
Personal
Computer

GW™-BASIC



o

GW (GWTU-BASIC) is a trademark of Microsoft Corporation. IBM is a registered 
trademark of International Business Machines Corporation.

Copyright © 1982,1983, 1984,1985 by Microsoft Corporation

Copyright © 1984 by NCR Corporation 
Dayton, Ohio 

All Rights Reserved
Printed in the Federal Republitfif Germany

Second Edition, March 1985

It is the policy of NCR Corporation to improve products as new technology, components, 
software, and firmware become available. NCR Corporation, therefore, reserves the 
right to change specifications without prior notice. f

All features, functions, and operations described herein may not be marketed by NCR in 
all parts of the world. In some instances, photographs are of equipment prototypes. 
Therefore, before using this document, consult your NCR representative or NCR office 
for information that is applicable and current.



m s s

CUSTOMER PROGRAM LICENSE AGREEMENT

YGU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE OPENING THIS 
PACKAGE. OPENING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND 
CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACKAGE 
UNOPENED AND YOUR MONEY WILL BE REFUNDED.

This License Agreement applies to the Program contained in the accompanying package. Unauthorized 
copying is prohibited by the Copyright Law. YOU MAY NOT USE, COPY, MODIFY OR TRANSFER THE 
PROGRAM, IN WHOLE OR IN PART. EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS LICENSE 
AGREEMENT. The Program is or may be considered by the copyright owner or licensor ot NCR as 
confidential, proprietary and a trade secret and should be safeguarded by you as such. Title to the Program 
and copies of it remains with the copyright owner.

LICENSE

You may:

a. use the Program only on a single machine at a single location, unless the Program has been specifically 
designated by NCR. in writing or on this package, lor your use on a group of machines.

b. copy the Program into any machine readable or printed lorm for backup of modification purposes only, 
to support your use of it on the single machine or designated group of machines. (Certain programs may 
include mechanisms to limit or inhibit copying. They may be designated by a "Copy Protected" notice);

C. modify the Program for your use on the single machine or designated group of machines. (Any portion of 
the Program merged into another program will be considered to be a modification and will be subject to 
the terms and conditions of this License Agreement); and

d. transfer the Program and license to another party only if the other party agrees to accept the terms and 
conditions of this License Agreement. You must advise NCR of the name and address of the other party 
and the other party must accept the terms of this License Agreement by signing a copy of it and providing 
NCR with the signed copy. If you transfer the Program, you must at the same time destroy all copies 
whether in printed or machine-readable form which you have not transferred to the other party and this 
includes all modifications of the Program (including portions of it contained or merged into other 
programs).

You must reproduce and include any copyright notice and serial number on any copy, modification or portion 
merged into another program.

IF YOU TRANSFER POSSESSION OF ANY COPY. MODIFICATION OR MERGED PROGRAM TO 
ANOTHER PARTY. YOUR LICENSE WILL BE AUTOMATICALLY TERMINATED.

TERM

Your license will be effective until terminated. You may terminate it at any time by destroying the Program, 
including all copies, modifications and merged portions in any form. It will also terminate upon conditions set 
torth elsewhere in this License Agreement or if you fail to comply with any term or condition in this License 
Agreement. You agree that upon any such termination you will destroy the Program, including all copies, 
modifications and merged portions in any form.



EXCLUSION OF WARRANTY

EXCEPT AT STATED IN THE ' LIMITED WARRANTY” BELOW. THE PROGRAM IS PROVIDED "AS IS" 
WITHOUT WARRANTY OF ANY KIND. EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED 
TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. 
SHOULD THE PROGRAM PROVE DEFECTIVE. YOU (AND NOT NCR OR ITS DEALER OR DISTRIBUTOR 
OR ANY LICENSOR OF NCR OR OWNER OF THE PROGRAM) ASSUME THE ENTIRE COST OF ALL 
NECESSARY SERVICING. REPAIR OR CORRECTION. Thera is no warranty by NCR or any other parly or 
person that the (unctions contained in the Program will meet your requirements or that the operation of the 
Program will be uninterrupted or error free. You assume all responsibility tor the selection ot the Program to 
achieve your intended results, and lor the installation, use and results obtained from it.

LIMITED WARRANTY

NCR warrants both the media on which the Program is reproduced and the reproduction o l the Program on 
the media to be free from defects in materials and workmanship under normal use for a period of ninety (90) 
days from the date of delivery to you as evidenced by a copy of your receipt.

NCR's entire liability and your exclusive remedy shall be:

1. The repair or replacement of any media not meeting NCR's "Limited Warranty " and which is returned to 
NCR or an authorized NCR dealer or distributor within the 90-day period, with a copy of your receipt, or

2. If NCR or its authorized dealer or distributor is unable to deliver replacement media and repair is not 
practicable or cannot be timely made, you may terminate this License Agreement by returning the 
Program and your money will be refunded.

IN NO EVENT WILL NCR OR ANY OTHER PARTY OR PERSON BE LIABLE TO YOU OR ANYONE ELSE 
FOR ANY DAMAGES. INCLUDING LOST PROFITS. LOST SAVINGS OR OTHER INCIDENTAL OR 
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM OR 
MEDIA EVEN IF NCR OR THE OTHER PARTY OR PERSON HAS BEEN ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGES.

Some states do not allow limitations on how long an implied warranty lasts, so the above exclusion may not 
apply to you.

Some states do not allow limitations or exclusion of liability for incidental or consequential damages so the 
above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary from state to 
state.

MISCELLANEOUS

You may not sublicense, assign or transfer the license or the Program except as expressly provided in this 
License Agreement. Any attempt otherwise to sublicense, assign or transfer any of the nghts. duties or 
obligations hereunder is prohibited, and will automatically terminate your license and right to use the 
Program.

This License Agreement will be governed by the laws of the State of Ohio where NCR Corporation has its 
principal office.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT. UNDERSTAND IT AND AGREE TO BE 
BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER AGREE THAT IT IS THE COMPLETE AND 
EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN US AND THAT IT SUPERSEDES ANY 
PHOPOSAL OR PRIOR AGREEMENT. ORAL OR WRITTEN. AND ANY OTHER COMMUNICATIONS 
BETWEEN US OR BETWEEN YOU AND ANY NCR DEALER OR DISTRIBUTOR RELATING TO THE 
SUBJECT MATTER OF THIS LICENSE AGREEMENT.

Should you have questions concerning this License Agreement or should you desire to obtain information 
on warianty performance, you may contact NCR by writing to:

NCR CORPORATION 
1150 Anderson Drive 
Liberty, SC 29657
USA X-9695-1

092584



HOW TO USE THIS MANUAL

GW-BASIC is a widely used programming language th a t gives you 
complete and comfortable access to the features of your NCR 
PERSONAL COMPUTER. These features include disk access, print
ing, communications, high-resolution graphics, and even music.

W ith the help of the GW-BASIC full screen editor and the extensive 
GW-BASIC instruction set, you can create programs for a wide 
variety of applications. The versatile printing and drawing instruc
tions enable your program to produce, store, and recall lists, letters, 
and business graphics as simple or as intricate as you require. For 
m athematicians there is a wealth of functions, or, if you are 
programming “ju st for fun”, you might wish to add some music to 
your programs. GW-BASIC also provides programming facilities tha t 
enable you to make full use of a color display, a light pen, and a 
joystick.

Chapter 1 gives instructions for both the beginner and experienced 
programmers on how to get GW-BASIC started, and how to leave 
GW-BASIC when you have finished creating or running a program. 
The Chapter continues with a description of the way in which 
GW-BASIC communicates with you and how it stores the informa
tion you give it. The final sections of Chapter 1 show the kinds of 
decisions a GW-BASIC program can make, and also the help it 
requires from you in order to make these decisions. Each aspect 
covered in this introduction is accompanied by examples and 
exercises to assist the beginner in what might well be a first 
encounter with computing.

Chapter 2 introduces the GW-BASIC program editor. This is a 
description of the facilities provided by GW-BASIC to enable you to 
write new programs and change existing programs. If you are already 
acquainted with the line editors offered by some BASIC versions, you 
will especially appreciate the true full screen editing capability of 
GW-BASIC.

Chapter 3 presents the distinguishing feature of GW-BASIC, namely 
the variety of screen display possibilities. In addition to the extended 
character set you can use on a monochrome display, a color display 
allows you to use the graphic capability of GW-BASIC to its fullest. 
As in Chapter 1, the description is accompanied by examples and 
exercises.

GW-BASIC



The introductory pages to Chapter 4 give you a list of the complete 
GW-BASIC instruction set. Most of the instructions “speak” for 
themselves: BEEP obviously has something to do with making a 
sound; CIRCLE is concerned with drawing precisely th a t geometrical 
figure. The list is divided into sections, each dealing with a particular 
aspect of programming, for example, “Loading and storing pro
gram s”, and “The loudspeaker.” Then follows, in alphabetical 
sequence, a full description of each statement, command and function 
in the GW-BASIC instruction set. A large number of programming 
examples are included. Therefore, this Chapter serves both as a 
reference document for experienced programmers and as a practical 
guide for newcomers to programming. Even if an example does not 
fulfill your particular program requirement, you will find the 
information th a t enables you to adjust th a t example to create the 
effect you wish to see or hear.

Chapter 5 describes the different ways of storing information on disk 
files and how GW-BASIC communicates with external devices such 
as a printer. You may already know the meaning of term s such as 
“random access” and “sequential access” related to files, but ju st in 
case these term s are new to you, explanations and examples are 
included.

Chapters 6 and 7 are of interest mainly to assembler programmers 
who wish to incorporate machine language routines into a GW-BASIC 
program, or who are interested in how GW-BASIC makes use of the 
memory of the NCR PERSONAL COMPUTER.

The manual ends with several appendicies tha t contain other useful 
information: a list of reserved words and the character set used by 
GW-BASIC (A and B); error messages displayed by GW-BASIC (C); 
additional mathematical functions (D); a program for converting 
decimal values to hexadecimal values (E); and, a keyboard layout with 
internal key positions indicated (F).

GW-BASIC provides an environment conducive to testing programs. 
With RUN and GOTO you can enter a program at any point you wish, 
the STOP instruction does precisely what its name suggests, and a 
special tracing facility (TRON/TROFF) enables you to check the path 
your program is taking. Even if your program appears not to be 
working, GW-BASIC cannot damage your computer. Furthermore, 
GW-BASIC can give you valuable information as to what might not 
be working properly in a program. For example, if you tell 
GW-BASIC to play the note H, it will not only point out th a t no such

a GW-BASIC



note exists, but also tell you where in the program the erroneous 
instruction occurred.

In summary, regardless of your knowledge base, learning GW-BASIC 
with this manual will enhance your programming proficiency. 
GW-BASIC is both simple and intrinsically helpful, as is this manual 
with its numerous examples and exercises.

GW-0AS/C Hi





GW-BASIC

Contents

Chapter 1 Introduction
HOW TO START-UP GW-BASIC.......................................  l - i
HOW TO EXIT GW-BASIC.................................................  1-5
SAVING AND RETRIEVING A PROGRAM....................  1-5
E X E R C IS E S ..........................................................................  1-6
MODES OF O P E R A T IO N .................................................. 1-9
THE CHARACTER S E T ........................................................... 1-10
CONSTANTS...............................................................................1-12
V A R IA B LES...............................................................................1-14

ARRAY V A R IA B L E S ........................................................... 1-17
SPACE REQUIREMENTS...................................................... 1-18

TYPE CONVERSION................................................................ 1-18
E X E R C IS E S ...............................................................................1-20
EXPRESSIONS AND OPERATORS....................................... 1-22

ARITHMETIC OPERATORS................................................. 1-23
Integer Division and Modulus A r i th m e tic ........................ 1-24
Overflow and Division by Z e r o ............................................ 1-25
RELATIONAL OPERATORS................................................. 1-25
LOGICAL O P E R A T O R S ...................................................... 1-26
FUNCTIONAL OPERATORS................................................. 1-29
EVALUATION OF E X P R E S S IO N S .................................. 1-29
STRING OPERATIONS........................................................... 1-30

E X E R C IS E S ...............................................................................1-32

Chapter 2 Full Screen Editor............................................. 2-1

Chapter 3 Screen Display
CHARACTER M O D E...........................................................  3-1
GRAPHICS M O D E ..................................................................... 3-2
EXERCISES....................................................................................3-5

Chapter 4 Statem ents, Commands and Functions
SYSTEM COMPATIBILITY......................................................4-16
SYNTAX NOTATION............................................................... 4-18
ABS Function .............................................................................. 4-20
ASC Function .............................................................................. 4-21
ATN Function..............................................................................4-22



AUTO C o m m a n d ......................................................................4-23
BEEP S t a t e m e n t ......................................................................4-24
BLOAD C om m and......................................................................4-25
BSAVE C om m and ......................................................................4-27
CALL S t a t e m e n t ......................................................................4-29
CDBL F u n c tio n ...........................................................................4-30
CHAIN S ta te m e n t......................................................................4-31
CHDIR C o m m an d ......................................................................4-34
CHR$ F u n c tio n ...........................................................................4-36
CINT F u n c t io n ...........................................................................4-37
CIRCLE S tatem ent......................................................................4-38
CLEAR C om m and......................................................................4-41
CLOSE Command .................................................................4-43
CLS S ta te m e n t ...........................................................................4-44
COLOR Statem ent (Character M o d e ) ................................... 4-46
COLOR Statem ent (Graphics M o d e ) ................................... 4-50
COM C om m and...........................................................................4-52
COMMON S ta te m e n t.................................................................4-53
CONT Command.......................................................................... 4-54
COS Function............................................................................... 4-56
CSNG F u n c tio n ...........................................................................4-57
CSRLIN F u n c t io n ......................................................................4-58
CVI, CVS, CVD F u n c t i o n .......................................................4-59
DATA S ta te m e n t ......................................................................4-60
DATES S ta te m e n t......................................................................4-61
DATES F u n c t io n ......................................................................4-62
DEF FN Command......................................................................4-63
DEFINT/SNG/DBL/STR S ta te m e n t ................................... 4-65
DEF SEG S ta te m e n t.................................................................4-66
DEF USR S ta te m e n t.................................................................4-67
DELETE C o m m a n d .................................................................4-68
DIM S ta te m e n t...........................................................................4-69
DRAW S ta te m e n t......................................................................4-70
EDIT Com m and...........................................................................4-75
END S ta tem en t...........................................................................4-76
ENVIRON S ta tem en t.................................................................4-77
ENVIRONS F u n c tio n .................................................................4-78
EOF F u n c t i o n ...........................................................................4-80
ERASE S ta tem en t......................................................................4-81
ERR and ERL System V ariables............................................. 4-82
ERROR S ta tem en t......................................................................4-83
EXP F u n c t i o n ...........................................................................4-85
FIELD S ta te m e n t ......................................................................4-86
FILES C o m m a n d ......................................................................4-88

GW-BASK



FIX F unction ............................................................................... 4-90
FOR...NEXT S ta te m e n t ............................................................4-91
FRE F u n c t i o n ...........................................................................4-95
GET (Files) S ta te m e n t ............................................................4-96
GET (Graphics) S ta tem en t.......................................................4-97
GOSUB...RETURN S tatem ent.................................................. 4-99
GOTO S ta te m e n t ....................................................................4-101
H E X | F u n c tio n .........................................................................4-103
IF S ta tem en t............................................................................. 4-104
INKEY$ F u n c tio n ....................................................................4-107
INP Function ............................................................................. 4-109
INPUT S ta te m e n t ....................................................................4-110
INPUT# S t a t e m e n t ...............................................................4-113
INPUT$ F u n c t io n ....................................................................4-115
INSTR Function........................................................ 4-116
INT Function ............................................................................. 4-117
KEY S ta tem en t.........................................................................4-118
KEY(N) S tatem ent................................................................... 4-122
KILL C o m m a n d ....................................................................4-124
LCOPY C om m and ....................................................................4-125
LEFT | F u n c t i o n ....................................................................4-126
LEN F u n c t i o n .........................................................................4-127
LET S ta te m e n t .........................................................................4-128
LINE Statem ent........................................................................ 4-129
LINE INPUT S ta tem en t..........................................................4-132
LINE INPUT# S ta te m e n t .....................................................4-133
LIST C om m and.........................................................................4-134
LLIST C o m m a n d ....................................................................4-136
LOAD C o m m a n d ....................................................................4-137
LOC Function............................................................................. 4-138
LOCATE S ta te m e n t ...............................................................4-139
LOF Function............................................................................. 4-141
LOG F u n c t i o n ........................................................................ 4-142
LPOS F u n c tio n .........................................................................4-143
LPRINT, LPRINT USING S tatem ents................................. 4-144
LSET and RSET S ta te m e n ts ................................................ 4-146
MERGE Command................................................................... 4-147
MID$ Statem ent.........................................................................4-148
MIDI F u n c t io n .........................................................................4-149
MKDIR C om m and....................................................................4-150
MKII, MKS|, MKD| F u n c tio n s ........................................... 4-151
NAME C o m m a n d ....................................................................4-152
NEW Com m and.........................................................................4-153
OCT| F u n c t io n .........................................................................4-154
ON COM(n) S ta te m e n t ..........................................................4-155

vHGW-BASIC



ON ERROR GOTO S tatem ent................................................4-157
ON...GOSUB.ON...GOTO S ta te m e n ts ................................. 4-159
ON KEY S t a te m e n t ...............................................................4-161
ON PEN S t a t e m e n t .............................................................. 4-164
ON PLAY S ta te m e n t...............................................................4-166
ON STRIG S tatem ent.............................................................. 4-168
ON TIMER S t a t e m e n t ..........................................................4-170
OPEN S ta te m e n t ................................................................... 4-173
OPEN “COM S ta tem en t..........................................................4-177
OPTION BASE S ta te m e n t.....................................................4-182
OUT S ta te m e n t........................................................................ 4-183
PAINT S ta te m e n t................................................................... 4-184
PEEK F u n c tio n ........................................................................ 4-189
PEN S ta te m e n t........................................................................ 4-190
PEN F u n c t io n ........................................................................ 4-191
PLAY S ta t e m e n t ....................................................................4-193
PMAP F unction .........................................................................4-197
POINT Function........................................................................ 4-198
POKE S ta te m e n t ................................................................... 4-200
POS Function............................................................................. 4-201
PRESET and PSET S ta te m e n ts ........................................... 4-202
PRINT S ta te m e n t ....................................................................4-204
PRINT USING S ta te m e n t .....................................................4-207
PRINT# and PRINT# USING S ta te m e n ts ....................... 4-212
PUT (Files) S t a te m e n t ..........................................................4-215
PUT (Graphics) S ta tem en t.....................................................4-216
RANDOMIZE Statem ent..........................................................4-221
READ S ta te m e n t ................................................................... 4-223
REM S ta tem en t.........................................................................4-225
RENUM Command................................................................... 4-227
RESET C om m and ....................................................................4-228
RESTORE S ta tem en t...............................................................4-229
RESUME S ta te m e n t ...............................................................4-230
RETURN S ta te m e n t ...............................................................4-231
RIGHTS F u n c tio n ................................................................... 4-232
RMDIR C om m and................................................................... 4-233
RND F u n c t io n .........................................................................4-235
RUN C om m and.........................................................................4-237
SAVE C o m m a n d ....................................................................4-238
SCREEN S ta te m e n t ...............................................................4-239
SCREEN Function ....................................................................4-241
SGN F u n c t io n .........................................................................4-243
SHELL C om m and....................................................................4-244
SIN Function ............................................................................. 4-246

viii GW-BASIC



SOUND S tatem ent....................................................................4-247
SPACE$ F u n c tio n ....................................................................4-250
SPC Function..............................................................................4-251
SQR Function..............................................................................4-252
STICK Function.........................................................................4-253
STOP Statem ent.........................................................................4-254
STR$ F u n c t io n .........................................................................4-255
STRIG S ta te m e n t ....................................................................4-256
STRIG Function.........................................................................4-257
STRINGS Function....................................................................4-258
SWAP S ta te m e n t ....................................................................4-259
SYSTEM C o m m a n d ...............................................................4-260
TAB F u n c t i o n .........................................................................4-261
TAN F u n c t io n .........................................................................4-262
TIMES S ta te m e n t ....................................................................4-263
TIMES Function.........................................................................4-264
TIMER F u n c t io n ....................................................................4-265
TRON and TROFF C o m m a n d s ........................................... 4-266
USR F u n c t i o n ........................................................................ 4-267
VAL F u n c t io n ........................................................................ 4-269
VA RPTR Function ................................................................... 4-270
VARPTRS F u n c t io n ...............................................................4-271
VIEW S ta te m e n t ....................................................................4-272
WAIT C o m m a n d ....................................................................4-274
WHILE and WEND S ta tem en ts ........................................... 4-275
WIDTH S tatem ent....................................................................4-276
WINDOW S ta te m e n t...............................................................4-278
WRITE S ta tem en t....................................................................4-283
W RITE# S ta te m e n t ...............................................................4-284

Chapter 5 Files and Devices
EVERY FILE NEEDS A N A M E .............................................. 5-1
DEVICE N A M E S ................................................................  5-4
REDIRECTION OF STANDARD INPUT/OUTPUT . . 5-5
HOW TO USE DISK FILES........................................................5-6

SEQUENTIAL F I L E S ......................................................  5-7
Creating a Sequential F ile .................................................  5-7
Reading a Sequential F i l e ........................................................5-8
Continuing a Sequential F i le .........................- . . . . 5-9
Inserting Records in a Sequential F i l e ............................... 5-9

RANDOM F I L E S .....................................................................5-10
Greating a Random File...........................................................5-10
Accessing a Random F i l e ...................................................... 5-11
A Sample Random Access P r o g r a m .................................. 5-12

GW-BASIC
ix



COMMUNICATIONS................................................................5-15
OPENING A COMMUNICATIONS F I L E ........................ 5-15
COMMUNICATION I/O ...........................................................5-15
I/O  F u n c t io n s ......................................................................... 5-16
INPUT$ FUNCTION................................................................5-16
CONTROL SIGNALS................................................................5-17
Output S ig n a ls ..........................................................................5-17
Input S i g n a l s ..........................................................................5-17
SAMPLE P R O G R A M ...........................................................5-18

Chapter 6 Running Machine Language
RESERVING M EM ORY......................................................  6-1
USING RESERVED M E M O R Y .......................................  6-2

P O K E ing ............................................................................... 6-2
B L O A D in g .......................................................................... 6-3

HOW GW-BASIC CALLS SU BRO UTIN ES....................  6-4
C A L L .................................................................................... 6-4
U S R ......................................................................................... 6-6

Chapter 7 For PEEKers and POKErs
GW-BASIC AND PC M E M O R Y .......................................  7-2
V A R IA B LES.......................................................................... 7-3
THE FILE CONTROL BLOCK............................................  7-4
THE K EY B O A R D ................................................................  7-6
SETTING SCREEN ATTRIBU TES................................... 7-6

CHARACTER DISPLAY M E M O R Y .............................. 7-6
GRAPHICS DISPLAY M EM ORY......................................... 7-8
COLOR SELECTION...........................................................  7-9
DISPLAY MODE SELECTION............................................7-10

THE CHARACTER S E T ...........................................................7-11

Appendix A Reserved W o r d s ............................................ A-1

Appendix B The Character S e t ............................................B-1

Appendix C Error M essa g e s .................................................C-1

Appendix D Additional F u n c tio n s .......................................D-1

Appendix E Decimal and Hexadecimal Numbers . . E-1

Appendix F Keyboard P o s i t i o n s ....................................... F-1

JC GW-BASIC



Chapter 1

Introduction

The GW-BASIC flexible disk is for use with the NCR-DOS operating 
system. Therefore, before you start, you should already know about 
some of the fundamental operations within the operating system, 
such as how to copy disks and how to issue commands to the operating 
system. I t also helps if you are already fam iliar with the conventions 
of giving names to disk files. It is certainly worthwhile looking at 
these aspects of your operating system, before you s ta r t to write 
GW-BASIC programs.
NOTE: The GW-BASIC program file resides on the master NCR- 

DOS/GW-BASIC diskette in the NCR-DOS manual. One file with 
four separate names (GW-BASIC.EXE, GWBASIC.EXE, 
BASICA.EXE, and BASIC.EXE) exists, and you can choose to use 
any one of the names as desired. To copy the GW-BASIC program 
to another diskette, use the NCR-DOS command COPY.

HOW TO START-UP GW-BASIC
The first step is to load the NCR-DOS operating system into the 
memory of your computer. (If you are not yet acquainted with this 
procedure, consult your NCR-DOS manual.) Once the system prompt 
is displayed on the screen, you can load GW-BASIC into memory. The 
name of the file to be loaded is GWBASIC, so enter:

GWBASIC

(Remember, a command is complete only when you subsequently 
press the(**-*) key. This key is referred to as the <E N T E R >  key in the 
remainder of this manual.) When GW-BASIC has been successfully 
loaded, it will announce its presence with a sign-on message followed 
by:

Ok

1-1GW-BASIC



INTRODUCTION

“OK” m eans th a t GW-BASIC is ready to accept your commands. 
The information appearing  at the bottom of the screen relates to 
the Function Keys of the keyboard and need not concern us for the 
moment.

The following alternative methods of loading GW-BASIC are of 
in terest to experienced program m ers, so if you are new to GW- 
BASIC, you may wish to skip the rest of th is section. Proceed then 
to “How to E xit GW-BASIC.”

The alternative methods of loading GW-BASIC involves including one 
or more of the following options in the loading command:

GWBASIC filespec

where filespec represents the file specification of a BASIC program 
{not enclosed in quotation marks). This command tells GW-BASIC to 
find th a t file, load it, and RUN it without displaying the GW-BASIC 
sign-on message. The filespec must be in agreement with NCR-DOS 
file specification conventions. I t  may include a path. If you do not 
specify the file extension, GW-BASIC assumes tha t the file extension 
is .BAS.
Examples:

GWBASIC OLDPROG.ABC

loads GW-BASIC into memory and s ta rts  to RUN the program  
contained in the file OLDPROG.ABC, whereas

GWBASIC OLDPROG

loads GW-BASIC into memory and s ta rts  to run the program  
contained in the file OLDPROG.BAS. If you are using the 
AUTOEXEC.BAT file for the autom atic execution of a sequence 
of GW-BASIC program s when loading NCR-DOS, each program  
m ust end with the GW-BASIC SYSTEM  command to ensure the 
execution of the next command in the AUTOEXEC.BAT file.

< stdin

This option refers to the standard  input device, which is normally 
the keyboard, ‘std in’ represents the file from which GW-BASIC 
should accept input, instead of the keyboard. If you are using this 
option, it must precede any options tha t s ta rt with a t slash (/).

1-2 GW-BASIC



INTRODUCTION

> stdout

refers to the standard  output device, the screen, ‘stdout’ represents 
the file to which GW-BASIC should d irect output. If you are using 
th is option, it m ust precede any options tha t s ta r t with a slash (/). 
If  ‘ ) > ’ is used instead of ‘ the output is appended to the file; 
otherwise, the file is overw ritten.

/F :num ber

w here num ber represents the num ber of disk files tha t may be 
open (m axim um  15) a t any one tim e during the execution of a 
BASIC program . This option is valid only with /1 option (see /1 
option). If th is option is om itted, the num ber of files defaults to 3. 
Each file requ ires 62 bytes of com puter memory for its File 
Control Block, plus the buffer size (see /S  option). The num ber of 
files th a t may be open a t one tim e depends on the value assigned to 
the F IL E S  param eter in the CONFIG.SYS file when NCR-DOS is 
loaded. When this param eter is not used or CONFIG.SYS file is 
not used, the default num ber for open files is 8. GW-BASIC itself 
requires th ree  for stdin, stdout, stderr, stdaux, and stdprn  and one 
for LOAD, SAVE. CHAIN. NAM E, and M ERGE files. So, if 
CONFIG.SYS has F IL E S  = 8, the m axim um  value for the num ber 
of files in the /F  option is 4. A fter all of the files have been opened, 
a ttem pts to open another will result in the “Too many files” error.

/M :address,blocksize

w here address represents the highest memory location tha t can be 
used by GW-BASIC. This option is useful for reserving an area in 
upper mem ory for use by your program . Obviously, this address 
m ust be a realistic one; th a t is, it m ust leave memory space at least 
for your program . The m axim um  am ount of memory which can be 
reserved is 64KB. W hen om itted or 0, GWBASIC attem pts to 
allocate all it can up to a m axim um  of 65536 bytes. Example:

GWBASIC/M:32768

allows GW-BASIC to use the firs t 32 KB of the data  and stack 
segm ents setup by the operating system. You m ust use the second 
p a r t of this option to set a m axim um  biocksize, when you intend to 
load p rogram s above the address defined in the firs t p a rt of the 
option. Use of ‘SH E L L ’ comm and requires the block size to be 
specified. O therw ise, ‘COMMAND’ will be loaded on top of your

GW-BASIC 1-3



INTRODUCTION

routines when a ‘SH E L L ’ command is executed. Blocksize is the 
num ber of mem ory parag raphs (each of 16 bytes) required  as 
workspace for GW-BASIC, plus the ex tra  space you require 
outside the GW-BASIC program  area. Exam ple:

GWBASIC /M:32000,2048

This resu lts  in a total of 32768 (2048 x 16) bytes being reserved, of 
which 32000 are  for GW-BASIC, and 768 for use outside 
GW-BASIC.

/S:size

where size is the buffer size for use w ith random  access files. The 
m axim um  allowable size is 32767 bytes. This option determ ines 
the m axim um  record length which an O PEN  command may set. 
This option is valid only with /1 option. If  this value is om itted the 
default record length will be 128 bytes.

/C:comsize

sets the size of the buffer used for receiving data  under RS232C 
asynchronous communications. If you are not using a serial printer, 
this option has no effect. The maximum allowable value for this option 
is 32767. If you set the value 0 for this option, the RS232C support is 
disabled; no buffer space is allocated, therefore the portions of 
GW-BASIC relating to the communications facility are not loaded 
from disk. Any subsequent I/O  attem pts will result in a “Device 
Unavailable” error. If you are using two asynchronous communica
tions facilities, comsize applies to both of them. The value recom
mended for a high-speed communications line is 1024. The buffer for 
transm itting data is always allocated in multiples of 128 bytes.

/D

This option tells GW-BASIC th a t you wish to use double precision 
for the following m athem atical functions: ATN, COS, EX P, LOG, 
SIN , SQR, and TA N . The inclusion of th is  option requ ires  
approxm ately 3000 bytes more mem ory ihan would otherwise be 
occupied by GW-BASIC.

1-4 GW-BASIC



INTRODUCTION

This option specifies th a t space for file operations is to be allocated 
statically rather than dynamically. Thus, the /S  and /F  options are 
not generally needed. However, if programs were w ritten such that 
certain BASIC internal structures were made static, these programs 
could be run under GW-BASIC by specifying the /1 option together 
with the /F  and /S  options to statically allocate space for file 
operations. An example would be to keep the field definition static 
(See FIELD Command) so th a t random files may be opened, closed 
and reopened without redefining FIELD everytime the file is 
reopened.

All num bers in the above options can be in decimal, octal (prefixed 
with &O) or hexadecim al (prefixed with &H).

The default values for all the above options when not specified can be 
summarized as follows: the maximum number of files (/F ) which can 
be opened a t one time is 3, there is no constraint on memory use (/M), 
the random file record size is 128 bytes (/S), the buffer size for 
asynchronous communications is 256 bytes (/C), the /D  option is not 
in force, and space for file operations is dynamically allocated (/1).

You can combine these options in a single comm and when loading 
GW-BASIC. Here are some examples:

GWBASIC PAYROLL.BAS /F :6

Use up to 64 KB memory, load GW-BASIC, and execute 
the program  file PAYROLL.BAS with up to 6 open files.

GWBASIC /M:32768

Load GW-BASIC and wait for fu rther instructions. GW
BASIC itself may not use memory above location 32768.

GWBASIC DATACK /I/F:2/S:256/M :32768

Load G W -B A SIC  and  e x ecu te  th e  p ro g ra m  file  
DATACK.BAS. No more than 2 files may be open at any 
one tim e with m axim um  record length of 256 bytes for 
random  file; memory above location 32768 is out of bounds 
to GW-BASIC.

/1

GW-BASIC 1 4A





INTRODUCTION

HOW TO EXIT GW-BASIC

To exit GW-BASIC and return to the NCR-DOS operating system, 
enter the command

SYSTEM

This command returns control to NCR-DOS. Note that use of the 
< C trl-B reak>  key combination does not have this effect. Instead, it 
is used for breaking out of a GW-BA13IC program, and returning to 
the GW-BASIC “Ok” level.

SAVING AND RETRIEVING A PROGRAM

If you are a newcomer to GW-BASIC, you should read this section 
before going on to do the subsequent exercises.

As soon as you have loaded GW-BASIC, the “Ok” prompt appears. 
This is how GW-BASIC tells you that it is waiting for your 
instructions. At this point you can s ta rt writing a program. Before 
testing your program, it is usually a good idea to save it on disk. For 
this you need the SAVE command. At this point you must decide what 
you are going to call your program. The following example saves a 
program under the name NEWPROG.BAS on the currently active 
disk:

SAVE “NEWPROG”

This command can be entered at any time when "Ok” is the last 
message on the screen, or when the blinking cursor indicates that 
GW-BASIC is waiting for you to enter another program line. When 
the “Ok” message reappears, you know that your program is now on 
disk.

GW-BASIC assumes that what you are saving on disk is a GW-BASIC 
program and gives the program filename the extension .BAS. You 
could even specify the .BAS extension yourself (SAVE 
“NEWPROG.BAS”), but the result would be no different. You can, if 
you wish, specify a different extension to the filename. GW-BASIC 
would respect your choice, but every time you wished to do some work

GW-BASIC 1-5



INTRODUCTION

on th a t program, you would have to enter the extension as well as the 
filename. Therefore, it seems only reasonable to let GW-BASIC use 
the .BAS extension to the filename.

When you wish to resume work on your program, firs t load 
GW-BASIC. When “Ok” appears, enter

LOAD “NEWPROG”

and your program is back again in the computer’s memory. You can 
continue writing (editing) your program, or you can execute it  using 
the RUN command. To do the latter simply type

RUN

If you know from the outset th a t you are going to run an already 
existing program without any further editing, you can choose 
between two other methods. When your NCR PC displays the 
NCR-DOS prompt, you can include the name of the program (without 
quote marks) when you load GW-BASIC:

GWBASIC NEWPROG

Alternatively, having loaded GW-BASIC, and once the sign-on 
message and “Ok” have appeared, you can type

RUN “NEWPROG”

In either case, the program is executed without further action on your 
part.

There is little point in entering these commands at the moment, as 
you have not yet written a program for GW-BASIC to save on disk. If 
you have ju st tried loading or running a non-existent program, you 
may have noticed tha t GW-BASIC “complained” th a t the program 
file could not be found. Such error messages are nothing to be too 
concerned about. They are GW-BASIC’s way of telling you what 
information is missing or indicating where something may have gone 
wrong.

EXERCISES
Reset the system by means of the <C trl-A lt-D el>  and load 
NCR-DOS. When the system prompt appears, s ta rt GW-BASIC by 
entering

14 GW-BASIC



INTRODUCTION

GWBASIC

Remember th a t “enter” means to type in the words and then press the 
< EN TER> key.) GW-BASIC then announces its presence by means of 
the “Ok” message. Now type the following line:

20 PRINT “This is how short a program can be”

This time GW-BASIC does not return  “Ok” but expects you to enter 
further program lines. This may be a very short program, but you can 
still save it on disk. Decide on a name, say, MINIPROG, and type the 
following GW-BASIC command (if you are not sure of NCR-DOS file 
naming conventions, use a name consisting of up to 8 letters):

SAVE “MINIPROG”

When “Ok" is displayed again, leave GW-BASIC and return to the 
operating system level by entering

SYSTEM

You can now check th a t MINIPROG.BAS is really in the directory by 
using the NCR-DOS DIR command.

Now resume working on your program by first loading GW-BASIC 
and then entering

LOAD “MINIPROG”

“Ok” tells you th a t your program has been found and loaded. You can 
view the contents of the program by typing

LIST

which, in this case, results in the display of the single program line 
followed by “Ok”. Add the following entry to the program at the place 
where the cursor is blinking:

10 CLS

Then enter LIST once again. You have probably noticed th a t 
GW-BASIC has put the two program instructions “in the right 
order”, th a t is, with the lower of the two numbers first. This is the 
order in which they will be executed when RUN is entered. But first, 
save this updated version of the program in the same way as before:

SAVE “MINIPROG”

GW-BASIC 1-7



INTRODUCTION

Now for a tria l run. Simply enter

RUN

The first of the two commands (the one prefixed with the number 10) 
Clears the Screen; the second PRINTs the text contained in the 
quotation marks on the screen. This short program is executed very 
quickly, and then the “Ok” message is displayed. Now return  to the 
operating system level (SYSTEM), so th a t you can try  another 
method of running a program. When the NCR-DOS prompt appears, 
enter

GWBASIC MINIPROG

First, GW-BASIC is loaded, and immediately following this, 
MINIPROG is loaded and executed without waiting for any further 
instructions on your part.

If you make a mistake when entering a program line (that is, a 
command prefixed by a number), simply enter the line in its 
incomplete or incorrect form and write the line in its correct form 
using the same line number. The old, incorrect version is replaced by 
the new, correct version, as soon as the latter is entered. If you 
overlook a mistake th a t contradicts the language rules of GW-BASIC, 
it will not be noticed by GW-BASIC until you execute the program. 
Then GW-BASIC will stop the program and indicate to you the line 
number in which the mistake is present. To delete a program line 
without replacement, simply enter DELETE with the number of the 
line concerned. The complete facilities of the editor are described in 
the Full Screen Editor chapter.

Line numbers tell GW-BASIC the sequence in which you wish 
commands to be carried out. A line number m ust be in the range 0 to 
65529, but there is no reason why a program 5 lines long m ust use the 
lines 0, 1, 2, 3, and 4. Indeed, this would be undesirable as it  would 
prevent subsequent insertion of additional program lines. For this 
reason, it is a good idea to write your programs with a line increment, 
perhaps of 10.

The RENUM command offers a facility for creating more “space” 
between program lines, should this become necessary. AUTO is a 
command which automatically offers you line numbers with an 
increment determined by you, thus saving you the trouble of typing 
the line number for each line of the program.

1-8 GW-BASIC



INTRODUCTION

GW-BASIC uses a shorthand form for the EDIT, LIST, AUTO, and 
DELETE commands to refer to the current line, namely the period (.)• 
Therefore, if you enter

LIST.

the program line you are currently working on is displayed on the 
screen.

The two GW-BASIC lines which comprise the program 
MINIPROG.BAS each consist of one command only. GW-BASIC 
perm its lines containing more than one command; in this case, the 
commands must be separated by colons. For example, the following 
line would have the same effect as the two lines of MINIPROG.BAS 
together:

10 CLS:PRINT “This is how short a program can be”

When typing a program line, you may exceed the length of a display 
line on the screen, provided the program line is not longer than 254 
characters plus the < E N T E R >  key.

MODES OF OPERATION
When GW-BASIC is loaded, it displays the “Ok” message to indicate 
th a t it is ready to accept your commands. At this point, you have the 
choice of two modes: the indirect mode or the direct mode.

The indirect mode is the one you use for entering program lines as you 
have done in the exercises. I t  is called indirect because the commands 
are not executed immediately, but only when you issue the command 
to run the program. You do not have to tell GW-BASIC that you 
require this mode: as soon as it sees tha t the command is prefixed by a 
line number, GW-BASIC knows tha t the command is not intended for 
immediate execution, but to be part of a program which can be run, 
saved, and retrieved a t a later time.

The commands LOAD, SAVE, RUN, and SYSTEM, as used in the 
earlier exercises, were direct commands; tha t is, their effect came 
about immediately. Accordingly, they did not have program line 
numbers. Using GW-BASIC commands as direct commands is often a 
convenient way of checking what has happened in a program. This 
facility also enables you to use GW-BASIC and your computer as a 
calculator for quick computations. Try entering the following simple 
calculation as a direct command:

GW-BASIC 1-9



INTRODUCTION

PRINT 128+64-5

The result is displayed on the screen immediately. Omitting line 
numbers to achieve immediate results means tha t the command is 
not retained beyond execution ( even though the result is the same as 
if it had been executed as part of a program). Therefore, when a 
command or sequence of commands is required for repeated use, it 
makes most sense to prefix them with line numbers and store them on 
disk. This is why we create computer programs.

THE CHARACTER SET

The GW-BASIC character set comprises all the letters of the 
alphabet as well as numeric characters (the digits 0 through 9). In 
addition, a number of special characters belong to the GW-BASIC 
character set. You may recognize some of these as denoting 
arithm etic functions. Others are of special significance in GW-BASIC 
programming. They are explained in the appropriate sections of this 
manual. Here is a list of the special characters:

D escription Symbol Significance in GW-BASIC

Blank Separates syntax elements in 
program line

Equal sign = Usual function in arithmetic 
comparisons. .Assigns contents 
to program variable

Plus sign + Usual arithm etic significance 
Concatenation of texts

Minus sign - Usual arithmetic significance

Asterisk * Multiplication symbol

Slash / Division symbol

Caret A Exponentiation symbol

Left and right 
parentheses

( ) Usual algebraic significance

Percent sign % Denotes an integer number

i-w GW-BASIC



INTRODUCTION

Number (or 
pound) sign

# Denotes a double precision 
number

Exclamation mark f Denotes a single precision num
ber

Dollar sign $ Denotes a text

Comma i Used in screen or printer for
m atting

Semicolon f Used as a  delimited between 
string variables (same as 
comma)

Period Decimal point

Single quotation 
mark

i Delimits a program m er’s 
rem ark

Double quotation 
mark

i f Delimits a text

Colon : Separates commands within a 
program line

Ampersand & Used in declaring number bases

Question mark ? Editor abbreviation for PRINT 
command

Less than 
Greater than

V A Usual algebraic significance

Backslash \ Symbol for integer division

GW-BASIC also recognizes a number of Ctrl key combinations for 
program editing purposes. These are described in the section which 
deals with GW-BASIC’s Full Screen Editor.

The GW-BASIC character set is an extension of the widely known and 
used ASCII code. The ASCII code attributes a value to 128 individual 
characters. For example, the ASCII code for the uppercase letter A is 
65; for the digit 3, it is 51. The so-called control characters, tha t is, 
those codes th a t do not directly produce a screen image of their own

GW-BASIC 1-11



INTRODUCTION

(for example, the codes determining cursor movement on the screen) 
are also represented in ASCII.

Appendix B of this handbook lists the complete GW-BASIC character 
set. The characters occupying the values 32 up to 126 will be already 
fam iliar to programmers. A few little-used ASCII control characters 
in the range 0 to 31 are used by GW-BASIC for graphic symbols. 
Although the values 128 to 255 are not represented in the ASCII code, 
GW-BASIC uses these values to provide you with a wealth of extra 
letters and other symbols.

Refer to Appendix B  and enter commands like the following:

PRINT CHR$(65)

tells GW-BASIC to display on the screen the character that 
corresponds to the code value 65. As a result, the uppercase letter A is 
displayed (as if you had issued the command PRINT “A”). Now try a 
character th a t does not appear on the keyboard, for example

PRINT CHR$(227)

results in the Greek letter pi being displayed. Finally, try  one of the 
control (that is, the non-displayable) characters:

PRINT CHR$(7) 

causes the loudspeaker to beep.

You can enter the names of GW-BASIC commands in upper or 
lowercase. The next time you LIST your program on the screen, you 
see th a t GW-BASIC has converted into uppercase any lowercase 
letters you might have used in commands. This does not apply to 
letters you enter within quotation marks: GW-BASIC realizes that 
you intend these lowercase letters for later printing on the screen or a 
printer. If, for example, you enter line 10 of your program as

10 print “UPPER lower”

the next time you LIST this line on the screen it will appear as 

10 PRINT "UPPER lower”

CONSTANTS
Constants are actual data th a t you supply to GW-BASIC. This data 
can take the form of a string or numeric constant. A string constant is 
one tha t is enclosed in (double) quotation marks, for example

1-12 GW-BASIC



INTRODUCTION

“WELCOME”
“E nter any number”

Accordingly, line 20 of your short program in the last Exercises (20 
PRINT “This is how short a program can be”) contained a string 
constant. You can even place numbers inside quotation marks, for 
example

“$25,000.00”

(but you cannot do any arithmetics with those numbers as they 
currently stand).

When you want to do calculations with numbers, you can use numeric 
constants for both positive and negative numbers. The simple 
calculation in the direct mode of GW-BASIC in the last Exercises 
used three numeric constants (128, 64, and 5). There are five types of 
numeric constants:

Integer constants
Whole numbers between -32768 and +32767 (the plus sign is 
optional on a positive number).

Fixed Point Constants
Positive or negative real numbers; i.e., numbers that contain 
decimal points.

Floating Point Constants
Positive or negative numbers represented in exponential form 
(similar to scientific notation). A floating point constant consists 
of an optionally signed (+  or -) integer or fixed point number 
(mantissa) followed by the letter E and an optionally signed 
integer (the exponent). The allowable range for floating point 
constants is 2.9E-39 to 1.7E+38.

Examples:
35E-2 (“thirty-five” times “ten to the power of minus 2”)
=  .35
235.988E-7 =  .0000235988 
2359E6 =  2359000000

(Double precision floating point constants use the letter D 
instead of E. The difference between the two is described in 
this section.)

GW-BASIC 1-13



INTRODUCTION

Hexadecimal Constants
Numbers with the prefix &H. (Assembler programmers know all 
about these.)

Examples:
&H76
&H32F

Octal Constants
Numbers with the prefix &O or &.

Examples:
&0347
&1234

Non-integer numeric constants may be either single precision or 
double precision numbers. Single precision numeric constants are 
stored with 7 digits of precision and displayed with up to 7 digits (6 
digit accuracy). With double precision, the numbers are stored with 
17 digits of precision and displayed with up to 16 digits.

A single precision constant is any non-integer numeric constant that 
has

•  seven or fewer digits, or
•  exponential form using E, or
•  a trailing exclamation mark (!)

A double precision constant is any numeric constant th a t has

•  eight or more digits, or
•  exponential form using D, or
•  a trailing number sign (#)

Examples of constants

Single Precision Double Precision

A variable is a kind of storage compartment in your program in which 
a value (string or numeric) is placed. Your program can assign a value

46.8
-1.09E-06

345692811
-1.09432D-06
3489.0#
7654321.1234

3489.0
22.5!

VARIABLES

1-14 GW-BASIC



INTRODUCTION

to a variable and manipulate its contents. You can even assign, check, 
and alter variables in the direct mode.

The name of a variable must s ta r t with a letter; the remainder of the 
name may consist of letters, digits, decimal points and a type 
declaration (see below). The name of a variable can be as long as you 
wish, but GW-BASIC recognizes only the first 40 characters. 
However, this hardly poses a limitation: it is good practice to keep 
variable names short, thus making the program easier to type into the 
computer.

A variable can store either a string or numeric value. The last 
character of a string variable m ust be $. This is the type declaration 
for a string variable. There are three types of numeric variables, each 
with a special character a t the end of the name:

'% Integer variable 
! Single precision variable 
#  Double precision variable

If you do not specify a type declaration, GW-BASIC assumes a 
numeric, single precision variable. (The difference between the 
different types of numeric values was discussed in the section 
“Constants”.) Here are some examples of GW-BASIC variable names:

PI#
MINIMUM!
LIMIT%
N$
ABC

stores a double precision value 
stores a single precision value 
stores an integer value 
stores a string value 
stores a single precision value

When writing a program, you can choose the names of your variables. 
In addition to the formalities of name choice already mentioned, 
there is one further constra in t the name of a variable must not be 
identical with a name belonging to the GW-BASIC instruction set. 
These names are often termed “reserved words” (there is a list of 
them in Appendix A). A reserved word may, however, be embedded in 
a variable name. For example, GW-BASIC does not allow you to use 
the name PRINT$, but you may use the name PRINTER!. If the name 
of a variable begins with FN, GW-BASIC assumes tha t it is a call to a 
user defined function. This is described in Chapter 4, Commands and 
Functions.

I t always makes sense to give a variable a name th a t somehow 
identifies the data it is holding. For example, if you want to calculate 
interest on a loan, you might store the current rate of interest in a

GW-BASIC 1-1S



INTRODUCTION

variable called INTEREST, and the name of the loaning or borrowing 
bank in BANK$. Any lowercase letters you enter in a variable name 
are converted by GW-BASIC to uppercase a t the next LIST.

There is a second method of type declaration for variables, whereby 
any number of variables can be declared as integer, string, single or 
double precision in a single command (see DEFINT, DEFSTR, 
DEFSNG, and DEFDBL in the chapter Commands and Functions).

To store values in variables, GW-BASIC has the LET command. 
Examples:

LET TEM P=80
LET WEATHERS = “sunny”

These commands say no more than that the numeric variable TEMP 
should now assume the value 80 and the string variable WEATHERS 
should hold the letters “sunny”. In fact, the word LET is never really 
required, so the following would do just as well:

TEMP=80
WEATHERS =  “sunny”

To display the current contents of a variable on the screen, simply use 
the PRINT command, for example

PRINT TEMP:PRINT WEATHERS 

or, perhaps a little more meaningful

PRINT "It is a “;WEATHER$;” day, the tem perature is 
“;TEMP;” degrees.”

NOTE: If you do not explicitly set a variable to a value, either in 
direct mode or in a program, it will give you the answer 0 
(numeric variable) or nothing a t all (string variable) when you 
display its contents. The length of a string variable is the number 
of characters it contains, up to a maximum of 255 characters.

If you attem pt to assign a string value to a numeric variable, or vice 
versa, GW-BASIC points out the error (“Type mismatch”). What 
GW-BASIC cannot do is to check the credibility of what is in a 
variable: if you assign “cold” to WEATHER$, the sentence displayed 
by the above PRINT command will seem somewhat contradictory, 
while as far as GW-BASIC can see, the command is syntactically 
acceptable.

1-16 GW-BASIC



INTRODUCTION

It is possible not only to assign constants to a variable, but also to 
assign combinations of the same or other variables, and even perform 
arithm etic or string manipulation in the assign statem ent. Having set 
TEMP to 85 and WEATHER? to “sunny”, you could undertake the 
following changes:

TEMP= TEMP-20
WEATHER? =  “nice," +  WEATHER?

The above PRINT command would then produce

It is a nice, sunny day, and the tem perature is 65 degrees.

ARRAY VARIABLES
An array is a group or table of values referenced by the same variable 
name. Each element in an array is referenced by the name of the 
array and a subscript tha t tells GW-BASIC which element of the 
array you wish to access. The subscript is an integer or an expression 
which yields an integer. For example, PRINT NNAME?(4) tells 
GW-BASIC to display one entry of what is presumably a list of 
names.

An array may have more than one dimension. An example of a 
two-dimensional array is a mileage chart giving the distances 
between a number of towns. The command PRINT MILES(2,5) tells 
GW-BASIC to display the numeric value from the table entry 
indicated by reading element number 2 along the top of the table and 
element number 5 down the side.

The maximum number of dimensions for an array is 255; the 
maximum number of elements per dimension is 32767. The maximum 
amount of space in an array i9 the lesser of 65536 bytes or available 
memory.

The procedure for using array variables differs a little from that of 
using simple numeric variables. If the array variable is to contain 
more than 11 elements (subscripts 0 through 10) or more than one 
dimension, it m ust be declared accordingly (see DIM in the chapter, 
Commands and Functions). If you use an array before it is defined, it is 
assumed to be of single dimension with a maximum subscript of 10. 
We have already established that, when assigning a value to or 
reading the contents of an element, you must state in parentheses 
which element is intended, for example

V(2)=65
It is important to note th a t this assigns the value 65 to the third 
element of the array  variable V (the first element is subscripted by 0, 
unless you change this to 1 using OPTION BASE).
GW-BASIC 1-17



INTRODUCTION

SPACE REQUIREMENTS
The space requirements in the computer memory for the various 
types of numeric variables are as follows:

Integer, including hexadecimal and octal numbers — 2 bytes 
Single precision — 4 bytes 
Double precision — 8 bytes

In the case of an array, these figures are to be understood as per 
element. The space requirement of a string variable is the length of 
the string (number of characters), plus three bytes.

It is evident th a t numbers of higher precision require more memory 
space. They also require more time when being evaluated. Therefore, 
a program with integer variables runs faster, especially where 
repeated calculations are involved.

TYPE CONVERSION

I t is sometimes necessary for GW-BASIC to convert a number from 
one degree of precision to another. When this is the case, the rules 
stated in this section apply, If you attem pt to assign a string variable 
to a numeric , triable, or vice versa, a “Type mismatch” error is 
displayed by GW-BASIC.

•  If a numeric value of one precision is assigned to a numeric 
variable of a different precision, the number is stored with the 
precision declared for the target variable (the variable on the left 
of the equal sign). Example:

10 A% =  23.42 
20 PRINT A%

When you run this short program, GW-BASIC will display the 
number 23. If you assign the number 23.52 to A%, GW-BASIC 
displays the number 24. This is because GW-BASIC does not 
simply truncate, but rounds the number when assigning it to a 
variable of lower precision. Another example of this rounding 
takes place when assigning a double precision number to a single 
precision variable:

10 C =  55.8834567#
20 PRINT C

The value displayed is 55.88346.

M S GW-BASIC



INTRODUCTION

This rounding also occurs if you forget to use pure integers in 
commands or functions where integers are required. Example: 
given th a t the single precision variable SUBSCR contains the 
value 2.5, the command PRINT NNAME$(SUBSCR) will be 
interpreted by GW-BASIC at the time of execution as PRINT 
NNAME$(3).

•  Assigning a lower precision number to a variable of higher 
precision cannot, of course, result in any greater accuracy. In fact, 
there is sometimes a very slight deviation from the original 
number, due to the way in which GW-BASIC stores numbers. 
Consider the following example:

10 A =  2.04 
20 Bff =  A 
30 PRINT A;B#

When you run this program, GW-BASIC will display the original 
and the new form of the number side by side as follows:

2.04 2.039999961853027

The following expression is of interest to mathematicians who 
require exact information about the degree of deviation:

ABS (B#-A) <  6.3E-8 * A

where B# and A represent the double and single precision 
variables, respectively.

•  When an expression is being evaluated, all the operands are 
converted to the degree of precision of the most precise operand 
involved. Here are two examples:

10 D# =  6#/7  
20 PRINT D#

All the arithm etic is performed with double precision, and the 
result (.857142571428571) is likewise returned with double 
precision.

10 D =  6#/7  
20 PRINT D

Again, the arithm etic is done in double precision, but this time 
the result is assigned to a single precision variable. Therefore, the 
command PRINT D will yield a single precision result (.8571429).

GW-BASIC 1-19



INTRODUCTION

•  Logical operators (AND, OR etc, described later in this chapter) 
convert their operands to integers and yield an integer result. 
Operands must be in the range -32768 to 32767, otherwise an 
“Overflow” error occurs.

EXERCISES

The following example shows you how the use of string variables can 
save typing time when re-arranging elements of a text:

10 A$ =  “The quick brown":B$=“jumps over the lazy”
20 AN1$ =  “fox”:AN2$ =  “dog”: AN3$ =  “bear”
30 AN4$ =  “kangaroo”:AN5$=“beaver”: AN6$=“camel”
40 CLS
50 PRINT A$;AN1$;B$;AN2$:PRINT 
60 PRINT A$;AN2$;B$;AN1$:PRINT 
70 PRINT PC;“ % of ”;NUMBER;“ =  ”;RESULT 
80 PRINT 
90 GOTO 40 

100 END

Every element of the text of the 6 lines thus displayed on the screen is 
held in a string variable. The PRINT items are separated here by 
semicolons, which tells GW-BASIC to start printing the next item 
immediately after the position where the last print item finished. The 
additional PRINT command at the end of each of the lines 50 to 100 
creates a line of space between each line on the screen.

The next example shows a simple percentage calculation on a 
sequence of numbers you input to the computer. This program uses 
single precision arithmetic:

10 PC=5 
20 PCX =  PC/100 
30 CLS
40 INPUT NUMBER 
50 IF NUMBER= 0 THEN GOTO 100 
60 RESULT=NUMBER*PCX 
70 PRINT PC;“% or ”;NUMBER;“ =  ”;RESULT 
80 PRINT 
90 GOTO 40 

100 END

Run this program. Line 10 assigns to PC the value 5. Line 20 divides 
this number by 100, thus creating a number which can be directly

1-20 GW-BASIC



INTRODUCTION

multiplied to gain a percentage figure, and places the new number in 
the variable PCX. Line 30 clears the screen. Following this, 
GW-BASIC prompts you by means of a question mark to enter a 
numeric value (which may include a decimal point or be in 
exponential notation); the value you input is stored in NUMBER. Line 
50 checks whether NUMBER is 0; if this is the case, GW-BASIC 
branches (GOTO) to line 100, which is the END of the program. If 
NUMBER is not 0, 5% of NUMBER is calculated (line 60), the result 
being stored in RESULT. The calculation with result is then 
displayed on the screen (line 70; line 80 prints a blank line). ( If the 
result exceeds the number of digits which can be displayed as a single 
precision number, GW-BASIC automatically uses the exponential 
form.) GW-BASIC then branches back to line 40, with the effect that 
GW-BASIC once again waits for you to enter a new number a t the 
keyboard. The loop of events between lines 40 and 90 is repeated until 
NUMBER contains 0. To change the percentage figure which is the 
basis of calculation, simply alter line 10 correspondingly. If you 
attem pt an illegal input, for example, trying to include a letter in the 
number, GW-BASIC immediately asks you to redo th a t one input ("? 
Redo from s ta r t”).

The final example in these exercises concerns the use of an array 
variable. It also shows how, with a minimum of program lines, a task 
can be repeated a number of times, each time in a slightly different 
form. The program defines an array variable consisting of 10 
elements in a single dimension, the first element being subscripted by 
the number 1 (line 10). You are then asked to INPUT 10 names to fill 
th is array (lines 20-50). Afterwards, the screen is cleared. You are 
then requested to enter numbers of your choice in the range 1 to 10. 
After each entry, the corresponding element of the array containing 
the names is displayed. If you enter 0, the program terminates.

10 OPTION BASE 1:DIM NNAME$(10):CLS 
20 FOR LOOP% =1 TO 10 
30 PRINT “Enter somebody’s name ”;
40 INPUT NNAME$(LOOP%)
50 NEXT LOOP%
60 CLS
70 PRINT “Now recall those names”:PRINT 
80 PRINT “Enter number 1 to 10”:PRINT:PRINT 
90 INPUT “Number”;N%

100 IF N% = 0  THEN GOTO 130
110 PRINT “The name entered a t place”;N%;“is
”;NNAME$(N%)

GW-BASIC 1-21



INTRODUCTION

120 GOTO 90 
130 END

This program uses a so-called FOR...NEXT loop from lines 20 to 50. 
Line 20 tells GW-BASIC how often the loop has to be passed through 
(from 1 to 10, i.e. 10 times). The number of passes already made 
through the loop is held in a variable, which is here called LOOP%, 
but which could be any numeric (preferably integer) variable. At the 
outset, th is number is 1, which means that on the first pass, the array 
variable NNAME$ in line 40 is subscripted by 1. This in turn  means 
that the first name you INPUT during the execution of the program is 
stored as the first element of the array variable. After this, 
GW-BASIC raises the value held in LOOP% and checks whether the 
limit specified in line 20 (namely 10) has been exceeded. As this is 
clearly not the case after the first pass, GW-BASIC returns to line 20 
for the next pass: you are asked for the second time to enter a name; 
this is stored as the second element of the array variable, and so on. 
GW-BASIC goes on to line 60 only after the 10th pass through the 
loop.

Line 90 displays the request “Number” and waits for you to enter a 
number. This way of including the request in the INPUT command is 
a GW-BASIC facility which saves the use of an explicit PRINT 
command. Therefore, line 90 is equivalent to

90 PRINT “Number ’’"INPUT N%

One thing th is program does not prevent you from doing is entering 
an integer number greater than 10. As there is no element in the array 
with a subscript greater than 10, to do so would force GW-BASIC to 
term inate the program with the error message “Subscript out of 
range”. The next set of exercises will show you how to program 
GW-BASIC to make logical decisions which detect such eventualities 
and thus prevent them from causing a premature term ination of the 
program.

EXPRESSIONS AND OPERATORS
An expression may be simply a string or numeric constant, or a 
variable, or it may combine constants and variables by means of 
operators to produce a single value.

Operators perform mathematical or logical operations. These opera
tions are carried out mainly on numeric values, but there is no reason 
why strings should not be added together or compared with one

1-22 GW-BASIC



INTRODUCTION

another. The operators provided by GW-BASIC can be regarded as 
belonging to four different categories:

•  Arithmetic
•  Relational
•  Logical
•  Functional

ARITHMETIC OPERATORS
The arithm etic operators are:

Operator Operation Sample Expression

A E xponen tia tion X A Y

- N ega tion -X

V M u ltip lica tion , F loating X*Y
P o in t D iv is ion X /Y

+ , - A dd ition , S ub trac tion X +  Y

These operators are given here in their order of precedence. If you 
have a mathematical background, you are probably aware of the 
significance of th is order. I t  reflects the sequence in which subordi
nate expressions are evaluated within a more complex expression. 
Example:

2 + 6 * 5
There is obviously a difference in result between adding 2 to 6 and 
then multiplying this intermediate result by 5 ( =  40), and multiply
ing 5 by 6 and then adding 2 (=  32). The generally accepted procedure 
of the two is the latter: multiplication is higher in the order of 
precedence than addition, which means tha t the multiplication part 
of the expression m ust be carried out first. This is often termed 
“algebraic logic”.

You can override this order of precedence by use of parentheses. 
Accordingly, the expression

(2 +  6) * 5 

yields the result 40.

In the section dealing with the GW-BASIC character set, there was 
already mention of special characters representing mathematical 
functions. One example of this is the asterisk, which in GW-BASIC

GW-BASIC 1-23



INTRODUCTION

denotes multiplication. Here are some examples which show how 
GW-BASIC represents these mathematical functions:

Algebraic Expression GW-BASIC Expression

X + 2 Y X +  Y*2

* 1
Z

X -Y /Z

XY

Z X ‘ Y /Z

X +  Y

Z (X + Y ) /Z

2 Y 
( X T (X a2)a Y

Y Z
X T X a(7 aZ)

X(-Y) X*(-Y)
T w o  consecutive  
o p e ra to rs  m us t be 
sepa ra ted  by 
pa ren theses.

Integer Division and Modulus Arithmetic
Two additional operators are available in GW-BASIC integer division 
and modulus arithmetic.

Integer division is denoted by the backslash ( \ ) .  The operands are 
rounded to integers (must be in the range -32768 to 32767) before the 
division is performed, and the quotient is truncated to an integer.

For example:

10 \  4 yields the value 2
25.68 \  6.99 yields the value 3

The precedence of integer division is just after multiplication and 
floating point division.

Modulus arithm etic is denoted by the operator MOD. It gives the 
integer value th a t is the remainder of an integer division. GW-BASIC 
creates integers, where necessary, by rounding (not truncating). 
Examples:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 =  5 (26/7=3 with a remainder 5)

The precedence of modulus arithm etic is ju st after integer 
division.

1-24 GW-BASIC



INTRODUCTION

Overflow And Division By Zero
If, during the evaluation of an expression, a division by zero is 
encountered, the “Division by zero” error message is displayed, 
machine infinity with the sign of the num erator is supplied as the 
result of the division, and execution continues. If the evaluation of an 
expoentiation results in zero being raised to a negative power, the 
“Division by zero” error message is displayed, positive machine 
infinity is supplied as the result of the exponentiation, and execution 
continues.

If overflow occurs, the “Overflow” error message is displayed, 
machine infinity with the algebraically correct sign is supplied as the 
result. In the case of integer overflow, execution stops.

GW-BASIC does not check for “underflow” (the result of an operation 
is so small that GW-BASIC cannot distinguish it from zero).

RELATIONAL OPERATORS
Relational operators are used to compare two values. The result of the 
comparison is either “true” (-1) or “false” (0). This result may then be 
used to make decisions regarding program flow. (See IF, Chapter 4).

Operator Relation Tested Sample Expressions

= Equality X =  Y

< >  o r > < Inequa lity X O Y o r X x Y

< Less than X < Y

> G reater than X > Y

A II o II A Less than  o r equa l to X <  =  Y o r  X =  < Y

V
 II □ II V G rea te r than  or equal 

to
X >  =  Y o r X = >  Y

(The equa l sign Is a lso  used to  ass ign  a va lue to  a variab le . 
See LET, C h a p te r 4).

When arithm etic and relational operators are combined in one 
expression, the arithmetic is always performed first. For example, 
the expression

X+Y<(T-1)/Z
is true if the value of X plus Y is less than the value of T-l divided by Z. 
More examples:

IF SIN(X)<.5 THEN GO TO 1000

GW-BASIC 1-25



INTRODUCTION

IF I MOD J o O  THEN K =  K +  1

In the first of these two examples the outcome of evaluating whether 
the sine of X is less than .5 determines whether program execution 
will branch to line 1000. In the second example, the value held in K is 
increased by 1, only if the rem ainder resulting from dividing the 
contents of the variable I by th a t of J  is not zero.

PRINT SECONDS%>30

Causes GW-BASIC to display the number -1 if the integer variable 
contains a value greater than 30; otherwise, 0 is displayed.

LOGICAL OPERATORS
Logical operators perform logical, or “Boolean”, operations. The 
operator denotes the kind of comparison tha t two values are 
subjected to. The GW-BASIC words for the various kinds of logical 
comparison are NOT, AND, OR, XOR, IMP, and EQV.

Your program could base a decision whether or not to display a 
recommendation to buy a particular commodity on the following 
consideration: “If the quality code is higher than 3, and the price less 
than 200, then buy!” A corresponding GW-BASIC command would 
look something like this:

IF QUALITY% >  3 AND PRICE <  200 THEN PRINT “Con
ditions are good for buying”

Both conditions must be fulfilled if the recommendation is to be 
displayed. Now consider the following example:

IF QUALITY % >  3 OR PRICE <  200 THEN PRINT “Condi
tions are acceptable for buying”

This means tha t a t least one of the conditions must be fulfilled. It 
does not m atter which one; furthermore, it would be acceptable if 
both were fulfilled.

Now let us consider the same situation from the seller’s point of view. 
He or she might consider selling on the basis of the following 
consideration: "I am prepared to sell you the commodity of a quality 
higher than 3, but then the price cannot be less than 200. 
Alternatively, I will accept the lower price, but I cannot fulfill the 
quality requirement.” GW-BASIC uses the XOR operator to express 
this sentiment of “either one or the other, but not both”:

1-26 GW-BASIC



INTRODUCTION

IF  QUALITY % >  3 XOR PRICE <  200 THEN PRINT “Sell
ing conditions are not ideal, but good enough to do business”

The logical operators NOT and EQV (equivalent to) have 
counterparts in the GW-BASIC character set:

IF NOT (TEMP =  100) THEN GOTO 1000 has the same effect 
as
IF TEMP < >  100 THEN GOTO 1000

IF ANSWER$ EQV “YES” THEN GOTO 1500 has the same 
effect as
IF ANSWER$ =  “YES” THEN GOTO 1500

The following list gives the result of all the permutations of each of 
the six logical operators. 1 stands for “true”; Ofor “false”. Taking the 
second permutation under OR as an example, the information can be 
read “If the first condition is fulfilled (1), but the second condition is 
not fulfilled (0), the conditions of the comparison as a whole are to be 
regarded as fulfilled (1)”. The first permutation under XOR can read 
“If both the first and the second condition are fulfilled, the conditions 
of the comparison as a whole are to be regarded as not fulfilled”.

X NOT X
1 0
0 1

X Y X AND Y
1 1 1
1 0 0
0 1 0
0 0 0

X Y XO R Y
1 1 1
1 0 1
0 1 1
0 0 0

X Y X XOR Y
1 1 0
1 0 1
0 1 1
0 0 0

1-27GW-BASIC



INTRODUCTION

X Y X IMP Y
1 1 1
1 0 0
0 1 1
0 0 1

X Y X EQV Y
1 1 1
1 0 0
0 1 0
0 0 1

This list also indicates the order of precedence in which logical 
expressions are evaluated (NOT has highest priority). As with 
arithm etic operations, you can override this order of precedence by 
the use of parentheses. Consider the following examples:

IF SKY$ =  “clear” AND TEMP >  70 OR HUMIDITY <  75 
THEN PRINT “Let’s have a picnic”

IF SKY$ =  “clear” AND (TEMP >  70 OR HUMIDITY <  75) 
THEN PRINT “Let’s have a picnic”

In the first example, the picnic invitation is made regardless of the 
appearance of the sky and the temperature, just as long as the 
relative humidity is below 75%. The second example would appear to 
be a much safer weather basis: either the temperature or the 
humidity (or both) must be favorable, and the sky must be clear at 
any rate.

The following is a detailed discussion of how GW-BASIC determines 
the result of a logical operation. It is not necessary to understand this 
process in order to program with GW-BASIC. The discussion is of 
interest mainly to programmers working at bit level.

Logical operators work by converting their operands to sixteen bit, 
signed, two’s complement integers in the range -32768 to +32767. (If 
the operands are not in this range, an error results.) If both operands 
are supplied as 0 or -1, logical operators return 0 or -1. The given 
operation is performed on these integers in bitwise fashion; i.e., each 
bit of the result is determined by the corresponding bits in the two 
operands.

Thus, it is possible to use logical operators to test bytes for a 
particular bit pattern. For instance, the AND operator may be used to 
“mask” all but one of the bits of a status byte a t a machine I/O  port.

1-28 GW-BASIC



INTRODUCTION

The OR operator may be used to “merge” two bytes to create a 
particular binary value. The following examples demonstrate how the 
logical operators work.

63 AND 16=16 63 =  binary 111111 and 16 =  binary 
10000, so 63 AND 16 =  16 (binary 10000)

15 AND 14=14 15 =  binary 1111 and 14 =  binary 1110, 
so 15 AND 14 =  14 (binary 1110)

-1 and 8= 8 -1 =  binary 1111111111111111 and 
8 =  binary 1000, so -1 AND 8= 8  (binary 
1000)

4 OR 2= 6 4 =  binary 1000 and 2 =  binary 10 
so 4 OR 2 =  6 (binary 110)

10 OR 10=10 10 =  binary 1010, so 1010 OR 1010 =  10 
binary 1010

You can use GW-BASIC to work out the two’s complement of an 
integer:

TWOSCOMP% =  (NOT INTGER%) +  1

Given th a t INTGER% contains 2 (=  binary 10), NOT INTGER% 
produces the bit pattern 11111111 11111101. This is -3 in decimal. 
TWOSCOMP% is therefore assigned the value -2 (the result of adding 
1 to -3). The general expression for calculating the two’s complement 
of an integer is “the bit complement plus one”.

FUNCTIONAL OPERATORS
A function is used in an expression to call a predetermined operation 
th a t is to be performed on an operand. GW-BASIC has “intrinsic” 
functions th a t reside in the system, such as SQR (square root) or SIN 
(sine). All of GW-BASIC’s intrinsic functions are described in 
Chapter 4.

GW-BASIC also allows “user defined” functions tha t are written by 
the User. See DEF FN, Chapter 4.

EVALUATION OF EXPRESSIONS
This section summarizes the precedence of numeric operations; that 
is, the order in which GW-BASIC evaluates them within an 
expression.

GW-BASIC 1-29



INTRODUCTION

1. Function calls (regardless of whether defined in your program or 
already provided by GW-BASIC) are evaluated first.

2. Then arithm etic operations are carried out in the following order:

a. A
b. unary —
c. V
d. \
e. MOD
f. + ,-

3. Relational operations are performed next.

4. Finally, logical operations in the following order:

a. NOT
b. AND
c. OR
d. XOR (exclusive OR)
e. EQV (equivalence)
f. IMP (implication)

Operations at the same precedence level are performed from left to 
right. To change the order of precedence for a particular expression, 
use parentheses: operations enclosed within parentheses are per
formed first; within parentheses, the usual order of evaluation (as 
detailed above) is observed.

STRING OPERATIONS
Strings may be coneantenated (joined together) using + . For 
example:

10 A$= “FILE”:B$ =  “NAME”
20 PRINT A$ +  B$
30 PRINT “NEW ” +  A$ +  B$
RUN
FILENAME 
NEW FILENAME

Strings may be compared using the same relational operators 
tha t are used with numbers:

= < >  <  >  < =  >  =

1-30 GW-BASIC



INTRODUCTION

String comparisons are made by taking one character a t a time from 
each string and comparing the ASCII codes. If all the ASCII codes are 
the same, the strings are equal. If the ASCII codes differ, the lower 
code number precedes the higher. If, during string comparison, the 
end of one string is reached, the shorter string is said to be smaller. 
Leading and trailing blanks are significant. Examples (the result is 
“true” in each case).

“AA” < “AB”
“FILENAME” =  “FILENAME”
“X&”> “X #”
“C1” > “CL”
“kg”> “KG”
“SMYTH” < “SMYTHE”
B $ < “256” (where B$ contains the string “1234”)

Thus, string comparisons can be used to test string values or to 
alphabetize strings. All string constants used in comparison expres
sions m ust be enclosed in quotation marks.

1-31aw-BAsic



INTRODUCTION

EXERCISES
You have now read quite a lot about the precedence of operators. Try 
performing some mathematical operations with a particular view to 
observing the effects of overriding the order of precedence by the use 
of parentheses. For example, observe the difference of result between

PRINT 5 +  6 * 12

and

PRINT (5 +  6) * 12

Enter these commands in the direct mode for quick results. You can 
even include GW-BASIC variables in an expression, but this makes 
sense only if you give them a value first; otherwise, GW-BASIC will 
assign them the value 0. Enter (in direct mode)

X =  12
Y =  14

and then a command (likewise in direct mode) to resolve an 
expression which uses these two variables, for example

PRINT Y MOD X +  3

The next example will remind you of the arithmetic you did a t school, 
before you learned about decimal points. It demonstrates how you can 
use GW-BASIC’s integer and modulus division operators to produce a 
result in the form of quotient and remainder.

The program makes use of “error trapping”. When GW-BASIC 
notices during program execution th a t there is a syntactical error, or 
tha t a command or function is not being used correctly (for example, 
division by zero, or subscript out of range), a message is displayed to 
tha t effect. You can intercept non-syntactical errors by means of 
questioning the contents of a variable and making a branch in the 
program dependent on the answer. In the last set of exercises, in the 
program which stored a list of names and then recalled these names 
in response to your entering numbers, there was nothing to prevent 
you from entering a number higher than the maximum allowable 
subscript for the array. One way of intercepting such an erroneous 
entry in tha t program would be the following program line:

105 IF N% >  10 THEN PRINT “There aren’t  th a t many 
names”:GOTO 80

1-32 GW-BASIC



INTRODUCTION

This has the effect th a t if you enter a number higher than 10, first 
your own error notification is displayed, then GW-BASIC returns to 
line 80 in expectation of a legal entry. In this way, your program 
prevents GW-BASIC from attem pting in line 110 to reference an 
array with a sub script tha t is too high.

GW-BASIC provides a more comfortable error trapping facility, 
which is used in the following program. Line 10 tells GW-BASIC that 
in the event of an error occurring anywhere in the program, 
GW-BASIC should branch to line 100. The types of errors tha t can 
occur in this program would result from entering an integer which is 
outside the allowable range for integers (resulting in an Overflow 
error), or trying to make GW-BASIC use 0 as a divisor (Division by 
Zero error). Line 110 deals with the former error, but there is no need 
to deal with the latter as division by zero does not force GW-BASIC to 
stop the program. The numbers 6 and 11 are codes GW-BASIC uses to 
denote these two error situations. Appendix C of this manual gives a 
list of all error possibilities GW-BASIC can detect. It is particularly 
im portant to trap  the integer overflow error, as this error would 
otherwise lead to termination of the program. The RESUME 30 
command tells GW-BASIC to consider the error situation as dealt 
with, and to resume normal program execution a t line 30.

You may already have noticed th a t this program gives you no 
possibility of breaking out of the cycle of events between lines 30 and 
70. This gives you the opportunity of practicing use of the <C trl- 
B reak> key combination. It term inates a program and returns 
GW-BASIC to the “Ok” level. (You will probably make frequent use of 
this facility when developing programs to break out of an 
interminable loop.)

10 ON ERROR GOTO 100
30 INPUT “Number to be divided”;Q%
40 INPUT “Now enter the divisor";D%
50 PRINT:PRINT “The answer is “;Q%\D%;”, remainder; “Q% 

MOD D%
60 PRINT 
70 GOTO 30

100 CLS
110 IF ERR=6 THEN PRINT "Outside the integer range! Try 

again”
130 RESUME 30

The section “String Operators" demonstrated that it is possible to 
compare not only numbers, but also strings. The outcome of the

GW-BASIC 1-33



INTRODUCTION

comparison of two strings depends on a character-by-character 
comparison on the basis of ASCII values. This has the effect that, 
seen as strings, “345” is greater than “12345”, because the ASCII code 
for the digit “3” is higher than tha t for the digit “1”.

The following program asks you to input 10 names (lines 10 to 50). 
These names are stored in the array NNAME$. The screen is cleared, 
and the program proceeds to sort the names in rising ASCII sequence 
(lines 70 to 110). There are many known procedures for sorting data. 
This is one of the simplest, namely th a t of going through the list, 
comparing pairs of adjacent entries and carrying out an exchange 
where necessary. The program checks (line 110) the variable EXCH$ 
for a “Y" for yes or an “N” for no, to see whether an exchange was 
necessary on the most recent run through the list. If an exchange was 
necessary, another sorting run through the list is undertaken. After a 
clear run in which no exchange is necessary, GW-BASIC proceeds to 
print the list in the new order.

Remember th a t the sorting procedure takes into account the full 
ASCII code. I t is not confined to letters. The program does not prevent 
you from entering non-alphabetical characters, nor does it stipulate 
whether you are to use uppercase or lowercase letters. For example, 
you could enter the “name” “iunusual”. The sorting procedure would 
place this nearer the beginning of the list than any name starting 
with a letter, because the ASCII value for the exclamation m ark is 57, 
and the lowest code occupied by a letter is 65 (uppercase A).

The actual exchange is carried out in a “subroutine” a t line 180. This 
subroutine is entered (if the condition for exchanging is fulfilled) by 
means of the GOSUB command in line 90. The RETURN command 
tells GW-BASIC to go back to the command which immediately 
follows the one which sent GW-BASIC to the subroutine, in this case, 
to line 100. It would have been possible here to use a command GOTO 
180 to enter the name exchanging routine, and GOTO 100 to enable 
GW-BASIC to find its way back. The im portant difference between 
the two methods is tha t the RETURN (can be used only with GOSUB) 
is able to put GW-BASIC back to the right place, without having to 
state a line number. This is a particularly useful facility in programs 
where a subroutine is entered from different places in the program.

The greater part of the “swapping” routine is concerned with 
displaying on the screen the pair of names being exchanged. The loop 
at line 200 presents a delay, in tha t GW-BASIC must pass through 
this loop 600 times before RETURNing to compare the next pair of 
names. The loop itself contains no commands, so GW-BASIC is in

1-34 GW-BASIC



INTRODUCTION

effect “running on the spot”, in order to give you time to read the 
screen before displaying the next swapped pair. If this time is too 
short, increase the number of times GW-BASIC m ust pass through 
the loop. You should bear in mind th a t displaying the swapped pairs 
considerably increases the time GW-BASIC requires for the total 
sorting procedure. To increase sorting speed, simply delete lines 180 
and 200.

Line 170 does not contain any commands for GW-BASIC, but is a 
program mer’s remark. As soon as GW-BASIC sees the word REM, it 
knows th a t it does not have to read the rest of tha t line, so you can 
write what you like in it. Here it is used for two purposes: the 
asterisks make a clear division between the subroutine and the main 
program flow, thus making the program easier for the programmer to 
read; the subsequent note refers to the purpose of the subroutine.

10 OPTION BASE 1:DIM NNAME$(10):CLS 
20 FOR LOOP% =1 TO 10 
30 PRINT “Enter somebody’s name”;
40 INPUT NNAME$(LOOP%)
50 NEXT LOOP%
60 CLS
70 EX CH $=“N”
80 FOR LP% =1 TO 9
90 IF NNAME$(LP% )>NNAME$(LP% +1) THEN 

EXCH$="Y”:GOSUB 180 
100 NEXT LP%
110 IF EXCH$=“Y” THEN CLS:GOTO 70 
120 PRINT “In ‘ASCII’ order”:PRINT 
130 FOR LP% =1 TO 10 
140 PRINT NNAME$(LP%)
150 NEXT LP%
160 END
170 REM *************** subroutine — display/exchange ele

ments of array
180 PRINT “Swapping “;NNAME$(LP%);” and 

“;NNAME$(LP% +1)
190 SWAP NNAME$(LP%),NNAME$(LP% +1)
200 FOR DLY% =1 TO 800:NEXT DLY%
210 RETURN

GW-04S/C 1-35



c

o



Chapter 2

Full Screen Editor

This section describes the use of the keyboard of your computer in 
relation to writing and editing GW-BASIC programs. If you are not 
already fam iliar with the layout and basic operations of the keyboard, 
you should first read the appropriate description in your OWNER’S 
MANUAL.

GW-BASIC provides a comfortable Full Screen Editor to enable you 
to create and alter programs. Editing is not confined to the program 
line currently being written. Instead, you can use the special cursor 
movement keys to place the cursor anywhere on the screen, and delete 
or add to the program a t the point indicated by the cursor position. As 
soon as you have edited a program line, press the < E N T E R > key 
before moving the cursor away from that line. GW-BASIC then 
registers the new contents of tha t line.
NOTE: The GW-BASIC command NEW clears the computer memory 

of any GW- BASIC program, but leaves GW-BASIC itself intact. 
NEW is used to ensure a clean memory before beginning to edit a 
new program.

Cursor movement is performed by a single-key action. The direction of 
movement is marked on each of the four keys concerned. If a left 
cursor move pushes the cursor off the edge of the screen, it re-appears 
a t the far right of the line above. If a cursor right move pushes the 
cursor off the edge of the screen, it re-appears at the far left of the line 
below.

The keyboard functions supported by GW-BASIC are given below. A 
number of these are 2-key actions involving the use of the Ctrl key.

Key Function

Home The cursor moves to the top left-hand corner
of the screen.

< C trl-H om e>  The screen is cleared, and the cursor moves to 
the top left-hand corner.

GW-0ASIC 2-1



t

+

M r-

< C tr l-* >

<Ctrl--*->

End

< C trl-E nd>

Ins

FULL SCREEN EDITOR

The cursor moves up one line.

The cursor moves down one line.

The cursor moves to the l e f t .

The cursor moves to the right.

The cursor moves to the beginning of the next 
word on the right. The beginning of a word is 
defined as the first letter or digit which 
follows a blank or special character (e.g. 
punctuation mark).

The cursor moves to the beginning of the 
previous word on the left.

The cursor moves to the end of the logical 
line, th a t is, to the end of the GW-BASIC line 
(which may extend beyond the limit of one 
screen line). This function is especially useful 
for adding to an existing program line.

The logical line from the current cursor 
position to the end of the line is erased.

This key acts as a "toggle” for the insert 
mode: if you press this key while the insert 
mode is off, this mode is turned on, and vice 
versa. Insert mode on means th a t what you 
type in now pushes existing characters to the 
right. If there is no more space in the same 
screen line, characters are pushed over to the 
next line. There is no loss of characters, 
either in the cursor line or in subsequent 
lines. While insert mode is on, the cursor 
covers the lower half of the character posi
tion.

When insert mode is off, what you type in 
writes over (replaces) existing characters. In 
addition to the toggle effect mentioned above, 
pressing a cursor movement key or the 
<E N T E R >  key turns the insert mode off.

2-2 GW-BASIC



FULL SCREEN EDITOR

Del

k-

The character a t the current cursor position 
is deleted. Characters to the right of the 
cursor move to the left to close up the space. 
The closing up procedure has effect through
out the entire logical line following the 
current cursor position.

The backspace key. The character immedi
ately to the left of the cursor is deleted. The 
space thus created is closed up as with the 
delete function.

Esc If you press this key, the entire logical line in 
which the cursor is situated is removed from 
the screen. If, however, the line has already 
been passed to GW-BASIC (<E N T E R >  key 
action), it is not deleted from the program. 
(To delete a line from the program, simply 
type the line number and then press 
< E N T E R >, or use the DELETE command.)

< C trl-B reak> GW-BASIC returns to the command level 
(“Ok”) without saving any changes to the line 
currently being edited. The line does not 
disappear from the screen. (The procedure 
for passing the newest version of a line to 
GW-BASIC is simply to press <EN T ER >.)

<• M-^  -H > When the insert mode is off, this key has the 
effect of moving the cursor to the next tab 
stop, without displacing any characters. Tab 
stops are situated every eight character 
positions in a line, tha t is, a t positions 
1,9,17,25 etc.

When the insert mode is on, blanks are 
inserted from the current cursor position up 
to the next tab stop. Text displacement takes 
place as with the insert function (see above).

GW-BASIC 2-3



FULL SCREEN EDITOR

When you press <E N T E R >  key, the pro
gram line in which the cursor is situated is 
passed to GW-BASIC. Pending subsequent 
changes (likewise notified to GW-BASIC by 
pressing < E N T E R > , this is the line as it will 
be seen by GW-BASIC when your program is 
executed.

This key action produces a so-called line feed; 
th a t is, the cursor drops one line, but the 
program (logical) line is not yet passed to 
GW-BASIC. The blanks thus created at the 
end of the upper line are of no consequence to 
the contents of the program. This function is 
especially useful for creating line divisions to 
make a program easy to read.

This key combination is not quite the same as 
the standard < S h ift-P rtS c>  function. 
< C trl-P rtS c>  directs to the printer a copy of 
everything appearing on the screen, not only 
during editing but also during program exe
cution. This copying function remains in 
force until you press < C trl-P rtS c>  again.

The most effective way of learning the various editor functions is to 
practice them. Simply load GW-BASIC in the usual way and write 
some program lines. Remember, each program line consists of a line 
number followed by a t least one blank, which is followed by the 
program text. The lines you write while practicing the Full Screen 
Editor need by no means be perfect GW-BASIC syntax (syntax 
checking is done a t the time of program execution). You will probably 
not want to try  a program RUN. You could use the examples from the 
exercises in Chapter 1, building in mistakes, and then correcting 
them.

Here are a few suggestions about how to make program writing and 
editing more comfortable:

•  Remember, only when you press < E N T E R > is a program line 
passed to GW-BASIC. Regardless of where in the line the cursor is 
when you press < E N T E R > , the whole logical line is passed to 
GW-BASIC. It is not necessary to move the cursor to the end of the 
line.

•  To erase a line, simply enter the number of the line, or use 
DELETE. The DELETE command is useful for deleting a number 
of consecutive lines.

<  >
< ENTER>

<Ctrl--*J>

< C trl-P rtS c>

2-4 GW-BASIC



FULL SCREEN EDITOR

•  LIST enables you to view part or all of a program. LIST uses 
uppercase letters wherever appropriate (e.g. for GW-BASIC 
reserved words) and displays the program lines in ascending 
numerical order. If you are viewing a large number of lines a t 
once, you will find th a t the screen scrolls far too quickly for 
comfortable reading. Pressing the combination <Ctrl-Num  
Lock> suspends scrolling, giving you time for detailed reading. 
To resume scrolling, simply press any character key. (The same 
key combination also suspends program execution. This enables 
you to read on the screen long lists or other texts produced by a 
program).

•  Be certain to press <E N T E R >  after you have corrected each line 
of coding using the editing keys. This action passes the corrected 
line to GW-BASIC.

•  A program may sometimes require a number of lines with almost 
identical contents. In this case, it is easy to duplicate a line and 
then make the small changes necessary within the duplicate line.

To duplicate a line, move the cursor to the beginning of tha t line. 
Then overwrite the line number with the new line number for the 
copy. When you press < E N T E R > , the copy is passed to 
GW-BASIC; the original line is unaffected.

•  To change a line number, make a copy of the line as described 
above and then delete the original line.

•  The AUTO command provides you with line numbers, thus saving 
you the work of typing them. Before editing lines other than the 
current one, you should turn AUTO off by pressing <C trl- 
B reak>. •

•  A number of GW-BASIC reserved words can be typed by means of 
Alt key combinations; for example, the key combination 
<  A lt-P>  produces the word PRINT on the screen. The following 
is a complete list of these special Alt key functions:

GW-BASIC 2-5



FULL SCREEN EDITOR

A AUTO N NEXT
B BSAVE 0  OPEN
C COLOR P PRINT
D DELETE Q not used
E ELSE R RUN
F FOR S SCREEN
G GOTO T THEN
H HEX$ U USING
I INPUT V VAL
J not used W WIDTH
K KEY X XOR
L LOCATE Y not used
M MID Z not used

•  The ten Function Keys on the keyboard are programmed with 
GW- BASIC reserved words as soon as GW-BASIC is loaded into 
computer memory. These are commands tha t are especially useful 
in the direct mode and, therefore, are already supplied, with 
<  ENTER >  where appropriate. To activate one of these, simply 
press the corresponding Function Key:

FI LIST 
F3 LOAD”
F5 CONT <  ENTER >  
F7 TRON <ENTER> 
F9 KEY

F2 RUN <  ENTER >
F4 SAVE”
F6 ,“LPT” <  ENTER >
F8 TROFF <  ENTER >
F10 SCREEN 0,0,0 <ENTER>

GW-BASIC uses the bottom line of the screen display to show the 
contents of these Function Keys. You can turn this part of the 
display on and off, as well as change the contents of these keys, by 
means of the KEY statement.

•  If you wish to leave im portant information on part of the screen 
and use only the other part for program editing, you should refer 
to the description of the VIEW statem ent in Chapter 4.

•  Program alterations take place in the computer memory. They 
are not stored on disk until you issue an explicit SAVE command. 
When writing a long program, issue frequent intermediate SAVE 
commands. Normally, you will use the same filename each time, 
so tha t previous, less complete versions of the program do not 
clutter your disk. A program on disk is preserved even in the 
event of a power shut-down.

2-6 GW-BASIC



Chapter 3

Screen Display

GW-BASIC is capable of directing the screen to display tex t (including 
the special symbols described in “The Character Set“, Chapter 1) and 
draw points and geometric figures. GW-BASIC operates in either of 
two modes, character mode and graphics mode.

CHARACTER MODE

In character mode, the software considers the screen to have 25 lines 
(from top to bottom). Each line can accommodate 40 or 80 characters 
from the GW-BASIC character set. (You can set this by means of the 
WIDTH command.)

GW-BASIC regards the top leftmost character position as line 1, 
column 1; the character position in the bottom right-hand com er of 
the screen is 25,80 (assuming your program selects 80 columns per 
line). The 25th line is accessible to a GW-BASIC program, but it is not 
scrolled by GW-BASIC. This line normally displays the current con
ten ts of the Function Keys of your keyboard.

If your machine has a Monochrome Display Adapter, you have pro
gram control over the following screen attributes: display intensity, 
image inversion (dark on light and vice versa), underscoring, and 
blinking. On a Color Graphics Display Adapter machine, foreground 
and background colors can be set.

The foreground and background colors determine how an individual 
character area is displayed. The foreground is the character itself, the 
background is the small rectangular area which surrounds it.

GW-BASIC 3-1



SCREEN D IS P L A Y

The colors available in character mode are:

0 Black
1 Dark Blue
2 Dark Green
3 Cyan
4 Red
5 M agenta
6 Brown
7 White

8 Gray
9 Light Blue
10 Light Green
11 Light Cyan
12 Light Red
13 Light Magenta
14 Yellow
15 High-intensity White

The COLOR and SCREEN commands, with which screen attributes 
are determined, are also used for a monochrome display. The obvious 
limitation is th a t only two colors, black and green, can be displayed.

Graphics mode is more sophisticated. To allow you to draw pictures 
and other shapes, the software considers the screen to be made up of 
points. (These points, or picture elements, are often described as “pix
els“.) The number of pixels per screen determines the degree of resolu
tion, By means of the SCREEN command, you can choose between 
three modes of resolution, namely low, medium, and high resolution.

Low Resolution

This is the display mode tha t considers the screen as 200 horizontal 
pixel lines, each containing 320 pixels. The screen consists of 25 lines 
with 40 characters.

Depending on a color or monochrome display being used, you can set 
different colors for the foreground (the character itself) and the back
ground (the screen) or use up to 4 gray scales.

Medium Resolution

In medium resolution the screen has 640 pixels across and 200 pixels 
down the screen. Each of the 25 lines on the screen accommodates 80 
characters. This display mode can use only black and white, regard
less of whether you have a color or a monochrome screen.

3-2 GW-BASIC

GRAPHICS MODE



SCREEN DISPLAY

High Resolution

Again there are 25 lines per screen, each containing 80 characters.T- 
his display mode regards the screen as consisting o f400 horizontal pi
xel lines with 640 pixels each. There are two different high resolution 
modes. In high resolution black-and-white graphics (SCREEN 3) the 
screen display is supported only in black and white. The high resolu
tion color graphics mode (SCREEN 4) is similar to low resolution gra
phics. Here, too, colors can be selected as desired, or, on a  monochrome 
display, up to four gray scales can be used.

X and Y Coordinates

The widely used convention for addressing points on a graphics dis
play is the use of x and y coordinates. The x coordinate is the horizontal 
position on the screen, the y coordinate is the vertical position. 0,0 is 
the first pixel position in the upper left-hand corner of the screen (ori
gin). Usually, you can specify the coordinates in either of two forms: an 
absolute form where x,y specify the exact position, or an offset form 
where x,y are the offset values from the last point referenced. When 
specifying the  coordinates in offset form, you m ust include the word 
STEP to let the software know you are “stepping“ from the previously 
established point. For example, the following GW-BASIC command 
locates and illuminates a point near the center of the screen on a high 
resolution screen:

PSET (320,199)

If the next point you wish to illuminate is known in relation to the pre
vious point (for example, you wish to illuminate the pixel 6 points to 
the right of and 4 pixels below the last point referenced), you can use 
the following addressing technique:

PSET STEP (6,4)

This saves you the trouble of calculating the absolute coordinates in 
relation to the 0,0 origin. If the new point is to the left of or above the 
last point addressed, appropriate minus values are required.

If you have a mathematical background, you will have noticed th a t 
this coordinate scheme does not use Cartesian coordinates. However, 
GW-BASIC includes a command (WINDOW) to enable you to define 
your own coordinate scheme, which can be the Cartesian scheme, if

GW-BASIC 3-3



SCR E SN  D ISPLA Y

you so wish. The foregoing discussion and the following introduction to 
the graphics modes refer to the screen in term s of the coordinates as 
initially set by GW-BASIC, th a t is, with the origin in the top left cor
ner and the maximum y value a t the bottom of the screen.

Color Selection in Graphics Mode

If you have a color screen, you can select different colors for the fore
ground (the character or graphics image) and the background (the 
screen itself). You can choose between two palettes, each containing 
three colors designated 1,2 and 3. The palettes contain the following 
colors:

Palette  0 Palette  1 Color

Green Cyan 1
Red Magenta 2
Brown White 3

Furtherm ore, it is possible to switch from one palette to the other, 
whereupon the colors on the screen change to the colors of the newly 
selected palette. In addition to the palette colors, you can assign a color 
of your choice to the  background color (color 0), which is independent 
of palette switching, and which can be any of the 16 colors available in 
character mode.

The fact th a t this is a graphic, and not the character mode, does not 
prevent you from calling on the GW-BASIC character set. With a color 
screen, the characters are written in Color 3 of the palette you have 
chosen, the background color is the one you have selected for Color 0.

Color Display Monochrome Display

Low Resolution 
SCREEN 1 4 colors 4 gray scales

Medium Resolution 
SCREEN2 black/white black/white

High Resolution 
SCREEN3 black/white black/white
SCREEN4 4 colors 4 gray scales

3-4 GW-BASIC



SCREEN DISPLAY

Character Support in Graphics Mode

To ensure full character support for non-United States characters, the 
GRAFTABL.COM file must be loaded into memory. This is done by 
entering the GRAFTABL command, which is described in your NCR- 
DOS manual.

3-4«GW-BASIC



o



SCREEN DISPLAY

EXERCISES

The following examples are for use with a color display only. The first 
example displays the colors available, both in steady and blinking 
form. The colors, with the exception of black and gray, are displayed 
on a black background. (You could make writing invisible by choosing 
the same color for foreground and background.)

This program uses the character mode of display. The character 
displayed is the one with the code value 219 (a rectangle filling the 
entire space of one character). The STRINGS function in line 10 sets 
up the string variable B$ with 40 such rectangles. Line 20 sets the 
background color to black and display width to 80 characters. The 
remainder of the program takes the basic colors (0 to 7) one by one, 
first displaying the basic color itself (line 50), then the same color 
blinking (line 70), then the “bright” version of the color (line 90), and 
finally the bright version blinking. In each case, blinking is achieved 
by adding 16 to what would otherwise be the value for the color. The 
line width of 80 results in the four versions for each color being 
displayed over two lines.

5 SCREEN 0
10 B$ = STRING$(40,CHR$(219))
20 COLOR ,0:WIDTH 80 
30 FOR LP7r =1 TO 7 
40 COLOR LP7r ,0 
50 PRINT B$;
60 COLOR LP7c +16,0 
70 PRINT B$;
80 COLOR LP% +8,0  
90 PRINT B$;
100 COLOR LP7r +24,0 
110 PRINT B$;
120 NEXT LP7r 
125 COLOR 7,0 
130 END

The following program demonstrates just some of the graphic 
possibilities offered by medium resolution graphics on a color display. 
The program carries out point by point drawing on the screen, under 
control of the numeric key pad on the right of the keyboard. You can 
determine whether the GW-BASIC screen coordinates (used so far in 
this chapter) or true Cartesian coordinates are to apply to graphic 
drawing. By changing a single program line you can even determine a 
different point of coordinate origin on the screen. The program

GW-BASIC 3-5



SCREEN DISPLAY

enables you to change the color palette and select a color within the 
chosen palette.

The program variables are used as follows (all numeric variables hold 
integer values (line 20)):

EXX, WYE The X and Y coordinates of the currently 
addressed point on the screen.

XI,Y1 
X2,Y2 The X and Y coordinates of two diago

nally opposed corners of the screen. Used 
in the WINDOW command, these effec
tively define the number of addressable 
points along the horizontal and vertical 
axes of the screen. In the WINDOW 
SCREEN statem ent, XI, Y1 refers to the 
top left corner of the screen, while X2, Y2 
refers to the bottom right corner. If the 
word SCREEN is omitted from the 
WINDOW statem ent, the Cartesian coor
dinate system applies: XI, Y1 is the 
bottom left corner, while X2,Y2 is the top 
right corner.

PAL Contains 0 or 1 for the current palette.

COL Contains 1,2, or 3 for the color being used 
from the current palette.

K$ Stores one character read from the key
board by means of the INKEY$ function. 
GW-BASIC remains in the keyboard 
reading routine (lines 330 to 360) until a 
key is pressed.

C$ If this variable contains “c”, it indicates 
th a t Cartesian coordinates are being 
used (lines 60,160,170).

ERON$,EROFF$ Initially, ERON$ contains “N” for no, 
and EROFF$ contains “Y” for yes. Line 
150 checks whether ERON$ has assumed

3-6 GW-BASIC



SCREEN DISPLAY

the value “Y”. If this is the case, points on 
the screen are erased and not illumi
nated. The values of these two variables 
are exchanged (line 310), whenever the 
numeric key 5 is pressed during point by 
point drawing.

B$ A string of 30 blanks, used for
overwriting screen messages issued by 
the program in screen line 25.

Upon entering RUN, you are asked to enter “c” if you wish to use 
Cartesian coordinates, otherwise press any key. The screen is then 
cleared and the medium resolution graphics mode is set with color 
enabled (line 50). Following this, one of two screen windows is set up, 
according to the coordinate system selected (line 60). The values used 
for the numeric range of the coordinates which are to represent the 
height and width of the screen are determined by the values assigned 
to the variables XI,Y1 and X2,Y2 in line 40. The values given here 
make use of the maximum display definition available in medium 
resolution graphics. The origin (0,0) is as near to the center of the 
screen as possible. The alternative values suggested by the REMark 
line 30 would place the origin a t the top or bottom left corner of the 
screen, depending on whether Cartesian or SCREEN coordinates 
apply. You might like to try these later (simply delete the word REM 
from line 30, and insert this word at the beginning of line 40). You 
could even produce a kind of horizontal or vertical exaggeration of a 
drawing, by varying the proportion between the X and the Y values.

Having ensured th a t the Num Lock key enables the numeric (not the 
cursor movement) functions, you can use the cluster of keys around 
the 5 on the numeric key pad to illuminate points in 8 directions (8 
illuminates the point to the North, 9 the point North-East of the last 
point addressed, and so on). Using the window values in line 40, the 
very first point addressed is in the center area of the screen, so you 
will not s ta rt by getting lost! If you press the 5 key, an illuminated 
point still moves over the screen in accordance with your operation of 
the numeric key pad, but it does not leave a trail. This is so tha t you 
can go to a new drawing position. This suppression of drawing 
remains in force until you press the 5 key again.

The entire screen movement is carried out in lines 140 to 300. The 
PSET and PRESET statem ents are used to plot and erase points, 
respectively. You may wish to refer to Chapter 4 for the full

GW-BASIC 3-7



SCREEN DISPLAY

descriptions of these commands, the ON GOTO command, and the 
VAL function.

The coordinates of the point on the screen currently addressed are 
displayed a t the bottom of the screen in the format X,Y (line 290). 
There is nothing to prevent you from falling off the edge of the screen 
world, but a BEEP will tell you if this has happened (line 270).

The background color is initially set to black, the drawing color to 
magenta (color 2 of palette 1, line 90). If, instead of pressing a number 
key (1 to 9), you press lowercase c, this indicates to the program that 
you wish to change the drawing color (line 130). This is carried out in a 
subroutine in lines 370 to 500: a number 0 or 1 is accepted as the 
palette number, a number 1, 2, or 3 as the color from that palette. If 
you change palettes, the whole drawing created so far changes color 
accordingly (green < - >  cyan, red < - >  magenta, brown < - >  white). 
After completion of the color change, drawing control is returned to 
the numeric key pad.

If you press lowercase x during drawing control, GW-BASIC 
branches to line 510, whereupon the character display mode is 
restored, with a line width of 80 characters. You might wish to insert 
a selection of further graphic functions a t this point, for example, 
CIRCLE drawing or area PAINTing. You could even save your 
drawing in an array variable and eventually on disk. Chapter 4 
provides all the programming details you need in order to put to best 
use the graphic power of GW-BASIC.

Cartesian or SCREEN coordinates?

10 INPUT “c for Cartesian”;C$

All numeric variables integer

20 DEFINT A-Z

WINDOWS for origin in corner and origin in center

30 REM X1=0:Y1=0:X2=319:Y2=199 
40 X1=-160:Y1=-100:X2=159:Y2=99

Medium resolution, color enabled 

50 SCREEN 1,0

3-8 GW-BASIC



SCREEN DISPLAY

Set WINDOW according to whether or not Cartesian coordinates

60 IF C $ o “c” THEN WINDOW SCREEN(X1,Y1)-(X2,Y2): 
ELSE WINDOW (X1,Y1)-(X2,Y2)

Initially, points to be illuminated, not erased 

70 ERON$= “N”:EROFF$= “Y”

String of 30 blanks, used for erasing “Palette?” and “Color number?” 

80 B$ =  STRING${30,“ ”)

Black background, palette 1, initial plotting color is magenta

90 COLOR 0,1:COL=2 

F irst point addressed is the origin

100 EXX=0:W YE=0

GW-BASIC returns here after any screen movement or new color 
setting

110 GOSUB 330
120 IF K$ =  “x” THEN GOTO 510 
130 IF K $= “c” THEN GOSUB 370:GOTO 110 
140 IF K $ < “1” OR K $ > “9” THEN GOTO 110 
150 IF ERON$=“Y” THEN PRESET (EXX.WYE)
160 IF C $ o “c” THEN ON VAL(K$) GOTO 180,190,200, 

210,220,230,240,250,260
170 IF C$ =  “c” THEN ON VAL(K$) GOTO 240,250,260, 

210,220,230,180,190,200
180 EXX =  EXX-1:WYE= WYE+ l:GOTO 270
190 WYE =  WYE+l:GOTO 270
200 EXX =  EXX + 1:WYE= WYE+ 1: GOTO 270
210 EXX =  EXX-LGOTO 270
220 GOTO 310
230 EXX =  EXX +  l:GOTO 270 
240 EXX= EXX-1:WYE=WYE-l:GOTO 270 
250 WYE =  WYE-LGOTO 270 
260 EXX= EXX+ 1:WYE= WYE-1: GOTO 270 
270 IF EXX>X2 OR EXX<X1 OR W YE>Y2 OR WYE<Y1 

THEN BEEP
280 PSET (EXX,WYE),COL

GW-SXSIC 3-9



SCREEN DISPLAY

Display current coordinates, then return for next keyboard input

290 LOCATE 25,1:PRINT EXX;”, “;WYE;
300 GOTO 110

GW-BASIC arrives here only if the 5 key has been pressed

310 SWAP ERON$,EROFF$
320 GOTO 110

Subroutines

330 REM ***** read keyboard 
340 K$=INKEY$
350 IF K $ = “” THEN GOTO 340 
360 RETURN 
370 REM ***** set color 
380 LOCATE 25,1 
390 PRINT “palette?
400 GOSUB 330
410 IF K $ < “0” OR K $ > “1” THEN GOTO 380 
420 PAL% =VAL(K$)
430 LOCATE 25,1
440 PRINT “color number?
450 GOSUB 330
460 IF K $ < “1” OR K $ > “3" THEN GOTO 430 
470 COL% =VAL(K$)
480 COLOR ,PAL
490 LOCATE 25,1:PRINT B$:
500 RETURN

Pressing x while drawing sends GW-BASIC here

510 REM ***** other functions? 
520 SCREEN 0:WIDTH 80 
530 END

3-10 OW-BASIC



Chapter 4

Statements, Commands and Functions

This chapter contains a detailed description of how each statement, 
command and function works. You may have heard of the term 
“statem ent” as well as “command" in relation to computer program
ming languages. The tradition which underlies this distinction is tha t 
statem ents are instructions within a program th a t are carried out at 
the time of execution, whereas commands are used to work on 
programs prior or subsequent to execution in order to, for example, 
load, edit, save, and run a program. This is basically the difference 
between communicating with GW-BASIC in direct and indirect mode.

A function converts a value into some other value by means of a fixed 
formula. The functions described in this chapter are built-in, or 
“intrinsic” to GW-BASIC. These functions may be called from any 
program without further definition. GW-BASIC cannot process a 
function on its own. It also needs a command to tell it what to do with 
the result, for example, display it on the screen, send it to a printer, or 
assign it to a variable. An argument to a function, th a t is, the value 
which the function is to work on, is always enclosed in parentheses in 
GW-BASIC.

If you supply a floating point value for a function where an integer 
value is required, GW-BASIC rounds the fractional part and uses the 
resulting integer. If you specify the /D  option when loading 
GW-BASIC, the functions ATN, COS, EXP, LOG, SIN, SQR, and TAN 
are calculated to double precision. Otherwise single precision is used. 
See Appendix D for information about mathematical functions tha t 
are not intrinsic to GW-BASIC.

The following pages present a brief summary of all the GW-BASIC 
statements, commands and functions. F irst they are listed in groups. 
Each group has a title denoting the purpose common to the 
statements, commands and functions listed under it. Each statement, 
command and function is described briefly, leaving aside details of 
syntax. Thus, if you are a newcomer to GW-BASIC, you will be able to

6W-BASIC 4-1



COMMANDS AND FUNCTIONS

find the element of GW-BASIC th a t conforms to a particular 
programming situation, simply by glancing over these few pages. You 
can then refer to the complete descriptions consituting the main part 
of this chapter.

The headings, in order of presentation, are:

GW-BASIC Management 
Program Editing 
Loading and Storing Programs 
File Processing
The Keyboard and Other Non-Disk Input 
Characters on Screen or Printer 
Graphics 
The Loudspeaker
Program Variables and Type Conversion 
String Manipulation 
Mathematical Functions 
Decision Making and Branching 
Event Trapping
Other Commands and Functions

A number of especially versatile statements, commands and functions 
appear under more than one heading.

GW-BASIC Management

CLEAR Clears program variables, and optionally
delimits the area of memory available to 
GW-BASIC.

CONT Continues execution of a program after a
break.

DEF SEG 

DEF USR

END

FRE

Defines a segment of storage in memory.

Defines the starting address of a 
machine language program.

The program stops, all files are closed, 
“Ok” is displayed.

4-2

A function returning the amount of 
memory space currently not being used 
by GW-BASIC.

GW-BASIC



COMMANDS AND FUNCTIONS

NEW

RANDOMIZE

RUN

SHELL

STOP

SYSTEM 

TRON, TROFF 

VARPTR$

WAIT

Program  Editing

AUTO

DELETE

Clears programs and their variables 
from memory, but leaves GW-BASIC 
intact.

Sets the starting point (seed) of the 
random number sequence used by the 
RND function.

Loads and begins execution of a program, 
or begins execution of a program already 
in memory from a specified program line.

Execute an NCR-DOS command file and 
then return to GW-BASIC.

Terminates program execution, display
ing the number of the term inating pro
gram line on the screen.

Closes all files and returns to NCR-DOS 
system level.

Switches the program testing (trace) 
facility on and off.

A function returning the address in 
computer memory of a specified variable. 
This information is sometimes required 
by machine language programs.

GW-BASIC suspends program execution 
until a specified value is present at a 
specified port.

Generates program line numbers auto
matically, thus saving you the trouble of 
typing them.

Deletes one program line or a number of 
consecutive program lines.

GW-BASIC 4-3



COMMANDS AND FUNCTIONS

EDIT W rites a program line on the screen, so 
th a t you can edit it.

LIST Lists program lines on the screen, or 
directs them to a file.

LLIST As LIST, except th a t the program lines 
appear on a printer.

NEW Clears the computer memory, including 
any programs, but not GW-BASIC itself.

RENUM Renumbers program lines.

KEY Sets a Function Key on the keyboard.

KEY ON/OFF/LIST Turns display of Function Key contents 
on and off.

Loading and Storing Programs

BLOAD Loads binary data into memory. Used 
especially with machine code programs.

BSAVE Saves binary data on disk.

LOAD Loads a program file from disk. Option
ally, the program is executed immedi
ately.

MERGE Merges a program from disk with a 
program already in memory.

SAVE Saves a program on disk, optionally in a 
protected format.

File Processing

CHDIR Changes the current directory.

CLOSE # Closes a file to program access.

4-4 GW-BASIC



COMMANDS AND FUNCTIONS

ENVIRON Changes Operating System environment 
param eters. Can be used to access a 
program in another directory. As a func
tion it returns these param eters.

EOF A function which returns information as 
to whether the end of a specified file has 
been reached.

GET # Reads a record from a random file.

FIELD # Defines a field in a random file buffer, 
thus enabling different parts of a record 
to be assigned to different program vari
ables.

FILES Looks for a specific file or group of files 
in the disk directory, and if found, dis
plays the filename(s).

INPUT # Reads data from a file and immediately 
assigns it to one or more variables.

KILL Erases a disk file.

LINE INPUT # Reads an entire line from a file.

LOC Returns information about the current 
state of processing of a random, sequen
tial, or communications file.

LOF A function returning the length of a 
specified file.

MKDIR Creates a directory.

NAME...AS... Renames a disk file.

OPEN
OPEN...FOR..AS A versatile command used for opening 

files for program access.

OPEN “COM A special form of the OPEN command, 
opening a file for communications.

GW-BASIC 4-5



COMMANDS AND FUNCTIONS

PRINT #
PRINT #..USING W rites a list of expressions or data to a 

file.

PUT Writes data from a random file buffer in 
memory to a file.

RESET Closes all disk files.

RMDIR Removes a directory.

VARPTR(# ) A function returning the address of the 
file control block of a specified file.

WRITE # Directs the output of data to a file.

The Keyboard and Other Non-Disk Input

DATA A list of data items to be read sequen
tially by the READ command.

INKEY$ A function which reads a character from 
the keyboard.

INP A function returning one byte read at a 
specified port of the computer. Output to 
a port is by means of the OUT command.

INPUT Reads input from the keyboard into a 
variable.

KEY Sets a Function Key.

KEY ON/OFF/LIST Turn display of Function Key contents on 
and off.

LINE INPUT Reads one line of input from the key
board, ignoring commas and similar 
delimiters.

ON KEY...GOSUB GW-BASIC transfers program control to 
the subroutine at a specified line number, 
when a specified cursor movement key or 
Function Key has been pressed.

4-6 GW-BASIC



COMMANDS AND FUNCTIONS

PEN A function returning light pen coordi
nates.

PEN ON/OFF/STOP Switches the light pen function on and 
off.

READ Reads the next item from the DATA list 
into a variable.

RESTORE Enables DATA statem ents in a program 
to be reREAD from a specified line.

STICK A function returning the coordinates 
transm itted by a joystick.

STRIG A function checking whether a joystick 
button is being or has been pressed.

STRIG ON/OFF Enables and disables the button on a
joystick.

Characters on Screen or Printer (See also Program Editing)

CLS Clears the screen.

COLOR Sets color for character writing, back
ground color, and border color for a color 
screen.

CSRLIN A function returning the number of the 
screen line (1...25) in which the cursor is 
situated.

LCOPY Outputs a screen to the printer.

LOCATE Determines the appearance of and posi
tions the cursor.

LPOS A function returning the current position 
of the prin t head.

LPRINT Prints data on a printer.

LPRINT USING As LPRINT, but also specifies a print 
format.

GW-BASIC 4-7



COMMANDS AND FUNCTIONS

POS

PRINT

PRINT USING 

SCREEN

SPC

TAB

WIDTH

WRITE

Graphics

CIRCLE

COLOR

DRAW

GET

LINE

A function returning the number of the 
screen column in which the cursor is 
situated.

Displays data on the screen.

As PRINT, but also specifies a display 
format.

Among other things, sets character mode 
for screen display. As a function, 
SCREEN returns the character at, or the 
color of, a specified position on the 
screen.

Prints a specified number of spaces in a 
PRINT command.

Moves the print or screen display (cur
sor) position to the column specified.

Sets width for output to screen or printer.

Similar to PRINT.

Draws a circle with a specified center and 
radius, an arc, or even an ellipse.

Selects one of the two color palettes and 
the background color.

Draws a user-defined figure on the 
screen.

Reads the colors of all points within a 
specified rectangle on the screen into an 
array variable.

Draws lines on the screen, and, if 
requested, fills in a delimited area.

4-8 GW-BASIC



COMMANDS AND FUNCTIONS

PAINT Fills in a delimited area on the screen 
with a specified color.

PMAP

POINT

PRESET

PSET

PUT

Translates coordinates between 
program-defined coordinate system and 
actual screen coordinates.

A function returning the color of a 
specified point.

Resets a specified point on the screen to 
background color.

Illuminates a point on the screen in a 
specified color.

Reads graphic information from an array 
variable and transm its it to the screen.

SCREEN Sets graphic modes.

VIEW Restricts or transfers screen activity to a
specified area,

WINDOW Redefines the coordinates of the screen.

The Loudspeaker

BEEP 

ON PLAY 

PLAY

A beep tone is emitted by the loud
speaker.

Continuous background music during the 
execution of a program.

For musicians. As a function it returns 
the number of notes still left in the music 
buffer.

SOUND For the musically less gifted.

Program Variables and Type Conversion

ASC

QW-BASIC

A function returning the ASCII code for 
the first character in a string.

4-9



COMMANDS AND FUNCTIONS

CDBL, CSNG A function converting a number to double 
precision or single precision, respec
tively.

CINT A function converting a number to an 
integer by rounding (not truncating).

CLEAR Clears program variables.

CHAIN Control is passed to another program, 
optionally all variables may be used by 
the new program.

COMMON Marks specified variables as part of the 
CHAINed program.

CVI, CVS, CVD Functions converting the string repre
sentation of a number into an integer, 
single precision number, or double preci
sion number respectively.

DEFINT, DEFSG, 
DEFDBL, DEFSTR Define one or more variables as type 

integer, single precision, double preci
sion, or string.

ERASE Removes array variables from a pro
gram.

FIX A function truncating a number to an 
integer.

DIM Declares the number of dimensions and 
their maximum subscripts for an array 
variable.

INT As FIX, except th a t negative numbers 
are truncated to the next lowest integer 
value (e.g. -3.67 becomes -4).

HEX$ A function converting a numeric value to 
a hexadecimal string.

4-10 GW -BASICGW-BASIC



COMMANDS AND FUNCTIONS

LET Assigns a value to a variable.

MKI$, MKS$, MKD$ Converts an integer, single or double 
precision number to a string.

OCT$ A function converting a numeric value to 
an octal string.

OPTION BASE States whether 0 or 1 is to be the 
minimum value for subscripts to array 
variables.

SWAP Exchanges the values of two variables.

STR? A function converting a value to its 
string counterpart.

VAL A function extracting a numeric value 
from a string.

VARPTR A function returning the memory 
address of a specified variable.

String Manipulation

ASC A function returning the ASCII code for 
the first character in a string.

CHR? A function returning the ASCII charac
ter corresponding to a value.

DEF FN ' Define your own string processing func
tions.

INSTR? Searches a string for a particular charac
ter sequence.

LEFT? A function returning the leftmost part of 
a string.

LEN A function returning the length of a 
string.

GW-BASIC 4-11



COMMANDS AND FUNCTIONS

LSET Left-justifies a string.

MID! A command and function used for 
extracting or replacing part of a string.

RIGHT$ A function returning the rightmost part 
of a string.

RSET Right justifies a string.

SPACE! A function returning a number of spaces 
in a string variable.

STRING! A function returning a string consisting 
of a character, or the first character of a 
string variable, repeated a specified 
number of times.

STR! A function converting a numeric value to 
its string equivalent.

VAL A function extracting a value from a 
string.

Mathematical Functions

ABS Returns the absolute value of a number.

ATN Arctangent in radians.

COS Cosine of an angle in radians.

DEF FN A command enabling you to define your 
own mathematical functions.

EXP Raises e to a specified power.

FIX Truncates a number to an integer.

INT As FIX, except tha t negative numbers 
are truncated to the next lowest integer 
value (e.g. -3.67 becomes -4).

4-12 GW-BASIC



COMMANDS AND FUNCTIONS

LOG The natural logarithm of a number.

RND Returns a random number (see also 
RANDOMIZE).

SGN The sign of a number.

SIN Sine of an angle in radians.

SQR The square root of a number.

TAN Tangent of an angle in radians.

Decision Making and Branching

CALL Transfers program control to a machine 
language program.

FOR..TO..STEP Performs the program lines a specified 
number of times up to the NEXT com
mand.

GOSUB Transfers program control to the subrou
tine starting  a t a specified line number. 
The subroutine should be concluded by 
RETURN. See also ON GOSUB in the 
detailed description.

GOTO Transfers program control to the speci
fied line. See also ON GOTO in the 
detailed description.

IF..THEN..ELSE If the specified condition is fulfilled, 
GW-BASIC carries out a specified com
mand or commands. Optionally, you may 
determine what the program should do if 
the condition is not fulfilled.

NEXT Returns program control to the begin
ning of the loop (FOR..TO..STEP), as long 
as the specified number of passes 
through the loop has not been exceeded.

GW -BASIC 4-13



COMMANDS AND FUNCTIONS

RETURN

USR

WHILE..WEND

Event Trapping

COM ON/OFF/STOP

ERL

ERR

ERROR

KEY ON/OFF/STOP 

ON COM GOSUB

ON ERROR GOTO

Concludes a subroutine, and returns pro
gram control to the line which follows the 
GOSUB command, or to another, speci
fied line.

A function returning a value from a 
machine language routine (similar to 
CALL).

Encloses a sequence of program lines to 
be executed repeatedly, as long as a 
specified condition is fulfilled.

Enables and disables communications 
activity.

A system variable returning the line 
number where the last error was detected 
by GW-BASIC.

A system variable returning the GW- 
BASIC code number of the last detected 
error. (The GW-BASIC error codes are 
listed in Appendix A.)

Simulates an error. Useful for testing 
error trapping routines.

Enables and disables the trapping facil
ity for Function Keys and cursor move
ment keys.

Specifies the program line number of a 
subroutine to which program control 
transfers in the event of communications 
activity occurring.

In the event of GW-BASIC detecting an 
error, program control will be passed to 
the specified line.

4-14 GW-BASIC



COMMANDS AND FUNCTIONS

ON KEY GOSUB In the event of a specified Function Key 
or cursor movement key is pressed, pro
gram control passes to the subroutine a t 
the specified program line.

ON PEN GOSUB In the event of light pen activity, pro
gram control passes to the subroutine at 
the specified program line.

ON STRIG GOSUB In the event of a joystick button being 
pressed, program control passes to the 
subroutine a t the specified program line.

ON TIMER Determines the line to which program 
control will be passed in the event of a 
specified time elapsing (see TIME$ and 
TIMER in Other Commands and Func
tions).

PEN ON/OFF/STOP Enables and disables the light pen facil
ity.

RESUME After dealing with an error, returns 
program control to the line where the 
error occurred, to the subsequent line, or 
to another, specified line.

STRIG ON/OFF/STOP Enables and disables joystick button, or 
the trapping facility itself.

Other Commands and Functions

DATE$ Allows you to change or read the date.

OUT Transm its one byte to a port of the 
computer.

PEEK Returns the contents of the byte a t a 
specified address in computer memory.

POKE Writes a byte into computer memory at a 
specified address.

GW -BASIC 4-15



COMMANDS AND FUNCTIONS

Used to record a programmer’s remark.

Allows you to change and read the time.

A function returning the number of 
seconds since the last system reset or 
midnight, whichever is the most recent. 
(System reset is achieved by switching 
the computer on, or the key combination 
<C trl-A lt-D el> .)

SYSTEM COMPATIBILITY

A special characteristic of your NCR PC is tha t it is operationally 
compatible with the IBM PC/PCXT. This compatibility includes 
GW-BASIC, which can accommodate programs created under the 
Advanced BASIC of the IBM computer.
The GW-BASIC version supplied is Version 2.02. This is highly 
compatible with IBM Advanced BASIC 2.0. This means th a t with 
GW-BASIC you can run programs written under IBM Advanced 
BASIC 2.0 or an earlier version, both on your NCR PC and the IBM 
unit. Similarly, programs you write using GW-BASIC can be run 
under IBM Advanced BASIC 2.0.

If you are using GW-BASIC to write programs th a t should also be able 
to execute under an earlier version of IBM Advanced BASIC, you 
should refer to the programming language documentation of tha t 
earlier version. A number of GW-BASIC features are not supported 
by these earlier versions. Characteristic enhancements of GW-BASIC 
2.02 are:

•  Re-direction of Standard Input (INPUT, LINE INPUT) and 
Standard Output (PRINT) can be specified in the NCR-DOS 
command line to load GW-BASIC.

•  The same NCR-DOS command line allows the /M option to 
specify a “maximum blocksize”, in order to reserve space for 
machine language routines.

•  Execution of NCR-DOS command files from within GW-BASIC 
(SHELL).

•  Communication with user installed devices.

REM

TIME$

TIMER

4-16 GW-BASIC



COMMANDS AND FUNCTIONS

•  Graphic enhancements:

Line Clipping with CIRCLE, LINE, PAINT, POINT, PRESET, 
and PSET, so th a t out-of-range drawing does not wrap round to 
another part of the screen.

New graphics features: PMAP, WINDOW, and VIEW.

Additions to DRAW (Turn through Angle, Paint), LINE (style 
option allows dashed and dotted lines etc.), PAINT (background 
option for easier tile painting), and POINT (differentiates 
between physical and world coordinates).

•  Other new functions: PLAY and TIMER.

•  A new option (/D) in the command line enables double precision 
calculation of ATN, COS, EXP, LOG, SIN, SQR, and TAN. 
RANDOMIZE is also available in double precision.

•  Parity checking for communications can be enabled and disabled 
(PE option in OPEN “COM).

•  Sound features enhanced: PLAY (raising and lowering of octave).

•  New event traps: ON PLAY, ON TIMER. ON KEY now allows 
trapping of up to six user-specified keys.

•  File processing:

GET and PUT allow record numbers up to 16,777,215, thus 
providing for large files with short records.

LOF returns the actual number of bytes allocated to a file.

EOF can be applied to re-directed Standard Input.

New commands (ENVIRON, MKDIR, CHDIR, and RMDIR) allow 
manipulation of NCR-DOS paths and access to other directories.

•  DELETE command: if no line number is specified after the 
hyphen, the program is deleted to the end.

•  The characters < ,  > ,  and \  are not permitted as part of a 
filename or extension, as they may now be used in the re-direction 
of input and output ( < ,> )  or for specifying a path ( \ ) .

f
GIV-fldS/C



COMMANDS AND FUNCTIONS

SYNTAX NOTATION

The descriptions of the GW-BASIC commands and functions use the
following notation to explain the “rules” which determine the way the
command or function should be written:

[ ] Square brackets indicate tha t the enclosed entry is
optional.

<  >  Angle brackets indicate user-entered data. When the
angle brackets enclose a key, press the key named by 
the text; for example, < B reak> .

{ ) Braces indicate th a t the user has a choice between
two or more entries. At least one of the entries 
enclosed in braces m ust be chosen unless the entries 
are also enclosed in square brackets.

f Vertical bars separate choices within braces; when
used with a filter indicates a pipe. Otherwise, a t least 
one of the entries separated by bars m ust be chosen 
unless the entries are also enclosed in square brack
ets.

Ellipsis indicate tha t an entry may be repeated as 
many times as needed or desired.

CAPS Capital letters indicate portions of statem ents or
commands th a t must be entered exactly as shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs must be entered exactly as shown.

Each description in this chapter is formatted as follows:

Syntax Shows the correct syntax for the instruction or
function. See the introduction to this manual for 
syntax notation.

When the term  “filespec” is used as an option in the 
syntax, it refers to a combination of device name and 
filename in the correct form at for the operating 
system.

Purpose Tells what the instruction or function is used for.

4-18 GW-BASIC



COMMANDS AND FUNCTIONS

Remarks

Example

Note

Describes in detail how the instruction or function is 
used.

Shows sample programs or program segments that 
demonstrate the use of the instruction or function.

Describes special cases or provides additional perti 
nent information.

G W -BASIC 4-19



COM M ANDS AND FUNCTIONS 
A B S

ABS Function

Syntax ABS(X)

Purpose To return the absolute value of the expression X.

Example PRINT ABS(7*(-5))
will yield 
35

4-20 GW-BASIC



COM M ANDS AND FUNCTIONS 
A SC

ASC Function

Syntax ASC(X$)

Purpose To return  a numerical value th a t is the ASCII 
code of the firs t character in the string X$. (See 
Appendix B  for ASCII codes.)

Remarks If X$ is empty, an “Illegal function call” error is 
returned.

Example 10 X $= “TEST"
20 PRINT ASC(X$) 
will yield 

84
this being the ASCII code of uppercase T.

See the CHR$ function for details on ASCII 
code-to-character conversion, and the example in 
the description of CONT.

GW -BASIC 4-21



COM M ANDS AN D  FUNCTIONS 
A TN

ATN Function

Syntax ATN(X)

Purpose To return the arctangent of X, where X is in 
radians. Result is in the range -pi/2 to pi/2.

Remarks The expression X may be any numeric type, but 
the evaluation of ATN is performed in single 
precision, unless you specify the /D  option when 
loading GW-BASIC.

Example 10 INPUT X 
20 PRINT ATN(X)

If you enter 3, the value displayed will be 
1.249046

Note To convert degrees to radians: 

RADIANS =  DEGREES *PI/180 

where PI (single precision) is 3.141593.

4-22 GW -BASICGW-BASIC



COM M ANDS AND  F U NCVO NS  
AUTO

Syntax

Purpose

Remarks

AUTO Command

Example

Note

GW-BASIC

AUTO [line number[,increment]]

To automatically generate line numbers during 
program entry.

AUTO begins numbering at "line number” and 
increments each subsequent line number by 
“increment”. The default for both values is 10. If 
“line number” is followed by a comma but 
“increment” is not specified, the last increment 
specified in an AUTO command is assumed.

If AUTO generates a line number th a t is already 
being used, an asterisk is printed after the 
number to warn the user th a t any input will 
replace the existing line. However, pressing 
<  ENTER >  immediately after the asterisk will 
save the existing line and generate the next line 
number.

If the cursor is moved to another line on the 
screen, numbering will resume there.

AUTO is term inated by pressing <C trl-B reak> . 
The line in which < C trl-B reak>  is pressed is not 
saved. After < C trl-B reak>  is pressed, GW- 
BASIC returns to command level, (“Ok”).

AUTO 100,50

Generates line numbers 100,
150, 200 ___

AUTO

Generates line numbers 10,
20, 30, 4 0 ___

Before editing program lines other than the line 
currently offered by AUTO, be sure to leave 
AUTO by pressing < C trl-B reak.>

4-23



COM M ANDS AND FUNCTIONS 
BEEP

BEEP Statement

Syntax

Purpose

Remarks

Example

4-24

BEEP

To produce an 830 Hz tone in the speaker for 
approximately 1/4 second (to be precise: 240 ms).

BEEP has the same effect as PRINT CHR$(7); 
(see Appendix B).

2430 IF X <  20 THEN BEEP

GW-BASIC



COMMANDS AND FUNCTIONS
BLOAD

BLOAD Command

Syntax

Purpose

Remarks

Example

BLOAD “filespec” [,offset]

“filespec” refers to a file in the NCR-DOS file 
naming conventions (see Chapter 5, Files and 
Devices).

“offset” is a numeric in the range 0 to 65535. This 
is the offset address a t which loading is to s ta rt in 
the segment declared by the last DEF SEG 
statement.

To load a specified memory image file into 
memory from disk.

The BLOAD command allows a program or data 
th a t has been saved as a memory image file to be 
loaded anywhere in memory. A memory image 
file is a byte-for-byte copy of what was originally 
in memory. See BSAVE for information about 
saving memory image files.

If the offset is omitted, the segment address and 
offset contained in the file (i.e., the address 
specified by the BSAVE statem ent when the file 
was created) are used.

If offset is specified, the segment address used is 
the one given in the most recently executed DEF 
SEG statement. If no DEF SEG statement has 
been given, the GW-BASIC data segment will be 
used as the default.

CAUTION: BLOAD does not perform an 
address range check. It is 
therefore possible to load a file 
anywhere in memory. The user 
must be careful not to load over 
GW-BASIC or the operating 
system.

10 DEF SEG=&H6000

GW-BASIC 4-2S



COMMANDS AND FUNCTIONS
BLOAD

Note

20 BLOAD“PROG1”,&HFOOO

This example sets the segment address a t hexa
decimal 6000 and loads PROG1, starting  F000 
bytes (hexadecimal) above the segment address. 
(You are not bound to using hexadecimal values: 
the decimal equivalents are 24576 and 61440, 
respectively.)

BLOAD is especially useful for loading screen 
images from disk into video memory (screen 
buffer). This requires additional information 
about the location and structure of video memory 
(see Chapter 7).

4-26 g W -BA$IC



COMMANDS AND FUNCTIONS
BSAVE

BSAVE Command

Syntax BSAVE “filespec”,offset,length

“filespec” refers to a file in accordance with the 
NCR-DOS file naming conventions (see Chapter 
5, Files and Devices).

“offset” is a numeric in the range 0 to 65535. This 
is the offset address in the segment declared by 
the last DEF SEG statement. Memory is saved on 
disk starting  here.

“length” is a numeric in the range 1 to 65535. This 
is the length in bytes of the memory image to be 
saved.

Purpose To save the contents of the specified area of 
memory, for example, a machine language pro
gram, as a disk file.

Remarks The “filespec”, “offset”, and “length” are 
required in the syntax.

The BSAVE command allows data or programs 
to be saved as memory image files on disk . A 
memory image file is a byte-for-byte copy of what 
is in memory.

If "offset” is omitted, a “Bad file name” error is 
issued and the save is aborted. A DEF SEG 
statem ent m ust be executed before the BSAVE. 
The last known DEF SEG address will be used for 
the save.

If length is omitted, a “Bad file name” error is 
issued and the save is aborted.

Example 10 DEF SEG =  &H6000 
20 BSAVE“PROG1”,&HFOOO,256

This example saves 256 bytes starting at memory 
address 6O00:F000, tha t is, hexadecimal FOOO

GW-BASIC 4-27



COMMANDS AND FUNCTIONS
BSAVE

Note

bytes 11 above the segment address hexadecimal 
6000 (You are not bound to using hexadecimal 
values: the decimal equivalents are 24576 and 
61440, respectively.) in the file PROG1.

BSAVE is especially useful for saving screen 
images on disk. This requires additional informa
tion about the location and structure of video 
memory (see Chapter 7).

4-28 GW-BASIC



COM M ANDS AND FUNCTIONS 
CALL

CALL Statement

Syntax

Purpose

Remarks

CALL variable name[(argument list)]

where “variable name” contains an address that 
is the starting point of the subroutine. This 
starting point is an offset address to the last 
defined segment, “variable name" may not be an 
array variable name.

“argument list" contains the param eter names 
tha t are passed to the external subroutine.

To call an assembly language subroutine or a 
compiled routine written in another high level 
language.

CALL is one way to transfer program flow to an 
external subroutine. (See also the USR function).

CALL generates the same calling sequence used 
by FORTRAN and BASIC compilers.

GW-BASIC 4-29



COM M ANDS AND FUNCTIONS 
CDBL

CDBL Function

Syntax CDBL(X)

Purpose To convert X to a double precision number.

Example 10 A =454.67 
20 PRINT CDBL(A) 
will yield
454.6700134277344

Note This function clearly cannot make the original 
number more accurate than it was before 
conversion. In the example, the new, double 
precision number is still accurate to the second 
place after the decimal point, and that only after 
rounding. The section “Type Conversion” in 
Chapter 1 describes the factors influencing 
accuracy when converting from one type of 
number to another.

4 -X GW-BASIC



COMMANDS AND FUNCTIONS
CHAIN

CHAIN Statement

Syntax CHAIN [MERGE ]filespec[,[line number exp]
[.ALL] [.DELETE range]]

See the examples below for illustration of the 
syntax options.

Purpose To call a program and pass param eters to it from
the current program.

Remarks “filespec” is the name of the program (see
Chapter 5, Files and Devices) th a t is called.

COMMON may be used to pass variables.

“line number exp” is a line number or an 
expression th a t evaluates to a line number in the 
called program. I t is the starting  point for 
execution of the called program. If it is omitted, 
execution begins a t the first line, “line number 
exp” is not affected by a RENUM command, used 
on the calling program.

With the ALL option, every variable in the 
current program is passed to the called program. 
If the ALL option is omitted, the current program 
must contain a COMMON statem ent to list the 
param eters tha t are passed.

If the ALL option is used and “line number 
expression” is not, a comma must hold the place 
of “line number exp”. For example, CHAIN 
“NEXTPROG”„ALL is correct; CHAIN 
“NEXTPROG”,ALL is incorrect. In the latter 
case, GW-BASIC assumes th a t ALL is a variable 
name and evaluates it as a line number expres
sion.

The MERGE option allows a subroutine to be 
brought into the GW-BASIC program as an 
overlay. That is, the current program and the 
called program are merged (see MERGE). The

GW-BASIC 4-31



COMMANDS AND FUNCTIONS
CHAIN

called program m ust be an ASCII file if it is to be 
merged.

After an overlay is used, it is usually desirable to 
delete it so tha t a new overlay may be brought in. 
To do this, use the DELETE option.

The line numbers in “range” are affected by the 
RENUM command.

Examples COMMON VAR1,VAR2,VAR$
CHAIN “NEWPROG”

causes GW-BASIC to load this program, and pass 
program control to the beginning of th a t pro
gram. The three variables named under COM
MON are passed to the chained program.

COMMON VAR1,VAR2,VAR$
CHAIN “NEWPROG”,1000

has the same effect, except th a t program control 
is passed to line 1000 of the chained program.

CHAIN “NEWPROG”,1000,ALL

differs from the previous example, in th a t all the 
variables (not ju st three) of the current program 
are passed to the chained program.

CHAIN MERGE “OVERLY1”,1000,ALL

has the special effect of overwriting lines in the 
current program with lines from OVERLY1, 
where line numbers between the two programs 
coincide (all of OVERLY1 is chained).

It is possible to clear an area of program lines, in 
order to provide clean loading space for the 
chained program. For example,

CHAIN MERGE
“OVERLY2”,1000,ALL,DELETE 1000-2000

deletes lines 1000 to 2000 of the current program 
before loading OVERLY2.

4-32 GW-BASIC



COMMANDS AND FUNCTIONS
CHAIN

Note CHAIN command with MERGE option leaves the 
files open and preserves the current OPTION 
BASE setting. The chained program may, how
ever, have an OPTION BASE of its own, if no 
array variables are being passed.

If MERGE is omitted, CHAIN does not preserve 
variable types or user-defined functions for use 
by the chained program. That is, any DEFINT, 
DEFSNG, DEFDBL, DEFSTR, or DEFFN state
ments containing shared variables must be 
restated in the chained program.

When using the MERGE option, user-defined 
functions should be placed before any CHAIN 
MERGE commands in the program. Otherwise, 
the user-defined functions will be undefined after 
the merge is complete.

CHAIN does a RESTORE before the chained 
program is run. Therefore, the pointer to DATA 
items is reset. READ does not continue after the 
last DATA item read in the old program.

GW-BASIC 4-33



COM M ANDS AND FUNCTIONS 
CHDIR

CHDIR Command

Syntax CHDIR “path”

Purpose To change the current directory.

Remarks “path” is a string expression not exceeding 128
characters identifying the new directory which is 
now to be the current directory. For details about 
paths and directories you should refer to your 
NCR-DOS manual.

Examples Given the following hierarchical structure

ROOT

SALES ACCOUNTING

JOHN MARY STEVE SUE

REPORT REPORT REPORT REPORT
other
files

other
files

other
files

to change to the directory SUE from the ROOT 
directory, use

CHDIR “ACCOUNTING \  SUE”

To change from SALES to the directory JOHN:

CHDIR “JOHN”

To change from JOHN back to SALES:

CHDIR ..

You can specify a disk drive, thus applying the 
CHDIR command to a disk drive other than  the 
current one, for example

4-34 GW-BASIC



COM M ANDS AND FUNCTIONS 
CHOIR

Note

CHDIR “C’.SALES”

When your program refers to a file, GW-BASIC 
looks for the file in the current directory of the 
disk in the default drive, unless you have specified 
the drive (and pathname) as part of the filespec. 
(The syntax descriptions in this chapter denote 
file references by means of the term “filespec”).

GW-BASIC 4-35



COM M ANDS AND  FUNCTIONS 
CHR$

CHR$ Function

Syntax

Purpose

Remarks

Example

Note

CHR$(I)

To return  one character with a decimal 
equivalent ASCII code of I. (Decimal equivalent 
ASCII codes are listed in Appendix B.)

CHR$ is commonly used to send a special charac
ter to the screen or printer. For instance, the 
beeping character CHR$(7) could be sent as a 
preface to an error message, or a form feed 
CHR$(12) could be sent to clear the screen and 
return  the cursor to the home position.

PRINT CHR$(66)
returns
B

See the ASC function for details of how to convert 
a character back to its ASCII code. See also the 
example in the description of CONT.

You can set a repetition factor for the character 
by means of the STRING? function. The follow
ing example beeps the speaker for approximately 
30 seconds:

10 B$=STRING$(120,CHR$(7))
20 PRINT B$

The following example programs the Function 
Key 1 to issue the GW-BASIC LIST command, 
without your having to press <E N T E R >

KEY 1,“LIST” +CHR$(13)

The CHR$ function is useful for displaying 
characters for which there is no single key action 
on the keyboard. For example, your keyboard 
probably does not include the square root symbol, 
but you can display it  with

PRINT CHR$(251);

4-36 GW-BASIC



COM M ANDS AND FUNCTIONS 
CINT

CINT Function

Syntax CINT(X)

Purpose To convert X to an integer by rounding the 
fractional portion.

Remarks If the result is not in the range -32768 to 32767, an 
“Overflow” error occurs.

Example PRINT CINT(45.67) 
will yield 

46

PRINT CINT(-3.85) 
will yield 
-4

See the CDBL and CSNG functions for details on 
converting numbers to the double precision and 
single precision data type, respectively. See also 
the FIX and INT functions, both of which return 
integers.

GW-BASIC 4-37



CIRCLE Statement (Graphics Modes)

Syntax CIRCLE (x,y), radius [,color[,start,end[,aspect]]]

Purpose Draws an ellipse on the screen according to the
following definitions:

COMMANDS AND FUNCTIONS
CIRCLE

x.y
Specifies the coordinates of the center of the 
ellipse. The coordinates can be absolute, or 
relative to the last point addressed on the screen 
(using STEP).

radius
Specifies the radius (major axis) in points, 

color
In low and high resolution color graphics, this 
selects the color (1 to 3) from the current pa
lette. The background color (0) is also allow
ed. If you do n o t specify the color, color 3 is 
used. In medium and high resolution black- 
and-white graphics, the color can be 1 for 
white, or 0 for black (default is 1).

start,end
Specifies in radians where the drawing is to begin 
and end. The values may range from -2*PI to 
2*PI, where PI =  3.141593. (See also remarks.)

aspect
Specifies the ratio of the X radius to the Y radius. 
If the ratio is less than 1, the radius is the X 
(horizontal) radius; if the ratio is greater than 1, 
the radius is the Y (vertical) radius.

GW-BASIC produces a circle on the screen 
without your having to specify a value for 
“aspect.” If you specify a value for "aspect” which 
is not 5/6 in low and high resolution graphics 
or 5/12 in medium resolution graphics, an el
lipse is displayed. If the value you specify is 
less than 5/6 (medium resolution: 5/12), the 
ellipse has the form of a circle which has 
been stretched along the horizontal axis (see 
example).

4 -38 GW-BASIC



COMMANDS AND FUNCTIONS
CIRCLE

Remarks

GW-BASIC

The first two arguments (x,y coordinates and 
radius) are the only ones required to draw a 
circle. Use the last two arguments to draw other 
“curved” shapes. S tart and end, for example, 
allow you to control how much of the circle is to 
be drawn. The values of s ta r t and end are in 
radians, positioned in the standard m athem ati
cal way.

PI/2

Either s ta r t or end value may be negative (-0, 
however, is not allowed) in which case the angle is 
connected to the center point with a line. For 
example, s ta r t and end values of -PI/2, -2PI 
would draw part of a circle.

Use the aspect argument to draw an ellipse other 
than a circle. Remember, if the aspect ratio is less 
than 1, then r is the X radius; if the aspect ratio is 
greater than 1, then r is the Y radius. For 
example,

4-39



COMMANDS AND FUNCTIONS
CIRCLE

10 SCREEN 1
20 CIRCLE (160,100),60,,,,5/18

Note

will draw an ellipse like this:

Points th a t are off the screen are not drawn by 
CIRCLE, and do not cause an error situation.

It is admissible for the center coordinates to be 
off the screen. The ellipse is then drawn using the 
imaginary center, whereby points which lie 
within the actual screen coordinates are dis
played. The following example draws an arc 
across the top right corner of the screen in high 
resolution:

10 SCREEN 2 
20 CIRCLE (650,-10),100

After an ellipse has been drawn, the “last point 
referenced” on the screen is considered by GW- 
BASIC to be the center of the ellipse.

4-40 GW-BASIC



COMMANDS AND FUNCTIONS
CLEAR

CLEAR Command

Syntax CLEAR [.[expression!.] [,expression2]]

Purpose To set all numeric variables to zero, all string 
variables to null, and to close all open files; and, 
optionally, to set the end of memory and the 
amount of stack space.

Remarks "expression!” is a memory location that, if 
specified, sets the highest location of the 
workspace available for use by GW-BASIC. You 
can thus put aside space for machine language 
programs.

“expression2” sets aside stack space for 
GW-BASIC. The default is 572 bytes or 
one-eighth of the available memory, whichever is 
smaller. The specification of a larger stack may 
be necessary if your program uses deeply-nested 
GOSUB routines, or a lot of FOR...NEXT loops, or 
does extensive PAINTing:

CLEAR performs the following actions:

Closes all files.
Clears all COMMON variables.
Resets numeric variables and arrays to 
zero.
Resets the stack and string space.
Resets all string variables and arrays to 
null.
Releases all disk buffers..
Cancels all DEFinitions (DEF FN, DEF 
USR, DEF SEG, DEFINT, DEFDBL, 
DEFSNG, DEFSTR)
Turns off sound and resets to Music 
Foreground.
PEN and STRIG are reset to OFF.

It does not erase the program in memory.

Examples CLEAR

G W -B A S IC 4-41



COMMANDS AND FUNCTIONS
CLEAR

Note

performs the above-stated actions only. 

CLEAR ,32768

has the additional effect of setting the maximum 
workspace to 32KB.

CLEAR „2000

has the special effect of setting aside 2000 bytes 
for the stack.

CLEAR ,32768,2000

performs the CLEAR actions, sets maximum 
workspace to 32KB, and sets aside 2000 bytes for 
the stack.

To free space in memory, your program can use 
the ERASE statem ent on specified array 
variables.

4-42 GW-BASIC



COM M ANDS AND FUNCTIONS 
CLO SE

CLOSE Command

Syntax CLOSE [[#Jfile number[,[#]file number...]...]

Purpose To conclude I/O  to a file or device. The CLOSE 
statem ent is complementary to the OPEN 
statement.

Remarks “file number” is the number under which the file 
was opened. A CLOSE with no arguments closes 
all open files and devices.

The association between a particular file and file 
number term inates upon execution of a CLOSE 
statement. The file may then be reopened using 
the same or a different file number; also th a t file 
number may now be reused to open any file.

A CLOSE for a sequential output file (or device) 
writes the final buffer of output.

The END statem ent and the NEW command 
always close all disk files automatically. (STOP 
does not close disk files.)

Access to files and devices is discussed in Chapter 
5.

Examples CLOSE

closes all open files and devices.

CLOSE #1,#2,#3

closes the files and devices associated with the 
numbers 1,2, and 3. (The inclusion of the #  sign is 
optional).

Note END, NEW, RESET, SYSTEM and RUN (with
out the R option) all have the effect of automati
cally closing open files and devices. Pressing 
< C trl-B reak>  during program execution has 
the same effect. STOP does not close any files or 
devices.

QW-BASIC 4-43



COMMANDS AND FUNCTIONS
CLS

CLS Statement

Syntax CLS < n >
where < n >  may be 1 or 2

Purpose Erases the screen to the currently selected 
background color.

Remarks If the KEY ON statem ent is in effect when you 
use the CLS statement, the screen is cleared; 
however, the function line a t the bottom of the 
screen is renewed with the currently active 
background/foreground colors.

In character mode, the cursor is placed in the top 
left com er of the screen. In character mode, tl 
screen buffer (video memory) can store 8 scre< 
pages. CLS clears only the active screen page ( u 
SCREEN to determine which page is active

Example

In the graphics modes, only one screen page is 
present in the screen buffer. CLS clears the 
screen buffer completely. The last referenced 
point on the screen is then considered to be 
160,100 in low, 320,100 in medium, and 320,20 
in high resolution. A subsequent graphic comman 
using STEP refers to  this point.

The < n >  param eter may be specified to selective
ly clear portions of the screen. < n >  may be 1 or 2. 
CLS 1 results in a graphics viewport being clea
red, while CLS 2 clears a text window.

10 COLOR 12,1 
20 CLS

in character mode, clears the screen and sets the 
background color to blue (1). Subsequent writing 
(including the GW-BASIC "Ok” message) 
appears in light red (12).

Note In character mode, the color statement alone does 
not set the screen to the new background color: 
the new background color is used as subsequent 
screen writing progresses. CLS has the effect of

4-44 GW -BASIC



COMMANDS AND FUNCTIONS
CLS

setting the entire character area of the screen to 
the background color. Similarily, CLS is no! 
required in the graphics modes in order to change 
the background color of the screen.

The SCREEN and WIDTH commands, used to set 
the screen mode and character line WIDTH, also 
have the effect of clearing the screen.

G W-BASIC 4-45



COMMANDS AND FUNCTIONS
COLOR

COLOR Statement (Character Mode)

Syntax COLOR [writing] [.[background]

“writing” is a numeric expression in the range 
0...31. This represents the color in which charac
ters are to be displayed.

“background” is a numeric expression in the 
range 0...7 for the background color.

Purpose

Remarks

To alter one or more of the two color factors 
(writing, background, ) which make up the 
display on a color screen. On a monochrome 
display, COLOR can be used to invert the video 
display (i.e., black characters on white, instead of 
white characters on a black background; or vice 
versa). On both monochrome and color screens, 
writing can be set to increased brightness or be 
made to blink.
The significance of the values 0 to 7:

0 Black 4 Red
1 Blue 5 Magenta
2 Green 6 Brown
3 Cyan 7 White

The values 8 to 15 refer to high-intensity versions 
of the same colors:

8 Gray
9 Light Blue

10 Light Green
11 Light Cyan

12 Light Red
13 Light Magenta
14 Yellow
15 High Intensity

For the writing color, you may add 16 to the 
required color, thus yielding a value 16 to 31. This 
causes subsequent screen writing to blink in the 
selected color.

4-46 GW-BASIC



COMMANDS AND FUNCTIONS
COLOR

With a m onochrome display adapter, color 
values are used as follows (references to  the 
color white are to  be understood as the stand
ard writing color used by your display).

W riting Background

0 Black Black
t White, and underlined Black

2...6 White Black
7 White White

When using a white background (7), you may use 
for writing 0,8,16 or 24 (the la tte r  two produce a 
blinking display). You cannot set white writing 
on a white backgound. Furtherm ore, there is now 
high intensity and no underlining.

When using a black background (0...6), you can 
set normal white, high-intensity white, normal 
white blinking, and high-intensity white blinking 
(7, 15, 23, or 31, respectively). In each case, 
subtracting 6 from the value gives the additional 
effect of underlining.

It usually makes sense to select colors so as to 
produce an acceptable contrast between back
ground and writing. However, GW-BASIC does 
not prevent you from using black for both. To 
create this invisible writing effect, specify 0 for 
background and 0, 8, 16, or 24 for writing. You 
could use this possibility for entering, say, 
passwords which are not intended to be displayed 
on the screen.

Combinations other than those stated here pro
duce white writing on black background effect.

With a color graphics display adapter, you can 
specify any color in the range 0 to  7 as the 
common color for <writing> and <back- 
ground> in order to  make writing invisible.

Examples
( With color graphics display adapter )

GW-BASIC 4-47



COMMANDS AND FUNCTIONS
COLOR

COLOR 12

sets the writing color to light red; the back
ground color remains as it was before.

COLOR ,1

influences only the background color, changing it 
to blue.

COLOR 12,1

sets writing to light red and background to 
blue.
The following example is for both monochrome 
and color displays. It asks you to enter a known 
text in such a way that you cannot see what you 
are typing on the screen, but you may backspace 
and correct if you suspect you have made a 
mistake. Your typing speed is timed, and dis
played (in seconds), assuming that the text you 
have typed and entered with the < C R >  key is 
identical to the string contained in X$. After your 
“score” is displayed, press any key to return to 
“Ok”.

10 X$ =  "The quick brown fox jumps over the 
lazy dog"

20 SCREEN 0.WIDTH 80 
30 COLOR 7,0 
40 CLS
50 PRINT “S tart typing...";
60 FOR DLY% =1 TO 700:NEXT DLY%
70 COLOR 0,7 
80 PRINT “ NOW”
90 TIM E$=“00:00:00”
100 COLOR 0,0 
110 INPUT 1$
120 Tf =RIGHT$(TIME$,2)
130 SLOW$ = RIGHT$(TIME$,4)

4-43 G W B A SIC



COMMANDS AND FUNCTIONS
COLON

Note

140 CLS
150 IP I $ o X $  THEN GOTO 220 
160 COLOR 23,0 
170 PRINT X$:PRINT:PRINT 
180 PRINT “ WELL DONE 
190 IF ASC(SLOW$)< >48 THEN PRINT “But 

you took at least a minute”:GOTO 260 
200 PRINT “You took ”;T$;“ seconds": PRINT 
210 GOTO 260 
220 COLOR 7,0
230 PRINT “Not quite right.. ”:PRINT 
240 PRINT “You should have typed:”:PRINT 

X$:PRINT
250 PRINT "... this is what you wrote:”:PRINT 

1$
260 COLOR 7,0
270 IF INKEY$=“” THEN GOTO 270

The final item is a COLOR command should not 
be a comma.

A value outside the permitted range may lead to 
an “Illegal function call" error.

The display mode (character, low, medium or 
high resolution graphics) can be set through 
the SCREEN command.

QW-BASIC



COLOR Statement (Graphics Mode)

Syntax COLOR [background] [J[palette]

“background” is a numeric expression specifying 
the screen background color. Values 0 to 15 are 
allowed (see COLOR (Character Mode) for the 
color significance of these values).

“palette” is a numeric expression which selects 
one of the two available color palettes. An even 
number selects palette 0, an odd number selects 
palette 1. On each palette there are three colors:

COMMANDS AND FUNCTIONS
COLOR

Color Number Palette 0 Palette 1

1 Green Cyan
2 Fled Magenta
3 Brown White

Purpose When COLOR is executed, the background color
changes immediately. When COLOR is used to 
change the,palette, the colors of drawings cur
rently displayed on the screen change accord
ingly: if you change from palette 0 to 1, what was 
green is now cyan, red becomes magenta, and 
brown becomes white. The reverse is true if you 
change from palette 1 to 0 (cyan becomes green, 
etc.).

The CIRCLE, DRAW, LINE, PAINT, PRESET 
AND PSET commands can use either the back
ground color or one of the three colors from the 
current palette. COLOR is used to select a palette 
for these graphics commands.

Remarks Characters written on the screen in low or
high resolution color graphics use color num 
ber 3 from the currently selected palette, that 
is, brown or white.

Example 10 SCREEN 4
20 COLOR 2,0

4-50 GW-BASIC



COMMANDS AND FUNCTIONS
COLOR

Note

sets screen mode 4 (high resolution color 
graphics), the background color to green, and 
selects color palette 0.

10 SCREEN 4 
20 COLOR 4

sets screen mode 4 and the background color to 
red. The color palette remains as it was before.

10 SCREEN 4 
20 COLOR ,1

sets screen mode 4 and selects color palette 1. The 
background color does not change.

The example at the end of the Chapter Screen 
D isplay demonstrates just a few of the possibili
ties of GW-BASIC color graphics.

COLOR is not applicable to medium and high 
resolution black-and-white graphics, as this 
screen mode uses black and white only. If you 
attempt to use COLOR in this mode, an Ille
gal function call* error will result.
An “Illegal Function call” error also results from 
a value exceeding 255.

OW-BASIC 4-51



COMMANDS AND FUNCTIONS
COM

COM Command

Syntax

Purpose

Example

COM(n) ON 
COM(n) OFF 
COM(n) STOP

where n is the number of the communications 
channel, either 1 or 2.

To enable or disable event trapping of 
communications activity on the specified 
channel.

The COM(n) ON enables communications event 
trapping by an ON COM command (see ON COM). 
While trapping is enabled, and if a non-zero line 
number is specified in the ON COM statement, 
GW-BASIC checks before the execution of every 
command to see if activity has occurred on the 
communications channel. If it has, GW-BASIC 
transfers program control to the line indicated by 
the ON COM command.

COM(n) OFF disables communications event 
trapping. If an event takes place, it is not 
recorded.

COM(n) STOP disables communications event 
trapping, but if an event occurs, it is recorded and 
ON COM will affect transfer of program control 
as soon as trapping is enabled.

10 COM(l) ON

Enables error trapping of communications activ
ity on channel 1.

4-52 GW-BASIC



COMMANDS AND FUNCTIONS
COMMON

COMMON Statement

Syntax COMMON list of variables

Purpose To pass variables to a chained program.

Remarks COMMON is used with CHAIN. COMMON
statem ents may appear anywhere in a program, 
though it is recommended th a t they appear a t the 
beginning. The same variable cannot appear in 
more than one COMMON. Array variables are 
specified by appending “()” to the variable name. 
If all variables are to be passed, use CHAIN with 
the ALL option and omit COMMON.

CHAIN should not state the dimensions of an 
array variable. Such a statem ent is ignored by 
GW-BASIC.

Example 100 COMMON A,B,C,D(),G$
110 CHAIN “PROG3”,10

chains the program PROG3, passes the variables 
A, B, C, G$, and the array variable D, and starts  
execution of the chained program a t line 10.

GW-BASIC 4-53



COMMANDS AND FUNCTIONS
CONT

CONT Command

Syntax

Purpose

Remarks

Example

4-54

CONT

To continue program execution after 
< C trl-B reak>  has been pressed, a STOP has 
been executed, or an untrapped error has 
occurred.

Execution resumes at the point where the break 
occurred. If the break occurred after a prompt 
from an INPUT statem ent, execution continues 
with the reprinting of the prompt (“?” or prompt 
string).

CONT is usually used in conjunction with STOP 
for program testing. When execution is stopped, 
you can examine intermediate values of variables 
and change them using direct mode commands. 
Execution may be resumed with CONT or a direct 
mode GOTO, which resumes execution at a 
specified line number. CONT may be used to 
continue execution after an error has caused 
GW-BASIC to term inate program execution.

CONT is invalid if the program has been edited 
during the break.

The following program displays the characters of 
the GW-BASIC character set which have a code 
value of 128 or higher (see Appendix B). Each 
character, along with its code value, is displayed 
in a line of its own. A scrolling delay is built in 
(line 50), but to examine a character for any 
length of time, you will need to press < C trl- 
B reak>. When you enter CONT as a direct 
command, the display of characters continues. 
You may in terrupt and continue the program as 
often as you wish. WIDTH 40 means th a t charac
ters are displayed in large format.

10 WIDTH 40
20 FOR LOOP% =  128 TO 255

GW-BASIC



COMMANDS AND FUNCTIONS
CONT

Note

30 PRINT “The character for code 
”;LOOP%;“is ”;CHR$(LOOP%)

40 PRINT
50 FOR DLY% =  1 TO 500: NEXT DLY% 
60 NEXT LOOP%

RUN, even with a line number, is not suitable for 
continuing a program after a break, as it has the 
same effects on memory contents as CLEAR; 
notably, closing all files, erasing definitions, and 
clearing out variables.

GW-BASIC 4-55



COM M ANDS AND FUNCTIONS 
C O S

COS Function

Syntax COS(X)

Purpose To return  the cosine of X, where X is in radians.

Remarks The calculation of COS(X) is performed in single 
precision, unless you specify the /D  option when 
loading GW-BASIC.

Example 10 X=2*COS(.4) 
20 PRINT X 
will yield 

1.842122

Note To convert radians to degrees:

DEGREES =  RADIANS »180/PI

To convert degrees to radians:

RADIANS =  DEGREES *PI/180 

where PI (single precision) is 3.141593

4-56 GW-BASIC



COM M ANDS AND FUNCTIONS 
CSNG

CSNG Function

Syntax CSNG(X)

Purpose To convert X to a single precision number.

Example 10 A # =  482.3421222# 
20 PRINT CSNG(A#) 
will yield 
482.3422

See the CINT and CDBL functions for converting 
numbers to the integer and double precision data 
types, respectively.

The section “Type Conversion” in Chapter 1 gives 
more information about conversion accuracy.

GW-BASIC 4-57



COMMANDS AND FUNCTIONS
CSRLIN

CSRLIN Function

Syntax

Purpose

Example

Note

CSRLIN

This is really equated to a  variable containing the 
current line position of the cursor (0 to 24).

In the following example, line 10 reads the 
current line position into L%. Line 20 reads the 
current column position into C%; line 30 displays 
HELLO in the middle line of the screen, and line 
40 restores the position of the cursor to the 
former line and column.

10 L% =  CSRLIN 
20 C% =  POS(O)
30 LOCATE 13,30 :PRINT “HELLO" 
40 LOCATE L%,C%

POS is similar to CSRLIN, returning the current 
column of the cursor instead. LOCATE is the 
command used for positioning the cursor.

4-5S GIV-BASIC



COM M ANDS AND FUNCTIONS 
CVI. CVS, CVD

CVI, CVS, CVD Functions

Syntax CVI(2-byte string) 
CVS(4-byte string) 
CVD(8-byte string)

Purpose To convert string values to numeric values.

Remarks Numeric values tha t are read in from a random 
disk file m ust be converted from strings back into 
numbers. CVI converts a 2-byte string to an 
integer. CVS converts a 4-byte string to a single 
precision number. CVD converts an 8-byte string 
to a double precision number.

The result in each case is stored in the numeric 
variable; the string itself is unaffected by the 
conversion.

Example 70 FIELD #1,4 AS N$, 12 AS B$
80 GET #1 
90 Y=CVS(N$)

The record read from the random file in line 80 is 
divided into two string variables, N$ and B$, by 
the FIELD declaration of line 70. Line 90 regards 
N$ as the string form of a single precision 
number, and assigns the equivalent numeric 
value to Y. Presumably, N$ was originally a 
number written to the file using the MKS$ 
function.

Note The MKI$, MKS$, and MKD$ functions perform 
the inverse operations, th a t is, they convert 
numeric values to strings.

GW-BASIC 4-59



COMMANDS AND FUNCTIONS
DATA

DATA Statement

Syntax

Purpose

Remarks

Example

DATA constant[,constant]...

To store the numeric and string constants th a t 
are accessed by the program’s READ commands.

DATA does not actually instruct GW-BASIC to 
carry out any action, so it may be placed 
anywhere in the program. A DATA list may 
contain as many constants as will fit on a line 
(separated by commas). Any number of DATA 
lines may be used in a program. READ 
commands access DATA lines in order (by line 
number). The data contained in the various 
DATA lines may be thought of as one continuous 
list of items, regardless of how many items are on 
a line or where the lines are placed in the 
program.

A DATA line may contain numeric constants in 
any format; i.e., fixed-point, floating-point, 
integer, decimal, octal or hexadecimal. (No 
numeric expressions are allowed in the list.) 
String constants in a DATA line must be 
surrounded by double quotation marks only if 
they contain commas, colons, or significant 
leading or trailing spaces. Otherwise, quotation 
marks are not needed.

The variable type (numeric or string) given in the 
READ statem ent must agree with the 
corresponding constant in the DATA list; 
otherwise, a “Syntax error” (not “Type 
mismatch”) is issued by GW-BASIC.

A line of DATA May be reread from the beginning 
by use of the RESTORE statement.

See READ

4-60 GW-BASIC



COMMANDS AND FUNCTIONS
DATES

Syntax DATES= “string expression”

“string expression” returns a string in one of the 
following forms:

mm-dd-yy
mm-dd-yyyy
m m /dd/yy
mm/dd/yyyy

Purpose To set the current date. This statem ent
complements the DATES function, which 
retrieves the current date.

Remarks The year must be in the range 1980 to 2099. If the
“string expression” contains only one digit for 
the day or month, GW-BASIC assumes a zero in 
front of it. If only two digits for the year are 
given, GW-BASIC assumes the year falls in the 
twentieth century and places “19” in front of 
them.

Example 10 DATES= “07-13-1984”

The current date is set a t July 13, 1984.

Note The date may have been set already by
NCR-DOS, before you loaded GW-BASIC. 
However, this does' not prevent you from 
overwriting while in GW-BASIC.

DATES Statement

GW-BAS/C 4-Sf



DATES Function

COMMANDS AND FUNCTIONS
DATES

Syntax DATES

Purpose This is really equal to a variable containing the 
current date. (To set the date, use the DATE? 
statement.)

Remarks The DATES function returns a ten-character 
string in the form mm-dd-yyyy, where mm is the 
month (01 through 12), dd is the day (01 through 
31), and yyyy is the year (1980 through 2099).

Example 10 PRINT DATES

following the setting of DATES, the display 
produces:

07-13-1984

The separators are hyphens, even if the 
separators used when entering the date were 
slashes.

4-62 G W -B A S IC



COMMANDS AND FUNCTIONS
DEFFN

Syntax DEF FNname[(parameter list)]=
function definition

Purpose To define and name a function in addition to the
functions provided by GW-BASIC.

Remarks “name” must be a legal variable name. This
name, preceded by FN, becomes the name of the 
function.

“param eter list" consists of those variable names 
in the function definition th a t are to be given 
values when the function is called. The items in 
the list are separated by commas.

“function definition" is a single expression that 
performs the operation of the function. Variable 
names tha t appear in th is expression serve only 
to define the function; they do not affect program 
variables tha t have the same name. A variable 
name used in a function definition may or may 
not appear in the param eter list. If it does, the 
value of the param eter is supplied when the 
function is called. Otherwise, the current value of 
the variable is used.

The variables in the param eter list represent, on 
a one-to-one basis, the argum ent variables or 
values tha t will be given in the function call.

DEF FN may define either numeric or string 
functions. If the function is numeric, the result of 
evaluating the expression comprising the 
function definition is returned to the calling 
command with the precision inherent in the 
function name. If the calling command attempts 
to assign a numeric function result to a string 
variable, or vice versa, a “Type mismatch” error 
occurs.

DEF FN Statement

GW-BASIC 4-63



COMMANDS AND FUNCTIONS
DEFFN

GW-BASIC m ust encounter the DEF FN 
statem ent before the program makes use of the 
corresponding function, otherwise an “Undefined 
user function” error occurs. A function may be 
defined more than  once. GW-BASIC always 
refers to the most recently encountered 
definition.

Example To calculate the hypotenuse of a right-angled
triangle (the side opposite the right-angle) you 
could define a function as follows:

10 DEF FNHYPOT(Sl,S2)=SQR(Sl a2+S 2 a2)

To make use of this function, you could continue 
the program with

20 INPUT “Length of one side adjacent to right 
angle?”;SIDEl

30 INPUT “Length of other side?";SIDE2 
40 PRINT “Length of hypotenuse is 

“;FNHYPOT(SIDEl,SIDE2)

Note GW-BASIC does not accept DEF FN in the direct
mode.

A function may be recursive (that is, it may call 
itself), but you m ust then provide a way of 
stopping it; otherwise, an error situation (“Out of 
memory”) will occur.

4-64 GW-BASIC



COMMANDS AND FUNCTIONS
DEFINT/SNG/DBL/STR

DEFINT/SNG/DBL/STR Statements

Syntax D E F < ty p e>  <range(s) of le tte rs>  

where < ty p e >  is INT, SNG, DBL, or STR

Purpose To declare variable types as integer, single 
precision, double precision, or string.

Remarks Any variable names beginning with the letter(s) 
specified in Crange of le tte rs>  will be 
considered the type of variable specified in the 
< ty p e >  portion. However, a type declaration 
character a t  the end of the actual name of the 
variable (%, !, # , or $) always takes precedence 
over DEFtype. (See the section “Variables” in 
Chapter 1.)

If no type declaration commands are 
encountered, GW-BASIC assumes tha t all 
variables without declaration characters are 
single precision variables.

Examples 10 DEFDBL L-P

All variables beginning with the letters L, M, N, 
0  and P will be double precision variables.

10 DEFSTR A

All variables beginning with the letter A will be 
string variables.

10 DEFINT I-N.W-Z

All variables beginning with the letters I, J, K, L, 
M, N, W, X, Y, Z will be integer variables.

Note GW-BASIC does not recognize the type declara
tion stated in DEF until the DEF statem ent is 
actually encountered during program execution. 
It is therefore a good idea to place these type 
DEFinitions a t the beginning of the program.

GW-BASIC 4-65



DEF SEG Statement

COMMANDS AND FUNCTIONS
DEF SEG

Syntax DEF SEG [ = address]

where "address” is a numeric expression in the 
range 0 to 65535.

Purpose The address specified is saved for use as the 
segment required by BLOAD, BSAVE, CALL, 
POKE, USR, and PEEK.

Remarks Entry of any value outside the “address” range 0 
through 65535 will result in an “Illegal function 
call” error, and the previous value will be 
retained.

If the “address” option is omitted, the segment to 
be used is set to the GW-BASIC data segment 
(DS). This is the initial default value.

If the “address” option is given, it should be 
based on a 16-byte boundary. GW-BASIC 
multiplies this value by 16 and uses the result of 
this multiplication as the actual memory address 
of the beginning of the segment. GW-BASIC does 
not check the validity of the specified address.

Example 10 DEF SEG=&HB800

This program line sets the segment to the 
hexadecimal number B800 (in decimal: 47104), 
which represents a true memory address of 16 
times th a t value -B8000 (753664). In fact, this is 
the beginning of the screen buffer for the color 
display, so you would probably follow up this 
statem ent with BLOAD or BSAVE. Later in the 
program you would probably change the segment 
back to GW-BASIC’s Data Segment.

Note DEF and SEG must be separated by a space. 
Otherwise, GW-BASIC will interpret 
DEFSEG =  100 to mean “assign the value 100 to 
the variable DEFSEG.”

4-66 GW-BASIC



COMMANDS AND FUNCTIONS
DEFUSR

DEF USR Statement

Syntax DEF USR[digit]=integer expression

Purpose To specify the starting  address of an assembly 
language subroutine.

Remarks “digit” may be any digit from 0 to 9. The digit 
corresponds to the number of the USR subroutine 
whose address is being specified. If “digit” is 
omitted, DEF USRO is assumed. The value of 
“integer expression” is the starting  address of 
the USR subroutine offset to the segment value 
which applies when the USR subroutine is called.

It is admissible to use the same “digit” in more 
than one DEF USR statement, then assign a new 
address to that “digit”. GW-BASIC always recog
nizes the address most recently assigned. This 
enables you to access more than 10 subroutines.

Example
200 DEF USRO=24000 
210 X =  USR0(Y A 2/2.89)

Line 200 defines the starting  address of a 
machine language subroutine as 24000. Line 210 
assigns to the variable X the result of whatever 
the subroutine does with the value of the expres
sion given in parentheses (see USR).

If you need to access a subroutine by absolute 
memory address, consider the following example:

200 DEF SEG =0
210 DEF USRO =  ABSADDR%

GW-BASIC

300 RESULT=USR0(INFO)

where ABSADDR% contains the absolute mem
ory address of the subroutine to be accessed in 
line 300.

4-67



COM M ANDS AND FUNCTIONS 
DELETE

DELETE Command

Syntax DELETE [line numberl] [-line number2] 
DELETE [line numberl-]

Purpose To delete program lines.

Remarks GW-BASIC always returns to command level 
("Ok”) after a DELETE is executed. If a specified 
line number does not exist, an “Illegal function 
call” error occurs.

Examples DELETE 40
deletes line 40.

DELETE 40-100
deletes lines 40 through 100, inclusive. 

DELETE -40
deletes all lines up to and including line 40. 

DELETE 40-
deletes line 40 and any subsequent lines in the 
program.

DELETE
deletes the current line.

4-68 GW-BASIC



COM M ANDS AND FUNCTIONS 
DIM

DIM Statement

Syntax

Purpose

Remarks

Example

DIM variable (subscripts) 
[,variable(subscripts)]...

To specify the maximum values for array 
variable subscripts and allocate storage 
accordingly.

If an array  variable name is used without a DIM 
statem ent, the maximum value of the array’s 
subscript(s) is assumed to be 10. If a subscript is 
used th a t is greater than  the maximum specified, 
a “Subscript out of range” error occurs. The 
minimum value for a subscript is always 0, unless 
otherwise specified with OPTION BASE.

The DIM statem ent sets all the elements of the 
specified numeric arrays to an initial value of 
zero. Elements of a string array  are initially 
empty (zero length).

The maximum number of dimensions allowed in a 
DIM statem ent is 255, hardly a practical 
limitation. The number of dimensions is more 
likely to be limited by the amount of available 
memory, and the maximum admissible length for 
a program line. The maximum number of 
elements per dimension is 32767.

If you attem pt to issue a DIM statem ent more 
than once for the same array  variable, or if 
GW-BASIC encounters DIM after the implicit 
definition of th a t array variable (i.e., use of the 
array variable with maximum subscript 10 with
out a prior DIM), a “Duplicate Definition" error 
occurs.

See the Exercises after the section “Array 
Variables” in Chapter 1.

aw-BASic 4-69



COMMANDS AND FUNCTIONS
DRAW

DRAW Statement (Graphics Modes)

Syntax DRAW “string expression”

Purpose

Remarks

Draws an object as specified by the string 
expression.

With the Draw statem ent you can draw an object 
using object definition language commands. A 
language command is a single character within a 
string, optionally followed by one or more 
arguments. The string expression defines an 
object which is drawn on the screen when 
GW-BASIC executes the DRAW statement.

The following movement commands begin 
movement from the coordinates of the last point 
referenced by another language command, or 
another GW-BASIC graphics statem ent (e.g., 
LINE or PSET).

U [ < n > ]  
D [< n > ]  
L [ < n > ]  
R [< n > ]  
E [< n > ]  
F [< n > ]  
G [< n > ]  
H [< n > ]

Move up 
Move down 
Move left 
Move right
Move diagonally up and right 
Move diagonally down and right 
Move diagonally down and left 
Move diagonally up and left

The n in the preceding commands indicates the 
distance to move. The number of points moved is 
n times the scale factor (see S below). If you do 
not specify n, movement is one scale unit.

M < x,y>
Move absolute or offset (see Chapter 3 for 
discussion of x and y coordinates). If x is preceded 
by a +  or -, x and y are added to the coordinates of 
the last point referenced. The point thus 
referenced is connected to the last point 
referenced by a line. If no +  or - is added, a line is 
drawn to point (x,y) from the last point 
referenced.

4-70 GW-BASIC



The following prefix commands may precede any 
of the above movement commands:

B
Move but do not plot any points.

N
Move but return to original position when 
plotting is finished.

When considering how a drawing will look when 
displayed on the screen, you should take into 
account the “aspect ratio” of the screen. The 
aspect ratio is the vertical exaggeration factor of 
1.2 in low and high resolution graphics, and 
2.4 in medium resolution graphics. For ex
ample, the following short program DRAWs a 
square in medium resolution graphics:

10 SCREEN 2
20 DRAW “L96D40 R96 U40”

The vertical sides are specified with lower values 
than the horizontal sides because horizontal 
drawing illuminates more pixels per inch (2.4 
times as many).

A square in low resolution graphics would be 

10 SCREEN 1
20 DRAW “L96 D80 R96 U80”

In addition to simple straight line drawing, 
DRAW offers the following graphic commands.

T A < n >
Turns the drawing angle through < n >  
degrees in the counter clockwise direction. (A 
negative value for < n >  turns the drawing 
angle clockwise). The result of

DRAW “TA5;U50”

is tha t the “upward” line is in fact leaning 
five degrees to the left, as we perceive it on

COMMANDS AND FUNCTIONS
DRAW

QW-BASIC 4-71



COMMANDS AND FUNCTIONS
DRAW

the screen. If < n >  is outside the range -360 
to +360, an “Illegal function call” error 
occurs.

A < n >
Similar to the TA command. The difference is 
th a t < n >  represents a number 0,1,2 or 3, for
0.90,180, and 270 degrees, respectively. Both 
TA and A compensate for drawing 
exaggeration which would otherwise occur 
when specifying 0 or 180 degrees. See the 
following example.

C < n >
Determines the drawing color. In low an< 
high resolution color graphics, < n>  may be 1 
2, or 3, this being the color from the current 
ly selected palette, o r 0, the current back 
ground color (see COLOR). If you do no 
specify a color, GW-BASIC uses 3. In mediun 
and high resolution black-and-white graphics 
< n>  can be 0 (black) o r 1 (white). If you d< 
not specify a color, GW-BASIC uses 1.

S < n >
Sets the scale (magnification) factor for the 
U, D, L, R, E, F, G, H, and M (offset) 
movement commands. < n >  divided by 4 is 
the scale factor. If you do not specify a scale 
factor, GW-BASIC uses 4 for < n > ,  tha t is, 
scale factor 1. < n >  must be an integer value 
in the range 1 to 255.

<X  string variable>
When DRAW encounters this command, it 
carries out the drawing commands contained 
in “variables” before proceeding with the rest 
of the command string. This enables you to 
execute a second string from within a string.

< P  paint outline>
Paints the area comprising the drawing in 
which the last addressed point is enclosed. 
The drawing outline must already have the

4-7?
GW-BASIC



COMMANDS AND FUNCTIONS
DRAW

Examples

color ‘outline’; otherwise, painting goes be
yond the outline. In low and high resolu
tion color graphics, the colors may be 0 ,1 , 
2, or 3; in medium and high resolution 
black-and-white graphics 0 o r 1 (see ‘C 
< n > ’ above). Both ‘pa in t’ and ‘outline’ 
m ust be specified.

The items contained in a DRAW command string 
do not require separators (not even blanks), with 
the exception tha t a semicolon m ust separate the 
name of a variable from the next item. However, 
spaces and/or semicolons may be used between 
items, and they do make the string easier to read.

Variables are allowed for all n and x,y values 
indicated in this description of DRAW. A varia
ble is preceded by an equal sign, except after the 
X drawing command.

10 SCREEN 1 
20 DRAW “E15 F15 L30" 
draws an isosceles triangle.

10 SCREEN 1 
20 V=50
30 DRAW “U=V; R=V; D=V; L=V ;”

draws a box. (This time we have used variables 
(V), so the semicolons are necessary.) The follow
ing lines move the “last referenced point" into the 
confines of the box, and paint the box with color 2 
and the outline with color 1 from the currently 
selected palette:

30 DRAW “C2"
40 DRAW “BE10”
50 DRAW “PI,2”

The following example draws spokes:

10 SCREEN 1
20 FOR L% = 0  TO 360 STEP 10 
30 DRAW “TA=L%;NU60”
40 NEXT L%

If you now draw a circle using the same center 
and the radius 60

OW-BASIC 4-73



COMMANDS AND FUNCTIONS
DRAW

Note

50 CIRCLE (160,100),60

you will notice tha t the circle is too small to 
encompass the spokes. To compensate this you 
should instruct TA to draw the first spoke in a 
horizontal direction. This is because the radius 
applied to the circle represents a number of 
horizontal, not vertical screen points (see CIR
CLE).

It is possible to specify variables through the 
VARPTR$ function.

An error situation does not result from 
DR A Wing off the edge of the screen (exception: 
T A < n > ). However, DRAWing off the righ t of 
the screen in medium resolution will result in 
wrap round to the next horizontal line.

The X drawing command is useful, in th a t it 
enables you to call drawings which are to be used 
more than once, as required.

4-74 GW-BASIC



COM M ANDS AND FUNCTIONS 
EDIT

EDIT Command

Syntax

Purpose

Remarks

Note

EDIT line number

“line number” specifies the line number of a line 
in the program. If there is no such line, an 
“Undefined Line Number” error message is 
displayed.

Displays a line for editing.

The EDIT command simply displays the line 
specified and positions the cursor under the first 
digit of the line number. You may then modify 
the line using the keys described in Chapter 2, 
Full Screen Editor.

A period (.) always refers to the current line. If 
you have just entered a line and want to go back 
and edit it, you may enter EDIT to redisplay the 
line.

To display a block of program lines for editing 
purposes, you can use the LIST command.

GW-B/tSfC <-75



COM M ANDS AND FUNCTIONS 
END

END Statement

Syntax END

Purpose To term inate program execution, close all files, 
and return to command level (“Ok”).

Remarks END may be placed anywhere in the program to 
term inate execution. Unlike the STOP statement, 
END does not cause a “Break” message to be 
printed. Furthermore, END closes all files. An 
END statem ent a t the end of a program is 
optional.

Example 520 IF K>1000 THEN END ELSE GOTO 20

4-76 GW-BASIC



COMMANDS AND FUNCTIONS
ENVIRON

ENVIRON Statement

Syntax ENVIRON “param eter-id[=text]”

Purpose To modify param eters in GW-BASIC’s 
Environment String Table, especially the 
“PATH” param eter. This enables your program 
to call up another program (NCR-DOS calls this a 
child process), even though the program is in a 
different directory (see SHELL).

Remarks For details of pathing and other NCR-DOS 
Environment parameters, you should refer to the 
NCR-DOS Manual and NCR-DOS Programmer’s 
Manual.

“param eter-id” is the name of the param eter, for 
example, PATH.

"text” is the new param eter text. If “text” is 
omitted, then the param eter is removed from the 
Environment String Table and the Table is 
compressed. If “tex t” is present, it  m ust be 
enclosed in double quotation marks and preceded 
by an equal sign or a blank. If “text” contains 
only a semicolon, it is regarded as non-existent.

Example The following statem ent gives GW-BASIC access 
to the directory SALES on drive A.

ENVIRON “PATH= A :\SA LES”

Note ENVIRON allows only strings as parameters. 
Failure to use strings results in a “Type mis
m atch” error. “Out of memory” indicates th a t the 
Environment String Table is full.

Unless changed by the NCR-DOS PATH com
mand, GW-BASIC’s Environment String Table is 
initially empty.

G W -B A S IC 4-77



COMMANDS AND FUNCTIONS
ENVIRONS

ENVIRONS Function

Syntax ENVIRONS (“param eter-id”) 
ENVIRONS (n)

Purpose To retrieve an Environment param eter from 
GW-BASICS Environment String Table.

Remarks “param eter-id” is the name of the param eter 
enclosed in double quotation marks.

n is an integer expression yielding a value in the 
range 1 to 255. This value represents the nth 
param eter in the Table.

If the param eter is not found, the ENVIRONS 
statem ent returns an empty string.

Examples Assuming th a t the only param eter in the Table is 
th a t assigned in the example under the 
ENVIRON statem ent,

PRINT ENVIRONS (“PATH”) 

displays

A:\SALES 

The statem ent

PRINT ENVIRON$(l) 

displays

PATH= A:\SALES

The following program saves BASIC’s Environ
ment String Table in an array so tha t it may be 
modified for a child process. After the child 
process completes, the Environment is restored.

10 DIM ENV.TBLS(IO) ‘Assume no more than 
10 parms

20 N.PARMS =  1 ‘init number of parms 
30 WHILE LEN(ENVIRONS(N.PARMS)) >  0 
40 ENV.TBL$(N.PARMS) =  

ENVIRONS(N.PARMS)

4-78 GW-BASIC



COMMANDS AND FUNCTIONS
ENVIRONS

Note

50 N.PARMS= N.PARMS+1 
60 WEND
70 N.PARMS= N.PARMS-1 ‘adjust to correct 

number
80 ‘Now store new Environment 
90 ENVIRON “MYCHILD.PARMl=SORT BY 

NAME”
100 ENVIRON “MYCHILD.PARM2= LIST BY 

NAME”

1000 SHELL “MYCHILD” ‘Runs 
“MYCHILD.EXE”

1010 FOR 1= 1 TO N.PARMS
1020 ENVIRON ENV.TBL$(I) ‘Restore parms
1030 NEXT I

If “param eter-id” is not a string, a “Type mis
m atch” error occurs. If the string is too long, a 
"String too long” error occurs. If there are too 
few param eters in the Table for “n” to make 
sense, an “Illegal function call” error occurs.

GW-BASIC 4-79



COMMANDS AND FUNCTIONS
EOF

EOF Function

Syntax EOF (file number)

Purpose To test whether the end of a file has been reached.

Remarks EOF returns true (-1) if there is no more data in 
the file. The file is empty if the next input 
operation (for example INPUT#, LINE INPUT#) 
would cause an “Input past end” error.

In the case of a communications file, the value is 
returned if the input buffer is empty.

The EOF condition is not significant for random 
access files.

Example This example displays each record of a sequential 
file “NAMES”, which would already have to 
exist. The end-of-file situation is detected as soon 
as it arises, thus preventing an error situation.

10 OPEN “NAMES” FOR INPUT AS #1 
‘20 IF EOF(l) THEN PRINT “T hat’s all”: END 
30 INPUT #1, N$
40 PRINT N$
50 GOTO 20

Note EOF can also apply to redirected I/O on standard 
input devices. In this case, specify 0 as the “file 
number".

4 S O G W -B A S ICg w -b a s i c



COM M ANDS AND  FUNC
t.

ERASE Command

Syntax ERASE c l i s t  of array  variables>

Purpose To eliminate arrays from memory.

Remarks Arrays may be redimensioned after they are 
erased, or the previously allocated array  space in 
memory may be used for other purposes. If an 
attem pt is made to redimension an array without 
first erasing it, a “Duplicate definition” error 
occurs.

Example The following program uses the FRE function to 
demonstrate ju st how much space can be saved 
when you ERASE a large array  variable which is 
no longer required.

10 PRINT “Bytes free before DIMensioning 
large array: “;FRE(“”)

20 DIM DINOSAUR (100,100)
30 PRINT “Bytes free after DIMensioning large 

array: “;FRE("”)
40 ERASE DINOSAUR 
50 DIM DINOSAUR (10,10).
60 PRINT “It’s now a much smaller array.

Bytes free: “;FRE(“”)

You see th a t the difference in memory require
ment between the large and the re-DIMensioned 
array is approximately 40000 bytes.

Note CLEAR erases all program variables.

GW-BASIC 4-81



COMMANDS AND FUNCTIONS
ERR, ERL

ERR AND ERL System Variables

Purpose To establish where in the program an error 
occurred and the nature of th a t error.

Remarks When an error handling routine is entered, the 
variable ERR contains the error code for the 
error and the variable ERL contains the line 
number of the line in which the error was 
detected. The ERR and ERL variables are usually 
used in IF...THEN decisions to direct program 
flow in the error handling routine. Appendix C 
lists the GW-BASIC error codes.

If the error-producing command was entered in 
direct mode, ERL contains 65535. To test whether 
a direct mode command was responsible for the 
error, enter

IF 65535 =  ERL THEN...

Otherwise, ERL is written on the left side of the 
relational operator (e.g. =  ), so th a t the line 
number stated on the right will not be left out by 
the RENUM command during program editing, 
for example:

IF ERL <  20 THEN PRINT “The error 
occurred in a line very near to the beginning of 
the program”

Example See ON ERROR

Note ERR and ERL are system, not program, varia
bles. You cannot assign values to them. You can 
only look to see what GW-BASIC has put in them.

4 3 2 G W -BASICGW-BASIC



COMMANDS AND FUNCTIONS
ERROR

ERROR Statement

Syntax ERROR C integer expression>

Purpose To simulate the occurrence of a GW-BASIC error,
or to enable you to define error codes.

Remarks The value of C integer expression> must be
greater than  0 and less than 255. If the value of 
C integer expression> equals an error code 
already in use by GW-BASIC (see Appendix C), 
the ERROR statem ent will simulate the occur
rence of th a t error and the corresponding error 
message will be printed. (See Example 1.)

To define your own error code, use a value that is 
greater than any used by GW-BASIC error codes. 
(It is preferable to use the highest available 
values, so compatibility may be maintained when 
more error codes are added to GW-BASIC.) This 
user-defined error code may then be conveniently 
handled in an error handling routine. (See Exam
ple 2.)

If an ERROR statem ent specifies a code for 
which no error handling has been defined, GW- 
BASIC responds with the "Unprintable error” 
error message, and term inates program execu
tion.

Example 1 10 S — 10
20 T = 5
30 ERROR S + T  
40 END 
will yield
String too long in 30

Example 2

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET”;B
130 IF B>5000 THEN ERROR 210

GW-BASIC 4-83



COMMANDS AND FUNCTIONS
ERROR

Note

400 IF ERR=210 THEN PRINT "HOUSE 
LIMIT IS $5000”

410 IF ERL=130 THEN RESUME 120

ERROR is useful for testing your error handling 
routines. Like most other commands, ERROR can 
be entered in the direct mode.

4-84 GW-BASIC



COM M ANDS AND FUNCTIONS 
EXP

EXP Function

Syntax EXP(X)

Purpose To return  e (base of natural logarithms) to the 
power of X. X m ust be <  =  88.02969.

Remarks If x is greater than 88.02969, the “Overflow” error 
message is displayed, but execution continues.

Example 10 X =5
20 PRINT EXP(X-l) 
will yield 
54.59815

GW-BASIC 4S5



COMMANDS AND FUNCTIONS
FIELD

FIELD Statement

Syntax FIELD [# ]< file  num ber> ,< field  w idth>  AS 
< s tr in g  variable> ...

Purpose To allocate space for variables in a random file 
buffer.

Remarks Before GET or PUT can be executed, a FIELD 
statem ent m ust be executed to form at the random 
file buffer.

< file  num ber>  is the number under which the 
file was opened. < fie ld  w id th>  is the number of 
characters to be allocated to < s trin g  variable>.

The total number of bytes allocated in a FIELD 
statem ent m ust not exceed the record length th a t 
was specified when the file was opened. Other
wise, a “Field overflow” error occurs. (The default 
record length is 128 bytes.)

Any number of FIELD statem ents may be 
executed for the same file. All FIELD statem ents

Examples

th a t have been executed will remain in effect 
throughout the program.

FIELD does not actually place any data in the 
random file buffer (this is done by LSET and 
RSET), nor does it fetch data from the random 
file (this is done by GET).

FIELD 1,20 AS N$, 10 AS ID?, 40 AS ADD?, 58 AS 
LEFTOVER?

tells GW-BASIC th a t as soon as a record has been 
read from the random file allocated the number 1, 
the first 20 bytes of th a t record can be regarded 
as belonging to the string variable N?, the next 10 
bytes as belonging to ID?, and so on. To view the 
first 20 bytes, you could issue the command 
PRINT N?.

One thing you m ust not do is give these variables 
contents (e.g. by using LET or INPUT), as they

4-36 GW-BASICGW-BASIC



have already been allocated to the random file 
buffer.

To write a record to a random file, you need the 
LSET (or RSET) statem ent to place the data in 
the random buffer, and the PUT statem ent to 
write the contents of the buffer to disk. The 
following example writes a new subscriber and 
his number as the fourth record in the file. (LSET 
places data left-justified in the area of the buffer 
delimited by the field variable.)

COMMANDS AND FUNCTIONS
FIELD

200 OPEN “R”, #1, ‘TELNUMS”,35 
210 FIELD 1,25 AS NNAME$, 10 AS 

PHONENO$
220 LSET NNAME? =  “ISAAC NEWTON” 
230 LSET PHONENO$=“1234”
240 PUT 1,4 
250 END

GW-BASIC 4-87



COMMANDS AND FUNCTIONS
FILES

FILES Command

Syntax

Purpose

Remarks

Examples

4-88

FILES [“filespec”]

To prin t the names of files residing on the 
specified disk.

If “filespec” is omitted, all the files in the current 
directory on the currently selected drive will be 
listed, “filespec” is a string which may contain 
question marks (?) or asterisks (*) used as 
universal characters. A question mark will match 
any single character in the filename or extension. 
An asterisk will match one or more characters 
starting  a t th a t position. The asterisk is a 
shorthand notation for a series of question marks. 
It is also required to include a pathnam e in 
“filespec” if the file is in another directory.

FILES

shows all files in the current directory on the 
currently selected drive.

FILES “*.BAS”

shows all files with extension .BAS in the current 
directory of the currently selected drive

FILES “B: V ” or FILES “B:”

shows all files on drive B.

FILES ‘TEST?.BAS”

shows all five-letter files whose names s ta r t with 
“TEST” and end with the .BAS extension in the 
current directory of the currently selected drive.

The filenames are displayed in a form at which 
indicates the position of a file in its immediate 
surroundings in the NCR-DOS hierarchical 
directories. If the filename is in fact a

GW-BASIC



COMMANDS AND FUNCTIONS
FILES

sub-directory, this is denoted by “ < D IR > ” 
following the directory name. Referring to the 
hierarchical structure shown in the following 
illustration, the command

FILES “ \  SALES” 

displays the directory entry

SALES < D IR >

The command
FILES “ \S A L E S \M A R Y \”

displays the names of all the files in the directory 
MARY.

ROOT

SALES

/
JOHN

/
REPORT

MARY

REPORT
o th e r o the r
file s  files

ACCOUNTING

STEVE SUE

I \
REPORT REPORT

o th e r
files

GW-BASIC 4-89



COMMANDS AND FUNCTIONS
FIX

FIX Function

Syntax FIX(X)

Purpose Returns the value of the digits to the left of the 
decimal point in the number X, and ignores any 
digits to the right of the decimal point.

Remarks The difference between FIX and INT is th a t FIX 
does not return the next lower number for 
negative X (see INT.CINT).

Examples PRINT FIX(58.75) 
will yield 

58

PRINT FIX(-58.75)
will yield
-58

4-90 GW-BASIC



COMMANDS AND FUNCTIONS
FOR... NEXT

FOR...NEXT Statement

Syntax FOR variab le= x TO y [STEP z]

Purpose

NEXT [variable] [.variable...]

where x, y, and z are numeric expressions.

To allow a series of instructions to be performed 
in a loop a given number of times.

Remarks “variable” is used as a counter. The first numeric 
expression (x) is the initial value of the counter. 
The second numeric expression (y) is the final 
value of the counter. The program lines following 
the FOR statem ent are executed until NEXT is 
encountered. Then the counter is adjusted by the 
amount specified by STEP. A check is performed 
to see if the value of the counter is now greater 
than the final value (y). If it is not greater, 
GW-BASIC branches back to the command after 
the FOR statem ent and the process is repeated. If 
it is greater, execution continues with the com
mand following NEXT. This sequence of events is 
often called a FOR...NEXT loop.

If STEP is not specified, the increment is 
assumed to be one. If STEP is negative, the 
counter is decreased each time GW-BASIC 
passes through the loop. The loop is executed 
until the counter is less than the final value.

The counter must be an integer or single 
precision numeric constant. If a double precision 
numeric constant is used, a “Type mismatch” 
error will result. Using an integer as the counter 
gives better program performance.

The body of the loop is skipped if the initial value 
of the loop exceeds the final value, assuming a 
positive value for STEP. In the case of STEP

GW-BASIC 4-91



COMMANDS AND FUNCTIONS
FOR...NEXT

Example 1

Example 2

4-se

being a negative value, the body of the loop is 
skipped if the initial value is less than the final 
value.

Nested Loops

FOR...NEXT loops may be nested; th a t is, a 
FOR...NEXT loop may be placed within the 
context of another FOR...NEXT loop. When loops 
are nested, each loop m ust have a unique variable 
name as its counter. The NEXT statem ent for the 
inside loop m ust appear before th a t for the 
outside loop. If nested loops have the same end 
point, a single NEXT may be used for all of them.

The variable(s) belonging to NEXT may be 
omitted, in which case the NEXT statem ent will 
match the most recent FOR statem ent. If a  NEXT 
is encountered before its corresponding FOR, a 
“NEXT without FOR” error message is issued 
and execution is term inated.
Using the FOR variable name with its corre
sponding NEXT causes a marginal loss of execu
tion speed, but makes your program much more 
readable.

10 K=10
20 FOR 1=1 TO K STEP 2 
30 PRINT I;
40 K = K + 10  
50 PRINT K 
60 NEXT 
will yield 
1 20 
3 30
5 40
7 50
9 60

10 J = 0
20 FOR 1=1 TO J  
30 PRINT I 
40 NEXT I

GW-BASIC



COMMANDS AND FUNCVONS
FOR...NEXT

Example 3

Example 4

GW-BASIC

In this example, the loop does not execute because 
the initial value of the loop exceeds the final 
value. The program skips to line 50.

101= 5
20 FOR 1=1 TO 1+5 
30 PRINT I;
40 NEXT 
will yield

1 2 3 4 5 6 7 8 9  10

In this example, the loop executes ten times. The 
final value for the loop variable is always set 
before the initial value is set.

The versatility of a FOR...NEXT loop is to be seen 
in its use as a means of addressing the elements 
of an array  variable. The following program lets 
you enter the names of 6 animals, and for each 
animal 3 menus from which it can choose. The 
first part lets you enter the animals and their 
favorite dishes, and stores this information in 
ZOO$.

10 OPTION BASE 1 
20 DIM ZOO$(6,4)
30 CLS
40 INPUT “W hat is today’s date”;DAY$
50 CLS
60 LOCATE 23,33:PRINT “The anim als’ menu” 
70 FOR A% =1 TO 6 
80 PRINT
100 INPUT “Which anim al”;ZOO$(A%,l)
110 FOR M% = 2  TO 4 
130 PRINT “Menu ";M%-1;” for the 

”;ZOO$(A%,l)”?
140 INPUT ZOO$(A%,M%)
150 NEXT M%
160 NEXT A%

The second part displays the entire menu for the 
ZOO.

50 ....

4-93



COMMANDS AND FUNCTIONS
FOR...NEXT

170 CLS
180 LOCATE 1,26
190 PRINT “The anim als’ menu for 

today”„„DAY$
210 FOR A % = 1 T 0  6 
220 PRINT
230 PRINT “The”;ZOO$( A % ,1);” can choose 

from ”,
240 FOR M% = 2  TO 4 
250 PRINT ZOO$(A%,M%),
260 NEXT M%
270 NEXT A%

4-94 GW-BASIC



COM M ANDS AND FUNCTIONS 
FRE

FRE Function

Syntax FRE(O)
FRE(“”)

Purpose To find out the amount of memory still free, and 
to economize on string space.

Remarks With a numeric argument, FRE returns the 
number of bytes in memory that are not being 
used by GW-BASIC. Arguments to FRE are 
dummy arguments; th a t is, the syntax requires 
them, but they are not processed by the function.

FRE(“”) releases memory space occupied by 
strings which are no longer needed, before 
returning the number of free bytes.

GW-BASIC does not initiate memory 
economizing until all free memory has almost 
been used up. Left this late, it can take quite some 
time, so using FRE periodically can shorten 
delays.

Example See ERASE

Note The number of bytes returned by the FRE 
function does not take into account the workspace 
in memory required by the GW-BASIC inter
preter. Even when nothing is in the workspace, 
GW-BASIC reserves between 2.5KB and 4KB.

GW-BASIC 4-95



COMMANDS AND FUNCTIONS
GET (FILES)

GET (Files) Statement

Syntax GET [#]file number[,record number]

Purpose To read a  record from a random disk file into a 
random buffer.

Remarks “file number” is the number under which the file 
was OPENed. If “record number” is omitted, the 
next record (after the last GET) is read into the 
buffer. The largest possible record number is 
16,777,215; the smallest is 1. “record number” 
may be in the form of a m athmatical expression 
or variable name.

Once the record is in the buffer, your program 
can read it with INPUT#, LINE INPUT#, or by 
referring to the variables used in a FIELD 
definition for the buffer.

Example See FIELD

Note You may also use GET for reading bytes from a 
communications file, “record number” here has 
nothing to do with records; instead, it  represents 
the number of bytes to be read from the commu
nications buffer, provided th a t th is number is not 
greater than the value set by the LEN option a t 
OPEN “COM...

4-96 G W -BASICGW-BASIC



COMMANDS AND FUNCTIONS
QET (GRAPHICS)

GET (Graphics) Statement

Syntax GET (xl,yl)-(x2,y2),array

Purpose To read screen graphics information (graphics
modes only) into an array  variable.

Remarks x l,y l and x2,y2 are opposite corners of an
imaginary rectangle. The color of each point 
within this rectangle is read into the specified 
array.

The equation
BYTES = 4 +  INT
((XLEN*RESOLUTION+7)/8)*YLEN
gives the required size of the array in bytes. 
XLEN represents the horizontal length of the 
rectangle, YLEN its vertical length. RESOLU
TION is 2 for low and high resolution color 
graphics, 1 for medium and high resolution 
black-and-white graphics. ( This is the 
number of bits required to store on screen 
point in video RAM.)
If, for example, you wish to store a low reso
lution graphic design of Bize 15 horizontal by 
12 vertical pixels, the number of bytes requi
red is
4 +  INT((15*2+7)/8)*12
which yields a result of 60 bytes.
Now all you have to do is decide upon the type of 
numeric array in which you wish to store the 
design. In the section “Space Requirements” in 
Chapter 1, the bytes per element of an array were 
given as follows:

•  integer array — 2
•  single precision array — 4
•  double precision array — 8

This means th a t ah integer array of 26 elements 
is large enough to store the 15x12 graphic design. 
Using an integer, rather than a single or double 
precision array, offers the advantage tha t you 
can examine the horizontal and vertical dimen-

GW-BASIC 4-97



COM M ANDS AND  FUNCTIONS 
GET (GRAPHICS)

Example

Note

sion of the graphic design: the first element 
contains the horizontal length; the second ele
ment contains the vertical length.

The following program stores a 15x12 low 
resolution rectangle from the top left corner of 
the screen in the array variable A%, and displays 
the contents of the first two elements of the 
array.

10 DIM A%(52)
20 SCREEN 1 
30 GET (0,0)-(14,11)
40 SCREEN 0:WIDTH 80 
50 PRINT A%(0),A%(1)

The leftmost of the two numbers displayed is the 
horizontal length times 2; the rightmost number 
is the vertical length of the rectangle.

30 12

Change line 20 to SCREEN 2 (don’t  forget to 
press <CR>). This tells GW-BASIC to  use me
dium resolution graphics. Now RUN the pro
gram again. This time the  two numbers dis
played are the horizontal and vertical length 
of the  rectangle:

15 12

The complementary command, PUT, can be used 
for putting the contents of an array on the screen. 
Both GET and PUT work more efficiently if the 
x l  is a number th a t can be divided by 8 (in 
low and high resolution color graphics) or
16 (in medium and high resolution black-and 
-white graphics) w ithout remainder.
You can also use offset coordinates, for example

GET (100,100)-STEP(15,-12),A%

determines th a t the graphic information of a 
rectangle of which the top left corner is the point 
100,100 is to be read into the array variable A%.

4-98 GW-BASIC



COMMANDS AND FUNCTIONS
GOSUB...RETURN

GOSUB...RETURN Statements

Syntax GOSUB < line  num ber>

Purpose

RETURN [line number]

To branch to, and return from, a subroutine.

Remarks “line number” in the GOSUB command is the 
first line of the subroutine.

A subroutine may be called any number of times 
in a program. A subroutine also may be called 
from within another subroutine. Such nesting of 
subroutines is limited only by available memory.

Simple RETURN statement(s) in a subroutine 
cause GW-BASIC to branch back to the command 
following the most recently encountered GOSUB. 
A subroutine may contain more than one 
RETURN, so GW-BASIC does not have to branch 
to the last line of the subroutine in order to 
return.

The “line number” option may be included in the 
RETURN statem ent to return to a specific line 
number from the subroutine. Use this type of 
return with care, however, because any other 
GOSUBs, WHILEs, or FORs that were active at 
the time of the GOSUB will remain active, and 
errors such as “FOR without NEXT” may result.

Subroutines may appear anywhere in the 
program, but it is recommended tha t the 
subroutine be readily distinguishable from the 
main program. It is often a good idea to head a 
subroutine with a REM line, stating what the 
subroutine does. To prevent inadvertent entry 
into the subroutine, precede it with a STOP, 
END, or GOTO statem ent th a t directs program 
control around the subroutine.

GW-BASIC



COM M ANDS AND FUNCTIONS 
G O SU B ..RETURN

Example 10 GOSUB 40
20 PRINT “BACK FROM SUBROUTINE” 
30 END
40 PRINT “SUBROUTINE”;
50 PRINT “ IN”;
60 PRINT “ PROGRESS”
70 RETURN 
will yield
SUBROUTINE IN PROGRESS 
BACK FROM SUBROUTINE

Note The ON...GOSUB statem ent can be used to select 
a subroutine in accordance with the result of a 
preceding operation.

4-100 GW-BASIC



COMMANDS AND FUNCTIONS
GOTO

GOTO Statement

Syntax

Purpose

Remarks

Example

GOTO < line num ber>

To branch unconditionally out of the normal 
program sequence to a specified line number.

If d i n e  number>  is the line number of an 
executable command, th a t command and those 
following are executed. If it is non-executable 
(e.g. REM) execution proceeds a t the first 
executable command encountered after d i n e  
num ber>.

10 READ R 
20 PRINT “R = ”;R,
30 A=3.14*Ra2 
40 PRINT “AREA = ”;A 
50 GOTO 10 
60 DATA 5,7,12 
will yield
R =  5 AREA =  78.5
R =  7 AREA =  153.86
R =  12 AREA =  452.16 
Out of data in 10

The GOTO 10 statem ent sets up an infinite loop. 
The way GW-BASIC breaks out of it is when it 
runs out of DATA to READ. (In fact, the loop is 
executed only three times.)

The following example is a true infinite loop.

10 THRU% =  1
20 PRINT "This is run number”;THRU%;

“through the loop”
30 THRU% =THRU% +1 
40 GOTO 20

However, you do not have to switch off your 
computer to break out of the loop. For situations 
like this, GW-BASIC has provided a break-out 
possibility, namely the < C trl-B reak>  combina
tion. This even leaves the variables intact, so you 
can inspect them (using PRINT...in direct mode).

GW-BASIC 4-101



COMMANDS AND FUNCTIONS
GOTO

Note Entering GOTO with a line number in direct 
mode is a way of re-entering a program at the 
beginning of a line of your choice after a break in 
execution. I t does not m atter whether you in ter
rupted the program (STOP statem ent, < C trl- 
B reak>), or GW-BASIC was forced to stop due to 
an error.

The ON...GOTO statem ent can be used to select a 
program line to which GW-BASIC m ust branch, 
depending on the result of a preceding operation.

4-102 GW-BASIC



COM M ANDS AND FUNCTIONS 
HEXS

HEX$ Function

Syntax HEX$(X)

Purpose To return a string th a t represents the 
hexadecimal value of the decimal argument.

Remarks X, if not already an integer, is rounded to an 
integer before HEX$(X) is evaluated. This 
integer m ust be in the range -32768 to 65535.

Example 10 INPUT X 
20 A$=HEX$(X)
30 PRINT X “DECIMAL IS ” A$ “ 

HEXADECIMAL” 
will yield 
? 32
32 DECIMAL IS 20 HEXADECIMAL

Note If the value of X is negative, HEX$ returns the 
“two’s complement”. This is the same as 
regarding X as positive, and applying the HEX$ 
function to the difference between 65536 and X.

For hexadecimal to decimal conversion, see 
Appendix E.

GW-BASIC 4-103



COMMANDS AND FUNCTIONS
IF

IF...THEN...ELSE... 
IF...GOTO Statements

Syntax

Purpose

Remarks

Examples

IF expression [,]
THEN

(commands(s)l 
1 line number 1

r (command V\
[e l s e (line number IJ

or

IF expression GOTO line number 
lcom m and(s)n 

ELSE (line number) J
To make a decision regarding program flow based 
on the answer for an expression.

If the “expression” is evaluated to be TRUE, the 
THEN or GOTO clause is executed. THEN may be 
followed by either a line number for branching or 
one or more commands to be executed. GOTO is 
always followed by a line number. If “expression” 
is FALSE, the THEN or GOTO clause is ignored 
and the ELSE clause, if present, is executed. If no 
ELSE is present, execution continues with the 
next executable command. A comma is allowed 
before THEN.

10 INPUT “W hat is the outside tem perature in 
Fahrenheit”;TEMP

20 IF TEMP <70 THEN PRINT "It’s too cold 
for a picnic”: GOTO 100 

30 PRINT “I t’s warm enough for a picnic”
40 END
100 PRINT “So we’re staying a t home, today” 
110 END

Note th a t only if TEMP <70 is TRUE is the 
GOTO 100 instruction performed.

Another way of coming to the same decision is

10 INPUT “W hat is the outside tem perature in 
Fahrenheit”;TEMP

4-104 GW-BASIC



COMMANDS AND FUNCTIONS
IF

Examples

20 IF TEMP <70 THEN PRINT “I t’s too cold 
for a picnic”:PRINT “So we’re staying at 
home, today” ELSE PRINT “I t’s warm 
enough for a picnic”

The following example uses line numbers instead 
of commands to do the same thing:

10 INPUT “W hat is the outside tem perature in 
Fahrenheit”;TEMP 

20 IF TEM P<90 THEN 50 
30 PRINT “Switch on the air conditioning”
40 END
50 IF TEMP <70 THEN 100 ELSE 80 
60 PRINT “GW-BASIC will never encounter 

this line!”
80 PRINT “Conditions are right for a picnic”
90 END
100 PRINT “It’s still too cold”
110 END

Nesting of IF...commands

IF...THEN...ELSE commands may be nested, 
th a t is, the final course of action depends on a 
multiple decision.

10 IF X >Y  THEN PRINT “X IS GREATER” 
ELSE IF Y >X  THEN PRINT “X IS LESS” 
ELSE PRINT “EQUAL”

If the statem ent does not contain the same 
number of ELSE and THEN CLAUSES, each 
ELSE is matched with the closest unmatched 
THEN. Try the following example:

10 INPUT “How many ounces of 
sugar”;SUGAR

20 INPUT “How many measures of 
milk”;MILK

30 INPUT “How many plums”;FRUIT 
40 IF SUGAR>4 THEN IF MILK=6 THEN 

100 ELSE IF FRUIT>10 THEN 120 
50 PRINT “The mixture isn’t sweet enough. Or 

it’s a case of both the wrong milk quantity

GW-BASIC 4-105



COMMANDS AND FUNCTIONS
IF

Note

and not enough fruit. Perhaps you got every
thing wrong!”

60 END
100 PRINT “This cake m ixture has a t least 

enough sugar and the milk quantity is 
right, so I don’t  care how many plums are 
in it”

110 END
120 PRINT “There's enough sugar. The milk 

isn’t  right, but there are enough plums”

If there isn’t  enough sugar, the judgement of line 
120 cannot apply, even if there are enough plums.

If an IF...THEN statem ent is followed by a  line 
number in direct mode, an “Undefined line” error 
results, unless a  statem ent with the specified line 
number has previously been entered in indirect 
mode.

When using IF to test equality for a value tha t is 
the result of a floating-point computation, 
remember th a t the internal representation of the 
value may not be exact. Therefore, the teBt should 
be against the range over which the accuracy of 
the value may vary. For example, to test a 
computed variable A against the value 1.0, use:

IF ABS(A-1.0)<1.0E-6 THEN...

This test is true if the value of A is 1.0 with a 
relative error of less than 1.0E-6.

The value zero is considered to represent “false”; 
a non-zero value to represent “true”. You could 
therefore make a decision dependent on the 
contents of a numeric variable. Example:

210 IF  IOFLAG THEN PRINT A$ ELSE 
LPRINT A$

This statem ent causes printed output to go either 
to the screen or the line printer, depending on the 
value of the variable IOFLAG. If IOFLAG is zero, 
output goes to the line printer; otherwise, output 
goes to the screen.

4-106 GW-BASIC



COMMANDS AND FUNCTIONS
INKEYS

Syntax

Purpose

Remarks

INKEY$ Function

Example

INKEY$

Returns a character from the keyboard buffer.

INKEY$, unlike the INPUT statem ent, does not 
wait for you to press a key. If you “miss your 
chance”, th a t is, if there are no characters 
waiting in the keyboard buffer, INKEY$ returns 
a null string (length zero). Otherwise, a single 
character from the keyboard buffer is returned.

A number of keys return an extended string of 
not one but two characters. In these cases, the 
first character is undisplayable (ASCII code 0), 
only the second character is meaningful. The keys 
concerned are cursor movement keys, and certain 
shift, C trl and A lt key combinations (see Appen
dix B).

A further difference between INKEY$ and 
INPUT is th a t INKEY$ does not echo your 
keyboard entry on the screen.

The character returned by INKEY$ must be 
assigned to a string variable before it can be 
examined.

The following example is useful for programs in 
which the user is to be allowed as much time as he 
or she wishes to look a t a screen display. Program 
execution continues when any key is pressed.

210 PRINT “Press any key to continue”
220 K$=INKEY$:TF LEN(K$)=0 THEN GOTO 

220

The next example repeatedly reads the keyboard 
to see if you have pressed the space bar. But it 
does not go on checking forever: after INKEY$ 
has looked a t the keyboard LIMIT% number of 
times, the program gives up waiting and BEEPs 
you for being so slow. You might use something 
like this in video games.

OW -BASIC 4 -1 0 7



COMMANDS AND FUNCTIONS
INKEYS

10 LIMIT% =  1000 
20 FOR 1% =  1 TO LIMIT%
30 K$ =  INKEY$:IF K$ < > “ ” THEN 60 
40 PRINT “Just in time!”
50 GOTO 20 
60 NEXT 1%
70 BEEP:CLS:PRINT “Too Slow!”
80 GOTO 20

To check for and read one of the extended strings:

10 K$ =  INKEY$
20 IF LEN(K$)=2 THEN K$=RIGHT$(K$,1)

INKEY$ does not annul the special functions of 
the following key combinations:

< C trl-B reak>  (break out of program) 
<Ctrl-Num Lock> (system pause) 
< P rtS c >  (print contents of screen) 
<Alt-Ctrl~D el> (system reset)

4-108 GW-BASIC



COMMANDS AND FUNCTIONS
INP

INP Function

Syntax INP(I)

Purpose To return the byte read from port 1.1 m ust be in 
the range 0 to 65535.

Remarks INP is the complementary function to the OUT 
statement.

Example 100 A% =INP(64)

reads a byte from port 64 and assigns it  to the 
variable A%.

Note INP performs the same function as the assembly 
language IN instruction.

GW-BASIC 4-109



COMMANDS AND FUNCTIONS
INPUT

INPUT Statement

* - - /

Syntax INPUTS] [prompt string;]variable [.variable]...
/  -----

Purpose To allow input from the keyboard during
program execution.

Remarks When an INPUT statem ent is encountered,
program execution pauses and a question mark is 
printed to indicate the program is waiting for 
data. If “prompt string” is included, the string is 
printed before the question mark. GW-BASIC 
then waits for you to type data a t the keyboard 
with a concluding < E N T E R > .

A comma may be used instead of a semicolon 
after the prompt string to suppress the question 
mark. For example, INPUT “ENTER 
BIRTHDATE”,B$ will prin t the prompt with no 
question mark.

The data entered is assigned to the variable(s) 
given in “variable”. The number of data items 
you enter m ust be the same as the number of 
variables in the list. You must type a comma 
before each data item other than the first.

The variable names in the list may be numeric or 
string variable names (including subscripted 
variables). The type of each data  item th a t is 
input m ust agree with the type specified by the 
variable name. String items input need not be 
surrounded by quotation marks unless they 
contain commas or s ta rt or end with a significant 
number of blanks.

Responding to INPUT with too many or too few 
items or with the wrong type of value (numeric 
instead of string, etc.) causes the message “?Redo 
from s ta r t” to be printed. No assignment of input 
values is made until an acceptable response is 
given. If only a single variable is specified in the 
INPUT statem ent, you may omit the data  item

4-110 GW-BASIC



COMMANDS AND FUNCTIONS
INPUT

Examples

Note

and simply press < E N T E R > . GW-BASIC then 
supplies a zero for a numeric variable, or an 
empty string for a string variable.

10 INPUT X
20 PRINT X “SQUARED IS”; X a2 
30 END 
will yield
? 5 (The 5 is an example of what you 

might enter in response to the 
question mark.)

5 SQUARED IS 25

10 PI=3.14
20 INPUT “WHAT IS THE RADIUS”;R 
30 A = P I* R a2
40 PRINT “THE AREA OF THE CIRCLE
IS”;A
50 PRINT
60 GOTO 20
will yield
WHAT IS THE RADIUS? 7.4 (You enter 7.4) 
THE AREA OF THE CIRCLE IS 171.9464

WHAT IS THE RADIUS? 
and so on.

To break-out of this program, use <C trl-B reak>

The > std in  option, which you may include in the 
NCR-DOS command to load GW-BASIC, allows 
you to appoint a file which will provide data for 
INPUT in place of the keyboard. In this case, each 
response m ust be concluded by a  < C trl-Z > . If 
th is character is missing, a “Read past end” error 
occurs, all files are closed, and GW-BASIC 
returns control to the NCR-DOS (not “Ok") 
command level. Similarly, if you press < C trl- 
B reak> , the return is to the NCR-DOS command 
level.

If you use < C trl-B reak>  to interrupt execution 
of an INPUT statement, and then return to the 
program with CONT, GW-BASIC resumes execu-

GW-BASIC 4-111



COMMANDS AND FUNCTIONS
INPUT

tion with the INPUT (not the subsequent) 
statement.

The following example assumes th a t a file exists 
containing information about telephone sub
scribers (name, number) in records each 35 bytes 
in length. The firs t line opens the file for random 
access.

10 OPEN “R”,# l , “TELNUMS”,35

The firs t record contains no more than  the 
number of subscribers up to a maximum of 99. A 
FIELD definition suitable for this firs t record is:

20 FIELD 1,2 AS SUBSCRIB$,33 AS UNUSED?

The remaining records, containing actual names 
and numbers, could conform to the following 
divisions.

30 FIELD 1,25 AS NNAME$,10 AS 
PHONENO?

The first thing to do is to GBIT the firs t record, 
and look a t the firs t two bytes of th a t record to 
see how many subscriber records are in the file 
(this number is converted from a string to an 
integer value):

40 GET #1
50 TOTAL% =  CV1(SUBSCRIB$)

The rest of the program GISTs each record from 
the disk file and displays each name and phone 
number of the screen:

60 FOR LOOP% =  2 TO TOTAL% 
70 GET #1, LOOP%
80 PRINT NNAME$,PHONENO$ 
90 NEXT LOOP%
100 END

4-112 GW-BASIC



COMMANDS AND FUNCVONS
INPUT#

INPUT# Statement

Syntax

Purpose

Remarks

Example

INPUT#file number,variable list

To read data items from a sequentia1 device or 
file and assign them to program variables.

“file num ber” is the number used when the file 
was OPENed for input, “variable list” contains 
the variable names to which items in the file will 
be assigned. (The variable type must match the 
type specified by the variable name.) With 
INPUT#, no question mark is printed, as with 
INPUT.

The data items in the file should appear ju st as 
they would if data were being typed in response to 
an INPUT statement. With numeric values, 
leading spaces, carriage returns, and linefeeds 
are ignored. The first character encountered tha t 
is not a space, carriage return, or linefeed is 
assumed to be the s ta rt of the number. The 
number concludes with a space, carriage return, 
linefeed, or comma.

If GW-BASIC is scanning the sequential data file 
for a string item, it will also ignore leading 
spaces, carriage returns, and linefeeds. The first 
character encountered tha t is not a space, 
carriage return, or linefeed is assumed to be the 
s ta rt of a string item. If this first character is a 
quotation mark (“), the string item will consist of 
all characters read between the first quotation 
mark and the second. Thus, a quoted string may 
not contain a quotation mark as a character. If 
the first character of the string is not a quotation 
mark, the string is an unquoted string, concluded 
by a comma, carriage return, or linefeed (or after 
255 characters have been read). If end-of-file is 
reached when a numeric or string item is being 
INPUT, the item is terminated.

See Chapter 5, Piles and Devices

GW-BASIC 4-113



COMMANDS AND FUNCTIONS
INPUT#

Note INPUT# can also be used with a random access

rV

o

/yj

4-114 GW-BASIC



INPUTS Function

Syntax

Purpose

Remarks

Example

Note

COMMANDS AND FUNCTIONS
INPUTS

INPUT$(X[,[#]Y])

To return a string of X characters, read from file 
number Y. If the file number is not specified, the 
characters will be read from the keyboard.

If the keyboard is used for input, no characters 
will be echoed on the screen. All control 
characters are passed through except 
< C tr  1-Break> , which can be used to interrupt 
the execution of the INPUTS function. When 
responding to INPUTS via the keyboard, it is not 
necessary to press < E N T E R > . X limits the 
number of input characters anyway.

5 ‘LIST THE CONTENTS OF A SEQUENTIAL 
FILE IN HEXADECIMAL 

10 OPEN‘T ’,l,“DATA”
20 IF EOF(l) THEN 50
30 PRINT HEXS(ASC(INPUTS(1,#1)));
40 GOTO 20 
50 PRINT 
60 END

INPUTS and INKEYS read all keyboard entries 
and not ju st printable characters. To detect, for 
example, cursor movement keys, use these 
functions and not INPUT or LINE INPUT.

Similarly, you should use INPUTS for reading 
communications files (rather than INPUT# or 
LINE INPUT#), as any ASCII character may be 
significant.

GW-BASIC 4-115



COMMANDS AND FUNCTIONS
INSTR

INSTR Function

Syntax INSTR([I,]X$,Y$)

Purpose To search for the firs t occurrence of string  Y$ in 
X$ and return  the position a t  which the m atch is 
found. Optional offset I sets the position X$ for 
starting  the search.

Remarks I m ust be in the range 1 to 255. If I is greater than 
the number of characters in X$ or if X$ is null or 
Y$ cannot be found, INSTR returns 0. If  Y$ is 
null, INSTR returns I, or 1 if I was not specified. 
X$ and Y$ may be string variables, string 
expressions, or string constants.

Example 10 X$ =  “ABCDEB”
20 Y $= “B”
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$) 
will yield 

2 6

The first INSTR searches for “B” from the 
beginning of the string variable X$, and finds one 
a t position 2. The second INSTR sta rts  searching 
a t position 4, and, therefore, cannot find the “B” 
at position 2 but does find the “B” a t position 6.

Note If I is out of range, th a t is, beyond the length of 
X$, an “Illegal function call” error occurs. To find 
the length of a string you can use the LEN 
function.

4-116 G W -B ASIC



COMMANDS AND FUNCTIONS
INT

INT Function

Syntax INT(X)

Purpose To return the largest integer tha t is less than or 
equal to the numerical value X.

Examples PRINT INT(99.89) 
will yield 

99

PRINT INT(-12.11)
will yield
-13

Note See the CINT and FIX functions, which also 
return integer values.

GW-BASIC 4-H7



COMMANDS AND FUNCTIONS
KEY

KEY Statement

Syntax

Purpose

Remarks

Function Keys
KEY key number,“string expression”
KEY ON 
KEY OFF 
KEY LIST 

or
User Defined Key Traps 
KEY key
number,CHR$(mode)+ CHR$(Keyboard)

Function Keys

Allows you to assign a string expression to 
programmable function keys. You may assign a 
string of up to 15 characters to any one or all of the 
keys. When you later press the key, the string will 
be input to GW-BASIC. KEY ON/OFF enables 
you to view or hide the contents of the pro
grammable Function Keys. KEY LIST displays 
the Function Keys and their definitions.

“key number

Specifies the number of a programmable Func
tion Key in the range 1 to 10 (see list below).

“string expression”

Specifies the string expression which will be 
assigned to the programmable Function Key.

Initially, the programmable function keys are 
assigned the following values by GW-BASIC:

F I LIST F6,“LPT1 < E N T E R >
F2 R U N < E N T E R >  F7 T R O N <E N T E R >
F3 LOAD” F8 T R O FF< E N T E R >
F4 SAVE” F9 KEY
F6 CONT<E N T E R >  F10 SCREEN 0,0 ,0<EN T ER >

KEY “key number”,“string expression”
Assigns the string expression to the specified

4-118 GW-BASIC



COMMANDS AND FUNCTIONS
KEY

Examples

key. The string expression may be 1 to 15 
characters in length. If it is longer than 15 
characters, only the first 15 characters are 
assigned.

If you specify a value for “key number” which is 
not in the range 1 to 10, an “Illegal Function Call” 
error occurs. The previous key string assignment 
is retained.

Assigning a string of length 0 to a programmable 
Function Key disables the key. It will remain 
disabled until another string expression is 
assigned to it.

KEY ON
The first six characters of each Function Key are 
displayed on the 25th line of the screen, ju st as 
after loading GW-BASIC. If you are using a 
display WIDTH of 40, only five Function Keys are 
displayed.

KEY OFF
Erases the programmable Function Key display 
from the 25th line, but it does not disable the 
function keys.

KEY LIST
Lists all 10 programmable Function Key values 
on the screen. All 15 characters of each Function 
Key are displayed.

When a programmable Function Key is assigned, 
the INKEY$ function returns one character of 
the string each time it is called. If the program
mable Function Key is disabled, INKEY$ returns 
a string of length 2. The first character is binary 
zero, and the second is the key scan code (see 
Appendix B).

In the following example, the statem ent in line 10 
assigns the string ‘MENU’ with a concluding 
< E N T E R >  to Function Key 1. This assignment 
might be used in a program to select a menu

GW-SAS/C 4-119



COMMANDS AND FUNCTIONS
KEY

Purpose

Remarks

KEY key number,CHR$(mode) + CHR$(keyboard)

“key number”
A number you choose to define in the range 15 to 
20 (not a Keyboard key, etc).

“mode”

A hexadecimal value as follows:

Caps Lock &H40
Num Lock &H20
Alt &H08
Ctrl &H04
Shift &H01 or &H02 or &H03

Combined mode key actions are accomplished by 
combining the appropriate codes. For example 
&H04 +  &H01 means < C trl-S h ift> .

"keyboard”
A number representing the position on the 
keyboard of the key to be trapped (see Appendix 
F ) .

display when entered by the user. Line 20 disables 
the key.

10 KEY 1,“MENU” +CHR$(13)
20 KEY 1,“”

User Defined Key Traps 
GW-BASIC allows you to define six additional 
key traps. The trapped key m ust be in the Ctrl, 
Shift or Alt mode.

To set a trap, a KEY command containing the 
following elements is required:

4-120 GW-BASIC



COMMANDS AND FUNCTIONS
KEY

Example

Note

The following program sets up a trap  for the key 
combination <C trl-Shift-X >:

10 KEY 15, CHR$(&H04 +  &H03)+ CHR$(45)
20 ON KEY(15) GOSUB 1000 
30 KEY (15) ON

1000 PRINT “Somebody has pressed Ctrl- 
Shift-X!”

Line 20 states th a t whenever this key combina
tion is pressed, and provided th a t the trap  is 
enabled (line 30, see KEY(n) statement), GW- 
BASIC will branch to the subroutine a t line 1000.

Key trapping cannot be used to override the 
Ctl-PrtSc function, nor does it affect Function or 
cursor movement keys.

However, you can override the GW-BASIC Ctrl- 
Break function, with the result th a t you can no 
longer use this key combination to break out of a 
programmed return to the GW-BASIC “Ok” 
level. Similarly, you can override the Ctrl-Alt-Del 
(system reset) combination.

GW-BASIC 4-121



COMMANDS AND FUNCTIONS
KEY(N)

KEY(N) Statement

Syntax KEY(n) ON 
KEY(n) OFF 
KEY(n) STOP

where (n) is the number of a programmable 
Function Key, a cursor movement key, or one of 
the six user-defined key traps (see KEY State
ment).

Purpose To enable or disable trapping the operation of one 
of the above mentioned keys or key combinations.

Remarks n is a numeric expression in the range 1 to 20:

I — 10 the appropriate Function Key
II  Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down
15 — 20 User defined trappable key combi

nation.

The KEY(n) ON statem ent enables trapping of 
the key or key combination specified by n. While 
trapping is enabled, and if a non-zero line number 
is specified in the ON KEY statement, GW- 
BASIC checks before every command to see if the 
specified key has been used. If it has, the 
GW-BASIC branches to the subroutine starting  
at the line given in the ON KEY statement.

KEY(n) OFF disables the event trap. If an event 
takes place, it is not recorded.

KEY(n) STOP disables the event trap, but if an 
event occurs, it is recorded and an ON KEY 
statem ent will be executed as soon as trapping is 
enabled.

Example See KEY.

Note A KEY(n) statem ent may not precede an ON 
KEY(n) statement.

4-122 G W -BASIC



COM M ANDS AND  FUNCTIONS 
KFY(N)

KEY(n) ON does not have any effect on whether 
the Function Keys are displayed in the 25th 
screen line.

GW-BASIC 4-123



KILL Command

COMMANDS AND FUNCTIONS
KILL

Syntax KILL “filespec”

Purpose To delete a file from disk.

Remarks If a KILL command is given for a file th a t is 
currently OPEN, a “File already open" error 
occurs.

KILL can be used for all types of disk files both 
program and data files. The filespec may contain 
question m arks (?) or asterisks (*) (universal 
characters). A question mark will match any 
single character in the filename or extension. An 
asterisk will match one or more characters 
starting  a t its position.

Examples 200 KILL “A:OBSOLETE.DAT”

deletes the file with the name OBSOLETE.DAT 
on drive A.

200 KILL
“LOC ALI \  LOCAL1A \  UNUSED.BAS”

deletes the file UNUSED.BAS from the 
subdirectory LOCAL1A on the current disk.

Note KILL is similar to the NCR-DOS DELETE 
command.

4-124 GW-BASIC



COMMANDS AND FUNCTIONS

LCOPY Command

Syntax LCOPY

Purpose To output the  screen display to a printer.

Remarks The LCOPY command enables you to “dump“ a
screen, th a t is, to prin t what is currently dis
played on a printer.

The time required for printing depends on the 
degree of resolution th a t you have selected.
To prin t screen graphics an a prin ter you can also 
use the GRAPHICS command. Refer to your 
NCR-DOS m anual for further in formation on 
how to invoke this command.

QW-BASIC 4-(25



COM M ANDS AND  FUNCTIONS 
LEFTS

LEFTS Function

Syntax LEFT$(X$,I)

Purpose To return  a string comprising the leftmost I 
characters of X$.

Remarks I must be in the range 0 to 255. If I is greater than 
the number of characters in X$, the entire string 
(X$) will be returned. If I =  0, the null string 
(length zero) is returned.

Example 10 A $ = “BASIC"
20 B$=LEFT$(A$,3)
30 PRINT B$ 
will yield 
BAS

Also see the MID$ and RIGHT$ functions.

Note To find out the length of a string, you can use the 
LEN function.

4-126 GW-BASIC



COM M ANDS AND  F U N C V O N S  
LEN

LEN Function

Syntax LEN(X$)

Purpose To return  the number of characters in X$, 
including blanks and special characters.

Example 10 X $ = “PORTLAND, OREGON” 
20 PRINT LEN(X$) 
will yield 

16

GW-BASIC 4-127



COM M ANDS AND FUNCTIONS 
LET

LET Statement

Syntax

Purpose

Remarks

Example

Note

4-128

[LET ] variable= expression

To assign the value of an expression to a variable.

Notice th a t the word LET is optional; th a t is, the 
equal sign is sufficient for assigning an 
expression to a variable name.

110 LET D =12
120 LET E = 12 A 2
130 LET F = 1 2 a4
140 LET S U M = D + E + F
150 LET TEX T$=“Words”

is the same as

110 D=12
120E~12a2
130 F == 12 A 4
140 SUM =  D +  E + F
150 TEX T$=“Words”

The same variable may appear on both sides of 
the equal sign, for example:

100 INPUT “Enter any number”, NUMB 
110 NUMB =  NUMB/3 
120 PRINT “Your number divided by three =  

“;NUMB

If the expression to the right of the equal sign 
does not yield a result of the same type as th a t of 
the variable to the left of the equal sign, a ‘Type 
mismatch” error occurs.

GW-BASIC



COMMANDS AND FUNCTIONS
UNE

LINE Statement

Syntax

Purpose

LINE [(xl,yl)](x2,y2)[,[color] [,B[F]] [.style]] 

Draws a line, box, or filled-in box on the screen. 

(xl,yl),(x2,y2)
Specifies the coordinates in either absolute or 
offset form (see Chapter 3 “Screen Display”). If 
(xl,yl) point coordinates are not specified, the 
beginning point of the line is the last point 
referred to in a graphics command.

‘color’
Specifies color of line, box, or filled-in box. In 
low and high resolution color graphics, the 
number must be in the range 1 - 3 ,  this repre
senting a color from the color palette, or 0 
(the background color). Default is 3. In me
dium and high resolution black-and-white gra
phics, 0 indicates black, 1 indicates white. De
fault is 1.
B or BF
Specifies box or filled-in box. The B tells BASIC 
to draw a rectangle with the points (xl,yl) and 
(x2,y2) as opposite corners. This avoids having to 
give four LINE commands to perform the same 
function:

LINE (xl,yl)-(x2,yl)
LINE (xl,yl)-(xl,y2)
LINE (x2,yl)-(x2,y2)
LINE (xl,y2)-(x2,y2)

The BF tells BASIC to draw the same rectangle 
as B and also to fill in the interior points in the 
same color as B. (You cannot use “style” with B.)

“style” is an option for drawing the line or box 
not with a continuous line but with a dotted or 
dashed line, or any other pattern you choose, 
“style” is a number in the range 0 to 65535. The 
style of drawing corresponds to the 16 bit binary 
representation of the number. A dotted line 
requires the bit pattern

GW-BASIC 4-129



COMMANDS AND FUNCTIONS
UNE

Examples

4-1X

1010101010101010 or 
0101010101010101

This corresponds to the decimal number 43690 
(first pattern) or 21845 (second pattern). Experi
enced programmers will probably prefer to use 
the hexadecimal notations &HAAAA and 
&H5555

The pattern  set by style applies to the firs t 16 
screen points of the line, and is repeated thereaf
ter until the end of the line. Any screen points not 
set retain  their old appearance. Therefore, before 
drawing an in term ittent line, you may wish to 
first draw a continuous line using the background 
color (0), in order to achieve a single background 
color for the whole length of the line. This is a 
consideration which applies in particular to color 
graphics.

10 INPUT “X2 and Y2 and color”;
X2%,Y2%,COL%

20 SCREEN 1,0:COLOR 0,1 
30 FOR D% = 1 TO 400-.NEXT D%
40 LINE -(X2%,Y2% ),COL%
50 IF INKEY? = ““ THEN 40 
60 SCREEN 0: WIDTH 80

This program asks you for the end coordinates 
and the color of a line to be drawn from the center 
of the screen (the “last point referenced” follow
ing the SCREEN 1 statement). The line is then 
drawn and remains on the screen until you press 
any key. (The short delay caused by line 30 is 
merely to give the display time to settle after 
changing mode.)

The following example connects the corners of 
the screen with one another using high resolution 
line drawing:

10 SCREEN 2 :CLS 
20 LINE (0,0)-(639,199)„B 
30 LINE (0,0)-(639,199)
40 LINE (0,199)-(639,0)
50 IF INKEY? = " "  THEN 50

GW-BASIC



COMMANDS AND FUNCTIONS
UNE

Note

60 SCREEN 0

As “style” is not specified, continuous lines are 
drawn. Now re-write lines 20 to 40 as follows:

20 STYLE % =21845 :LINE 
(0,0)-(639,199),,B,STYLE%

30 LINE (0,0)-(639,199),,,STYLE%
40 LINE (0,199)-(639,0)„,STYLE%

This now produces dotted lines. Change the value 
of STYLE % to 1 and the dots will be few and far 
between. The value 3855 produces dashed lines. 
The binary equivalent is

0000111100001111 (hexadecimal 0F0F).

The following example draws a line using offset 
coordinates, th a t is, relative to the last point 
referenced (in this case 150,100):

10 LINE (150,100)-STEP (30,-30)

The following draws random size boxes up to a 
maximum of 50 X 50 points a t random positions 
in random colors

10 SCREEN 1,0 
20 COLOR 0, RND*4 
30 LINE
(RND*319,RND*199)-STEP(RND*50,RND*50) 
,RND*3, BF 
40 GOTO 20

If LINE attem pts to draw beyond the edges of the 
graphic display area, there is no wrap around to 
another part of the screen. Those parts of the 
drawing th a t are out of bounds are simply clipped 
away. GW-BASIC does not regard this as an 
error condition.

GW-BASIC 4-131



COMMANDS AND FUNCTIONS
LINEINPUT

LINE INPUT Statement

Syntax LINE INPUT[;] [“prompt string”;] 
string variable

Purpose To read an entire line (up to 254 characters) from 
the keyboard to a string variable, ignoring 
delimiters.

Remarks “prompt string” is a string constant th a t is 
displayed on the screen before input is accepted. 
A question mark is not printed unless it is part of 
“prompt string”. The subsequent keyboard input 
is assigned to “string variable”.

If LINE INPUT is immediately followed by a 
semicolon, then the cursor rem ains in the same 
line, even after you have pressed < E N T E R > .

A LINE INPUT statem ent may be aborted by 
typing < C trl-B reak> . GW-BASIC then returns 
to command level (“Ok”).

Example See “LINE INPUT#”.

Note If you interrupt execution of a LINE INPUT 
statem ent by pressing < C trl-B reak> , and then 
return  to the program with CONT, GW-BASIC 
resumes execution with the LINE INPUT (not the 
subsequent) statement.

4-132 GW-BASIC



COMMANDS AND FUNCTIONS
LINE INPUT*

LINE INPUT #  Statement

Syntax LINE INPUT# file number,string variable

Purpose To read an entire line (up to 254 characters), 
ignoring delimiters, from a sequential disk data 
file to a string variable.

Remarks “file num ber” is the number under which the file 
was OPENed. “string variable” is the variable 
name to which the line will be assigned. LINE 
INPUT# reads all characters in the sequential 
file up to a carriage return. I t  then skips over the 
carriage return/linefeed sequence. The next 
LINE INPUT# reads all characters up to the next 
carriage return . (If a  linefeed/carriage return 
sequence is encountered, it is preserved.)

LINE INPUT# is especially useful if each line of 
a data  file haB been broken into fields, or if a 
GW-BASIC program saved in ASCII form at (see 
SAVE) is being read as data by another program.

Example 10 OPEN “0 ”,1,“LIST”
20 LINE INPUT “CUSTOMER 
INFORMATION? ”;C$
30 PRINT #1, C$
40 CLOSE 1 
50 OPEN “I”,1,“L IST ’
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1 
will yield
CUSTOMER INFORMATION? LINDA 
JONES 234,4 MEMPHIS 
LINDA JONES 234,4 MEMPHIS

This example reads information with commas 
and other delimiters from the keyboard into C$. 
This information is written to the file LIST. 
Afterwards the sequential file is re-opened and 
the information is read back in C$ and then 
displayed.

GW-BASIC 4-133



COMMANDS AND FUNCTIONS
LIST

LIST Command

Syntax LIST [line number 1] [-[line number 2]]
[filespec]

“line number l ”,“line number 2”
Numbers in the range 0 to 65529 which specify the 
span of program lines to be displayed.
“filespec”
A file or device to which the program listing is to 
be directed. If filespec is omitted, the program 
lines are listed on the screen.

Purpose Allows a program to be listed, usually on the 
screen.

Remarks If you do not specify line numbers, the entire 
program is listed.

You may term inate any listings to the screen by 
pressing < C trl-B reak> . <Ctrl-N um  Lock> 
temporarily suspends listing, th a t is, until you 
press an key.

Examples LIST

displays the entire program.

LIST 100

displays line 100 only.

LIST 80-

The hyphen has the effect th a t not only line 80 
but also every line with a higher number is 
displayed.

LIST -120

Every line up to and including line 120 is 
displayed.

LIST 50-210

This time, listing is confined to this inclusive line 
span.

LIST 1000-“COPY2.BAS”

4-134 QW-BASIC



COMMANDS AND FUNCTIONS
LIST

Note

W rites a copy of the program in ASCII form at 
(see SAVE) to the file COPY2.BAS, starting  at 
line 1000.

If LIST is executed in indirect mode, GW-BASIC 
returns immediately afterw ards to the command 
level (“Ok”).

Refer to Chapter 5 Files and Devices for informa
tion about using device names (e.g. LPT1:) for 
“filespec”.

GW-BASIC 4-135



COM M ANDS AN D  FU N C V O N S  
L U S T

LLIST Command

Syntax

Purpose

Remarks

LLIST [line number 1] [-[line number 2J

To list a program on the printer.

LLIST works in an identical way to LIST, except 
th a t you cannot use “filespec”.

4-136 GW-BASIC



COM M ANDS AND FU NCVO NS  
LOAD

Syntax

Purpose

Remarks

LOAD Command

Example

Note

LOAD filespec[,R]

To load a file from disk or a device into memory.

The “filespec” m ust include the filename th a t 
was used when the file was SAVEd, but you need 
not specify the extension if it  is .BAS.

The R option automatically runs the program 
after it has been loaded.

LOAD closes all open files and deletes all varia
bles and program lines currently residing in 
memory before it loads the designated program. 
However, if the R option is used with LOAD, the 
program is RUN after it  is LOADed, and all open 
data files remain, so th a t the newly run program 
can use them.

LOAD “STRTRK”,R

Loads and runs the program STRTRK.BAS. (This 
has the same effect as RUN “STRTRK”.)

LOAD “B.MYPROG”
Loads the program MYPROG.BAS from the disk 
in drive B, but does not run the program.

“filespec” may include a pathname.

GW-BASIC 4-137



COMMANDS AND FUNCTIONS
LOC

LOC Function

Syntax LOC(file number)

where “file number” is the number under which 
the file was opened.

Purpose With random access files, LOC returns the 
number of the last record read or written.

W ith sequential access files, LOC returns the 
number of records read from, or written to, the 
file since it  was opened.

Remarks When a file is opened for sequential input, 
GW-BASIC reads the first sector of the file, so 
LOC will return  a 1 even before any input from 
the file occurs.

For a communications file, LOC is used to 
determine if there are any characters in the input 
queue waiting to be read. If  there are more than 
255 characters in the queue, LOC returns 255. 
Since interpreter strings are limited to 255 
characters, this practical lim it eliminates the 
need to test for string size before reading data 
into it. If  fewer than 255 characters rem ain in the 
queue, the value returned by LOC is the actual 
number of characters waiting to be read.

Examples 200 IF LOC(1)>50THEN STOP

stops the program if reading has gone beyond 
the 50th record.

The following example is useful for re-writing a 
random access file record which has ju s t been 
read:

200 PUT #l,LOC(l)

4-138 Q W -B A S IC



COMMANDS AND FUNCTIONS
LOCATE

LOCATE Statement

Syntax LOCATE[row] [,[col] [.[cursor] [,[top] [.bottom]]]]

Purpose To position the cursor on the screen, define its
size, and to make it visible and invisible.

Remarks “row”
Specifies the screen line number in the range 1 to 
25 where the cursor is to appear.

“col”
Specifies the screen column number in the range 
1 to 40 (using width 40) or 1 to 80 (using width 80) 
where the cursor is to appear.

“cursor”
A value indicating whether the cursor is to be 
visible. Specify 1 for visible, 0 for invisible, 
"cursor” does not apply to the graphics modes.

“top’
A character position on the screen consists of 
14 or 8 scan lines, depending on whether you 
are using a monochrome display adapter or a 
color graphics display adapter. The scan lines 
are numbered from the top of the character 
position as 0 to 13 and 0 to 7, respectively. 
Top’ determines the topmost scan line of the 
cursor.
“bottom”
Determines the lowermost line of the cursor. The 
area between "top” and “bottom” is filled in a t 
whatever character position the cursor is 
situated. If “top" is given as a higher scan line 
number than “bottom”, the cursor wraps round 
to the upper portion of the character position, 
giving a cursor in two parts, “top” and “bottom” 
do not apply to the graphics moides.

Positioning the cursor determines where charac
ter output to the screen is displayed.

You may omit any of the command parameters. 
The current value continues to apply for an 
omitted parameter.

Q W -BASIC 4-139



COMMANDS AND FUNCTIONS
LOCATE

Examples

Note

If you turn off the Function Key display in the 
bottom screen line (KEY OFF), you can use all 25 
lines. GW-BASIC does not normally write in line 
25, but it will do so, if you place the cursor there.

When a program is running, GW-BASIC nor
mally turns the cursor off. The command 
LOCATE „1 turns it back on.

LOCATE 1,1

Moves the cursor to the top left corner of the 
character display area.

LOCATE ,,,0,7

Sets a block cursor on a color screen, but does not 
change the position or visibility of the cursor.

LOCATE 24,1,1,6,1

Places a two-part visible cursor a t the beginning 
of the 24th character display line

Allowable ranges for LOCATE param eters are 1 
to 25 for “row”, 1 to screen WIDTH for “col”, 0 or 
1 for “cursor”, and 1 to 31 for “top” and “bottom”. 
Out of range values produce an “Illegal function 
call" error.

4-140 GW-BASIC



COM M ANDS AN D  FUNCTIONS 
LOF

LOF Function

Syntax LOF(file number)

Purpose To return  the length of the file in bytes.

Remarks You can also apply LOF to a communications file. 
In th is case, the function returns the amount of 
free space in the input buffer. The maximum 
amount of free space is normally 256 bytes, but 
you can change th is using the /C  option when 
loading GW-BASIC.

Example The following example reads the last record of a 
random access file into the buffer. The record 
length m ust already have been stored in 
RECSIZ%:

10 OPEN “AFILE” AS #1 
20 GET #1, LOF(l)/RECSIZ%

Note If you apply LOF to files created under IBM 
BASIC 1.10, the length returned is a multiple of 
128. For example, a true length of 290 yields the 
result 384.

GW-BASIC 4-141



COM M ANDS AND  FUNCTIONS  
LOG

LOG Function

Syntax LOG(X)

Purpose To return  the natural logarithm of X. X m ust be 
greater than zero.

Example PRINT LOG(45/7) 
will yield 
1.860752

Note LOG is performed in single precision unless you 
specify the /D  option when loading GW-BASIC. 
This option results in LOG and other “Resident” 
functions being calculated with double precision.

4-142 GW-BASIC



COM M ANDS AN D  FUNCTIONS 
LPO S

LPOS Function

Syntax

Purpose

Remarks

Example

LPOS(X)

where X is the identifier for the line printer.

To return  the current character in the prin t 
buffer th a t is ready to be printed.

LPOS does not necessarily give the physical 
position of the p rin t head.

The value of X determines which prin ter is being 
tested:

0 or 1 LPT1:
2 LPT2:
3 LPT3:

100 IF  LPOS(X)>60 THEN LPRINT CHR$(13)

This program line ensures th a t no more than 60 
characters are printed in any line CHR$(13) 
produces a carriage return  < E N T E R > .

GW-BASIC 4-143



LPRINT and LPRINT USING Statements

Syntax LPRINT [list of expressions!;]

LPRINT USING string expression ist of 
expressions^]

Purpose To prin t data  a t the line prin ter (LPT1:)

Remarks “list of expressions”
contains the items which are to be printed. These 
items are numeric and/or string expressions, and 
m ust be separated from one another by commas 
or semicolons.

“string expression”
is a  string constant or variable giving the form at 
to be used for printing.

Details regarding printing form ats are the same 
as those for displaying characters on the screen. 
Please refer to PRINT and PRINT USING.

LPRINT assumes th a t you are using a printer 
with a  line width of 80 characters and autom ati
cally inserts a carriage return/line feed sequence 
accordingly. You may change this width value by 
means of the WIDTH“LPT1:” command.

LPRINT issues a “Device Timeout” error if the 
printer or other device receiving the LPRINT 
output is slow in responding. You can give the 
device more time by trapping the error, for 
example:

9900 IF ERR =  24 THEN RESUME

(error number 24 is the “Device Timeout” error).

Note Use of LPRINT is not confined to printable
characters. Your program can use LPRINT to 
activate printer functions, such as head move
m ent and character font selection. A number of 
the codes are standardized, for example:

LPRINT CHR$(12);

COMMANDS AND FUNCTIONS
LPRINT

4-144 GW-BASIC



COMMANDS AND FUNCTIONS
LPRINT

should produce a form feed on the printer. Other 
codes are specified to the printer being used. For 
these refer to your printer documentation.

GW-BASIC 4-145



LSET and RSET Statements

COMMANDS AND FUNCTIONS
LSET AND RSET

Syntax LSET string variable == string expression 
RSET string variable= string expression

Purpose To move data from memory to a random file 
buffer (in preparation for a PUT statem ent).

Remarks “string variable”
is a variable which has already been defined by 
FIELD.

“string expression”
contains the information to be placed in the 
random access file buffer a t  the position 
indicated by string variable.

If “string expression” requires fewer bytes than 
specified for “string variable”, LSET left- 
justifies the string in the field, and RSET 
right-justifies the string. (Spaces are used to pad 
the extra positions.) If the string is too long for 
the field, characters are  dropped from the right. 
Numeric values must be converted to strings 
before they are LSET or RSET (see MKI?, MKS?, 
MKD$).

Examples 150 LSET W? =  “Very +  WEATHER?

places the string expression in the buffer a t  the 
position indicated by the FIELD variable W$. 
The string is set to the left of the FIELD area and, 
a t the right of this area, it is padded with blanks 
or truncated, if necessary.

The following example converts a  numeric value 
to a string before placing it right-justified in the 
buffer:

30 ABC? =  MKI?(14)
40 RSET A? -  ABC?

Note You may apply LSET and RSET to non-FIELDed 
variables. This is useful for form atting text 
which is to be displayed on the screen or printed.

4-146 G W -BASIC



COM M ANDS AND  FUNCTIONS 
M ENGE

MERGE Command

Syntax MERGE “filespec”

Purpose To merge a specified disk file into the program 
currently in memory.

Remarks The “filespec” m ust include the filename used 
when the file was saved. The file m ust have been 
saved in ASCII form at (see SAVE). If it was not, 
a “Bad file mode” error occurs, “filespec” may 
include a pathname.

If any lines in the disk file have the same line 
numbers as lines in the program in memory, the 
lines from the file on disk will replace the 
corresponding lines in memory.

GW-BASIC always returns to command level 
(“ok”) after executing a MERGE command.

Example MERGE “NUMBERS"

merges the GW-BASIC program file NUM- 
BERS.BAS residing in the current directory of 
the current disk into the program already pres
ent in memory.

GW-BASIC 4-147



COMMANDS AND FUNCTIONS
MIDS

MID$ Statement

Syntax MID$(string expression!.,n[,m])= string 
expression2

where n and m are integer expressions.

Purpose To replace a portion of one string with another 
string.

Remarks The characters in “string expression!”, begin
ning a t position n, are replaced by the characters 
in “string expression. The optional “m” refers to 
the number of characters from “string 
expression” tha t will be used in the replacement. 
If “m” is omitted, all of “string expression2” is 
used. However, regardless of whether “m” is 
omitted or included, the replacement of charac
ters never goes beyond the length of “string 
expression!”.

Example See MID$ Function.

Note The values n and m m ust be in the range 1 to 255, 
otherwise an “Illegal function call” error occurs.

4-148 GW-BASIC



COMMANDS AND FUNCTIONS
MIDS

MID$ Function

Syntax

Purpose

Remarks

Example

Note

M ID|(X|,n[,m])

To return  a string of length m characters from 
X$, beginning with the nth character.

n and m m ust be integer expressions in the range 
1 to 255. If m is omitted or if there are fewer than 
m characters to the right of the nth character, all 
rightm ost characters beginning with the nth 
character are returned. If n is greater than the 
number of characters in X | (LEN(X|)), MIDI 
returns a null string.

10 A |= “GOOD "
20 B |= “MORNING EVENING AFTERNOON” 
30 PRINT A|;M ID|(B|,9,7) 
will yield 
GOOD EVENING

The MIDI function is useful for looking at the 
characters of a string one by one. The following 
program asks you to enter a text. The program 
checks whether there are any characters in tha t 
string th a t are not letters. As soon as such a 
character is found, its position is displayed on the 
screen.

10 INPUT “Please enter a  text ”,T |
20 IF LEN(T|) =  0 THEN GOTO 10 
30 FOR L% -  1 TO LEN(T|)
40 CHARI =  M ID|(T|,L%,1)
50 IF CHARI< “A” OR C H A R |>  “z” OR 

CHARI >  “Z” AND C H A R |<  “a” THEN 
P% -L% :GO TO 100 

60 NEXT L%
70 PRINT “Text is all letters” :END
100 PRINT “A non-letter character” ;CHAR|;

“was found at position ”,P%
110 END

If n or m is out of range, an “Illegal function call” 
error occurs.

GW-BAS1C 4-149



COM M ANDS AND  FUNCTIONS 
MKDIR

MKDIR Command

Syntax MKDIR “path”

Purpose To create a directory on the specified drive.

Remarks “path” is a string expression not exceeding 128
characters identifying a new directory which is to 
be created. For details about paths and 
directories you should refer to your NCR-DOS 
manual.

Examples Given the following hierarchical structure, and
assuming you are presently in the root directory

ROOT

REPORT
o th e r
files

REPORT
o th e r
file s

STEVE

REPORT
o th e r
file s

SUE

\
REPORT

the command

MKDIR “RESEARCH”

Creates a sub-directory of th a t name to ROOT 
(that is, on the same level as SALE and 
ACCOUNTING).

MKDIR “RESEARCH \  MARTHA”

Creates a sub-directory MARTHA in the direc
tory RESEARCH.

Note MKDIR works in the same way as the NCR-DOS 
command of the same name.

4-150 GW-BASIC



MKI$, MKS$, MKD$ Functions

COMMANDS AND FUNCTIONS 
MKIf, MKSS, MKDS

Syntax

Purpose

Remarks

Example

Note

MKI$ (integer expression)
MKS$ (single precision expression) 
MKD$ (double precision expression)

To convert numeric values to string values.

Any numeric value th a t is to be placed in a 
random file buffer with an LSET or RSET 
statem ent m ust firs t be converted to a string. 
MKI$ converts an integer to a 2-byte string. 
MKS$ converts a single precision number to a 
4-byte string. MKD$ converts a double precision 
number to an 8-byte string.

90 A M T=(K +T)
100 FIELD #1,4 AS D$,20 AS N$
110 LSET D$=MKS$(AMT)
120 LSET N$=A$
130 PUT #1

converts the single precision value in AMT into a 
4-byte string, places it in the random access file 
buffer, and writes it as part of the record to a file.

The complementary functions, th a t is, the func
tions which convert strings to numeric values are 
CVI, CVS, and CVD.

The STR$ function also converts a numeric to 
string value, but it  does not necessarily retain the 
length in bytes of the original number.

GW-BASIC 4-151



COMMANDS AND FUNCTIONS 
NAME

NAME Command

Syntax

Purpose

Remarks

Example

Note

NAME Cold filenam e> AS <new  filenam e>

To change the name of a disk file.

Cold filenam e> m ust exist and cn ew  
filenam e> m ust not exist; otherwise, an error 
will result.

A file may not be renamed with a new drive 
designation. If this is attempted, a “Rename 
across disks” error is generated. A fter a NAME 
command, the file exists on the same disk, in the 
same area of disk space, but with the new name.

NAME “ACCTS” AS “LEDGER”

In th is example, the file th a t was formerly named 
ACCTS will now be named LEDGER.

When you are using the name command, GW- 
BASIC does not assume a file extension of .BAS.

The specification of a pathname is not allowed.

Before using NAME, ensure th a t the file is closed.

4-152 GW-BASIC



COMMANDS AND FUNCTIONS 
NEW

NEW Command

Syntax NEW

Purpose To delete the program currently in memory, close 
all files, and clear all variables. If the TRacer is 
ON, it is turned off.

Remarks NEW is entered in direct mode to clear memory 
before entering a new program. GW-BASIC 
always returns to command level after a NEW is 
executed.

NEW closes all files and turns tracing off.

SW-BAS/C 4-)53



COMMANDS AND FUNCTIONS 
OCT$

OCT$ Function

Syntax OCT$(X)

Purpose To return  a string th a t represents the octal value 
of the decimal argument. X is rounded to an 
integer before OCT$(X) is evaluated.

Example PRINT OCT$(24) 
will yield 
30

See the HEX$ function for details on hexadeci
mal conversion.

4-154 GW-BASIC



COMMANDS AND FUNCTIONS
ON COM(n)

Syntax ON COM(n) GOSUB line

n
Communications channel number (1 or 2). 

line
Line number of the beginning of the trap  routine. 
A line number of 0 disables trapping for the 
specified channel.

Purpose Allows your program to set a trap  for
communications activity: as soon as information 
comes into the communications buffer, 
GW-BASIC branches to the subroutine a t the 
specified line number.

Remarks The following statem ents control the activation
or deactivation of communications trapping:

COM(n) ON
Must be executed to activate the ON COM(n) 
statement. If  you specify a non-zero line in ON 
COM (n), every time the program starts  a new 
command, GW-BASIC checks to see if any 
characters have come into the specified channel. 
If there is a t least one character, GW-BASIC 
performs a GOSUB to the specified line.

COM(n) OFF
When executed, no trapping takes place for the 
channel. If information arrives on the communi
cations channel, it is not noticed by GW-BASIC.

COM(n) STOP
When executed, no trapping takes place for the 
channel. However, any characters received by the 
channel are saved in memory so tha t an immedi
ate trap  takes place when COM(n) ON is executed.

When a trap  occurs, GW-BASIC automatically 
executes a COM(n) STOP so th a t recursive traps 
can never take place. The RETURN from the trap  
routine automatically executes COM(n) ON

ON COM(n) Statement

GW-BASIC 4-15S



COMMANDS AND FUNCTIONS
ON COM(n)

Example

unless an explicit COM(n) OFF has been executed 
within the trap  routine.
Trapping never takes place unless GW-BASIC is 
executing a program.
When an error trap  takes place (see ON ERROR), 
all trapping is automatically disabled. This 
means th a t communications events are disre
garded by GW-BASIC.
Typically, the communications trap  routine reads 
an entire message from the communications 
channel before returning. Using the communica
tions trap  for single character messages is not 
advisable because a t high baud rates (speeds) the 
overhead of trapping and reading for each indi
vidual character may cause the in terrupt buffer 
for communications to overflow.
Specifying a line number with the RETURN 
statem ent a t the end of the trap  routine is 
optional. Use it  to go back to the program a t a 
fixed line number. This action eliminates the 
GOSUB entry which the trap  created. Use 
RETURN line with care! Any other GOSUB, 
WHILE, or FOR which was active a t the time of 
the trap  will remain active.

30 ON COM(l) GOSUB 9900 
40 COM(l) ON

9900 REM trap  routine to deal with incoming 
characters

9990 RETURN
Line 30 means th a t if communications activity 
and trapping has been enabled for this communi
cations channel a t the time of the event, GW- 
BASIC will branch to the subroutine a t line 9900. 
Line 40 enables communications trapping for this 
channel.

4-156 OW-BASIC



COMMANDS AND FUNCTIONS
ON ERROR GOTO

ON ERROR GOTO Statement

Syntax

Purpose

Remarks

Examples

ON ERROR GOTO line number

To enable error handling and specify the first line 
of the error handling routine.

Once error handling has been enabled, all errors 
detected, including direct mode errors, will cause 
a jump to the specified error handling routine. If 
“line number” does not exist, an “Undefined line” 
error results.

To disable error handling, execute an ON ERROR 
GOTO 0. Subsequent errors will p rin t an error 
message and halt execution. An ON ERROR 
GOTO 0 statem ent th a t appears in an error 
handling routine causes GW-BASIC to stop and 
prin t the error message for the error th a t caused 
the trap. I t is recommended th a t all error 
handling routines execute an ON ERROR GOTO 
0 if an error is encountered for which there is no 
recovery action.

If an error occurs during execution of an error 
handling routine, th a t error message is printed 
and execution term inates. E rror trapping does 
not occur within the error handling routine.

10 ON ERROR GOTO 500

500 REM Error trap  handling routines
510 ON ERROR GOTO 0
520 IF ERR=24 THEN RESUME ‘Device too
slow

690 RESUME

Line 10 states tha t if any error occurs GW-BASIC 
is to branch to line 500. Line 520 asks th a t if a 
communications device did not respond in time

GW-BASIC 4-157



COMMANDS AND FUNCTIONS
ON ERROR GOTO

send GW-BASIC back to try  to establish commu
nications again. This is ju st one example of an 
error. Refer to Appendix C and decide which error 
possibilities you think you should provide for in 
each program you create.

You may want an audible signal to a ttrac t your 
attention if an error occurs. In this case, do the 
following;

10 ON ERROR GOTO 9900

9900 REM Beep until a key is pressed 
9910 BEEP
9920 IF INKEY$ =  ““ THEN 9910 
9930 END

4-158 GW-BASIC



COMMANDS AND FUNCVONS
ON...GOSUB AND ON...GOTO

ON...GOSUB and ON...GOTO Statements

Syntax ON < expression>  GOTO c l i s t  of line 
num bers>

ON < expression>  GOSUB -clist of line 
num bers>

Purpose To branch to one of several specified line 
numbers, depending on the value returned when 
“expression” is evaluated.

Remarks The value of “expression” determines which line 
number in the list will be used for branching. For 
example, if the value is three, the third line 
number in the list will be the destination of the 
branch. (If the value is a non-integer, the 
fractional portion is rounded.)

In the ON...GOSUB statem ent, each line number 
in the list must be the first line number of a 
subroutine. Where you are using ON...GOSUB, 
you m ust ensure th a t GW-BASIC can find its way 
back after completing execution of the subrou
tine. This is achieved by the RETURN statement.

If the value of “expression” is zero or greater 
than the number of items in the list (but not 
greater than 255), GW-BASIC continues with the 
next executable command. If the value of expres
sion is negative or greater than 255, an “Illegal 
function call” error occurs.

Examples 100 ON L -l GOTO 150,300,320,390

If the value of the expression after any necessary 
rounding is 1, GW-BASIC branches to line 150. If 
this value is 2, GW-BASIC branches to line 300, 
and so on. If the value of L-l is greater than 4, 
GW-BASIC simply goes on to the next line after 
100.

The following program asks you to enter a 
number 1 to 4 according to the simple arithmetic 
operation to be performed. Line 110 tells GW-

GW -BASIC 4-15$



BASIC to enter one of four subroutines, depend
ing on your choice. After doing the arithm etic 
and telling you the answer, GW-BASIC 
RETURNS to the command following the 
ON...GOSUB statement. Press a key to go back to 
the beginning of the program. Entering zero for a 
number ends the program.

COMMANDS AND FUNCVONS
ON...GOSUB AND ON...GOTO

10 CLS: PRINT “Let me do your arithm etic 
homework”:PRINT

20 INPUT “Enter the firs t of two numbers”;Nl 
30 INPUT “Now the second number”;N2 
40 IF N 1=0 OR N 2=0 THEN END 
50 CLS:PRINT “Press 1,2,3, or 4”:PRINT 
60 PRINT “1) Add the numbers”
70 PRINT “2) Subtract the second number 

from the firs t”
80 PRINT “3) Multiply the numbers”
90 PRINT “4) Divide the first number by the 

second”
100 INPUT CHOICE:PRINT
110 ON CHOICE GOSUB 150,170,190,210
120 IF INKEY$=““ THEN 120
130 GOTO 10
140 REM ****** the subroutines
150 PRINT N l;“ plus ”;N2“ equals ”;N1+N2
160 RETURN
170 PRINT N l;“ minus ”;N2:“ equals ”;N1-N2 
180 RETURN
190 PRINT N l;“ times ”;N2“ equals ”;N1*N2 
200 RETURN
210 PRINT N l;“ divided by ”;N2;“ equals
”;N1/N2
220 RETURN

4-160 GW-BASIC



COMMANDS AND FUNCTIONS
ON KEY

ON KEY(n) Statement

Syntax KEY(n) GOSUB line number

n is a number in the range 1-20 referring to  a 
programmable Function Key, a cursor movement 
key, or a user-defined trappable key combination:

1-10 The ten Function Keys
11 Cursor Up
12 Cursor Left
13 Cursor Right
14 Cursor Down
15-20 User-defined trappable key 

combination 
(see KEY).

"line number"
is the firs t line of the subroutine to which 
GW-BASIC will branch in the event of the key 
denoted by n being pressed. If  “line number” is 0, 
the pressing of th a t key is no longer trapped.

Purpose To instruct GW-BASIC to branch to  a subroutine 
a t a specified line, if a specified key or key 
combination is pressed.

Remarks The following statem ents control the activation 
or deactivation of key trapping:

KEY(n) ON
Must be executed if ON KEY(n) is to have any 
effect. If you specify a non-zero line for the trap  
with ON KEY(n), every time the program s ta rts  a 
new command, GW-BASIC checks to see if the 
specified key was pressed. If you have pressed the 
key, GW-BASIC executes a GOSUB to the speci
fied line.

KEY(n) OFF
If executed, no trapping takes place for the 
specified key. If you press the key, GW-BASIC 
does not react.

GW-BASIC 4-161



COMMANDS AND FUNCTIONS
ON KEY

Example

4-162

KEY(n) STOP
If executed, no trapping takes place for the 
specified key. However, if you press the specified 
key, an immediate trap  takes place when KEY(n) 
ON is performed.

When a trap  occurs, GW-BASIC automatically 
causes a KEY(n) STOP for the trapped key so 
th a t recursive traps can never take place. The 
RETURN from the trap  routine automatically 
performs a KEY(n) ON unless an explicit KEY(n) 
OFF has been performed within the trap  routine.

Trapping never takes place unless GW-BASIC is 
executing a program.

When an error trap  takes place, all trapping is 
automatically disabled. This means th a t key
board events are ignored.

No type of trapping is activated when GW-BASIC 
is in direct mode. In particular, Function Keys 
resume their programmed contents.

A key th a t causes a trap  cannot be subsequently 
tested with the INPUT or INKEY$, so the trap 
routine for each key m ust be different if you want 
different functions.

Specifying a line number with the RETURN 
statem ent a t the end of trap  routine is optional. 
Use RETURN "line” to go back to the program at 
a fixed line number. This action eliminates the 
GOSUB entry which the trap  created. Use 
RETURN “line” with care! Any other GOSUB, 
WHILE, or FOR which was active a t the time of 
the trap  will remain active.

The following example prevents < C trl-B reak>  
from having its usual effect

10 KEY 20,CHR$(&H04)+CHR$(70)
20 ON KEY(20) GOSUB 1000 
30 KEY(20) ON
40 PRINT ‘T ry  to get back to Ok"
50 GOTO 40

GW-BASIC



COMMANDS AND FUNCTIONS
ON KEY

1000 PRINT “You tried to break out but you 
didn’t  succeed”

1010 RETURN

Before running th is program, make sure th a t any 
other program in memory is saved on disk, as you 
will need a system resta rt < C trl-A lt-D el>  to 
break out.

GW-BASIC *•163



COMMANDS AND FUNCTIONS
ON PEN

ON PEN

Syntax

Purpose

Remarks

Statement

ON PEN GOSUB line number

To set a line number where light pen trap  
handling starts.

“line number”
is the first line of the subroutine to which 
GW-BASIC will branch if light pen activity is 
detected. If you specify a “line number” of 0, light 
pen trapping is disabled.

Assuming th a t “line number” was not specified 
as 0, and th a t a PEN ON statem ent has been 
executed, then every time a new command is 
about to be executed GW-BASIC checks to see if 
the light pen was activated. If so, GW-BASIC 
branches to the subroutine a t “line number”.

PEN OFF means th a t light pen trapping is 
cancelled. Furthermore, light pen activity is not 
recorded.

PEN STOP means that light pen trapping is 
cancelled, but pen activity is recorded by GW- 
BASIC. Therefore, an immediate trap takes place 
as soon as PEN ON is executed, if there has been 
interim light pen activity.

When the trap  occurs, GW-BASIC automatically 
executes a PEN STOP so tha t recursive traps 
cannot take place. The RETURN from the trap  
handling subroutine automatically effects PEN 
ON, unless the subroutine contains an explicit 
PEN OFF statement.

Event trapping does not take place when GW- 
BASIC is not executing a program.

When an error trap  takes place (see ON ERROR), 
all trapping is automatically disabled. This 
means th a t light pen events are ignored by 
GW-BASIC.

The PEN function is not affected when light pen 
activity causes a trap.

4-164 GW-BASIC



COMMANDS AND FUNCTIONS
ON PEN

Example

Specifying a line number with the RETURN 
statem ent a t the end of the light pen handling 
subroutine is optional. This causes GW-BASIC to 
RETURN to the specified line number. This 
eliminates the GOSUB entry which the trap  
created, but it should be used with care! Any other 
GOSUB, WHILE or FOR which was active a t the 
time of the trap  will remain active.

10 ON PEN GOSUB 1000 
20 PEN ON

1000 REM light pen handling

1190 RETURN

This shows in lines 10 and 20 the commands 
necessary to create and enable a trap  for light pen 
activity. Line 1190 shows the RETURN from the 
light pen handling routine.

GW-BASIC 4-165



ON PLAY(n) Statement

Syntax ON PLAY(n) GOSUB line number

Purpose To enable execution of other GW-BASIC
commands while background music is playing.

Remarks n is an integer expression in the range 1 to 32. A
trap  occurs when n notes in the background 
music buffer are left to play.

“line number” is the first line of the subroutine to 
which GW-BASIC branches when a trap  occurs. 
A line number of 0 prevents music trapping.

Assuming that “line number” was not specified 
as 0, and th a t a PLAY ON statem ent has been 
executed, then every time a new command is 
about to be executed GW-BASIC checks to see if 
the background music buffer has gone from n to 
n-1. If so, GW-BASIC branches to the subroutine 
a t “line number”.

PLAY OFF has the effect th a t background music 
trapping no longer takes place. Furthermore, 
background music activity is not recorded.

PLAY STOP has the effect th a t background 
music trapping no longer takes place, but back
ground music activity is recorded by GW-BASIC. 
Therefore, an immediate trap  takes place as soon 
as PLAY ON is executed, if there has been 
interim  background music activity.

When the trap  occurs, GW-BASIC automatically 
executes a PLAY STOP, so th a t recursive traps 
cannot take place. The RETURN from the trap 
handling subroutine automatically effects PLAY 
ON, unless the subroutine contains an explicit 
PLAY OFF command.

Event trapping does not take place when GW- 
BASIC is not executing a program.
When an error trap  takes place (see ON ERROR), 
all trapping is automatically disabled. This 
means th a t music events are ignored by GW- 
BASIC.

COMMANDS AND FUNCTIONS
ON PLAY

4-166 GW-BASIC



COMMANDS AND FUNCTIONS
ON PLAY

Example

Note

Specifying a line number with the RETURN 
statem ent a t the end of the music event handling 
subroutine is optional. This causes GW-BASIC to 
RETURN to the specified line number. This 
eliminates the GOSUB entry which the trap  
created, but it  should be used with care! Any other 
GOSUB, WHILE, or FOR which was active a t the 
time of the trap will remain active.

10 PLAY MB string 
20 ON PLAY(5) GOSUB 1000 
30 PLAY ON 
40 GOSUB 1000

1000 REM Execute the following during back
ground music

1190 RETURN

The trap  occurs when there are five notes 
remaining in the background music buffer.

A music event can occur only when PLAY is in the 
background music, not the foreground music 
mode. A music event is not issued if the back
ground music buffer is empty. This is the purpose 
of line 30 in the above example.

Do not choose too high a value for n. For example, 
ON PLAY(32) causes so many event traps th a t 
there is hardly time for the rest of the program.

GW-BASIC 4-167



ON STRIG(n) Statement

Syntax ON STRIG(n) GOSUB line number

where (n) is a number denoting one of a maxi
mum of four joystick buttons. Valid numbers are 
0, 2, 4, and 6.

where “line number” is the number of the first 
line of a subroutine th a t is to be performed when 
the joystick button is pressed.

Purpose To specify the first line number of a  subroutine to
be performed when a joystick button is pressed.

Remarks A “line number" of zero disables the event trap.

The ON STRIG statem ent will only have effect if a 
STRIG ON has been executed (see STRIG State
ment) to enable event trapping for th a t button. If 
event trapping is enabled, and if the “line 
number” in ON STRIG is not zero, GW-BASIC 
checks between commands to see if the joystick 
button has been pressed. If it  has, a GOSUB is 
executed to the specified line.

If a STRIG OFF command has been executed for 
the specified button (see STRIG statement), the 
GOSUB is not executed and GW-BASIC does not 
record th a t a button was pressed.

If a STRIG STOP command has been executed for 
the specified button (see STRIG statement), the 
GOSUB is not executed, but will be performed as 
soon as the appropriate STRIG ON statem ent is 
executed.

When an event trap  occurs (i.e., the GOSUB is 
performed), an automatic STRIG STOP is exe
cuted so th a t recursive traps cannot take place. 
The RETURN from the trapping subroutine will 
automatically perform a STRIG ON statem ent 
unless an explicit STRIG OFF was executed 
inside the subroutine.

Specifying a line number with the RETURN 
command at the end of the trap  handling subrou-

COMMANDS AND FUNCTIONS
ON STRIG

4-168 GW-BASIC



COMMANDS AND FUNCVONS
ON STRIG

Example

tine is optional. I t  returns GW-BASIC to a 
specific line number from the trap  handling 
subroutine. Use this type of return  with care, 
because any other GOSUBs, WHILES, or FORs 
th a t were active a t the tim e of the trap  will 
remain active.

Event trapping does not take place when GW- 
BASIC is not executing a program. Event trap 
ping is automatically disabled when an error trap  
occurs. GW-BASIC then ignores joystick events.

The STRIG function is not affected by the 
occurrence of a joystick trap.

10 ON STRIG(2) GOSUB 2200 
20 STRIG<2) ON

2200 REM deals with pressing of a joystick 
button

2290 RETURN

GW-BASIC 4-169



ON TIMER(n) Statement

Syntax ON TIMER(n) GOSUB line number

Purpose To set the line number where execution of a
subroutine s ta rts  at the expiration of a specified 
period of time.

Remarks n is a numeric expression in the range 1 to 86,400
representing the state of the TIMER counter 
which will cause a tim er event. This range of 
seconds means th a t a period of up to 24 hours can 
be set. A tim er event occurs every n seconds 
following a TIMER ON command.

“line number” is the first line of the subroutine 
executed by GW-BASIC when a tim er event 
occurs. A “line number” of 0 prevents tim er 
trapping.

When n seconds have elapsed, the tim er event 
occurs, whereupon GW-BASIC sta rts  counting 
again from zero to n, and branches to the 
subroutine a t line number.

TIMER OFF has the effect th a t tim er trapping no 
longer takes place. Furthermore, tim er activity is 
not recorded.

TIMER STOP means th a t tim er trapping no 
longer takes place but tim er activity is recorded 
by GW-BASIC. Therefore, an immediate trap  
takes place as soon as TIMER ON is executed, if 
there has been interim  tim er activity.

When the trap occurs, GW-BASIC automatically 
executes a TIMER STOP so tha t recursive traps 
cannot take place. The RETURN from the trap  
handling subroutine automatically effects 
TIMER ON, unless the subroutine contains an 
explicit TIMER OFF command.

Event trapping does not take place when GW- 
BASIC is not executing a program.

When an error trap takes place (see ON ERROR), 
all trapping is automatically disabled. This

COMMANDS AND FUNCTIONS
ON TIMER

4-170 GW-BASIC



COMMANDS AND FUNCTIONS
ON TIMER

Example

means th a t tim er events are disregarded by 
GW-BASIC.

Specifying a line number with the RETURN 
command a t the end of the tim er handling 
subroutine is optional. GW-BASIC then 
RETURNS to the specified line number. This 
eliminates the GOSUB entry which the trap  
created, but it should be used with care! Any 
other GOSUB, WHILE, or FOR which was active 
a t the time of the trap  will remain active.

The following program issues a tim er event once 
every minute. The contents of the screen are 
saved in an array variable, and the current time 
is displayed on the screen. After this, the old 
screen contents are restored. Lines 70 and 80 are 
included so you can write something on the screen 
(you can s ta r t typing as soon as the screen clears 
following RUN). When GW-BASIC BEEPs (line 
110), stop writing for the moment. A little time is 
needed to store the screen in PIC$ (lines 130 to 
160). Resume writing as soon as the screen is 
restored after the time has been displayed. If you 
wish, you can set the clock which governs the 
display of time in this program to the current 
time (see TIME$ function).

10 DEFINT A-Z 
20 DIM PIC$(24,80)
30 SCREEN 0:WIDTH 80 
40 ON TIMER(60) GOSUB 100 
50 TIMER ON 
60 CLS
70 K$=INKEY$:IF K $ = ““ THEN 70 
80 PRINT K$;
90 GOTO 70
100 REM ***** Deal with tim er event 
110 BEEP
120 ROW= CSRLIN:COL= POS(O)
130 FOR V =1 TO ROW
140 FOR H = 1  TO 80
150 PIC$(V,H)=CHR$(SCREEN(V,H))

GW-BASIC 4-171



COMMANDS AND FUNCTIONS
ON TIMER

160 NEXT HrNEXT V 
170 CLS:LOCATE 1,1 
180 PRINT TIME$;
190 FOR DLY=1 TO 4000:NEXT DLY 
200 CLS
210 FOR V =1 TO ROW 
220 FOR H = 1  TO 80 
230 PRINT PIC$(V,H);
240 NEXT H:NEXT V 
250 LOCATE ROW,COL 
260 RETURN

4-172 GW-BASIC



COMMANDS AND FUNCTIONS
OPEN

OPEN Statement

Syntaxes OPEN “mode”,[#]file number, “filespec”[,record 
length]

OPEN “fileapec”[FOR mode] AS [#]file 
num ber[LEN=record length]

In the first syntax form, “mode" is a string 
expression whose first character is one of the 
following:

0  Specifies sequential output mode.

1 Specifies sequential input mode.

R Specifies random input/output mode.

In the second syntax form, mode is not a string 
expression (no quotes), but is as follows:

OUTPUT Specifies sequential output
mode

INPUT Specifies sequential input mode

APPEND Specifies sequential output mode
and sets the file pointer a t the
end of file and the record number 
as the last record of the file. A 
PRINT# or W RITE# command 
will then extend (append) the 
file.

Note th a t in the first form, mode and filespec are 
enclosed in double quotation marks. In the second 
form, only filespec needs quotation marks. If 
mode is omitted in either form, GW-BASIC 
assumes random access. Sequential and random 
access files are discussed in Chapter 5, Files and 
Devices.

Whichever syntax form you use, “file number” is 
an integer expression whose value is between 1 
and the maximum number set using the /F  option

GW-BASIC 4-173



COMMANDS AND FUNCVONS
OPEN

Purpose

Remarks

when GW-BASIC was loaded. The number is then 
associated with the file for as long as it  is OPEN 
and is used to refer other disk I/O  commands to 
the file, for example, FIELD for a random access 
file.

“filespec” is a string expression containing a 
name th a t conforms to DOS rules for disk 
filenames, “filespec” may include a  pathname 
(see Chapter 5).

“record length” is an integer expression that, if 
included, sets the record length for random and 
sequential files. The default length is 128 bytes. 
Any value you set may not exceed th a t set by the 
/S  option when loading GW-BASIC.

To allow I/O  to a file or device.

A disk file m ust be opened before any disk I/O 
operation can be performed on th a t file. OPEN 
allocates a buffer for I/O  to the file or device and 
determines the mode of access th a t will be used 
with the buffer.

The GW-BASIC commands which require a prior 
opening of the file are FIELD, GET, INPUTS, 
INPUT#, LINE INPUT#, PRINT#, 
PRINT#USING, PUT, and WRITE#.

A disk file may be either random or sequential 
access. The same applies to a printer. Other 
devices are normally accessed in sequential mode. 
APPEND is valid for disk files only.

Unless ‘“filespec” specifies another disk drive or 
device, GW-BASIC assumes the file to be opened 
is on the current disk drive.

The opening of a communications file is described 
separately (see OPEN COM).

A file can be opened for sequential input or 
random access under more than one file number 
a t a  time. However, once a file is open, it  cannot 
be further opened for sequential output or 
appending.

4-174 GW-BASIC



COMMANDS AND FUNCTIONS
OPEN

Examples

Note

If a prin ter (LPT1:, LPT2:, or LPT3:) is opened as 
a random file with a  WIDTH of 255, the line feed 
normally accompanying a carriage return is 
suppressed. The prin t head can then make a 
second pass over the line and add effects such as 
underlining.

The following command is an example of opening 
a new sequential access file:

10 OPEN “WORDS” FOR OUTPUT AS #1

Using the other syntax form, the equivalent is

10 OPEN " 0 ”, #1, “WORDS”

Do not use these commands for a  file already 
existing, as it would be erased and then opened as 
a new file. Instead use

20 OPEN “WORDS” FOR APPEND AS #1

The following example opens a random access 
file. If the file STORY.TIM already exists on 
drive C in the current directory, i t  is opened for 
fu rther processing by your program (it is not 
erased). If the file does not already exist, it  is 
opened as a new, empty file. A record length of 
256 bytes is specified.

10 OPEN “C:STORY.TIM” AS #1 LEN=256 

Using the other syntax form, the equivalent is

10 OPEN “R”, #9, “C:STORY.TIM”, 256

Here is an example of a pathnam e being speci
fied:

30 OPEN “BITOPLVL \  BOTLVL \  INFO.OLD” 
FOR APPEND AS 2

The following error situations can arise when 
opening a file:

GW-BASIC 4-175



COMMANDS AND FUNCTIONS
OPEN

“File not found”
A file opened for input does not exist. If  a file 
opened for output, append, or random access does 
not exist, a new file is created.

“Illegal function call”
A value in the OPEN command is outside the 
perm itted range.

A string variable may be given for “filespec”, for 
example

10 INPUT “Which sequential file needs append
ing”; F$

20 OPEN F$ FOR APPEND AS 1

4-176 GW-BASIC



COMMANDS AND FUNCTIONS
OPEN "COM

O PEN“COM

Syntax

Purpose

Remarks

Statement

OPEN “dev:[speed] [.parity]
[.data] [.stop] [,RS] [,CS[n]] [,DS[n]]
[,CD[n]] [,LF] [,PE]” AS [#]file number 
[LEN=length]

Opens a communications file. Allocates a buffer 
for I/O  in the same m anner as OPEN for disk 
files. Supports RS-232 asynchronous 
communication with other computers and 
peripherals.

dev
Specifies one of the following communications 
devices: COM1 or COM2.

speed
An integer constant which specifies the number 
of transm it or receive bits per second (baud rate). 
Valid speeds are: 75,110,150,300,600,1200,1800, 
2400, 4800, and 9600. Default is 300 bps.

parity
A one-character constant which specifies the 
parity for transm it and receive, as follows:

S SPACE: parity  bit is always transm itted 
and received as a space (0 bit).

O ODD: odd transm it and receive parity 
checking.

M MARK: parity bit is always transm itted 
and received as a m ark (1 bit).

E EVEN: even transm it and receive parity 
checking.

N NONE: no transm it or receive parity 
checking.

The default for parity is even (E).

OW-BASIt 4-177



COMMANDS AND FUNCTIONS
OPEN "COM

data
An integer constant which indicates the number 
of transm it or receive data bits. Valid values are: 
4, 5, 6, 7, and 8. The default is 7. If you specify 4, 
you may not specify N for parity, otherwise a 
“Bad File Name” error occurs. If you specify 8 
bits, you m ust specify N (none) parity.

stop
An integer constant which indicates the number 
of stop bits. Valid values are 1 and 2. The default 
stop bits for 75 and 110 bps is 2. The default for all 
others is 1. If you specify 4 or 5 for data, a 2 
entered for stop will mean 1 1/2 stop bits.

RS
Suppresses Request To Send (RTS) line signal. If 
you include RS, the RTS line is not turned on 
when an OPEN COM statem ent is run.

CSn
Controls Clear To Send (CTS) line signal. If you 
include CS without n, the system waits for the 
line signal for 1 second, without returning an 
error. If you enter CSn, n specifies the amount of 
time (in milliseconds) the system waits before 
returning a “Device Timeout” error. Using n = 0  
is the same as entering CS without n.

DSn
Controls Data Set Ready (DSR) line signal. If you 
include DS, the system waits for the line signal 
for 1 second, without returning an error. If you 
enter DSn, n specifies the amount of time (in 
milliseconds) the system waits before returning a 
“Device Timeout” error. Using n = 0  is the same 
as entering DS without n.

CDn
Controls Carrier Detect (CD) line signal, also 
known as Received Line Signal Detect (RLSD), If 
you enter CDn, n specifies the amount of time (in

4-17B GW-BARIC



COMMANDS AND FUNCTIONS
OPEN "COM

milliseconds) the Bystem waits before returning a 
“Device Timeout” error. If you use n= 0 , or you 
omit the option, the line signal is not checked.

The maximum value for n which may be specified 
with CS, DS, or CD is 65535.

LF
Sends a line feed following each carriage return. 
Specify LF when using communication files to 
prin t to a aerial line printer. Note th a t INPUT# 
and LINE INPUT#, when used to read from a 
communications file which was opened with the 
LF option, ignore the line feed and stop when 
they detect a carriage return.

PE
Enables parity checking. If not included, no 
parity  checking takes place. Assuming you are 
using 7 data bits or less and th a t parity checking 
is enabled, a parity error will set the high order 
bit and cause a “Device I/O  Error”. (Framing and 
overrun errors always set the high order bit and 
cause “Device I/O  E rro r”, regardless of data 
length.)

file number
An integer expression which returns a valid file 
number. The number is associated with the file 
for as long as it  is open and is used by other 
communications I/O  statem ents to refer to the 
file. A communications device may be open under 
only one file number a t a time.

length
The maximum number of bytes which can be read 
from the communications buffer when using 
GET or PUT. The default is 128 bytes.

Any syntactical errors within the part of the 
command enclosed in double quotation marks 
result in a "Bad File Name” error. An indication 
of which param eter is in error is not given.

QW-BASIC 4-179



COMMANDS AND FUNCVONS
OPEN "COM

Examples

Note

See Chapter 5, Files and Devices for information 
on communications I/O . Success with communi
cations depends to a  great extent on getting the 
hardware connections right. Therefore, you 
should refer to the hardware documentation for 
the communications device you are using.

In the following example, file number 1 is opened 
for communication with defaults: 300 bps, even 
parity, and 7 data bits with 1 stop b i t  However, 
parity checking will not actually take place since 
PE is not included.

10 OPEN “COM1:” AS #1

The following command opens file number 2 for 
communication a t  2400 bps. Defaults are: even 
parity, 7 data bits, and 1 stop bit. Again, PE  is not 
included.

10 OPEN “COM1:2400" AS #2

The following command opens file number 1 for 
asynchronous I/O  a t 1200 bps. No parity is 
produced or checked. 8-bit bytes will be sent and 
received. The stop bit defaults to 1.

10 OPEN "C O M 2.1200W  AS #1

The next example opens COM1 for 4800 bits per 
second, defaulting to even parity and 7 data  bits. 
RTS is to be transm itted, CTS will not be checked, 
and a “Device Timeout” error will arise if DSR is 
not detected within three seconds. Parity  check
ing is enabled. Commas are required for the 
missing (defaulting) param eters: parity, data, 
and stop. (If you omit one or more of the 
param eters RS, CS, DS, CD, LF, and PE, replac
ing commas are not required).

10 OPEN “COM1:4800„„CS,DS3000,PE” AS #1

E rror trapping a “Device Timeout” error is useful 
if you want to give the communications device

4-180 GW-BASIC



COMMANDS AND FUNCTIONS
OPEN "COM

more time to  respond (see ON ERROR). However, 
you probably do not want to wait indefinitely for 
the device. In this case, it  is not enough for the 
trap  routine to contain only a RESUME com
mand. Your program should include a counter to 
lim it the number of tries to be made. The trap  
routine can adjust this counter each time GW- 
BASIC passes through it. Example:

10 ATTEMPTED =5
20 ON ERROR GOTO 500
30 OPEN "COM1:,„„CS,DS,CD5000" AS #1

500 IF ERR < > 2 4  THEN GOTO 600 
510 ATTEMPT%= ATTEMPTS,-1 
520 IF  ATTEMPT% = 0  THEN GOTO 540 
530 RESUME
540 BEEP:PRINT“Check device and s ta rt pro

gram again"
550 STOP

600 REM other error handling routines

(3W-BASIC 4-181



C O M M A N D S  A N D  F U N C T IO N S  
O P T IO N  B A S E

OPTION

Syntax

Purpose

Remarks

BASE Statement

OPTION BASE n 

where n is 1 or 0

To declare the minimum value for array sub
scripts.

The default base is 0. If the statem ent 

OPTION BASE 1

is executed, the lowest value an array subscript 
may have is 1.

OPTION BASE must be encountered by GW- 
BASIC before an array is defined or used.

4-182 QW-BASIC



C O M M A N D S  A N D  F U N C T IO N S  
O U T

OUT Statement

Syntax OUT I,J

where I is the port number. I t  m ust be an integer 
expression in the range 0 to 65535.

J  is the data to be transm itted. I t  m ust be an 
integer expression in the range 0 to 255.

Purpose To send a byte to a machine output port.

Example 100 OUT 128,255

transm its the value 255 via port 128.

Note OUT has the same effect as the assembly lan
guage OUT instruction.

GW-BASIC 4-183



COMMANDS AND FUNCTIONS
PAINT

PAINT Statement

Syntax

Purpose

Remarks

PAINT (x,y[effect] [^outline] [.background]]

x,y
The coordinates of any point within the area to be 
filled in. The coordinates may be given in 
absolute or relative (using STEP) form.

effect
If a numeric expression, it can be either the 
background color (0), or one of the  colors 1 to  
3 from the  current palette (see COLOR). This 
applies to  low and high resolution color gra
phics, where the default is 3. In medium and 
high resolution black-and-white graphics, a 
numeric value o f 0 denotes b lack ;the  default 
value of 1 denotes white. Alternatively, ‘ef
fects’ may be a string expression, in which 
case ‘tiling’ is performed. This is explained 
later in this description of PAINT.

outline
The color belonging to the outline of the area to 
be filled. Possible colors are as given above under 
“effect”. If the “outline” color is incorrect, 
painting goes beyond the area in which x,y is 
enclosed. In medium and high resolution 
black-and-white graphics “outline” need not 
be stated as it defaults to  the same value as 
“effect” .

In low and high resolution color graphics, to  
fill an area w ith a specified color. In medium 
and high resolution black-and-white graphics, 
this means filling in an area enclosed by white 
with white.

The starting  point x,y must be inside and 
completely enclosed by the figure to be painted. If 
the specified point already has the “outline” 
color, no painting takes place, therefore move x,y 
ju st inside the figure after DRAWing it and 
before PAINTing it.

4-.184 GW-BASIC



COMMANDS AND FUNCTIONS
M IN T

When PAINTing a figure with lota of corners, 
GW-BASIC needs a greater than usual amount of 
stack space. You can give GW-BASIC more stack 
space, using the CLEAR command.

Tiling
Tiling is a facility provided by GW-BASIC to  
enable your program to  cover part or all o f 
the screen with a pattern . The mask determ in
ing this pattern is always 8 bits wide, thus 
covering 4 horizontal pixels in low and high 
resolution color graphics, o r 8 horizontal 
pixels in medium ana high resolution black- 
and-white graphics.

GW-BASIC recognizes th a t you wish the PAINT 
command to do tiling when “effect” is a string 
expression, “effect” then consists of up to 64 
2-character hexadecimal values, each of which 
represents a pattern for 4 or 8 horizontal pixels. 
Thus, you can define a pattern of up to 
4-horizontal by 64 vertical pixels in low and 
high resolution color graphics, or 8 by 64 
pixels in medium and high resolution black- 
and-white graphics. This pa ttern  is repeated 
uniformly over the  entire screen or within a 
figure, if tha t figure encloses the point x,y.

In m edium  and high resolution black-and- 
white graphics, the  following string value for 
“effect’’ produces x ’s over the  whole screen 
by means of an 8 by 8 pixel pattern.

10 SCREEN 2:CLS
20 PAINT (320,100),CHR$(&H81)+

CHR$(&H42)+ CHR$(&H24) +
CHRK&H18)+ CHR|(&H18)+
CHR$(&H24)+ CHR$(&H42)+ CHR$(&H81)

To understand how these hexadecimal values 
create an x, some knowledge of binary and 
hexadecimal values is useful. Perhaps the follow
ing diagram can help:

OW-BASIC 4 - m



do
w

n 
th

e 
sc

re
en

COMMANDS AND FUNCTIONS
PAINT

a c r o s s  t h e  s c r e e n  

1* 1  1 I I  1 1 i - l C H B I ( k H R l ) T i l l b j t i
1 1*1 1 1 1 1*1 1 C H B I ( A H 4 I ) T i l l b j t i
1 1 1*1 1 l a 1 1 1 

1 1 1
C H B I ( I H 8 4 ) T i l l b y te

1 1 1 ia |a | C H B I  ( S H U ) T i l l b y te
1 1 1 | a | a | 1 1 1 

1 1 1
C H B I ( S H I S ) T i l l b y te

1 1 | a |  | |a C H B I  ( S H U ) T i l l by 11
t ! ■ !  1 1 t 
| a |  | | | |

A

1*1 1 C B R ! ( B H 4 I ) T i l l b y t i
1 1*1 

A
C H B I ( S H I  1) T i l l by t i

T
bit  w ith  
h i g h e s t  v a lu e

bit w i th  
l o w e s t  v a lu e

The first CHR$ value following the x,y coordi
nates in line 20 is tile byte 0, the last is tile byte 7.
GW-BASIC does not necessarily s ta r t with tile 
byte 0 a t the specified x,y coordinates. Instead, 
the number of the tile byte painted a t x,y is equal 
to the remainder of dividing the y coordinate by 
the number of bytes in the pattern. In the 
example given here, this means th a t pattern 
painting starts  in vertical screen line 100 with the 
byte number 4 (remainder of dividing 100 by 8).

In low and high resolution color graphics, one 
tile byte represents only four screen points in 
the horizontal direction. This is because two 
bits are required for each point, so that GW- 
BASIC knows what color that point is. There
fore, the eight bits of each tile byte must be 
regarded as four pairs. The binary value of a 
pair can be 01 for color 1 of the currentpa- 
lette, 10 for color 2, or 11 for color 3. Inis 
gives the color for a single screen point. 
Therefore, you will most probably be using 
the following three hexadecimal values for the 
CHR functions which go to make up the 
“effect” string:

&H55 produces four consecutive hori
zontal points in color 1 (palette 
0: green, palette 1: cyan)

&HAA produces four consecutive hori
zontal points in color 2 (palette 
0: red, palette 2: magenta)

&HFP produces four consecutive hori-

4 -m GW-BASIC



COMMANDS AND FUNCTIONS
PAINT

Examples

zontal points in color 3 (palette 
0: brown, palette 1: white)

You may have occasion to tile paint over an area 
already painted th a t is the same color as two 
consecutive bytes in the pattern. Normally, 
PAINT term inates when it encounters two con
secutive bytes of the same color as the point being 
set, because the point is then surrounded by the 
same color, ‘'background" specifies a background 
tile color enabling you to skip up to two consecu
tive bytes in the tile string. By using “back
ground" your program can, for example, draw 
alternating blue and red lines on a red back
ground with a minimum of GW-BASIC com
mands.
If more than two consecutive lines in the pattern 
match “background”, GW-BASIC recognizes an 
"Illegal function call" error.

The first example draws a circle in red on black 
screen background. Since the last point refer
enced is then the center of the circle, PAINT is 
already positioned inside the circle and need not 
be moved: STEP (0,0). The circle is then filled in 
with green (color 1 of palette 0). The “outline” 
color m ust be Bet to 2, the color the circle was 
drawn with, otherwise painting will continue 
outside the circle.

10 SCREEN l:COLOR 0,0 
20 CLS
30 CIRCLE (160,100),30,2 
40 PAINT STEP (0,0),1,2
The next example uses a string expression for 
“effect" to paint cyan and magenta horizontal 
stripes in the box drawn in line 40. STEP (5,-5) 
moves the position for PAINT from the bottom 
left corner of the box to ju st inside it. Ab the box 
was drawn in white, “outline” m ust be set to 
white (3), otherwise painting would go beyond the 
confines of the box.

10 SCREEN l:COLOR 0.1

OW-BA8tC 4-187



COMMANDS AND FUNCTIONS
PAINT

20 CLS
30 DRAW “c3”
40 DRAW “u50 r50 d50 150”
50 PAINT STEP (5,-5),

CHR|(&H55) +  CHR$(&H55)+CHR$
(&HA A) +  CHR$(&HAA),3

The following example shows the use of “back
ground” to paint stripes of cyan and m agenta on a 
magenta background. Lines 30 and 40 draw a box 
and fill it with magenta. Line 60 paints the 
stripes using the skipping effect provided by 
"background”. Line 70 contains in a program
mer’s REMark the same command, but without 
this skipping. Try making 60 the REM (non- 
executed) line and let GW-BASIC execute line 70 
instead. You will see th a t painting stops as soon 
as the first magenta line is to be drawn. Note tha t 
the tiling pattern in this example was taken from 
a string variable, PATT$. The delay created by 
line 50 gives you time to observe what is happen
ing on the screen.

10 SCREEN lrCOLOR 0,1 
20 PATT$ =  CHR$(&H55)+CHR$(&H55) +  

CHR$(&HA A) +  CHR$(&H A A)
30 DRAW “u90 r90 d90 190”
40 PAINT STEP (5,-5),2,3
50 FOR DLY% = 1  TO 1000.NEXT DLY%
60 PAINT STEP (5,-5),PATT$,3,CHR$(&HAA) 
70 REM PAINT STEP (5,-5),PATT$,3

*->88 GW-BASIC



COM M ANDS AND FUNCTIONS 
PEEK

PEEK Function

Syntax PEEK(I)

Purpose To return the byte read from the indicated 
memory location (I).

Remarks The returned value is an integer in the range 0 to 
255. I m ust be in the range 0 to 65535. I is the 
offset from the current segment, which was 
defined by the last DEF SEG command.

PEEK is the complementary function of the 
POKE statement.

Example A%=PEEK(&H5A00)

assigns the value of the byte a t the hexadecimal 
address 5AOO to the integer variable A%.

You do not have to use a hexadecimal value for I. 
The decimal equivalent of this command is

A% =PEEK(23040)

Note To assign a value to a specific memory location, 
use the POKE command.

GW-BASIC 4-189



COMMANDS AND FUNCTIONS
PEN

PEN Statement

Syntax PEN ON 
PEN OFF 
PEN STOP

Purpose To enable and disable light pen reading.

Remarks The light pen is initially off. PEN ON enables 
data from the light pen to be read by means of the 
PEN function, and enables the ON PEN event 
trap.

PEN OFF disables light pen reading and the ON 
PEN event trap. Issue this command as soon as 
light pen reading is no longer required, as this 
results in better GW-BASIC execution times. 
PEN events are then not recorded by GW-BASIC.

PEN STOP disables the ON PEN event trap, but 
GW-BASIC records any light pen activity. Conse
quently, a trap  is activated as soon as PEN ON is 
executed, if there has been interim  light pen 
activity.

4-190 GW-BASIC



COMMANDS AND FUNCTIONS
PEN

PEN Function

Syntax

Remarks

PEN(n)
where n is a numeric expression in the range 0 to
9, selecting a particular light pen value to be read.

The significance of the values 0 to 9:
0 This is a flag indicating whether the pen 

switch has been set to down since the 
PEN function was last called upon to give 
information.

1 Returns the x coordinate of the position 
in which the pen was last activated. The 
number thus read can be in the range 0 to

319 in low resolution, 0 to 639 in 
medium and high resolution.

2  Returns the y coordinate of the posi
tion in which the light pen was last 
read (low and medium resolution 0 
to 199, high resolution 0 to 399).

3 Returns -1 if the pen switch is down, 0 if it 
is up.

, Returns the last known valid x co
ordinate (low resolution 0 to 319, 
medium and high resolution 0 to 
639).

5  Returns the last known valid y coor
dinate (low and medium resolution 0 
to 199, high resolution 0 to 399).

6 Returns a value in the range 1 to 24 for 
the line position where the light pen was 
last activated.

7 Returns the character column position 
where the light pen was last activated. 
This is a value in the range 1 to 80 or 1 to 
40, depending on the current WIDTH 
setting.

8 Returns the last known valid character 
row in the range 1 to 24.

GW-BASIC 4-191



COMMANDS AND FUNCTIONS
PEN

9 Returns the last known valid character 
column position in the range 1 to 80 or 1 
to 40, depending on the current WIDTH 
setting.

Example 10 PEN ON
20 PENLIN% =PEN(6)

enables light pen reading (and event trapping) 
and puts the number of the screen line in which 
the light pen was last activated into the variable 
PENLIN%.

Note Attempting to read the light pen while PEN OFF
is in force results in an “Illegal function call” 
error.

4-132 GW-BASIC



COMMANDS AND FUNCTIONS
PLAY

PLAY Statement

Syntax

Purpose

Remarks

GW-BASIC

Form at 1
PLAY <  string expression >  

or
Form at 2 
PLAY ON 
PLAY OFF 
PLAY STOP

Form at 1: To create a tune by defining its 
characteristics in the string expression. Form at 
2: To enable or disable the ON PLAY event 
trapping.

FORMAT 1

The expression may consist of any of the follow
ing commands, which you may specify in any 
order unless stated otherwise in the description.

A to G [# ,+ ,-]
Plays the specified note. #  or +  after a note 
specifies a  sharp; - after a note specifies a flat. In 
either case, the note must be an actual piano key.

L < n >  - Length
Sets the length (duration) of the note (or notes), 
where n may be from 1 to 64. As examples, LI 
specifies a whole note, L2 specifies a half 
note...and L64 specifies a sixty-fourth note. You 
may specify the length before a group of notes or 
after a single note to change the length of tha t 
note only. For example, A16 is the same definition 
as L16A.

MB - Music Background
Sets music to run in the background. A buffer of 
up to 32 notes plays in the background while 
GW-BASIC is executing other commands.

4-133



COMMANDS AND FUNCTIONS
PLAY

MF - Music Foreground
Sets music to run in the foreground. Each 
subsequent note or sound is not started until the 
previous note or sound is finished. MF is the 
initial default value.

MN - Music Normal
Plays each note 7/8ths. of the time specified in L 
(length). This is the default setting.

ML - Music Legato
Plays each note the full length (as specified in L). 

MS - Music Staccato
Plays each note 3/4ths. of the time specified in L 
(length).

N < n >  - Note
Plays the note specified by < n > .  < n >  may 
range from 0 to 84 thus covering the semi-tones of 
7 octaves, starting  two octaves below middle C. 
< n >  may equal 0 to specify a pause. Using this 
command provides an alternative way to specify 
the note other than by name (A to G) and octave.

0  < n >  - Octave
Sets the octave, where < n >  may range from 0 to 
6. Each of the seven octaves s ta r t with C. Middle 
C is a t the beginning of octave 3; the default 
octave is octave 4.

P < n >  - Pause
Sets the length of the pause, where < n >  may 
range from 1 to 64. The < n >  value is the same as 
the < n >  value in the L(ength) command; for 
example, P I causes a pause the length of a whole 
note, P2 causes a pause the length of a half note, 
and so on.

T < n >  - Tempo
Sets the number of quarter notes < n >  th a t can 
be played in a minute. < n >  may range from 32 to 
255; the default value is 120.

4-194 GW-BASIC



COMMANDS AND FUNCTIONS
PLAY

Examples

. - dot or period
Used after a  note, plays the note as a dotted note; 
tha t is, its length is multiplied by 3/2. More than 
one dot may be used after the note, in which case 
its length is adjusted accordingly. As examples, 
A., plays 9/4 as long as L specifies, A... plays 27/8 
as long, etc. Dots may also be used after a pause 
(P) to scale the pause length in the same way.

X variable;
Executes the specified string containing valid 
PLAY commands.

>  note
Raises the scale by one octave and plays the note 
A to G specified in the new octave. If the octave is 
already six, the note is played in octave 6.

<  note
Lowers the scale by one octave and plays the note 
A to G specified. If the octave is already 0, the 
note is played in octave 0.

In all commands, the < n >  value can be a 
constant or a numeric variable preceded by an 
equal sign, followed by a semicolon. The 
semicolon (;) is required when you use a variable 
in this way, and when you use the X command; 
otherwise, a semicolon is optional between 
commands, except it is not allowed after MF, MB, 
MN, ML, or MS. Blanks in a string are ignored.

You can also specify variables in the form 
VARPTR$ (< variab le> ), instead of = 
< variab le> ;. This method is useful in programs 
tha t will later be compiled.

10 MARY$ = “GFE-FGGG”
20 PLAY “MB T100 03 L8;XMARY$;P8 FFF4” 
30 PLAY “GB-B-4;XMARY$;GFFGFE-.”

The following example shows the use of the ON 
PLAY event trap  to produce a continuous back
ground tune while screen activity is in progress. 
The screen activity simply builds up a random

GW-BASIC 4-195



COMMANDS AND FUNCTIONS
PLAY

pattern of character blanks as you press the 
space bar (lines 40 to 60).

Line 30 determ ines th a t whenever the num ber 
of background music notes left to play goes 
from  1 to 0, GW-BASIC will branch to the 
subroutine s ta rtin g  a t line 160. The subroutine 
tells GW-BASIC to play the background tune 
(again). Line 40 enables the trap . Line 50 s ta rts  
the PLA Ying of the background tune. W ithout 
this command, the condition for music trapping  
given in line 30 would never be fulfilled, and 
there  would be no music.

10 SC R EEN  0:WIDTH 80 
20 KEY O FF
30 ON PLAY (1) GOSUB 160 
40 PLAY ON 
50 GOSUB 160 
60 CLS
70 IF  INKEY$=“ ” TH EN  GOTO 70 
80 COLOR INT(32*RND)
90 LI%=INT(25*RND+1)

100 PO%=INT(80*RND+1)
110 IF  LI%>25 TH EN  LI%=24 
120 IF  PO%>80 TH EN  PO%=80 
130 LOCATE LI%,PO%
140 PR IN T CHR$(219);
150 GOTO 70 
160 REM *********
170 PLAY “o2 mb tl4 0  f aa c aa”
180 RETURN

Remarks FORMAT 2

PLAY OFF has the effect th a t background music 
trapping by an ON PLAY statem ent no longer 
takes place. Furthermore, background music 
activity is not recorded.

PLAY STOP has the effect tha t background 
music trapping by an ON PLAY statem ent no 
longer takes place, but background music activity

4-196 GW-BASIC



COMMANDS AND FUNCTIONS
PLAY

Example

Note

is recorded by GW-BASIC. Therefore, an immedi
ate ON PLAY trap  takes place as soon as PLAY 
ON is executed, if there has been interim  back
ground music activity.

When the ON PLAY trap  occurs, GW-BASIC 
automatically executes a PLAY STOP, so tha t 
recursive traps cannot take place. The RETURN 
from the trap  handling subroutine automatically 
effects PLAY ON, unless the subroutine contains 
an explicit PLAY OFF command.

Event trapping does not take place when GW- 
BASIC is not executing a program.

When an error trap  takes place (see ON ERROR), 
all trapping is automatically disabled. This 
means th a t music events are ignored by GW- 
BASIC.

10 PLAY MB string 
20 ON PLAY(5) GOSUB 1000 
30 PLAY ON 
40 GOSUB 1000

1000 REM Execute the following during back
ground music

1190 RETURN

The trap  occurs when there are five notes 
remaining in the background music buffer.

A music event can occur only when PLAY 
< s tr in g >  is in the background music (MB), not 
the foreground music (MF) mode. A music event 
is not issued if the background music buffer is 
empty. This is the purpose of line 30 in the above 
example.

GW-BASIC 4-196 A



c



COM M ANDS AND FUNCTIONS 
PM AP

PMAP Function

Syntax

Purpose

Remarks

Example

PMAP (coord,transaction)

To translate world coordinates (set by 
WINDOW) into physical coordinates (see VIEW), 
and vice versa.

“translation” can be one of four values:

0 returns a physical x coordinate for a world x 
coordinate specified in “coord”.

1 returns a physical y coordinate for the world 
coordinate specified in “coord".

2 returns a world x coordinate for the physical x 
coordinate specified in “coord”.

3 returns a world y coordinate for the physical y 
coordinate specified in “coord”.

The physical coordinates of the usable screen 
are 0,0-199,319 in low resolution (medium 
resolution: 0,0-199,639, high resolution: 0,0- 
399,639), as long as you do not alter this with 
VIEW.
If you first use WINDOW to determine a 
Cartesian coordinate scheme in low resolu
tion graphics

10 SCREEN 1: WINDOW (-1,-1)-(1,1) 

and then execute

20 PRINT PMAP(-1,0),PMAP(1,0),PMAP(-1,1), 
PMAP(1,1)

30 PRINT PMAP(0,1),PMAP(0,0)

GW-BASIC displays 
0 319 199 0
100 160

Refer to the WINDOW description for full details 
of how th is command sets the coordinate scheme.

OW-BASIC 4-197



COMMANDS AND FUNCTIONS
POINT

POINT Function

Syntax

Purpose

Remarks

Examples

POINT(x,y)
POINT (coord)

To read the color or a coordinate of the currently 
addressed point on the screen.

x and y must specify an absolute screen posi
tion. The value returned in low and high re
solution color graphics is 0 for background, or 
a value 1,2,  or 3 for the corresponding color 
of the current palette. In medium and high re
solution black-and-white graphics, the possi
ble values are 0 and 1.

“coord” is a value 0 to 3;

0 returns the physical x coordinate

1 returns the physical y coordinate

2 if WINDOW is currently active, the coordinate 
returned is the world x coordinate. Otherwise, 
the physical x coordinate is returned.

3 is the same as 2, except th a t a y coordinate is 
returned.

The following program creates a random pattern 
of red dots in a  50 by 50 area in the top left corner 
of the screen (lines 20 to 40). Then, each of the 
2500 graphic points is read using the POINT 
function. If a point is red, it is changed to black 
and vice versa.

10 SCREEN l:COLOR 0,0:CLS 
20 FOR CHANCE% - 1  to 1000 
30 PSET (RND*50,RND*50),2 
40 NEXT CHANCE %
50 FOR X% =  0 TO 50 
60 FOR Y%  =  0 TO 50 
70 PSET(X%,Y%),ABS(POINT(X%,Y% )-2)
80 NEXT Y%:NEXTX%

4-198 GW-B ASIC



COMMANDS AND FUNCTIONS
POINT

The program given below asks you to enter an x 
and a y coordinate. This point is then illuminated 
red using the standard coordinate system of 
medium resolution graphics (origin top left, 320 
points in the horizontal direction, 200 in vertical 
direction). Line 40 then sets a Cartesian coordi
nate system with the origin as near as possible to 
the center of the screen. The center point is 
illuminated brown, and the x and y value you 
entered are used to plot a point in green in 
accordance with the new (Cartesian) coordinate 
system. The top of the screen then displays on the 
left the coordinates of the green point in terms of 
the physical screen, and on the right the coordi
nates of the same point in term s of the WINDOW 
definition.

10 INPUT “X and Y”;X%,Y%
20 SCREEN l:COLOR 0,0:CLS 
30 PSET (X%,Y%),2 
40 WINDOW (-160,-100)-(159,99)
50 PSET (0,0),3 
60 PSET (X%,Y%),1
70 PRINT POINT(0);POINT(1);“ ->W IN D O W  

—>  ”;POINT(2);POINT(3)
80 IF INKEY$=“’’ THEN 80 
90 SCREEN 0:WIDTH 80 
100 LIST

GW-BASIC 4-199



COM M ANDS AND FUNCTIONS 
POKE

POKE Statement

Syntax

Purpose

Remarks

Note

POKE I,J

where I and J  are integer expressions. 

To write a  byte into a memory location.

I and J  are integer expressions. The expression I 
represents the address of the memory location 
and J  is the data byte. I must be in the range 0 to 
65535. I is the offset from the current segment, 
which was set by the last DEF SEG statement.

The complementary function to POKE is PEEK. 
The argum ent to PEEK is an address from which 
a byte is to be read.

POKEing and PEEKing is a fast way of storing 
and reading data, or passing information to 
machine language routines. You can even write 
machine language routines using POKE (see 
Chapter 6).

POKE gives you immense power over your 
computer, which means th a t you should use it 
with care. I t  is advisable to confine POKEing to 
an area of memory which you have especially set 
aside for your own use.

4-200 GW-BASIC



COM M ANDS AND FUNCTIONS 
P O S

POS Function

Syntax POS(I)

Purpose To return the current horizontal (column) 
position of the cursor

Remarks The leftmost position is 1 .1 is a dummy argument 
so you can use a numeric constant in its place. To 
return the current line position of the cursor, use 
the CSRLIN function.

Example IP POS(X)>30 THEN BEEP

causes GW-BASIC to BEEP for as long as the 
cursor is to the right of the 30th screen column.

Note The screen can consist of 40 or 80 columns, 
depending on the setting of WIDTH.

GW-BASIC 4-201



PRESET and PSET Statements

COMMANDS AND FUNCTIONS
PRESET AND PSET

Syntax PRESET(x,y)[,color]
PSET(x,y)[, color]

where x and y specify a point on the screen, and 
“color” specifies the background color (0) or a 
color 1 to 3 from the current palette (medium 
resolution). In high resolution, the values 0 and 2 
denote black, 1 and 3 denote white.

Purpose To illuminate a point on the screen in a specified 
color and/or to determine the point which subse
quent graphic drawing is to regard as the last 
point referenced.

The default “color” for medium resolution graph
ics is 3, for high resolution graphics it is 1.

The only difference between PSET and PRESET 
is th a t if no “color” is specified for PRESET, the 
background color (0) is used, thus plotting an 
invisible point.

You may specify offset coordinates using STEP, 
th a t is, a point relative to the last point refer
enced.

Example The following example sends a dash, defined as 
six horizontal pixels, from left to right across the 
center of the screen. The PRESET command in 
line 70 means th a t a trail is not left.

10 SCREEN 2:CLS 
20 FOR X% = 0  TO 5 
30 PSET (X%,100)
40 NEXT X%
50 FOR X% = 6  TO 639 
60 PSET (X%,100)
70 PRESET (X%-6,100)
80 NEXT X%

See also the Exercises a t the end of Chapter 3,
Screen Display.

4-202 GW-BASIC



COMMANDS AND FUNCTIONS
PRESET AND PSET

Note

Here is another example th a t draws a line across 
the screen, then erases it.

SCREEN 2:CLS 
20 FOR X% = 0  TO 639 
30 PSET (X%,100)
40 NEXT X%
50 FOR X% =639 TO 0 STEP-1 
60 PRESET (X%,100)
70 NEXT

See also the Exercises a t the end of Chapter 3,
Screen Display.

GW-BASIC does not recognize an error if  you try 
to address points outside the range of coordinates 
available for plotting.

Specifying a greater value than 3 for “color” 
causes an “Illegal function call” error.

GW-BASIC 4-203



COMMANDS AND FUNCTIONS
PRINT

PRINT Statement

Syntax

Purpose

Remarks

PRINT [list of expressions]

To display data on the screen.

If “list of expressions” is omitted, a blank line is 
printed. If “list of expressions” is included, the 
values of the expressions are displayed on the 
screen. The expressions in the list may be 
numeric and/or string expressions. (Strings 
m ust be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined 
by the punctuation used to separate the items in 
the list. GW-BASIC divides the line into zones of 
14 spaces each. In the list of expressions, a comma 
causes the next value to be displayed at the 
beginning of the next zone. A semicolon causes 
the next value to be printed immediately after the 
last value. One or more spaces between expres
sions have the same effect as a semicolon.

If a comma or a semicolon term inates the list of 
expressions, the next PRINT statem ent begins 
displaying on the same line, spacing accordingly. 
If the list of expressions term inates without a 
comma or a semicolon, a carriage return is carried 
out a t the end of the line. If the line to be displayed 
is longer than the screen WIDTH, GW-BASIC 
goes to the next physical line and continues with 
the rest of the line.

Printed numbers are always followed by a space. 
Positive numbers are preceded by a space. Nega
tive numbers are preceded by a minus sign. 
Single precision numbers th a t can be represented 
with 6 or fewer digits in the unsealed (fixed point 
or integer) form at no less accurately than they 
can be represented in the scaled (floating point) 
form at are output using the unsealed format. For

4-204 GW-BASIC



COMMANDS AND FUNCTIONS
PRINT

Examples

example, IE-7 is output as .0000001 but IE-8 is 
output as IE-08. Double precision numbers that 
can be represented with 16 or fewer digits in the 
unsealed form at no less accurately than  they can 
be represented in the scaled form at are output 
using the unsealed form at. For example, ID-16 is 
output as .0000000000000001 and ID-16 is output 
as ID-17.

A question mark may be used in place of the word 
PRINT in a PRINT statem ent. GW-BASIC auto
matically replaces it  with the word PRINT a t the 
next LISTing.

10 X =5
20 PRINT X+5,X-5,X*(-5),Xa5 
30 END 
will yield

10 0 -25 3125

In the above example, the commas in the PRINT 
statem ent cause each value to be displayed at the 
beginning of the next prin t zone.

In the next example, the semicolon at the end of 
line 20 causes the PRINT items of lines 20 and 30 
to be displayed on the same line. Line 40 causes a 
blank line to be printed before the next prompt.

10 INPUT X
20 PRINT X “SQUARED IS” X a2 “AND”;
30 PRINT X “CUBED IS” X a3 
40 PRINT 
50 GOTO 10 
will yield 
? 9
9 SQUARED IS 81 AND 9 CUBED IS 729 

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

GW-BASIC 4-205



COMMANDS AND FUNCTIONS
PRINT

Note

In the following example, the semicolons in the 
PRINT statem ent cause each value to be dis
played immediately after the preceding value. 
(Don’t  forget, a number is always followed by a 
space.) In line 40, a question mark is used instead 
of the word PRINT.

10 FOR X =1 TO 5 
20 J = J + 5  
30 K = K + 10 
40 ?J;K;
50 NEXT X 
will yield

5 10 10 20 15 30 20 40 25 50

If the end of the last item of a PRINT statem ent is 
displayed in the rightmost screen position (col
umn 40 or 80 according to WIDTH) and if th a t 
PRINT statem ent is not concluded by a semicolon, 
a blank line will be apparent between the line just 
displayed and the next item displayed.

LPRINT displays data on a printer instead of on 
the screen.

4-206 GW-BASIC



PRINT USING Statement

COMMANDS AND FUNCTIONS
PRINT USING

Syntax PRINT USING string exp;list of expressions

Purpose To prin t strings or numbers using a specified 
format.

Rem arks/
Examples “list of expressions” is comprised of the string 

expressions or numeric expressions th a t are to be 
printed, separated by semicolons or commas.

“string exp” is a string constant or variable 
composed of special form atting characters. These 
form atting characters (see below) determine the 
field and the form at of the printed strings or 
numbers.

String Fields

When PRINT USING is used to prin t strings, one 
of three form atting characters may be used to 
form at the string field:

Mf»

Specifies th a t only the first character of each 
item in the given “list of expressions” is to be 
printed.

“ \ n  sp a ce s \”
Specifies th a t 2 +  n characters from each item of 
the “list of expressions” are to be printed. If the 
backslashes are typed with no spaces, two charac
ters will be printed; with one space, three 
characters will be printed, and so on. If the string 
is longer than the field, the extra characters are 
ignored. If the field is longer than the string, the 
string will be left-justified in the field and 
padded with spaces on the right.

Example:

10 A $ = “LOOK”:B$= “OUT”

GW-BASIC 4-307



COMMANDS AND FUNCTIONS
PRINT USING

30 PRINT USING “!”;A$;B$
40 PRINT USING “ \  \  A$;B$
50 PRINT USING “ \  \  A$;B$;“!!”
will yield 
LO
LOOKOUT 
LOOK O U T!!

Specifies a variable length string field. When the 
field is specified with the string is output 
without modification.

Example:

10 A$= “LOOK”:B$ =  “OUT”
20 PRINT USING “!”;A$;
30 PRINT USING 
will yield 
LOUT

Numeric Fields

When PRINT USING is used to prin t numbers, 
the following special characters may be used to 
form at the numeric field:

#  (number sign)
A number sign is used to represent each digit 
position. Digit positions are always filled. If the 
number to be printed has fewer digits than 
positions specified, the number will be right- 
justified (preceded by spaces) in the field.

. (decimal point)
A decimal point may be inserted a t any position 
in the field. If the form at string specifies th a t a 
digit is to precede the decimal point, the digit will 
always be printed (as 0, if necessary). Numbers 
are rounded as necessary.

PRINT USING “# # .# # ”;,78 
0.78

4-208 GW-BASIC



COMMANDS AND FUNCTIONS
PRINT USING

PRINT USING “# # # .# # ”;987.654 
987.65

PRINT USING “# # .# #  “;10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted a t 
the end of the form at string to separate the 
printed values on the line.

+  (plus sign)
A plus sign a t the beginning or end of the form at 
string will cause the sign of the number (plus or 
minus) to be printed before or after the number.

— (minus sign)
A minus sign a t the end of the form at field will 
cause negative numbers to be printed with a 
trailing minus sign.

PRINT USING “ + # # .# #  “;-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING “# # .# # -  “;-68.95,22.449,-7.01 
68.95- 22.45 7.01-

** (double asterisk)
A double asterisk a t the beginning of the form at 
string causes leading spaces in the numeric field 
to be filled with asterisks. The ** also specifies 
positions for two more digits.

PRINT USING “**#.# “;12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$ (double dollar sign)
A double dollar sign causes a dollar sign to be 
printed to the immediate left of the formatted 
number. The $$ specifies two more digit posi
tions, one of which is the dollar sign. The 
exponential form at cannot be used with $$. 
Negative numbers cannot be used unless the 
minus sign trails to the right.

GW-BASIC 4-209



COMMANDS AND FUNCTIONS
PRINT USING

PRINT USING “$ $ # # # .# # ”;456.78 
$456.78

**$
The **$ at the beginning of a form at string 
combines the effects of the above two symbols. 
Leading spaces will be asterisk-filled and a dollar 
sign will be printed before the number. **$ 
specifies three more digit positions, one of which 
is the dollar sign.

PRINT USING “**$## .##”;2.34 
***$2.34

, (comma)
A comma th a t is to the left of the decimal point in 
a form atting string causes a comma to be printed 
to the left of every th ird  digit to the left of the 
decimal point. A comma th a t is a t the end of the 
form at string is printed as part of the string. A 
comma specifies another digit position. The 
comma has no effect if used with exponential 
( A A A A ) format.

PRINT USING “# # # # , ,# # ”;1234.5 
1,234.50

PRINT USING “# # # # .# # ,“;1234.5 
1234.50,

A A A A

Four carets may be placed after the digit position 
characters to specify exponential format. The 
four carets allow space for E + x x  to be printed. 
Any decimal point position may be specified. The 
significant digits are left-justified, and the expo
nent is adjusted. Unless a leading +  or trailing +  
or - is specified, one digit position will be used to 
the left of the decimal point to prin t a space or a 
minus sign.

PRINT USING “# # .# #  A A A A ”;234.56 
2.35E+02

4-210 GW-BASIC



COMMANDS AND FUNCTIONS
PRINT USING

PRINT USING “.# # # #  A A A A -”;-888888 
.8889E+06-

PRINT USING “ + . # # A  A A A ”;123 
+  .12E+03

An underscore in the form at string causes the 
next character to be output as a literal character.

PRINT U SIN G “ !# # .# #  !”;12.34 
112.34!

An underscore a t the beginning of the form at 
string may be omitted.

PRINT USING “Your file has been assigned
# # “; 2

Your file has been assigned #2

The literal character itself may be an underscore 
if you place “ ” in the form at string.

% (percent sign)
If the number to be printed is larger than the 
specified numeric field, a percent sign is printed 
in front of the number. If rounding causes the 
number to exceed the field, a percent sign will be 
printed in front of the rounded number.

PRINT USING “# # .# # ”;111.22 
% 111.22

PRINT USING “,# # ”;.999 
%1.00

If the number of digits specified exceeds 24, an 
“Illegal function call” error will result.

GW-BASIC 4-211



COMMANDS AND FUNCTIONS
PRINT* AND PRINT*  USING

PRINT# and PRINT# USING Statements

Syntax PRINT#file number,[USING string exp;] list of 
expressions

Purpose To write data to a sequential file.

Rem arks/
Examples “file number” is the number used when the file 

was opened for output, “string exp” consists of 
form atting characters as described in PRINT 
USING. The expressions in “list of expressions” 
are the numeric and/or string expressions th a t 
will be written to the file.

PRINT# does not compress data. An image of the 
data is w ritten to the file, ju st as it would be 
displayed on the screen with PRINT. For this 
reason, care should be taken to delimit the data, 
so th a t later it will be input correctly from the 
file.

In the “list of expressions”, numeric expressions 
should be delimited by semicolons. For example:

PRINT#1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra 
blanks th a t are inserted between prin t fields will 
also be written to the file.)

String expressions must be separated by 
semicolons in the list. To form at the string 
expressions correctly in the file, use explicit 
delimiters in the list of expressions.

For example, let A $ = “CAMERA” and 
B $= “93604-1”. The command

PRINT#1,A$;B$

would write CAMERA93604-1 to the file. Because 
there are no delimiters, this could not be input as

4-212 G IN-BASIC



two separate strings. To correct the problem, 
insert explicit delimiters into the PRINT# 
command as follows:

PRINT#1,A$;“,”;B$

The image w ritten to the file is

CAMERA,93604-1

which can be read back from the file into two 
string variables.

If the strings themselves contain commas, 
semicolons, significant leading blanks, carriage 
returns, or linefeeds, write them to the file 
surrounded by explicit quotation marks, 
CHR$(34).

For example, let A $= “CAMERA, AUTOMATIC" 
and B $= ” 93604-1”. The command

PRINT#1,A$;B$

would write the following image to the file: 

CAMERA, AUTOMATIC 93604-1 

And the statem ent 

INPUT#1,A$,B$

would input “CAMERA” to A$ and 
“AUTOMATIC93604-1” to B$. To separate these 
strings properly in the file, write double quota
tion marks to the file image using CHR$(34). The 
command

PRINT#1,CHR$(34);A$;CHR$(34)£HR$(34);B$
;CHR$(34)

writes the following image to the file:

COMMANDS AND FUNCTIONS
PRINT# AND PRINT#  USING

GW-BASIC 4-213



COMMANDS AND FUNCTIONS
PRINT# AND PRINT#  USING

Note

“CAMERA, AUTOMATIC” 93604-1"

And the statem ent 

INPUT#1,A$,B$

would input “CAMERA, AUTOMATIC" to A$ 
and “ 93604-1” to B$.

PRINT# may also be used with the USING option 
to control the form at of the file. For example:

PRINT#1,USING“$ $ # # # .# # ,”;J;K;L

See also W RITE# which does not require explicit 
delimiters.

4-214 GW-BASIC



COMMANDS AND FUNCTIONS
PUT

PUT (Files) Statement

Syntax PUT [#]file number [.record number]

Purpose To write a record from a random buffer to a 
random access file.

Remarks “file number” is the number under which the file 
was opened. If “record number” is omitted, the 
record will assume the next available record 
number (after the last PUT). The largest possible 
record number is 32,767. The smallest record 
number is 1.

LSET, RSET, PRINT#, PRINT# USING, and 
W RITE# may be used to put characters in the 
random file buffer before executing a PUT 
statem ent. In the case of WRITE#, GW-BASIC 
pads the buffer with spaces up to the carriage 
return.

Any attem pt to read or write past the end of the 
buffer causes a “Field overflow” error.

You can also use PUT for a communications file. 
Then “record number” is not a record number, 
but the number of bytes for output. Take care 
th a t this number is not greater than th a t set by 
the LEN option in OPEN COM.

Note A single PUT command does not necessarily 
mean th a t the disk drive of your computer is 
activated immediately. This is because GW- 
BASIC and the operating system try  to collect a 
number of records before writing them to disk.

G W -B A S IC 4-215



PUT (Graphics) Statement

Syntax PUT (x,y),array[,image]

Purpose To set the colors of points on the screen using
data stored in an array.

Remarks “x,y” are the coordinates of the top left position
of the screen area to be affected.

“array” is the name of the numeric array 
containing the data. The GET (Graphics) 
description explains how graphic data is stored in 
such an array.

“image”, if included, offers a choice of effects.

PSET puts the graphic data on the screen just as 
it was when GET was used to store it  in the array.

PRESET has the same effect as PSET, except 
th a t a negative image is produced: a value 0 in the 
array sets the screen point to color 3 of the 
current palette, and vice versa; 1 sets the screen 
point to 2, and vice versa.

AND has the effect th a t only those points of the 
array, which are also already illuminated in a 
non-background color on the screen, are dis
played. The remaining parts of an image already 
present on the screen are cleared.

OR superimposes the array image on the existing 
screen image.

XOR is particularly useful for creating animated 
images. Where a point on the screen has the same 
color as the corresponding point in the array, an 
inverse image is produced. If an image is PUT 
twice using XOR at the same position, the former 
background is restored. You can use this charac
teristic to move an object around the screen 
without affecting the background:

1. Using XOR, PUT the image on the screen.

2. Calculate the next position for the image.

COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

4-Z16 GW-BASIC



3. PUT the image on the screen again using XOR 
a t the position used in 1.

COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

4. Go to step 1, using the new image location.

The default “image” is XOR.

The following tables show the results of PUTting 
a screen point for AND, OR, and XOR in low 
and high resolution color graphics. Color 0 is 
the background; colors 1, 2, and 3 are the 
colors of the current palette.

GW-BASIC 4-217



COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

Example The following program makes use of the XOR 
"image" of the PUT statem ent while moving a 
green ball around the screen under control of the 
numeric keypad of the keyboard (press Num Lock 
to activate the numerical function of these keys 
instead of their cursor movement function).

4-218 GW-BASIC



COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

Line 50 draws a circle in red, line 55 fills it  in 
green. As the diam eter of the circle is 20 screen 
points, an area 20 by 20 screen points is stored by 
the GET command (line 70), after the top left 
hand corner of th a t area has been located (line 
60). Line 150 displays the green ball again on the 
screen, line 160 calls a subroutine which assigns 
offset values to X% and Y% according to the 
numeric keys pressed (“7” yields minus in the x 
direction and minus in the y direction, “9” yields 
plus in the x direction and minus in the y 
direction, etc.). Line 170 PUTs the ball image at 
the old position using XOR, thus removing the 
image and immediately proceeds to display the 
ball a t the next position, using the offset values 
contained in X% and Y%.

The error trapping facility traps the “Illegal 
function call” error, as this is issued when an 
attem pt is made to PUT an image outside the 
screen.

5 ON ERROR GOTO 1100 
10 DIM BALL%(64)
20 P I=3.141593 
30 SCREEN 1:CLS 
40 COLOR 0,0 
50 CIRCLE (160,100),10,2 
55 PAINT STEP ¢0,0),1,2 
60 PRESET STEP (-10,-10)
70 GET

(POINT(0),POINT(1))-STEP(20,20),BALL% 
100 CLS
150 PUT STEP(X% ,Y% ),BALL % ,XOR
160 GOSUB 1000
170 PUT STEP(0,0),BALL% ,XOR
180 GOTO 150
500 REM
1000 REM ******* Look at keyboard

GW-BASIC 4-219



COMMANDS AND FUNCTIONS
PUT (GRAPHICS)

Note

1001 IF INKEY$=“” THEN GOTO 1001 
1005 X% =0;Y% = 0  
1010 FOR LOOK% =1 TO 5 
1020 K$=INKEY$
1030 X% =X% -4*(K$=“9" OR K $ = “6” OR 

K $ = “3”)+4*(K $= “7” OR K $ = “4” OR 
K $ = “l ”)

1040 Y% =4*(K $= “3” OR K $= “2” OR
K $ = ‘T ”)+4*(K $= “9” OR K $ = “8” OR 
K $ = “7”)

1050 NEXT LOOK%
1060 RETURN
1100 REM ******* Trap ball going off screen 
1110 IF ERR= 5  THEN BEEP:RESUME 50 
1120 ON ERROR GOTO 0

Flicker is kept to a minimum by displaying the 
new image immediately after removing the old 
one (line 180).

If it is not im portant to preserve background, you 
can PUT a single array containing both the new 
image and enough background points to cover up 
the old image, using PSET as “image”. This saves 
one of the two PUT commands needed if using 
XOR “image”, but it means th a t the array must 
be correspondingly greater.

4 -220 GW-BASIC



COMMANDS AND FUNCTIONS
RANDOMIZE

RANDOMIZE Statement

Syntax RANDOMIZE [numeric expression] 
RANDOMIZE TIMER

Purpose To reseed the random number generator.

Remarks If “numeric expression” is omitted, GW-BASIC 
suspends program execution and asks for a value 
by printing

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded, 
the RND function returns the same sequence of 
random numbers each time the program is run. 
To change the sequence of random numbers every 
time the program is run, place a RANDOMIZE 
statem ent a t the beginning of the program and 
change the “numeric expression”with each run.

Example 10 RANDOMIZE 
20 FOR 1 =  1 TO 5 
30 PRINT RND;
40 NEXT I 
will yield
Random Number Seed (-32768 to 32767)?

Enter 3 in response. You will see five “random” 
numbers displayed. Now run the program again 
and enter another number in the permitted 
range. GW-BASIC displays a different set of 
numbers.

If you run the program again entering 3, you will 
find th a t the numbers displayed are the same as 
those displayed the first time you ran the 
program. The numbers would appear not to be 
truly random (see RND).

Note It is often inconvenient if operator action is 
required to reseed the random number generator.

G W -B A S IC 4-221



COMMANDS AND FUNCTIONS
RANDOMIZE

For th is reason, GW-BASIC allows the TIME$ 
function to supply the “numeric expression”. In 
this case, it makes most sense to read the seconds 
counter:

RANDOMIZE VAL (RIGHT$(TIME$,2))

GW-BASIC 2.02 (see “System Compatibility” in 
th is chapter) allows you to use the TIMER 
function. This saves the VAL transform ation and 
offers a wider range of values with which to 
reseed the random number generator. Care 
should be taken to ensure th a t the value does not 
exceed 32767 as follows:

RANDOMIZE TIMER MOD 32767

4-222 GW-BASIC



COMMANDS AND FUNCTIONS
READ

Syntax

Purpose

Remarks

READ Statement

Examples

READ list of variables

To read items from a DATA list and assign them 
to variables.

A READ statem ent m ust always be used in 
conjunction with DATA. READ assigns DATA 
items to  variables on a one-to-one basis. An item 
READ from a DATA list m ust be of the same 
type as the variable to which it is being assigned. 
If they do not agree, a “Syntax erro r” will result.

A single READ statem ent may access one or more 
DATA items (they will be accessed in order), or 
several READ statem ents may access the same 
DATA items. If the number of variables in "list of 
variables” exceeds the number of DATA items, an 
“Out of data” error message is displayed. If the 
number of variables specified is fewer than the 
number of DATA items, subsequent READ state
ments will begin reading data a t the firs t unread 
item. If there are no subsequent READ state
ments, the extra data is ignored.

To reread DATA from the s ta rt, use the 
RESTORE command.

80 FOR 1 =  1 TO 10 
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24 
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values from 
the DATA lists into the (implicitly defined) array

4-223aW -B A SIC



COMMANDS AND FUNCTIONS
READ

A. After execution, the value of A(l) will be 3.08, 
and so on.

10 PRINT “CITY”, “STATE”, “ZIP”
20 READ C$,S$,Z$
30 DATA “DENVER,”, COLORADO, 80211 
40 PRINT C$,S$,Z$ 
will yield
CITY STATE ZIP 
DENVER, COLORADO 80211

This program reads string and numeric data 
from the DATA items in line 30. Note th a t DATA 
items which include commas, semicolons or 
significant leading or trailing blanks m ust be 
enclosed in double quotation marks.

4-224 GW-BASIC



COMMANDS AND FUNCTIONS
REM

Syntax

Purpose

Remarks

REM Statement

Example

Note

REM^remark^)

To allow explanatory rem arks to be inserted in a 
program.

REM lines are not executed but are output 
exactly as entered when the program is listed.

REM lines may be branched into from a GOTO or 
GOSUB statement. Execution will continue with 
the first executable command after the REM line.

Remarks may also be added to the end of a line by 
preceding the rem ark with a single quotation 
mark instead of REM.

120 REM CALCULATE AVERAGE VELOCITY 
130 FOR 1 =  1 TO 20 
140 SUM =  SUM +  V(I)

or

120 FOR 1=1 TO 20 ‘CALCULATE AVERAGE
VELOCITY
130 SUM =  SUM +  V(I)
140 NEXT I

In a program line containing more than one 
command, REM, if present, must be the last 
command in th a t line.

GW-BASIC 4-225



COMMANDS AND FUNCTIONS
REM

REM lines or appended rem arks preceded by a 
quotation mark can be used to divide a program 
listing into sections and explain how the program 
works. However, it is not a good idea to 
oversaturate your program with rem arks as they 
require memory space and increase execution 
time.

4-226 GW-BASIC



COM M ANDS AND FUNCTIONS 
RENUM

RENUM Command

Syntax RENUM [new number] [,[old number] 
[,increment]]

Purpose To renumber program lines.

Remarks “new number” is the first line number to be used 
in the new sequence. The default is 10. “old 
number” is the line in the current program where 
renumbering is to begin. The default is the first 
line of the program, “increment” is the increment 
to be used in the new sequence. The default is 10.

RENUM also changes all line number references 
following GOTO, GOSUB, THEN, ELSE, 
ON...GOTO, ON...GOSUB, RESTORE, and 
RESUME commands to reflect the new line 
numbers.

Note RENUM cannot be used to change the order of 
program lines (for example, RENUM 15,30 when 
the program has three lines numbered 10,20 and 
30) or to create line numbers greater than 65529. 
An “Illegal function call” error will result.

Examples RENUM

Renumbers the entire program. The first new line 
number will be 10. Lines will be numbered in 
increments of 10.

RENUM 300,,50

Renumbers the entire program. The first new line 
number will be 300. Lines will be numbered in 
increments of 50.

RENUM 1000,900,20

Renumbers the lines from 900 up so they s ta rt 
with line number 1000 and are numbered in 
increments of 20.

GW-BASIC 4-227



RESET Command

COMMANDS AND FUNCTIONS
RESET

Syntax RESET

Purpose To close all files on all drives.

Remarks RESET closes all open files on all drives and 
writes the directory track to every disk for which 
there were open files.

All files m ust be closed before a disk is removed 
from its drive.

Note To close individual files use CLOSE.

4-228 GW-BASIC



COMMANDS AND FUNCTIONS
RESTORE

RESTORE Statement

Syntax RESTORE [ line number]

Purpose To allow DATA statem ents to be reread from a 
specified line.

Remarks After a RESTORE statem ent is executed, the next 
READ statem ent accesses the first item in the 
first DATA list in the program. If “line number” 
is specified, the next READ statem ent accesses 
the first item in the specified DATA line.

Example 10 READ A,B,C 
20 RESTORE 
30 READ D,E,F 
40 DATA 57, 68, 79 
50 PRINT A;B;C;D;E;F 
will yield 
57 68 79 57 68 79

GW-BASIC 4-229



COMMANDS AND FUNCTIONS
RESUME

RESUME Statement

Syntaxes RESUME 
RESUME 0 
RESUME NEXT 
RESUME line number

Purpose To continue program execution after an error 
recovery procedure has been performed.

Remarks Any one of the four syntaxes shown above may be 
used, depending upon where execution is to 
resume:

RESUME or RESUME 0
Execution resumes at the command that caused
the error.

RESUME NEXT
Execution resumes at the command immediately 
following the one tha t caused the error.

RESUME “line number”
Execution resumes a t “line number”.

A RESUME th a t is not in an error handling 
routine causes a “RESUME without error” 
message to be printed.

Example 10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN 
PRINT “TRY AGAIN”:RESUME 80

Note RENUMBER does not attem pt to change the 
number 0 in a RESUME 0 statement. To let you 
know this, GW-BASIC issues an “Undefined line 
number” error message.

4-230 G W -BASIC



COM M ANDS AND FUNCTIONS 
RETURN

RETURN Statement

Syntax RETURN [line number]

“line number” specifies the number of the 
program line to which GW-BASIC returns after 
executing a subroutine.

Purpose Returns program from a subroutine, entered by 
means of GOSUB or ON GOSUB.

Remarks The use of non-local RETURNS, th a t is, RETURN 
with a “line number” requires particular care. 
You m ust make sure th a t such a RETURN 
statem ent does not bypass the RETURN for 
another subroutine which is still active.

QW -BASIC 4-231



COM M ANDS AND FUNCTIONS  
RIGHTS

RIGHTS Function

Syntax RIGHT$(string expression,number)

Purpose To return  the rightm ost “number” of characters 
of the “string expression”.

Remarks If “number” is greater than or equal to the 
number of characters in the “string expression”, 
the result is the entire string. If “number” is 0, 
the null string (length zero) is returned.

Example 10 A $ = “DISK BASIC” 
20 PRINT RIGHT$(A$,5) 
will yield 
BASIC

Also see the LEFT$ and MID$ functions.

4-232 GW-BASIC



COMMANDS AND FUNCTIONS
RMDIR

RMDIR Command

Syntax RMDIR“path”

Purpose To remove a directory from the specified drive.

Remarks “path” is a string expression not exceeding 128
characters identifying a sub-directory which is to 
be removed. For details about paths and 
directories you should refer to your NCR-DOS 
manual.

Example Given the following hierarchical structure, and
assuming you are presently in the root directory

ROOT

JOHN MARY STEVE SUE

REPORT
o th e r
file s

REPORT
o th e r
files

REPORT REPORT
o th e r
files

the command

RMDIR “ACCOUNTING/SUE”

removes the directory SUE following the speci
fied path, on the condition th a t there are no files 
and no sub-directories under SUE. In this exam
ple, it would be necessary to KILL the file 
REPORT before issuing the RMDIR command.

Note GW-BASIC does not allow you to remove the
parent directory of the directory you are cur
rently working in. If you attem pt this, a “P a th /

GW-BASIC 4-233



COMMANDS AND FUNCTIONS
RMDIR

file access” error occurs. The same error occurs if 
subdirectories of the directory to be removed still 
exist, or if files still exist in the directory.

A “File not Found” error also occurs if you try  to 
remove a directory using KILL.

4-234 GW-BASIC



COM M ANDS AND  FU NCVO NS  
FIND

RND Function

Syntax

Purpose

Remarks

Examples

RND[(X)]

To return  a single precision random number 
between 0 and 1.
The RND function draws upon a pseudo-random 
sequence of numbers stored internally by 
GW-BASIC. This sequence is so constructed tha t 
it, to all intents and purposes, presents a 
sequence of random numbers.

The same sequence of random numbers is 
generated each time the program is run unless 
the random number generator is reseeded (see 
RANDOMIZE).

If X is greater than 0 or X is omitted, the next 
random number in the sequence is generated. If X 
is 0, the last number generated is repeated.

A negative value of X reseeds the random number 
generator, but is unaffected by RANDOMIZE.

RND never quite attains the value 1. Therefore, 
to return  a random integer value in the range 0 to 
10 inclusive, for example, issue the command

PRINT INT(RND*11))

(This is not strictly necessary where the com
mand or function calling upon RND rounds to the 
nearest integer.)

The following program gives you an idea of the 
pseudo-random nature of the “random” number 
sequence. (You will need < C trl-B reak>  to 
breakout.)

10 SCREEN 2:CLS
20 PSET (RND*639,RND*199)
30 GOTO 20

Now the same program again, this time with a 
greater element of chance:

GW-BASIC 4-235



COM M ANDS AND FUNCTIONS 
RND

10 SCREEN 2: CLS 
20 RANDOMIZE TIMER MOD 32767 
30 PSET (RND*639,RND*199)
40 GOTO 20

The following program repeatedly throws two 
dice, adds the two numbers together and builds 
on a column 2 to 12 according to the result:

10 DEFINT A-Z 
20 DIM STAT(12)
30 FOOT=180
40 SCREEN LCOLOR 0,0:CLS 
50 PRESET (93,14)
60 DRAW “c2 r28 d28 128 u28 br56”
70 DRAW “r28 d28 128 u28”
80 LOCATE 25,2:PRINT “2 3 4 5 6 7 8 9 10 11 12”
90 FOR D ICE=1 TO 1000
100 RANDOMIZE TIMER MOD 32767
110 D1 =  INT(RND*6) +  1:D2= INT(RND*6)+1
120 LOCATE 3,13:PRINT D1
130 LOCATE 3,20:PRINT D2
140 THROW =D1+D2
150 LOCATE 3,30
160 PRINT“—> ”;THROW
170 STAT(THROW) =  STAT(THROW) + 1
180 PSET

(24*THROW-36,FOOT-STAT(THROW)),l 
190 FOR D = 1 TO 800:NEXT D 
200 NEXT DICE%

4-236 GW-BASIC



COM M ANDS AND FUNCTIONS 
RUN

RUN Command

Syntax 1 RUN [line number]

Purpose To execute the program currently in memory.

Remarks If “line number” is specified, execution begins 
with th a t line. Otherwise, execution begins a t the 
lowest line number.

Syntax 2 RUN “filespec”[,R]

Purpose To load a file from disk into memory and run 
it.

Remarks The “filespec” m ust include the filename used 
when the file was saved. (GW-BASIC appends the 
filename with the extension .BAS, if you do not 
supply one.)

RUN closes all open files and deletes the current 
contents of memory before loading the 
designated program. However, with the “R” 
option, all data files remain open.

Note RUN, even with a line number, is not suitable for 
continuing a program after a break, as it  has the 
same effects on memory contents as CLEAR; 
notably, closing all files, erasing definitions, and 
clearing out variables.

G W -B A S IC 4-237



COM M ANDS AND  FUNCTIONS  
SA V E

SAVE Command

Syntax

Purpose

Remarks

Examples

SAVE “filespec” > '

To save a program file on disk.

“filespec” is a string expression th a t conforms to 
the NCR-DOS conventions for naming files. 
GW-BASIC appends a default filename extension 
.BAS if one is not supplied in the SAVE com
mand. If a filename already exists, the file is 
written over.

The A option saves the file in ASCII format. If 
the A option is not specified, GW-BASIC saves 
the file in a compressed binary format. ASCII 
form at takes more space on the disk, but some 
disk access requires that flies be in ASCII format. 
For instance, the MERGE command requires an 
ASCII form at file and ASCII files can be pro
cessed by text editors.

The P option protects the file by saving it in an 
encoded binary format. When a protected file is 
later RUN (or LOADed), any attem pt to list or 
edit it will fail (“Illegal function call”). This 
characteristic cannot be reversed, so always keep 
an unprotected version of the program, so tha t 
you can list or edit it a t a later date.

SAVE “B:COM2”,A

Saves the program COM2 in ASCII form at on
the disk in drive B.

SAVE “ENIGMA”,P

Saves the program ENIGMA as a protected file 
which cannot be altered.

4-238 GW-BASIC



COMMANDS AND FUNCTIONS
SCREEN

Syntax SCREEN [mode] [.active] [.outpage] [.seepage]

Purpose To set screen attributes for a color screen.
Remarks “m ode” is an integer expression 0, 1, 2, 3, or

4 which sets the display mode: character 
mode, low resolution graphics, medium reso
lution graphics, high resolution black-and- 
white graphics, and high resolution color gra
phics, respectively.
“active” is an integer expression 0 or 1. This 
attribute is connected with enabling and disa
bling color in earlier versions of BASIC. It has no 
effect on the screen display of your NCR PC when 
using the version of GW-BASIC supplied.

“outpage” refers to the number of the page in 
character mode to which GW-BASIC is to write 
screen output. Admissible values are 0 to 7, if you 
are using a line width of 40 characters, or 0 to 3, if 
the line width is 80 characters.

“seepage” refers to the number of the page in 
character mode which GW-BASIC displays. If 
you do not specify a value, “outpage” and 
“seepage” are the same.

Upon execution of a valid SCREEN command, 
GW-BASIC sets the foreground color to white 
and the background color to black. (You can 
subsequently alter colors by means of the COLOR 
command.)

SCREEN Statement

If the “mode" differs from the previously active 
mode, the screen is cleared. If you require a clear 
screen when setting “mode", it is a good idea to 
include a subsequent CLS command, as this 
works regardless of the previous mode.

Specifying different page numbers for “seepage” 
and “outpage” enables your program to write to 
“outpage” without affecting the current screen 
display. A subsequent SCREEN command can 
then give “seepage” the same number as

GW-BASIC 4-239



COMMANDS AND FUNCTIONS
SCREEN

Examples

Note

“outpage", and the screen page built up in the 
background appears instantaneously. There is 
only one cursor for all pages. Therefore, use POS 
and CSRLIN if you later wish to restore the 
cursor a t a specific position on a page, before 
making another page the “seepage”. Use 
LOCATE to restore the cursor to the position 
thus stored.

You may omit any parameter, using a comma in 
its place. The old value for th a t param eter is then 
retained, except “seepage” which defaults to 
“outpage”.

10 SCREEN 0,1,0,0

selects character mode and sets "outpage” and 
“seepage” to 0.

20 SCREEN „1,0

leaves the display “mode” as it was before, and 
sets "outpage” and "seepage” to 1 and 0, respec
tively.

10 SCREEN 1:CLS

switches to or confirms low resolution 
graphics, and clears the screen at least once.

10 SCREEN 3

switches to  or confirms high resolution black- 
and-white graphics.

See WIDTH regarding the size of characters 
displayed in the graphics modes.

If your program is intended to run on both a 
monochrome and a color display, specify

SCREEN 0

4-240 GW-BASIC



COMMANDS AND FUNCTIONS
SCREEN

SCREEN Function

Syntax

Purpose

Remarks

Examples

SCREEN(row,col[,attr])

To return  the ASCII code (0 to 255) of the 
character currently displayed a t a specified 
position on the screen.

“row” is a numeric expression in the range 1 to 25 
specifying the line number.

“col” is a numeric expression in the range 1 to 40 
or 1 to 80 (according to WIDTH) specifying the 
column number.

“a tt r ” is permitted in character mode only. If 
“a t t r ” is a non-zero value, then a number repre
senting the display characteristics of the speci
fied character position is returned. This number 
is in the range 0 to 255:

•  the remainder from dividing this number by 
16 (number MOD 16) gives the code of the 
character color (see COLOR).

•  the background color is calculated as follows

((number-writing )/16) MOD 128

where writing is the color code 0...15 of the 
character.

•  if the number is greater than 127, then the 
character is blinking.

The SCREEN function in graphics mode returns 
the ASCII code, if an ASCII character is dis
played a t the specified position. If the position 
contains part of a graphic design (points, lines, 
etc.), the value returned is zero.

200 X% =  SCREEN (10,1)

assigns to X% the ASCII code of the character in 
line 10, column 1.

GW-BASIC 4-241



COMMANDS AND FUNCTIONS
SCREEN

assigns to C% a number in the range 0 to 255 
representing the display characteristics of the 
same character position.

210 C% = SCREEN (10,1,1)

4-242 GW-BASIC



COM M ANDS AND  FUNCTIONS 
SG N

SGN Function

Syntax

Purpose

Example

SGN(X)

To indicate the value of X, relative to zero:

If X >0, SGN(X) returns 1.
If X=0, SGN(X) returns 0.
If X <0, SGN(X) returns -1.

ON SGN(X)+2 GOTO 100,200,300

Branches to 100 if X is negative, 200 if X is 0, and 
300 if X if positive.

GW-BASIC 4-243



SHELL Command

COMMANDS AND FUNCTIONS
SHELL

Syntax SHELL [command string]

Purpose To load and execute an NCR-DOS .EXE, .COM, or 
.BAT file and afterwards return to the 
GW-BASIC program command following the 
SHELL command.

Remarks SHELL without a “command string” gives you 
the NCR-DOS system prompt, for example A > . 
You can then call upon NCR-DOS .EXE, .COM, or 
.BAT files. To return to GW-BASIC, enter the 
NCR-DOS EXIT command.

SHELL may include a command string in accord
ance with the NCR-DOS conventions for issuing 
commands. If you are executing your own com
mand file, you should make sure th a t it does not 
end with the condition “Terminate and stay 
resident”, otherwise GW-BASIC will issue the 
error message “Can’t  continue after SHELL”. If 
there is not enough room in memory to retain 
GW-BASIC and execute the SHELLed program, 
an “Out of memory” error will occur.

If the SHELLed program is to process a file, 
make sure th a t this file is not in an open state at 
the time the SHELL command is executed. 
GW-BASIC can reopen the file as soon as the 
SHELLed program is terminated.

Example 10 OPEN “SORTIN.DAT” FOR OUTPUT AS #1

1000 CLOSE #1
1010 SHELL “SORT <  SORTIN.DAT 

>  SORTOUT.DAT”
1020 OPEN “SORTOUT.DAT” FOR INPUT AS

#1

4-244 GW -BASIC



COMMANDS AND FUNCTIONS
SHELL

Note

This example uses the NCR-DOS SORT command 
to sort data entered in the course of the GW- 
BASIC program. Note th a t the file m ust be closed 
(line 1000) before SHELLing the NCR-DOS com
mand.

Programmers writing their own NCR-DOS 
.COM or .EXE files which are to be capable of 

being SHELLed by GW-BASIC should take care 
th a t the in terrupt vector is saved immediately 
upon entry to the SHELLed program, and tha t it 
is restored ju st before returning to GW-BASIC.

GW-BASIC 4-245



COM M ANDS AND FUNCTIONS  
SIN

SIN Function

Syntax SIN(X)

Purpose To return  the sine of X, where X is in radians.

Remarks The sine is evaluated to single precision, unless 
you specify the /D  option when loading 
GW-BASIC.

Example PRINT SIN(1.5) 
will yield 

.9974951

Note To convert radians to degrees:

DEGREES =  RA DIAN Sn80/PI 

where PI (single precision) is 3.141593. 

To convert degrees to radians:

RADIANS =  D E G R E E SW 180

4-246 GW-BASIC



SOUND Statement

COMMANDS AND FUNCTIONS
SOUND

Syntax

Purpose

SOUND frequency .duration

“frequency”
Specifies the frequency in Hertz (cycles per 
second). Specify the desired number from 37 to 
32767 (see Notes and Frequencies table below).

“duration”
Specifies desired length of the sound measured in 
clock ticks. (1 clock tick =  55 ms.) Specify the 
number of clock ticks in the range 0 to 65535 (see 
Tempo table below).

Generates sound through the speaker.

The following table correlates notes with their 
frequencies. The tuning note A has a frequency of 
440.

Note Freq. Note Freq.

Pause 32767 F# 740
A 220 G 784
A# 233 G # 830
Q 247 A 880
C 262 A # 930
c# 277.2 B 987.8
D 293.6 C 1046.4
D# 311.6 C# 1106
E 329.6 D 1174.6
F 349.2 D# 1244
F# 370 E 1318.6
G 392 F 1397
G# 416 F# 1480
A 440 G 1568
A# 466 G# 1660
B 493.2 A 1760
C 523.2 A # 1864
C# 554.8 B 1975.6
D 587.4 C 2093
D# 622 C# 2217.4
E 659.2 D 2349.4
F 598.4

* Middle C

GW-BASIC 4-247



Remarks SOUND produces a sound th a t continues until
another SOUND is reached. If a SOUND state
ment with a “duration” of 0 is encountered, any 
currently running sound is turned off. (If no 
SOUND statem ent is running, SOUND “fre
quently", 0 has no effect.)

You can cause sounds to be buffered so program 
execution does not stop when a new SOUND 
is encountered. (See the MB command under 
PLAY.)

To create periods of silence, use SOUND 32767, 
“duration”.

COMMANDS AND FUNCTIONS
SOUND

The “duration” for one beat is calculated from 
beats per minute. Divide the beats per minute 
into 1092 (the number of clock ticks in a minute). 
The following table shows typical tempos in 
term s of clock ticks (duration).

Tempo Beats/
Minute

Tick»/
Beat

(Duration)

very slow Larghissimo
Largo 40-60 27.3-18.2
Larghetto
Grave

60-66 18.2-16.55

Lento
Adagio 66-76 16.55-14.37

slow Adagietto
Andante 76-108 14.37-10.11

medium Andantino 108-120 10.11-9.1

.. Moderato

fast Allegretto
Allegro
Vivace

120-168 9.1-6.5

Veloce
Presto 168-208 6,5-5.25

very fast Prestissimo

Example The following program creates a glissando up and
down.

10 FOR 1=220 TO 2200 STEP 20

4-248 GW-BASIC



COMMANDS AND FUNCTIONS
SOUND

20 SOUND I, 0.5 
30 NEXT
40 FOR 1=2200 TO 220 STEP -20 
50 SOUND I, 0.5 
60 NEXT

GW-BASIC 4-249



COMMANDS AND FUNCTIONS
SPACES

SPACES Function

Syntax SPACE$(X)

Purpose To return  a string consisting of X spaces.

Remarks The expression X is rounded, if necessary, to an 
integer which must be in the range 0 to 255.

Example 10 FOR 1 =  1 TO 5 
20 X$=SPACE$(I) 
30 PRINT X$;I 
40 NEXT I 
will yield 

1
2

3
4

5

This program prints one space a t the beginning of 
the firs t line, two spaces a t the beginning of the 
second line, and so on. The additional space in 
each case arises through the fact the GW-BASIC 
prefixes each number with a space of its own in 
the PRINT command.

See also the SPC function.

4-250 Q W -B A S IC



COM M ANDS AND FUNCTIONS 
SP C

SPC Function

Syntax SPC(I)

Purpose To skip spaces in a PRINT or LPRINT command. 
I is the number of spaces to be skipped.

Remarks SPC may only be used with PRINT and LPRINT. 
I must be in range 0 to 255. The spaces are 
displayed or printed as if the equivalent string of 
spaces were concluded by a semicolon, tha t is, 
with no automatic carriage return.

Example PRINT “OVER” SPC(15) “THERE” 
will yield
OVER THERE

Also see SPACE$.

GW-BASIC 4-251



COM M ANDS AND FUNCTIONS 
SO R

SQR Function

Syntax SQR(X)

Purpose To return  the square root of X.

Remarks X m ust not be a negative number.

Example 10 FOR X% =10 TO 25 STEP 5 
20 PRINT X%, SQR(X%)
30 NEXT X% 
will yield

10 3.162278 
15 3.872984 
20 4.472136 
25 5

4-252 GW-BASIC



COM M ANDS AND  FUNCTIONS 
STICK

Syntax

Purpose

Remarks

STICK Function

Example

Note

STICK(n)

n is a numeric expression returning an integer in 
the range 0 to 3.

To return  the x and y coordinates of the two 
joysticks.

The values for n can be:

0 — returns the x coordinate for joystick A. Also 
prepares the x and y values for both 
joysticks for the following function calls:

1 — Returns the y coordinate of joystick A.

2 — Returns the x coordinate of joystick B.

3 — Returns the y coordinate of joystick B.

Even if you only wish to read the values for 
joystick B, you m ust execute a dummy command 
using STICK(O).

50 DISCARD =  STICK(0)
60 X% =  STICK(2)
TO Y% =STICK(3)
80 PRINT X%,Y%

This program samples the x and y coordinates of 
joystick B.

STRIG is for use in connection with joystick 
buttons.

GW-BASIC 4-253



COM M ANDS AND FUNCTIONS 
STO P

STOP Statement

Syntax

Purpose

Remarks

Example

STOP

To term inate program execution and return  to 
command level.

STOP statem ents may be used anywhere in a 
program to term inate execution. STOP is often 
used for debugging. Following STOP you can 
inspect and alter program variables, and then 
continue with CONT.

When a STOP is encountered, the following 
message is printed:

Break in nnnnn

Unlike END, STOP does not close files.

The following loop is executed until you press a 
key. You can then see how far the counter has 
progressed by entering PRINT CT as a direct 
command. CONT enables the program to con
tinue where it left off.

10 CT=0
20 IF IN K E Y $< > “”THEN STOP 
30 CT=CT+1
40 FOR SLOTH % =1 TO 200:NEXT SLOTH % 
50 GOTO 20

4-254 GW-BASIC



Syntax

Purpose

Remarks

Example

STR$ Function

Note

COMMANDS AND FUNCTIONS
STRS

STR$(X)

To return  a string representation of the value 
yielded by the numeric expression X.

If X is positive, the string representation is 
preceded by a single blank. Therefore, the length 
of the string returned by STR$ is one character 
greater than a positive number it represents.

The following program doubles any number you 
enter, provided the number is not longer than two 
digits:

10 REM Arithmetic for kids 
20 INPUT “Enter an EASY number”;N 
30 IF LEN(STR$(N))>3 THEN PRINT “I said 

EASY. Try again”:GOTO 20 
40 PRINT N;“doubled is”;N*2

The complementary function of STR$ is VAL.

GW-BASIC 4-255



COMMANDS AND FUNCTIONS
STRIG

STRIG Statement

Syntax

Purpose

Remarks

STRIG ON 
STRIG OFF

STRIG (n) ON 
STRIG (n) OFF 
STRIG (n) STOP

To enable and disable the joystick buttons.

To enable and disable the trapping of joystick 
buttons.

STRIG ON has the effect th a t every time GW- 
BASIC is about to execute a command, it per
forms a check to see if a button has been pressed.

STRIG OFF tells GW-BASIC to ignore the 
presence of the joystick buttons.

STRIG (n) ON enables trapping of the button 
specified by n. Up to four buttons may be trapped, 
using the values 0, 2, 4, and 6 for n.

STRIG (n) OFF disables trapping for the speci
fied button 0, 2, 4, or 6. If a button is pressed 
between execution of this command and the next 
STRIG (n) ON, GW-BASIC does not remember 
the event.

STRIG (n) STOP disables trapping for the speci
fied button 0,2,4, or 6. If a button is pressed after 
execution of this command, GW-BASIC will 
branch to the event handling routine as soon as it 
has encountered the next STRIG (n) ON 
statement.

4-256 GW-BASIC



COMMANDS AND FUNCTIONS
STRIG

STRIG Function

Syntax STRIG (n)

Purpose To return information as to whether a joystick 
button is being pressed or has been pressed since 
the last time it was checked.

Remarks n is a numeric expression in the range 0 to 7. One 
of four buttons can be checked, according to 
whether n is 0,2,4,6. STRIG (n) returns the value 
-1, if the button has been pressed since the last 
time it was checked; otherwise, it returns 0.

If n is 1,3,5, or 7, STRIG (n) returns the value -1, 
if th a t button is currently pressed.

STRIG ON must have been executed before 
button checking can take place.

Example 10 STRIG ON
20 IF STRIG(2) THEN PRINT “Somebody has 

pressed button 2”
30 IF STRIG(3) THEN PRINT “Now please 

release button 2”: GOTO 50 
40 PRINT “Have you forgotten the existence of 

button 2?”
50 END

GW-BASIC 4-257



COMMANDS AND FUNCTIONS
STRINGS

STRINGS Function

Syntax STRING$(I,J)
STRING$(I,X$)

Purpose To return  a string of length I whose characters all 
have ASCII code J  or the first character of the 
string expression X$.

Example 10 X$ =  STRING$(10,45)
20 PRINT X$ “MONTHLY REPORT” X$ 
will yield
..............MONTHLY REPORT..............

4-258 GW-BASIC



C O M M AN D S A N D  FUNCTIONS 
S W A P

SWAP Statement

Syntax SWAP variable!.,variable2

Purpose To exchange the values of two variables.

Remarks Any type variable may be swapped (integer, 
single precision, double precision, string), but the 
two variables m ust be of the same type or a “Type 
mismatch” error results.

If the second variable is not already defined when 
SWAP is executed, an “Illegal function call” 
error will result.

Example 10 A $ = “ONE” : B $= “ALL” : C $ = “FOR” 
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$ 
will yield 
ONE FOR ALL 
ALL FOR ONE

GW-BASIC 4459



COM M ANDS AND  FUNCTIONS  
SY ST E M

SYSTEM Command

Syntax SYSTEM

Purpose To close all open files and return  control to
NCR-DOS.

Remarks Any GW-BASIC program in memory is lost as
soon as SYSTEM is executed, so consider 
SAVEing the program if you have updated it 
since the last SAVE.

4-260 GW-BASIC



COMMANDS AND FUNCTIONS  
TAB

TAB Function

Syntax TAB(I)

Purpose To move the display or print position to I.

Remarks If the current prin t position is already beyond 
space I, TAB goes to tha t position on the next line. 
Space 1 is the leftmost position; the rightmost 
position is the defined WIDTH. I must be in the 
range 1 to 255. TAB may only be used in PRINT, 
PRINT # , and LPRINT commands.

TAB a t the end of a list of PRINT or LPRINT 
items is regarded by GW-BASIC as having a 
semicolon; therefore, no automatic carriage 
return  occurs.

Example 10 PRINT “NAME” TAB(25) “AMOUNT” 
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA “G. T. JONES”, “$25.00” 
will yield
NAME AMOUNT

G. T. JONES $25.00

This program shows TAB being used to create 
neat display columns.

G W -BASIC 4-261



COM M ANDS AND FUNCTIONS  
TAN

TAN Function

Syntax TAN(X)

Purpose To return  the tangent of X. The angle X is in 
radians.

Remarks The tangent is calculated to single precision, 
unless you specify the /D  option when loading 
GW-BASIC.

Example 10 RADS=0.78 
20 PRINT TAN(RADS) 
will yield 
.9892613

Note To convert radians to degrees:

DEGREES =  RADIANS*180/PI 

where PI (single precision) is 3.141593. 

To convert degrees to radians:

RADIANS =  DEGREES*PI/180

4-262 GW-BASIC



COMMANDS AND FUNCTIONS
TIMES

TIMES Statement

Syntax

Purpose

Remarks

Example

Note

TIME$”* string expression

“string expression” represents a string in one of 
the following forms:

hh
(sets the hour; minutes and seconds default to 00)

hh:mm
(sets the hour and minutes; seconds default to 00) 

hh:mm:ss
(sets the hour, minutes, and seconds)

To set the time. This command complements the 
TIME? function, which retrieves the time.

A 24-hour clock is used; 8:00 p.m., therefore, 
would be entered as 20:00:00.

10 TIME?= “08:00:00”

The current time is set a t 8:00 a.m.

If you have set the time a t the NCR-DOS 
command level, there is no need to set it again 
from within GW-BASIC.

GW-BASIC 4-263



TIMES Function

COMMANDS AND FUNCTIONS
TIMES

Syntax TIMES

Purpose To retrieve the current time. (To set the time, use 
the TIMES command.)

Remarks The TIMES function returns an eight-character 
string in the form hh:mm:ss, where hh is the hour 
(00 through 23), mm is m inutes (00 through 59), 
and ss is seconds (00 through 59). A 24-hour clock 
is used; 8:00 p.m., therefore, would be shown as 
20:00:00.

Example 10 ALARMS -  TIMES 
20 IF LEFTS (ALARMS,2) =  “06” AND MID$ 

(ALARMS,4,2) = “30”THEN BEEP:PRINT 
“Your early morning call”:GOTO 40 

30 GOTO 10
40 IF INKEYS =  “” THEN GOTO 10 ELSE END

This example repeatedly checks the clock. At 6:30 
a.m. it s ta rts  BEEPing and continues to do so for 
a whole minute or until you press a key. (You 
m ight prefer to replace BEEP with some music.)

4-264 GW-BASIC



COMMANDS AND FUNCTIONS
TIMER

TIMER Function

Syntax TIMER

Purpose To return a single precision number representing 
the number of seconds tha t have elapsed since 
midnight or the last time you switched on or reset 
your computer.

Remarks TIMER sta rts  counting a t 0, and starts  again 
with zero a fraction of a second before 86400 
would be attained. TIMER returns whole seconds 
and fractions of a second.

Example The following program gives you an idea of how 
much time elapses in a GW-BASIC delay loop:

10 INPUT “How many runs through loop”;R 
20 TIME$ =  “00:00:00:”
30 FOR X% =  1 TO R: NEXT X%
40 PRINT TIMER; “seconds”

GW-BASIC 4-265



COM M ANDS AND  FUNCTIONS 
TRON and  TROFF

TRON AND TROFF Commands

Syntax TRON

TROFF

Purpose To trace the execution of program commands.

Remarks As an aid in debugging, TRON (executed in either 
direct or indirect mode) enables a trace flag tha t 
prints each line number of the program as it is 
executed. The numbers appear enclosed in square 
brackets. The trace flag is disabled with the 
TROFF command (or when a NEW command is 
executed).

Example TRON 

10 K =  10
20 FOR J = 1 TO 2 
30 L =  K +  10 
40 PRINT J;K;L 
50 K =  K +  10 
60 NEXT 
70 END

will yield
[10] [20] [30] [40] 1 10 20 
[50] [60] [30] [40] 2 20 30 
[50] [60] [70]

TROFF

The numbers not enclosed in brackets are the 
result of PRINT statements.

4-266 GW-BASIC



COMMANDS AND FUNCTIONS
USR

USR Function

Syntax USR[digit] [(argument)]

where “digit” specifies which USR routine is 
being called. See DEF USR for rules governing 
“digit”. If “digit” is omitted, USRO is assumed.

“argum ent” is the value passed to the subroutine. 
It may be any numeric or string expression.

Purpose To call an assembly language subroutine.

Remarks If a segment other than the default segment (data 
segment DS) is to be used, a DEF SEG statem ent 
must be executed prior to a USR function call. The 
address given in the DEF SEG statem ent deter
mines the machine location of the beginning of 
the segment to which the address specified in 
DEF USR is offset.

For each USR function, a corresponding DEF 
USR must be executed to define the USR call 
offset. This offset and the currently active DEF 
SEG segment address determine the starting 
address of the subroutine.

Example 100 DEF SEG =  &H8000 
110 DEF USR0=0 
120 X =5
130 Y =  USR0(X)
140 PRINT Y

Line 130 calls the machine language subroutine 
a t the beginning (address 0) of the segment which 
starts  a t the machine memory address 
hexadecimal 8000. A single value returned by the 
subroutine is assigned to the variable Y.

Note If your machine language program is not 
required to return a value to your BASIC 
program, the variable to the left of the equal sign 
in the command containing the USR function 
plays only a dummy role.

G W -BASIC 4-267



COMMANDS AND FUNCTIONS
USR

Another way of accessing a machine language 
subroutine is to use the CALL command.

Chapter 6 contains more information about using 
machine language routines in GW-BASIC pro
grams.

4-268 GW-BASIC



COM M ANDS AND FUNCTIONS 
VAL

VAL Function

Syntax VAL(X$)

Purpose To return  the numerical value of string 
expression X$. The VAL function strips blanks, 
tabs, and linefeeds from the argument string. For 
example,

VAL(“ -3”)

returns -3.

Remarks If the string does not begin with numeric 
characters, VAL returns 0.

The constraints of the argument string when 
using CVI, CVS, or CVD do not apply to VAL, so it 
is especially useful for converting strings of 
variable length to numeric values.

Example You might wish to evaluate the numeric signifi
cance of information which has been read into a 
random file buffer as a string, for example, dates:

10 FIELD #1 ,< 4  AS YEAR$, 2 AS MONTH?, 2 
AS DAY?

120 GET #1,1
130 IF VAL(YEAR?+MONTH?-)-DAY?) <  195- 

40713 THEN PRINT “Older than I am”

Note The complementary function STR? converts 
numeric values to strings.

G W -BASIC 4-269



COMMANDS AND FUNCTIONS
VARPTR

VARPTR Function

Syntax 1 VARPTR(variable name)

Syntax 2 VARPTR(#file number)

Purpose Syntax 1

Returns the address of the first byte of data 
identified with “variable name". A value must be 
assigned to “variable name” prior to execution of 
VARPTR; otherwise, an “Illegal function call” 
error results. Any type variable name may be 
used (numeric, string, array). For string 
variables, the address of the first byte of the 
string descriptor is returned (see Chapter 6). The 
address returned is an integer in the range 0 to 
65535.

VARPTR is usually used to obtain the address of 
a variable or array so th a t it may be passed to an 
assembly language subroutine. A function call of 
the form VARPTR(A(0)) can be specified when 
passing an array, so th a t the lowest-addressed 
element of the array  is returned.

Note All simple variables should be assigned before 
calling VARPTR for an array, because the 
addresses of the arrays change whenever a new 
simple variable is assigned.

Syntax 2

For sequential files, VARPTR# returns the 
starting  address of the disk I/O  buffer assigned 
to “file number”. For random files, the address of 
the FIELD buffer assigned to “file number” is 
returned (see Chapter 6).

4-270 GW-BASIC



COMMANDS AND FUNCTIONS
VARPTRS

VARPTR$ Function

Syntax VARPTR$( variable name)

where “variable name” is the name of a variable 
in the program.

Purpose To return a character form of the memory 
address of the variable.

Remarks VARPTR$ is primarily used with the DRAW and 
PLAY statem ents in programs th a t will be 
compiled.

A value must be assigned to “variable name” 
prior to execution of VARPTR$; otherwise, an 
“Illegal function call” error results. Any type 
variable (numeric, string, or array) may be used.

VARPTR$ returns a three-byte string in the 
form:

byte 0 =  type: 2 =  integer, 3 =  string, 4 =  
single precision, 5 =  double 
precision

byte 1 =  low byte of address 
byte 2 =  high byte of address

Example 10 PLAY “X” +  VARPTR$(A$)

uses the subcommand X, plus the address of A$, 
as the string expression in the PLAY statement.

In the GW-BASIC interpreter supplied, this is 
the same as

10 PLAY “XA$;”

Note Because array addresses change whenever a new 
variable is assigned, always assign all simple 
variables before calling VARPTR$ for an array 
element.

GW-BASIC 4-271



COMMANDS AND FUNCTIONS
VIEW

VIEW Statement

Syntax

Purpose

Remarks

VIEW [[SCREEN] [(xl,yl)-(x2,y2)[,[filling] 
[.[outline]]]]]

To define subsets of the screen (“viewports”) in 
the graphics display modes in order to limit 
screen activity to a specified area.

VIEW without any param eters defines the entire 
screen as the viewport. The RUN command has 
the same effect.

(xl,yl)-(x2,y2) are the coordinates of the top left 
and bottom right corners of the rectangular 
viewport, respectively. Unlike most other coordi
nate specifications in GW-BASIC, these coordi
nates must represent screen points actually 
available, otherwise an “Illegal function call” 
error occurs.

“ filling” allows you to  fill the viewport with 
color, “filling” is therefore a num ber 0 to  3 
in low and high resolution color graphics (0: 
background; 1 to  3 : color from color palette), 
or 0 (black) or 1 (white) in medium and high 
resolution black-and-white graphics. If you do 
no t specify a color, no filling is performed.

“outline” allows you to draw a boundary line in a 
specified color (see “filling”), if space is available.

The viewport specified may not extend beyond 
the screen. The coordinates specified for the two 
diametrically opposed corners must not be identi
cal.

If the word SCREEN is not included in the VIEW 
command, the coordinates of subsequent graph
ics drawing are relative to the viewport. Thus, it 
is possible to display the same graphics design 
with different scaling, if you have previously 
issued an explicit WINDOW command.

If the word SCREEN is included, the physical 
screen area addressed by graphics commands is 
unaltered by the viewport, but only those parts

4-272 GW-BASIC



COMMANDS AND FUNCTIONS
VIEW

Examples

which fall within the viewport are actually 
displayed.

Only one viewport can be active a t a given time.

CLS affects only the current viewport. To clear 
the entire physical screen, firs t disable the 
viewport by means of VIEW without parameters.

The first example shows the use of VIEW to draw 
a circle, first with the normal screen display 
scale, then removed and reduced. The circle using 
normal low resolution graphics’ screen coor
dinates is drawing in green (line 30), then a small 
viewport is defined and outlined in red (line 40). 
Finally, a circle is drawn in brown. Note tha t this 
latter circle uses the same coordinates for its 
center and the same radius as the first circle, but 
is now scaled to the new viewport.

10 SCREEN l:CLS:COLOR 0,0 
20 WINDOW SCREEN (0,0)-(319,199)
30 CIRCLE (160,100),70,1 
40 VIEW (40,30)-(90,70),,2 
50 CIRCLE (160,100),70,3

While still in the graphics mode enter CLS as a 
direct command. Only the small, brown circle 
disappears.

The following program shows VIEW with the 
SCREEN option. First, a circle is drawn in 
normal screen characteristics (line 20). Then a 
viewport is defined in the top left quarter of the 
screen (line 30). Only the part of the second circle 
which lies within the viewport is then actually 
drawn (line 40).

10 SCREEN l:CLS:COLOR 0,0 
20 CIRCLE (160,100),96,1 
30 VIEW SCREEN (1,1)-(159,99),,2 
40 CIRCLE (160,100),90,3

GW-BASIC 4-273



COM M ANDS AN D  FUNCTIONS  
W AIT

WAIT Command

Syntax

Purpose

Remarks

Example

Note

WAIT port number,I[,J]

where I and J are integer expressions.

To suspend program execution while monitoring 
the status of a machine input port.

The WAIT command causes execution to  be 
suspended until a specified machine input port 
develops a specified bit pattern. The data read a t 
the port is XORed with the integer expression J, 
and then ANDed with I. If the result is zero, 
GW-BASIC loops back and reads the data  a t the 
port again. If the result is nonzero, execution 
continues with the next command. If J  is omitted, 
it is assumed to be zero.

100 WAIT 32,2

Suspends program execution until the value 2 is 
present a t port 32.

There is no error trapping facility in the event 
th a t the specified bit pattern (value) does not 
appear a t the port, but you can break out with 
Ctrl-Break.

4-274 GW-BASIC



COM M ANDS AND FUNCTIONS 
WHILE a nd  WEND

WHILE AND WEND Statements

Syntax WHILE expression 

[loop commands]

Purpose

WEND

To execute a series of commands in a loop as long 
as a given condition is true.

Remarks If “expression” is true (that is, resulting in a 
non-zero va lue), “loop commands” are executed 
until WEND is encountered. GW-BASIC then 
returns to the WHILE statem ent and checks 
“expression”. If it is still true, the process is 
repeated. If it is not true, execution resumes with 
the command following WEND.

W HILE/WEND loops may be nested to any level. 
Each WEND will match the most recent WHILE. 
An unmatched WHILE causes a “WHILE 
without WEND” error, and an unmatched 
WEND a “WEND without W HILE” error.

Example 90 ‘bubble sort array  a$ containing J elements 
100 FLIPS= 1  ‘force one pass thru  loop 
110 WHILE FLIPS 
115 FLIPS= 0  
120 FOR 1 =  1 TO J -l  
130 IF A$(I)>A$(I +  1) THEN

SWAP A$(I),A $(I+1):FLIPS-1
140 NEXT I 
150 WEND
This example sorts the elements of the array A$ 
into alphabetical, or, to be more precise, ascend
ing ASCII sequence. The leading spaces in lines 
115 to 140 are a programming convention which 
has no effect on the way GW-BASIC executes the 
commands. They simply reflect the depth of 
nesting.

G W -BASIC 4-275



WIDTH Statement

Syntax WIDTH file number,size
WIDTH “device”,size 
WIDTH size

“file number”
Numeric expression in the integer range 1 to 15. 
This is the number of a file opened for a device.

“size”
Numeric expression in the integer range 1 to 255. 
This is the new width. If you specify 0, 
GW-BASIC understands 1.

“device”
String expression which identifies the device. 
Valid devices are “SCRN:”, “LPT1:”,“LPT2:”, 
“LPT3”, “C0M1:”, and “COM2:”.

Purpose Sets the output line width in number of
characters.

Remarks WIDTH file number,size
If the file is open to LPT1:, the line prin ter’s 
printed line width is immediately changed to the 
new size specified. This command allows you to 
change the width a t will while the file is open. 
This form of the WIDTH statem ent is also 
meaningful for any of the other devices specified 
above.

WIDTH device,size
Used as a deferred width assignment for the line 
printer, this form of the WIDTH statem ent stores 
the new width value without actually changing 
the current width setting. A subsequent OPEN 
statem ent for the specified device will use the new 
size specified while the file is open.

Note tha t the LPRINT, LLIST, and LIST com
mands perform and automatic OPEN. You do not 
have to explicitly open the device.

COMMANDS AND FUNCTIONS
WIDTH

4-276 GW-BASIC



COMMANDS AND FUNCTIONS
WIDTH

WIDTH size 
or
WIDTH “SCRN:”,size
Sets the number of characters which can be 
displayed in a screen line. You may specify either 
40 or 80. If the screen display is in either of the 
graphics modes, WIDTH 40 automatically selects 
or confirms low resolution graphics. When 
entered while in low resolution mode, WIDTH 
80 selects high resolution graphics. If the 
screen display is in medium or high resolution 
graphics, specifying WIDTH 80 has no effect.

If you enter any value outside the legal ranges an 
“Illegal Function Call” error occurs. The previous 
value is retained.

No data is lost by using the WIDTH command. 
GW-BASIC simply adds a carriage return after 
sending the number of characters specified as 
“size”. For example, if you have a 60-character 
line and a 40-character printer, and if you issue 
WIDTH 40, the first 40 characters will be printed 
on one line and the next 20 characters on the next 
line.

The transm it and receive buffer of a communica
tions file are not altered by WIDTH. The only 
effect is tha t GW-BASIC adds a carriage return 
as soon as “size” characters are in the buffer.

The default WIDTH for printing devices is 80; for 
communications files 255 with no line folding.

GW-BASIC 4-277



WINDOW Statement

Syntax WINDOW [[SCREEN](xl,yl)-(x2,y2)]

Purpose To redefine the coordinates of the screen in
medium and high resolution graphics.

Remarks xl,y l and x2,y2 represent in single precision
numbers the coordinates of two diametrically 
opposite corners of the screen. For example, your 
program can determine th a t the screen in 
low resolution graphics is to be regarded by 

GW-BASIC as consisting of 240 (horizontal) by 
150 points. The result is th a t a graphics drawing 
appears larger than it did when using the default 
320 by 200 coordinate system, without you having 
to change the values in the drawing commands. 
This is often called a zoom effect, a term which 
you may know from photography.

Exactly which two corners are defined by the 
“world coordinates” x l,y l and x2,y2 depends on 
whether or not you specify SCREEN in the 
WINDOW statement. If you include SCREEN, the 
GW-BASIC convention is retained; th a t is, x l,y l 
is the upper left corner, and x2,y2 is the bottom 
right corner. WINDOW sorts the two coordinate 
pairs, placing the smaller values for x and y first, 
even if you specify them the other way around. 
This means th a t movement from left to right 
across the screen increases the x value, while 
movement down the screen increases the y value.

If you do not include SCREEN, x l,y l refers to the 
bottom left corner of the screen, and x2,y2 refers 
to the top righ t corner. The Cartesian scheme 
then applies, namely, th a t movement down the 
screen decreases the y value.

Figure 1 shows the coordinate scheme as set 
automatically when high resolution graphics 
mode is selected. The explicit statem ent to set this 
scheme would be

WINDOW SCREEN(0,0)-(639,199)

COMMANDS AND FUNCTIONS
WINDOW

4 2 7 8 QW -BASIC



COMMANDS AND FUNCTIONS
WINDOW

Figure 2 shows the Cartesian coordinate scheme 
with the origin (0,0) in the center of the screen. 
The coordinates are here given symbolically in 
term s of 1,0, and -1 to denote the transition from 
negative to positive values of x and y, and, a t the 
same time, to remind you th a t you are by no 
means obliged to use (in high resolution 
graphics)

WINDOW (-320,-200) - (319,199)

although this offers the maximum degree of 
graphic resolution for th a t graphics mode. Fur
thermore, there is no reason why the origin must 
be in the center of the screen.

The general formulation of the WINDOW com
mand for Figure 2 is

WINDOW (-1,-1)-(1,1)

a w - B A S ic



COMMANDS AND FUNCTIONS
WINDOW

Figure 3 shows in generalized form the standard 
high resolution graphics coordinate scheme given 
in Figure 1. The equivalent WINDOW command 
is

WINDOW SCREEN (-1,-1)-(1,1)

c

4-2BO GW-BASIC



COMMANDS AND FUNCTIONS
WINDOW

Example

The effect of WINDOW sorting the coordinate 
pairs is th a t if you, for example, specify

WINDOW (200,200)-(10,10) 

this is interpreted as

WINDOW (10,10)-(200,200)

A newly set window applies to subsequent graph
ics drawing. It does not affect existing screen 
contents.

The two sets of coordinates in the WINDOW 
statem ent must not be identical.

WINDOW uses “clipping”; th a t is, if your graph
ics design extends beyond the coordinate range 
defined for the screen, those parts outside the 
range are not displayed (there is no wrap around 
to another part of the screen).

If you specify WINDOW without any parameters, 
normal physical screen coordinates are restored. 
The RUN command and SCREEN statem ent have 
the same effect.

The following program demonstrates zooming, 
panning, and clipping in medium resolution 
graphics.

First, Cartesian coordinates are set with the 
origin (0,0) a t the center of the screen (line 20), 
and the axes are drawn in green through the 
origin. Two boxes are then drawn, one in the 
bottom left quadrant, and the other in the top 
right quadrant. You can then specify a point in 
term s of the current Cartesian coordinate scheme 
of (-160,-100)-(159,99).This point is to become the 
new focus for zooming. Then, you are asked to 
specify a zoom factor. A value greater than 1 
produces zoom in; a value less than 1 produces 
zoom out. The boxes drawn in line 143 are suitable 
for zoom in. For zoom out, try  making this the 
REM line and removing REM from line 145.

GW-BASIC 4-281



COMMANDS AND FUNCTIONS
WINDOW

5 X1 =  -160:Y1=-100:X2=159:Y2=99 
10 SCREEN l:CLS:COLOR 0,0 
20 WINDOW (X1,Y1)-(X2,Y2)
40 GOSUB 130
50 LOCATE l,l:INPUT;“zoom/pan to x,y posi

tion? ”;X,Y
60 LOCATE l,l:INPUT;“zoom factor - zoom

out:<  1? ”;ZP
61 LOCATE „0
62 FOR SC= 1 TO ZP STEP (Z P< = l)*Z P /30- 

(ZP>l)*(ZP-l)/60
70 CLS 
80 WINDOW

((X*SC+ X1)/SC,( Y*SC+Y1)/SC)- 
((X*SC + X2)/SC,(Y*SC+ Y2)/SC)

100 GOSUB 130 
102 NEXT SC
110 IF  INKEY$ =  "*' THEN 110 
120 STOP
125 REM ***** Draw axes and boxes 
130 LINE (0,50)-(0,-50),1:LINE (-60,0)-(60,0),1 
143 LINE (20,20)-(30,30),2,BF:LINE 

(-20,-20)-(-5,-5),3,BF
145 REM LINE (20,20)-(60,60),2,BF:LINE 

(-40,-40)-(-5,-5),3,BF 
170 RETURN

4-262 GW-BASIC



WRITE Statement

COMMANDS AND FUNCTIONS
WRITE

Syntax WRITE [list of expressions]

Purpose To output data to the screen.

Remarks If “list of expressions” is omitted, a blank line is 
output. If “list of expressions” is included, the 
values of the expressions are output to the screen. 
The expressions in the list may be numeric 
and/or string expressions. They must be 
separated by commas or semicolons.

When the items are output, each item is 
separated from the last by a comma. When 
displayed, strings are delimited by quotation 
marks. Positive numbers are not preceded by 
blanks. A fter the last item in the list is printed, 
GW-BASIC inserts a carriage return/linefeed. 
These are the features which distinguish WRITE 
from PRINT.

WRITE outputs numeric values using the same 
form at as PRINT.

Example 10 A =80:B=90:C$=“THAT’S ALL” 
20 WRITE A,B,C$ 
will yield
80, 90,“THAT’S ALL’

GW -BASIC 4-283



WRITE# Statement

COMMANDS AND FUNCTIONS
WRITE#

Syntax W RITE#file number,list of expressions

Purpose To write data to a sequential file.

Remarks “file number” is the number under which the file 
was OPENed. The expressions in the list are 
string or numeric expressions. They must be 
separated by commas or semicolons.

The difference between WRITE# and PRINT# is 
th a t W RITE# inserts commas between the items 
as they are written to the file and delimits strings 
with quotation marks. Therefore, it is not 
necessary to put explicit delimiters in the list. A 
carriage return/linefeed sequence is inserted 
after the last item in the list is written to the file.

Example Let A$ =  “CAMERA" and B $ = “93604-1” 

The statement:

WRITE#1,A$,B$

writes the following image to the file: 

“CAMERA”,“93604-1”

A subsequent INPUT$ statement, such as 

INPUT#1,A$,B$

would input “CAMERA” to A$ and “93604-1" 
to B$.

4-284 GW-BASIC



Chapter 5

Files and Devices

The term  “file” refers not only to the name under which we SAVE and 
LOAD GW-BASIC programs. We also use this term  for any collection 
of data stored on disk which is capable of being processed by a 
program. A “device” normally exists outside the computer cabinet 
and is capable of receiving and/or transm itting data, or even 
converting data from one form to another. Examples of devices are 
the keyboard, a printer, a telephone modem. Even the screen inside 
the cabinet can be considered to be a device.

Files and devices are discussed in a common chapter because 
GW-BASIC addresses them in the same way. Any type of input/ 
output can be treated as if it  is related to a disk file. Obviously, the 
special physical characteristics of the device m ust be taken into 
account. For example, you can easily inspect a record already written 
to disk, but you cannot expect a printer to roll back six pages and read 
back to your program what is written on th a t page.

GW-BASIC expects you to say which files you wish to access. You do 
this by means of the OPEN statement. This statem ent asks you to 
state the name of a file and a number with which th a t file is to be 
associated as long it is open. Normally, GW-BASIC allows you to have 
up to three data files open a t any time, but you can change this number 
using the /F  option when loading GW-BASIC (see “Starting-up 
GW-BASIC" in Chapter 1). When you have finished working with a 
file you should CLOSE it. This frees some memory space and ensures 
th a t im portant information, such as the latest state  of a disk 
directory, has been noted by GW-BASIC.

E V E R Y  F ILE  NEEDS A NAME
A filename may be up to eight characters long. All letters of the 
alphabet and all digits are allowed characters. In addition, the 
filename may include the following characters:

( ) { } @ # $ % * & ! - _ ’ / -  I

GW-BASIC 5-1



FILES AND DEVICES

If you wish, you can append a period (.) to the filename followed by an 
extension consisting of up to three of the legal characters. GW-BASIC 
does this automatically to program files (.BAS), if you do not specify a 
different extension.

I t makes sense to give a file a name which has something to do with its 
existing or prospective contents. For example, you might call a 
program which carries out a m arket analysis MARKET.BAS, and the 
files containing the reports th a t are processed in the course of the 
analysis MKTRPT1, MKTRPT2, and so on.

A t the same time as stating the name of a file (with an extension, if 
one is provided), you may wish to specify in which drive the disk 
containing th a t file is situated. In this case, you must precede the 
filename with the drive letter and a colon, for example

BrMARKET

You will normally specify the drive if you know the file is not present 
on, or Is not to be created on, the currently active disk.

The version of GW-BASIC supplied also enables you to specify a path 
of access to a  file. Your NCR-DOS manual tells you all about 
directories and paths. Here is a quick summary of this facility.

A single disk may contain not ju st one but a number of directories 
arranged in a tree-like structure. The main directory is called the root 
directory. This is the directory to which all paths must lead back. A 
path is the route you have to follow through the structure in order to 
access a particular file. You can specify such a path either from the 
root directory to a file or from the current directory to a file. A 
directory may contain sub-directories and/or files. If you do not 
specify a path, GW-BASIC assumes th a t the file is to be found in the 
current directory.

The path to a file is denoted by one or more directory names separated 
by \  and concluded by a filename (.extension). The sym bol.. denotes 
the parent directory, th a t is, the directory immediately above in the 
hierarchical structure. A path may be preceded by a drive letter.

5-2 GW-BASIC



FILES AND DEVICES

ROOT

SALES ACCOUNTING

/ \
JOHN MARY STEVE SUE

/ \
REPORT REPORT

other
files

REPORT REPORT
o the r
files

o the r
files

Given the structure in the previous illustration and assuming tha t 
the current directory is JOHN, the path

REPORT

or

\  SALES \  JOHN \  REPORT

..\JO H N \R E PO R T

all reference the REPORT in the directory JOHN. To gain access to 
the REPORT under MARY, you would have to specify the path as

. . \  MARY \  REPORT

\  SALES \  MARY \  REPORT. To access the REPORT under SUE, you 
can specify the path

.. \ .. \  ACCOUNTING \  SUE \  REPORT

or

or

or

\  ACCOUNTING \  SUE \  REPORT

GW-BASIC 5-3



FILES AND DEVICES

Note th a t an initial \  refers to the root directory. You may precede 
specification of a path by a drive letter. The character set allowed for 
naming directories is the same as th a t used for naming files. Your 
NCR-DOS manual gives complete details about the number of files 
and sub-directories which can be accommodated on disks.

The following GW-BASIC commands allow you to set up or alter the 
path within the directory structure:

CHDIR
MKDIR
RMDIR
ENVIRON

In addition, the following commands allow you to use a path to a file:

BLOAD MERGE
BSAVE NAME
CHAIN OPEN
FILES RUN
KILL SAVE
LOAD

If you have not as yet specified any directories, either in GW-BASIC 
or outside GW-BASIC a t the NCR-DOS command level, GW-BASIC 
assumes the root directory. In this case, you do not have to explicitly 
state  the root directory when accessing files. Therefore, you do not 
need to be concerned with different directories and the paths to them, 
if you do not yet wish to use this facility of the NCR-DOS Operating 
System. You can refer to both program and data files using filename, 
extension where provided, and drive letter where appropriate.

DEVICE NAMES
Unlike filenames, device names are already determined by GW- 
BASIC:

A: }
B: } the disk drives: the flexible disk drives (or drive) are 
C: } designated A: and B:, the first fixed disk is designated C:, 

and so on.
D: }

KYBD: the keyboard.

5-f GW-BASIC



FILES AND DEVICES

SCRN: the screen display.

LPT1: }
LPT2: } printers (if present).
LPT3: }

C0M1: } adapters for asynchronous communications 
COM2: }

REDIRECTION OF STANDARD INPUT/OUTPUT
The standard input device is the keyboard, the standard output device 
is the screen display. You can redirect standard input and output to 
files or suitable devices. This is achieved by specifying the <  or >  
option in the NCR-DOS command line which loads GW-BASIC.

Examples:

GW-BASIC ANYPROG >PROTOCOL.DSK

means th a t any data which would normally appear on the screen will 
be sent to the disk file PROTOCOL.DSK instead.

GW-BASIC FASTKEY <REPLACE.KEY > PROTOCOL.DSK

has the effect th a t data which would normally appear on the screen 
will now be sent to the disk file PROTOCOL.DSK. Input from the 
keyboard is suspended. In its place, input is derived from the disk file 
REPLACE.KEY.

If you specify not one but two > >  when redirecting standard output, 
the output does not replace but is appended to the existing file. 
Example:

GW-BASIC SECRET >>COLLECT.DAT

appends what would otherwise be the screen output to the disk file 
COLLECT.DAT.

Regardless of input and output redirection:

•  error messages are still displayed on the screen.

•  INPUTS and input from the specified device KYBD: are still 
derived from the keyboard.

•  Output explicitly directed to the output device SCRN: is displayed 
on the screen.

GW-BASIC 5-5



FILES AND DEVICES

•  Trapping of keys set up by an ON KEY(n) statem ent is still in 
force.

Ctrl-PrtSc does not copy the screen as long as standard output is 
redirected. The redirection of standard output is term inated if you 
press Ctrl-Break.

HOW TO USE DISK DATA FILES

You can create and access two types of disk data file. Files for 
sequential access (for the sake of brevity usually called “sequential 
files”) and files for random access (“random files”) both store data in 
units of records. Your program can determine the length of the record 
to suit the data you wish to store. For example, you may decide tha t a 
file should store weather observations of the last 24 hours. Your 
record might then look something like this:

10 bytes for the name of the weather station 
4 bytes for time of observation 
3 bytes for wind direction
2 bytes for wind force
3 bytes for tem perature
2 bytes for relative humidity
4 bytes for atmospheric pressure 
4 bytes for visibility

Accordingly, you would choose a record length of a t least 32 bytes. If 
you do not specify a record length, GW-BASIC assumes 128 bytes.

Then you m ust decide whether you would like to store and access the 
data as a sequential file or as a random file. The characteristics of 
these two types of file are as follows.

•  Sequential files

As the name suggests, data is written to and read from a 
sequential file in a fixed sequence. The first record you write is 
record 1, the second record w ritten is record 2, and so on. It is not 
possible to write, say, six records and then ask GW-BASIC to note 
tha t you might wish to insert a record between records 2 and 3 at 
a later date.

The same fixed sequence applies when reading the file. Your 
program m ust read the records one by one from the beginning 
until it finds the record it is looking for. It can then read the 
record, but not alter it. This is because a sequential file can be

5-6 GW-BASIC



FILES AND DEVICES

open for input, output, or appending at any one time, but not for 
more than one of these functions. Appending allows you to add 
records a t the end of an existing file, but does not allow you to 
change the sequence of existing records.

•  Random files

Random files allow you to specify a record number which deviates 
from the ascending sequence of record numbers associated with 
sequential files. You can, for example, write records 1 to 6, and 
then continue with record 9, thus leaving “space” for two 
additional records which you can insert a t a later date. You can 
read the records in any order you wish, and you can alter a record 
without having to read the file from the beginning. Random files 
usually store numeric items in a compressed form at, so if you are 
working mainly with numbers, using random files can save disk 
space.

When comparing the advantages of the two types of file access it 
should also be mentioned th a t random files require more program
ming than do sequential files. Returning to the example of the 
weather reports, you would probably decide tha t the observations of 
the last 24 hours, or the last week, are required a t present for fast 
random access in order to do the calculations necessary for making a 
forecast. Observations which go further back in time are for the 
archives and can be stored in chronological order in sequential files. 
They need no longer be accessed quickly, but still provide source 
information from which statistics can be derived.

SEQUENTIAL FILES
The following commands and functions are used with sequential files:

OPEN, CLOSE (the OPEN command can be written in two 
different ways, see Chapter 4)

INPUT$, INPUT#, LINE INPUT# - reading data from the file 
PRINT#, PRINT# USING, WRITE# - writing data to the file 
EOF, LOC, LOF - end of file, location in file, length of file.

Creating a Sequential File.
Here is an example of a new sequential file being opened to receive 
data from a program. The GW-BASIC default record length of 128 
bytes applies. Each record consists of the concatenation of the strings 
N$ (name), D$ (department), and H$ (date hired), with separating 
commas. A record is written each time line 50 is executed.

GW-BASIC 5-7



FILES AND DEVICES

10 OPEN “0 ”,#1,“DATA”
20 INPUT “NAME”;N$
25 IF N$ =  “DONE” THEN CLOSE:END 
30 INPUT “DEPARTMENT“;D$
40 INPUT “DATE HIRED”;H$
50 PRINT#1,N$;",”;D$;“,”;H$
60 PRINT:GOTO 20

S tart the program with RUN and enter the following sample data in
response to the prompts NAME, DEPARTMENT, and DATE HIRED:

NAME? MICKEY MOUSE 
DEPARTMENT? AUDIO/VISUAL AIDS 
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES 
DEPARTMENT? RESEARCH 
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE 
DEPARTMENT? ACCOUNTING 
DATE HIRED? 04/26/78

NAME? SUPER MANN 
DEPARTMENT? MAINTENANCE 
DATE HIRED? 08/16/78

NAME? DONE

Reading a Sequential File
The following program reads the sequential file created in the 
previous section and displays the names of all people hired in 1978.

10 OPEN “I”,#1,“DATA”
20 INPUT#1,N$,D$,H$
30 IF RIGHT$(H$,2) =  “78” THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE 
SUPER MANN 
Input past end in 20 
ok

5-6 GW-BASIC



file s  a n d  d evices

When the program tries to INPUT# beyond the end of the file, an 
“Input past end” error occurs. To bring the program to an orderly 
conclusion, add the program line

15 IF EOF(l) THEN PRINT “File search complete”:END 

and change line 40 to

40 GOTO 15

It is always advisable to check for end of file before (not after) reading 
a record, ju st in case there are no records in the file a t all.

Continuing a Sequential File
Although adding data to a file is essentially an output operation, you 
m ust not specify “0 ” or OUTPUT when opening the file, otherwise the 
existing file is destroyed. Instead, you should open the file for 
APPEND. Records subsequently written to the file are added to the 
existing records.

Inserting Records in a Sequential File
To insert data in an existing sequential file an additional, temporary 
sequential file is required.

1. OPEN the original file for input and the temporary file for 
output.

2. Read a record from the original file and write th a t record to the 
temporary file.

3. Repeat step 2, checking each time whether the current record is 
the one after which the record insertion is to take place. If this is 
so, proceed to step 4.

4. W rite the record(s) for insertion to the temporary file.

5. Resume reading the original file, writing each record to the 
temporary file, until EOF is detected.

6. CLOSE both files.

7. Delete the original file (KILL). Then rename the temporary file to 
the name of the original file ju st deleted (NAME).

GW-BASIC 5-9



FILES AND DEVICES

RANDOM FILES
The following statem ents, commands and functions are used with 
random files:

OPEN, CLOSE (the OPEN command can be written in two 
different ways, see Chapter 4)

FIELD - relates program variables to the file buffer
LSET, RSET — alignment of data in the buffer
MKI$, MKS$, MKD$ — convert numeric data to string form in

preparation for writing to the file 
CVI, CVS, CVD — convert string representations of numeric 

values read from the file
GET — reads a record from the disk into the file buffer 
PUT — writes a file from the file buffer to disk 
LOC, LOF — location in file, end of file.

Creating a Random File
Creation of a random file requires the following program steps.

1. OPEN the file for random access (“R” mode). This example 
specifies a record length of 32 bytes. If the record length is 
omitted, the default is 128 bytes. Example:

OPEN “R”,# l , “FILE”,32

or

OPEN “FILE” AS #1 LEN =32

2. Use the FIELD statem ent to allocate space in the random buffer 
for variables th a t will be written to the random file. Example:

FIELD#1,20 AS N$, 4 AS A$,8 AS P$

3. Use the LSET statem ent to move the data into the random buffer. 
Numeric values m ust be made into strings when placed in the 
buffer. To do this, use the “make” functions. MKI$ makes an 
integer value into a string, MKS$ makes an integer value into a 
single precision value, and MKD$ makes an integer value into a 
double precision value. Example:

5-W

LSET N$=M$
LSET A$=MKS$(AMT) 
P$=TEL$

GW-BASIC



FILES AND DEVICES

4. W rite the data from the buffer to the disk using the PUT 
command Example:

PUT #l,CODE%

The LOC function, with random access files, returns the “current 
record number.” The current record number is one plus the last 
record number th a t was used for a GET or PUT statement. For 
example:

IF LOC(1)>50 THEN END

ends program execution if the current record number in file #1 is 
higher than 50.

The following program asks you to enter a record number (line 30). 
Your subsequent input is set up in the file buffer (lines 70 to 90) and 
written to the file “FILE” in line 100. This process is repeated until 
you enter a record number less than 1.

10 OPEN “R”,#1,“FILE”,32 
20 FIELD#1,20 AS N$,4 AS A$, 8 AS P$
30 INPUT “2-DIGIT CODE”;RECORD%
35 IF  RECORD % < 1  THEN CLOSE: END 
40 INPUT “NAME”;X$
50 INPUT “AMOUNT”;AMT 
60 INPUT “PHONE”;TEL$:PRINT 
70 LSET N$=X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT#l,RECORD%
110 GOTO 30

NOTE: Do not use a FIELDed string variable in an INPUT or LET 
statement. This causes the pointer for th a t variable to point 
into string space instead of into the random access file 
buffer.

Accessing a Random File
The initial steps for accessing an existing random file are the same as 
those for the original creation of the file. If the file is still open from 
previous use, these two steps are not required:

1, OPEN the file in “R” mode.

OPEN “R”,# l , “FILE”,32

GW-BASIC 5-11



FILES AND DEVICES

or

OPEN “FILE” AS #1 LEN =32

2. Execute a FIELD statem ent to allocate space in the random 
buffer for the variables th a t will be read from the file.

FIELD#1,20 AS N$, 4 AS A$,8 AS P$

You can now read any record into the file buffer and then evaluate the 
contents of the buffer using the FIELDed variables:

3. Use the GET statem ent to move the desired record into the 
random buffer.

GET #l,RECORD%

4. The data in the buffer may now be accessed by the program. 
Numeric values must be converted back to numbers using the 
“convert” functions. CVI converts numeric values to integer 
values, CVS converts numeric values to single precision values, 
and CVD converts numeric values to double precision values.

PRINT N$
PRINT CVS(A$)

The following program gives you access to the data w ritten to the disk 
file in the example given in the section “Creating a random file”. All 
you have to do is enter the number of the record you wish to be 
displayed. You do not have to read the records one by one from the 
beginning of the file, as you would have to with a sequential file.

10 OPEN “R”,#1,“FILE”,32
20 FIELD #1,20 AS N$,4 AS A$,8 AS P$
30 INPUT “2-DIGIT CODE”;RECORD%
35 IF RECORD % < 1  THEN CLOSE:END 
40 GET#l,RECORD%
50 PRINT N$
60 PRINT USING “$ $ # # # .# # ”;CVS(A$)
70 PRINT P$: PRINT 
80 GOTO 30

A Sample Random Access Program
Here is an inventory program th a t illustrates random file access. In 
this program, the record number is used as the part number, and it is 
assumed the inventory will contain no more than 100 different part

5-12 GW-BASIC



FILES AND DEVICES

numbers. Lines 900 through 960 initialize the data file by writing 
CHR$(255) as the first character of each record. This is used later 
(line 270 and line 500) to determine whether an entry already exists 
for th a t part number.

Lines 140 through 210 display the different inventory functions that 
the program performs. When you type in the desired function 
number, line 230 branches to the appropriate subroutine.

110 REM INVENTORY
120 OPEN“R”,# l ,“INVEN.DAT”,39
130 FIELD#1,1 AS F$,30 AS D$,2 AS Q$,2 AS R$,4 AS P$
140 PRINT:PRINT “Choose from:“:PRINT 
150 PRINT 1,“INITIALIZE FILE”
160 PRINT 2,“CREATE A NEW ENTRY”
170 PRINT 3,“DISPLAY INVENTORY FOR ONE PART”
180 PRINT 4 “ADD TO STOCK”
190 PRINT 5,“SUBTRACT FROM STOCK”
200 PRINT 6 “DISPLAY ALL ITEMS BELOW REORDER 

LEVEL”
205 PRINT 7,“END PROGRAM”
210 PRINT:PRINT:INPUT“Your choice";FUNCTION 
220 IF (FUNCTION<l)OR(FUNCTION>7) THEN PRINT 

“Valid choices are 1 to 7”:GOTO 140 
230 ON FUNCTION GOSUB 900,250,390,480,560,680,245 
240 GOTO 210 
245 CLOSE:END 
250 REM BUILD NEW ENTRY 
260 GOSUB 840
270 IF ASC($)<>255 THEN INPUT“ENTER Y TO OVER

WRITE”; A$ IF A $ :< > “Y” THEN RETURN 
280 LSET F$=CHR$(0)
290 INPUT “DESCRIPTION”;DESC$
300 LSET D$ =  DESC$
310 INPUT “QUANTITY IN STOCK”;Q%
320 LSET Q$=MKI$(Q%)
330 INPUT “REORDER LEVER”;R%
340 LSET R$ =  MKI$(R%)
350 INPUT “UNIT PRICE”;P 
360 LSET P$=MKS$(P)
370 PUT#1,PART%
380 RETURN
390 REM DISPLAY ENTRY 
400 GOSUB 840

G W-BASIC 5-13



FILES AND DEVICES

410 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:RETURN 
420 PRINT USING “PART NU M BER###”;PART%
430 PRINT D$
440 PRINT USING “QUANTITY ON H A N D # # # # # ”;CVI(Q$) 
450 PRINT USING “REORDER L E V E L # # # # # ”;CVI(R$)
460 PRINT USING “UNIT PRICE $ $ # # .# # ”;CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:RETURN 
510 PRINT D$:INPUT “QUANTITY TO ADD“;A%
520 Q% =CVI(Q$)+A%
530 LSET Q$=MKI$(Q%)
540 PUT#1,PART%
550 RETURN
560 REM REMOVE FROM STOCK 
570 GOSUB 840
580 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”:RETURN 
590 PRINT D$
600 INPUT “QUANTITY TO SUBTRACT”;S%
610 Q% =CVI(Q$)
620 IF (Q% -S% )<0 THEN PRINT “ONLY ”;Q%;“ IN 

STOCK”:GOTO 600 
630 Q% =Q%-S%
640 IF Q% =  <CVI(R$) THEN PRINT “QUANTITY 

NOW”;Q%; “REORDER LEVEL”;CVI(R$)
650 LSET Q$=MKI$(Q%)
660 PUT#1,PART%
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL 
690 FOR 1=1 TO 100 
710 GET#1,I
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;“QUANTITY”;

CVI(Q$) TAB(50) “REORDER LEVEL”;CVI(R$)
730 NEXT I 
740 RETURN
840 INPUT “PART NUMBER”PART%
845 REM GET RECORD FOR PART 
850 IF(PART% <l)OR(PART% >100) THEN PRINT “BAD 

PART NUMBER”:GOTO 840 ELSE 
GET#1,PART%:RETURN

5-14 GW-BASIC



FILES AND DEVICES

900
910

920
930
940
950
960

REM INITIALIZE FILE
INPUT “ARE YOU SURE”;B$:IF B $ < > "Y ’’ 
RETURN
LSET F$ =  CHR|(255)
FOR 1=1 TO 100 
PUT#1,I 
NEXT I 
RETURN

THEN

COMMUNICATIONS

This section describes the GW-BASIC program steps required to 
support RS-232 asynchronous communication with other computers 
and peripherals (with or without XON-XOFF Protocol).

OPENING A COMMUNICATIONS FILE
The OPEN “COM command allocates a buffer for input/output in the 
same m anner as the OPEN for disk files. Refer to OPEN COM in 
Chapter 4.

COMMUNICATION I/O
Because the communications buffer is opened as a file, all input/ 
output commands which are valid for disk files are valid for 
communications.

Communications sequential input commands are the same as those 
for disk files. They are:

INPUT#
LINE INPUT#
INPUT!

Communications sequential output commands are also the same as 
those for disk files. They are:

PRINT#
PRINT# USING 
WRITE#

GET and PUT can be used for fixed length input/output. Obviously, 
you cannot specify a record number; instead, you state the number of 
bytes to be transferred either into or out of the file buffer (see GET, 
PUT and the LEN option in OPEN “COM, Chapter 4).

GW-BASIC 5-75



FILES AND DEVICES

I/O Functions
The most difficult aspect of asynchronous communication is process
ing characters as fast as they are received. At rates above 1200 bps it 
may be necessary to suspend character transmission from the input 
device long enough for characters already received to be processed. 
This can be done by sending CHR$(19) (XOFF) and CHR$(17) (XON) 
to the computer or device transm itting data to your NCR PC. XOFF 
tells the input device to stop sending; XON tells it to resume sending.

There are three functions which help to determine when an “overrun” 
condition may occur:

LOC(x) Returns the number of characters in the input buffer 
which are waiting to be read. If more than 255 
characters are in the buffer, LOC(x) returns 255. (The 
input buffer can hold more than 255 characters, as 
determined by the /C  option when loading GW- 
BASIC.) If fewer than  255 characters remain in the 
buffer, LOC(x) returns the actual amount.

LOF(x) Returns the amount of free space in the input buffer.
This is the same as the size of the buffer minus the 
value returned by LOC. The size of the communica
tions buffer can be set by the /C  option when loading 
GW-BASIC. The default size of the buffer is 256 
bytes. A ttem pting to read data into a full buffer can 
cause a “Communication buffer overflow” error.

EOF(x) Returns true (-1) if the input buffer is empty; returns 
false (0) if there are any characters waiting to be 
read.

INPUTS FUNCTION
As a recommendation, use the INPUT? function instead of the 
INPUT# and LINE INPUT# statem ents when reading communica
tions files, because it allows all characters read to be assigned to a 
string. INPUT# stops input when it detects a comma or < E N T E R >.

INPUT? returns a string of a specified number of characters read 
from a file specified by number. The following statem ents are 
efficient in reading a communications buffer:

10 WHILE NOT EOF(l)
20 A$=INPUT$(LOC(l),#l)

5-16 GW-BASIC



FILES AND DEVICES

30 ,..
40 ...
50 ...
60 WEND

If there are characters in the input buffer, the above statem ents 
return  the characters in the buffer into A$ and process them (lines 30, 
40, 50, etc.). If there are more than 255 characters, only 255 at a time 
will be returned to prevent a “String overflow” error. Further, if 
there are more than 255 characters, EOF(l) is false, and input into A$ 
continues until the buffer is empty.

NOTE: When developing a communications program, you should 
consider both the host computer’s and satellite computer’s 
baud rates. If a “Device I/O ” error occurs, this usually 
indicates an overrun on the hardware interface, and you 
should adjust your program.

CONTROL SIGNALS
This paragraph contains information about control signals which you 
may need to know in order to communicate with another computer or 
pheripheral.

Output Signals
When you s ta rt GW-BASIC on your NCR PC, the Request To Send 
(RTS) and Data Terminal Ready (DTR) signal lines are not turned on 
until an OPEN“COM command is performed. You can suppress the 
RTS signal by specifying the RS option in the OPEN“COM. Unless 
suppressed, the line stays on until the communications file is closed 
by CLOSE, END, NEW, RESET, SYSTEM, or RUN without the R 
option. If an OPEN COM statem ent fails, the lines remain on. You may 
then retry the OPEN“COM without a prior CLOSE command.

Input Signals
If either the Clear To Send (CTS) or Data Set Ready (DSR) signal 
lines are off, you cannot perform an OPEN“COM. GW-BASIC returns 
a “Device Timeout” error after one second. You can, however, specify 
if and how you want these lines tested by using the CS and DS options 
in the OPEN“COM statement.

If the CTS or DSR line signals are off while a program is running, I/O 
commands associated with the communications file do not work, and 
a “Device Fault” or “Device Timeout” error occurs.

GW-BASIC 5-17



FILES AND DEVICES

SAMPLE PROGRAM
The following program enables your NCR PC to be used as a 
conventional term inal. In addition to full-duplex communication, the 
program allows data to be down loaded (written) to a file, and 
conversely, a file may be up-loaded (transm itted) to another machine.

In addition to demonstrating the elements of asynchronous commu
nications, th is program should be useful in transferring GW-BASIC 
programs and data to and from the NCR PC.

Notes on the Sample Program

Line No. Comments

When starting  GW-BASIC, set the /F  option to 3. 
There is no need to set the /C  option.

10 Sets the screen to character mode.

20 Turns off the programmable function key dis
play, clears the screen, and makes sure th a t all 
files are closed.

NOTE: Asynchronous implies character I/O  as opposed to line or 
block I/O. Therefore, all PRINTs (either to the communications 
file, the screen, or a disk file) are term inated with a semicolon (;). 
This stops the < E N T E R >  normally issued a t the end of a PRINT 
statement.

30 Defines all numeric variables as integers. This is
prim arily for use in the subroutine a t lines 
500-660. Any program looking for speed optimi
zation should use integer counters in loops 
wherever possible.

35-40 Clears the 23rd line starting  a t column 1.

50 Defines Boolean true and false.

70 Defines the ASCII XON and XOFF characters.

100-130 Prin ts program identification and asks for baud
rate (speed). Opens communications to file num
ber 1 with even parity, 7 data bits, and a line feed 
(LF) following every < E N T E R > .

5-/8 GW-BASIC



FILES AND DEVICES

200-280

300-310

400-430

490-540

550-620

GW-BASIC

This section gives you a menu for receiving data 
a t your screen or on a file, or for transm itting 
data from your keyboard or from one of your 
files.

1. You are asked how many characters have to 
be received on your communications line 
before they are displayed on the screen.

2. Reads one or more characters from the 
keyboard into A$ and transm its A$. You are 
guided by the menu to continue.

3. If only a space is entered, wait for n charac
ters and print them when received.

4. If the character was M only, then the user is 
ready to down-load a file, so get file name.

5. If you entered an E only, the program will 
stop a t 9000-9040.

6. If the input (A$) is not M, E, or space, send it 
by writing to the communications file 
(PRINT # 1 .. . ) .  as described in step 2, and at 
line 230 go back to menu.

7. At lines 250-260, read and display contents of 
communications buffer (as much as selected 
by n) on screen. Continue with 1.

Get disk file name to be used.

Asks if file name is to be transm itted (up-loaded) 
or received (down-loaded) and opens file.

The received data will fill an array  of 126 
positions unless an end-of-file character (line 
530) was received, which closes the file.

Before writing to the selected disk file, an XOFF 
is sent to the transm itter. Two additional charac
ters (lines 560-590) may be read after the 126 
positions are filled and before the transm itter 
gets the XOFF.

5-)9



FILES AND DEVICES

625

630

640-680

800-880

1000-1060

9000-9040

When the array  is completely w ritten to disk file 
and XON is sent to the transm itter, the transm it
ter continues sending.

Continue receiving as a t line 500.

For end-of-file, write last characters to file and 
close it. Continue again a t the menu.

This is a waiting routine used when the transm it
ter also receives characters. If the transm itter 
receives an XOFF, wait until XON is received 
before continuing transmission.

This is a transm it routine. Until the end of the 
disk file:

Read one character into A$ with INPUT? func
tion. Send character to communications device in 
1015. If a  character is received, the waiting 
routine for XON in case of XOFF is called, line 
1015.) Send a < C trl-Z >  a t the end-of-file in line 
1040 in case the receiving device needs one to 
close its file. Finally, in lines 1050 and 1060, close 
disk file, p rin t completion message, and go back 
to conversation mode in line 200.

These lines are run if you enter E in response to 
the menu. They close the communications file and 
the screen output file, restore the programmable 
function key display, and end the program.

10 SCREEN 0:WIDTH 80 
20 KEY OFF:CLS:CLOSE 
30 DEFINT A-Z 
35 LOCATE 23,1 
40 PRINT STRING$(60,“ ”)
50 FALSE=0:TRUE= NOT FALSE 
70 XOFF$=CHR?(19):XON$=CHR$(17)
100 LOCATE 23,1:PRINT “Async TTY Program 
110 LOCATE 1,1:LINE INPUT “speed?”;SPEED$ 
120 REM
130 0PEN “C0M1:“ + S P E E D ?+ ”,E,7„LF LC AS #1 
140 OPEN “scrn:” FOR OUTPUT AS #2

5-20 Gw-â sic



FILES AND DEVICES

200 LOCATE 1,1:LINE INPUT “on receiving, how many characters 
are to be read”;N$

203 N% = VAL(N$)
205 LOCATE 3,1:PRINT “press any keys for transmission”
206 PRINT “except: M for file i/o”
207 PRINT “or space for receiving”
208 PRINT “or E for ending program”
209 LINE INPUT;A$
210 IF A $ = “ " THEN 250
211 IF A $ = “M” THEN 300
212 IF A $ = “E” THEN 9000 
220 PRINT #1,A$;
230 GOTO 200
250 A$= INPUT$(N% ,#1)
260 PRINT #2,A$;
280 GOTO 200 
300 LOCATE 8,1
310 LINE INPUT“file? "DSKFIL?
400 LOCATE 9,1
410 LINE INPUT“(T)ransmit or (R)eceive?”;TXRX$
420 IF TXRX$=“T” THEN OPEN DSKFIL$ FOR INPUT AS 
#3:GOTO 1000
430 OPEN DSKFIL$ FOR OUTPUT AS #3 
490 DIM BUF$(128)
500 FOR J = 1  TO 126 
520 BUF$(J)=INPUT$(1,#1)
530 IF BUF$(J)=CHR$(26) THEN GOTO 640 ‘checks for Ctrl-Z
540 NEXT J
550 PRINT #l,XOFF$;
560 IF LOC(1)=0 THEN K=126:GOTO 600 
570 BUF$(127) =  INPUT$(1,#1)
580 IF LOC(1)=0 THEN K=127:GOTO 600 
585 BUF$(128) =  INPUT$(1,#1)
590 K=128
600 FOR 1=1 TO K
610 PRINT #3,BUF$(I);
620 NEXT I
625 PRINT #l,XON$;
630 GOTO 500 
640 FOR 1 =  1 TO J 
650 PRINT #3,BUF$(I);

GW-BASIC 5-21



FILES AND DEVICES

660 NEXT I
670 CLOSE #3:CLS:LOCATE 24,10:PRINT “* download complete

680 GOTO 200
800 B$=INPUT$(1,#1)
810 IF B$=XOFF$ THEN GOTO 850 
820 PRINT #2,B$;
830 IF LOC(1)=0 THEN RETURN
840 GOTO 800
850 B$=INPU T$(lt# l)
860 IF B$=XON$ THEN RETURN 
870 PRINT #2,B$;
880 GOTO 850
1000 WHILE NOT EOF(3)
1010 A$—INPUT$(1,#3)
1012 IF VAL(SPEED$)>4000 THEN FOR 1 =  1 TO 10:NEXT 
1015 PRINT #1,A$;
1020 IF LOC(1)>0 THEN GOSUB 800 
1030 WEND
1040 PRINT #1,CHR$(26); ‘ctrl-Z to close file.
1050 CLOSE #3:CLS:LOCATE 23,10:PRINT "** upload complete

1060* GOTO 200 
9000 CLOSE #1 
9010 CLOSE #2 
9030 KEY ON 
9040 END

5-22 GW-BASIC



Chapter 6

Running Machine Language

This chapter is intended for the machine language (assembler) 
programmer who wishes to use machine language routines from 
within a GW-BASIC program. You will find information about where 
and how you can reserve memory for these routines, how to load them 
into memory, and how GW-BASIC can pass param eters to and read 
results from these routines.

Your NCR PC contains an 8088 microprocessor. There is a wealth of 
available literature on programming with the 8086 family of 
microprocessors, to which the 8088 belongs, including publications by 
Intel Corporation.

RESERVING MEMORY
GW-BASIC uses up to 64 KB of computer memory. Not only your 
program is stored in this area, but also the variables it sets up. 
Furthermore, space is required for GW-BASIC to in terpret your 
program commands and carry out calculations. Depending on what 
other files, apart from GW-BASIC, are currently held in memory by 
NCR-DOS, you can use memory above th a t kept aside by NCR-DOS 
for GW-BASIC. Alternatively, you can use part of the GW-BASIC 
memory area.

To use memory outside the GW-BASIC area for machine language 
subroutines, define the starting  address of an area where you wish to 
load the subroutine using the DEF SEG statem ent. You can then refer 
to th is area using offset values from within the GW-BASIC program. 
This does not actually protect th is area from being overwritten by 
other applications running under NCR-DOS, nor does it  prevent you 
from accidentally writing your subroutines to an area of memory 
where they can upset GW-BASIC or the operating system. For this 
reason you should specify an area you wish to reserve by means of the 
second param eter in the /M option when loading GW-BASIC (see the 
section “How to Start-Up GW-BASIC" in Chapter 1). For example,

GW-BASIC 6-1



RUNNING MACHINE LANGUAGE

GWBASIC /M:,4112

allows GW-BASIC 64 KB of memory, and reserves 256 bytes of 
memory immediately above GW-BASIC for your use.

An alternative method of reserving memory for subroutines is to put 
aside space within the GW-BASIC area. You can use the /M  option 
when loading GW-BASIC. For example,

GWBASIC /M:65000

takes away from the top of the GW-BASIC area a little more than 500 
bytes and places them at your disposal. To reserve space dynamically 
within a GW-BASIC program, use the CLEAR command, for example

10 CLEAR ,65000

You may specify hexadecimal instead of decimal values in any of 
these methods, using the &H prefix.

USING RESERVED MEMORY

You can use the memory you have reserved to store any kind of 
information you want. For example, if you have a very long series of 
integer numbers of which none is greater than 255, you could POKE 
them one by one into your reserved area. This saves memory as an 
integer array would require two bytes for each element. You can then 
read the individual numbers by means of the PEEK function.

You can apply POKE to a series of bytes which go to make up a 
machine language routine, or you can BLOAD these bytes from a disk 
file.

POKEing
W rite the byte values for the machine language instructions in 
GW-BASIC DATA lists. You will probably prefer to use hexadecimal 
values prefixed by &H.

State in a DEF SEG command the memory address of the first byte to 
which a DATA item is to be written.

Using a FOR...NEXT loop with its control variable starting with zero 
and STEPping up by one until the number of DATA items is 
exhausted, READ each DATA item into an integer variable and 
POKE th a t value using the current value of the control variable as the 
address to be POKEd.

6-2 GW-BASIC



RUNNING MACHINE LANGUAGE

As an alternative, you can store the byte values in an integer array 
and POKE the elements of the array one by one.

The methods described are suitable for coding relatively short 
subroutines.

BLOADing
If you are doing extensive machine language programming, you are 
probably using a symbolic or macro assembler and then producing an 
.EXE file by means of the NCR-DOS linker.

If you write a truly relocatable subroutine, th a t is, a program which 
can execute from any memory address, you need not be concerned 
about loading it to an address which differs from the one intended by 
the linker. You can use BLOAD following a DEF SEG statement, or, if 
the subroutine is to be situated not more than 64 KB above the s ta rt of 
the GW-BASIC program area, you can load it to an address specified 
in term s of the offset to the beginning of th a t area.

If the BLOADing address of your machine language subroutine is 
dependent on the location determined by the linker, you must first 
ascertain where the operating system wants tha t subroutine to be 
loaded. This requires use of the DEBUG utility which is described in 
your NCR-DOS PROGRAMMER’S MANUAL.

1. Make sure th a t the subroutine was linked for loading at the 
HIGH end of memory.

2. Load DEBUG, including GWBASIC.EXE in the command line as 
the file to be loaded under DEBUG. Display and note the contents 
of the registers. Then load the .EXE file produced by the linker; 
display and note the contents of CS and the Instruction Pointer.

3. Restore the registers to the state prior to loading the .EXE file 
and, still under DEBUG, s ta rt execution of GW-BASIC (not the 
subroutine) using the DEBUG G command.

4. Load your GW-BASIC program from which the subroutine is to 
be called. Edit the program so th a t the value of the CS register 
noted after loading the .EXE file is in the DEF SEG statement. 
The DEF USR or CALL statem ent should refer to the address 
contained in the Instruction Pointer as noted after loading the 
.EXE file.

6-3GW-BASIC



RUNNING MACHINE LANGUAGE

5. In direct mode set DEF SEG in accordance with the CS value 
noted after loading the .EXE file. Then BSAVE the subroutine, 
specifying the offset as the contents of the Instruction Pointer 
noted after loading the .EXE file.

6. The BLOAD command in your GW-BASIC program which loads 
the subroutine need not specify the offset a t which it is to be 
located. GW-BASIC assumes the offset value used in the BSAVE 
command for th a t file.

It is possible to locate your machine language subroutines within the 
GW-BASIC memory area. Possible locations are an unused file or 
screen buffer, or a string variable. You can find out the location of a 
file buffer or a string variable by means of VARPTR# and VARPTR, 
respectively.

HOW GW-BASIC CALLS SUBROUTINES

Your GW-BASIC program can call machine language subroutines by 
means of the CALL command and the USR function. Regardless of 
which method you are using, the DS, ES, and SS processor registers 
are all set to the address of the GW-BASIC data area upon entry to 
the subroutine. The CS register contains the value specified in the 
most recent DEF SEG command. If none has been executed, or DEF 
SEG was executed without a specified value, CS is set to the same 
address as the other segment registers.

The stack available to the subroutine can accommodate up to 8 
PUSHes. If more are required, a separate stack m ust be set up.

GW-BASIC regards all machine language routines as far procedures. 
Therefore, an intersegment RET instruction should conclude the 
subroutine. The segment registers and the Stack Pointer must be 
restored before returning to GW-BASIC. I t is therefore important 
tha t the subroutine note the values of these five registers before 
altering their contents.

If the subroutine disables interrupts, they m ust be enabled before the 
return to GW-BASIC.

CALL
Upon execution of the CALL statem ent GW-BASIC does the 
following;

The address (offset to GW-BASIC’s data area) of each variable 
specified in the CALL statem ent is PUSHed onto the stack. Using

6-4 GW-BASIC



RUNNING MACHINE LANGUAGE

these addresses the subroutine can accept data from and return  data 
to the GW-BASIC program. If the variable is a string variable, the 
address on the stack is th a t of a 3-byte string descriptor. The firs t 
byte contains the length of the string (0 to 255), the second byte 
contains the eight least significant bits of the offset of the string in 
GW-BASIC’s data area, the eight most significant bits are stored in 
the th ird  byte. The subroutine must not alter the length of the string.

If your subroutine is to influence the content of a string variable, it is 
a good idea to ensure th a t GW-BASIC first copies the string variable 
into its own workspace by performing an operation on the string. For 
example, if your subroutine is to return a value to A$, issue the 
command

10 A $ = “String long enough

If you do not include such a command, the string descriptor points to 
the occurrence of the string in your program text. This could lead to 
an unwanted modification of the program.

A return address specified in the CS register and the offset are 
likewise PUSHed.

Processor control is passed to the subroutine using the contents of the 
last DEF SEG and the offset value specified in the CALL command. 
The stack entry for the last variable in the param eter list is now 6 
bytes above the current Stack Pointer value, the entry for the 
param eter before the last one is 8 bytes above the current Stack 
Pointer value, and so on.

The assembler RET instruction at the end of the subroutine must 
specify a value which is two times the number of items in the CALL 
variable list.

The following example shows a simple arithm etic operation per
formed in an assembler subroutine. The two numbers for the 
subtraction are passed by the GW-BASIC program in the integer 
variables 1% and J% , the result is returned to R%.

GW-BASIC program CALL command:

CALL SUBTR (I%,J%,R%)

The assembler subroutine:

CSEG SEGMENT
ASSUME CS:CSEG

GW-BASIC 6-5



RUNNING MACHINE LANGUAGE

SUBTR PROC FAR

PUSH BP 
MOV BP,SP
MOV SI,[BP]+10 jaddress of 1% in SI
MOV DX,[SI] 
MOV SI,[BP]+8 
MOV AX,[SI] 
SUB DX,AX 
MOV SI,[BP]+6 
MOV [SI],DX 
POP BP 
RET 6

;value 1% in DX 
;address of J% in SI 
;value J% in AX

jpoints to memory location of R% 
;puts two byte result in R%

SUBTR ENDP 
CSEG ENDS

USR
You can enter a subroutine by means of the USR function. A single 
param eter can be passed which can be any constant or variable. If a 
param eter is not required by the subroutine, the GW-BASIC 
command calling upon the USR function must specify a dummy 
param eter.

Upon entry to the subroutine the AL register contains the value 2 for 
a two byte integer in two’s complement notation, 3 for a string, 4 for a 
single precision number, or 8 for a double precision number.

If the param eter is a string, the DX register points to a 3 byte string 
descriptor. The first byte contains the length of the string (0 to 255), 
the second byte contains the eight least significant bits of the offset of 
the string in GW-BASIC’s data area, the eight most significant bits 
are stored in the third byte.

If your subroutine is to influence the content of a string variable, it  is 
a good idea to ensure th a t GW-BASIC first copies the string variable 
into its own workspace by performing an operation on the string. For 
example, if your subroutine is to return a value to A$, issue the 
command

10 A $= “String long enough?“ -!-””

If you do not include such a command, the string descriptor points to 
the occurrence of the string in your program text. This could lead to 
an unwanted modification of the program.

6-6 GW-BASIC



RUNNING MACHINE LANGUAGE

If the param eter is a number, the value is placed in the 8 byte Floating 
Point Accumulator in the GW-BASIC data area. The BX register then 
points to the fifth  byte of the FAC.

•  If the number is an integer, the fifth and sixth byte of the FAC 
contain the least significant and the most significant bits of the 
number, respectively.

•  If the number is a single precision number, the last byte of the 
FAC contains the exponent minus 128. The fifth, sixth and 
seventh bytes contain the mantissa: the least significant bit is bit 
0 of the fifth byte, the most significant bit is bit 6 of the seventh 
byte. Bit 7 of the seventh byte indicates a positive number with 0, 
a negative number with 1. The m antissa is to be understood as 
having a leading 1, the exponent as a whole number.

•  The structure of the FAC for a double precision number is the 
same as th a t for a single precision number, with the difference 
th a t the m antissa occupies all the first seven bytes (bit 0 of the 
first byte is the least significant bit).

The result returned by the USR function call is the contents of the BX 
register.

GW-BASIC 6-7



c



Chapter 7

For PEEKers and POKErs

This chapter presents information as to the way GW-BASIC makes 
use of the hardware facilities of your NCR PC. The GW-BASIC 
memory map and information about the structure of variables is also 
included.

Programming with GW-BASIC does not mean th a t you have to read 
this Chapter. Controlling the hardware is a task GW-BASIC entrusts 
to “drivers”. Drivers are programs hidden in GW-BASIC or the 
operating system which convert the GW-BASIC commands you issue 
into detailed machine instructions.

For example, let us assume th a t GW-BASIC encounters the command 
CLS somewhere in your program. F irst, the GW-BASIC “interpreter” 
checks th a t the term  CLS is included in its dictionary of commands. 
Then i t  calls upon an internal routine driving the screen display, with 
the effect th a t the screen pixels are set one by one to the background 
color. The comfort of CLS and the other GW-BASIC commands and 
functions is th a t you do not have to be concerned about how the pixels 
are changed. You need not even be aware of the fact th a t there is a 
copy of screen contents in random access memory.

If you want to know where the screen buffers are and other facts 
related to the hardware of your NCR PC, or if you are curious about 
the way GW-BASIC uses the memory allotted to it, then read on. You 
can apply the information in this chapter to the GW-BASIC PEEK 
and IN functions, and the POKE and OUT commands.

PEEK allows you to ascertain the value of an individual byte in 
memory; IN lets you observe the way the microprocessor receives 
information from the machine ports (for example, status signals 
from a printer). POKE allows you to influence individual memory 
bytes, OUT is used for writing information to machine ports. POKE 
and OUT give you immense power over your computer, but they 
require careful use, otherwise your computer might behave in a 
strange and unpredictable way.

GW-BASIC 7-1



FOR PEEKERS AND POKERS

NCR offers a SYSTEM  TECHNICAL manual for your PC. These 
contain detailed information about the way the hardware and the 
software drivers operate. The examples given in this chapter are ju st 
some of the effects you can achieve when by-passing GW-BASIC.

GW-BASIC AND PC MEMORY

NCR-DOS loads GW-BASIC into a program segment ju s t as it loads 
other .COM and .EXE files. The absolute machine address of the 
program segment is of no consequence: the value for GW-BASICs 
data area (segment), th a t is, the value set or confirmed by DEF SEG 
without param eters, is automatically assigned by NCR-DOS. The 
following diagram shows the state of memory for the program 
segment immediately after loading GW-BASIC. Where a  paragraph 
value is not specified to the left of the colon, the value is the 
paragraph address of the GW-BASIC data segm ent

Notes:

•  The offset values xxxx and yyyy are stored a t the locations 
30H-31H and 358H-359H, respectively. In both cases, the lower 
byte is the less significant. •

•  The size of the GW-BASIC stack can be set by means of the 
CLEAR command.

7-2 GW-BASIC



FOR PEEKERS AND POKERS

NCR-DOS Programs Segment 10

:0000

:xxxx

;yyyy

top of memory 
or

:FFFF

Aoootxno

FCtftOOOO

GW-BASIC

interpreter
workspace

GW-BASIC
program

x
9 x
Ü*
es

simple variables

arrays

string
space

GW-BASIC
stack

c m  m
L n  > >-D

system
(includes screen buffers)

read-only memory

E3
EX
«1
E
X
3

1

VARIABLES
Variables are stored by GW-BASIC as follows: 
Byte 0 1 2 3 4

<nam e> <data>

< typ e> < c tia rl> <cbar2> <length> I co ttier chars> 

------------------ 1 ------

2, 3,4, 
or 8 bytes

< ty p e >  identifies the type of variable as follows:

2 integer
3 string
4 single precision 
8 double precision

< n a m e >  is the name of the variable. The first two characters of the 
name are stored in < c h a r l>  and < ch ar2 > , < le n g th >  states how 
many more characters are in the variable name. These c o th e r  
chars>  s ta r t  a t byte 4.
Immediately after the  las t character of the name is the firs t byte of 
the actual < d a ta >  contained in the variable. This is the position to 
which the VARPTR function points. The length of this data is

GW-BASIC 7-3



FOR PEEKERS AND POKERS

2 bytes for an integer 
4 bytes for a single precision number 
8 bytes for a double precision number

In the case of a string variable, < d a ta >  is a 3-byte string descriptor: 
the firs t byte contains the length of the string, the second byte 
contains the less significant half, the th ird  byte the more significant 
half of the string address in GW-BASIC’s string area. This address is 
to be understood as offset to the beginning of the GW-BASIC data 
segment.

Integer numbers are stored as 16 bit binary values (least significant 
bits a t the lower address). Floating point numbers are stored with the 
exponent minus 128 in the uppermost byte. The remaining three 
(single precision) or seven (double precision) bytes represent the 
m antissa with a leading 1 implied. The most significant byte of the 
m antissa is nearest to the exponent byte. The most significant bit of 
the m antissa represents the sign (0: positive).

THE RLE CONTROL BLOCK

If you use the VARPTR function on a file specified by number, the 
value returned is the address of the firs t byte of the file control block 
for th a t file. This address represents an offset to the beginning of the 
GW-BASIC data area. I t  is im portant to remember tha t this is a 
GW-BASIC, not the NCR-DOS file control block. The structure of the 
file control block is as follows:

Byte Length Description

0 1 Value indicating the mode in which the file
was opened:

1 - Input only
2 - Output only 
4 - Random

16 - Append only

1 38 NCR-DOS file control block

39 2 The number of sectors read or written for 
sequential access files.

1 plus the last record number read or written 
for random access files.

7-4 GW-BASIC



41

42

43

46

47

48

49

50

51

179

181

183

185

186

GW-i

FOR PEEKERS AND POKERS

1 Number of bytes in sector when read or
written.

1 Number of bytes left in input buffer.

3 (reserved)

1 Device number:
0,1 - Disk drives A: and B:
248 - LPT3:
249 - LPT2:
250 - COM2:
251 - COM1:
253 - LPT1:
254 - SCRN:
255 - KYBD:

1 Device width

1 Position in buffer for PRINT#.

1 Internal use during LOAD and SAVE. Not
used for data files.

1 Output position used during tab expansion.

128 Physical data buffer. Used to transfer data
between NCR-DOS and GW-BASIC. Use this 
offset to check data in sequential I/O mode.

2 Variable length record size. Default: 128. Set
by length param eter in OPEN command.

2 Current physical record number.

2 Current logical record number.

1 (reserved)

2 Disk files only. Position for PRINT#, 
INPUT#, and WRITE#.

7-5



FOR PEEKERS AND POKERS

188 n Actual FIELD data buffer. Size n is deter
mined by the /S  option when loading GW- 
BASIC. Use this offset to examine file data in 
random access mode.

THE KEYBOARD

The keyboard buffer can store up to 15 characters. A ttem pting to 
enter more causes your NCR PC to beep.

You can clear the keyboard buffer with

DEF SEG =0 

followed by

POKE 1050,PEEK(1052)

The DEF SEG command is required so tha t PEEK and POKE refer to 
absolute addresses counting from the s ta rt of physical RAM.

A subsequent 

DEF SEG

restores the segment value to GW-BASIC’s data segment.

SETTING SCREEN ATTRIBUTES

The memory area from the paragraph:offset of A000:0000 to 
BOOO:FFFF is used for various screen buffers.

CHARACTER DISPLAY MEMORY
The area from BOOO:0000 to  B000:7FFF contains the 8 screen 
pages which are supported in character m ode with a monochrome 
display adapter. With the line width 80, the default display page 
occupies the 4000 bytes starting a t BOOO:0000. The next page 
starts on the 1000H boundary at B000:1000, and so on. Charac
ters are stored at even addresses. The attribute byte for a charac
ter Dosition is the odd byte immediately above the character byte.

The attribute byte is made up as follows (values are decimal):

Normal video is active when only bits 0,1,2 are set -->  
value 7

Inverse video is active when only bits 4,5,6 are set —>

7-6 aw-BAsic



FOR PEEKERS AND POKERS

value 112

Add 8 to the value for high intensity and/or add 128 for blinking.

If bits 0,1,2,4,5,6 are all set or all zero, there is no contrast between 
writing and background.

The color graphics display adapter has its buffers from B000:8000 to 
B000:FFFF. The bytes up to BOOO:8FFF hold the default display page 
in character mode.

Display colors are each made up of a combination of red, green, and 
blue. These are the colors produced by the three color guns of the 
cathode ray tube inside your computer. The color combination of each 
of the 8 basic colors available in character modes is as follows:

Black - none 
Blue - Blue only 
Green - Green only 
Cyan - Green and Blue 
Red - Red only 
Magenta - Blue and Red 
Brown - Red and Green 
White - Red, Green, arid Blue

The use of alternating addresses for character and attribute is as with 
the monochrome display adapter. The difference is th a t the attribute 
value has a color effect on the screen:

Wri t i ng col or  • b i t : 0
blue

1
green

2
red

Background col or  • b i t : 4
blue

5
green

6
red

Bi t  3 g i v e i tbe high i n t • a i i t y c o l o n  when n t .  
Bi t  7 n t  y i e l d )  c b o r o c l i r  b 1 Inking

Example:

DEF SEG = &HBOOO:POKE &H8F9E,&H39:POKE &H8F9f,132

produces a blinking red digit 9 in the bottom right corner of the 
screen, when character mode with WIDTH 80 is in force.

DEF SEG = &HBOOO: POKE &H87CE,&H39:POKE &H87CF.132 

has the same effect in character mode with WIDTH 40.

GW-BASIC 7-7



FOR PEEKERS AND POKERS

GRAPHICS DISPLAY MEMORY
The screen image is built up in two scans, each running from the top 
to the bottom of the screen.

Storage Map for Low and Medium Resolution Graphics

Memory address 
#B8000

| ----------------- j even  s c a n s  ( 0 , 2 , 4 , . . . , 1 9 8 )

V#B9F3F

#BA000

| --------
I
|

-------- 1
1
|

f r e e
1
1
1
| --------

1
1

-------- 1

odd s c a n s  ( 1 , 3 , 5

#BBF3F

Storage Map for High Resolution Black-and-White Graphics

Memory address 
#B8000

even  s c a n s  ( 0 , 4 , 8 , . . . , 396)

free

even scans (2,6 ,10, . . . ,398)

odd scans (1 ,5 ,9 , . . . , 397)

f r e e

odd scans (3,7,11, . . . ,399)

#B9F3F

#BAOOO

#BBF3F
#BC000

#BDF3F

#BE000

#BFF3F

7-0 GW-BASIC



FOR PEEKERS AND POKERS

Storage Map for high Resolution Color Graphics

Memory address 
#B8000

even  s c a n s  ( 0 , 4 , 8 , . . . »396)

f r e e

odd s c a n s  ( 1 , 5 , 9 »• • •>397)

ev en  s c a n s  ( 2 , 6 , 1 0 , . . . , 3 9 6  

f r e e

odd s c a n s  (3>7>11> • ••>399)

#BBF3F

#BC000

#BFF3F
#A8000

#ABF3F

#AC000

In low and high resolution color graphics, each byte can be regarded as 
consisting of four bit pairs. Each bit pair contains a binary value 0 to 3, 
representing the color to be plotted for a screen point (see COLOR in 
Chapter 4).

In medium and high resolution black-and-white graphics, each bit re
presents one screen point.

COLOR SELECTION
The integrated circuit which looks after the screen display contains a 
register where it notes color attributes in term s of the three color 
guns of the cathode ray tube. You can address this register via the 
machine port &H3D9, using the GW-BASIC OUT command. The 
lower 6 of the 8 bits in this register are significant. When set

Bit 0 — activates the blue gun for
background in graphics mode

Bit 1 — activates the green gun for 
background in graphics mode

Bit 2 — activates the red gun for
background in graphics mode

GW-BASIC 7-9



FOR PEEKERS AND POKERS

Bit 3 — displays in high intensity
the background color in graphics mode 

Bit 4 — selects the high intensity colors for background in 
character mode; in the graphics modes, too, it selects the 
high intensity colors.

Bit 5 — selects the color palette 0 or 1.

Example:

OUT &H3D9.3

selects a cyan border in character mode.

DISPLAY MODE SELECTION
Selection of the display mode is controlled by a further register of the 
CRT controller. This register is accessed via the machine port &H3D8 
using the GW-BASIC OUT command. The lower 6 of the 8 bits are 
significant. When set

Bit 0 sets CRT controller clock to slow “0“ or fast “1“.

Bit 1 selects graphics mode, otherwise character mode applies.

Bit 2 selects a black and white display, otherwise a color display 
is selected.

Bit 3 enables the screen display. While the display mode is being 
changed, this bit should be 0.

Bit 4 selects medium and high resolution black-and-white graphics.

Bit 5 ensures tha t the blinking attribute can be used by GW- 
BASIC. If you reset this bit to 0, blinking can no longer be 
achieved, but you then use the high intensity colors for 
background, in addition to the normal intensity colors.

Bit 6 selects 400 pixel lines for high resolution graphics.

Bit 7 enables display of page 1 or 2 (“0“) and page 3 or 4 (“1“) in low 
and medium resolution.

Example:

OUT &HD38.9

When executed in character mode, this command replaces the 
blinking facility by the extended range of background colors.

7-w GW-BASIC



FOR PEEKERS AND POKERS

The following command sequence switches over to a monochrome 
screen:

10 DEF SEG =0
20 POKE &H410,(PEEK(&H410) OR &H30)
30 SCREEN 0:WIDTH 40:WIDTH 80

The underline cursor is then created by

40 LOCATE „1,12,13 

To switch over to a color screen:

10 DEF SEG=0
20 POKE &H410,(PEEK(&H410) AND &HCF) OR &H10 
30 SCREEN 1,0,0,0 
40 SCREEN 0:WIDTH 40 
50 LOCATE „1,6,7

Line 50 sets up the underline cursor.

The following commands enable you to specify the value 1,2, or 3 in 
COL% as the foreground color:

10 DEF SEG 
20 POKE &H4E,COL%

THE CHARACTER SET

You can examine and reproduce the bit patterns of the standard 
ASCII part of the GW-BASIC character set. These characters are 
stored in the read only memory (ROM) of your NCR PC. The ROM is 
located a t the memory address F000:C000 (paragraph:off set). The 8 by 
8 pixel character set s ta rts  a t F000:F A6E and occupies addresses up to 
F000:FE6D. The 8 by 16 character set reBideB in memory from 
FOOOHtDOOOH to FOOOH:D7FFH. The bit pattern  for each character is 
held in eight adjacent bytes. The ASCII character for value 0 occupies 
the first eight bytes, the ASCII character for value 1 occupies the next 
eight bytes, and so on.

The following program reads the  bit pattern  of an  8 by’S character you 
enter, and displays a corresponding pattern  of dots on the screen:

GW-BASIC 7-11



FOR PEEKERS AND POKERS

10 DEFINT A-Z 
20 OPTION BASE 1 
30 DIM PATT(8)
40 DEF SEG =  &HF000 
50 INPUT “Character”:CH$
60 FOR X =  1 TO 8
70 PATT(X) =  PEEK(ASC(CH$)*8+X+$HFA6D)
80 NEXT X 
90 CLS
100 FOR X =  1 TO 8 
110 BYTE =  PATT(X)
120 SHTF =  256 
140 FOR Y =  1 T 0  8 
150 SH FT=SH FT/2
160 IF INT(BYTE/SHFT)= 1 THEN BYTE=BYTE- 

SHFT:PRINT CHR$(249); ELSE PRINT “
170 NEXT Y 
175 PRINT 
180 NEXT X

7-11 GW-BASIC



Appendix A

Reserved Words

Reserved words are words recognized by GW-BASIC as belonging to 
commands and functions. For this reason, you cannot use them as 
names for variables (appending % , ! , # ,  or $, as a type declaration 
does not change this). A reserved word may, however, be part of a 
variable name. For example, you cannot use the word AND? as the 
name of a variable, but SAND$ and CANDY$ are allowed.

The GW-BASIC reserved words are:

ABS COMMON END
AND CONT ENVIRON
ASC COS ENVIRON?
ATN CSNG EOF
AUTO CSRLIN EQV
BEEP CVD ERASE
BLOAD CVI ERDEV
BSAVE CVS ERDEV?
CALL DATA ERL
CDBL DATE? ERR
CHAIN DEF ERROR
CHDIR DEFDBL EXP
CHR? DEFINT FIELD
CINT DEFSNG FILES
CIRCLE DEFSTR FIX
CLEAR DELETE FNxxxxxxxx
CLOSE DIM FOR
CLS DRAW FRE
COLOR EDIT GET
COM ELSE GOSUB

GW-BASIC A-1



RESERVED WORDS

GOTO NAME SCREEN
HEX$ NEW SGN
IF NEXT SHELL
IMP NOT SIN
INKEY! OCT! SOUND
INP OFF SPACE!
INPUT ON SPC(
INPUT# OPEN SQR
INPUT! OPTION STEP
INSTR OR STICK
INT OUT STOP
IOCTL PAINT STR!
IOCTU PEEK STRIG
KEY PEN STRING!
KEY$ PLAY SWAP
KILL PMAP SYSTEM
LCOPY POINT TAB(
LEFT! POKE TAN
LEFT! POS THEN
LEN PRESET TIME!
LET PRINT TIMER
LINE PRINT# TO
LIST PSET TROFF
LLIST PUT TRON
LOAD RANDOMIZE USING
LOC READ USR
LOCATE REM VAL
LOF RENUM VARPTR
LOG RESET VARPTR!
LPOS RESTORE VIEW
LPRINT RESUME WAIT
LSET RETURN WEND
MERGE RIGHT! WHILE
MID! RMDIR WIDTH
MKDIR RND WINDOW
MKD! RSET WRITE
MKI! RUN WRITE#
MKS!
MOD
MOTOR

SAVE XOR

g w -b a s k :



Appendix B

The Character Set

This appendix consists of a list of the characters available to 
GW-BASIC. For each character, the decimal and hexadecimal 
equivalent of the ASCII code value is given. For example, the code 
value for the question m ark is 63 (3F in hexadecimal) so

PRINT CHR$(63);

displays a question m ark on the screen. Where the character is a  word 
in parentheses, i t  is not a  displayable character as such, although it 
may have an effect on the screen display (e.g. cursor movement).

If you know ASCII code, you will notice th a t the first 32 items in the 
list include graphic symbols which replace the standard interpreta
tion of these values as control and communications functions.

When editing a  program, you can produce on the screen a  character 
for which there is no key on your keyboard by entering the three digit 
code while the Alt key is depressed. In th is way, you can include 
non-keyboard characters in a string constant.

The values stated in the column &H of the list are the hexadecimal 
equivalents of the decimal codes.

G W -B A SIC 0 - /



TH E CHARACTER SET

A S C II
D ecim al &H C h a ra cte r Control

ch a racter
A S C II

D ecim al &H C h aracter

000 00 (null) NUL 032 20 (space)
001 01 © SOH 033 21 !
002 02 9 STX 034 22 a

003 03 T ETX 035 23 #
004 04 ♦ EOT 036 24 $
005 05 * ENQ 037 25 %
006 06 ♦ ACK 038 26 &
007 07 (beep) BEL 039 27
008 08 ■ BS 040 28 (
009 09 (tab) HT 041 29 )
010 0A (line feed) LF 042 2A *

011 OB (hom e) VT 043 2B +
012 OC (fo rm  feed) FF 044 2C *
013 OD (carriage  re tu rn ) CR 045 2D —
014 OE J 3 SO 046 2E
015 OF SI 047 2F 1
016 10 ► DLE 048 30 0
017 11 ■* DC1 049 31 1
018 12 i DC2 050 32 2
019 13 M DC3 051 33 3
020 14 ST DC4 052 34 4
021 15 § NAK 053 35 5
022 16 SYN 054 36 6
023 17 T ETB 055 37 7
024 18 + CAN 056 38 8
025 19 + EM 057 39 9
026 1A SUB 058 3A
027 1B •4- ESC 059 3B ;
028 1C (cu rso r right) FS 060 3C <
029 10 (cu rso r le ft) GS 061 3D =
030 1E (cu rso r up) RS 062 3E >
031 1F (cu rso r dow n) US 063 3F ?

B-2 GW-BASIC



THE CHARACTER SET

A S C II
D ecim al &H C h a ra cte r A S C II

D ecim al &H C h aracter

064 40 @ 096 60 *
065 41 A 097 61 a
066 42 B 098 62 b
067 43 C 099 63 c
068 44 D 100 64 d
069 45 E 101 65 e
070 46 F 102 66 f
071 47 G 103 87 g
072 48 H 104 68 h
073 49 I 105 69 i
074 4A J 106 6A j
075 4B K 107 6B k
076 4C L 108 6C I
077 4D M 109 6D m
078 4E N 110 6E n
079 4F 0 111 6F 0
080 50 P 112 70 p
081 51 Q 113 71 q
082 52 R 114 72 r
083 53 S 115 73 s
084 54 T 116 74 t
085 55 U 117 75 u
086 56 V 118 76 V
087 57 w 119 77 w
088 58 X 120 78 X
089 59 Y 121 79 y
090 5A 2 122 7A Z
091 5B [ 123 7B (

i092 5C \ 124 7C
093 5D ] 125 7D ]
094 5E A 126 7E
095 5F — 127 7F o

GW-BASIC B-3



THE CHARACTER SET

A S C II
D ecim al &H C h a ra cte r A SC II

D ecim al &H C h a ra cte r

128 80 Q 160 A0 a
129 81 U 161 A1 f
130 82 e 162 A2 o
131 83 a 163 A3 u
132 84 a 164 A4 n
133 85 a 165 A5 N
134 86 166 A6 a
135 87 167 A7 Q
138 88 a 168 A8 c
137 89 e 169 A9 r—
138 8A 0 170 AA
139 8B V 171 AB Yi
140 8C ? 172 AC 'A
141 8D i 173 AD i
142 8E Ä 174 AE «
143 BF A 175 AF »
144 90 E 176 BO
145 91 s 177 B1 >:>>
146 92 /£ 178 B2
147 93 0 179 B3 i
148 94 Ö 180 B4
149 95 6 181 B5 H
150 96 u 182 B6 -B
151 97 h 183 B7 -n
152 98 y 184 B8
153 99 Ö 185 B9 =i(
154 9A Ü 186 BA ii
155 9B < 187 BB t1
156 9C £ 188 BC jj
157 9D V 189 BD jj
158 9E P t 190 BE =i
159 9F f 191 BF -i

B-t GW-BASIC



THE CHARACTER SET

A S C II
D ecim al &H C h a ra cte r A S C II

D ecim al &H C h a ra cte r

192 CO L 224 EO a
193 C1 JL 225 E1 ß
194 C2 n r 226 E2 r
195 C3 F 227 E3 IT
196 C4 — 228 E4 2
197 C5 + 229 E5 <7
198 C6 (= 230 E6 ft
199 C7 IF 231 E7 T
200 C8 Ik 232 E8 *
201 C9 F 233 E9 ■e
202 CA JL 234 EA ii
203 CB TT 235 EB 6
204 c c lb 236 EC co
205 CD 237 ED
206 CE JLn r 238 EE £
207 CF -i- 239 EF n
208 DO _u_ 240 FO s
209 D1 241 F1 +
210 D2 n r 242 F2 >
211 D3 U_ 243 F3 I
212 D4 t= 244 F4 r
213 D5 f= 245 F5 j
214 D6 IT” 246 F6 +
215 D7 247 F7 «S
216 D8 + 248 F8 ©
217 0 9 j 249 F9 •
218 DA r 250 FA
219 DB ■ 251 FB V
220 DC 252 FC n
221 DD ■ 253 FD 2
222 DE ■ 254 FE ■
223 OF 255 FF {b lank

'FF ')

A number of codes read by INKEY$ are two-code characters, and 
therefore not part of the ASCII code. If INKEY$ reads one of these 
special characters, the first character is a null character (code 000). In 
this case, your program should examine the second character of the 
string returned by INKEY$. This character is usually the key code 
relating to the position on the keyboard, and only then if the mode for 
th a t key (Shift, Ctrl, Alt, or none a t all) is the one indicated in the 
following list.

GW-BASIC 0-5



THE CHARACTER SET

Second
C h arac te r

Key(s)

3
15
16-25
30-38
44-50
59-68

(null character) NUL 
(shift tab) 1 ♦
Alt- Q, W, E, R, T, Y, U, I, 0 , P 
Alt- A, S, D, F, G, H, J, K, L 
Alt- Z, X, C, V, B, N, M 
Function Keys F I through F10 
(when disabled as soft keys)

71
72
73 
75 
77
79
80 
81 
82 
84
84-93
94-103

104-113
114
115
116
117
118 
119
120-131
132

Home 
Cursor Up 
Pg Up 
Cursor Left 
Cursor Right 
End
Cursor Down 
Pg Dn 
Ins 
Del
F11-F20 (Shift- F I through F10) 
F21-F30 (Ctrl- FI through F10) 
F31-F40 (Alt- FI through F10) 
Ctrl-PrtSc
Ctrl-Cursor Left (Previous Word)
Ctrl-Cursor Right (Next Word)
Ctrl-End
Ctrl-Pg Dn
Ctrl-Home
Alt- 1,2,3,4,5,6,7,8,9,0,-, —
Ctrl-Pg Up

B-6 GW-BASIC



Appendix C

Error Messages

If GW-BASIC detects an error in your program, execution of the 
program usually stops and an error message is displayed telling you 
ju st w hat went wrong. The usual cause of an error situation is tha t 
your program has asked GW-BASIC to contradict the rules of the 
language, but a difference of opinion between GW-BASIC and an 
external device can sometimes be the cause.

If you wish, you can trap  error situations using the ON ERROR 
statem ent and the two GW-BASIC variables ERR and ERL. In this 
case, your error event handling routine should do something about 
the error situation, if you want program execution to continue as if 
nothing had happened. If  it does not, either GW-BASIC will return 
the same error message, or the results of your program will be 
unreliable.

The firs t section of this appendix consists of an overview of error 
numbers. When considering what error possibilities to cover in your 
program, simply look down th is list. For a more detailed description 
of an error number refer then to the second section. Remember, you 
can also define error situations and allocate error numbers yourself 
(see ERROR).

The second section deals with GW-BASIC error messages in 
alphabetical order, and gives you indications as to what might have 
caused the error.

OVERVIEW OF ERROR NUMBERS

N um ber E r ro r  M essage

1
2
3
4
5

NEXT without FOR 
Syntax error
RETURN without GOSUB 
Out of data 
Illegal function call

GW-BASIC C-1



ERROR MESSAGES

6 Overflow
7 Out of memory
8 Undefined line number
9 Subscript out of range

10 Duplicate Definition
11 Division by zero

(This error cannot be trapped)
12 Illegal direct
13 Type mismatch
14 Out of string space
15 String too long
16 String formula too complex
17 Can’t  continue
18 Undefined user function
19 No RESUME
20 RESUME without error
22 Missing operand
23 Line buffer overflow
24 Device Timeout
25 Device Fault
26 FOR without NEXT
27 Out of paper
29 WHILE without WEND
30 WEND without WHILE
50 FIELD overflow
51 Internal error
52 Bad file number
53 File not found
54 Bad file mode
55 File already open
57 Device I/O  error
58 File already exists
61 Disk full
62 Input past end
63 Bad record number
64 Bad file name
66 Direct statem ent in file
67 Too many files
68 Device unavailable
69 Communication buffer overflow
70 Disk W rite Protect
71 Disk not ready
72 Disk media error

C-2 GW-BASIC



ERROR MESSAGES

74
75
76

Rename across disks 
Path /file  access error 
Path not found 
Unprintable error

The following list shows each error message and its number, followed 
by an explanation of the message.

You attem pted to use PUT or GET with a sequential or closed file, to 
LOAD a random file or to execute an OPEN statem ent with a file mode 
other than Input, Output, Append or Random.

This error may also occur when an attem pt is made to read from a file 
opened for output or appending or if you attem pt to MERGE a 
non-ASCII Pile.

Try checking the OPEN command in your program.

Bad file name 64
An illegal form was used for the filename with a KILL, NAME or 
PILES command (e.g. a filename with too many characters).

Bad file number 52
A command references a file with a file number th a t is not OPEN or is 
out of the range of file numbers specified when loading GW-BASIC. 
Alternatively, the device name or filename was too long or illegal.

Check the name and number of the file in the OPEN statem ent for tha t 
file.

Bad record number 63
In a PUT or GET statement, the record number was either greater 
than the maximum allowed (16,777,215) or equal to zero.

Can’t continue 17
You attempted to use CONT to continue a program that:

1. Has halted due to an error.

2. H as been modified during a break in execution

3. Does not exist.

Make sure th a t the program is loaded and s ta rt it with RUN.

GW-BASIC C-3

Bad file mode 54



ERROR MESSAGES

Communication buffer overflow 69
Occurs when a communication input statem ent is executed and the 
input buffer is already full.

Use an ON ERROR trap  to retry  the input. If it is a case of characters 
being received faster than the program can process them, consider 
the following measures:

1. Increase the size of the communications receive buffer via the /C  
option when loading GW-BASIC.

2. If the transm itting device can support a “handshaking” protocol, 
include one in your communications program. This gives time for 
input processing to catch up.

3. Use a lower baud rate for transm itting and receiving.

Device Fault 25
An interface adapter returned a hardware error. When transm itting 
data to a communications file, it indicates th a t one or more of the 
signals being tested (specified on the OPEN “COM... command) was 
not found within the specified period of time.

Device I/O Error 57
An I/O  Error (overrun, parity, fram ing or break) was detected during 
device I/O. When character length is 7 or less data bits, the highest 
order bit is turned on in the byte in error.

Device Timeout 24
Occurs if one or more of the signals to be tested by the OPEN “COM 
statem ent was not found in the specified period of time.

You can direct a trap  handling routine to retry the operation 
(RESUME), but you should lim it the number of attem pts or your 
program could loop indefinitely.

Device Unavailable 68
You attempted to open a file to a non-existent device. Perhaps the 
hardware simply does not exist, or your program has disabled 
communication to the device. For example, COM1 statem ent was 
disabled by specifying the /C  option with the value 0 when loading 
GW-BASIC. If this is the case you will have to return to operating 
system level (SYSTEM) and re-load GW-BASIC.

C-4 GW-BASIC



ERROR MESSAGES

Direct Statement in file 66
A direct Statement (command) was encountered while LOADing or 
CHAINing a file in ASCII format. The LOAD or CHAIN is 
term inated.

The ASCII file should consist only of GW-BASIC commands with line 
numbers. The error may have been caused by a line feed character in 
the input stream.

Disk full 61
All disk storage space is in use. Upon encountering this error 
situation, GW-BASIC closes all files.

Erase any unnecessary files or use a new disk. Then retry the disk 
operation or run the program again from the beginning.

Disk Media Error 72
Occurs when the disk controller detects a hardware or media fault. 
This usually indicates a damaged disk.

Copy any existing files to a new disk and reform at the damaged disk.

Disk not Ready 71
The most likely problem is th a t the disk is not inserted properly.

Disk Write Protect 70
Occurs when you attem pt to write to a disk th a t is write-protected. 
The error may also be caused by a hardware failure.

Check if you are using the right disk. Then remove the write 
protection and retry the operation.

Division by zero 11
A division by zero or the raising of zero to a negative power was 
encountered in an expression. If the cause of the error was division by 
zero, the display indicates machine infinity and the sign of number 
causing the error. A defective exponentiation yields positive machine 
infinity. This error cannot be trapped.

Duplicate Definition 10
Two DIM commands are given for the same array; or, a DIM 
command is given for an array after the default dimension of 10 has 
been established for th a t array by implicit definition; or, the OPTION 
BASE command was encountered by GW-BASIC after the first 
definition or use of an array.

GW-BASIC C-5



ERROR MESSAGES

FIELD overflow SO
A FIELD command attem pted to allocate more bytes than were 
specified for the record length of a random file in the OPEN 
statement; or, the end of the FIELD buffer was encountered while 
doing sequential I/O  (PRINT#, W RITE#, INPUT#) to a random file.

Check if the OPEN statem ent and the FIELD statem ent correspond. 
If you are doing sequential I/O  to a random file, the length of the data 
read or w ritten may not exceed the record length of the random file.

File already exists 58
The filename specified in a NAME command is identical to a filename 
already in use on the disk.

Retry the NAME command with a different name.

File already open 55
A sequential output mode OPEN command was issued for a file that 
is already open, or a KILL command was given for a file th a t is open.

Check th a t you only executed one OPEN to a file if you are writing to 
it sequentially or appending it. Close a file before you use KILL.

File not found 53
A LOAD, KILL, NAME, or OPEN command references a file that 
does not exist on the current disk.

Check th a t the correct disk is in the drive specified, and th a t the file 
specification was entered correctly, including a path if necessary. 
Retry the operation.

FOR without NEXT 26
A FOR command was encountered without a matching NEXT. 
Perhaps a FOR loop was active when the physical end of the program 
was reached.

Include a NEXT command in the program.

Illegal direct 12
You attempted to enter a command invalid in direct mode as a direct 
mode command (e.g DEF FN).

Enter the command as part of a program line.

Illegal function call 5
A param eter th a t is out of range is passed to a system function. This 
error can also be caused by:

C-6 GW-BASIC



ERROR MESSAGES

1. A negative or improbable subscript to an array.

2. A negative or zero argum ent for a numeric function where none is 
allowed.

3. A call to a USR function for which the starting  address has not 
yet been defined with DEF USR.

4. An improper argum ent to a string processing command or 
function.

5. A negative record number used with GET or PUT.

6. Trying to list or edit a protected BASIC program.

7. Trying to delete line numbers which don’t  exist.

Correct the program.

Input past end 62
An INPUT statem ent is executed after all the data in the file has been 
INPUT, or for a null (empty) file.

To avoid th is error, use the EOF function to detect the end-of-file. The 
error also occurs if you try  to read from a file th a t was opened for 
output or append.

If you want to read from a sequential output or append file, you must 
close it and open it again for input.

Internal error 51
An internal malfunction has occurred in GW-BASIC.

Recopy your disk. Check the hardware, and retry the operation.

Line buffer overflow 23
You attem pted to input a line th a t has too many characters.

Separate multiple commands so they are on more than one line; or you 
may use string variables instead of constants.

Missing operand 22
An expression contains an operator with no operand following it. 

Check tha t all the required operands are included in the expression.

GW-BASIC C-7



ERROR MESSAGES

NEXT without FOR 1
A variable in a NEXT command does not correspond to any 
previously executed, unmatched FOR command variable.

Adjust the program so the NEXT has a matching FOR.

No RESUME 19
An error handling routine is entered but contains no RESUME 
command.

Check to include RESUME in your error trapping routine to continue 
program execution. I t is possible to add an ON ERROR GOTO 0 
command to your error trapping routine so BASIC displays the 
message for any untrapped error.

Out of data 4
A READ statem ent was executed when there is no DATA left to be 
read.

Correct the program so tha t there are enough items in the DATA lists 
for all the READ commands in the program.

Out of memory 7
A program is too large, or has too many FOR loops or GOSUBs, too 
many variables, or expressions th a t are too complicated. Extensive 
PAINTing with jagged edges can also produce this error condition.

It is possible to use CLEAR a t the beginning of your program to set 
aside more stack space or memory area.

Out of paper 27
The printer device is out of paper, or the printer is not switched on.

Insert paper, check th a t the printer is properly connected, and that 
the power is on; then, continue the program.

Out of string space 14
String variables have caused GW-BASIC to exceed the amount of free 
memory remaining. BASIC will allocate string space dynamically, 
until it runs out of memory.

Overflow 6
The result of a calculation is too large to be displayed by GW-BASIC. 
Integer overflow causes execution to stop. Otherwise, machine 
infinity with the appropriate sign is supplied as the result and 
execution continues. Integer overflow is the only type of overflow that

c s GW-BASIC



ERROR MESSAGES

can be trapped. To correct integer overflow, you need to use smaller 
numbers, or change to single- or double-precision variables.

If a numeric result is so small tha t GW-BASIC cannot display it 
(underflow), the result is zero and execution continues without an 
error.

Path/fite access error 75
During an MKDIR, CHDIR, or RMDIR operation, NCR-DOS was 
unable to make a correct path to filename connection. The error 
occurred when you tried to create a directory, remove the current 
directory or change a directory. During an OPEN operation you tried 
to open a read only file for output.

Path not found 76
During an OPEN, MKDIR, CHDIR, or RMDIR operation, NCR-DOS 
was unable to find the path specified.

Rename across disks 74
You attem pted to  specify two different disks when reNAMEing a file.

RESUME without error 20
A RESUME command was encountered although no error had been 
trapped. A common cause, the program has run on into the error 
trapping routines. To prevent this, use a STOP or END command at 
the point(s) where execution should stop.

RETURN without GOSUB 3
A RETURN command was encountered for which there is no 
previous, unmatched GOSUB statement. A common cause, the 
program has run on into subroutines. To prevent this, use a STOP or 
END command where execution should stop.

String formula too complex 16
A string expression is too long or too complex.

The expression should be broken into smaller pieces.

String too long 15
You attempted to create a string more than 255 characters long. 

Use smaller strings.

GW-BASIC C-9



ERROR MESSAGES

Subscript out of range 9
An array element is referenced either with a subscript th a t is outside 
the dimensions of the array  or with the wrong number of subscripts. 
See also “Illegal function call”.

Check the usage of the array variable. I t  is possible th a t you 
subscripted a variable th a t is not an array.

Syntax error 2
A line is encountered th a t contains some incorrect sequence of 
characters (such as unmatched parentheses, misspelled command, 
incorrect punctuation, etc.). This error can also occur when a READ 
command tries to assign DATA of the wrong type (e.g. string for 
numeric) to a variable.

Too many files 67
You attem pted to create a new file (using SAVE or OPEN) when all 
directory entries were full, or the filespec was incorrect.

Type mismatch 13
Your program tried to assign a string value to a numeric variable, or 
vice versa; or the wrong type of argument was passed to a function.

Undefined line number 8
A nonexistent line number is referenced in a command.

Use an existing line number (this may be a REM line).

Undefined user function 18
You called a function before you gave the function definition (DEF 
FN). Check th a t the program executes the DEF FN statem ent before 
you use the function.

Unprintable error _
An error message is not available for the error condition th a t exists. 
This may be caused by an ERROR command with an undefined error
code.

Make sure you handle all error codes th a t you create, if you want your 
program to continue execution without intervention.

WEND without WHILE 30
A WEND command was encountered without a matching WHILE.

C-10 GW-BASIC



ERROR MESSAGES

WHILE without WEND 29
A WHILE command does not have a matching WEND. WHILE was 
still active when the physical end of the program was reached.

Correct the program so tha t each WHILE has a corresponding 
WEND.

gw-basic C-11



3

3



Appendix D

Additional Functions

This appendix contains mathematical functions in GW-BASIC 
language which are not intrinsic to GW-BASIC. A useful way of 
storing and calling such “user defined” functions is by means of the 
DEF FN command and the function FN. For example, to define a 
function returning the cotangent of a value, use the following 
statement.

DEF FN COTAN(X) =  1/TAN(X)

To call up the defined function, a command like the following is 
needed:

RESULT =  FNCOTAN(ANGLE)

Note th a t you can use GW-BASIC intrinsic functions as part of your 
function definition. This example makes use of TAN. You can give 
your function any name you wish, within the usual variable naming 
conventions. For example, the following function definition would 
serve the same purpose:

DEF FN SUNTAN(LOTION)= l/TAN(LOTION) 

and could be called up with

ENIGMA =  SUNTAN(SOMETHIN)

but later, you probably would not be able to remember why you 
defined the function in the first place. Therefore, it makes sense to use 
meaningful function names.

Logarithm to base B
Secant
Cosecant
Cotangent
Inverse sine
Inverse cosine

LOGB(X) =  LOG(X)/LOG(B) 
SEC(X) =  l/COS(X)
CSC(X) =  1/SIN(X)
COT(X) =  1/TAN(X)
ARCSIN(X) =  ATN(X/SQR(1-X*X)) 
ARCCOS(X) =  1.570796

GW-BASIC D-1



ADDITIONAL FUNCTIONS

Inverse secant

Inverse cosecant

Inverse cotangent 
Hyperbolic sine 
Hyperbolic cosine 
Hyperbolic tangent

Hyperbolic secant 
Hyperbolic cosecant 
Hyperbolic 

cotangent 
Inverse hyperbolic 
sine

Inverse hyperbolic 
cosine

Inverse hyperbolic 
tangent

Inverse hyperbolic 
secant

Inverse hyperbolic 
cosecant

Inverse hyperbolic 
cotangent

-ATN(X/SQR(1-X*X))
ARCSEC(X) =  ATN(SQR(X*X-1)) 

+(X<0)*3.141593
ARCCSC(X) =  ATN(1/SQR(X*X-1))

+  (X <0)*3.141593 
ARCCOT(X) =  1.57096-ATN(X)
SINH(X) =  (EXP(X)-EXP(-X))/2 
COSH(X) =  (EXP(X)+ EXP(-X))/2 
TANH(X) =  (EXP(X)-EXP(-X))

/(EXP(X)+ EXP(-X))
SECH(X) =  2/(EXP(X)+ EXP(-X)) 
CSCH(X) =  2 /(EXP(X)-EXP(-X))
COTH(X) =  (EXP(X)+ EXP(-X)) 

/(EXP(X)-EXP(-X))

ARCSINH(X) =  LOG(X+ SQR(X*X +  1))

ARCCOSH(X) =  LOG(X+SQR(X*X-I))

ARCTANH(X) =  LOG((l +  X)/(l-X))/2

ARCSECH(X) =  LOG((l+SQR(l-X*X))/X)

ARCCSCH(X) =  LOG((l +  SGN(X)
*SQR(1+ X*X))/X)

ARCCOTH(X) =  LO G ((X +l)/(X -l))/2

D-2 GW-BASIC



Appendix E

Decimal and Hexadecimal Numbers

Conversion of a decimal number to its hexadecimal equivalent is 
provided for by GW-BASIC in the form of the HEX$ function (see 
Chapter 4, Statements, Commands and Functions). This function 
returns the hexadecimal equivalent of a decimal number in the range 
-32768 to 65535 (if the number is negative, a two’s complement form is 
used),

An example of using the HEX$ function:

PRINT HEX$(255) 
will yield 
FF

GW-BASIC does not itself provide a function for converting 
hexadecimal to decimal numbers, but you could use the following 
program, which converts a hexadecimal number to a positive decimal 
value. Enter any hexadecimal number, using uppercase letters for A 
to F. Do not prefix the number with 8H.

9900 INPUT “Hex number”;H$
9905 D EC=0
9910 FOR C% =  1 TO LEN(H$)
9920 CH$=MID$(H$,C%,1)
9930 IF (CH $<“0” OR C H $>“9”) AND (CH $<"A ” OR 

C H $> “F ”) THEN GOTO 9900 
9940 DEC=16*DEC-(CH$<“AT(ASC(CH$)-48)- 

(C H $>“9”)*(ASC(CH$)-55)
9950 NEXT C%
9960 PRINT “Hex ”;H$;“ -  ”;DEC;“ decimal”

Use high line numbers outside your normal programming range. You 
can then leave this program in memory or MERGE it from disk while 
editing your main program. This enables you to do quick hexadecimal 
to decimal conversions during programming, simply by issuing the 
direct statem ent GOTO 9900.
GW-BASIC E-1



c



Appendix F

Keyboard Positions

Your NCR Personal Computer refers internally to the keys of the 
keyboard by means of a keyboard position. In the normal course of 
GW-BASIC programming, you refer to a key by means of the “name” 
printed on it, for example

10 K$=INKEY$: IF K$ =  “N” THEN GOTO 10

However, there are two sets of circumstances in which knowledge of 
the key position is required: when reading a two-code character from 
the keyboard (see Appendix B), and when defining your own key trap 
(see KEY).

The diagram shows the position number on the top of each key on 
your keyboard.

GW-BASIC F-1





INDEX

\  character, 5-2

< C trl-A lt-D el>  key, 1-6 
< C trl-B reak>  key, 1-5

/C  option, 1-4 
/D  option, 1-4 
/F  option, 1-3, 5-1 
/M  option, 1-3, 6-1 
/S  option, 1-4

ABS function, 4-20 
accumulator, floating point, 6-7 
addressing points, 3-2 
AL register, 6-6 
ampersand, 1-11 
AND, 1-26
arithm etic operators, 1-23 
array, 1-17
arrays (in memory), 7-3 
ASC function, 4-21 
ASCII, 1-11, 7-10, B-l 
assembler programming, 6-1 
asterisk, 1-10 
ATN function, 4-22 
AUTO command, 2-5, 4-23

background,3-1 
backslash, 1-11 
BEEP statement, 4-24

GW-BASIC 1



blank, 1-10 
blinking, 3-1, 7-9 
BLOAD command, 4-25 
BLOADing, 6-3 
blocksize, 1-3 
border area, 3-2 
BSAVE command, 4-27 
buffer size,

asynchronous communications, 1-4 
random access files, 1-4

CALL statem ent, 4-29 
caret, 1-10
Cartesian coordinates, 3-3, 3-5 
CDBL function, 4-30 
CHAIN statem ent, 4-31 
character,

mode, 3-1, 7-9 
set, 1-10, 7-10, B-l 

CHDIR command, 4-34 
CHR$ function, 4-36 
CINT function, 4-37 
CIRCLE statem ent, 4-38 
CLEAR command, 4-41 
CLOSE statem ent, 4-43 
CLS statement, 4-44 
colon, 1-11 
colons, 1-9
COLOR statem ent, 3-2 

(character mode), 4-46 
(graphics mode), 4-50 

colors, 3-3, 3-4 
(in memory), 7-7 

COM statem ent, 4-52 
comma, 1-11
COMMON statem ent 4-53 
communications, 5-15 

I/O  functions, 5-16 
signals, 5-17

concantenation, string, 1-30 
constants,

numeric, 1-12 
string, 1-12

2 GW-BASIC



CONT command, 4-54 
control signals, 5-17 
converting numbers 

(decimal-hex), E -l 
(precision considerations), 1-18 

coordinates, 3-2 
COS function, 4-56 
CSNG function, 4-57 
CSRLIN function, 4-58 
cursor keys, 2-2 
CVI, CVS, CVD function, 4-59

DATA statem ent, 4-60 
DATE*

statement, 4-61 
function, 4-62 

DEF FN statement, 4-63 
DEF SEG statem ent, 4-66, 6-1 
DEF USR statement, 4-67 
DEFINT/SNG/DBL/STR statem ent, 4-65 
DELETE command, 2-4, 4-68 
deleting characters, 2-3 
device names, 5-4 
devices, 5-1 
DIM statement, 4-69 
direct mode, 1-9 
directory, 5-2 

commands, 5-4 
disk files,

default number, 1-3 
maximum number, 1-3 

display intensity, 3-1 
division by zero, 1-25 
dollar sign, 1-11 
double precision, 1-14 
double quotation mark, 1-11 
DRAW statem ent, 4-70 
drive letter, 5-2 
drivers, definition of, 7-1

EDIT command, 4-75 
editing keys, 2-1

GW-BASIC 3



END statement, 4-76 
< E N T E R >  key, 1-1 
ENVIRON statement, 4-77 
ENVIRON? function, 4-78 
EOF function, 4-80 
equal sign, 1-10 
EQV, 1-26
ERASE statement, 4-81
ERR and ERL system variables, 4-82
ERROR statement, 4-83
error trapping, 1-32
exclamation mark, 1-11
exiting GW-BASIC, 1-5
EXP function, 4-85
exponentiation (symbol), 1-10
expressions, 1-22
extension, filename, 5-2

FIELD statem ent, 4-86 
file control block, 7-4 
filename, 5-1 
FILES command, 4-88 
files, 5-1

communications, 5-15 
random, 5-6, 5-10 
sequential, 5-6, 5-7 

FIX function, 4-90 
fixed point constants, 1-13 
floating point

accumulator, 6-7 
point constants, 1-13 

FOR...NEXT statem ent, 4-91 
foreground, 3-1 
FRE function, 4-95 
function keys, 2-6 
functional operators, 1-29

GET
(files) statem ent, 4-96 
(graphics) statem ent, 4-97 

GOSUB...RETURN statem ent, 4-99 
GOTO statem ent. 4-101

4 GW-BASIC



graphics
characters, B-l 
mode, 3-2

greater than symbol, 1-11

HEX$ function, 4-103, E-l 
hexadecimal constants, 1-14 
hierarchical structure, 5-2 
high resolution, 7-9

I/O  functions, communications, 5-16
IF statements, 4-104
image inversion, 3-1
IMP, 1-26
IN function, 7-1
indirect mode, 1-9
INKEY$ function, 4-107
INP function, 4-109
INPUT statement, 4-110
INPUT#

statement, 4-113 
function, 4-115 

INPUT$ function, 5-16 
insert mode, 2-2 
INSTR function, 4-116 
INT function, 4-117 
integer

constants, 1-13 
division, 1-24

KEY statem ent, 4-118 
keyboard, 1
KEY(N) statem ent, 4-122 
KILL command, 4-124

LCOPY command, 4-125 
LEFT$ function, 4-126 
LEN function, 4-127 
less than symbol, 1-11 
LET statem ent, 1-16, 4-128 
LINE statem ent, 4-129

GW-BASIC s



line feed, 2-4
LINE INPUT statem ent, 4-132 
LINE INPUT# statem ent, 4-133 
line numbers, 1-8 
LIST command, 4-134 
LLIST command, 4-136 
LOAD command, 1-6, 4-137 
loading

GW-BASIC, 1-1 
LOC function, 4-138 
LOCATE statem ent, 4-139 
locating, file buffer/string variable, 6-4 
LOF function, 4-141, 4-142 
logical operators, 1-26 
LOG function, 4-142 
LPOS function, 4-143
LPRINT,LPRINT USING statem ents, 4-144 
LSET and RSET statem ents, 4-146

machine language routines, 6-1 
mathematical functions, additional, D-l 
medium resolution, 7-9 
memory 

map, 7-2
requirements. 1-3 

MERGE command, 4-147 
MID$

statement, 4-148 
function, 4-149 

minus sign, 1-10 
MKDIR command, 4-150 
MKI$, MKS$, MKD$ Functions, 4-151 
mode,

direct, 1-9 
indirect, 1-9

modulus arithmetic, 1-24

NAME command, 4-152 
naming

devices, 5-4 
files, 5-1

6 GW-BASIC



NCR-DOS, 1-1 
NEW command, 4-153 
NOT, 1-26 
number sign, 1-11 
numbers,

double precision, 1-14 
single precision, 1-14 

numeric
constant, 1-12
operations, precedence, 1-29

octal constants, 1-14 
OCT$ function, 4-154 
Ok prompt, 1-2 
ON COM(n) statement, 4-155 
ON ERROR GOTO statement, 4-157 
ON...GOSUB,ON...GOTO statem ent, 4-159 
ON KEY statement, 4-161 
ON PEN statement, 4-164 
ON PLAY statement, 4-166 
ON STRIG statement, 4-168 
ON TIMER statement, 4-170 
OPEN statement, 4-173 
OPEN “COM statement, 4-177 
operators, 1-22 

arithmetic, 1-23
OPTION BASE statement, 4-182 
options,

/C, 1-4 
/D , 1-4 
/F , 1-3 
/M, 1-3 
/S , 1-4
number of disk files, 1-3 
stdin, 1-2 
stdout, 1-3 

OR, 1-26
OUT statem ent, 4-183, 7-1 
overflow, 1-25

PAINT statem ent, 4-184 
palettes, 3-3

GW-BASIC 7



parentheses, 1-10 
path (directory), 5-2 
PEEK function, 4-189, 7-1 
PEN

statement, 4-190
function, 4-191 

percent sign, 1-10 
period, 1-11 
periods, 1-9 
PLAY statement, 4-193 
plus sign, 1-10 
PMAP function, 4-197 
POINT function, 4-198 
points (pixels), 3-2 
POKE statement, 4-200, 7-1 
POKEING, 6-2 
POS function, 4-201 
PRESET and PSET statem ent, 4-202 
PRINT statem ent, 4-204 
PRINT USING statem ent, 4-207 
PRINT# and PRINT# USING statements, 4-212 
program editing, 2-1 
PUT

(files) statement, 4-215
(graphics) statement, 4-216

question mark, 1-11

random files, 5-6, 5-10 
RANDOMIZE statem ent, 4-221 
READ statem ent, 4-223 
redirecting (input/output), 5-5 
registers, processors, 6-4 
relational operators, 1-25 
relocatable subroutine, 6-3 
REM statement, 4-225 
RENUM command, 1-8, 4-227 
reserved words, 1-15, 2-5, A-l 
reserving memory, 6-1 
RESET command, 4-228

8 GW-BASIC



resolution,
high, 3-2, 3-4, 7-9 
medium, 3-2, 3-3, 7-9 

RESTORE statem ent, 4-229 
RESUME statem ent, 4-230 
retrieving a program, 1-5 
RETURN statement, 4-231 
RIGHT$ function, 4-232 
RMDIR command, 4-233 
RND function, 4-235 
root (directory), 5-2 
routines, machine language, 6-1 
RUN command, 1-6, 4-237

SAVE command, 1-5, 4-238 
saving a program, 1-5 
scan codes, keyboard, 1 
SCREEN statement, 3-2, 4-239 
SCREEN function, 4-241 
screen

addressing, 7-8 
attributes, 3-1

(setting in memory), 7-6 
display, 3-1 
scrolling, 2-5 
size, 3-1 

semicolon, 1-11 
sequential files, 5-6, 5-7 
SGN function, 4-243 
SHELL command, 4-244 
shorthand form, 1-9 
signals, control (communications), 5-17 
SIN function, 4-246 
single precision, 1-14 
single quotation mark, 1-11 
slash, 1-10 
sorting data, 1-34 
SOUND statem ent, 4-247 
SPACE! function, 4-250 
SPC function, 4-251 
SQR function, 4-252 
stack pointer, 6-4

aW-BASIC 9



S ta n d a rd

input device, 1-2 
output device, 1-3 

starting  GW-BASIC, 1-1 
stdin, 1-2 
stdout, 1-3
STICK function, 4-253 
STOP statement, 4-254 
STR$ statement, 4-255 
STRIG

statem ent, 4-256 
function, 4-257 

string
constant, 1-12 
operations, 1-30 

STRING$ function, 4-258 
SWAP statement, 4-259 
symbols, 1-10
SYNTAX NOTATION, 4-18 
SYSTEM command, 1-5, 4-260 
system compatibility, 4-16

TAB function, 4-261 
TAN function, 4-262 
TIME$

statem ent, 4-263
function, 4-264 

TIMER function, 4-265 
TRON and TROFF commands, 4-266 
two-dimensional array, 1-17 
type conversion, 1-18

underflow, 1-25 
underscoring, 3-1 
using files, 5-6 
USR function, 4-267, 6-6 
VAL function, 4-269 
variables, 1-14

(in memory), 7-3 
array, 1-17

VARPTR function, 4-270

10 GW-BASIC



VARPTR$ function, 4-271 
VIEW statem ent, 4-272

WAIT statem ent, 4-274 
WHILE and WEND statem ents, 4-275 
WIDTH statem ent, 3-1, 4-276 
WINDOW statement, 3-3, 4-278 
WRITE statem ent, 4-283 
W RITE# statement, 4-284

x coordinate, 3-2 
XOR, 1-26

y coordinate, 3-2

GW-BASIC





□B Q
NCR Corporation 
Dayton, Ohio 45479

150-0000605 0185


	GW-Basic
	Contents
	Chapter 1  Introduction
	Chapter 2  Full Screen Editor
	Chapter 3  Screen Display
	Chapter 4  Statements, Commands  and  Functions
	Chapter 5  Files and  Devices
	Chapter 6  Running Machine Language
	Chapter 7  For PEEKers and POKErs
	Appendix A  Reserved Words 
	Appendix B  The Character Set
	Appendix C  Error Messages
	Appendix D  Additional Function
	Appendix E  Decimal and Hexadecimal  Numbers
	Appendix F  Keyboard  Position

