

Personal Computer

Technical Reference

Copyright © 1985 by NCR Corporation
 Dayton, Ohio
 All Rights Reserved Printed in U.S.A.

Pirst Editiong July 1985
It is the policy of NCR Corporation to improve products as new technology, components, software, and firmware become ayailable. NCR Corporation, therefore, reserves the right to change specifications without prior notice.

All features, functions, and operations described herein may not be marketed by NCR in all parts of the world. In some instances, photographs are of equipment prototypes. Therefore, before using this document, consult your dealer of NCR office for information that is applicable and current.

YODR NCR PERSONAL COMPOTER PC8 AND THIS MANOAL

Your NCR PERSONAL COMPUTER PC8 is a powerful business/professional personal computer. It is designed to act not only as an independent, selfsufficient system, but also as a control center for systems fulfilling a wide range of business, scientific and technological requirements.

Essential electronics are contained on the controller board. Where possible, LSI components have been used, providing compactness and a high degree of reliability. The microprocessor is the powerful and versatile 80286 , which can be supplemented by the 80287 co-processor, if required. With the additional support of Direct Memory Access, high processing speeds can be achieved. 256 Kilobyte of random access memory are included in the standard version, over and above video RAM.

Also included on the main board is a real-time clock integrated circuit. A battery ensures that time continues to be registered, even after the computer has been switched off. Battery powered CMOS RAM also stores basic information concerning the disk and memory configuration of your system.

Full access to the system bus is available at the expansion card assembly. In addition to display and disk controller boards, this assembly can accomodate up to six cards to expand the features of your system.

The NCR PERSONAL COMPUTER PC8 is operationally compatible with a number of other widely used personal computers. This provides for portability of a large number of software applications and hardware extensions between your NCR PERSONAL COMPUTER PC8 and other personal computers you may have occasion to use.

This Manual is intended for designers, system integrators, and programmers who require detailed information about the construction and operation of the NCR PERSONAL COMPUTER PC8. Information is included about the I / O bus, signal levels and timing, power requirements, and pin assignments. In addition, details are given about low-level software control of hardware functions.

With the help of the information contained in this Manual, you may be intending to make hardware or software changes to the NCR PERSONAL COMPUTER PC8 for specialized use. Because of the complex nature of computer technology, we must stress that NCR cannot accept responsibility for problems arising from such changes. At the same time, we are constantly endeavouring to maintain the quality of information provided in this Technical Reference Manual。 Therefore, if you find that there is a particular aspect of information not already provided in this Manual, or if you want to let us know how useful you find it, please ask your supplier to forward your comments to us.

NCR PERSONAL COMPOTER PC8

TECENICAL REFERENCE MANOAL

CONTENTS
CHAPTER 1: System Overview
Models and Options 1-1
Model Identification 1-2
System Components 1-4
System Connection 1-9
I/O Signals 1-9
Configuration Switches 1-15
Memory Expansion 1-18
The Memory Map 1-20
The I/O Map 1-22
The Power Supply 1-24
The Battery 1-26
Software Protection 1-27
CHAPTER 2: Programable Intelligence
Recovery Time 2-2
80286/80287 Co-ordination 2-3
The Programmable Interval Timer 2-4
Hardware Configuration 2-4
Timer Programming 2-5
Output on Terminal Count (Mode 0) 2-6
Programmable One-Shot (Yode 1) 2-7
Rate Generator (Mode 2) 2-7
Square Wave Generator (Mode 3) 2-7
Software Triggered Strobe (Mode 4) 2-7
Hardware Triggered Strobe (Mode 5) 2-9
Timer Parameters 2-9
Reading the Counters 2-9
The Programmable Interrupt Controller (PIC) 2-11
Introduction 2-11
Why use Interrupts? 2-11
Interrupts and the Microprocessor 2-12
Interrupt Controller Hardware and Logic 2-13
Programming the PIC 2-15
Initializing the PIC 2-18
Operation Command Words 2-21
PIC: ROM BIOS Initialization 2-28
Signal Integrity 2-29
System Interrupts 2-30
Direct Memory Access 2-32
System Integration 2-32
The 8237 Registers 2-36
Command Register 2-38
Mode Register 2-39
Request Register 2-41
Mask Register 2-41
Status Register 2-42
Temporary Register 2-42
Current Address Register 2-42
Current Count Register 2-43
Base Address and Base Count Registers 2-43
DMA Timing 2-43
8237: System Use 2-46
RAM Refresh 2-46
16-bit Transfer 2-47
DMA Page Selection 2-47
DMA: ROM BIOS Initialization 2-48
Equipment Information 2-50
CMOS RAM and the Real-Time Clock 2-51
Real-Time Clock 2-51
Equipment and Status 2-53
CHAPTER 3: The ROM BIOS
CHAPTER 4: The Reyboard
Keyboard Performance 4-14
Special Functions 4-14
Keyboard/System Communication 4-15
Codes from the System 4-15
Codes from the Keyboard 4-17
Status Codes 4-17
Keyboard Scan Codes 4-18
Diagnostics 4-20
System Interface 4-20
The Parallel I/O Controller 4-20
CHAPTER 5: Disk Storage
Introduction 5-1
Flexible Disk Drives 5-1
Motor Turn-on 5-7
Control and Data Signals 5-8
The Flexible Disk Controller 5-16
The Main Status Register 5-18
The Drive Select Register 5-19
Diskette Control Register 5-20
FDC Commands and their Parameters 5-21
Motor On/Off 5-39
FDC Status 5-42
Minimum Format Requirements 5-48
The Hard (Winchester) Disk Drive 5-51
Control and Data Signals 5-54
Transit Precautions 5-62
The Hard Disk Controller 5-62
The Hard Disk Controller 5-62
Status Register 5-63
Command Register 5-65
Data Register 5-68
Error Register 5-69
Pre-compensation Register 5-70
Side/Drive/Head Register 5-7.
Cylinder High and Low Registers 5-71
Sector Number Register 5-71
Sector Count Register 5-71
Hard Disk Register 5-72
Signal Status 5-72
Hard Disk Format 5-73

CHAPTER 6: The Loudspeaker

Hardware Characteristics 6-1
Programming Music 6-1
CHAPTER T: Display Control
Adapter Connection 7-1
Character Display 7-3
The Character Set 7-3
Character Display Memory 7-22
Character Display Control 7-23
The Character Cursor 7-28
Graphics Display 7-29
Graphics Display Memory 7-29
The Graphics Display Controller 7-29
Low Resolution 7-30
Medium Resolution 7-34
High Resolution 7-35
The Graphics Cursor 7-37
Controller Data Conversion 7-37
CHABTER 8: Printers and Comunications
Introduction 8-1
RS-232-C Input/ Output 8-1
Programming the Serial Receiver/Transmitter 8-6
Interrupt Enable Register 8-9
Interrupt ID Register 8-10
Line Control Register 8-10
Modem Control Register 8-1 1
Line Status Register 8-1 1
Modem Status Register 8-12
Internal Diagnostics 8-12
Data Integrity 8-13
The Intersupt System 8-13
Receiver/Transmitter Timing 8-14
Baud Rate Selection 8-17
The Centronics Interface 8-18
Software Control 8-21
Status and Control Registers. 8-21
Port Selection 8-22

APPENDIX

Layouts and Schematics

System Overview

MODELS AND OPTIOMS

The NCR PERSONAL COMPUTER consists of the main unit and the keyboard. The computer is available in different models, and has a variety of options that can be added to each model. Expansion boards from non-NCR ("third party") manufacturers can be used with the NCR PERSONAL COMPUTER, as well as expansion boards offered by NCR.

The standard unit is made up of the following parts:

- Cabinet
- Power supply
* 1.2 MB flexible disk drive with or without a hard disk drive
- Main Processor Board with:
- 80286 Microprocessor
- 256 KB Random Access Memory (RAM)
- 64 bytes battery maintained CMOS RAM holding time/date and equipment status
- 32 KB Read Only Memory (ROM)
- PROM containing unique system unit identification (for sortware protection)
- Plug-in board option expansion slots (6 full bus access, 2 limited bus access)
- Disk drive controller plug in board, occupying one of the full bus access slots

SYSTEM OVERVIEW

To make up a complete system a display controller board must be installed in one of the limited bus access slots and a display unit connected.

The most extensiye configurations of magnetic storage media which can be accomodated in the main unit:

* I flexible disk drive

2 full-height or 2 half-height hard disk drives

* 2 flexible disk drives (second drive 1.2 MB or $360 \mathrm{~KB})$
1 full-height or 2 halfoheight hard disk drives 1 multi-mode tape

2 flexible disk drives (second drive 1.2 MB or 360 kB)
1 full-heignt hard disk drive
1 halfoheight hard disk drive

The disk controller board included in the main unit can support a maximum configuration of two flexible and two hard disk drives. The multi-mode tape requires a separate controller.

MODEL IDENTIFICATIOR

The model number is shown on the plate at the back of the unit:

SISTEM COMPONENTS

This section introduces elements of the NCR PERSONAL COMPUTER shared by all models. Figure 1.1 provides an easy-to-follow diagram illustrating the most important components on the main processor board and those external functions with which the main processor board interfaces.

The CLOCK is the key to co-ordination of the entire system. This unit consists of a crystal supplying a signal of frequency 16 MHz to a Clock Controller. The 88284 Clock Controller divides the frequency of this input signal, in order to provide a suitable timing signal (8 MHz) for the main system microprocessor (CPU), as well as timing signals for other system components.

The TIMER is an integrated circuit which can be programmed to produce a yariety of signals at various intervals. Accuracy is ensured by the Timer deriving its synchronizing signals, by way of suitable frequency division, from the system Clock. You can use the rimer for programmed interval timing. In addition, the Timer can be used to provide the frequencies required if you wish to play music on the computer. The fimer is also used for refreshing random access memory (see below).

The Central Processing Unit (CPU), often simply called "microprocessor", is widely acknowledged as the most "influential" of the integrated circuits. It is the CPU which passes on instructions supplied by you, the programmer, to the other units in the system. Optionally, the CPU can be supported by the 80287 Co-Processor. The Co-Processor is capable of performing, in response to simple instructions, floating-point calculations which would otherwise require extensive programming of the CPU.

The NCR PERSONAL COMPUTER makes use of two types of memory: read only memory (ROM), and a large randon access memory (RAM) of at least. 256 KB . Read only memory contains instructions for the CPU which enable
the latter to get the system started, as well as a "library" of short, but useful, programs known under the collective term BIOS (Basic Input/Output System). It is the task of the BIOS to constantly maintain zommunication between the CPU and the other system units.

Random access memory can likewise contain program instructions for the CPU, but it is also used for storing data being processed by the the program. The random access memory of your NCR PERSONAL COMPUTER is "dynamic", which means that its contents can be changed very quickly, thus providing for fast processing. This also means that memory must be "refreshed" at fixed intervals, to prevent its contents from disappearing. Fortunately, you need not normally be concerned about providing refresh cycles, as this is taken care of by the Timer.

The Direct Memory Access (DMA) Controllers are used for the transfer of large blocks of data to and from memory. DMA is particularly useful for reading data from or writing data to flexibledisk. The CPU does not then have to specify a memory address for each byte read or written. Instead, all the CPU has to tell the DMA Controller is 1) that data is to be transferred between memory and flexible disk, 2) the address of the first byte in memory to be accessed, and 3) the number of bytes to be transferred.

The I/O CONTROLLER is used for bi-directional communication with the keyboard. In addition, it keeps a note of the settings of system configuration switches, so that programs can detect the NCR PERSONAL COMPUTER model being used.

The INTERRUPT CONTROLLERS provide fast notification of the CPU in the event that a system unit requires urgent attention. This is especially important for the Timer and keyboard: the Timer, because an accurate clock (whether your own or provided by the operating system) must not miscount the number of ticks; the keyboard, because this is the most
expedient way for the user to intervene during execution of a program.

64 bytes of battery-maintained CMOS RAM are used for the encoding of a number of system characteristics (memory, disk drives) as well as an accurate clock and calendar.

Additional equipment can be interfaced via one or more of the system bus I/O connectors inside the computer cabinet.

The system BUS provides the ines by which communication between the units of the system can take place. The bus really consists of three busses. The address bus conveys memory or I/O map. addresses by which memory bytes or external devices can be accessed. Data is passed as parallel signals on the data bus. Control bus is a collective term for those signals wich otherwise influence data flow within the system, for example, signals which determine whetber the direction of data flow is read or write, and whether transfer is tolfrom memory or an IfO device. YOur NCR PERSONAL COMPUTER includes a BUS CONTROLLER which relieves the CPU of such bus arbitration duties.

Figure 1.1 System overy

SYSTEM OVERVIEM
Other important logic functions:
NMI Logic determines what source of interrupt may be allowed to issue the CPU non-maskable interrupt. Possible sources are errors on I/O and memory transfers, and co-processor errors.

Wait State Logic enable a bus transfer to be executed over a period of more than one clock unit.

Chip Select (CS) logic converts address information into CS signals for memory and I/O interface integrated circuits.

A DMA Page Register allows DMA to address more than 64 KB of the memory address area.

Parity checking is performed during RAM access.
Figure 1.2 sbows exactly where important integrated circuits are situated on the main processor board.

Figure 1.2 Main processor board IC locations

SYSTEM CONNECTION

The NCR PERSONAL COMPUTER can accomodate up to eight expansion boards (including the disk control ans display control boards). For this purpose, the main processor board, accessed after removal of the cabinet, is provided with eight expansion slots:

6 full bus access (1 of which is required by the disk controller board)

2 limited bus access (1 of which is intended for a display controller board)

The term "limitedm here means a data bus width of 8 bits and 1 MB address capability (slots 1 and 7). Where "full" bus access is available (slots 2-6, and 8), data bus width is 16 bits and address capacity is 16 MB. The full bus also includes additional DMA and interrupt detection capacity.

I/O SIGNALS

Each expansion slot consists of a 62-pin connector. In addition, slots $2-8$ and 8 each have a 36 -pin connector providing wider access to the data and address buses. This section provides details of pin designations.

An mopen bus structure is used. This means that system facilities, including memory, can be accessed from outside the system.

Figure 1.3 System bus pin designations (limited bus)

Figure 1.4 System bus pin designations (extension to full bus)

The following signals are provided for at all eight slots.

RESET DRY Output
This signal is issued in response to a system reset.
BALE Output
Provided by the 82288 bus arbitration IC to latch addresses from the CPU (BALE falling edge). When used with AEN, the address is for DMA (BALE is active during DMA cycles).

AEN Output
This signal is used by the DMA Controller to indicate that it is in control of the address and data busses, as well as the MEMW/, MEMR/, IOW/, and IOR/ lines.

This bus reservation is especially important, as the DMA Controller needs the data bus for the 8 most significant bits of the RAM address to be accessed.

SAO - SA19
Address lines for a memory and I/O address space of 1 MB.

SD0 - SD7
Data lines for 8-bit transfers.
IRQ3-IRQ7, IRQ9 Input
Input signals to the Interrupt. Request Register of the 8259 A Programmable Interrupt Controller. The signal must remain high until the interrupt is acknowledged by the microprocessor.

DRQ1-DRQ3 Input
DMA request lines to the 8237 DMA Controller for 8 bit transfers. These lines can be programmed at the DMA Controller to active low or active high.

DACK1-DACK3 Output
DMA request acknowledge lines. These lines can be programmed at the DMA Controller to active low or active high (the BIOS software specifies active low).

SMEMW/ Output
Determines that data on the data bus is for writing to a selected address in random access memory. This signal is asserted by /MEMW, provided that the address decodes to the lowest 1 MB of CPU address space.

SMEMR/ Output
Determines that RAM data from a selected address is to be placed on the data bus. This signal is asserted by /MEMR, provided that the address decodes to the lowest 1 MB of CPU address space.

IOW/ Input-Output
Determines that the data on the bus is for reading by a device. This signal can be asserted by CPU or DMA controller.

IOR/ Input-Output

Instructs a device to read data from the bus. This signal can be asserted by CPU or DMA controller.

TC Output
The Terminal Count signal supplied by the DMA Controller when the programmed number of bytes has been transferred.

IO CH RDY Input
This signal is normally high. It can be pulled low by a device which requires more than one machine cycle for the transfer of data.

IO CH CHK/ Input
This signal active indicates an I/O or RAM parity error.

OSC Output
The system crystal oscillator signal of frequency 14.31818 MHz . This signal has equal high and loh periods. Note that this signal is not synchronous with the system clock.

CLK Output
A 50% duty cycle frequency of 8 MHz for CPU clocking purposes. Where a frequency output is required, use shoud be mane of the system bus OSCillator connection.

OWSA Input

When this signal is low, the CPU understands that the current bus cycle can be completed without intervention of additional Wait cycles. The signal is derived from an address decoding gated with a 16-bit I/O read or write instruction, where no Wait cycles are required. For 8 -bit $1 / 0$ operations requiring a minimum of two Wait states, the signal should be driven active one system clock following the active gating of the read/write instruction with the device address decode.

REFRESH/ Input/Output
This signal indicates that a memory refresh cycle is taking place, but it can also be provided externally to instigate a refresh cycle.

The following signals are provided for by the 36 -pin full bus extension.

LA17 - LA23
This is the address bus extension, allowing up to 16 MB to be mapped. These signals are valid when BALE is high. They are not latched during CPU cycles

SD8 - SD15
The eight MSBs of the full 16-bit data bus.
MASTER/ Input
After a DMA request has been acknowledged, an external device can assert this signal in order to take over the system bus. However, memory refresh is inhibited during this time.

SBHE Input/Output
Indicates or enables a transfer of data on the 8 MSBs of the data bus.

MEM CS16/ Input
Decoded from LA17-LA23, this signal gives notification of a 16 -bit memory cycle (requiring one Wait state).

IO CS16/ Input
An address decoding provides this signal which gives notification of a 16 -bit I/O cycle (requiring one Wait state).

MEMW/ Input/Output
Indicates that data for memory storage is on the data bus. This signal can be issued by the CPU or DMA controller, or can be accepted from an external source.

SYSTEM OVERVIEW

MEMR/ Input/Output

Instructs memory to place data on the data bus. This signal can be issued by the CPU or DMA controller, or can be accepted from an external source.

IRQ10 - IRQ14 Ingut
Input signals to the Interrupt Request Register of the 8259A Programmable Interrupt Controller. The signal must remain high until the interrupt is acknowledged by the microprocessor.

DRQO DRQ5 - DRQT Input
DMA request lines to the 8237 DMA Controller for $16-$ bit transfers. These lines can be programmed at the DMA Controller to active low or active high.

DACKO, DACK5 - DACK7 Output
DMA request acknowledge lines. These lines can be programmed at the DMA Controller to active low or active high (the BIOS software specifies active low).

CONFIGURATION SWITCBES

The main processor board includes three groups of configuration switches (jumpers) which require setting as illustrated in Figure 1.5. before the computer is used for the first time, and after any of the hardware features concerned has been changed.

The ROM type selector jumper block has the following significance:

1 Pins Connected	1 Adurese Selaction	1 Rom Solection
1	1	1
$11-8$	$1+5$ vde to ROM pin 27	116 KB
$12-7$	1 A15 to ROM SEL decoder	1
3-6	1 A15 to ROM pin 27	132 KB
1 - $1-5$	1 Àis to ROM SEL decoder	1
1	1	1

Figure 1.5 Main processor boond switches

Other configuration switches requiring setting are present on the disk controller (Figure 1.6) and the display controller (Figure 1.7) boards.

Figure 8.8 Disk controller board switchas

MEMORY EXPANSIOR

The NCR PERSONAL COMPUTER is supplied with 256 KB random access memory on the main processor board. This memory occupies the lowermost CPU addresses. Memory can be upgraded to 512 KB (address 7FFFFH) or 640 KB (address 9FFFFH). Memory expansion beyond 640 KB requires the installation of a separate memory board.

Memory expansion Kit 3299-K110 contains integrated circuits for 128 KB. When installing these on the main processor board, the sockets must be populated as shown in Figure 1.8, and the appropriate main processor board configuration switches set. (see previous section).

Figure 1.8 Main processor board memory expansion

Configuration switches on any memory expansion board (s) installed (3299-K111, 3299-K112) must be set to reflect the amount of memory on the memory expansion board and the start address(es) of the memory expansion (see Figure 1.9).

Jumper pl: closed for jMB on board
opon for 51E KB on boord

S1:
start dofess selection for first 512 KB
S2: second 592 KB

Figure 1.9 Memory expansion board switches

It is possible to install more than one memory expansion boards, subject to availability of slots (full bus access), but address areas set by the switch blocks S1 and $S 2$ must not overlap. It is also important to make sure that a starting address does not cause a clash of addresses with main processor board and display memory (lower CPu addresses) or Read Only Memory (bigher Cpu addresses).

THE MEMORY MAP

Figure 1.10 sets out the memory map of the NCR PERSONAL COMPUTER.

Figure 1.10 Memory map

THE I/O MAP

Figure 1.11 illustrates the use of port addresses in the I/O map of the NCR PERSONAL COMPUTER Details of system use are to be found in the appropriate interface and system function descriptions in this Manual.

Figure 1.11 I/0 map

THE PONER SUPPLY

The primary-switched power supply contained in the main unit supplies power to the following parts of the system:

- Main processor board
* One or two flexible disk drives
* One or two hard disk drives
- Expansion slots
- Keyboard
* Display (primary output)

The power supply is cooled by a fan with temperaturedependent rotation speed. The fan supply is $<=+12$ Vde (pin P5 is ground).

Primary input characteristics of the power supply are given in Figure 1.12.

Figure 1.12 Pomer source requirements
Figure 1.13 gives details of secondary, rectified output power. In addition, a Power Good signal is provided, which is capable of driving up to six TTL loads. For reasons of output stability, a dummy load resistor is connected as long as no hard disk drive is installed.

Figure 1.13 Power output

Figures 1.14 and 1.15 show power cable connections to the main processor board and the disk drives.

Figure 1.14 Power connections to main processor board

Figure 1.15 Power connections to disk drives

THE BATTERI

Providing power for the real-time clock and CMOS RAM is a 6 volt Lithium battery. The pin assignments of its connector are shown in Figure 1.16.

Figure 1.16 Bettery connector

SOFTHARE PROTECTION

Use of an application can be effectively confined to a single main unit by making successful execution dependent on the identification of anique code. Such a code is held in a PROM mapped into I/O addresses in the range

$$
\mathrm{OEOH}-\mathrm{OEFH}
$$

The PROM structure of this machine identification is set out below. All digits are coded as 4-bit binary values (e.g. "gn is coded as 1001), other characters are ASCII-coded (e.g. "Cn is coded as 43H).

I/O address byte (Hex]	Contents	Sigmi ficance
EO	c	
E1-E2	3279	NCR Class [3 is lowest nibble]
E3	00	
E4	17	(1 is lower mibble)
E5	hyphen [20H]	
E6-E8		Tracar no. in 6 digits
E9	00	
$E A-E E$	00	Can be used for customer expansion [own PRom,
EF	OD	

Programmable Intelligence

This Chapter introduces a number of hiohly versatile integrated circuits present on the main processor board. The ICs described perform functions which to many users are not always evident at first sight, but which are, however, integral to the efficient working of your NCR PERSONAL COMPUTER. These ICs are the Timer, the Programmable Interrupt Controllers, the Parallel Input/Output Interface, and the DMA controllers.

The Timer, as its name suggests, provides a useful tool for real-time applications. It can be set to issue an output signal after a programmed delay on a one-off basis, or it can supply repeated signals at programmed intervals. It can even be used to supply oscillator frequencies for the small loudspeaker (this is described in a separate Chapter).

The Programmable Interrupt Controllers detect and manage service requests not only from selected peripheral devices but also from other internal system functions, such as the rimer. The obvious advantage of a Programmable Interrupt Controller is that the system microprocessor (Central Processing Unit) does not have to continuously check the other units ("polling") to see if they are requiring attention: the CPU is interrupted only if a unit has expressly requested attention and the Programmable Interrupt Controller has decided, on the basis of its programmed priority logic, that the request deserves attention.

The Parallel Input/Output Interface relates to a number of system functions: it reads keyboard data as well as the system hardware configuration (memory, disk, co-processor, display), and has certain enabling functions (serial I/O, RAM parity check).

PROGRAMMABLE INTELLIGENCE

The Direct Memory Access (DMA) controllers offload the CPU where blacks of data have to be transferred to and $\mathbb{S r o m}$ random access memory. Although the CPU cannot use the system bus during DMA cycles, it can perform internal register arithmetic. Bus arbitration circuitry ensures that CPU and DMA controller do not clash over the system bus.

The Real-Time Clock provides clock and calendar functions. Time and date can be read from batterysupported CMOS RAM in the CPU I/O map. This RAM totalling 64 bytes, also contains system configuration information.

Your NCR PERSOMAL COMPUTER can include other programmable integrated circuits dedicated to more readily recognized peripheral control functions, for example the serial I/O, CRT, flexible and fixed disk controller interfaces. These are described in the relevant Chapters of this Manual.

The system microprocessor is an 80286, with the possible addition of an 80287 mathematics coprocessor. There is a wealth of generally available literature on the this family of microprocessors to which you can refer.

RECOVERY TIME

Because of the high frequency at which the CPU is clocked, it is inadvisable to address another integrated circuit with consecutive CPU instructions. The reason for this precaution is that some ICs may not recover in time following the first I/O operation.

To avoid posssible problems insert a ${ }^{\text {ndummy }}$ CPU instruction between I/O operations to the same IC. A JUMP SHORT (relative) instruction fulfils this requirement:

This is usual assembly language syntax for "jump two bytes ahead of the first byte of this instruction", that is, simply go to the next instruction A simple register-to-register instruction will not delay long enough.

80286/80287 CO-ORDINATION

The co-processor, which can be installed as an option, is clocked with $2 / 3$ of the CPU clock frequency. The co-processor functions as a device in CPU I/O address space. The following ports are dedicated to the CPU/co-processor interface:

OF8H-0FFH	Transfer of opcodes and operands from CPU to co-processor, and return of results.
OF1H	Writing the value zero to this port sets the co-processor's Real Address mode of operation. This is the power-on/reset status. (Protected mode is achieved at CPU level by means of SETPM followed by the ESCape instruction)
OFOH	Writing the value zero to this port clears the co-processor's Busy latch.

TEE PROGRAMMABLE DITERVAL TIMER

Interyal timing in the NCR PERSONAL COMPUTER is provided by an 8254 Programmable Interval Timer. This integrated circuit can be used as three independent 16-bit counters. The Timer is interfaced to the data bus, so that Timer values can be transmitted and read by the microprocessor. In addition, the Timer can be used to generate interrupts at programmed intervals or a single interrupt after a specific interval. Counting is carried out internally by the Timer, either as a binary or a Binary Coded Decimal (BCD) operation. Counting speed is determined by an external clock signal. Counting is achieved by decrementation of a Counter from the value loaded down to zero.

FARDARE CONFIGORATION

Communication between Timer and microprocessor is via the Port addresses $40 \mathrm{H}-43 \mathrm{H}$ (see Figure 2.1).

,	Instruction	1	Function
		1	
1		,	
1	OUT SOH	1	Loed Counter a
1	OUT 41H	1	Load Counter 1
1	OUT 42 H	1	Loed Counter 2
1	OUT 43 H	1	Specify Timer operation
1		1	
1	IN 40H	1	Reed Counter 0
1	IN 41H	1	Read Counter 1
1	IN 42H	1	Read Countar 2
1	IN 43H	1	No operation
1		1	

Figure 2.1 Timer ports
The signal frequency of 1.19318 MHz common to all three clock inputs of the Timer (CLKO, CLK1, CLK2) is derived from a 14.318 MHz crystal with capacitive trimmer adjustment, an 8284A Clock Controller, and
one further division (by 2). Note that this is separate from the crystal from which the CPU clock is derived.

The three output signals from the Timer (OUTO, OUT1, OUT2) are issued to the following system components:

OUTO - Timer Interrupt (type 8) to the 8259A Programmable Interrupt Controller. This Timer output is set to an effective frequency of approximately 18.2 ticks per second (more accurately: 18.2065) by loading the 16 -bit Counter with the maximum decrement value of zero (not offFFH: terminal count is not attained until the decrementing counter passes to zero).
OUT1 - Memory Refresh line. Initialization firmware requires only the lower 8 bits of the decrement counter. The value set is 12 H , which yields a signal period of approximately 14 microseconds.
OUT2 - Signal to the parallel input/output interface with unrestricted user availability.

TIMER PROGRAMMING

Counters can be programmed independently of one another. Before a counter is initialized it is in an undefined state. The following programming steps are required, in order to set up a Timer Counter.

One byte must be transmitted to the Timer's Control Register via Port 43H. The value of this byte is made up as shown in Figure 2.2.

D7	D6	D	D5	D4	D3	D2	D1	DO
	I	via Port						

Figure 2.2 Timer control register

COUNTER is a two-bit binary value $0-2$, denoting the number of the Counter to be accessed. Therefore, to access Counter 2, D7 should be set and D6 zero. R/W SELECT determines the way in which the specified Counter is to be loaded or read. The type of operation to be carried out (read or load) depends on whether an IN or OUT instruction is being used (the Timer has pin connections for/kD and/WR signals). The sigmificance of the binary value contained in these two bits is as follows:

0 Counter Latcining (see below)
1 Read/load more significant byte of Counter
2 Read/load less significant byte of Counter
3 Read/load both Counter bytes (less significant first)

BCD: if this bit is set, the 16 bits of the selected Counter are used as a 4 -digit $B C D$ counter. If this bit is zero, the Counter represents a 16-bit binary value.
MODE may be a binary yalue $0-5$ in three bits. The following modes can be implemented in the NCR PERSONAL COMPUTER hardware (applications requiring a rising edge at the GATE can be implemented only with Timer 2):

> 0 - Output on terminal count
> 1 - Programable one-shot
> 2 - Rate generator
> 3 - Square wave generator
> 4 - Software triggered strobe
> 5 - Hardware triggered strobe

These Timer modes are described in detail in the following sections. Timing characteristics for the Timer modes are illustrated in Figure 2.3.

Output on Terminal Count (Mode O)
Following the loading of the Counter, the signal OUTput pin for that Counter goes low, and remains low until the Counter has decremented to zero. The OUT
signal then goes high, and remains high until the Counter is next programmed. If you write a new value to the Counter before the old count has expired, decrementing resumes from the new value. From the hardware point of view, mode 0 is enabled by a high signal at the Gate for the specified Counter. This signal is permanently present at the Gate for Counters 0 and 1.

Programmable One-Shot (Mode 1)

OUTput goes low following a rising edge at the GATE, and goes high at terminal count. Resetting the counter value while OUTput is low does not affect the current terminal count, but comes into effect the next time the OUTput signal goes from high to low. The one-shot can be re-triggered without any need to reload the Counter.

Rate Generator (Mode 2)

An OUTput low pulse of one clock is.issued upon terminal count. This cycle is initiated by the GATE going from low to high, and continues until the GATE goes low. A newly set Counter value comes into effect after the next OUTput pulse.

Square Wave Generator (Mode 3)

As Mode 2, except that ouTput remains high for the first half of the count and goes low for the second half (achieved by decrementing by 2 at each clock). If the Counter specifies an odd number, the first decrement in the first countdown is by 1 , the next countdown starts with a decrement of three. This sequence is repeated until the GATE goes low.
The square-wave characteristic of this mode makes it suitable for driving louspeaker circuitry.

Software Triggered Strobe (Mode 4)
As soon as this mode has been loaded, the OUTput for the selected Counter on the Timer goes high. When the Counter has been subsequently loaded, counting
begins, As soon as the count has decremented to zero, the OUTput goes low for one clock period, and then high again. If your software reloads the Counter during decrementing, the new Counter value takes effect at the next clock signal. As in mode 0 , operation of mode 4 is dependent on the presence of a

higb signal at the Gate (decrementing would be suspended if this signal were low).

Hardware Triggered Strobe (Mode 5)
Following a rising edge at the GATE, counting starts The count continues until terminal count, whereupon the output goes low for one clock period. The count can be re-triggered at the GATE without reloading the Counter.

Timer Parameters

Following the Timer Control Register byte detailed above, the Timer expects the number of bytes specified in the two bits R/W to be transmitted by the microprocessor (load operation), or the specified number of bytes to be read. The one or two-byte value is then read from or written to the data bus Loading all zeros into a Counter results in a maximum count (OFFFFH in binary, 9999 in $B C D$ counting).

Note that it is not necessary to read or write immediately after setting the Timer Control Register. However, the specified number of bytes must be read or written. In mode 0 , as soon as the Timer recognizes that the first (or only) byte is being transmitted, the decrementing process is suspended until the new Counter contents have been read.

Reading the Counters

Reading Counter registers requires some care in order not to disturb the counting process. A Counter can be read directly or via a Counter Latch. The former method requires counting to be inhibited during the reading process. This can be achieved only by controlling the Gate or suspending the clock signal to the Counter which is to be read. For this reason, you should use the Counter Latch method.

To read a Counter Latch, a byte must be written to the Control Register, specifying the Counter and with

D5 and D4 zero friss command has no efrect on the MODE and $B C D$ settings). Then issue a read Counter byte to the Control Register and read the one or two bytes specified.

THE PROGRAMMABLE INTERRUPT CORTROLLER (PIC)

INTRODUCTION

Why use Interrupts?

There are two methods by which a call for attention from a device can be recognized by a program. One method is for the microprocessor to sample the status of the device at periodic intervals (polling), whereupon the program decides whether that status represents a call for attention. The other method is for the processor to be "interrupted" by a signal from the device, and then to proceed to a program routine which deals with the special situation. Afterwards, execution of the interrupted program may continue, if desired.

The advantage of the first method is that a large number of devices can be read via the computer port addresses, without additional hardware. This method can be most effectively applied in situations where information from a device is constantly required at regular intervals. Disadvantages arise when this need for information, or the device requests for attention, are only occasional and irregular. Polling then means in many cases ineffective use of microprocessor time. Furthermore, the time which elapses before the device request for attention is recognized can vary, depending on conditional branches taken within the current program.

For these reasons, it is often more practical to make use of the ability of the microprocessor to recognize an external interrupt in the form of a signal at the INTR pin. Assuming that interrupts at the microprocessor are currently enabled, the interrupt signal is noted by the microprocessor in an internal flip-flop, and another microprocessor pin issues a signal acknowledging the presence of the interrupt signal. Although the microprocessor does not proceed to deal with the interrupt until completing the current instruction cycle (assembles instruction), it
is not necessary to synchronize the issuing of an interrupt with the microprocessor.

Iaterrupts and the microprocessor
Following acknowledgement of the intersupt by the microprocessor, the interrupting device must place an 8-bit value on the data bus. This value represents one of 256 different interrupt mypesm. The first five types of interrupt are reserved by the microprocessor for special, internal purposes:
Type 0 Division by Zero.
Iype 1 Single step.
Type 2 Non-maskable Interrupt: this interrupt type
is recognized when a signal (active low) is
present at the NMI pin of the
microprocessor.

Type 3 This interrupt type is recognized when a software interrupt is issued by means of the one-byte INT instruction
Type 4 Integer Overflow.
The NCR PERSONAL COMPUTER hardware makes use of the fifteen interrupt types in the range $8-17 \mathrm{H}$, in addition to the $\mathbb{N M I}$ (described at the end of this section). The Basic Input/output System software (BIOS) uses a number of other interrupt types for "software" interrupts (INT instruction).

Starting with the next instruction cycle, the microprocessor automatically PUSHes the flags onto the stack and clears the interrupt flag, thus disabling further interrupts. Following this, the current walues of the Code Segment and Instruction Pointer are PUSHed onto the stack, and new values, determining the starting address of the interrupt service routine, are retched from the "interrupt vector" which occupies the first 1024 bytes of machine memory. After this routine has dealt with the interrupt situation, and provided that the interrupt service routine is concluded by an IRET instruction, the Code Segment and Instruction Pointer are restored to their former yalues. The flags are likewise
restored, with the effect that the interrupt flag is enabled for further interrupts. (It is admissible for the interrupt service routine to enable the interrupt flag, thus allowing interrupts to be nested.)

The "interrupt vector", in the microprocessors's "Real Address" mode, is the 1024 -byte area at the beginning of machine memory, where the CS and IP values for up to 256 interrupt types are held. Therefore, addresses 0-3 are concerned with interrupt type 0, addresses 4-7 with type i, and so on. In each case, the paragraph value (CS) of the address of the interrupt handling routine must be present in the two uppermost bytes of the four byte block, the Instruction Pointer value in the two lowermost bytes. For example, the CS part of the starting address of the interrupt service routine for interrupt type 10 (0 AH) is fetched from bytes 2 AH and 2 BH , the IP value from bytes 28 H and 29 H .

INTERROPT CONTROLLER HARDUARE AND LOGIC

The NCR PERSONAL COMPUTER makes use of two 8259A Programmable Interrupt Controller (PIC) integrated circuits in a master/slave configuration. One PIC can control up to eight interrupts from different sources, tell the microprocessor which device has requested attention, and allow the programmer to set priorities among the possible interrupts.

Refer to the schematics in the Appendices regarding the integration of the PICs into the NCR PERSONAL COMPUTER hardware.

Use of the interrupt lines which can be controlled by the PICs is shown in Figure 2.4.

Figure 2. 4 PIC interrupt requests

PROGRAMMING THE PIC

The 8259 A Programmable Interrupt Controller can be regarded as consisting of four logical aspects, as shown in Figure 2.5. This programming description deals with the most important general aspects of programming the PIC, drawing special attention to those programming elements which are essential to it's functioning in the NCR PERSONAL COMPUTER environment. For a complete description of the PIC hardware and software interfacing possibilities, you may wish to refer to the publications of the integrated circuit manufacturer.

Figure 2.5 PIC architectura
The data buffer provides a three-state interface to the system bus.

The Control Logic consists of

* Selection of the PIC by means of an (active low) signal to the CS/ pin. If this signal is not present, the PIC cannot be read or written to.
* Issuing an interrupt signal (active high) to the microprocessor and awaiting acknowledgement
(active low) from the microprocessor. In 8088 mode, the first of these acknowledgement signals places the identity of an interrupt in the InService Register (see below). A second signal causes the PIC to place an interrupt number on the data bus, with which the processor will calculate the gour bytes ($\mathrm{CS}+\mathrm{IP}$) to be read from the interrupt yector in machine memory.
* The Read/Write logic. Following an active low signal at the WR/ pin, the BIC can receive commands from the microprocessor. If there is an (active low) signal at the RD/ pin, the PIC can be instructed to place information on the data bus. If active signals are present at both these pins concurrently, the RIC can be neither read nor written to.
* Additional selection of Read/Write functions by means of data lines D3 and D4 and the address line 0. Addressing the PIC via port 21 H of the NCR PERSONAL COMPUTER sets this address line to high, addressing the PIC via port 20 H sets it to low.

The Interrupt Logic comprises

* The Intergupt Request Register (IRR). This register notes for each of the eight interrupt lines whether an intersupt is waiting to be handled. A bit in the IRR is set by a signal (active high) on the corresponding interrupt line. This signal must remain high until the processor is ready to deal with that interrupt.
* The In-Service Register (ISR). This register stores interrupts which are currently being handled. The bit for a particular interrupt is set as soon as the acknowledgement signal arrives from the microprocessor. The corresponding bit in the IRR is then reset.
* The Priority Resolver. This decides the priority of the interrupts. An interrupt acknowledgement
signal transfers the interrupt with the highest priority from IRR to ISR.
* Interrupt Mask Register. This register disables individual interrupt request. lines by means of a bit mask. Masking an interrupt request (IR) line does not affect the other IR lines.

The Cascade Logic uses three lines so that up to eight slave PICs can be addressed. The slave is addressed by the master whenever the former has to place an interrupt type number on the bus. Therefore, the cascade line are output for a master PIC, and input for a slave PIC.

In principle, each Interrupt Request signal can be supplied by a separate slave PIC. The NCR PERSONAL COMPUTER master PIC uses only one IR line for slave connection (IR2).

Communication between microprocessor and PIC consists of Initialization Command Words (ICW) and Operation Command Words (OCW) transmitted to the PIC, and PIC register status (IRR, ISR, IMR, or interrupt type) read by the processor. Figure 2.6 summarizes the signals required in order to switch between these various modes of communication. The software means by which these initialization and operational functions are achieved is explained in the remainder of this description of interrupts.

AO	H08	WR	03	04	
10	1	0	x	8	Data bus is to be read by PIC as ICW1.
10	1	0	0	0	- OCW2.
10	9	0	1	0 OCN3.
18	8	0	\times	\times	Data bus is read by PIC as OCW1. ICW2,
1					or ICW3, according to logic sequence of
1					commands [see belowl.
1					
10	0	1			The PIC is to place IRR, of ISR, or
1					interrupt type on data bus, according
1					ro contents of previous OCW2.
1.1	0	1			The PIC is to place IMR on data bus.

Figure 2. 6 PIC addressing

Note: These commands are yalid only if the CS line is active (lowl. If chis tine is high, or if both RD/ and WR/ are active flomlo PIC access to the dete bus is disabled.

Initializing the PIC

The microprocessor must place up to four Initialization Comand Words (ICWs) on the data bus in order to initialize the PIC. ICW must be transmitted to the PIC with address line AO at logical 0 (Port $20 H$ for master PIC\#1, OAOH for slave PIC \#2). Transmission of the other ICW's requires that AO is set to 1 (Port $21 H$ for PIC \#1, OA1H for PIC \#2). The format of the first two of these data bytes is shown in Figure 2.7 .

Figure 2.7 Initialization command words 1 and 2

D7-D5 in ICW1 are really "don't caren. (They are only required in the PIC 8080 mode, where they state an interrupt vector address.)
DETECT indicates whether interrupts are level or edge triggered. The NCR PERSONAL COMPUTER firmware resets this bit (0), thus determining edge triggering.
If edge triggering is set, an interrupt is recognized upon a low to high transition on an interrupt request line. Level triggering is achieved by the presence of a high signal. Note that the interrupt signal (sequence of trigger pulses or constant high, according to DETECT mode selected) must not be removed from the interrupt request line until the first acknowledgement signal for that interrupt has been received from the microprocessor. In practical terms, this means that the IR signal should be reset at the issuing device by the interrupt service routine, otherwise the PIC may recognize the continued signal as a second interrupt request (see also "Signal Integrity", below).
CASC is zero (0) to indicate that the PIC is not single, but is operating in a master/slave configuration (cascading). This applies to both PIC $\dot{\#} 1$ and PIC \#2.
ICW4 is set (1) to indicate that ICW4 is included as the last Initialization Command Word.

D7-D3 in ICW2 are to contain a binary value in five bits corresponding to the microprocessor interrupt type to be issued in response to an interrupt signal at PIC pin IRO. For example, the value 8 (01000 B) determines that a valid interrupt request at PIC pin IRO will cause the PIC to notify interrupt type 40 H to the microprocessor. IRi then corresponds to interrupt type 41 H , and so on. The actual five-bit value for D7-D3 used by for PIC $\# 1$ is 1 , so that IRO results in microprocessor interrupt type 8 (IR1: interrupt type 9, etc.). The corresponding value for PIC $=2$ is OEH, so that IR8 governs interrupt type 70 H (IR9: interrupt type 71 H , etc.).

ICW3 is used by the PIC for master/slave identification. ICW1 has already stated that there is
more than one PIC in the configuration (where ICW 1 indicates a single PIC, ICW3 is omitted from the initialization sequence).
For the master (PIC \#1), ICW3 is a bit map reflecting those Interrupt Request lines deriying their source signals from a slave PIC. The NCR PERSONAL COMPUTER therefore requires bit 2 to be set (see Figure 2.4). In the case of the slave (PIC \#2), the five MSBs of ICW3 are zero, while the three LSBs reflect the slave's identification; therefore ICW3 for PIC \#2 isgiven the value 2.

The format of ICW4 is shown in Figure 2.8.

Figure 2.8 Initialization command word a
SM, if set, instructs the PIC to apply a special fully nested mode when PIC's are cascaded in a master/slave configuration. This ensures that servicing an interrupt from a slave does not preclude higher priority interrupts from the same slave. BUF, if set, applies a buffered mode to interrupt requests.
M/S determines whether a PIC is master (1) or slave (0), provided that the BUF bit is set.

Where ICW 4 is written with all three bits SM, BUF, and M/S zero, the normal fully nested mode of interrupt priority applies (see next section).

AEIO can be set or zero. When zero, this has the effect that the ISR bit is not reset until an End-ofInterrupt (EOI) command is encountered at the end of the interrupt service routine (see Operation Command Words, below). If AEIO is set, the ISR bit is reset when the PIC detects the trailing edge of the second interrupt acknowledgement signal from the
microprocessor. In order to clear this "automatic" End-of-Interrupt mode, it is necessary to repeat the PIC initialization, this time with AEIO zero. P denotes the type of microprocessor being used in conjunction with the PIC. This bit is set (1) to denote the presence of the 80286 CPU.

Operation Command Yords

Following the initialization described above, the PIC is ready to receive interrupts on all eight interrupt lines (IRO-IR7). It is good practice initially to mask (disable) all the interrupt lines, either by means of the microprocessor CLI instruction or the Operation Commands Words described below, or both. An interrupt request must not be allowed to occur until its interrupt vector entry is written and its interrupt service routine is available Furthermore, interrupt requests which are not in use should be masked by OCW, so that spurious line signals do not pass control to a possibly non-existent interrupt service routine. Fortunately, this set-up procedure is taken care of by the initialization firmware. However, you should bear these considerations in mind, if you wish to use a particular interrupt request for a purpose other than its standard hardware function. If this is the case, you should be wary of re-assigning these hardware interrupts, as this means depriving the BIOS of its hardware interface. More often than not, such changes will entail writing alternative initialization procedures and BIOS routines.

The Operation Command Words (OCWs) make it possible for you to mask and unmask (disable and enable) individual interrupt request lines to the PIC, and to set priority schemes for dealing with interrupts. These facilities result in considerable savings of microprocessor time for your application, as an interrupt is passed to the microprocessor only if it fulfills the conditions determined by the current masking and priority scheme.

Even without Operation Command Words the PIC is capable of receiving interrupt requests. The PIC is then in the "Fully Nested Moden. Interrupt requests are regarded by the PIC as having different priorities: IRO bas the highest priority. IRT the lowest.

As soon as the interrupt acknowledgement is received from the microprocessor, the PIC places on the data bus the interrupt type of the interrupt request (see ICW2) with the highest priority. This means that if more than one interrupt request is present at a time, the one with the highest priority is dealt with. The PIC recognizes which IR lines have requested an interrupt by inspecting its Interrupt Request Register (IRR).

The PIC then checks its In-Service Register (ISR) to see if an interrupt is currently being processed. If none is being serviced, the interrupt type is transmitted to the processor and the interrupt service routine is activated as outlined in the Introduction to this description. The ISR bit for the interrupt is now set, and the corresponding IRR bit zero.

If an interrupt is currently being serviced, the PIC checks whether the new interrupt request is of higher priority. If this is the case, the ISR bit for the new interrupt is set, and the corresponding IRR bit is reset. The new interrupt request is then allowed to interrupt the currently active interrupt service routine: Slags , $C S$ and $I P$ of the interrupted routine are PUSHed onto the stack in the usual way, so that the microprocessor can later find its way back to this routine, without assistance from the PIC. In the event that the new interrupt request is of priority equal to or lower than that of the interrupt currently being serviced, the new interrupt request must wait (IRR bit remains set) until higher priority interrupts have been serviced.

Your software cans of course, set and clear the CPU interrupt Flag (assembler instructions: STI, CLI). By
clearing the interrupt flag, all interrupts to the processor, including those of higher priority, are disabled. However, interrupt requests occurring while the processor interrupt flag is cleared are not lost, as an IRR bit in the PIC is reset only when the interrupt is about to be serviced.

Once an interrupt from the PIC has been serviced, its ISR bit must be reset, so that waiting interrupts can be dealt with. Assuming that the AEIO bit in ICW4 was zero, interrupt service routines should conclude with an EIO Operation Command Word. This clears the appropriate bit in the ISR, thus informing the PIC that a particular interrupt has been serviced. Two EOIs have to be issued after servicing an interrupt to a slave PIC, as both master and slave must be informed).

There are two types of EOI commands. As long as the priority scheme is the default Fully Nested Mode, you do not have to specify which interrupt has been serviced. The PIC will automatically reset the highest priority ISR bit currently set, this representing the most recently acknowledged and serviced interrupt. Therefore, a "non-specific" EOI is all that is required. A "specific" EOI is required in situations where your software has determined a priority scheme deviating from that of the Fully Nested Mode (see OCW2, below). This is because the PIC cannot ascertain the source of the interrupt most recently acknowledged and serviced. A "specific" EOI differs from a "non-specific" EOI, in that the former must specify one of the eight interrupts.

If automatic End-of-Interrupt is active (AEIO bit in ICW4 was set), the EOI automatically issued is nonspecific. You will normally use the automatic End-ofInterrupt facility only when a nested priority structure is not required, for eqample, when all IR lines except one are masked. To alter the value of the AEIO bit, your software must go through the complete ICY sequence again.

PROGRAMMABLE INTELLIGENCE

The masking and priority scheme of the PIC can be programmed by means of up to three Operation Command words. OCWl can be transmitted only when address line AO is at logical 1 (Port 21H for PIC $\begin{aligned} & \text { (1) port } 0 \text { A1H }\end{aligned}$ for $\mathrm{BIC} \# 2$). For the other OCWs, AO must be 0 (Port 20 H for PIC $\# 1$, OAOH for PIC \#2). Operation Command Words do not have to be issued in a particular sequence.

OCW1 masks all or selected interrupt requests to the PIC. If a bit in the Interrupt Mask register is set, the corresponding ISR bit is masked. However, once an interrupt has been acknowledged by the PIC, it will inhibit lower priority interrupt requests irrespective of subsequent masking.

Figure 2.9 Operation command word 1

Figure 2.90 Operation command word 2

The significance of bits D7-D5 in OCW2 is as follows:
R: when set, this bit instructs the PIC to rotate priority.
SEOI: when set, this bit denotes a specific End-ofInterrupt or a new priority setting. The binary value in bits D2-DO must denote which interrupt is to be affected.
EOI: when set, this bit tells the PIC to recognize an End-os-Interrupt.

The principle of priority rotation requires a few words of explanation. Priority rotation can be applied when the default Fully Nested Mode is not required. Then the IR number of an interrupt request does not necessarily indicate its current priority. When the ISR bit of the most recently serviced interrupt has been reset, this interrupt should be given the lowest priority. This same interrupt request line must then wait a maximum of 7 interrupts before its ISR bit can be set again. This equal priority rotation can be achieved by OCW2. If both bit R and bit EOI are set ($O C W 2=0 A O H$), this is interpreted by the PIC as a "rotate on non-specific EOI". This command has the effect illustrated by the following example.

Let us assume that IR5 is waiting for attention, and that IR3 is currently being serviced. As soon as the IR3 bit in the ISR has been reset, that interrupt request line is given lowest priority. The line with the highest priority is the IR4. As the IR4 bit in the Interrupt Request Register (IRR) is not set, the PIC proceeds to deal with IR5. If a new, unmasked interrupt request appears at IR3, and assuming no further unmasked interrupts appear at IR6, IR7, IRO, IR1, and IR2, the new interrupt at IR3 will be dealt with after IR6 has been serviced.

Non-specific EOI with rotation in automatic End-ofInterrupt mode (see ICW4) can be achieved by issuing OCW2 with only bit R set (OCW2 $=80 \mathrm{H}$). This is interpreted by the PIC as "rotate on automatic EOI", which remains in force until cleared by issuing OCW2 with all bits zero.

OCW2 can be used to set a specific priority. In this case, bits R and SEOI must be set, and the binary value of the interrupt request which is to have the lowest priority must be encoded in D2-DO. For example, if D2-DO contain the value 4, the interrupt request with the highest priority is now 5 , the interrupt request with the second highest priority is 6, and so on. This command does not actually issue
an End-of-Interrupt. If an EIO is required at the same time, all. three bits R, SEIO, and EIO must be set. The IR line specified in $D 2-D 0$ is then set to lowest priority, and its ISK bit is reset.

Figure 2.11 gives a summary of the various commands effected by the bits R_{3} SEIO, and EOI.

107	06	05	
1 10.	\bigcirc	-	
18	SE01	EOI	
10	1	0	Ma operation.
10	0	0	Clear ${ }^{0 \prime}$ rotate on automatic EOI" mode.
18	0	0	Rotate on automatic eol.
10	0	1	Man-specific EOI.
10	1	1	Specific EOI.
11	0	1	Rotate on non-specific EOI.
11	1	0	Set priority.
11	1	1	Rotate on specific EOI.

Figure 8.91 priority and termination
OCW3 is available for setting a special mask mode and reading PIC registers. OCW3 is illustrated in Figure 2. 12.

1	107	DG	05	D4	D3	02	08	DQ \| yia Port
1 OCW3	10	SME	SM	0	1	PO	RREG	REGI 2OH/OAOH

Figura 2. 12 Operation command word 3
SME, if set, tells the PIC to set or cancel a special mask: bit SM set then means set, bit SM means cancel the special mask. If SME is zero, $S M$ is rodont carem.

The setting of a special mask gives your software the possibility of temporarily enabling interrupts of lower priority which are currently disabled. To set a special mask, issue OCW3 with both SME and SM set. From then on every interrupt request whose bit in the Interrupt Mask Register is not set, is enabled, irrespective of nesting priority. The special mask can be changed as often as you wish by means of OCW1. The former priority scheme is restored by means of a further OCW with SME set and SM zero.

PO, if set, acts as a Polling command. Your software can use this command to detect interrupts while the microprocessor interrupt flag is cleared. The next RD/ signal to the PIC with address line AO at logical 0 (IN from Port $20 \mathrm{H} / \mathrm{OAOH}$) causes the PIC to place the following information on the data bus:

D7	D6	D5	D4	D3	D2	D9	D0
INT	-	-	-	-	Int. Request	1	

Figure 2.13 Interrupt polling
If INT is zero, there is no interrupt waiting to be serviced. If INT is set, at least one interrupt is waiting to be serviced. The number of the highest priority interrupt waiting for service is represented as a 3-bit binary value in D2-DO.

RREG and REG enable your software to read the PIC registers IRR and ISR. To read one of these registers, RREG must be set. Which of these two registers is to be read is determined by REG: if REG is set, ISR is to be read, otherwise IRR. The next RD/ signal with address line AO at logical 0 (IN from Port $20 \mathrm{H} / 0 \mathrm{AOH}$) causes the PIC to place the contents of the selected register on the data bus.

It is not necessary to repeat OCW3 for successive reading of the same register. The PIC remembers which of the two registers ISR and IRR was last read.

However, after placing interrupt information on the data bus by means of the PO command in OCW3, a new OCW3 is required before ISR or IRR can be read. Following initialization of the PIC, IRR is the register automatically selected for reading.

In the event that OCW3 contains both a polling command and a read BIC register command, the polling command overrides.

OCW3 is not used for reading the interrupt mask register (IMR). Instead, the contents of IMR are placed on the data bus when the BIC receives a RD/ signal and address line AO is at logical 1 (IN from Port $21 \mathrm{H} / 0 \mathrm{AlH}$).

PIC: ROM BIOS Initialization

The following CPU instructions summarize the way in which the two PICs are initialized by the ROM BIOS of your NCR PERSONAL COMPUTER:

```
;Initialize Master viz ports 2OM/21H.
;
        MOV OX,2OH
        MOV AL,11H ;JCM1: edge triggered - ICw4 needed.
        JMP SHORT $+2 ;Oelay, see section "Recovery Time"0.
        OUT OX,AL
        JMP SHORT S+B
        INC DX
        MOV AL,8 : %CM2: base interrupt is of type 8.
        OUT DX,AL
        JMP SHORT $+2
        MOV AL,4 ¿ICW3: slave is connected at IR2.
        OUT DX,AL
        JMP SHORT $+2
        MOV AL,1 IICN4: normal EOI - no special priority
        : scheme - CPU is 80286.
        OUT DX,AL
;
;Issue Operation Command Word to mask all IRs.
;
    MOV AL,CFFH :Mask all.
    NHP SHORT $+2
```

```
        DUT DX,AL ;Address line AD=zero ofter ICW completion
                ;means that OCW is OCMY ffor other DCWs
                ; AD=1.
;
;
initialize Sleve via ports OAOHVOA1H.
;
    MOV DX,OAOH
    MOV AL,11H ;ICW1: edge triggered - ICW4 needed.
    JMP SHORT $+2
    OUT DX,AL
    JMP SHORT S+2
    INC DX.
    MOV AL,7OH ;ICW2: base interrupt is of type 7OH.
    OUT DX,AL
    JMP SHORT $+2
    MOV AL,4 ;ICW3: slave identificetiom is 2.
    OUT DX,AL
    JMP SHORT $+2
    MOV AL,1 :ICN4: normal EOI - no spacial priority
                        ; schame - CPU is 80286.
    OUT DX,AL
;
;Issue Operation Commend Word to mesk ald IRs.
;
    MOV AL,DFFH :Mask all.
    JMP SHOPT $+2
    OUT DX,AL ;Address line AD=zero ofter ICW completion
        ;means that OCW is OCMy fror other OCWs
        ;AO=1.
```


Signal Integrity

As already stated, an IR input signal must be present until the first interrupt acknowledgement from the microprocessor, irrespective of whether edge or level triggering is being used.

If the IR signal goes low before microprocessor acknowledgement, the PIC does not recognize a valid

PROGRAMMABLE INTELLIGENCE

interrupt, but a signal is neverthel ess recognized. This is particularly useful for detecting spurious noise on the IR lines.

If a non-valid interrupt request occurs, the PIC recognizes it as an IR7 signal. Your software for this interrupt type need only execute a microprocessor IRET instruction. In this way, the interrupt is ignored. If IR7 is being used for other purposes, your software can still distinguish between a genuine IR7 and a non-valid interrupt request: the non-valid interrupt request does not set ISR bit 7. Therefore, it is possible to detect a non-valid interrupt by examining ISR contents (read by means of OCW3) at the beginning of the interrupt service routine.

SXSTEM INTERROPTS

Because the hardware interrupts, as well as a number of software interrupts, are already dedicated to specific functions of the NCR PERSONAL COMPUTER, a few words are necessary concerning your own application of these interrupts. Even the PIC \#2 interrupt requests $0 A M$ - $0 C H$ (that is, interrupt types 72% - 74 \%) should be regarded as reserved for further system expansion.

There are two possible ways of using the 8259 A interrupt requests for your own applications. One possibility is to write the address of your own interrupt service routine directly into the four vector bytes from which the 8259A interrupt fetches its interrupt service routine address. This has the disadyantage of denying the ROM BIOS access to its important system-maintaining routines. If you are going to do this, you will need to include routines to replace those which have now been by-passed, and to return to the interrupting level by means of a PIC non-specific End-of-Interrupt command.

To make life easier, the ROM BIOS has provided the possibility of adding your own interrupt service routines to those already implemented by the system
for the timer and keyboard hardware. During the ROM BIOS service routines for timer (type 8) and keyboard (type 9), a software interrupt is issued: type 1 CH for the timer, type $1 B f$ for the keyboard. The addresses placed by the ROM BIOS in the interrupt vectors for these two interrupts (at 70 H and 6 CH , respectively) simply refer to a dummy IRET instruction at a FOM location. To address an interrupt service routine of your own for one of these interrupts in read/write memory, you need only write the CS+IP address into the interrupt vector at the appropriate location. Note that while the interrupt vector is being written, hardware interrupts must be disabled (CLI instruction). This prevents the interrupt vector entry from being read by the CPU until both words are written and the address is therefore good. Routines accessed in this way need only be concluded by an IRET instruction. The 8259 A End-of-Interrupt is supplied upon return to the ROM BIOS routine.

Remember that disk operating system software may write these interrupt vector positions for interrupt service routines loaded from disk.

The Non-Maskable Interrupt (NMI) is maskable via the I/O address 70 H . The interrupt is masked is as long as bit 7 at this address is zero. To enable the NMI it is necessary to set this bit. The ROM BIOS enables the NMI.

The NMI is issued in the event of an I / O device error, a RAM parity error, or any other event which drives the $I / O \mathrm{CH} \mathrm{CHK} /$ line active.

DIRRCT MEMORI ACCESS

Data transfer between disk drives and random access memory is performed with the assistance of two 8237 DMA controllers. The advantage of DMA transfer is that the system microprocessor (CPU) need specify only the initial RAM address, the number of bytes to be transferred, and certain items of control information, whereupon the transfer can take place without the CPU having to manage the transfer on a byte-by-byte basis. Bus arbitration prevents the data and addresses on the system busses being read by the CPU as part of its program. Obviously, the CPU cannot make use of the busses for read/write operations while the DMA transfer is in progress, but it can still perform internal arithmetic as well as processing instructions already waiting in its internal instruction queue.

The DMA controller can manage up to four channels, for which two types of priority logic can be set. In principle, any suitable peripheral device can be serviced by DMA. It is even possible to perform memory to memory transfers.

SYSTEM INTEGRATIOR

The pin configuration and internal logic of the 8237 are shown in Figure 2.14. The 8237 pin connections have the following significance:

Vce
Power supply + 5V.
Vss
Ground.
CLK Input
Clock signal controlling internal functions and the data transfer rate.

Figure 2. 14 DMA controller overview

CS/ Input

Selects the DMA controller as a normal I/O device during its idle cycle. This allows the CPU to use the bus system (and program the DMA controller).

RESET Input
Clears the Command, Status, Mask, Request and Temporary registers (described in later section), as well as the first/last flip-flop. Following a reset, the DMA controller is in the idle cycle.

READY
Memory read/write puses are extended for the duration of this signal.

HLDA Input

The hold acknowledge signal from the CPU, indicating that it has relinquished control of the bus system.

DREQO, DREQ1, DREQ2, DREQ3 Input
DMA service request line for each of the 4 DMA channels of each controller. The polarity of these lines is programable, the RESET default active high. The request is valid only if the DREQ line remains active until the corresponding acknowledge (DACK) signal is asserted by the DMA controller.
Default priority is "fixed", that is, DREQO has the highest priority. DREQ3 the lowest.

DBO-DE7 Input/Output
During idle, the data bus is available for normal CPU operations, including the reading and writing of DMA controller registers. During DMA cycles (except memory to memory), the data bus transmits the 8 MSBS of the DMA address, which are strobed into an external latch by means of the ADSTB signal.

IOR/ Input/Output

In the idle cycle, this is an input control signal used by the cPU to read the control registers. In the DMA active cycle, it is an output control signal used to accept data from the peripheral device during a DMA read.

IOW/ Input/Output

In the idle cycle, this is an input control signal used by the CPU to write the 8237 registers. In the DMA active cycle, it is an output control signal used to load cata to the peripheral device.

EOP (End of Process or Terminal Count)/ Input/Output This is a bi-directional signal which terminates a DMA transfer. The signal may be external, or it is asserted by the DMA controller itself to indicate that the terminal count for a DMA channel has been reached. When this signal goes active through internal or external cause, the DMA request is considered to have been serviced. If Auto-Initialize
is enabled, the Base registers are written to the current registers of the channel concerned. The liask and TC bits of the channel status are set (with AutoInitialize, the Mask bit is unaffected).

A0-A3 Input/Output
In the idle cycle, these system bus address lines select 8237 registers. During DMA activity they function as the 4 LSBs of the address of the FAM location to be accessed.

A4-A7 Cutput
In conjunction with AO-AB, these address lines provide the 8 LSBs of the RAM address to be accessed (the 8 MSBs are placed on the data bus).

HRQ Output
With this signal, the DMA controller requests bus control from the CPU. Assuming the request line is not masked and is of adequate priority, a DREQ input to the DMA controller results in assertion of the $H R Q$ signal. HLDA is the acknowledgement signal from the CPU.

DACK0, DACK1, DACK2, DACK3 Output
The DMA controller uses one of these signals to grant a DMA request to a peripheral device. Like the $D R E Q$ lines, they can be programmed as active high or low. Reset default is active low.

AEN Output
The Address Enable signal enables the 8-bit latch containing the 8 MSBs of the RAl address to be placed on the data bus.

ADSTB Gutput
Strobes the 8 MSBs of the RAM address available on the data bus into an external latch.

MEMR/ Output
Active durirg DliA read or memory to memory transfer.

MEMk/ Output
Active during DliA write or memory to memory transfer.

THE 8237 REGISTERS

The I/ 0 address area between 0 and $0 F H$ is dedicated to the DMA controller \#1, the area OCOH-ODFH to DMA controller \#2. Figure 2.15 illustrates the registers which are written or read in the form of a single byte. Other registers require or return a $16-b i t$ word representing an address or counter value. In each case, two CPU input or output instructions are required in order to specify or read the complete yalue. For each register an internal first/last flipflop keeps note of which half of the word is about to be read or written: if this flip-flop is in a zero condition, the byte on the data bus represents the 8 LSBS of the word, otherwise the data byte is the 8 MSBs. The 16 -bit registers are shown in Figure 2.16.

An additional I/O address area ($80 \mathrm{H}-8 \mathrm{FH}$) is used for the selection of DMA pages. This is described in a separate section.

1 Diraction	Port	Operation
IN	$181000 H$	I Read Status Fiegister
OUT	$18 / 000 \mathrm{H}$	1 Write Command Register
1	1	1
OUT	$19 / 002 \mathrm{H}$	\| Write Request Register
1	1	1
Qut	1 OAHVODAH	\| Write Single Mask Register 8 it
1	1	1
OUT	1 OBM/006\%	\| Write Mode Register
1	1	
OUT	1 OCH/OORH	\| Clear First/Last Flip-Flop
1	1	
IN	1 ODH/ODAH	\| Read Temporary Fegister
OUT	1 ODH/OOAH	\| Master Clear [= hardware reset \|
1	1	1
OUT	$1 \mathrm{OEH} / \mathrm{COCH}$	1 Clear Mask register
1	1	
OUT	1 OFH/ODEH	1 Write All Mask Registar gits

Figure 2.158237 g-bit programmede registers

\| Direction	1 Port	1 Address/Counter Operetion	1	Channel
1	1	1	1	
IN	1 O/OCOH	\| Read Current Address	1	0
OUT	$1 \mathrm{O} / \mathrm{OCOH}$	\| Write Base and Current Address	1	0
	1	1	1	
IN	\| 1/0С2	\| Read Current Count	1	0
OUT	\| 1/0с2H	1 Writa Base and Current Count	1	0
	1	1	1	
IN	$12 / 0 \mathrm{CaH}$	\| Read Current Addrese	1	1
OUT	$12 / 0 \mathrm{CAH}$	\| Write Base and Current Address	1	1
	1	1	1	
IN	$13 / \mathrm{OC6H}$	1 Read Current Count	1	1
OUT	1 3/OC6H	\| Write Base and Curront Count	1	1
	1	1	1	
IN	$14 / 0 \mathrm{CBH}$	\| Read Current Address	1	2
OUT	1 4/OCBH	\| Write Base end Current Address	1	2
	1	1	1	
IN	1 5/OCAH	1 Read Current Count	1	2
OUT	1 5/OCAH	1 Write Base and Currenc Count	1	2
	1	1	1	
IN	1 6/0ССн	1 Read Current Address	1	3
DUT	1 6/OCCH	\| Write Base and Current Address	1	3
	1	1	1	
IN	$17 /$ OCEH	\| Read Current Count	1	3
OUT	$17 /$ OCEH	\| Write Base and Currant Count	1	3
1	1	1	I	

Figure 2.168237 16-bit programmable registers
It is the responsibility of software initiating DMA to ensure that a DMA request is not granted while the DMA controller is being programmed. For example, it is important to prevent DMA from being performed on a channel for which half of a 16-bit address or counter value has not yet been appropriately written. This can be achieved by one of two methods: either mask the channel concerned, or disable the controller by setting bit 2 in the Command Register.

Command Register

This register is illustrated in Figure 2.17. It can be cleared by the Reset or Master Clear instructions.

Figure 2. 17 DMA Command Register
Bits 7 and 6 determine the polarity of the DACK and DREQ signals (active low for $D R E Q$ is determined by setting this bit, active low for DACK requires a zero bit).

TIMING determines whether normal (0) or compressed (1) timing is active. The latter compresses the transfer time to 2 clock cycles (this is illustrated in the section mDMA Timing" in this Chapter). If compressed timing is selected, WS selects late (0) or extended (1) write selection.

PRTY is the priority scheme selection bit. Fixed priority (bit zero) means that DMs request priority is equivalent to the sequence of request lines, DREQO having the highest priority. Rotating priority has the effect that the DMA request most recently serviced assumes lowest priority and priority rotates.

ENABLE, when set, prevents the controller from entering DMA active mode. This command can be used to hold the controller in the idle state while the address and counter registers are being programmed. To re-enable the controller, write this bit as zero.

Bit 1 is the Channel 0 Address Hold bit. Setting this bit means that the same address is used for all transfers on this channel.

MEM-MEM set determines that a memory to memory transfer is to take place from the address specified for Channel 0 via the Temporary Register to the address specified for Channel 1 until the Current Count Register goes to OFFFFH.

Mode Register

Mode selection information can be specified for any one of the 4 DMA channels. The actual channel selected is encoded in two bits of this register.

Figure 2.18 DMA Mode Register
Transfer Mode is a value in 2 bytes specifying Demand Transfer (0), Single Transfer (1), Block Transfer (2), or Cascade (3).

In Single Transfer mode, only one transfer is made. The Current Address Register is then altered by 1 and the Current Count Register is decremented. Even if the DREQ line is still active at completion of the transfer, bus control is released to the CPU. If DREQ is then still active, a further transfer is performed, and so on. Therefore, there is at least one machine cycle between DMA transfers. If the Current Count Register decrements from 0 to OFFFFH (Terminal Count) and Auto-Initialize is programmed (bit 4), an Auto-Initialize then occurs.

Block Transfer mode transfers continuously until Terminal Count or an external End of Process signal, whereupon Auto-Initialize occurs, if programmed. For this transfer mode, the DREQ signal need remain active only until the corresponding acknowledgement (DACK) is received.

In Demand Transfer mode the transfer runs continuously until Terminal Count or an external End of Process signal occurs. If programmed, AutoInjtialize then occurs. During the transfer, the DREQ signal must be held active. If DREQ goes inactive, the transfer is suspended, but not terminated. Reactivating DREQ rseumes the transfer process.

The Cascade Mode also applies to the DMA controller configuration of the NCR PERSONAL COMPUTER. The two controller's communicate by means of Channel 4 of $\# 2$.

The ADDRESS INC/DEC bit determines whether the value in the Current Address Register is incremented (0) or decremented (1) after each transfer.

AUTO INIT, if set, enables the Auto-Initialize mode of operation. Auto Initialize can then take place following an End of Process or Terminal Count condition During Auto-Initialize the original values of the Current Address and Current Count Registers are restored using the values held in the Base Address and Base Count Registers (the Base registers are not affected by DMA transfer operations).

The Transfer Direction walue determines whether data is to be transferred to (1) or from (2) memory, or whether data is only to be verified (0). In the verify mode, memory is not actually affected.

The channel Select value selects one of the DMA channels $0-3$.

Request Register

Assuming that Block Transfer is selected in the Mode Register, the Request Register can be used to
initiate a DMA transfer, as if a hardware transfer request had been received on $D R E Q$ line. The channel to which this "software" DMA request applies is selected by the binary value of the two LSBs written to this register, with Bit 2 set. If Bit 2 is zero when this register is written, the request is cleared (other bits are "don't care"). This type of DMA request is not subject to the Mask Register (see below), but it is subject to priority control. A Terminal Count or external End of Process signal terminates the transfer in the normal way.

Mask Register

This register determines which DMA requests are inhibited (masked). One of two registers can be used to mask DMA requests, namely, Write Single Mask Register Bit (port OAH) and Write All Mask Register Bits (port OFH).

Write Single Mask Register Bit selects a channel by means of the binary value in the 2 LSBs of that register; Bit 2 sets or clears the mask bit for the selected channel, bits 3-7 are "don't. care".

Write All Mask Register Bits sets or clears the mask bits for Channels $0-3$ according to the status of bits $0-3$, respectively. Bits 4-7 are "don't care".

A Clear Mask Register command allows all four DMA requests.

In addition to these posssibilities of software control, the following signal conditions affect the Mask Register:

* A mask bit is set when its channel produces an End of Process condition, if that channel is not programmed for Auto-Initialize,
* A Reset inhibits all DMA requests.

Status Register

The Status Register is illustrated in Figure 2.19. This register states which channels, if any, have received DMA requests, and whether on individual channels Terminal Count conditions or external End of process signals have occurred. Bits $0-3$ are cleared immediately upon the register being read and at Reset. Bits 4-7 are set whenever service is being requested on the corsesponding channel.

Figure 2. 19 DMA Status Register.

Temporary Register

The Temporary Register always contains the last byte transferred in a memory to memory transfer operation. This register can be read with the Read Temporary Register Command (port ODH/ODAH) and is cleared at Reset.

Current Address Register

This register is a running record of the address used for the byte currently being transferred. This address yalue is incremented or decremented (in accordance with bit 5 of the Mode Register) after each byte transfer. Auto-Initialize restores the programmed value.

Current Count Register

This register functions as a counter to limit tl number of bytes transferred. It should be programm with a binary value which is one less than the numb of transfer bytes. Terminal Count occurs as soon this register has decremented from zero to OFFFF Auto-Initialize restores the programmed value.

Base Address and Base Count Registers

These are the registers used by the DMA controller store the values programmed for the Current Addre and Current Count registers. These values a required by the controller in the event of an Aut Initialize. It is not required to program the Ba registers, as they are automatically set to t values of the Current Address and Current Cou Registers when the latter are programmed by the C It is not possible to read the Base registers und CPU control.

DMA TIMING

The Figures in this section illustrate the time-b: co-ordination between the various signals involved DMA transfers.

Note that memory to memory transfers require a r and write phase.

Figure 2. 20 DMA Reset

PROGRAMMABLE INTELLIGENCE

Figure. 2. 21 DMA Ready

Figure 2. 22 DMA trensfer

Cle

Figure 2.23 DMA compressed sransfer

AQ.AY

000-0.08

$\overline{0}$

11%

Figure 2.24 DMA memory to memory transfer

8237: SISTRM USE

Two of the four channels of the DMA controller 11 are dedicated to essential system functions of the NCR PERSONAL COMPUTER:

* Channel 0 is used for RAM refresh.
* Channel 2 provides for data transfer to and from the flexible disk controller.

Channel 1 is to be considered as reserved for DLC purposes, Channel 4 is spare.

DMA controller \#2 supports 16 -bit data transfers, Channel 4 providing the cascade connection.

You will have noticed that the Address registers of the DMA controller are capable of addressing 64 KB of random access memory (\#2 Channels $1-3$ can address 128 KB), while your NCR PERSONAL COMPUTER contains at least 256 KB . It is, bowever, possible to access all RAM areas by means of page switching. This is discussed in the section "DMA Pages" below.

RAM Refresh

It is a characteristic of dynamic random access memory that it requires power refreshing at regular intervals, in order to ensure data integrity.

It is the task of DMA controller \#1 to address random access memory during the refresh cycles. Because of the importance of these refresh cycles, they are accorded the highest priority (DMA \#1 Chamel O) in the "fixed" priority logic. The regularity of this process is ensured by the DMA request for this channel being derived rrom output 1 of the 8253 Programmable Interval Timer (output every 14 microseconds). Due to way in which RAM integrated circuits are selected (see Schematics in Appendix A), the DMA controller does not have to provide fully decoded addresses. Therefore, there is no need for page switching during RAM refresh cycles.

After initialization by the system, RAM refresh requires no further CPU attention. However, you should take care not to disturb Timer 1 and DMA Channel 0 settings, as alterations might lead to loss of system control. It is also inadvisable to change the priority logic of the DMA controller, as this too could seriously impair the reliability of refresh cycle intervals.

16-bit Transfer

Channels 1-3 of DMA controller \#2 support 16-bit transfer operations between 16 -bit devices and memory. This controller is capable of accessing the entire 16 MB address space of the system in blocks as great as 128 KB , with the restriction that the transfer cannot start on an odd byte boundary. Bus lines SBHE and AO are forced low for 16 -bit transfers. The value written to a DMA Base register is then a word, not a byte address, and the Current Count register is similarly a word value.

DMA Page Selection

At first sight, it would seem that DMA controller activity is confined to a $64 \mathrm{~KB}(\# 2: 128 \mathrm{~KB})$ block of memory, by virtue of the fact that programmable address values are 16 -bit. To overcome this apparent limitation, your NCR PERSONAL COMPUTER includes page registers which allow memory to be regarded as a number of 64 KB (\#2: 128 KB) blocks. However, it is not posible to define CPU-like "segments" at convenient paragraph boundaries. If the memory area you wish to access by DMA straddles one of these page boundaries, you will have to execute two DMA operations, of which the second specifies an incremented (or decremented) DMA page value.

The DMA page registers are 8 -bit registers in the I/O map, as set outin Figure 2.25. Access to the full 16 $M B$ address space requires 24 address bits (AO - A23). The address is divided between page register and controller Channel as follows:

Figure 2. 25 DMA page registars

DMA: ROM BIOS Initialization

The following code illustrates how the DMA controllers are initialized by the ROM BIOS firmware. Note that spare Channels must also be initialized.

```
;
; Set commend registers of 盾1 and w.
;
                MOV AL,O ¿Command Register:
                        :OACK active low - ORED active high -
                        &%rita late - fixed priority - normal
                            郎ming - contraller enabled - Channal
                                ¿address not held ~ mem. —mem. disabled.
```

```
    OUT ODOH,AL ;Write Command Ragiscer to %2.
    OUT B,AL ; f1.
:
;Set mode registers for \2 Channel D [Cascadol.
:
    MOV AL,OCOH ;Mode Register:
    ;Cascade - addresses increment - no auto
    ;init - data verify - Channel is 0.
    OUT ODSH,AL ;Write Mode Register to #2.
;
;Set mode registers for other Channels on and and
;
    MOV AL,4OH ;Single transfer - sddress increment -
    ;no auto init - deca varify - Channel 0
    OUT OBH,AL ;Write Mode Register to #1.
    MOV AL,41H ;Same to Channel 1. .
    OUT ODGH,AL ;#2.
    OUT OBH,AL i#1.
    MOV AL,42H ; .......Channel 2.
    OUT DDGH,AL ;*2.
    OUT OBH,AL ;#1.
    MOV AL,43H ; .......Channel 3.
    OUT OD6H,AL ;#2.
    OUT OBH.AL ;#1.
```


EQUIPMCNT INFORMATIOM

A considerable amount of information concerning the machine configuration and status is softwarereadable. Examples of such information: the type of disk drive(s) installed, the amount of memory on the main processor board, the type of display being used.

Access to configuration and status information involves operations to

* the CMOS RAM, which is also accessed by the RealTime Clock
* The 8042 Universal Peripheral Interface, whose main task is to function as the keyboard controller

CMOS RAM and the Real-Time Clock are described in a separate section in this Chapter, the keyboard in a separate Chapter.

CMOS RAM AND THE REAL-TIME CLOCX

The MC146818 is a single integrated circuit containing a Real-Time Clock and 64 bytes of CMOS RAM, of which the first 52 bytes are used. The CMOS RAM addresses are not part of the CPU memory map but are accessed as follows.

Write one byte of CMOS RAM:

```
MOV AL,CMOS_ADDR ;Number (O - 33H) of byte.
OUT 70H,AL
MOV AL,BYTE_DATA ;Value to be written to selected byte.
OUT 71H,AL
```

Read one byte of CMOS RAM:

```
MOV AL,CMOS_ADDR ;Number (O - 33H) of byte.
OUT 70H,AL
IN AL,71H ;Copy of byte now in AL.
```


REAL-TIME CLOCK

This section gives details of CMOS RAM bytes controlling the system clock and calendar. Figure 2.26 summarizes these 14 bytes.

Figure 2. 28 Real-Time clack CMOS addresses

The four Status registers are used as follows:

Pegm		Signtif temme
A	7	Set han the time is baing updated 1.8 .1 reading time might producs an unreliabls result. Otherwise zero findiceting that time can be read.
	4-6	A 22 -stege divider to selectione of sight time bese frequencies (090 sets 32.768 KHz).
	0-3	Selection of diyider output frequency for square waye and Resl-Time Clock interrupts $(010$ selects 1.024 KHz).
B	7	Set aborts any updating of time counters in progress, and inhibits counting until zero.
	6	Enables (set) or disebles (zera) interrupts as progremmed in hagister A_{0}°

Rrog.	Bitis]	Significanco
(B)	5	Enables (set) or disables (zero) alarm interrupts.
	4	Enables [set] or disables [zero] update-anded interrupt.
	3	Enables [set] or disables [zero) square wave as set in Register A.
	2	Salects binary [set] or BCO [zero] format fror time aend date storage.
	1	Selects 24-hour [set) or 92-hour (zero] format for hours counter.
	0	Enable daylight savings (1) or standard time (zero).
C	4-7	Read only flags used incernalty by the RealTime Clock.
	0-3	Reserved.
D	7	This bit is sat as long as the battery is providing sufficient power for the Real-Time Clock.
	0-6	Reserved.

EQUIPMENT AND STATUS

This section gives details of CMOS RAM bytes used for monitoring system configuration and status. Figure 2.27 summarizes these 38 bytes.

Figure 2.27 Equipment/status CHOS oddresses

Adofixerse (Hex)	\% 8 (5)	Signif iconce
E	7	$\begin{aligned} & Q=\text { Resl-Time Clock power ts goad } \\ & 8=\text { lass of power to Resl-Time Clock } \end{aligned}$
.	6	0 = checksum is good. $1=$ checksum arror
	5	0 = configuretion info in CMOS inaccurate 1 = configuretion info in CMOS raflects presence of at least one flexible disk drive and corract type display type
	4	0 = CMOS record of memory size is correct $\hat{y}=$ inaccurete CMOS record of memary size

Address [Hex]	Bit[s]	Signirfeanca
(E)	3	```O = herd disk drive imitialization correct. so boot record can be read 1 = hard disk drive inftializetion error```
	2	$0=$ time is valid, $\mathcal{T}=$ time is invalid
	0-1	Reserved
F	0-7	Used by power-on diagnostics.
10	4-7	$0000=$ no first flexible disk drive
		```0001 = 15t drive is double-sided [48 TPI] 0010 = 1st drive is high capacity [96 TPI] other values raserved```
	0-3	```0000 = no second flextble disk drive 0001 = 2nd drive is double-sided [48 TPI] 0 0 1 0 ~ = ~ 2 n d ~ d r i v e ~ i s ~ h i g h ~ c a p a c i t y ~ ( 9 6 ~ T P I ) ] other values reserved```
11	0-7	Reserved
12	4-7	```O = no first fixed disk drive <> O = one of fifinam possible types of first fixed disk drive [see Table]```
	0-3	```O = no second fixed disk drive <> O = one of fifteen possible types of second fixed disk drive (see Table)```



Address [Hex]	Bit(s)	Signif icanco
(14)	1	$\begin{aligned} & 0=\text { co-processor not installed } \\ & 1=\text { co-processor inscalled } \end{aligned}$
	0	$0=$ no flexible disk drives installed   1 = at least one flexible disk drive
15-16	0-15	```0100H = 256 KB RAM on mein process. boerd 0200H = 512 KB 0280H = 640 KB```
17-18	0-15	Multiple of KB of exponsion memory: max. value $=3 \mathrm{AOOH}$ (for $\{4.5 \mathrm{MB}$ )
2E-2F	0-15	Checksum of CMOS RAM addresses 10H-20H
30-31	$0-7$	Multiple of KB of exponsion memory: max. value $=3 A 00 H\{$ (Tor $\$ 4.5 \mathrm{MB})$
32	0-7	Date century (BCD value)
33	7	```0 = Upper 128 KB of possible 640 KB RAM on main processor board not installed 1 = installed```
	6	Used by setup program
	0-5	Reserved
34-3F		Reserved

## The ROM BIOS

If you require assembly language listings of the FCM BIOS, please contact your local NCR office.

## The Keyboard

The keyboard is supplied with those keys already fitted, which have the same markings and the same position for all the country versions implemented. The remaining keys are fitted by the user from a set supplied for a specific version Figure 4.3 shows the keys already fitted, Figure 4.4 shows the complete keyboards for the various country versions.

Special features of the keyboard are:

* Cursor movement keypad in addition to dual function cursor movement/ numeric keypad
* Tactile point of key 5 of the numeric keypad; deeper finger moulds on $F$ and $J$ keys
* 30 Function Keys
* Local toggling of keyboard status, independent of instructions from the main unit
* Auto-repeat and repeat delay times variable
* LED indication of status of NumLock, CapsLock, and ScrollLock keys - LEDs are extinguished at power-up initialization, so that unshifted (not shifted) and cursor movement (not digit) keys are active
* Tilting positions the keyboard in one of two possible planes: 5 and 12 degrees
* Slider switch enables use of keyboard with other types of NCR Personal Computer (not described in this Manual).

Connection to the NCR PERSONAL COMPUTER is via a screened 4-core cable. The cable is coiled over a length of approximately $600 \mathrm{~mm}\left(24^{\mathrm{n}}\right)$, the length of
the uncoiled parts totals approximately 1.150 mm (45"). The computer connection end of the cable is a DIN connector. The pin configuration is shown in Figure 4.1.

1 Pin	Color of mire	to PCB
1		
1		1
15	greer	54
18	black	Ground
18	brown	Clock
12	white	Data
1 screen		Boundary line 1
1		


viewed from solder side

Figure 4. 1 The keyboard cannector
The working voltage for the keyboard is $4.75 \mathrm{~V}-5.25$ $V$, the maximum power drain is 250 mA Required signal levels for Clock and Data are minimum 2.4 V (ror high) and maximum 0.7 V (for low).

Data communication is clocked as illustrated in Figure 4.2. Logical levels of the data and clock signals are set out in Figure 4.3.

The bit stream of data comunication is as follows:
Start bit (always 0)
8 data bits (LSB first)
Parity (completes to odd no. of data bits) Stop bit (1)

## Dace Ixanelori ATmades



Figure 4.2 Data/Clock signals


Figure 4.3 Data/clock signôficance

$$
4-3
$$



Figure 4.4 Keyboard - Commor Kays


Figure 4.5 (1 of 9) Keyboard - US English


Figure Q. 5 (2 of 91 Keyboard - UK Engtish


Figure 4.5 (3 of 9 ) Keybosed - German

French

Figure $\mathrm{a}_{0} 5$ \& \& of 9 ! Keyboard - French


Figure 4.5 [5 of 9] Keyboard ~ Italian


Danish

Figure 4.5 (7 of 9) Keyboard-Danish

Norwegian

Figure 4.5 [8 of 9] Keyboard - Marmegian


Figure 4.5 (9 of 9) Keyboard - Swedish/Finnish

## LEYBOARD PERRORMANCE

A First In - First Out buffer accomodating up to 32 key codes provides a type-ahead facility. All keys repeat automatically. Debounce time for the initial depression and release of a key is one scan cycle ( 8 ms).

Auto-repeat can be varied both locally at the keyboard and by means of instructions from the system. The slowest repeat rate is $2 / \mathrm{s}$, the fastest $30 / s$, with 32 incremental steps. Initialization default is $10 / \mathrm{s}$.

The initial repeat delay is also variable - between $1 / 4 \mathrm{~s}$ and one second in four incremental steps. Initialization default is $1 / 2 \mathrm{~s}$.

## SPECIAL FUNCTIONS

This section summarizes those keyboard functions which can be influenced locally, that is, independent of codes received from the system.

Following depression of the Control-NumLock combination (suspension of system activity until another key is pressed), Function Keys F11-F30 do not issue codes to the system, but take on the following functions internal to the keyboard:
F12
increment auto-repeat rate
F13 decrement
F14
F15crement repeat delay
F16 decrement
disregard LED control codes

F17 \begin{tabular}{c}
Srom system (toggle) <br>
F18

$\quad$

togle LED on CapsLock <br>
F19
\end{tabular}$\quad$ NumLock

F

No special functions are assigned to F20 - F30.

As long as system activity is not suspended, F11F30 generate duplicate codes for F1 - F10:

```
F11 ... F20 = Shift-F1 ... Shift-F10
F21 ... F30 = Control-F1 ... Control-F10
```


## KEYBOARD/SYSTEM COMHONICATION

An 8039 or 8049 microprocessor controls generation of key codes for serial output to the main unit. The keyboard is also capable of receiving codes from the system. As already mentioned, codes are transmitted in a serialized form with start, parity, and stop bit.

## CODES FROH THE SYSTEM

The following is a description one or two-byte codes recognized by the keyboard as yalid instructions. Except where stated, codes elicit an acknowledgement code from the keyboard (see mcodes from the Keyboard"). An acknowledgement is also given between bytes of a two-byte sequence.
Code [Hex] Bytes Description
First Byte

ED
2
Byte 2: bit $7=0$

3-6 reserved
2 CapsLock LED on (1) or off (0)
1 NumLock
0 Scrolllock
Note: if a key on 5-key cursor pad is pressed while mumeric functions on numeric keyboard are active, the keyboard reverts internally to cursor functions on numeric keypad, but the NumLock LED is not directly influenced. Bit 1 is useful for "making good" this LED state

Cade (Hexl
Firest Byte

EE	1	Used as an "echa" cade. with its own echo code	Keyboard	replies
F3	2	$\begin{aligned} & \text { 8yte 2: } \\ & \text { bit } 7=0 \end{aligned}$		
		5-8 repat detay as binary valus$0=0.25 \mathrm{~s}$		
		$1=0.5 \mathrm{~s}$		
		$2=0.75 \mathrm{~s}$		
		3 m 1.0 s		
		0-4 auto-repeat as binary value		
		$0 \rightarrow 30.0$	11-810.9	$22 \rightarrow 4.3$
		126.7	1210.0	23.4 .0
		224.0	139.2	$24 \quad 3.7$
		321.8	148.6	25 3.3
		420.0	$15 \quad 8.0$	$26 \quad 3.0$
		$5 \quad 18.5$	$16 \quad 7.5$	$27 \quad 2.7$
		$6 \quad 17.8$	176.7	$28 \quad 2.5$
		$7 \quad 16.0$	186.0	292.3
		$8 \quad 15.0$	19 5.5	$30 \quad 2.1$
		913.3	205.0	312.0
		10 12.0	284.6	
F4	1	Keyboard clears its output buffer and		
F5	1	Restores all poweron defaults, clears the output buffer, and suspends scanning until		
F6	1	As F5, except that scanning continues lif enabled]		
EF-F2	11	"no operat	ion" code	Ian
$F 7-F D$	1	acknowledgement is issued by che keyboard).		

## Description

Bytes
Description

Used as an "echo" code. Keyboard repbies with its own echo code

8yte 2:
bit $7=0$
5-8 repeat detay as binary valus $0=0.25 \mathrm{~s}$
$1=0.5 \mathrm{~s}$
$2=0.75 \mathrm{~s}$
$3=1.0 \mathrm{~s}$
0-4 auto-repeat as binary value

Keyboard clears its autput buffer and starts scanning the matrix

Restores all pawemon defaults, clears the output buffer, and suspends scanning until further instructions

As F5, except that scanning continues lif enabled]

Reserved "no operation" codes lan acknowledgement is issued by the keyboardl.

Code [Hex]   First Byte	Bytes	Descriprion
FE	9	Keybord responds by repeeting the last
		byte it transmitted. If this byte was its
		own repeat (re-send) code (see "Codes from
		the Keyboard'l, the previous byte is
		transmitted
FF	1	Resets the keyboard. The keyboard performs
		its internal diagnostics.

## CODES FROM TEE KEYBOARD

Codes transmitted by the keyboard to the system can be single byte codes containing certain status information, or they can represent "data", that is, codes resulting from reading the keyboard matrix.

Status Codes

Code [Hex] Description

DO	Overflow of the type-ahead FIFO buffer
AA	Poweron completion - no arrors
EE	Response to the system's echo commend
FO	Key released, see "Keyboard Scan Codes"
FA	Acknowledgement to system   FC
FD Keyboard RAM or ROM error	
FE matrix error	

## Reyboard Scan Codes

A code generated by reading the keyboard matrix represents a specific position on the keyboard; it does not conform directly to the ASCII code for the sign marked on the specific key. This means that the code returned for a key position is always the same, irrespective of country-dependent keys fitted.

Figure 4.6 shows the scan codes for the keyboard. A scan code is transmitted to the system when the key is depressed (after a pause for debounce time). When the key is released the same code is transmitted again, this time preceded by one byte of FOH. All these bytes are transmitted with start, parity, and stop bits as already stated at the beginning of this Chapter. Note that two codes are marked on each key: the actual code transmitted by the keyboard is the lower of the two. The upper codes conform to the codes generated for other NCR Personal Computers. They can be made available for software reading by special programming of the parallel I/O controller. which among otser things, enables the CPU to communicate with the keyboard (see section below).


Figure 4.6 Keyboard scan codes

## DIAGNOSTICS

At power-up the keyboard performs an initialization check of internal RAM and ROM. One of the following codes is then tramsmitted by the keyboard:

OAAH NO error<br>OFCH Keyboard RAM or ROM test failed<br>OFDH Error in matrix detected while matrix column de-multiplexer inhibited

## SISTEM INTERFACE

The keyboard read routine contained in the system ROM is activated by hardware interrupt. request 1 (CPU interrupt type 9). The priority of this interrupt, as set by the initialization firmware (fully nested mode), is second only to that of the 8254 timer.

The keyboard hardware interrupt writes the character value of the keyboard position code into the keyboard buffer. There is a software interrupt (1BH) accessible from the interrupt 9 service routine. However. INT 1BH is issued only in the event of the Ctrl-Break key combination. Therefore, if you wish to interrogate the keyboard position code by means of your own software (for example, if you only want to check for a limited number of codes and ignore the keyboard buffer), you will have to write your own keyboard handling routine and set the four interrupt vector bytes starting at 6 CH to address your own interrupt service routine. This routine must be concluded by the 8259 A Progamable Interrupt Controller non-specific End-of-Interrupt command.

## THE PARALLEL I/O CONTROLLER

The keyboard position code itself is read via the 8042 (or 8072) parallel interface in the I/O address map starting at port 60 H (see Figures 4.7 and 4.8 ). The interface also includes system configuration and
status information Software accessible data/commands can be held in the following areas managed by the controller.

* A buffer holding data received from the keyboard, waiting to be read by the CPU at port 60 H . A status bit indicates whether there is actually any data to be read
* A buffer holding data from the CPU, waiting to be fetched by the keyboard. A status bit indicates whether the data has been fetched, so that the CPU can send a further byte via port 60 H
* An "input port" containing system configuration information. This "port" cannot be accessed directly in the system I/O map, but via commands to the controller
* An "output port" containing system control bits. This "port" also cannot be accessed directly in the system I/O map, but via commands to the controller. It should not normally be necessary to write to this port
* A "test input port" similar to the two described above

Commands to the controller and controller status are system accessible via port 64 H of the system I/O map. Data is passed via port 60 H . Scan codes received from the keyboard and held in buffer can be read at this port. Bytes can be written to buffer for the keyboard to fetch, provided that a command has not been issued to the controller telling it to expect data from the keyboard. A special command issued via port 64 H tells the controller to read one of a sub-set of commands from port 60 H


Figure 4.7 Parallel I/O conrrolier stacus


Figure 4.8 Parallel I/O controller commands (1 of 2)


Figure 4.8 Paresfal $1 / 0$ controller commands $(2$ of 2)


Figure 4.9 Sub-commands to controllep commend 60H

```
| Bit l Oescription
```

Figure Qog Controller input port

```
| Bit 1 %escription
I I
0 System reset l
1 1 1
1 | Gate ARO 5O access memory above MMB I
 l
2-3 | Unused
 I
4 Activate buffer from keyboard full
 |
 5 | Activate buffer to keyboard empty
 l
 6 I Orive keyboard clock high
 |
 7 Orive keyboard data high
 |
```

Figure 8.11 Concraller output part


Figure 4.12 Controller test input port

## Disk Storage

## INTRODUCTION

Both flexible disks and hard (Winchester) disks can serve as disk storage for the NCR PERSONAL COMPUTER. Fixed disk capacity is at least 20 MB , diskette capacity is 1.2 MB (high capacity) or $320 \mathrm{~KB} / 360 \mathrm{~KB}$ (standard capacity). Details of disk drive combinations installable in the NCR PERSONAL COMPUTER are given at the beginning of this Manual.

Both flexible and hard disk drives make use of the disk drive controller inserted in the system main processor board.

## flexible disk drives

Integrated in the computer are one or two $51 / 4$-inch flexible disk drives to provide mass storage of programs and data. The drives contain read/write controller electronics, driver mechanics, read/write heads, and head positioning mechanisms.

Flexible disk drives are connected in a daisy-chain configuration. A DIP resistor module provides the terminator in the last unit in the chain


Note: The high capscity drive is used in its high density, high speed mode of operation, giving a capacity fformatted: $\$ 5$ sactors aach 512 bytes/trackl of 9.2 MB .

## Figure 5. F Flexible disk drive tachnical date

Power connections to the flexible disk drive are illustrated in Figure 5.2.


1 Pin	1	Valtage	
1			
1	1	1	+12 Vac
1	2	1	Ground
1	3	1	Ground
1	4	1	+5 Vdc
1			

Figure 5.2 Figxible dists orive powir connections

The flexible disk drive contains sensors to detect the diskette index hole, the head at track 0 , and whether the write protect notch is covered.

Figure 5.3 illustrates the main components of the flexible disk drive.

## DISK STORAGE



Figure 5.3 Flexible disk driye components

The flexible disk drive is strapped internally. Strap locations are shown in Figure 5.4.

and = standerd satting for NCR PERSONAL COMPYTER

High capacity drive

Figure 5.4 Flexible disk drive strepping (1 of 2)

U

= standard satting for NCR PERSONAL COMPUTER

Standard capacity drive

Figure 5.4 Flexible disk drive stropping (2 of 2)

DS1 - DS4
Address selection of the drive. For the NCR PERSONAL COMPUTER DS1 is to be selected, even if the drive being installed is the second in the system. (The
cable band from the first to the second connector has two DS lines transposed.)

IU
When closed, enables the IN USE/ signal at pin 4 of the controlfdata connector.

U1, U2
In conjunction with IU, these straps select one of five turn-on conditions for the drive indicator LED:


HL
Not used (open)
FG
Connects frame to 0 V .
LG, HG (high capacity only)
One of these straps must be installed:


I, II (high capacity only)
One of these straps must be installed:


RY, DC (high capacity only)
One of these straps must be installed: pin 34 of the control/data connector provides Ready (RY installed) or Disk Change (DC installed) signal.

RY, XT (standard capacity only)
One of these straps must be installed: pin 34 of the control/data connector provides Ready signal (RY installed) or is low state of an open collector (XT installed).

## MOTOR TURN-ON

The flexible disk drive motor starts rotating under one or more of the following conditions:

* Assertion of Motor On signal
* Diskette insertion
* Diskette removal (unless write-protected)

Motor rotation stops under one or more of the following conditions:

* Drive lever has been closed, the motor is rotating, and drive status has become Ready
* Approximately 10 seconds after diskette removal
* Diskette was inserted at the index-hole position and the lever has been open for approximately 10 seconds


## CONTROL AND DATA SIGNALS

The flexible disk drives use the standard pin assignments as shown in Figure 5.5. Figure 5.6 shows the corresponding edge connector on the flexible disk drive.

The input and output signals to the disk drive are standard, industry-compatible signals An overview of flexible disk control signals is provided in Figures 5.7 and 5.8. These signals are:

Ready or Disk Change (strap-selected)
Ready or Open (strap-selected)
The Ready signal is active when the following conditions are satisfied:

* there is power at the unit
* the diskette is installed
* Motor On is asserted
* Disk rotation is more than half nominal speed
* two Index pulses have been counted since disk rotation exceeded half nominal speed

Disk Change is active

* at power-on or diskette remoyal

Ready is inactive when

* a diskette is installed and a Step pulse is received while the Drive Select is active


Figure 5.5 FDD Pin assignments


Figure 5.6 FDD Edge Connector.

Side One Select
Active $=$ select side 1, inactive $=$ select side 0.

## Read Data

Output signal containing composite clock and data pulses.

Write Protect
Active low output signal to indicate when a write protected disk is installed in the drive. The drive inhibits writing and provides the write protect signal, irrespective of the state of the Write Data and Write Gate signals.

Track 00
Active low output signal to indicate when the readfwrite heads are positioned at track zero. Track 00 is not active when the read/write heads are not at track zero.

## Write Gate

Active low input signal to enable data to be written on the diskette. Write Gate not active enables the stepper logic and read data logic.

## Write Data

Input signal to provide the data to be written on the flexible disk. Each transition rrom high to low causes the cursent through the read/write heads to reverse, causing a data bit to be written. This line is enabled by Write Gate active Write Data is not active during a read operation The write pulse width can range from 150 nanoseconds to 2.5/1.1/2.1 microseconds (standard capacity/high capacity, high density/high capacity, low density).
To ensure data integrity, MFP write data can be pre-compensated on inner tracks (see signal timing Figures, below)

## Step

Active low input signal to move the head in the direction specified by Direction Select. Each step pulse is delayed by at least 6 ms (standard
capacity) or 3 ms (high capacity) from the preceding step.
Head movement to an adjacent track requires two steps in standard capacity drives.

Direction Select
Input signal to define the direction the heads move when the step line is pulsed. Low causes the head to move toward the center of the disk. High causes the head to move toward the outside of the disk.

Motor On
Active low input signal to turn the motor on. Time has to be allowed by the system before reading or writing to allow the motor to start. The time required is 400 ms ( 500 ms for high capacity, 360 r.p.m).

Drive Select ( $0,1,2,3$ )
Active low input signal to select one of two flexible disk drives (only 0 and 8 are used).

Index
Active low output signal which is at an active level each time the index hole is sensed. This signal is active for one pulse each disk revolution to indicate the beginning of a track. Index is held active when no flexible disk is inserted in the system.(The standard capacity drive also issues this signal when sector holes are detected on hardsectored diskettes.)

In Use
If the IU strap is installed, this signal is active to indicate that all the daisy-chained flexible disk drives are in use under system control.


Figure 5.7 Flasible disk drive contral (high copecityl

DISK STORAGE


Figure 5.8 Flexible disk drive control [stenderd cepacity]

Figures 5.9 - 5.12 illustrate signal timing.


Figure 5.2 Step 7 iming


Mote: The displocenent of any bit position does not exceed "E12* from irs nominal cosstion. fWhen pRo sepa=aror is used wich zero צribe pre-compensabion.

		- $\quad=8$	59	810	681	212
	M4gh. 360:5m			2us. Mom.	ius. Mons.	$: 350 \mathrm{~ns}$
	H0:..al, $660=0$	$10.3=0.25 u s$	3.Jus. $\because$ om.	5us, Nom.1	6. Tus .itom.	:500ns
		$\mid 7.5=0.85$ is	4is.:8on.	6us.:80m	8us.880.	$\pm 700 n s$
	STANDARO CAPACIPY	1.00 .548	$6 \mu \mathrm{~s}$. Nom.	\|6 us oreend	\% $\mu \mathrm{E}$, Nom.	\% 700 ns



	Eersaty 6 Dssi: Sum	12	63	C1	25	t6
		12.1E-1.1:5	i: $5.8: 3: 8$	¢®8. $\because: 6 m$ 。	\|225.:\%on.	4:3. 10 cm
		¢3.15: 2.105	E.ius, $:$ :2:	3.313 \% ser.	Sus .tien.	6.79s. ic cr.
	\%orral joreri.r	12.15-2.ius	Eus.si.ss.	Hiss.stom.	Gus : :om.	Ejs . . i or..
	SIANDARD CAPACITY	$10.15 \sim 2.5$ us	- us. Max.	fa mis. Domm.	If ws, Nom. \|1 ws. Nom.	

Figure 5.11 Write Date Timing [MFM]

(Eiģ.206) I:JDEX EEming

Figure 5.12 Index Timing

## THE PLEXIBLE DISS CONTROLLER

The PD765A Flexible Disk Controller (FDC) is included on a single board together with the hard disk controller. The FDC uses one of two distinct I/O address areas, according to whether primary or secondary addresses are selected by means of jumpers on the disk controller board (see Figure 5.13). The DMA Channel used is 2 on DMA controller \#1. The interrupt request used is 6 (BIC \#1).


Figure 5.13 Primery/secondery disk interface selection.
The flexible disk controller makes use of the following primary interface ports to the microprocessor (secondary interface is given in parentheses):

> OUT 3 F2H (372H) Drive select command output
> IN $3 F 4$ ( 374 H ) Read the $\mathcal{E D C B}$ Main Status Register

> OUT 355 H (375\%) Output up to nine commands to the command stack

IN $3 F 5 \mathrm{H}$ (375H) | Input one of up to seven results, |
| :--- |
| including up to four 8 -bit status |
| registers, from the result stack |

OUT 3 F7H ( 377 H ) | Diskette control register, used to |
| :--- |
| control data transfer speed |

3F7H (377H) | A diagnostics register used by |
| :--- |
| both flexible and hard disk |
| drive(s). Bit 7 set denotes a |
| diskette change |

The FDC can perform several different operational commands, each initiated by the transfer of a byte of command identification and any parameters belonging to that command via port $3 F 5 \mathrm{H}$. Each operation in the process of flexible disk control can be regarded as consisting of three phases:

## * Command Phase

During the Command Phase, the FDC receives commands and inherent parameters from the microprocessor.

* Execution Phase

During this phase, the actual execution of the command takes place.

## * Result Phase

During this phase, useful operational status information can be read by the microprocessor via the Main Status Register and/or the other four status registers. If the operation involved microprocessor reading of flexible disk data, that data is made available.

## The Main Status Register

Figure 5.14 indicates the status information which can be read via port $354 \%$ ( $374 \%$ ).

Bits 6 (DIO) and (BQM) of the Main Status Register are of particular importance for the transfer of information between FDC and microprocessor. Before writing a byte to the FDC, these bits must be 0 and 1, respectively. Reading a byte srom the FDC requires botr these bits to be 1.

The FDC in your NCR PERSONAL COMPUTER operates in DMA mode, with the sesult that interrupt detection before reading individual bytes is not required. In this mode, the FDC commuicates with the DMA controller by means of an exchange of $D R Q$ and $D A C K / s i g n a l s$.

The significance of the FDC Main Status Register when identifying the three operational phases is as follows:

Command Phase.

Commands/data for operation are received from the microprocessor. During this phase, DIO and RQM must be 0 and $\%$, respectively.

## Execution Phase

Performance of the requested operation. At the beginning of this phase, DIO and RQM go to 1 and zero, respectively.

Result Phase
Information available to the microprocessor, denoted by bits 6 and 7 of the Main Status Register being set.


Figure 5.14 FDC Main Status Register

## DISK STORAGE

The Drive Select Register
The Drive Select Register is white only register (Port 3F2M/372H) used to:

* Select disk drive units
* Control the motors of these units
* Enable controller interrupts and DMA requests

Figure 5.15 explains the significance of the individial bits of this register.


Figure 5.85 Drive select register

## Diskette Control Register

This register is witten to the controller in order to set data transfer speed. When this register has been written, the FDC should be reset (Drive Select Register bit 2).


Figure 5.16 Diskette control register

## FDC Commands and their Parameters

Figure 5.17 presents a summary of commands and parameters transmitted via port $3 F 5 \mathrm{H} / 375 \mathrm{H}$. A command phase consists of up to 9 bytes. The tables comprising Figure 5.18 explain the abbreviations used in Figure 5.17.

A system interrupt (type 6) denotes that an execution phase is completed or prematurely terminated. Status information and/or data is then available for input at port $3 \mathrm{~F} 5 \mathrm{H} / 375 \mathrm{H}$. The sigificance of this result phase (consisting of up to 7 bytes) is also set out in Figure 5.17. The significance of the status information which can be read during the result phase is set out in detail in Figure 5.24. (This status information is not to be confused with the Main Status which can be read at any time via port $3 \mathrm{~F} 4 \mathrm{H} / 37 \mathrm{H}$.)

It is important that commands and their data are input in the correct order, and that return information is read completely, even if elements of this information are not required.


Figure 5.17 FDC Command Summary [1 of 108


Figure 5.17 FDC Command Summary [2 of 10]


Figure 5.17 FDC Commend Summery 3 of 101


Figure 5.17 FDC Command Summary (4 of 10]


Figure 5. 17 FDC Command Summary $[5$ of 101



Figure 5.17 FDC Command Summery (6 of 10)



Figure 5.87 FDC Command Summery 17 of 10)


Figure 5.17 FDC Command Summery 88 of 10)



Figure 5.17 FDC Command Summery (9 of 10)



SENSE drive status														
1 C 1	W	1	0	0	0	0		0	1	0	0		Command	Codes
11	W	1	0	0	0	0		0	HDS	DS1	DSC	1		
1														
$1 \mathrm{~B} \mid$	R												Status inf	
1		1											about FDD	



Figure 5.17 FDC Command Summary. (10 of 10)


Figure 5.18 Abbreyiations used in FDC Command Summary (1 of 3)


Figure 5.18 Abbreviations used in FDC Command Summary [2 of 3]


Figure 5.18 Abbreviations used in FDC Command Summary (3 of 3)

Notes concerning individual FDC commands (the status registers referred to here are described in the subsequent section):
read data
After head location and settling time, the requested sector is located by means of the ID marks and ID fields on the located track. The FDC then outputs the data from the flexible disk data field one byte at a time. This operation is a multi-sector read, that is, sectors are output by the FDC until the DMA issues a TC (terminal count signal). If there are sectors remaining on the track, these are read, but only a Cyclic Reduncancy Check is performed; they are not output to the data bus. Figure 5.19 states factors affecting transfer capacity of a single read command.

1 MT		MRM	1	Bytal   Sector		Max. Transfer Capacity [Bytes/Sector]		Final Sector Read Pro Diskette
			1	N	1	[Number of Sectors]		
1		0	I	00	1	[128)(26) $=3,328$		26 at Side
0		1	1	01	1	$(256)(26)=6,656$		or 26 at Side 1
1		0	1	00	1	$(128)(52)=6,656$		26 at Side
1		1	1	01	I	$(256)(52)=13,312$		26 at Side 1
10		0	I	01		[256](15] $=3,840$		15 at Side
0		1	1	02	1	[512](15) $=7.680$	1	or 15 at Side 1
11		0	1	01	I	[256)(30]. $=7,680$		15 at Side
11		1	1	02	1	[512](30) $=15,360$	1	15 at Side 1
0		0	1	02	1	$[512][8]=4,096$		8 at Side 0
0		1	1	03	1	(1024) $(8)=8.192$		or 8 at Side 1
11		0	1	02		(512)(16) $=8,192$		8 at Side 1
11		1	1	03	1	[1024)(16] $=16,384$	1	8 at Side 1

[^0]
## DISK STORAGE

If the MT bit is set, data is read from both sides of the diskette (that is, the entire cylinder), starting with side 0 , sector 1 , and finishing with the last sector on side $\%$
If $N$ is 0 , the data length of each sector is defined by DTL. If there are more bytes actually in the sector, the excess bytes are subjected to CRC but do not appear on the data bus.
After accessing the sector(s), there is normally a head unload interval. However, this interval does not apply if the FDC has already detected a subsequent command entailing an access operation. This can save time when accessing large amounts of data.
Note that if you are transferring data from FDC to the microprocessor, the FDC requires microprocessor attention every 27 (FM mode) or 13 (MFM mode) microseconds. Failing this, $O R$ in Status Register 1 (see below) is set.

Possible error conditions:
Failure to find the specified sector sets the ND Ilag in Status Register 1. In Status Register 0, bit 6 is set and bit 7 is zero, and the command is terminated. CRC failure sets the DE flag in Status Register 1 , and terminates the command. In addition, bit 6 in Status Register 0 is set, bit 7 is zero. If the CRC failure lies in the Data rather than the ID field, the DD 1 lag in Status Register 2 is also set. External termination (TC signal) influences the $C, H$, R, and $N$ information. This information further depends on the MT and EOT yalues given in the command (see Figure 5.20), and can be read in the Result Phase.

## READ ONE TRACK

All Data Fields on a track are read, even if CRC failure is encountered. In this case, the NDR flag in Status Register 1 is set. Failure to find an ID Address Mark sets the MA 1 lag in Status Rgister 1 and terminates the command.

1	1	1	\| ID Imfo at Result Phase			
I MT	1 ETT	\| Final Sector Transferred				
1	1	1 to Processor	1 C	H	R	$N$
1						
1	1 1A	\| Sector 1 to 25 at Side 0		1	1	1
1	1 OF	1 Sector 1 to 14 at Side 0	1 NC	1 NC	R+1	1 NC
1	108	\| Sector 1 to 7 at Side 0	1	I		1
1						
1	1 1A	\| Sector 26 at Side 0	1	1	1	1
1	1 OF	\| Sector 15 at Side 0	$1 \mathrm{C}+1$	\| NC	$1 \mathrm{R}=01$	I NC
1	108	1 Sector 8 at Side 0	1	1		1
10						
1	1 1A	\| Sector 1 to 25 at Side 1		1		,
1	1 OF	\| Sector 1 to 14 at Side 1	I NC	1 NC	1 R+1	I NC
1	108	1 Sector 1 to 7 at Side 1	1	1		
1						1
1	1 1A	\| Sector 26 at Side 1				
i	I OF	\| Sector 15 at Side 1	$18+8$	1 NSC	$1 \mathrm{R}=01$	I NC
1	$108$	\| Sector 8 at Side 1			1	1
$1$						
$1$	1 1A	1 Sector 1 to 25 at Side 0				
$i$	1 DF	\| Sector 1 to 14 at Side 0	I NC	1 NC	R+1	1 NC
$1$	108	\| Sector 1 to 7 at Side 0		1		1
$1$						
1	1 1A	\| Sector 26 at Side 0	1	1		1
1	1 OF	\| Sector 15 at Side 0	1 NC	1 L.58	\| $\mathrm{A}=01$	I NC
1	1 D8	\| Sactor a at Side 0	,	,		I
11						
1	1 1A	I Sector 1 to 25 at Side 1	1	,		1
1	1 DF	\| Sector 1 to 14 at Side 1	1 NC	1 NC	$18+1$	1 NC
1	108	\| Sector 1 to 7 at Side 1	I	,	,	I
1						
1	1 1A	\| Sector 26 at Side 1	,	/	1	1
1	1 OF	\| Sector 15 at Sido 1	$1 \mathrm{C}+1$	1 LSE	\| $\mathrm{R}=01$	1 NC
1	108	\| Sector 8 at Side 1	1	1	1	1

Notes: 1. NC (No Change): Same value as at beginning of command execution.
2. LSB (Least Significant Bit]: The least significant bit of $H$ is complemented.

Figure 5.20 Status at External Termination

## READ DELETED DATA

As READ DATA, exept that upon encountering a Deleted Data Address Mark at the beginning of a Data field, and assuming that SK was zero when the command was issued, the data in the sector is transmitted; the CM flag in Status Register 2 is set, and the command is terminated.

## WRITE DATA

When the sector $R$ has been found, the FDC accepts data from the data bus for that sector. Upon occurrence of a TC (Terminal Count) signal, the remainder of the data field currently being written is filled with zeros. CRC failure in an ID field sets the DE flag in Status Register 1 and terminates the command. Other details as in READ DATA.

## WRITE DELETED DATA

As WRITE DATA, except that a Deleted Data Address Mark is written at the beginning of the Data field.

READ ID
This command returns the current head position by means of the first ID field the FDC can read. Failure to find an ID Address Mark sets the MA Plag in Status Register 1. If there is no data, ND is set in the same register.

## FORMAT ONE TRACK

The format is determined by the values specified for $N$, $S C, G P L$, and $D$ in the command. The sector is located by means of the $C, H$, $R$, and $N$ values. The $R$ value is incremented automatically, until index hole detection indicates the end of the track.
If an error situation arises, the EC flag in Status Register 0 is set, and the command is terminated. The $\mathrm{N}, \mathrm{SC}$ and GPL values for MFM recording are shown in Figure 5.21.


Figure 5.21 Sector Size Vapiables
8
GPL 1 values given avoid splicing between data field and ID field of contiguous sections. GPL 2 figures are for formatting purposes.

## SCAN ONE TRACK

Data read by the FDC from disk is compared byte by byte with data on the data bus (supplied by DMA controller or microprocessor). The comparative condition can be $=,<=$, or $\rangle=$, using one's complement arithmetic. The operation is carried out for the specified track, with automatic incrementing of $R$ until the condition is fulfilled, end of track is. reached, or a TC signal occurs.
If the scan condition is fulfilled, the SH bit in Status Register 2 is set; SN set Status Register 2 indicates non-fulfilment. Figure 5.22 shows the possible conditions of comparison and the status of SH and SN (FDD = data read from disk, Bus = data read from data bus).

If a Deleted Data Address Mark is encountered and SK was issued in the scan command as a zero bit, this is regarded as the last sector and CM in Status Register 2 is set. If $S K$ was issued set, CM is likewise set to indicate that the deletion mark was detected, but the scan process skips that sector and continues to scan the remainder of the track.


Figure 5.22 Scan Status Cades

## SEEK

The present cylinder number ( PCN ) is compared with the new cylinder number to be located (NCN). If PCN < NCN, the Direction line to the flexible disk drive is set high; if $P C N>N C N$, this line is low. When the cylinder has been located, SE in Status Register 0 is set and the command terminated.
If the disk drive is not ready, the $B R$ flag in Status Register 0 is set and the command terminated. This command does not include a result phase. However, the termination of the command is effected by means of the Sense Interrupt Status command.

NOTE: FDC read and write commands affect the track/cylinder at which the bead is currently positioned. To locate the track/cylinder itself, an explicit SEEK command must be issued.

## RECALIBRATE

With the Direction line high, the read/write head retracts 77 step pulses or to track 0 , whichever occurs first. The SE Slag in Status Register 0 is set
high. If the Track 0 signal is still low, the EC flag in Status Register 0 is also set high. This command does not include a result phase. However, the termination of the command is effected by means of the Sense Interrupt Status command.

SENSE INTERRUPT STATUS
An interrupt signal occurs upon entering the result phase of one of the above commands (or upon termination of SEEK or RECALIBRATE), or the Ready line changes state, or during execution in non-DMA mode. Figure 5.23 shows the signiricance of the three interrupt status bits affected in Status Regiser 0 . It is important to check this interrupt status before attempting to read the information resulting from an FDC command.


Figure 5.23 Sense Interrupt Status

## SPECIFY TIME

Sets Head Load Time (HLT), Head Unload Time (HUT), and Step Rate Time (SRT). In addition, non-DMA mode is determined by bit ND beirg zero.

## DISK STORAGE

## SENSE DRIVE STATUS

Returns information in Status Register 3. If the FDC does not recognize a valid a command, no interrupt is generated, but DIO and RQMin the Main Status Register are set (as during a normal result phase). Status Register 0 , containing $80 \mathrm{H}_{\text {, must be }}$ read before a command can be issued to the FDC.

FDC Status
The Main Status Register is accessed via port 3F4H/374H. In addition, there are four status registers which can be read via port 3 F5H/375H. Remember, it is imperative that all status registers affected by a particular command (see figure 5.17) are actually read during the result phase in the specified order, even if the information they yield is not required.

Figure 5.24 sumarizes the four Status Registers.

Bit				1	
1 -1 Description					
1 No.	Name	1	Symbol	1	
1.			Status Register 0		
\| D7	Interrupt		1	IC	$\mid D 7=0$ and $D 6=0$. Normal
11	Code	,		I Termination of Command, (NT).	
1		1		1 Command mas properly executed	
1		1			
\| D6		1		$1 \mathrm{D7}=0$ and $D 6=1$. Abnormal	
1		1		\| Termination of Command, (AT).	
1		1		1 Execution of Command was	
1		1		\| started, but mes not success-	
1		1		I fully completad	
1		1		1 I-1	
1		1		$\mid \mathrm{D7}=1$ and $\mathrm{DE}=0$. Invalid	
1		1		\| Command issue, [IC). Command	
1		1		1 issued was never startad	
1		1		1	
1		1		$\mid D 7=1$ and $D 6=1$. Abnormal	
1		1		1 Termination becsuse during	
1		1		I Command execution the Ready	
1		1		I Signal from $A D C$ changed state	
105	Seek End	1	SE	I When the FOC completes the	
		1		\| Seek Command, this flag is set	
		1		1 to 1 (high)	
1					
104	Equipment	1	EC	1 If a fault signal is recaived	
,	Check	1		I from the $\mathrm{FDO}_{\mathrm{D}}$ or the Track D \|	
		1		$\mid$ Signal faits to occur after \|	
		1		$\mid 77$ Step Pulses \|Recalibrate	
		1		\| Command then this flag is set	

Figure 5.24 Status Registers (1 of 8)

DISK STORAGE


Figure 5. 24 Status Register 12 of 61

1 Bit		1 Description				
I No. I Name	1 Symbol					
Status Register 1						
07 \| End of	EN	I When the FDC tries to acces 1 a Sector beyond the final \| Sector of © Cylinder, this	flag is seq			
1 \| Cylinder						
11						
11						
\| 061	I Not used. This bit is always 0 \|					
1 D5 \| Data	1 DE	I When the FDC deiects a CRC I error in either. the ID field \| or the date field, this flag $\mid$ is set				
11 Error	1					
11	1					
11	1					
D4 \| Over Run	1. OR	\| If the FDC is not serviced by	the main system during data	transfers, within a-certain	time interval, this flag is set	
11	1					
11	1					
11	1					
1 D3 \|	1	\| Not used. This bit is always 0	(Low)			
11	1					
\| D2	No Data	1 ND	\| During exacestion of READ DATA,			
1	1	I Write deleted daja or Scan Com-l				
11	1	I mand this flog is set if the I				
11	1	\| FDC cannot find the Sector				
11	1	\| specified in the ID Register				
11	1					
11	1	\| This flag is set when FDC can-				
11	1	I not read the ID field without				
1	1	\| error when executing READ ID				
1	1	1 command \|				
11	1					
11	1	\| Flag is set ff starting sector				
11	1	I is not found during execution1 of READ A Cylinder command				
11	1					

Figure 5.24 Status Registers ${ }^{\circ}$ (3 of 6)

DISK STORAGE

$8 i 5$		1 Description		
180. \|	1 Symol			
Status \%rgister 9				
1011 Not	1 NW	1 During execution of WRITE DATA,		
1 \| Wricable	1	I WRITE DELETED DATA or format a 1		
11	1	\| Cylinder commend, if the FDC I		
11	1	$\mid$ datects a mrita protect signal \|		
11	1	\| from the FDD, then inis flag		
11	1	1 fs set 1		
$100 \mid$ Missing	1 MA	1 If the FDC cannot detect the		
1 Address	1	1 In Address Mark after ancoun- I		
1 Mark	1	\| tering the index hole twice,		
1	1	\| then this flag is sat		
1	1	1 - 1		
1	,	1 If the FDC cannot detect the I		
1	1	1 Date Address Mark or Deleted \|		
1	1	$\mid$ Data Address Mark, inie flag \|		
1	,	\\| is set. Also at the same time		
,	1	1 the MD (Missing Address Mark $\mid$		
11	1	8 in Data Fialdi of Status $\quad 1$		
1	1	$\mid$ Register 2 is set \|		

Figure 5. 24 Status Registers (4 of 6)

Bit			1 Descripeton		
\| No.	Name	Symbol			
1 Status Registar 2					
1071			\| Bit not used, is always 0 [lowl		
\| D6	Control		CM	\| Flag is set when FDC encounters	
1	\| Mark		I a sector conteining a Deleted		
	1 I		1 Date Address Mark when execut-		
	11		1 ing read data of Scan Command		
105					
	\| Data Errorl	DD	$\mid$ Flag is set when FDC detects a \|		
$1$	$\mid$ in Data $\mid$		\| CRC error in the date field		
	1 Field		,		
1 D4	\| Wrong	WC	\| This bit is ralated to ND bit;		
$1$	\| Cylinder			$\mid$ flag is set mhen contents of C \|	
	I		1 differs from thet of ID reg. I		
I D3	1 Scan	SH	\| Flag is set when condition		
1	\| Equal Hit			\| "equal" is satisfied upon Scan I	
I__					
102	\| Scan Not 'I	SN	\| Flag is set when FDC cannot		
	$\mid$ Satisfied \|		\| find a sector during Scan meet-1		
$1$	1		I ing the condition \|		
1 l 1 ing the condition					
101	1 Bad	BC	I This bit is related to ND bit; I		
$1$	$\mid$ Cylinder $\mid$		\| flag is set when contents of C		
$1$	1		1 is DFFH and diffars from the $\mid$		
i	11		\| contents stored in ID register $\mid$		
I__I					
100	\| Missing		MD	$\mid$ Flag is set when during Read \|	
$1$	\| Address		I the FDC cannot find a Data \|		
1	\| Mark in			\| Address Mark or a Deleted Data $\mid$	
	$\mid$ Data Field		I Address Mark \|		

[^1]

Figure 5.24 Status Registers (6 of 81

## MINIMUM FORMAT REQUIREMENTS

Figure 5.25 illustrates index requirements and tolerances for flexible disk formatting.

Post-Index
Before initial recording of data upon a selected track, a gap is required to allow for drive-to-drive adjustment bolerances. This is the gap (Gap 1) from


Figure 5.25 Flexible disk format
the edge of the index pulse to the beginning Sync Field for the ID field address mark. This gap allows for yariations in Index pulse width, speed variations, and interchange tolerances between drives.

Pre-Irdex
The Pre-Index gap (Gap 4) is required to compensate for maximum speed variations between drives. Physically, the gap is the space between the last sector and the beginning of the index pulse.

Pre-Data
The Pre-Data gap (Gap 2) timing is determined by the erase turn-on circuit tolerance and the tunnel-erase structure of the read/write head.

Pre-ID
The Pre-ID gap length varies with sector size. The Pre-ID gap (Gap 3) is based on the tunnel-erase structure of the read/write head and maximum erasecircuit turn-off delay.

## THE HARD (KINCHESTER) DISE DRIVE

The Winchester disk drive uses a non-removable 5 1/4inch disk as storage media. The unit contains two disks and uses three recording surfaces, each of which is served by two heads. The total formatted capacity is 20 M bytes. The disk controller interfaces the disk drive to the host processor. All necessary buffers and receivers/ drivers are included on the Winchester disk controller board to allow direct connection to the drive. Power requirements for the hard disk drive are given in Figure 5.26, pin assignments for the DC power connector are illustrated in Figure 5.27.


Figure 5.26 Power requir rements


Figure 5.27 DC power connector

The NCR PERSONAL COMPUTER can use one or two hard disk drives in a daisy chain configuration. A terminator resistor pack must be installed in the end unit.


Figure S. 28 Fixed disk drive components


Figure 5.29 Technical deta


Figure 5.30 Connections and jumpers

## COMTROL RND DATA SIGNALS

Figure 5.32 specifies the pin assignments of the control signal intersace between controller and the drive. The corresponding edge connector is shown in Figure 5.33. Data in MEM format is transferred by means of a separate cable, for which pin assignments and edge connector are illustrated in Figures 5.34 and 5.35 .

The input and output signals for the drive are:
Write Gate
The active state of this signal enables data to be written on the disk. If the Head Select is invalid, activation of this signal will cause an error. The inactive state of this signal enables data to be transfersed from the drive
This line must be inactive during the transmission nof step pulses.

Head select
The three Head Select lines provide for the selection of each individual read/write head in a binary coded sequence. Head Select 0 is the least significant line. Example: Head Select 0 low with Head Select 1 high selects head 1 (signals are active low). Head Select 2 must be inactive in the NCR PERSONAL COMPUTER. The correlation between physical disk durfaces and Head Select lines is illustrated in Figure 5.31 ( $0=$ inactive, $1=$ active).


Figure 5.3i Hard disk head selection


Figure 5.32 Hard disk controller/drive control signals


Figure 5.33 Hard disk: edge connector for control signals

DISK STORAGE


Figure 5.34 Hard disk controller/drive data signals


Figure 5.35 Hard djsk: edge connector for data signals

## Direction In

This signal defines direction of motion of the $R / W$ head when the Step line is pulsed. Signal high defines the direction as "out" and if a pulse is applied to the Step line, the $R / W$ head moves away from the center of the disk towards track 0 . If this line is signal low, the direction of motion is defined as "in" and the R/W head moves toward the center of the disk. Direction must not change during step time.

Step
This interface line is a control signal which causes the R/W head to move with the direction of motion defined by the Direction. In line. Any change in the Direction In line must be made at least 100 ns before the leading edge of the step pulse.
The drive accepts step pulses from the controller in one of two possible modes, track-to-track or buffered. Track-to-track mode is possible when the interval between step pulses is 3 ms or greater. In buffered mode, steps are accumulated and then issued at a rate between 8 and 200 microseconds. Note that the acceptance of track-to-track stepping is provided for compatibility purposes only. The actual stepping mode used by the drive is alway 3 buffered.
An attempt to position the head outside the recording zone will result in a re-positioning at Track 0.

Drive Select 1 - 3
Drive Select, when active, connects the drive interface to the control lines. Jumpers are provided on the drive which are set in a specified pattern so as to determine which unique select line on the interface will activate that particular drive (see Figure 5.30).

Seek Complete
This line will go from inactive to active when the $R / W$ heads have settled on the rinal track at the
end of a seek. Reading or writing should not be attempted when Seek Complete is inactive.
Seek Complete ust go inactive for any of the following cases:

1. A recalibration sequence is initiated by drive logic, e.g. as the result of stepping outside the recording zone
2. Within 500 ns after the leading edge of a step pulse or series of step pulses
3. At power on or after a power interruption.

Track 0
This interface signal is active only when the drive's R/W heads are positioned at track O (the outermost data track).

## Write Fault

This signal indicates that a condition exists at the drive that would cause improper writing on the disk When this IIne is active, further writing is inhibited at the drive until the condition is corrected. Once corsected, this line can be reset by de-activating the Write Gate or deselecting the drive.
There are fous conditions which can cause Write Fault to be activated:

* Write current malrunction:

Write cursent in a head without Write Gate active
or
Write Gate and Drive Select active with no write current in a head

* A drive malfunction causing more than, or less than, one head to be selected, or a malfunction causing a head to be selected for read during Write or for write during read
* DC voltages are grossly out of tolerance.
* Write Gate and an inactive condition on Seek Complete

Index
This interface signal is provided for 200 microseconds by the drive once each revolution (nominally 16.67 ms ) to indicate the beginning of the track. This signal is normally inactive and makes the transition to active to indicate Index.

Ready
This interface signal, when active together with Seek Complete, indicates that the drive is ready to read, write, or seek and that the $I / 0$ signals are valid. When this line is inactive, all writing, reading, and seeking is inhibited. Ready should be inactive only as a result of and during recovery from a power off condition: Ready is normally asserted no later than 35 seconds after power on.

MFM Write Data
This is a differential pair that defines the transitions to be written on the track. The transition of $+M F M$ Write Data line going more positive than the -MFM Write Data will cause a flux reversal on the track, provided Write Gate is active. This signal must be driven to an inactive state (+MFM Write Data more negative than -MFM Write Data) by the host system when in a read mode. Integrity of data writing, especially on inner tracks, is ensured by pre-compensation being active. Data patterns which cause a large amount of bit shift have appropriate data bits shifted early or late with respect to the nominal bit cell position. Bit shift compensation, whether early or late with respect to the nominal bit cell position, is 12 ns .

MFM, Read Data
The data recovered by reading a pre-recorded track is transmitted to the host system via a differential pair of MFM Read Data lines. The (precompensated) transition of the $+M F M$ Read Data line going more positive than the - MFM Read Data line represents a flux reversal on the track of the selected head.

## DISK STORAGE

Figures 5.36 to 5.40 illustrate timing
considerations.


Figure 5.36 pomerman and drive select timing


Figure 5.37 Head select timing


Figure 5.38 Index timing


Figure 5.39 Track access \&iming


Figure 5.40 Write pre-compensation

## TRANSIT PRECAUTIONS

A metal bar is included in the drive housing, providing a shipping lock to prevent transit damage to the drive The location of this bar is illustrated in Figure 5.30.

The drive is locked when the bar is in the withdrawn position, and released when it is fully home.

The operating system of the NCR PERSONAL COMPUTER reserves track 615 as a "parking" track.

## THE RARD DISE COMTROLLER

The hard disk controller is included on a single board together with the flexible disk controller. The hard disk controller, like the flexible disk controller, uses two distinct I/O address areas, according to whether primary or secondary addresses are selected by means of jumpers on the disk controller board (see Figure 5.13). Hard disk controller activity uses interrupt request OEH (IR6 of PIC \#2).

The hard disk controller includes features which considerably offload the microprocessor:

* Retries are automatically performed, even on ECC (Polynomial Error Check) and head positioning errors
* Basic read/write functions include an implied seek operation, thus saving head positioning control software
* Head positions are noted internally by the controller. This avoids the need to maintain corresponding tables in your software
* Data reading and writing is buffered internally, thus facilitatirg interruption

```
Multiple sector reading and writing
```

The interface between controller and the system is via ports with read/write I/O addresses in the range 1 FOH to 1 F 7 H (primary) or 170 H to 177 H (secondary):
$1 \mathrm{FOH} / 170 \mathrm{H}$ Data register
1F1H/171H Read: error register Write: write pre-compensation
$1 \mathrm{~F} 2 \mathrm{H} / 172 \mathrm{H}$ Sector count
1F3H/173H Sector number
$154 \mathrm{H} / 174 \mathrm{H}$ Cylinder low
1F5H/175H Cylinder high
1F6H/176H Size/Drive/Head
1F7H/177H Read: status register Write: command register

## Status Register

Figure 5.41 sets out the significance of the status bits read via port $1 \mathrm{~F} 7 \mathrm{H} / 177 \mathrm{H}$. Reading the status register clears the controller's interrupt request. If bit 7 is set, other bits in the register are undefined.

	Stetus bit	1 Descriptrom	
1		1	
1	0	$11=$ anerror has occurred and tho Error Register 1	
1		1 should be inspected; multi-sector operations i	
1		1 are terminated. 1	
1		\| Bit is reset upon issue of a command	
1		1	
1	1	1 Index signal \|	
1		$\mathrm{\\|}$ sat es long as the Index pulse is activa \|	
1		1 1	
1	2		
1		1 does not terminate multi-sectar operations] I	
1		1 d	
1	3	$11=$ sector buffer is axpecting a. [further) read orl	
1		1 mpite operation \|	
1		1	
1	4	1 Seek Complete signal	
1		$1 \mathrm{f}=$ completad seek operation	
1		1	
1	5	1 Write Fault signal 1	
1		$11=8 \mathrm{ecodmritg} / \mathrm{seck}$ juhibited	
1		1	
1	6	1 Orive Ready signal	
1		$11=$ drive can read/write/seak, provided that bit	
1		14 is set	
1			
1		1	
,	7	$11=$ controller busy: sccess to registers is not $\mid$	
1		1 possibie fany read attempt defaults to Status 1	
1		1 registerl 1	
1		10 = registars can be read/written d	
1		1.1	

Figure 5.41 Status Registar

Command Register

Eight commands can be issued by the controller via port $1 \mathrm{~F} 7 \mathrm{H} / 177 \mathrm{H}$. For a comand to be issued, the Status Register (read at port $1 \mathrm{~F} 7 \mathrm{H} / 177 \mathrm{H}$ ) must indicate that the drive is not busy, the Drive Ready and Seek Complete signals must be active, Write Fault must not be active. Issuing a command resets the hard disk controller interrupt request to the system.

Valid hard disk controller commands:

Restore heads to track 0
Seek
Read Sector
Write Sector
Format Track
Verify
Diagnose
Set Drive Parameters

The format of these commands is summarized in Figure 5.42. Any invalid format written to port $1 F 7 \mathrm{H} / 177 \mathrm{H}$ will cause the "Aborted Command" error bit to be set in the Error Register.

A number of commands involve implied Seek operations. The stepping rate used is as most recently set by the Restore or Seek command, or the default value of 7.5 ms following a Diagnose command or controller reset.

The 4 -bit stepping rate value included in the Restore and Seek commands is as follows:

```
0000 = 35 microseconds
0001 to 1111 =
0.5 to 7.5 ms in increments of 0.5 ms
```

The $L$ bit included in some commands determines whether the data transfer is to be "long", that is, including the four ECC bytes (bit set), or whether data without ECC bytes is to be transferred (bit zero).

1 Comend	1	日8t:								
	1	7	8	5	4	3	2	8	0	0
1	1									1
1 Restore	1	0	0	0	1	$<$	Steppin		คats	>1
1	- 1									1
Seek	8	0	1	1	1	$\bigcirc$	Steppin		Rate	>1
1	1									1
1 Read Sector	1	0	0	- 1	0	©	0	1		T
1	1									1
1 Write Sector	1	0	0	1	9	0	0	$L$		T 1
1	1									1
1 Format Track	1	0	1	0	1	0	0	0		01
1	1									1
1 Varify	1	(1)	1	0	0	0	0	0		T 1
1 d	1									1
1 Diagnose	1	1	0	0	1	0	0	0		01
1	1									1
1. Set Parametary	1	1	0	0	1	0	0	(1)		81
1	1						.			1

## Figure 5.42 Command summary

Setting the $T$ bit limits the number of retries to one. Otherwise, the drive performs retries up to the following maximum:

10 retries, rollowed by
drive recalibration, rollowed by

10 retries

This maximum is drive-specific, and cannot be infuenced by the hard disk controller.

For commands requiring disk location information (drive, cylinder, track, sector), it is necessary to have previously supplied this information by means of the appropriate controller registers.

RESTORE
Moves the heads outwards until the Track 0 signal becomes active. The cylinder registers are reset. An interrupt is then issued.

SEEK
Positions the heads at the specified cylinder, and then issues an interrupt.

READ SECTOR
Reads the specified sector from the hard disk drive. This command includes an implied Seek. A Restore to Track 0 is not implicit, so that no track-to-track head movement is required if the head is currently positioned over the right track.
An intrrupt indicates that data is available for reading from the Data Register.
If the L bit is set, no error checking is performed.
WRITE SECTOR
Writes data already placed in the Data Register to the specified sector. This command includes an implied Seek. A Restore to Track 0 is not implicit, so that no track-to-track head movement is required if the head is currently positioned over the right track.
An interrupt indicates that the command has been carried out.
If the L bit is set, no error checking is performed.
FORMAT TRACK
Delinates data fields and writes identification fields on the specified track using the interleave table already in the sector buffer (written via the Data Register). The interleave table written to the sector buffer consists of two bytes for each sector:


The remaining bytes of the 512-byte sector buffer should also be written. The hard disk format utility of the NCR-DOS operating system uses an interleave jump of 3 .

The actual number of sectors to be formatted on the track is determined by the Sector Count Register. Note that this register must be written separately for each track formatted.

## VERIFY

Performs a verification of a previous write to the sector(s) specified. Upon completion of the singlesector or multi-sector verify, an interrupt is issued. Status should then be checked.for errors. The command aborts in the event of an error.

## DIAGNOSE

Controller performs internal diagnostics, issues an interrupt, and reports any errors in the Error Register.

## SET PARAMETERS

This command must be issued so that the drive can perform multi-sector operations. The following parameters must be deposited in other controller registers before this comand is issued:
Max. head no.
in specified drive \} in Size/Drive/Head Register

No. of sectors per $\}$ in Sector Count Register track

Data Register
The Data Register provides 16 -bit access to the 512byte sector buffer on the disk controller board. However, ECC irformation (transferred in "long" read/write operations) must be read or written byte by byte, allowing 2 microseconds between transfers, and the DRQ signal must be active.

## Error Register

The significance of the Error Reglster bits differs according to whether the controller is diagnostic or or normal mode.

B
Diagnostic mode applies at power-on, or when the Diagnose command is being executed. In diagnostic mode, only the 3 LSB are significant: value $1=$ no error, value $3=$ sector buffer error, values $2,4,5$ $=$ other error.

In the normal mode of operation, the Error Register bits are used as stated in Figure 5.43.

DISK STORAGE

1 Error bit	1 Description [bit set] \|	
1	1	
10	\| Date address mark not found during Read operation	
1	1	
19	\& Track 0 signal did not become active during a	
1	\| Restore command	
1	1	
12	1 An invalid command was issued	
1	1 or	
I	\| A commend mes issued although driva was not Ready I	
1	1 or	
1	\& A commend was issued while write Fault was assertedl	
1	1	
3	1 Not used	
1	1	
1.4	I Sector ID could not be found or CRC error in ID \|	
1	$\mid$ fiald. This bit is sat, and remains sat, even if \|	
1	1 the error is recovered during retry. If error is I	
f	\\| unrecoyerablsy the Status Register is abso affectedi	
1	\| (6it O)	
I	1	
5	1 Not used	
$1$	1	
6	\\| ECC data field error. This bit is set, and remains 1	
	\| set, eyen if the error is recovered by a retry. If i	
	I the error is recouarable, Status Register bit 2 is 1	
	\\| seto othermise stetus Register bit 0 is set	
	1	
7	1 ID field canteins s obad block ${ }^{00}$ merk	
	1	

Figure 5. 43 Errar Registar

Pre-compensation Register

An 8-bit register specifying the number of the cylinder, diyided by 4, from where write precompensation is to be applied.

Size/Drive/Head Register
This register is made up as shown in Figure 5.44.


Figure 5.44 Side/Drive/Head Megister.
DRIVE is zero for first hard disk driye, set for the second hard disk drive.

HEADS is a binary value for the maximum number of heads in the drive.

## Cylinder High and Low Registers

A 16-bit value specifying a cylinder number. The controller notes internally its current cylinder position. By comparing its internal note with the value specified in these two registers, it can determine the direction in which stepping must take place.

## Sector Number Register

In single-sector operations, this is the sector to be accessed. In multi-sector operations, this register specifies the first sector to be accessed. The controller updates this register as it read/writes sectors.

Sector Count Register
The controller automatically decrements this register each time a sector is accessed. If you specify a value of 1 , the subsequent operation is singlesector; otherwise a multi-sector operation is
performed, eyen across cylinder boundaries (value 0 specifies 256 sectors).

## Hard Disk Registero

A write-only register is located at port adresses $356 \mathrm{H} / 376 \mathrm{H}$ 。 Using this register, additional control information can be written to the hard disk controller. Only bits $1-3$ are significant:

Bit 1 controls interrupt request 0 EH :

$$
\begin{aligned}
& 0=\text { interrupt request enabled } \\
& 1=
\end{aligned} \quad \text { disabled }
$$

Bit 2 controls drive reset:

$$
\begin{aligned}
& 0=\text { normal operation } \\
& 1=\text { perform reset }
\end{aligned}
$$

Bit 3 controls use of pin 2 of the drive control connector:

$$
\begin{aligned}
& 0=\text { pin is Reduced Write Current } \\
& 1=\quad \text { Head Select } 3
\end{aligned}
$$

## Signal Status

Reading port $3 F 7 H / 377 \mathrm{H}$ yields information about the cursent state of a number of contral lines to the hard disk driye(s). This is set out in Figure 5.45. Note that bit 7 is used by the $\mathbb{f l e x i b l e ~ d i s k ~}$ controller to indicate a diskette change.

1 Bit	Signal
1	1
10	I Drive Select 0
1	1
11	1 Drive Select 1
1	1
12	1 Head Select 0
1	1
13	$\mid$ Head Select 1
1	1
14	1 Head Select 2
1	1
15	1 Head Select 3
1	1 or
1	\| Reduced Write Current I
1	1
16	\| Write Gate
1	1
1	1
17	\| Diskette change

Figure 5.45 Signal staruis

## Hard Disk Format

The sector format is illustrated in Eigure 5.46 .


Figure 5.46 Hard disk format
dISK STORAGE

GAP 1
Brovides a mead switcoing recovery period and controller decision aking period so that that when switching from one track to another, sequential sectors can be read without waiting the entire rotational latency time (the controller can read the last sector of a track, perform a bead change, and read the first sector of a new track).
The minimum Gap 1 is 4 bytes, but 16 are usual.
SYMC
Allows the controlles's phase-locked oscillator to become phase and frequency synchronized with MFM flux reversals. This is necessary so that clock and data bits can be distinguished from one another.

ID FIELD
Identifies track and sector: The address mark (AM) is a unique MFM encoded data pattern indicating the start of the ID field and synchronizing with the ensuing bit stream. The mam byte is made unique by the controller by omitting one clock bit. This is followed by a single identification byte.
CYL LOW contains the 8 lSBs of the cylinder number.
HEAD contains the upper bits of the cyliner number in bits 0-6. Bit 7 denotes whether the sector is good (zero) or defective (set).
SEC contains the sector number.
Then follow 2 bytes for ID CRC checking.

## GAP 2

provides bytes of zero, mainly for phase-locked oscillator synchronization of the data field.

## DATA FIELD

The actual data storage area is prefixed by an "Al" and further identification byte, as was the case with the ID field.
The data field is concluded by four ECC bytes.

GAP 3
The zero bytes allow time for ECC checking. The ensuing m4En bytes allow for variations of spindle
speed between formatting and writing. The number of these bytes depends on nominal motor speed.

GAP 4
Provides a speed tolerance gap for the entire track. This gap, like Gap 3, can vary according to rotational speed.

## The Loudspeaker

## HARDWARE CHARACTERISTICS

The NCR PERSONAL COMPUTER MODEL contains a small loudspeaker, mainly used to attract operator attention in application programs. The loudspeaker is driven by a TTL signal, amplified by a transistor.

The driving signal is a square wave derived from output line OUT2 of the 8254 programmable interval timer (sse Chapter 2). The actual frequency is determined by the value loaded in the counter for that timer output.

The output from the timer to the loudspeaker amplification and volume control circuitry is AND gated with a latch responding to data line 1 when I/O address 61 H is selected. Therefore, sound is turned on and off by writing to port 61 h with data bit 1 set or zero.

That the CPU does not have to directly pulse the loudspeaker in relation to the desired frequency means that sound effects can take place while other instructions. are being processed.

## PROGRAMMING MOSIC

If you wish to program music, you will find the table of frequencies and their respective notes in musical notation useful (Figure 6.1).

To obtain timer counter 2 values to produce one of these frequencies, it is necessary to perform jumbo arithmetic: place the frequency in Hz in CX . The value 1234DCH in $D X-A X$ is then divided by CX to yield a 16 -bit result in AX. This value is then output to the counter, low byte then high (a division remainder can be ignored).

1	Note	Fraquency $(H z)$	1	Hote	Frequency ( Hz )
1			1		
1	A	220	1	F*	740
1	A	233	1	$G$	784
,	B	248	1	G\#	830
,	c	252	1	A	880
1	C*	277.2	1	A	930
1	0	293.6	1	B	987.8
1	O\%	381.6	1	c	1046.4
1	E	329.6	1	C\%	1106
1	$F$	349.2	1	0	1974.6
1	F*	370	1	0\%	1244
1	G	392	1	$E$	8318.8
	G\%	886	1	F	1397
	A	440	1	F\%	1480
	A	466	1	6	1568
	-	493.2	1	G*	1660
1	Middle	C 523.2	1	A	1760
	c*	554.8	1	A	$1864^{\circ}$
	0	587.4	1	8	1975.6
	0\%	622	1	c	2093
	$E$	659.2	1	C.	2217.4
	F	698.4	1	D	2349.4

Figure 6. 1 Music frequencies

## Display Control

The 3299-K201 graphic display adapter supplied with the NCR 3295-2010 Color Monitor supports "all points addressablen graphics and contains a 32 KB memory.

The 32 KB memory of the graphic display adapter can be upgraded to 64 KB (3299-K202), thus providing high resolution ( $640 \times 400$ pixels!) color capability.

The display adapter uses a 6845 controller. A dual port configuration is used so that CPU access and CRT controller can access video RAM independently of one another. All video RAM lies within the CPU "read address" area.

It is important that you install the display adapter supplied with the monitor. This is because the frequency characteristics differ Irom.one type of monitor to another.

CAOTION: Before connecting an external monitor, you must ensure that it is truly TTL compatible. A number of monitors available claim to conform to this norm, but in fact drain excessive current from the adapter.

## ADAPTER CONNECTION

A 9-pin $D$-shell connector interfaces to the external monitor. Figure 7.1 shows the pin connections of the $3299-K 201$ display adapter. Figure 7.2 illustrates the signals for the light pen connector.

DISPLAY CONTROL


Figure 7 of -connector pin assignments


Figure 7.2 bight pen connector

## CHARACTER DISPLAI

## THE CHARACTER SET

The NCR PERSONAL COMPUTER draws upon two character sets. In the character mode of display a set of 256 characters can be displayed on the screen. This character set, for the most part consisting of 6 (horizontal) $x 9$ pixel patterns in $8 \times 16$ matrices, is produced by a character generator which is not accessible to software. If your application requires the pixel patterns of this character set (for example, for character magnification), you can load a corresponding graphic table into user memory by means of the GRAFTABL utility under your NCR-DOS operating system. This table is required, for example, for the 640 by 400 pixel graphic resolution of GW-BASIC.

The lower part of this graphic table (that is, for character codes 0 to 7 FH ) is held in read only memory, starting at the machine address 0 D 800 H offset to the beginning of the ROM at paragraph $0 F 000 \mathrm{H}$ in the normal machine memory map (the ROM is not switched), and extending over 2048 bytes (128 characters each of 16 bytes). This lower part is, therefore, always available for program reading.

The higher part (character codes 80 H to 0 FFH ) is loaded with the NCR-DOS executable file GRAFTABL into user memory. Assuming that you specify high resolution in response to the GRAFTABL menu, this higher part of the table is retained in user memory even after the return to the parent process (using the NCR-DOS function call "Terminate but Keep Process"). The exact location of the first $16 \times 8$ pattern byte (that is, for the character with code 80 H ) is the byte with a positive offset of 400 H to the Code Segment + Instruction Pointer value held in the CPU interrupt vector entry for interrupt type 1FH. This entry is set by the GRAFTABL program. Example: if the four bytes starting at machine address 7 CH ( $=$ vector entry for interrupt type 1 FH ) are $03 \mathrm{H}-01 \mathrm{H}$ (IP) $91 \mathrm{H}-06 \mathrm{H}$ (CS) in that order (the CS value can vary according to the program segment set

## DISPLAY CONTROL

up by $\mathbb{N C R - D O S}$ ), the beginning of this higher part graphics table is located at the hexadecimal paragraph:offset address 0691:0503, and the top 8pixel line for the graphics character with code 81 H is stored in the byte 0691:0513.

The pixel patterns for this $16 \times 8$ character set are illustrated in Figure 7.3.
filfilir)rino livinijiso armisnerin (1) HITHInTO (alfil ic ir ind fllurimilao (iliflifncio (Ir in)ronon sicinnomer (inemr)rino n(ri)rina
a(irir)orina limmnotico cironconn (ivaninni
sinfiris $\left\{\begin{array}{l}\text { ininnring } \\ \text { innorne }\end{array}\right.$ (il iormano

ofiriricurion


Mrmanno y) misinais) if if im is in วกา 1 ต ก(98)
 or)riorin prorinion (1) - 1 (ingron armreroina arinijorion

ตดกาดกnด ถกロากดดก ansinniona GInT 7 ตา rino terer ofirim niof
 orn:100 OHO角 50 nymino OON1FOOOO
armonnon 7r)(x)(x) ce acicin riecimors (i)
 आrigation
Mir
(r)me ir ir

 (f)nfit Mis?
 isf is II ini Mo
$\ell$

f:
(1) 1075170 bryine midy hiciriryrio

 (11; 50117 pric. 4 if
(ii atent
clfle II 10
arif rif: me ciririmine IIIHMATH? (HIII?M,MTM

F.

กกักกกกกด mennorn nomicirir)
 f

$F$
arirlinnan
dintrifid jro
\&irrmariro
(n) in irnurn cy in minn Ritirimginf 1) 1 (1) fifirn: "1 riviv! (1): ari(ime in if)r: (Ifr) (j6) Mer Dumbronan

12



15
priminno
 ariryimpleD O(M) $18: 188)(8$ bis misisina :' ' 1 II 18 irsi
 If nais 111 fir 1 mo ope ir irpo gif infromp
 risiramisbiós


10
annonimn
Th7) Tinne Ficmariompa
 quy mivporin Orivijunfin quiciliririnn [3firincion
 granctur
 ( P ir)mming mutill Mocto

## 16

mombmona
(IIDT)rir:T (is iriminasin ciroririrario ovarafimepa pir oris jurus

 seradon - 1 Ticilis 10 frificivinin fif:14 rispir
 ririrmiaion iruvisona yir ir ir) is exjenrs

 aingis irisys arinifinne alimirmino i: if if en irner rimiririnono

Figure 7.3 The main character sat [1 of 9$]$

## DISPLAY CONTROL


$1 E$


24

00900008 0000100 09006100 oprarara



 80010060080 （10）09301900 01310000
061500000

$2 A$ ．


31


8


201

90000000 00 anno0
anOOnOD antarnont
Tinr） Cig（18 60
08181300
 nino ing
mof
 Anraçan cindarfar9

26

00907000

 ons inciont
 bofor8dedy Gonory 1000 grivarar
 arvirand


3nod888
Incmomo
gonom
กncitern
OnMr 18
0 mor
Sorson
ariminion
MOH0\％
$810000 \pi 0$
0830813000

21
0nonnono
0 Onvencon rymribo
 0rion 1000 Gnicinoto － 0 grifino amirrigo riminouno arivoncion bungngand

27

ar．
sormonnon bnoneron 00610110810
Tonommon
procomon
069141017 $00 r 0$ mis20 burignoud
 OAOM13100 orrorioono


22


28

0000000080
ancuinco
gnargoudo
rumico
cisumigo
¢กırmonio
M0 0
Ofuchminio
$4090 \% 1080$

$2 E$
00000008
000 CO 0 O dindmino notior
$\qquad$ ค日， \％ $0^{2}$ 日 dourio： dijonongo bronnabo万rmonforo joormsenos


23
00000000
00000000 0 000 000 00198000 g\％万0\％0\％ 800n0 0万00กry nonurin 0070000 80nonoho

29

00000000 | $0 n 000000 ~$ |
| :--- |
| 00000006 | 00000000万obiond 0106006

0001090
0000006 000090808 0070000 0.00000000 Mrincono 000300008
$2 F$
0n000000 monodino
coman ${ }^{\circ}$ moncono
$08981{ }^{6} 900$ OOONOC GOMONO 05086068 ongnonion Disoriciond

35


# DISPLAY CONTROL 

$1808098$
000
O6(1) 16
$(1)^{1+0}$
0) 180
1, 11000
Marim
ロ0\%)
(u0)0000
00 O
0(100
00010
0006




ID


43


49

$4 F$

55


$3 E$


44

$4 A$


50


56

$3 F$
00000000 8 Oninnion
 1100008 \{ ? 1 ?
 00006no 00007010 00000008


40


46



41


47


$4 E$


4

45


4B


51

$4 C$


52



Figure 7.3 The main character ent (3 of 9)

## DISELAY CONTROL


$5 A$


68


66

$6 C$



60


$6 E$



6F



71
กnnnoo กกกักกกกก กกcomกกก Orminnon
Brannol 9

runnor
Cun

if aryigis!

ongrifiinn
orfinciorisin
Gr:incinciing
incionoind
onnกnกาก anar.anin าดกกากดกด ตกร.วคากด ตดin8 178
 nronnoan กดกกกักด nonnoriod ภnomonan mirnirnno añoño
 00000000

55

$00000000^{\circ}$ 0000080 กonoona


Bosisno
กromano 0 onsinno 00000600

65
00000000 ดกกกกกกด COMnOOOR - 0 กñतa Conningoc cynnano กักี Cuñob 0 OnOnono
 00000000

00000000 000000 00000000 กกักกกกกด
 ongmana กerinoo cenono

 00030000

71
onnononn 00กกกกเาก ตกลกกกกด ตrimañกก rimmorno armincen rgnone

rentixirin lising ificso


$7 E$




87


8E


94
$7 C$
80000000 08080008 00000000 00080000 00000000 000000 00000000 $00{ }^{2}{ }^{2}$ 000000808 00000008


Q0000Q00 00000000 20 1000000
 $000 \mathrm{BO}=0$
000 BO 0000 00001: 00 00002000 00002000 00000000
0000000 000000008 00000008
0000000

70
00000000 00000000 0000000 80000000 80012008 0080.0 00000 00.090 00000008 800088888

83
00000000 000000000 00000000 000000000 00000000 00078000 00000090 $00{ }^{0} 08$ 080000008 0008000808

Figure 7.3 The main character set $[5$ of 9]

DT．SPT．A 98888888 00009000 $000 \% 2800$ 00 ODO 00000010 Q8000080 0 O 0 0 0 000 $0.0000{ }^{0}$ 00 O． 00400000 00000000 00004000

96

00000000 08000000 00000000 000 6 $00 c{ }^{0} 10$ 000 e0000 0 0 m 804 0 00 C
 0． 00000000 00000008

CONTROL



98
00000000 00008000 00000008 0 m ${ }^{2}$ m oguvino 0.000 ． 0 OUOO 0 On muod 09006000 0 5 J \％ 20 0200 000 0000 1000 00000 0000


99

O
80000000

OF


AO
00000000 OngOchon
0 occ

 onourjion חncinniog ribnainnond Trinomon



00000000
00000000 00000000 00000000 0000 硈 000 OOg
 8 80 800000000




Ab

$9 B$
00000000
0000808 800001008 000 0000000 0801000 000000 0000408 000000 $08{ }^{0} 1000$ 0809000000 00006008

## Al

趗
ก－1
，
\％rinco
O
－ 0 Onioio
กronno
Qannocuo
0 Ono
000000

A2
0000000
000000000
00000000
00008000
00000000
000000000
00000008
80060008
00000008
004008000
0,000000
00000000
0000000
0000000

00000000	80000000
000000	00000000
001300000	00000000
00000000	000000
00000000	000000
00000000	00000000
0000000	00000 ${ }^{\text {d }}$
Quyu	Ounuune
0 0000000	00000
00000008	08000
00000000	000000
0090000	800



Aa
 ．


AE



AC

AO
00000000 00000000 00000008 80000000 80000000 00000000 00002000 0000.000 00004008 00000000 00900000 00000808


0009
0001000
00037000
OCumaco
000 mid
2
000761
0004140
vor
品
20，

A7

00（：－
Ou．
Out
OH．
OU
cesay
0cuéso
oculau
d
80
oourauc



EA




HE


GB
0008000 00009000
0060
00000 000 0yci 000 0000 $00 \mathrm{H}+900$ oor andin
 ONu uOO 000 M 000 10000000 00000008 00000000 900300008
0000000

C7


CD

$\mathrm{H}_{6}$



87


8D
00090000 0009 end
$0000^{2}$
0000 $005{ }^{2} 01300$ 000 Mer 000 0000 00000 00039000 000 O®® $000696{ }^{0}$ 00018000 00090000 0000 Mu00 00080900 000900

认000000i0 $000100(11)$ Qut） $0(1) 111150$ 0（1）0r）000 （1Mingogo aq日 vilearso （I）Tiadoco日早 2000 $000-000$ Oocjera00 0009 000 OOU 0000 0002000

## \＆8

0001800 00 Cb 30 O 0009000 0001000 0001000 － 1 HE 0000 0000600 00 O 000 0010000 00000000 00000000 00000000 00000000
－EE
00000000 00000000 $000^{0} 00100$ 001500000 001400000 20n00u0 mager 089080 00000000 00000000 00000000 00000000 00000000 00000000

OO NTEOD
OOUNGU0
on ${ }^{2} \operatorname{livicjo}$
 oorijusud － $10 u$ uo 040050 081000000 8000000
0000000 0010000 0060000
0060000
0000 0050000

00000000 00000000 00000000 00000000 00000000 0 O 100000 －EIETOO － 000 0000 0001 0008 00008000
0005000
0 0007000

EF
000 00000 00048000 00008000 00015000 000 E000 onnernco $000^{5} 0800$ 0001000 0001000 0008008 00060000


Cl


C3


C日


CE

C4
000000

00400400	00000000
100000	00000
OOROU60	0000
	00000
0 OU0 00	0 O 000
0806	80
10000	
9009 may	－ 1
000	00
000	00
010000	
0 ¢）00000	
000000	0


Ct	C7	CB	69	CA	C．E
00e00800	Ocinomoto	Oumoueno	00098000	00800800	00000000
（licillill	luugciouer	Ocjuvera		Qramuma	003007008
O1：\％J！	If1H30000	Cubiciadu	¢usienon	O0， 1000	00000000
	ルiにJuMn			Oismomoso	Dionouno
		O）1110117	（1）198iblin		11P1014
Orinoricen	－meater		\％mammeme	［ime 11.010	－manten
［ifallasis）	UYis				Oivitisuog
			Пurnirwil	Oflugsumb	firiminirin
Of，ulidill	（』jutujusu	Ousilloto	douspontie	OUlijuciod	Cunstism
Cl（in）ll：	julnlijuls	OuDuciselin	－u）	fisuojusors	ひu儿sumb
（11141100	－sisilsursios	Uilillilit）	（j）Mmjuesio	deroumous	U60541100
GMincin			－1114）10108	cu000008	00061100
－tviduay	Untuddide	Yi，incin	¢ l	\％）	000， 01008
CE：	CD	C．E	CF－	Dil	D 1

Figure 7.3 The main character set（7 of 9）

## DISPLAY CONTROL

88888888 000004003 04000404 ODOCDOCllO acs(16) 1130 ficsiticicicin
 OBEBas. 0000800 OOPOBLD 00 OCO O 0


03
0009000 00 T 6000 00 O OnO 000 ano 000 20 000 00010000 61600
80006000 0000000 00000000 0000000 00000000 00000000



cuunku
did
uU0
(1)
cirumat
Unu
Occeabirin
OHOM
Ouctere
00081
¢0]

00000000
00000100 00000000 00000000 001000000 00000000 04100000 $0010{ }^{2}$ 的 26 0006 00012000 0001000 0006000 0006 oodecoc
$D A$
00000000 000000000 00000000 0000000000 00 O 00 O 0800060 80200800 000000000 0000000000

$D G$


E 1


E7

	808000000
Iifisiliinion	Quditmion
(1) firitutiol	drijamed
"119...008	yramonio
,	
$11 /$	Toumeme
a $\quad$ (i)	Omble
	Otumarinm
	OHinama
	Orficht
	dicuut



06

00000000 00000000 00000 H 0 00000000 00100000 0 OHOOUNO 04100000
 \%og gemger \% 10000


DD
00000000 0 000000 00040000 000013010
 $0006 \cup 00$
 00010 OO 00 modero 00000000 00800000 000000000

E3
00000000 00000000 00000000 00018000 00500800 0. 0800084 06000080 000 09000 000000000 000000000 00000000


En

EE


Figure 7.3 The majn characier set 18 of 9 !

88958888
0000u000 OUU000U0 （10n001）00 onrivo！
0ulul11？
$0016(1110)$

OUUUUリU0 00000000 00000000 00000000

## $F 0$

 f（11！ $11: 1!?$ ！？＂リッ111！

 U1！ 11111 ！i！ ouremo
 n00uveici？ ar yiringur） Ot lif11030

Delonnmon	rinciammen
－	
Dil！11 1！！！ 7 ¢	
frirylimer	
	万1．
	（－7） $0^{1}$
1）	Prin：rncily
	（11）M）Mาก
\％－mirat	－ 11 iam 100
（1－Tret）	\＆ 11 ！） 0 （3i］
（1：110	（illif）（1）（j00］
Dryorimurs	pingrıก̃̃
DCiruirimer	
	1711971300
imelilimodo	
rı！	

F8
F9 000017000 00000000 GEOUOOOO 01000000
001
 00 － 00～erendo
00～er 0
QuUOUJU0 00000000 00631000 800000000

00000040
00000
010000000
－ 0
00000000
00000000
0HMOHOOC
ju400000
00000
00000000
00000000


FC


FD

00000000
u00000000 000000 $0000 \square 001$ QOOCE！UO 00001000 0000
0000
0000 00006000 0000 000 0000000 00004000 00002000 00002000

## F 4



0000000 00002000 $0000=000$ $00000^{0} 00$ 0000600 $0000=000$ 000 0000


00400000
00000000
F5
00000000 00000080 00000100 00000400 00000.0 00000 00000 0006060 0000600 00000000


FE
FF

## DISPLAY CONTROL

An additional character set is available for reading under software control, as used, for example, by the low resolution graphics mode of display in GW-BASIC. Essentially, this consists of the same characters as available in the character set already described. The main difference is that pixel patterns for the characters in this set are in a $7 \times 7$ format (except for downward tails) contained in an $8 \times 8$ area.

The pixel patterns for the lower part of this character set (that is, characters with codes 07 FH ) can be read starting at address OFA6EH, offset to the beginning of the ROM at paragraph address OFOOOH: the pixel pattern for the character with code 0 is stored in the first 8 bytes, the pattern for code 1 in the next 8 bytes, and so on. Therefore, the last character pattern (for code 07 FH ) is stored between offset OFE66H and OFE6DH.

The procedure for accessing the higher part of this alternative character set is the sames as for the 16 \& 8 character set, except that

* You may specify either lowfmedium or high resolution in response to the GRAFTABL menu.
* The pixel pattern for any character occupies only 8 bytes of memory.
* The beginning of the character table is at a positive offset of 1 byte to the location pointed to by the interrupt yector.

This character set is not implemented in the hardware character generator.

Figure 7.4 illustrates the pixel patterns of the 8 x 8 character set.




1



2


8

$E$


14
0000000 0000000 0000 星 00 － 0 显数 0000900 00000000 00000000


3

00000000 00
 O WOOOCNE 0 คロッดก 20 $0 \%$ OR 00000000

## 9

000 000 0 0nenomo


 0 00e0 0 QuO

00ロ 0000 ดnE n的的解OO
 $06-600$ Of， 20000 00050000

Oninnenoo
0日minnot
 BEBEABO 0 $\quad$－ 100 00 0 0000

008
06 00 180
0 020 00 00mindorion 0थ1


00eneman 00 等 00 $009 n^{2}$ 00 00000 Das 0 ODOO －-60000

C

OORamar	
00¢ $\square^{\text {ano }}$	0 130
	casu0
000 ¢ 00	$0 \% 100$
000 ¢ 000	
	0 1000001
	0 ¢ 000080
0004600	00000000

$F$


40000000 － B $_{2} 00000$

 ＊ 600000 \％ 00000000 00000000

10
00000000 00000000 00000000 $0000(9000$ O1 OHerner 00000000

00000098 operesen QDE－ OOE 0000 K 00000000
00000000

## 11

000 0 1000 0กán ósmantio 000 M 0 กO $00 G$
onernapa
 000 0 ？ 100 annan

17

5
0000 ane 0000 B － ODOCEDE
 － 000 BrO OEnOB800

## E

1 D
Opmonno 0 0． 0 0 100

 OBEOMEO oreosero 00808000

23

00000000	00000000	0000000
0	\％ 20000	
	90000000	
	9ay ${ }^{\text {a }}$ \％	
	000000	
00000000	00000000	00000



0006000 cobener 000 等 000 000 R000 0001000 00060000

000 E0000 000 MU0 000 ciJ00 0001000 OUs 0081800 00000000

## $1 A$

00000000 00000000 000001000 00001300 คา700000 30， 000000000 10000000
00000000

onesnoo 08 BETBOO $0 \% 30000$ OOTEOOOO 0090000 000円0000 00120000
00000000

0000800
0．ERTM00 0 10 ？ 00000000 00000000 00000000 00000000 00000000
$1 E$
$1 F$
28
21
22




26

0ロロ星明
17ก 96000
口泉的 00000
 （jemj1000
 $0004=000$
00000000 28

0． 1000000
00900000 00810000 00 OMatuo 0001600 0062 000 0080400 00000000

Figure 7．4 The alternative character set（1 of 7）

## DISPLAY CONTROL


$2 A$

## O4880n0 anulusa  gatuma －${ }^{\text {man }}$－  <br> 00000000




00000000 000000000 0000300000 0 MHMOO 0 00 © 1000 00 m 0000 0 O． 40000

00000000 00000000 oucouvo gam mo uvuvulio 00000000 00900000 00000000

00000000 1000000 00000000 00000000 00000000 00 20000 000400000

00000680 000 C 100 oOchevod ocmavo CGMUUOOO 4000000 00000000
$2 F$
ccianeo ceviO00 98 man 100 ouverad 000400 0 gocisu0 00040000 35

90000000 80.8000 00 O80000 00000000 0010000 00800008

## 38

00190000 09 HeH0 sovemo －$\quad$ ตgat \％ 4 00008800

## 81

00 旬的酸 00
8080080 44000000 20ruen 0 \％HuO
 00000000

## 47



$$
40
$$

106的atu

40
备（l）


 E日（）！：ABUC On muld

52
5

		－Murnarjo	－monotmit		0－500
	－		－	－minnimu	chimatio
	日eutionuc	－murnoun	E日才）		－ 100
		－mikjenju		furesumo	cjuer mijuo
Ut：${ }^{\text {mancou }}$		－milisalu）		UGEmillic	vuersuy
	－			domberab	
	－manmoll		E（c）umay	日misjtsen	cememuro
couvouisu	tsulutuuy	ciullijusu	úuvisums		biuluviuo
5.4	55	35	$5 \%$	5H	59
－		－Enonoco		soriernoijo	90000000
	（18ELIJUCJ		10us	diverniou	Dijulujuco
Eijucimou	（108．jucu）	Uumamus	dilumajouo		00cilucke
		OGu－130	リ）	ampaimats	01000000
（i） 1 muriec	yedulicuey	dousualo	ucier euan	Otiouchesju	0G（1）0000
		mijrujusen	Orum uou	caljusulje	0000000
¢nemeaj	cimermiucu	ar）ucuum	Lomerijo	Gutuentio	1กnดักก์
gutulislu）	muydivesu	แ）！	（H0）	ciluOU000	momenma
$5 \hat{H}$	5 H	5 C	50	SE	$5 F$
QIImedond	OU000000	nem00000	010000000	Oncimema	O0000000
Dumeldou	Oijounouo	UnEuciole	（x）ariouisuos	qujuliemb	Qun） 10 ） 0 （J0
U心1－10uc			1rameriou		
Q0u以0）	OJM儿男CJO		－mus mu		日eritiou0
O000）1000			－${ }^{\text {d }}$ ］（1）100	－	－manniog
O）		Ofouliem	－	Qumrien 16	Qemblưo
（1） 1000			Cimatelu	cotauma	
ucu000000	¢	ouljuljues		Oisuヘ̃000	0 OLO 0000
bil	61	62	6.3	64	65
	Gugorsmeso	－ 2 monorio	yGergoino	pourispon	－ 130000
	ghrmenclisidi		OOUTHLDASO		
		cimendeljo	utamblup	Qubuosil0	cielunay
－Embuctu		usamilana	Lisamicioo	¢Muckevo	06minmo
$0 \times 0 \cup 1003$		comucama	Offerou0	Obucsama	
OEabouco	umemendu	（188uO迫	ociar juga	arcuels	
	cliviemar	Q miden	cmapuca		－${ }^{\text {ancju }}$
disutjuluj	－manusu	cuevijuud	unvocajo		OULiJU00̇3
or	07	58	69	SA	6H
			100000000	000001300	00000000
	（j）	200nidoto	0101900000	dustitujo	6）0nciorro
U1要解11!	\％ellimelu	\％atmencu	（1）mimuch	Qmberno	cimanamo
			maumayda	¢Matijemo	－moue 10
					111060
リumemul		¢日jusalus		OTammen	conmedil
（Jintersus		¢musaut		imerolio	0000 $0^{1} 13$
บisuvuvuc	¢ Juluoudau	oinlicusus	c．uvบiluy		


atoromelisio	OuOOOORIO		Outuchocsa	00000010	O0000000
（bje）rajuluts	（3Mitult）	（1，elllu）		Oficsesmindo	Ofuporite
	rimanaerso	（j）	－aruitamb		－ $0^{\text {amiom }}$
（10nmis min		urimelujur	Emisumatios	\％minjoruu	울un
cig Sulamu	ciemerilics	Quen（） 0	－	80iJianar	
	U1116	OHPelims	－11110910		
menmando		［Jッi）		cusmamble	0 Of
	isuũuljua	Cu）	Utinumijuty	mbuluniju	0 LOOODOO
$\%$	75	74	75	76	77
	Cughmirnoas	（80）	［u］cenmor	untienmun	－${ }^{\text {a miono }}$
（1110）（11：	¢11：	（11：1917）			1．14 5 mricio
201lill					lus mbiticy
			f11．		DCimgucirs
1．90110111					
		－nman mul			－mmillu）
		－」istututu）	Colsinillsiod		
＇B	$7 \cdot 7$	／A	ils	1 C	D

Figure 7．4 The alternative character set［3 of 7］

	0000000		onnono	$0000^{88}$	
			89000890		
04000000	OHemevio	0 060以	Oquncuer	Cu，	000650
1000	9®uル边	Qciane	cavoerc	880］90	
			Cabres		
00060000	gug max	funco   $000^{2}$ 영 810	0 0008900060	04989808	0 OLSmaran


75	75	815	81	82	83
	O8日迷OOOT	0006000	00000000		
	0 O111：100	1） 103030		\％${ }^{\text {\％}}$	$0(111) 611013$
	（）C）1才ハ：	［70］！ 1.3960			
			79		
				Caricuun	Ódeviluo
			000680		
DOULEjund	OOLJJU00	OlJuidso00		00000000	0000000
84	85	86	87	88	89
			OEME0000		OOOEAOCO
O（JU1） 0 （］）0	DUL1009：00		OrJuUunca		Q003 moco
		Iuer eund	（10）${ }^{\text {a }}$（1）00	OCS	OOC1013000
	OOMa mb00			C＊${ }^{\text {a }}$	
		COU 日i．lo	U0¢9 $0^{20}$		D日＊
	OLICS6000	［006 mill	00cs 9000	corajul的	
		DCeseroo			Cn0u0：$\square^{1}$
00uundou	000001800	00030000	00000000	00000000	00000000

$8 A$

00ロロ果量品 $0 \square 10) 6 i n$
0 Ben Q1
 （1）AB \＆
 000404010

38

00000000


 3
 DOUUM8Juし
$? 1$


77


BC


0丁）
 0 （1） ज6（2）（1）51）

7.
gr magrin
Osm：思思 （4．1）（）（1）
0 （4）


 jounuúd

86


（if） 18118197	Aoprorn
	－W0： 1 是爯：
	（J．月」）

日0


93


99

00010 000 fover
 （1）（；昆 1500
 is s 4 5000
$8 E$

Ounoundo

94


02000 80 80100110 Comoder GEMOCHEO Oxgno Ouspmy0 00000000

## $9 A$

OOCOAE 0000
 Oicmouer
 civer 88 Givarion OUUUUUU

日f

0000ロกOロ Qave17000 c） 0 ¹0 17170 OC CG6uld 08，00 90840400

95
OnO 1000
000 ． 0000
Cangoueo g $u 00$ UU0 xando 000 9 sin $0000^{0} 000$ 98

0008100 $0104(12) 0$
 OOD日G0 OJU 0 Ong 0UTUUY00
.15
70

Bnocio	（if）
driveremor	（1） 19
	risterint wan
80．${ }^{\text {a }}$	
（0）H1563）	（e）
（）cisu（4．18（）	गリ」アハ

गF


A（）

$1110 \cdot 1181$

A

 0981510 Of zay in万ivicicin
 00（J10000i）

8Pumman	（bunnonar	170¢	$\boldsymbol{1 1}$		0
gintraig	Ouficiotrio		Ealill	－	OOC $0^{0} 00$
ulliommju	［rairlitino			田118011	$00 ゙ 50000$
（11：		（Jmatamatu		－	coornju0
					00061300
	comblichio				00cmoód
	O（31，$)$ Ocio			\％リ	0007000
Ul）	0 01111）000			0.1 H\％儿㮩	00015000
18	A9	$A n$	$\therefore$ Er		Als
	annonnoio	Onenocal	Curarimin		
		－¢rıijalla			
		Fraemmran	1．7 ${ }^{\text {D }}$ ，	Entsay	Dinuaatul
¢0．aimbill		－ 0 nizam			Dizrimaliji）
¢0mman				Etionion	Disi： $\mathrm{a}_{\text {ando }}$
cjemenion			Cuctorn		1）ct：amion
	（）eis）riocren		（） 1 \％	日里昭！	－Oj）
OUCOUU00				（tintimma	jucearao
$A E$	AF	E（i）	C1	FO＇	15
OCOTE000	OOC：${ }^{\text {anon }}$		nommbinea	（1）0\％10000	onemiven
arjornilios：			Dijiscodimic	（jinncilisut	ก－90；
O1110 1700			Oricrioling		－ Prata $^{\text {a }}$
Ontimato	Tice mallo		（ifligirbios	（alrear）do	
－memum	－mamion				
Qutemon	cirijemigo	019am		（1）［日．（1）	
0）078	OLT：			（110 aty）	（incoinet
O0，－	OCJM			CJOC： $\mathrm{C}_{\text {ato }}$	Ointineo
Fi4	14.5	F6	67	5	E9
JOAminam	חก0000no	Oก100 ${ }^{\text {a }}$	Onamben	OuO 01005	Oronoronn
or atimelj	mix）m	TMEP（1）	Or mimbub		00000000
			Or）Ancmis	\％enmelio	OiJ0t？ 100
Orjerime	Oribibam			（10 \％¢ ¢ ¢ ¢	
	\％mincou		O日	\％eqetils	
Ooncirat	ilcaers	Ticiouliou		1311－1／190	Ornira sio
Orimanar		Of（1）${ }^{\text {a }}$		gublar ajer	\％unciancor
Oumateo	O¢fatime	00000000		montasilu！	docemejors
Ent	EE	111：	ID	I：E	［17
000－${ }^{\text {ancoun }}$	00risenob	Q00000no	00rimmon	cunconoo	00nemorno
Oori $\quad 100$	QOti Bi］no	D0ncomon		On¢minolis	087800
	0tcorinn	n（10n）0rion	Dociex 6 （17n	r．7innusi	Oria ainou
000seriluo	Onriastion	fmumbrines			
	明的的的爯		O以！： $0_{6}^{689}$	－6ayman	－matmo
00001503	（1）00ncout	U1：ctingriou	Orh：	Chtrsenid	C60 $0^{\text {a }}$
0000018003	）rifiluont	Qricemelion		ghisojoco	（1） 0 隹 180
（1）000000	10000000	（u）	OUC：${ }_{\text {ma }}$	tele：	Dunamboo
CO）	C． 1	C2	$C$	$i .1$	C．s
Dorsmmon	Qnernien		Q0：307nan		ט0730000
Dintuminn			Qurintionis		［17？：17717n
			Or，		（asatame
	Olimanel）		O1：88： \％10		
		c）			
70：1881119		（1）T10 11.10 ）		（ilatichath）	
			Of（6）		
OUR：${ }^{\text {a }}$	DLideneraj	mishixivo		coin itioneso	intagateio
C．S	$C 7$	CB	$1: 9$	Co：	に20
	（1）TM1006 19	cnemidery	Onc：90161）		
	$\text { gin } 101010$				
			此11：	䛧：	
				\％isaderam	
				－ $111010: 0: 10$ il	（11）：0日．1：
（1）（8）	（1）14．10．）300	门1．8m（1）	11110．19050：M8	1：1．1）：10．110：0）	（1i）¢athn
$1: 1:$	CD	C．E	$\because$	13.1	［i］

Figure 7.4 The alternative character set（5 of 7）

D08inonon		000emonn	0000017170	0ヵกn0000	ODA
banerstiod			Devinimbis	0n0ciochs）	
	DC： 2136	Sr）${ }^{\text {cosem }}$		Dencurdisa	Of\％
Ou 1 it 9817178		OOLETinion	$8014.00^{-2}$	OOCu77il｜	
	OCMatay		froriamay		
	Ofstirlatio	oporsestisas		Mcianceen	06：381：004
Mi：90．8．8）	81808078.600	bericorsma			
Ox jomiden	ODUCJIJDOS	deat indidecio	$01 \% 1800000$		
09	03	18	－¢	Let	$\infty 7$
Ontesmon	OnO manno	a000m00n		00000000	
तriv： $0^{\text {coilin }}$	Q1J08008	Q0¢0013170	camamat	［103Cin）000	2ay ${ }^{3}$
	903）	（0）i3030000		061000100	
				17619100ing	\％amiju0
		çacterem			\％ 6 \％
	873036130600				
	Ocsorsioua	Oorex cider			2x 2 midu
00818080	0.868119000	cacameduc			－ma000
08	09	$D A$	DE	［12．	D0
OOnOex ${ }^{\text {a }}$		00000000	Qunnonoo	ロ00nnono	טחnחman
1）8） 18 （1988边		Dryonitan		Q9y9eran	
000ice ${ }^{\text {a }}$				O6\％ aca $^{\text {a }}$	O1 Cailian
				$06^{690000}$	
	Oncobjectio	OE＊irimno		86400000	
				\％\％\％${ }^{\text {a }}$	Oramosem
0017618 ${ }^{\text {c }}$	00）${ }^{\text {a }}$		CUE 40 dj0	OG00000	
cuiscesem	818：300000	00000ion	$0 \times 600000$	00000000	
DE	DF	Eis	$E 1$	$E 2$	E．${ }^{3}$
	00000000	00000000	ODODN000		OOO 1800
Cincorba	00000000	0076006	0ก6am＠	00108010	004 000
（8i）000	03 $3^{4}$	00\％${ }^{\text {ana }}$			9
168\％000		0076003	00708000		damama
\％ 80000	20 60	0068006	0000800	0 9nnero	日n0ก5？
	＊ $2 \times 0$		0000100	$00^{3} 00$	
¢ 6840	－	$00 \% 60000$		0jo manod	
00000000	00000000	0 \％00000	00000000		－0С¢矿）
E4	ES	$E 6$	$E 7$	E日	E9
000 ${ }^{\text {ana }}$ 30	00009890	00000000	00000390	Q00．amate	0089atanc
	\％ $0^{4}$ \％	000008	0011090	0610000	90cter
O	000600		78\％$⿻ コ 一^{4}$	¢กna00	900340
0		90800	4natrat	$66{ }^{4} 900$	10049 ${ }^{1}$
			¢ 01880	6 6r10000	360036
0	080300	0000000	1900000	008880	0 0000980
00000000	00000000	00000000	R 000000	00000000	00000000
EA	EE	EC	$E D$	$E E$	$E F$
00000000	00080000	00980000	0000sano	0000 ${ }^{2} 9$	000880u：
， 4.840	0006 ${ }^{\text {ana }}$		0009000	000180	000980rim
OTOMC40	OHnatara	000 400	00 \％an00	$000 \mathrm{ma}^{\text {da }}$	
14－590	0008800	OO2 1300	O00 \％¢00	0003600	0009000
（n）0006	00096000	0 －00000	O00］0dendo	00081000	
989 ${ }^{4}$	00 andono		Orun \％n＜0	00806100	M9079000
0000080			Otasatim	O0： 400	gerimano0
OOLOCJOOU	$0 ¢ 000500$	OOLSOOUC	018000000	00060000	－aracuod
Fir	Fl	$F 2$	$F \cdot$	F．4	$F S$
$\begin{aligned} & 0008008 \\ & 000 \end{aligned}$	0日กnดกnด	givernor		QQODOORO	
			Ondonsiou	Qrrsu1140	Or）${ }^{\text {and }}$
	Ochaniorirsj	UC8 4 ¢0ili	06¢ mixa	abolillizes	O18109810
		Ormsiouju	Uutiathuct	CH1 10 matco	\％風（8）
	9nismodid	\％ 1000010	［10）		
	cotsoujoca	00000000		－accuisula	00，\％68
F6\％	$F 7$	F8	$F \%$	16	$F \Phi$


oremerin	0manoug	00000000	000001000
- matio	0utuoud	$00-100$	0000 undo
(itiolio	-mbucu	$00-10$	Orjouvud
(imidruo	jomelugo	8 ¢ 180	88441888
UMJH00	¢UUUYU08	$80{ }^{0} 400$	000000008
$00004000^{\circ}$	00000008	80000008	00080888
Fro	FD	FE	FF

Figure 7.4 The alternative character sat $[7$ of 7)
7-21

## CBARACTER DISPRAY MEMORT

The character display mode of the adapter stores the character screen image in byte pairs (character code - attribute) in 488 of read/write memory, starting at CBU menory address 0 B8000H. The even address of each pair stores the character code in the range 0 to $0 \mathrm{FFH}_{3}$ the odd address immediately above it stores the attribute byte. The cPu/monitor access is synchronized with the character clock. Therefore, each CPU access to wideo memory is accompanied by at least one processor. WAIT state. Alternatively, video memory can be accessed by DMA.

The significance of the attribute byte is set out in Figure 7.5.

1 colar	8uckground bits			Mriting bits \|		
1	8	5	4	2	1	01
1						1
1 Black	(1)	0	0	0	0	01
1 Red	8	0	0	1	0	01
1 Green	(0)	8	0	0	1	01
1 Blue	0	0	1	0	0	11
1 Cyan	0	9	1	0	8	11
1 Megenta	9	0	1	1	0	11
1 Brawn	1	1	0	1	1	01
J White	1	1	1	8	1	11
1						

Figure 7.5 The character display attribute byte [color)

## Notes:

Bits 7 and 3 set blinking and increased intensity, respectively. When blinking is disabled (see mode select register - port 308 H ), bit 7 controls background intensity.

The character display memory requires 4 KB . Additional memory can be used for further screen "pages" which can be selected by the 6845 controller.

## CHARACTER DISPLAY CONTROL

Because video data can be written to and read from read/write memory with CPU MOVE instructions, programming the 6845 is required only in order to initialize the character display and for certain changes of the display mode. These programming steps are described in this section.

The following hexadecimal port addresses are dedicated to the 6845 controller:


## DISPLAY CONTROL

3D9 - Color Selection (write only). The effects of the individual bits, when set, are as follows:

0, 1, 2 -activate blue, green, and red guns, respectively for border color (character mode); in graphics modes, this color setting applies to the background color. The border color in character mode is a software convention; it is not actually displayed 3 - set high intensity for color selected by bits $0,7,2$, provided these bits apply to character mode border or $320 \times 200$ graphics. 4 - set high intensity for background color in character display
5 - palette selection in color graphics through activation and de-activation of the CRT blue gun
6,7-not used
3DA - Status (read only). The significance of the individual bits, when set:

O- display enabled (controller not reading display memory at the moment)
1 - light pen trigger set
2 - light pen switch closed
3 - vertical retrace in progress
3DB Clear light pen latch
3DC - Preset Inght pen latch

Critical settings of the Mode Control Register (port 3D8H) for character display are given in Figure 7.6.


Figure 7.6 Character mode control on color/graphics. adepter

The controller register selected via port 03D4H can be one of those given in Figure 7.7. These controller registers are write only, except:

$$
\text { OEH, OFH - read/write } 10 \mathrm{H}, 11 \mathrm{H} \text { - read only }
$$

Registers OCH and ODH are of special interest: when set to zero, they address the first character of the $+K B$ screen page starting at CPU address $0 B 8000 \mathrm{H}$ as the top left corner of the screen. Changing this value, you can displace characters on the physical screen without having to transfer them within screen memory.


Figure 7.7 The controller registers 11 of 21


Figure 7.8 The control registers $(2$ of 21

Control registers $0 A H-11 H$ can be manipulated in accordance with the requirements of the individual application. The other registers are set as shown in Figure 7.8.

\| Register	Vasue - hex		1 Register		Yalue - hex	
	$40 \times 25$	80835	1		$46 \times 25$	$80 \times 3$
1			1			
0	34	89	1	5	0	0
11	28	50	1	6	19	19
12	2 c	58	1	7	19	19
3	5	OA	1	8	0	0
14	1 A	1 A	1	9	OF	OF
1			1			

Figure 7.8 Contral registers for color character display

## THE CHARACTER CURSOR

The character display mode cursor of the NCR PERSONAL COMPUTER consists of up to 16 scan lines. In order to maintain compatibility with applications which assume a cursor of lower definition, a small PROM intercepts data to control registers $O A H$ and $O B H$ (via port $3 B 5 H$ ) before they reach the 6845 controller. The following conversions are performed:

* The value 2 is added to cursor start and end values between 8 and 13 inclusive. As a result, scan lines 8 and 9 are not accessible.
* Start and end values 14 and 15 are both interpreted as yalue 15.

Scan lines 0 to 7 are passed to the controller without intervening conversion the scan line number specified for the cursor start must not be greater than that specified for the end scan line.

## GRAPFICS DISPLAI

The graphics display adapter supports display of the set of 256 characters in an 80 (horizontal) x 25 format. In addition, all points addressable graphics can be implemented in three degrees of resolution.

## GRAPHICS DISPLAY MEMORY

The graphic display adapter has as much as 64 KB of read/write memory at its disposal, according to the amount of memory on the display adapter. This memory resides in the CPU address areas OB8000H - OBFFFFH and $0 A 8000 H$ - OAFFFFH (lower 32 KB if video memory extension 3299-K202 installed). The use of these memory areas varies according to the display mode selected, and is therefore given for each mode separately. The video memory is dual ported, so that the CPU can access it at any time. To avoid display disturbances, however, applications should confine access to the horizontal and vertical retrace intervals.

## GRAPHICS DISPLAY CONTROL

The general concept of video display initialization discussed in "Character Display Control" also applies to initializing the adapter for graphic display. The significant difference lies in the more extensive mode control and status information needed to account for the variety of modes available in graphics programming.

The graphics display controller supports a number of degrees of graphic resolution. The graphics display. adapter and initialization firmware of your NCR PERSONAL COMPUTER allow three graphic display modes, namely low, medium, and high resolution. Low and medium resolution graphics make use of a 16 KB video memory for one screen design, high resolution requires 64 KB .

Note:
A number of non-NCR personal computers apply the term mlow resolution to a $160 \times 100$ pixel grapkic display, as, for example, transmitted to home televisions by means of a composite VHF or UHF signal. The low resolution graphic mode of your NCR PERSONAL COMPUTER supports $320 \times 200$ pixel color graphics, medium resolution supports a $640 \times 200$ pixel monochrome graphic display. The NCR high resolution mode of display, not usually supported by other personal computers, gives a high quality $640 \times 400$ pixel color graphic display. This ensanced seature of the NCR PERSONAL COMPUTER does not adversely affect the compatibility stated in the foreword to this Manual.

## Low Resolution

The low resolution graphic display consists of 320 horizontal by 200 vertical pixels. Each pixel is represented by two bits, so that a choice of four colors is available for each pixel. Each line is output twice (duplicated in the following odd scan), so that the physical screen is actually filled by 400 graphic lines.

Low resolution uses 16 KB of video memory as follows:

```
0B8000H - 0B9F3FH: even line scans (0,2,\ldots..198)
OB9F4OH - OB9FFFH: not used
OBAOOOH - 0BBF3FH: odd scan lines (1,3,... 199)
OBBF4OH - OBBFFFH: not used
```

The first byte ( $088000 H$ ) contains color information for the 4 leftoost pixels of the top display line. and so on:


Of each bit pair, the more significant bit controls the red gun, the less significant bit controls the green gun. If neither of these bits is set, the pixel takes on the current background color of the Color Select Register (port 3D9H, bits 0-3). The biue gun is governed by the Color Select Register (port 3D9H, bit 5). Therefore, the CRT display uses one of two color palettes, according to whether the blue gun is on or not. By activating the monochrome bit in the Mode Control Register Port $3 \mathrm{D} 8 \mathrm{~K}_{8}$ it is possible to create a third color palette. Color selection is set out in Figure 7.9.

The initial settings of 6845 registers (set via ports 3D4H and 3D5H) for the low resolution mode of graphic display on the internal color CRT are given in Figure 7.10. Registers $0 \mathrm{AH}-11 \mathrm{H}$ can be manipulated in accordance with specific programming requirements. When both set to zero, registers 0 CH and 0 DH set the graphics display controller to regard video memory address 0B8000H as the first byte of display information. You can change these two registers to address the upper 16 KB of the 32 KB graphic memory, thus enabling your programs to acceess a second graphic page.

## DISPLAY CONTROL



Figure 7.9 Law resolution graphics - color sálection

## Notes:

Background can be any one of 16 colors is basic colors, with intensity bit on or offlo
Fareground calor can be given high intensity lbit a of color select register, port $309 H$ d.

1 Registar	Vatue - max	1 Register	Vabese - hex
1			
1		1	
10	34	15	0
11	28	16	64
12	20	17	88
13	5	18	0
14	68	19	3
1		1	

Figure 7.10 Contral registers for low resolution grephics

If your display adapter contains a 64 KB video memory, you can use these two registers to switch between two graphic pages. With additional manipulation of the page switch bit in the Mode Control register (port 3D8H, bit 7) up to 4 'graphic pages can be addressed.

The memory map for the full 64 KB video memory is as follows:

OA8000H - OA9F3FH: even line scans
OA9F40H - OA9FFFH: not used
OAAOOOH - OABF3FH: odd scan lines
OABF 40 H - OABFFFH: not used
OACOOOH - OADF3FH: even scan lines
OADF4OH - OADFFFH: not used
OAEOOOH - OAFF3FH: odd scan lines
OAFF 40 S - OAFFFFH: not used

Critical settings for the Mode Control Register (port 3 D 8 H ) are to be found in Figure 7.11 (bit 5 is "don't care").

DISELAY CONTROL


Figure 7.11 Graghics mode concral - low resolution

## Medium Resolution

The medium resolution graphic display consists of 640 horizontal by 200 vertical pixels. Each pixel is represented by a single bit, so that each pixel can be displayed as on or off in 16 KB of video memory. The video memory addresses used are the same as those for low resolution graphics. The only difference is that each byte contains display information (monochrome on or off) for 8 pixels:

1888000H
Bit


The 6845 registers (port $304 \mathrm{H} / 3 \mathrm{D} 5 \mathrm{H}$ ) are set as for medium resolution graphics.

The Mode Control Register (port 3 D 8 H ) is set as shown in Figure 7.12 (bit 5 is "don't care".


Figure 7.12 Graphics mode control - medium resolution

## High Resolution

The high resolution mode of the graphic display enables you to use the internal color CRT to its full advantage. This mode makes use of the maximum of 64 KB video memory which can be installed on the graphics display adapter. In the case of color graphics, this memory is used as follows:

OB8000H - OBBF3FH: even scans ( $0,4,8, \ldots 396$ )
OBBF4OH - OBBFFFH: not used
OBCOOOH - OBFF3FH: odd scans ( $1,5,9, \ldots 397$ )
OBFF40H - OBFFFFH: not used
OA8000H - OABF3FH: even scans ( $2,6,10, \ldots .398$ )
OABF4OH - OABFFFH: not used
OACOOOH - OAFFFFH: odd scans (3,7,11,...399)
OAFF40H - OAFFFFH: not used

As in low resolution graphics, each pixel is represented by two bits. Bits 7 and 6 of byte 0B8000H determine the color of the pisel in the top left corner of the screen: either current background color as specified by the Color Select Register, or one of three colors in the current palette selected by the Color Select Register.

The same resolution ( $640 \times 400$ ) can be confined to monochrome (pixel on or off) graphics. As in medium resolution graphics, each pixel is represented by one bit, starting with bit 7 at 0B8000H (top left pixel). An alternate screen image can be stored at 0A8000H.

## DISRLAY CONTROL

The video memory man for the screen image starting at OB8000B (bhe equivalent is also available at OA8000H):

```
OB8000H 0 0B9F3FH: even scans (0,4,8,...396))
OB9F4OH - OB9FFFH: not used
OEAOOOK:-0BBF3FH: odd scans (2,6,90,...398)}
OBBF4OH - OBBFFFH: not used }image 1
OBCOOOH OBDF3FH: even scans (1,5,9,...397)}
OBDF4OH - OBDFFFK: not used }
OBEOOOH - OBFF3FH: odd scans (3,7,11,...399)}
OBFF4OH - OBFFFEK: not used }
```

The 6845 registers (port $304 \mathrm{H} / 3 \mathrm{D} 5 \mathrm{H}$ ) are set for high resolution graphics as shown in figure 7.13.

Ragisier	Y80u* - has	1	Register	Velue - mex 1
		1		1
0	69	1	5	01
1	50	1	6	641
2	58	1	7	64 1
3	OA	1	8	01
4	68	1	9	31
		1		1

Figure 7.13 Control registers for high resalution graphics

Figure 7.14 illustrates Mode Control Register settings (port $3 D 8 H$ ) for bigh resolution graphics.


Figure 7.14 Graphics mode control - high resolution

The graphic cursor of the NCR PERSONAL COMPUTER, like the character display mode cursor, consists of up to 16 scan lines. In order to maintain compatibility with applications which assume a cursor of lower definition, a small PROM intercepts data to control registers $0 A H$ and $0 B H$ (via port 3D5H) before they reach the 6845 controller. The following conversion is performed:

* A scan line specified in the range 0 to 7 affects two scan lines: 0 is interpreted as 0 and 1 , 1 is interpreted as 2 and 3, ... 7 is interpreted as 14 and 15.

Scan lines 8 to 15 are passed to the controller without intervening conversion. The scan line number specified for the cursor start must not be greater than that specified for the end scan line.

## CONTROLLER DATA CONYERSION

In addition to the conversion applied to the character and graphics cursor, display controller conversion is applied to most of the other registers of the 6845 written via ports $3 \mathrm{~B} 4 \mathrm{H} / 3 \mathrm{~B} 5 \mathrm{H}$. The purpose of this conversion is to ensure that display control parameters written by some applications are received in a way that will produce the display intended, even though the particular application may have been designed for a non-NCR monitor. Non-conforming parameters are, therefore, converted to the respective values given in this Chapter.

The controller registers affected (in addition to the cursor definition registers already discussed), are the registers 0 to 9 , selected via port $3 B 4 \mathrm{H}$ and written via port 3 B5 H. These registers convey parameters setting up display synchronization and skew/interlace modes. These parameters are supplied by the ROM BIOS, and need not normally be disturbed.

## Printers and Communications

## INTRODUCTION

This Chapter describes two standard types of interface which can be installed in your NCR PERSONAL COMPUTER, namely RS-232-C (serial) and Centronics (parallel). These interfaces are provided by the following Kits:
3299-K306 1 serial + 1 parallel interface
$3299-$ K307 2 serial interfaces

A number of printers, plotters and communications devices can be controlled by your computer by means of these interfaces. The RS-232-C serial input/output interface is especially versatile in communications applications. This Chapter provides information about the hardware integration of these interfaces as well as instructions for their low level software control.

## RS-232-C INPUT/OUTPOT

Connection to the external device is by means of a 9pin D-shaped connector. The pin configuration of this connector is shown in Figure 8.1.

The RS-232-C interface is programmable by means of an 16450 asynchronous receiver/transmitter. This integrated circuit includes a programmable baud rate generator using a 1.8432 MHz crystal, and interrupt handling logic. The logic structure ad pin assigments of this integrated circuit are illustrated in Figure 8.2.

The control, address, and data signals are described in Figure 8.3.

## PRIHTERS AND COMMUNICATIONS



Figure 8.1 RS-232-C pin configuretion

1 \#
3
3



Figure 0.2 Serial/receiver transmitter

P\%n	(IIOS	Sigral	
8-8	0007	The system date bus, used for transferring I	
		control information and data in parallat form 1	
		prior to serialization for transmission or 1	
	1	after peceived data has baen de-serialized	
	1		
9	RCLK (I)]	10 x baud rate clock input for the receiyer	
	1		
10	SIM (II)	Receives serial data fromexa input lino	
	1		
11	SOUT 1011	Transmits serialized data via the TxO output	
		bine. A Master reset sets sout to logic i	
		marking condition	
	,		
12	Cso [I])	All 3. Chip Select lines must be active in	
13	csi [I]l	order to selact the 16450	
14	csed [I]\\|		
	1		
15	BAUDOUT/ 1	16x clock signal for the transmitter. The	
	(0) 11	clack rate $=$ oscilletor frequency divided by !	
	1	conterits of divisor latches	
	1		
16	XTAL 1	Connacts crystal to the baud rete divider	
17	Xtale	circuit	
	1		
18	DOSTR/(I)	Either ane of these Data Strobe lines is used	
19	00Str \& [1]	to lotch dete from the cPU into the selected	
		16450 register	
	1		
20	Ves	System signal ground	
	1		
21	DISTR/(I)]	Either one of these Data Strobe lines serves	
	DISTR (I) 1	to latch an 16450 register for reading by the 1	
		CPU	
	1		


Pin	[ 20$]$	Signal
1		
23	DDIS \{0]\|	Driver Disable. Output goes Low whenever data
		is being read from tha 86450 . Can be used to
	1	reverse data direction of external receiver
	1	
24	CSOUT (0) 1	Confirms chip selection by means of a high
		output. A pre-requisite for data trasfer.
	1	
25	ADS/ [I])	Address Strobe providing latching for 16450
		internal registers. An active ADS/ signal is
		required only if the 3 address lines
		selecting the register do not maintain stable
		signals during throughout an 16450 operation.
	1	
26	A2	System address bus lines selecting on 16450
27	A1	internal register
28	AO	
	1	
29	1	No connection
	1	
30	INTRPT	Output goes high wheneyer an enabled
	[0]1	interrupt is imminent
	1	
31	OUTE/ (0)]	User-designated output programmable by means
		of bit 3 of the Moden Control Register: bit
		set makes signal active
	1	
32	RTS/ [0]1	Signal active informs the external device
		that the 16450 is ready to transmit data
	1	
33	DTF [0]	Signal active informs the external device
		that the 16450 is ready to communicate
	1	
34	OUT1/ 10$] 1$	User-designated output programmable by means
		of bit 2 of the Modem Control Register: bit
		set makes signal active
	1	

Figure 8.316450 signals [ 3 of 3 ]


Figure 8.3 16450 signals (3 of 31

## PROGRAMMING THE SERIAL RECEIVER/TRANSMITTER

The 16450 converts parallel data to serial on the transmit side and serial to parallel on the receive side. The serial interface driven by the 16450 can be assigned to any one of four (3299-K307) or two (3299K306) areas in the If 0 ap. The base port addresses selectable for serial I/O are:

	278 H	
3299-K306	2 FBH	3299-X307
	378 H	
3299-K306	3 FBH	

These addresses are switch-selectable on the PCBs.
The programming instructions in this description refer to base port seletion $3 F 8 H_{\text {, but the four least }}$ significant address lines apply equally to the other three I/O areas.

The port addresses dedicated to this interface and the 16450 internal 8 -bit registers:

> 3F8H Receiver Buffer/Transmit Holding Register. This port is also used to access the lower byte of the baud rate Divisor Latch (switched by means of the Line Control Register).

> 3F9H Interrupt Enable.
> Also upper byte of baud rate Divisor Latch (switched by means of Line Control Register).

> 3FAH Interrupt Identification (read only).
> 3FBH Line Control.
> 3FCH Modem Control.
> 3FDH Line Status.
> 3FEH Modem Status.
> 3FFH Not used.
> Figure 8.4 shows the structure of the registers which control the operation of the 16450 . The Receiver Buffer/Transmitter Holding Register is no more than an 8 -bit data register accessed via the processor IN or OUT instruction, according to the direction of data flow. Bit 0 is always the first bit transmitted or received. The Divisor Latch sets the baud rate generator by means of a 16 -bit binary value. The Divisor Latch is selected/de-selected by bit 7 in the Line Control Register.

## BRTMTERS AND COMMUNICATIONS



Figure B. 416450 Contral/Status Registers 11 of 2)


Figure 8. 416450 Control/Status Ragisters [2 of 2]

Interrupt Enable Register
If all bits are zero, no interrupts are issued by the 16450. Setting individual bits $0-3$ determines which events result in the issue of an interrupt. These bits may be set in any combination:

0: Interrupt when received data available. 1: Transmitter Holding Reg. empty. 2: error or Break Interrupt. 3: change of state on CTS, DSR, RI, or RLSD.

## Interrupt ID Register

If an interrupt is waiting to be acknowledged, bit 0 is zero. The binary value represented by bits 1 and 2 then denotes the pending intersupt with the highest priority (see Figure 8.5).


Figure 8.516450 Incersupt priority

## Line Control Register

This register can be read as well as written, so that there is no need for applications to store the current settings.

Bits 0 and 1 contain a binary value specifying length of the serial character: $0=5$ bits, $1=6$ bits, $2=$ 7 bits, and $3=8$ bits.
Bit 2 specifies the number of stop bits: $0=1$ stop bit; 1 sets 1.5 stop bits (for 5 -bit character), or 2 stop bits (for other character lengths).
Bit 3 set determines that parity checking takes place. The type of parity checking is controlled by bits 4 and 5: bit 4 set means that an even number of bits are transmitted or checked; if bit 5 is set, parity is transmitted and then detected by the receiver as logic 0 (if bit $4=1$ ) or as logic 1 (if bit $4=0$ ).
Bit 6 forces the serial output line to a low (Break) state, where it remains until this bit is reset. The Break condition is of ten used to alert the external device.
Bit 7 set selects the Divisor Latch at ports 3 F 8 H and $3 F 9 H$, in order to program the baud rate generator. As long as this bit is zero, the Receive Buffer/Transmit Holding Register ( 3 F 8 H ) and Interrupt Enable Register (3F9H) are selected.

## Modem Control Register

Bits 0-3 set force high the 16450 output lines DTR/, RTS/, OUT1/, and OUT2/, respectively.
Bit 4 set activates 16450 internal diagnostics (see later section).

## Line Status Register

Bit 0 set indicates that a serial character from the receiver has been converted to parallel form and is waiting to be read from the Receiver Buffer Register (port 3 F 8 H ). This status bit is automatically reset when the data byte is read, or if that register is filled with zeros by means of an OUT instruction from the microprocessor.
Bit 1 set means that an overrun error occurred, that is, the Receiver Buffer Register was not read before a new character was introduced to it. Reading the Line Status Register resets this bit.

Bit 2 set indicates 2 parity error. This bit is reset by reading the line Status Register.
Bit 3 set indicates a framing error, that is, the stop bit is not valid.
Bit 4, the Break Interrupt detector, is set if a break condition is recognized by the receiver. Such a condition exists when the serial input line is at zero beyond the length of one character consisting of Start + Dara + Parity + Stop bits.
Bit 5 indicates when the Transmit Holding Register can accept a new character for serialization and transmission (bit set), as the most recent character has been forwarded to the $16450^{\prime}$ s Transmit Shift Register. This bit is reset when this register is next writien to.
Bit 6 reflects the status of the Transmit Shift Register: this bit set indicates that the register is idle.

## Modem Status Register

Whenever bit 0 , 1,2 or 3 is set, a Modem Status interrupt conditios is asserted (see Figure 8.5).

Bits 0 set indicates that the CTS/ line has changed state since the Modem Status Register was last read. Bit 1 applies analogously to the DSR/ line.
Bit 2 is set when the trailing edge of the fing Indicator is detected.
Bit 3 set indicates that the RLSD/ input has changed state.
Bits 4-7 represent the complements of the CTS/, DSR/, RI/, and RLSD/ inputs, sespectively, provided that bit 4 in the Modem Control Register is zero. If this bit is set, the four Modem Status Register bits represent RTS/, DTR/, OUT1/ and OUT2d.

## INTERNAL DIAGMOSTICS

The 16450 includes its own loopback diagnostic feature, actiyated by writing the Modem Control Register with bit \& set.

## Data Integrity

The serial transmitter output (SOUT)is set to a state of marking (logic 1) and the serial receiver line (SIN) is disregarded. The output from the Transmit Shift Register is looped back into the Receiver Shift Register. The Modem control inputs CTS/, DSR/, RLSD/, and RI/ are disregarded. Instead, these signals are supplied internally by the Modem control outputs DTR/, RTS/, OUT1/, and OUT2/. This configuration allows the 16450 to verify its internal transmit and receive data paths.

## The Interrupt System

In the diagnostic mode, receiver and transmitter interrupts are fully operational. The Modem Control interrupts are also operational, but the interrupts are now derived from the four least significant bits of the Modem Status Register, not from the Modem Control input lines. The interrupts can still be enabled and disabled by means of the Interrupt Enable Register.

A test of the interrupt system requires writing the lower 6 bits of the Line Status Register and the lower 4 bits of the Modem Status Register: a bit set results in the assertion of the corresponding interrupt.

To conclude diagnostics, where appropriate and
restore the 16450 registers write the Modem Control Register with bit 4 set.

## PRINTERS AND COMMUNICATIONS

## RECEIVER／TRANSMITTER TIMING

Figures $8.6-8.11$ illustrate 16450 signal timing．


Figure 0.6 Read cycle
 mow 几几几几几几


Figure 0.7 BANDOUT／timing


Figure 8.8 Write cycle


Figure 8.9 Receiver timing

## PRINTERS AND COMMUNICATIONS



Figure 8.10 Transmitter timing




INBEMAUPT

$\overline{O I S T A O S T A}$
IAD ASEI


Cigure Sol Modem Contral timing

## BAUD RATE SELECTION

The crystal input governing the 16450 internal baud rate generator in your NCR PERSONAL COMPUTER is set at 1.8432 MHz . Accordingly, the 16 -bit Divisor Latch values for the standard baud rates are as set out in Figure 8.12. Where the integer nature of 16 -bit binary counting results in a negligible deviation from the nominal baud rate, this is indicated in the rightmost column.


Figure 8. 12 Beud Rate Diyisor Latch

## TBE CENTRONICS INTERPACE

The Centronics interface provides a parallel connection to an external input/output device. Up to two parallel interfaces can be used ( $2 \times 3299-\mathrm{K} 306$ ). Base post selection is by means of switches on the Kit PCB. The following base ports are selectable:

278H
378H
The interface provides 8 TTL buffered datalines, 4 TTL buffered control lines, and 5 lines for status reading. Three basic operations can be performed:

* Write data to device.
* Read data from device.
- Read status of device.

Figure 8.13 shows the logical significance of the interface signals. Physical pin connections of the $D$ connector are set out in Figure 8.14.

Control data comprises the following lines:
STROBE/ The pulse of at least 0.5 microseconds used to clock data read. Data is read when this signal is active (high)

AUTO/ This signal is commonly recognized by printers as an instruction to perform an automatic line feed when end of line is reached

INIT/ This signal is commonly recognized by printers as a reset instruction, usually entailing erasure of remaining printer buffer contents

SELECT Signal to select the external device INPUT/ (printer)


Figure 8.13 Centronics interface signals

PRINTERS AND COMMUNICATIONS

1 Pim	1 Sigral
11	1 Strobe
1 2-9	\| Date lines 0-7
10	1 ACKMOWLEDGE
11	1 gusy
12	1 PE
13	1 SELECT
184	\| autor
185	\& ERROR
116	1 INST/
1. 97	\& SELECT ING
1 88-25	1 Ground



Figure 8. 14 Cantronics D-connector

Status information comprises the following lines:

ERROR/ Indicates device (e.g. printer) error, for example, at papermend, offolime, safety switch open, failure status

SELECT Confirms that the device is selected.

PE This signal is used by printers to denote an out-of-paper condition.

BUSY When this signal is active, the device cannot receive data. With printers, this signal is active under the following circumstances:

```
during data entry (depending on printer)
during printer operation
in offoline status
upon printer error status
during line feed
```


## ACKNOWLEDGE/

Indicates that data has been received by the printer. New data cannot be received before this signal is reset

## SOPTVARE CONTROL

Data transfer between the microprocessor and the interface is via the system data bus. To.write data to the external device, the data is transmitted via port $378 \mathrm{H} / 278 \mathrm{H}$. The interface captures the data from the bus and presents it on the data lines at the external connector. Appropriate control information must then be issued via port $37 \mathrm{AH} / 27 \mathrm{AH}$.

To read data from the Centronics interface, it is first necessary to transmit the appropriate control information via port $37 \mathrm{AH} / 27 \mathrm{AH}$. Data can then be read via port $378 \mathrm{H} / 278 \mathrm{H}$

Status reading is via port $379 \mathrm{H} / 279 \mathrm{H}$.

## Status and Control Registers

The status byte is made up as shown in Figure 8.15, the control byte as shown in Figure 8.16.


Figure B. 15 Centronics status register


Figure 8. 16 Centronics contral register

## PORT SELECTION

Figure 8.17 shows the locations and possible settings for the 3299-K306 switches. The "enablem switches are provided so that one of the interfaces on the adapter can be used, while the other is disabled to prevent an I/O address clash with an interface being used on another adapter 3299-K306 or 3299-K307.


Figure 0.17 K306 $1 / 0$ address selection

Figure 8.18 shows switch settings for $3299-K 307$.


Figure 8.18 K307 1/0 addrase selection


[^0]:    Figure 5.19 Transfer Capacity

[^1]:    Figure 5.24 Status Registers (5 of 6)

