROGRAMMING HINTS

E.4 EXAMPLES OF PROGRAMMING WITH INTRINSIC FUNCTIONS
This section describes programming with intrinsic functions. More details can be
found in Chapter 8.

E.4.1 NS32CG16 bit instructions
An example of a graphic application based on certain special NS32CG16 core bit opera
tions is illustrated in this section. The image is represented by a bit-map 80 bits wide
and 21 lines high. The picture is drawn by printing the bit-map in an ascii format in
the following way:

1. A set bit in the bit-map is represented by the character

2. A clear bit is represented by a space .

It is important to include the proper header file, with intrinsic routines declarations, in
your application. In this example, c g l 6 . h is included.

The following definitions are used throughout the example:

d e f i n e PAGE_WIDTH_IN_BYTES 10
t d e f i n e PAGE_WIDTH_IN_BITS (PAGE_WIDTH_IN_BYTES * 8)
d e f i n e PAGE_HEIGHT 21
t d e f i n e P a g e (y , x) (p age + (y)*PAGE_WIDTH_IN_BYTES + (x))

The bitmap is kept in the following char array:

Char p a g e [PAGE_WIDTH_IN_BYTES * PAGE_HEIGHT] ;

A ’V’ is drawn in the upper-left part of the image using the _ s b itp s intrinsic function:

d r a w _ a _ v () {
i n t o f f s e t = 3;

_ s b i t p s (P a ge (2 , 0) , &o f f s e t , 7 , PAGE_WIDTH__IN_BITS + 1) ;
_ s b i t p s (P a g e (2 , 0) , & o f f s e t , 8 , -PAGE_WIDTH_IN_BITS + 1) ;

The resulting image is shown in Figure E-2

EMBEDDED PROGRAMMING HINTS E-7

★ ★
★

Figure E-2. The Image

A reversed image of *V* figure is drawn by using the b b o r s intrinsic function:

/*
* Copy a b i t - b l o c k (r e v e r s e d) c o n t a i n i n g t h e V, t o
* t h e l o w e r r i g h t c o r n e r o f i t s e l f .
* Mask o f f t h e a r e a s t o t h e r i g h t and l e f t o f t h e image ,
* t o p r o t e c t t h e image o f t h e V drawn a b o v e .
*/
_ b b o r _ s (P a g e (1 , 0) , P a g e (9 , 2) , 3 , 1 0 , 0 x 0 f f f e , 0 x 0 0 0 0 f ,

P A G E _ W I D T H _ I N _ B Y T E S - 2 , P A G E _ W I D T H _ I N _ B Y T E S - 2 , 2) ;

The resulting image is shown in Figure E-3.

E-8 EMBEDDED PROGRAMMING HINTS

★ ★ ★ ★ ★ * ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ *
★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
* ★ ★ * ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★
*★ ★ ★ ★ ★ **★ ★ ★ ★ ★ ★ ★ ★ ★
★ ★ ★ ★ ★ ★ * ★ ★ ★ * ★ ★ ★ ★ * ★

★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ *★ *★ *★
★ *★ ★ *

Figure E-3. The Image with the Reversed Shape

To print the image in the format of the example, the intrinsic routine _ t b i t () (a gen
eral 32000 instruction) is used:

EMBEDDED PROGRAMMING HINTS E-9

/*
* d u m p _ a s _ a s c i i ()
*

* D i s p l a y s t h e b i t m a p " p a g e " as an a s c i i p i c t u r e .
* Each b i t i s d i s p l a y e d as a c h a r a c t e r :
* ' * ' i f i t i s ON, ' ' (s p a c e) i f i t i s OFF.
•k

k __________ _____ ___ __ _____________ __ ___★ j

i n c l u d e <ns32000 .h>
d u m p _ a s _ a s c i i ()

{
i n t l i n e , o f f s e t ;
c h a r * p i c t ;

f o r (l i n e = 0, p i c t = p a g e ;
l i n e < PAGE_HEIGHT;

l i n e + + , p i c t += PAGE_WIDTH_IN_BYTES)

{
/*

* Use o f t b i t t o t e s t ea ch b i t on t h e c u r r e n t l i n e .

*/
f o r (o f f s e t = 0; o f f s e t < PAGE_WIDTH_IN_BITS; o f f s e t + +)

p u t c h a r (_ t b i t (o f f s e t , p i c t) ? ' * ' : ' ') ;

p u t c h a r (' \ n ') ;

}
}

The code is compiled using the following syntax:

UNIX environment

nmcc -KCG16 f i l e n a m e

VMS environment

NMCC /TARGET=(CPU=CG16) f i l e n a m e

E-10 EMBEDDED PROGRAMMING HINTS

E.4.2 NSGX320 specific instructions
An example of a part of an implementation of a digital FIR (Finite Impulse Response)
filter is illustrated in this section.

The following definitions of the types WCOMPLEX and DCOMPLEX (used in the example)
are found in gx320 . h (see Section 8.4.1):

t y p e d e f s t r u c t WCOMPLEX {
s h o r t r e ;
s h o r t im;

} WCOMPLEX;

t y p e d e f s t r u c t DCOMPLEX {
l o n g r e ;
l o n g im;

} DCOMPLEX;

This example shows a common operation in various DSP (Digital Signal Processing)
applications. The function performs a complex multiply and accumulate operation on
two complex vectors of length ten, and then scales down the complex result from 32 bit
to 16 bits. The C code is:

i n c l u d e < g x 3 2 0 .h >

d e f i n e HALF 16384
d e f i n e SHIFT 15
WCOMPLEX b [10] ;
WCOMPLEX a [1 0] ;
WCOMPLEX c ;
DCOMPLEX i n i t _ r e s u l t = { 0 , 0 } ;
f o r _ f i r ()

{
DCOMPLEX r e s u l t ;
i n t i ;

/* i n i t i a l i z e r e s u l t t o 0 */
r e s u l t = i n i t _ r e s u l t ;

f o r (i = 0 ; i < 10; i + +)
_ c m a c d (S r e s u l t , a [i] , b [i]) ;

/* now s c a l e down f ro m 32 b i t s back t o 16 b i t s */
c . r e = (r e s u l t . r e + HALF) » SHIFT ;
c . i m = (r e s u l t . i m + HALF) >> SHIFT ;

}

EMBEDDED PROGRAMMING HINTS E -ll

The following code was produced for the for_fir() function, when compiled with
-KCGX320 and -O:

f o r f i r :
movd i n i t r e s u l t , r O
movd i n i t r e s u l t + (4) , r l
cmacd _ a , _ b
cmacd _ a + (4) , _ b + (4)
cmacd _ a + (8) , _ b + (8)
cmacd _ a + (1 2) , _ b + (12)
cmacd _ a + (1 6) , _ b + (16)
cmacd _ a + (20) , _ b + (20)
cmacd _ a + (24) , _ b + (24)
cmacd _ a + (28) , _ b + (28)
cmacd _ a + (3 2) , _ b + (32)
cmacd _ a + (36) , _ b + (36)
movqd $ (0) , t o s
movqd $ (0) , t o s
movd rO, 0 (sp)
movd r l , 4 (sp)
movd 0 (s p) , rO
movd 4 (s p) , r l
addd $ (1 6 3 8 4) , rO
addd $ (1 6 3 8 4) , r l
ash d $ (- 1 5) , rO
ashd $ (- 1 5) , r l
cmpd t o s , t o s
movw oJo
movw r l , c+ (2)
r e t 0

NOTE: The nop instructions were used because rO and r l can not be
accessed for two instructions after the cmacd instruction.

E.5 PROGRAMMING TRAP/INTERRUPT ROUTINES
The example used in this section is a clock display for the time of day. The routine
c l o c k _ h a n d l e r handles a clock interrupt, which occurs TICKS_PER_SECOND times
per second. The time display is updated every second.

Since the routine does not use floating-point registers, s a v e _ r e g s = i n t _ r e g s is
specified in the pragma directive (i.e. only integer registers are saved). The saved
registers include all those used by the routine. Scratch registers are also saved because
the handler calls the routine u p d a t e _ t i m e _ d i s p l a y .

E-12 EMBEDDED PROGRAMMING HINTS

The C code for the clock interrupt handler is:

#pragma i n t e r r u p t (c l o c k _ i n t _ r o u t i n e , s a v e _ r e g s = i n t _ r e g s) ;

v o i d c l o c k _ i n t _ r o u t i n e (v o i d)

{
s t a t i c i n t c o u n t e r ;
s t a t i c i n t h o u r s ;
s t a t i c i n t m i n u t e s ;
s t a t i c i n t s e c o n d s ;

c o u n t e r + + ;
i f (c o u n t e r == TICKS_PER_SECOND)

{
s e c o n d s + + ;
c o u n t e r = 0;
i f (s e c o n d s == 60)

{
m i n u t e s + t ;
s e c o n d s = 0;
i f (m in u t e s == 60)

{
h o u r s + + ;
m in u t e s = 0;
i f (h ou rs == 24)

h o u rs = 0;

}
}

u p d a t e _ t i m e _ d i s p l a y (h o u r s , m i n u t e s , s e c o n d s) ;

}
}

Certain CPUs of the Series 32000IEP microprocessor family can be set to work in either
direct or indirect exception mode.

When direct exception mode is enabled the address of the trap handler (residing in the
interrupt dispatch table) is interpreted by the CPU as a pointer. The clock interrupt
entry in the interrupt dispatch table should be set to the address of
_ c l o c k _ i n t _ r o u t i n e . The following line is inserted to the clock interrupt entry in
the initialization of the interrupt dispatch table

. d o u b l e @ c l o c k i n t r o u t i n e

EMBEDDED PROGRAMMING HINTS E-13

When direct exception mode is disabled (or non existent), the address of the trap
handler (residing in the interrupt dispatch table) is interpreted by the CPU as an
external procedure descriptor (i.e. mod + offset). The clock interrupt entry in the inter
rupt dispatch table should be set to the descriptor of _ c l o c k _ i n t _ _ r o u t i n e . The fol
lowing line should inserted to the clock interrupt entry in the initialization of the inter
rupt dispatch table

. x p d _ c l o c k _ i n t _ r o u t i n e

In addition the interrupt handler should be associated to a module table entry. It is
recommended to do so by adding the following asm statement to the C source file
before the interrupt handled definition

a sm (" . m o d u l e ") ;

For more details on modular and direct exception mode see the Series 32000 instruc
tion set and the GNX Assembler manual.

E-14 EMBEDDED PROGRAMMING HINTS

INDEX

_ prefix B-2 Assembly program 2-2
_ suffix B-3 Assignment

of structures 3-3

A
AVAIL_SWAP 6-17

-A 2-6 B
-a 2-4, 2-14
abs 8-10 -B 2-4
Absolute value 8-10 Basic block
Absolute value instructions 8-2 count printed by sprof 7-9, 7-10
Accumulation of profile information 7-2 gathering profile information 7-2

disabling 7-5 sprof information 7-7
Additional code for profile information 7-2 Basic-block

in pfb_exit object file 7-3 definition of F-l
space considerations 7-6 Bit aligned word transfer 8-19
time considerations 7-6 Bit instructions 8-2, 8-11

Additional guidelines clear bit 8-3
asm statements 6-14 find first set 8-4
floating-point computations 6-12 invert bit 8-3
improving code 6-11 set bit 8-3
integer variables 6-11 test bit 8-3
local variables 6-11 Bitblt
optimizing for space 6-16 direction 8-16
pointer usage 6-12 source inversion 8-16
register allocation 6-15 suffixes 8-16
setjmpO 6-15 BITBLT instructions 8-15
static functions 6-11 Bit-field 8-5, 8-7

Address taking Bit-field instructions 8-2, 8-11
of intrinsic functions 8-2 Bitfields 3-7, 4-1

/ALIGN 2-10 Jbitwt 8-19
=1 for space optimization 6-16 Board

Alignment 2-6,2-10 developement F-l
Allocate variables as standard 2-6, 2-11
Allocation of memory E-4
/ANNOTATE 2-10, 6-10 C

for debugging optimized code 6-9
Annotated source file listing -c 2-5

by sprof 7-7 -c 2-5
ANSIC C language extensions 1-3

extensions 3-1 Calling conventions
ANSI C standard 3-1 in mixed language programming B-l
Application specific instruction set 8-1 standard A-l
Argument Calling sequence 4-8, 5-10

reference B-3 Case sensitivity B-l
var B-3 Caution Errors C-5

Argument stack cbit 8-2, 8-3
in calling sequence A-l CG16 8-1

ASIS 8-1 CG160 8-1
Asm 3-6, E-6 CG-Core 8-1
/ASM 2-10 chl6.h 8-2

for debugging optimized code 6-9 Changing default optimization options 6-4
Asm statements 6-14 Char 4-1
Assembler B-6 /CHECK 2-10, 2-14

INDEX 1

.cleanup -1 2-8
for profile gathering 7-5 -M 2-7

clear bit 8-2, 8-3 -m 2-6
close /MODULAR 2-11

for profile gathering 7-5 -n 2-5
_cmacd 8-29 -O 2-4, 6-3
CMDDIR 2-18 - 0 2-5
_cmult 8-28 /OBJECT 2-9
Code generator 2-1, 2-2, 5-9, B-6 /OPTIMIZE 2-9, 6-3
Code portability 4-1, 6-5 -P 2-8
Code-generator -P 2-4

definition of F-l /PRE PROCESSOR 2-12
CODE.MOTION optimization option 6-2, 6-4, -Q 2-4

6-17 -R 2-5
Coloring algorithm 5-8 -r 2-8
Command line 2-2 /ROM STRINGS 2-10
.comment 3-7 -S 2-5
/COMMENT 2-12 -s 2-8
Common subexpression elimination 5-1, 5-6 /STANDARD 2-11
Common subexpressions 6-13 /TARGET 2-11
Compatibility -U 2-8

PIT file and source file 7-10 -u 2-8
Compilation /UNDEFINE 2-12

for profile information 7-2 -V 2-8
Compilation options - V 2-6

UNIX 2-2, 2-4 /VERBOSE 2-11
VMS 2-9 -vn 2-6

Compilation process 2-1 /VN 2-11
Compilation time requirements 6-17 -W 2-8
Compilation unit -w 2-6

definition of F-l /WARNING 2-10
Compile but do not link 2-5 -X 2-7
Compile leaving assembly files 2-5, 2-10 - X 2-8
Compiler options -Z 2-6

-A 2-6 Compiler structure 2-1
-a 2-4,2-14 code generator 2-2
/ALIGN 2-10 driver 2-1
/ANNOTATE 2-10 front end 2-1
/ASM 2-10 language parser 2-1
-B 2-4 macro preprocessor 2-1
-C 2-5 optimizer 2-1
-c 2-5 Compiling mixed-language programs B-5
/CHECK 2-10, 2-14 Compiling system code 6-6
/COMMENT 2-12 Complex multiply and accumulate doubles 8-29
-D 2-7 Complex multiply double 8-28
/DEBUG 2-10 Configuration
/DEFINE 2-12 cross F-l
-E 2-7 native F-2
-e 2-8 Const 3-2, E-l
/ERROR 2-11 definition of F-l
/EXPAND 2-12 Constant folding 5-1, 5-2
-F 2-4 Conversion
- f 2-7 definition of F-l
-g 2-4 Convert to bit pointer 8-9
/GATHER 2-10, 7-4 Copy propagation 5-2
-I 2-7 Count of source-line executions 7-7
/INCLUDE 2-12 Cross configuration
-J 2-6 definition of F-l
-K 2-6, 2-13 cvtp 8-2

2 INDEX

_cvtp

D

8-9

-D 2-7
Data flow analysis 5-2
db_pfb_exit.o 7-4
Dbug

definition of F-l
Dead code removal 5-1, 5-5
/DEBUG 2-10

disabling FIXED_FRAME optimization 6-9
Debugging of optimized code 6-9
Declaration

definition of F-l
Declaration conventions

in mixed language programming B-l
Default optimization options 6-3

changing 6-4
Define 2-7,2-12
/DEFINE 2-12
Define entry point 2-8
Development board

definition of F-l
Directive file

linker E-4
Disabling profile information accumula

tion 7-5
Driver

definition of F-l
Driver program 2-1

E

-E 2-7
-e 2-8
Embed source lines as comments 2-5, 2-10
Embedded extensions 3-4
Embedded programming hints E-l
Embedded support 3-1
Emulation (floating-point)

definition of F-l
Entry point B-5
Enumerated type 3-3
Environment variables 2-18

AVAIL_SWAP 6-17
PITFILE 6-16, 7-3

errno
for profile gathering 7-5

Error
detection C-l
recovery from C-l

/ERROR 2-11
etext

for profile gathering 7-5
Executable program 2-2

Executable object file
definition of F-2

_exit
for profile gathering 7-5

_exit routine
for profile information 7-3

/EXPAND 2-12
_extblt 8-13
Extensions

$ sign in identifiers 3-7
ANSI C 3-1
asm keyword 3-6
bitfields 3-7
const 3-2
enumerated type 3-3
floating-point constants 3-2
for embedded programming 3-4
function prototype 3-1
ident 3-7
Interrupt/Trap Routines Support 3-4
intrinsic routines 3-7
pragma 3-2
signed keyword 3-2
string concatenation 3-3
structure handling 3-3
unsigned constants 3-3
volatile 3-2

Extensions to structures 3-3
Extensions to the C language 3-1
External bit aligned block transfer 8-13
External functions B-4
External procedures B-4
External variables B-4
_exti 8-5
Extract bit-field 8-5

F

-F 2-4
-f 2-7
fabs 8-10
fclose

for profile gathering 7-5
Features 1-3
ffabs 8-10
ffs 8-2
ffsb 8-4

JFsd 8-4
_ffsw 8-4
fgets

for profile gathering 7-5
Filename conventions 2-3
Files 2-3

assembly 2-2
executable 2-2
object 2-2

Find first set 8-2, 8-4
Fixed frame 5-1, 5-10

INDEX 3

FIXED_FRAME optimization option 6-2, 6-4,
6-7
8-1

I

-Fl -I 2-7
FLOAT_FOLD optimization option 6-2, 6-4, 6-8 _ibit 8-2, 8-3
Floating-point arithmetic 4-10 #ident 3-7
Floating-point computations 6-12 Identifiers
Floating-point constants 3-2 $ sign 3-7
Floating-point emulation 2-7, 2-17, F-l IEEE standards

Cross-Configuration/UNIX system 2-17 definition of F-2
native configuration 2-17 Implementation issues 4-1
VAX/VMS system 2-18 Importing routines and variables B-4

Flow optimizations 5-1, 5-4 Improved annotation 6-10
fopen /INCLUDE 2-12

for profile gathering 7-5 INCLUDEPATH 2-18
fprintf Incompatibilities with GNX C compiler

for profile gathering 7-5 version 3 1-5
fputs Induction variable elimination 5-1, 5-7

for profile gathering 7-5 Initialization
FRAME_ALLOCATION optimization of structures 3-3

option 6-2, 6-4 Initialization code B-5
Front end 2-1, B-6 Initialization of variables E-4
Function call Initializer

intrinsic 8-1 definition of F-2
Function prototype _ins 8-7

intrinsic functions 8-1 Insert bit-field 8-7
Function return value A-2 Instructions
Functions application specific 8-1

Function prototypes 3-1 Integer variables 6-11
FX16 8-1 Intermediate form

Interrupt and trap routines
2-1

programming 3-4
G Interrupt handler routine

programming examples E-12
-g 2-4 Intrinsic function

disabling -OF optimization 6-9 redefinition 8-1
/GATHER 2-10, 7-4 Intrinsic functions 8-1
Gather profile information 2-10 general description 8-1
Gathering profile information 2-4, 7-2 NS32GX320 8-25
Generate an error log file 2-11 programming examples E-7
Generate makefile dependencies 2-7 use 8-1
Generate modular code 2-7,2-11 Intrinsic routines 3-7
getenv Run-time parameter checks 2-15

for profile gathering 7-5 invert bit 8-2, 8-3
Global variables B-4 Invocation syntax
gn320.h 8-2 UNIX 2-2
GTS VMS 2-9

target setup 2-2 _iob
Guidelines on using the optimizer 6-1 for profile gathering 7-5
GX320 8-1

H
-J 2-6

Header files -J1
for intrinsic functions

Hints
8-2 for space optimization 6-16

for embedded programming
Host machine

E-l

definition of F-2

4 INDEX

K Macro
definition of F-2

-K 2-6 Macro preprocessor 2-1
-KB1 _mactd 8-30

for space optimization 6-16 Main program B-5
Keyword Memory allocation 4-9, E-4

definition of F-2 Memory layout optimizations 5-1, 5-10
Keywords Memory mapped devices

asm 3-6, E-6 programming E-5
const E-l Memory representation 4-1
Signed 3-2 Mixed-language programming 2-3, 4-8, B-l
volatile E-2 Compilation on UNIX operating systems B-6

Compilation on VMS operating systems B-7
mktemp

L for profile gathering 7-5
/MODULAR 2-11

-1 2-8 with profile information 7-4
Language parser 2-1 Monitor
Leave comments in 2-5, 2-12 definition of F-2
Libc symbols Move multiple pattern 8-20

used for profile gathering 7-5 _movmp 8-20
LIBPATH 2-18 Multiply and accumulate twice double 8-30
Library function Multiply word to double 8-27

reuse B-l _mulwd 8-27
Library routines 6-7, B-5
Limitation Errors C-2
Linker 2-2, 2-3, B-6 N

compiler options passed to 2-8
definition of F-2 -n 2-5, 6-10

Linker directive file E-4 for debugging optimized code 6-9
example E-4 Name sharing

Linker version 2-8 in mixed language programming B-l
Linking phase B-7 Native configuration
Literal strings in read-only memory 2-5,2-10 definition of F-2
Local variables 6-11 Nburn
LongjmpO 6-15 definition of F-2
Loop NIL pointer checks 2-16

definition of F-2 No local symbols in symbol table 2-8
Loop invariant code motion 5-1 NOOPT optimization option 6-2, 6-4, 6-16
Loop invariant expressions 5-6 NO_STANDARD_LIBRARIES 8-1
Loop unrolling 5-1, 5-4 ns32000.h 8-2
LOOP_UNROLLING optimization option 6-2, NS32CG16 8-1

6-4 NS32CG160 8-1
Low-level interface 6-7 NS32FX16 8-1

relying on frame structure 6-7 NS32GX320 8-1
relying on register order 6-7 intrinsic functions 8-25
using asm statements

Lvalue
6-7 typedefs for intrinsic functions 8-26

definition of F-2
0

M -0 2-4, 6-3
Object

-M 2-7 definition of F-2
-m 2-6 /OBJECT 2-9
Machine Object code program 2-2

host F-2 Object file
target F-3 definition of F-2

-01 8-1

INDEX 5

Old fashioned compound assignment 3-4 define entry point 2-8
Old fashioned initialization 3-4 embed source lines as comments 2-5, 2-10
Optimization floating-point emulation 2-7

definition of F-3 gather profile information 2-4, 2-10
Optimization flags 6-1 generate error log file 2-11
Optimization options generate makefile dependencies 2-7

changing default 6-4 generate modular code 2-7, 2-11
default on 6-3 leave comments in 2-5, 2-12
default on VMS 6-3 linker version 2-8

Optimization options on the command line no local symbols in symbol table 2-8
UNIX systems 6-3 optimize 2-4, 2-9
VMS systems 6-3 pass options 2-8

Optimization techniques 5-1 pass to C preprocessor 2-12
Optimizations profile information 2-4

common subexpression elimination 5-1 quick compilation 2-4
constant folding 5-1 read-only memory 2-5, 2-10
dead code removal 5-1 redirect output to .i file 2-8
fixed frame 5-1 rename output file 2-5
flow optimizations 5-1 retain relocation 2-8
induction variable elimination 5-1 run cpp only 2-7, 2-12
loop invariant code motion 5-1 run-time checks 2-4, 2-10
loop unrolling 5-1 set target 2-6, 2-11, 2-13
memory layout optimizations 5-1 show do not execute 2-6, 2-11
partial redundancy elimination 5-1 specify include file directory 2-7, 2-12
peephole optimizations 5-1 specify program library 2-8
redundant assignment elimination 5-1 strip 2-8
register allocation 5-1 undefine 2-8, 2-12
runtime feedback 5-1, 5-11, 6-16 undefine symbol in symbol table 2-8
Runtime feedback 7-11 use alternative library 2-6
strength reduction 5-1 use the m4 preprocessor 2-6
value propagation 5-1 verbose 2-6, 2-11

Optimize 2-4, 2-9 warning diagnostics 2-6, 2-10
/OPTIMIZE 2-9, 6-3 Order of evaluation 4-9

CODE MOTION 6-2, 6-4, 6-17 Overview 1-1
FIXED_FRAME 6-2, 6-4, 6-7
FLOAT FOLD 6-2, 6-4, 6-8
FRAME_ALLOCATION 6-2, 6-4 P
LOOP UNROLLING 6-2, 6-4
NOOPT 6-2, 6-4, 6-16 -P 2-8
REGISTERS ALLOCATION 6-2, 6-4, 6-17 -P 2-4
RUNTIME FEEDBACK 6-2, 6-4, 6-16 Partial redundancy 5-6
SPEED_OVER SPACE 6-2, 6-4, 6-16 Partial redundancy elimination 5-1
STANDARD LIBRARIES 6-2, 6-4, 6-7 Pass options to compilation phase 2-8
USER_REGISTERS 6-2, 6-4, 6-7, 6-15 Pass source file to the C preprocessor 2-12
VOLATILE 6-6 Pcc 3-1
VOLATILE optimization 6-2, 6-4 Peephole optimizations 5-1, 5-9

Optimizer 2-1, 5-2, B-6 pfb_exit.o and pfb_exit.obj 7-3
definition of F-3 Pgen 7-3

Optimizing for space 6-16 running on VMS 7-5
Option PIT file 7-2, 7-3

definition of F-3 PITFILE 2-18, 6-16, 7-3
Options 2-4 Pointer usage 6-12

alignment 2-6 Pointers
Alignment 2-10 to void 3-2
allocate variables as standard 2-6,2-11 Portability 4-1, 6-5
compile but do not link 2-5 Portable C compiler 3-1
compile leaving assembly files 2-5, 2-10 Pragma 3-2
debug information 2-4, 2-10 Prepare debug information 2-4, 2-10
define 2-7, 2-12 Prepare profile information 2-4

6 INDEX

Preprocessor 2-1 /ROM.STRINGS 2-10
compiler options passed to 2-7 Rim cpp only 2-7, 2-12
definition of F-3 Run-time checks 2-4, 2-10, 2-14
m4 2-6 array index 2-15
macro 2-1, 2-7 intrinsic function parameters 8-1

/PRE.PROCESSOR 2-12 Intrinsic routines parameters 2-15
Preprocessor Directive Run-Time checks

pragma 3-2 NIL pointer 2-16
Profile information 7-1 Runtime feedback optimization 5-1,5-11, 6-16,

customized _exit routine 7-3 7-11
gathering 7-2 Run-time library 6-7

Profilers RUNTIME_FEEDBACK optimization
sprof 7-7 option 6-2, 6-4, 6-16

Programming hints Run-time library
for embedded programming E-l definition of F-3

Programming in other languages 4-8
Programming memory mapped devices E-5
Programming trap and interrupt routines 3-4 S
PSR

L and F flags after _tbits 8-24 -S 2-5
for debugging optimized code 6-9

-s 2-8
Q Safe register 5-8

definition of F-3
-Q 2-4 Saving registers A-2
Qualifier _sbit 8-2, 8-3

definition of F-3 _sbitps 8-22
Quick compilation 2-4 _Sbits 8-21

Scratch register 5-8
definition of F-3

R Series 32000 microprocessors
NS32CG16 8-1

-R 2-5 NS32CG160 8-1
-r 2-5, 2-8 NS32FX16 8-1
Recommended reference book 1-2 NS32GX320 8-1
Redefinition set bit 8-2, 8-3

of intrinsic functions 8-1 Set bit perpendicular string 8-22
Redirect output to .i file 2-8 Set bit string 8-21
Redundant assignment elimination 5-1, 5-2 Set target configuration 2-6, 2-11, 2-13
Register allocation 5-8, 6-15 SetjmpO 6-15

for intrinsic functions 8-1 Severe Errors C-5
Register allocation by coloring 5-1 Show, but do not execute 2-6, 2-11
Register parameters 5-9 Signed 3-2
Register variables 4-9 Single bit instructions 8-2, 8-3, 8-11
REGISTER_ALLOCATION optimization clear bit 8-2, 8-3

option 6-2, 6-4, 6-17 find first set 8-4
Registers invert bit 8-2, 8-3

safe 5-8, F-3 set bit 8-2, 8-3
saving A-2 test bit 8-2, 8-3
scratch 5-8, F-3 Specify a program library 2-8

Reliance on naive algebraic relations 6-8 Specify directory for included files 2-7, 2-12
rename Speed over space 5-10

for profile gathering 7-5 SPEED_OVER_SPACE optimization
Rename the output file 2-5 option 6-2, 6-4, 6-16
Retain relocation 2-8 sprintf
Return value 4-10, 6-5 for profile gathering 7-5
Returned value A-2 Sprof 7-7
rindex Sprof options

for profile gathering 7-5 -d 7-9

INDEX 7

/DIRECTORY 7-9 Types and conversions 4-2
-e 7-9
/EXECUTABLE 7-9
-f 7-9 U
/FORMAT 7-9
-0 7-9 -u 2-8
/OUTPUT 7-9 -u 2-8
-P 7-9 Undefine 2-8, 2-12

sscanf /UNDEFINE 2-12
for profile gathering 7-5 Undefine symbol in symbol table 2-8

Stack Undefined behavior 4-10
in calling sequence A-l Undetected program errors 6-5

/STANDARD 2-11 failing to declare a function 6-5
Standard calling convention A-l relying on memory allocation 6-5
STANDARDJLIBRARIES optimization uninitialized local variables 6-5

option 6-2, 6-4, 6-7 UNIX
Statement invocation syntax 2-2

definition of F-3 unlink
Static functions 6-11 for 7-5
Strength reduction 5-1, 5-6, 5-10 Unsigned constants 3-3
Strings Use alternative library 2-6

string concatenation 3-3 Use the m4 preprocessor 2-6
Strip 2-8 USER_REGISTERS optimization option 6-2,
Structure returning function 4-8, 6-5 6-4, 6-7, 6-15
Structures 3-3
sys_errlist

for profile gathering 7-5 V
sys_nerr

for 7-5 -V 2-8
System code 6-6 -V 2-6
System Errors C-2 Value propagation 5-1, 5-2

Variable and structure alignment 4-2
Variable initialization E-4

T Verbose 2-6, 2-11
/VERBOSE 2-11

/TARGET 2-11 VMS
BUS=1 for space optimization 6-16 invocation syntax 2-9

Target setup 2-2 -vn 2-6
Target machine /VN 2-11

definition of F-3 Void 3-2
_tbit 8-2, 8-3 Volatile 3-2, E-l, E-2
_tbits 8-23 definition of F-3

effect on PSR L and F flags 8-24 VOLATILE optimization option 6-2, 6-4, 6-6
test bit 8-2, 8-3 Volatile variables 6-6
Test bit string 8-23
Timing assumptions 6-7
TMPDIR 2-18 W
Tokens

definition of F-3 -w 2-8
Trap and interrupt routines - w 2-6, C-6

programming 3-4 /WARNING 2-10, C-6
Trap handler routine Warning diagnostics 2-6, 2-10

programming examples E-12 Warnings C-6
Type qualifiers Writing Mixed-Language Programs B-l

const 3-2
volatile 3-2

Type representations 4-1
typedefs

for NS32GX320 intrinsic functions 8-26

8 INDEX

-X 2-7
with profile information 7-4

-x 2-8
Xdb_pfb_exit.o 7-4
Xpfb_exit.o and Xpfb_exit.obj 7-4

Z

-Z 2-6

X

INDEX 9

National
Semiconductor

READER’S COMMENT FORM

In the interest of improving our documentation, National Semiconductor invites your comments on this
manual.

Please restrict your comments to the documentation. Technical Support may be contacted at:

(800) 759-0105 - US and Canada
((0)8141) 103-330 - Germany only

Please rate this document according to the following categories. Include your comments below.

EXCELLENT GOOD ADEQUATE FAIR POOR

Readability (style) □ □ □ □ □

Technical Accuracy □ □ □ □ □

Fulfills Needs □ □ □ □ □

Organization □ □ □ □ □

Presentation (format) □ □ □ □ □

Depth of Coverage □ □ □ □ □

Overall Quality □ □ □ □ □

NAME DATE

TITLE __

COMPANY NAME/DEPARTMENT___

ADDRESS___

C ITY__STATE______________ ZIP

Do you require a response?0 Yes °N o PHONE_____________________________________

Comments:

GNX — Version 4.0 C Optimizing Compiler Reference Manual

FOLD, STAPLE, AND MAIL 424010516-004

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 409 SANTA CLARA, CA

POSTAGE WILL BE PAID BY ADDRESSEE

23 National Semiconductor Corporation
Technical Publications Dept., M/S E295
2900 Semiconductor Drive
P.O. Box 58090
Santa Clara, CA 95052- 9968

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

Sä National Semiconductor

SALES OFFICES

ALABAMA
Huntsville

(205) 837-8960
(205) 721-9367

ARIZONA
Tempe

(602) 966-4563

B.C.
Burnaby

(604) 435-8107

CALIFORNIA
Encino

(818) 888-2602
Inglewood

(213)645-4226
Roseville

(916) 786-5577
San Diego

(619) 587-0666
Santa Clara

(408) 562-5900
Tustin

(714) 259-8880
Woodland Hills

(818) 888-2602

COLORADO
Boulder

(303) 440-3400
Colorado Spnngs

(303) 578-3319
Englewood

(303) 790-8090

CONNECTICUT
Fairfield

(203)371-0181
Hamden

(203) 288-1560

INTERNATIONAL
OFFICES

Electronics NSC de Mexico SA
Juventino Rosas No 118-2
Col Guadalupe Inn
Mexico, 01020 D.F. Mexico
Tel: 52-5-524-9402
National Semicondu tores
Do Braell Ltda.
Av. Bng. Faria Lima, 1409
6 Andor Salas 62/64
01451 Sao Paulo, SP, BrasV
Tel: (55/11)212-5066
Telex: 391-1131931 NSBft BR

National Semiconductor GmbH
Industriestrasse 10
D-8080 Fürstenfeldbruck
West Germany
Tel: 49-08141-103-0
Telex: 527 649

National Semiconductor (UK) Ltd.
301 Harpur Centre
Horne Lane
Bedford MK40 ITR
United Kingdom
Tel: (02 34) 27 00 27
Telex 826 209

National Semiconductor Benelux
Vorstlaan 100
B-1170 Brussels
Belgium
Tel: (02) 6725360
Telex: 61007

FLORIDA
Boca Raton

(305) 997-8133
Orlando

(305)629-1720
Ss Petersburg

(813)577-1380
GEORGIA

Atlanta
(404) 396-4048

Norcross
(404)441-2740

ILLINOIS
Schaumburg

(312) 397-8777

INDIANA
Carmel

(317)843-7160
Fori Wayne

(219)484-0722

IOWA
Cedar Rapids

(319) 395-0090

KANSAS
Overland Park

(913) 451-8374

MARYLAND
Hanover

(301) 796-8900

MASSACHUSETTS
Burlington

(617) 273-3170
Waltham

(617)890-4000

MICHIGAN
W Bloomfield

(313) 855-0166

National Semiconductor (UK) Ltd.
1, Bianco Lunos Alle
DK-1868 Frednksberg C
Denmark
Tel (01)213211
Telex: 15179

National Semiconductor
Expansion 10000
28. rue de la Redoute
F-92260 Fontenay-aux-Roses
France
Tel: (01)46 60 81 40
Telex: 250956

National Semiconductor S.p.A.
Strada 7. Palazzo R/3
20069 Rozzano
Milanofion
Italy
Tel: (02) 8242046/7/8/9

National Semiconductor AB
Box 2016
Stensatravagen 13
S-12702 Skarholmen
Sweden
Tel: (08) 970190
Telex: 10731

National Semiconductor
Calle Agustin de Foxa, 27
28036 Madnd
Spam
Tel: (01) 733-2958
Telex 46133

MINNESOTA
Bloomington

(612) 835-3322
(612) 854-8200

NEW JERSEY
Paramus

(201)599-0955

NEW MEXICO
Albuquerque

(505) 884-5601

NEW YORK
Endicott

(607) 757-0200
Fairport

(716) 425-1358
(716) 223-7700

Melville
(516)351-1000

Wappinger Fails
(914)298-0680

NORTH CAROLINA
Cary

(919) 481-4311

OHIO
Dayton

(513) 435-6886
Highland Heights

(216) 442-1555
(216) 461-0191

ONTARIO
Mississauga

(416)678-2920
Nepean

(404)441-2740
(613) 596-0411

Woodbndge
(416) 746-7120

National Semiconductor
Switzerland
Alte Winterthurerstrasse 53
Postfach 567
Ch-8304 Wallisellen-Zurich
Switzerland
Tel: (01) 830-2727
Telex 59000

National Semiconductor
Kauppakartanonkatu 7
SF-00930 Helsinki
Finland
Tel (0) 33 80 33
Telex 126116

National Semiconductor Japan
Ltd.
Sanseido Bldg 5F
4-15 Nishi Shinjuku
Shinjuku-ku
Tokyo 160 Japan
Tel 3-299-7001
Fax 3-299-7000

National Semiconductor
Hong Kong Ltd.
Southeast Asia Marketing
Austin Tower, 4th Floor
22-26A Austin Avenue
Tsimshatsui, Kowloon, H.K.
Tel: 852 3-7243645
Cable: NSSEAMKTG
Telex 52996 NSSEA HX

OREGON
Portland

(503) 639-5442

PENNSYLVANIA
Horsham

(215) 675-6111
Willow Grove

(215)657-2711

PUERTO RICO
Rio Piedias

(809) 758-9211

QUEBEC
Dollard Des Ormeaux

(514) 683-0683
Lachine

(514)636-8525

TEXAS
Austin

(512) 3463990
Houston

(713) 771-3547
Richardson

(214) 234-3811

UTAH
Salt Lake City

(801)322-4747

WASHINGTON
Bellevue

(206) 453-9944

WISCONSIN
Brookfield

(414) 782-1818
Milwaukee

(414)527-3800

National Semiconductor
(Australia) PTY, Ltd.
1st Floor, 441 St. Kilda Rd
Melbourne, 3004
Victory, Australia
Tel: (03) 267-5000
Fax:61-3-2677458

National Semiconductor (PTE),
Ltd.
200 Cantonment Road 13-01
Southpomt
Singapore 0208
Tel: 2252226
Telex: RS 33877

National Semiconductor (Far Eait)
Ltd.
Taiwan Branch
P O. Box 68-332 Taipei
7th Floor, Nan Shan Life Bldg.
302 Min Chuan Easl Road,
Taipei, Taiwan R.O.C.
Tel: (86) 02-501-7227
Telex: 22837 NSTW
Cable: NSTW TAIPEI

National Semiconductor (Far Eaat)
Ltd.
Korea Office
Room 612,
Korea Fed of Small Bus Bldg
162, Yoido-Dong.
Youngdeungpo-Ku
Seoul, Korea
Tel: (02) 784-8051/3 - 785-0696-8
Telex: K24942 NSRKLO

National Semiconductor I orpom tion printed in l ,S .\.

w

	TOP
	GNX — Version 4.0 C Optimizing Compiler Reference Manual
	REVISION RECORD
	PREFACE

	CONTENTS
	Chapter 1 OVERVIEW
	Chapter 2 COMPILATION PROCESS
	Chapter 3 EXTENSIONS TO THE C LANGUAGE
	Chapter 4 IMPLEMENTATION ISSUES
	Chapter 5 OPTIMIZATION TECHNIQUES
	Chapter 6 GUIDELINES ON USING THE OPTIMIZER
	Chapter 7 PROFILE INFORMATION
	Chapter 8 INTRINSIC FUNCTIONS
	Appendix A SERIES 32000 STANDARD CALLING CONVENTIONS
	Appendix B MIXED-LANGUAGE PROGRAMMING
	Appendix C ERROR DIAGNOSTICS
	Appendix D COMPILER OPTIONS
	Appendix E EMBEDDED PROGRAMMING HINTS
	Appendix F GLOSSARY (missing)
	INDEX
	BOTTOM

