
OLYMPIA SYSTEM BOSS

BAL LANGUAGE AND FILE SYSTEM

REFERENCE MANUAL

B. 1006 A

PRELIMINARY ISSUE - OCTOBER 1980

PREFACE

PURPOSE

This manual provides you with the descriptions and data you
need to use the BOSS Business BASIC Language (BAL) to develop
your applications programs. This document provides a descrip­
tion of the simple/ powerful BAL commands; describes rules
for the proper usage of the language; and includes program­
ming examples.

THE LANGUAGE

One of the important characteristics of a program is that it
must be written in a language that the computer can
understand. All computers have a very elementary language
called machine language which requires the use of long lists
of primitive instructions. The machine language differs with
each manufacturer and can even differ from one line of compu­
ters to another within the same manufacturer's products.

Darmouth College developed a language having very simple gram­
matical rules that could be learned quickly. This language
has come to be known as BASIC. However/ BASIC does not have
effective instructions for the entry of business-oriented in­
formation and control of display formats for the results.
This extended version of BASIC (called BAL) makes more effec­
tive use of the entire computer system and provides the ne­
cessary tools to program in a commercial environment.

Features of BAL

o Designed to be used easily by inexperienced
programmers .

o Includes enhanced instructions for input/output
which are better adapted to the problems posed in a
business environment.

o Performs arithmetic operations to fourteen-place
accuracy.

o Has a flexible way of handling data files.

Virtual Memory

The information handled by the computer can be stored in the
central memory or in peripheral memory units such as mini­
floppy disks or large disks. Central memory units are charac­
terized by very fast access times/ while peripheral units can
contain much larger volumes of data but have a slower access
time. A recent advance in computer technology is the concept

l

of virtual memory. Virtual memory systems allow you to write
programs without regard for the amount of central memory
available. You can manipulate data variables stored on peri­
pheral units as easily as if they were stored in central me­
mory — only the access time changes. Program segments
themselves may be kept on a peripheral unit and recalled when
needed .

Programming Methods

There are many possible methods for entering your program in­
to a computer and outputting the results. The BAL system pro­
vides an easy-to-use conversational entry method for your
programs and data, via the keyboard with the information dis­
played on a CRT screen. At the same time, the information is
recorded on either a minifloppy or a large disk.

Your data can be output to a line printer, the CRT display,
or to one of the disks.

Conventions

Notation conventions used in this document are:

Brackets C3 surround optional fields in instruction
descriptions. The brackets are not to be typed when entering
the instruction into the computer.

The symbol b denotes a required blank.

The symbol cr denotes a carriage return.

OLYMPIA SYSTEM BOSS

BAL LANGUAGE AND FILE SYSTEM REFERENCE MANUAL

TABLE OF CONTENTS

Paragraph Title Page

CHAPTER 1 . INTRODUCTION

1 .1 Introduction to the BAL Language 1-1
1 .1 .1 Example 1 1 -1
1 .1 .2 Example 2 -Using a Subroutine 1-4

CHAPTER 2. THE STRUCTURE OF A BAL PROGRAM

2 .1 Required Structure 2-1
2 .2 Program NAME 2-1
2 .3 Dec larations 2 -2
2 .4 Body of the Program 2 -2
2 .4.1 Line Numbers 2 -2
2 .4.2 Comments 2 -2

CHAPTER 3. DESCRIPTION AND DECLARATION OF VARIABLES

3 .1 Introduction 3-1
3 .2 The Variables 3-2
3 .2.1 General 3-2
3 .2.2 Variable Names 3-3
3 .2.3 Types of Variables 3-3
3.2.3.1 Short Numeric Variables 3-3
3 .2.3 .2 Long Numeric Variables 3-4
3.2.3.3 Character String Variables 3-4
3 .3 Constants 3-4
3 .4 Field Instruction 3-5
3 .4.1 Equivalencing Variables 3-7
3 .5 DCL Instruction 3-7
3 .5.1 Remarks 3-9
3 .5.2 Sequence of Declaration Instructions 3-10
3 . 6 Handling Arrays and Matrices 3-10
3 .6.1 Arrays 3-10
3 .6.2 Matrices 3-11
3 .6.3 Declaring Arrays and Matrices 3-11
3 .6.4 Examples 3-12

i i i

TABLE OF CONTENTS, CONT'D

Paragraph Title Page

CHAPTER 4. ASSIGNMENT INSTRUCTION

4.1 Int roduct i on 4-1
4.2 Syntax 4-1
4.3 Numeric Expressions 4-2
4.4 Logical Expressions 4-2
4.5 Arithmetic Expressions 4-2
4.6 Function Evaluation 4-3

CHAPTER 5. PROGRAM FLOW AND CONTROL INSTRUCTIONS

5 .1 General 5-1
5 .2 GOTO Instruction 5-1
5 .3 OF...GOTO Instruction 5-1
5.4 ON...GOTO Instruction 5-2
5.5 IF...GOTO Instruction 5-3
5 . 6 IF...THEN...ELSE Instruction 5-3
5 .7 FOR...NEXT Instruction 5-5
5.7.1 Simple Loops 5-6
5 .7.2 Effect of the Instruction FOR/NEXT 5-6
5 .7.3 Step of the Loop (STEP) 5-6
5 .7.4 Index Value v 5-7
5.7.5 Examples 5-7
5.7.6 Abnormal Conditions 5-7
5 .7.7 Successive Loops 5-8
5.7.8 Nested Loops 5-8
5 . 8 Subrout i nes 5-10
5 .8.1 General Structure 5-10
5.8.2 GOSUB Instruction 5-10
5 .8.3 (0F...G0SUB Instruction 5-11
5.8.4 RETURN Instruction 5-12
5.8.5 Remarks 5-12
5 .8 . 6 Nested Subroutines 5-13

CHAPTER 6 . CONVERSATIONAL DATA ENTRY

6.1 General 6-1
6.2 ASK Instruction 6-1
6.2.1 Simple ASK Instruction 6-1
6.2.2 ASK Instruction - General Format 6-2
6.2.3 Examples of ASK Instruction 6-5
6.3 MASK Instructions 6-7
6.4 Formats 6 - 8
6.4.1 Examples 6-10

TABLE OF CONTENTS, C O N V D

Paragraph Title Page

CHAPTER 7. DATA FILES WITHIN THE PROGRAM

7.1 Introduction 7-1
7.2 DATA Instruction 7-1
7.2.1 Decimal Constants 7-2
7.2.2 Character Strings 7-2
7.2.3 Hexadecimal Constants 7-2
7.3 READ Instruction 7-2
7.4 RESTORE Instruction 7-4

CHAPTER 8 . PRINT INSTRUCTION

8.1 General 8-1
8.2 S i m p l e P R I N T I n s t r u c t i o n 8-1
8.3 PRINT Instruction - General Form 8-2
8.4 Format Control 8-2
8.4.1 Imbedded Format Control 8-2
8.4.2 Fixed Format (FMT) Instruction 8-3
8.4.3 Variable Format (FM) Instruction 8-4
8.4.4 Format Control Characters 8-4
8.4.5 Examples Illustrating the Output Format 8-7

Elements for Numeric Variables

8.4.6 Examples Illustrating Formats for Character 8-10
String Variables

CHAPTER 9. INPUT/OUTPUT PORT INSTRUCTIONS

9.1 General 9-1
9.2 Input Port 9-1
9.3 Output Port 9-1

CHAPTER 10. SEGMENTATION

10.1 Genera l 10-1
10.2 Segment Declaration Instructions 10-1
10.3 Calling Segments 10-2
10.4 Return from a Segment 10-3
10.4.1 Example 1 10-3

TABLE OF CONTENTS, CONT'D

Pa ragraph Title Page

CHAPTER 11. MISCELLANEOUS INSTRUCTIONS

11 . 1 WAIT Instruction 11-1
11 .2 P A U S EI ns tr uc tio n 11-1
11 .3 STOP Instruction 11-1
11 .4 OP ADR 11 -2

CHAPTER 12. FUNCTIONS

12 . 1 General 12-1
1 2 . 2 Mathematical Functions 12-1
1 2 .2 . 1 Function ABS(v) 12-1
1 2 .2 . 2 Function I N T (v) 12-1
12.2.3 Function M0D(B/C) 12-1
12.2.4 Function R0UN<v,N) 12-2
12.2.5 Functions FIX < x) and FP(x> 12-2
1 2 .2 . 6 Function SGN(v) 12-2
12.2.7 Function CONV(v) 12-3
12.3 String Functions 12-3
1 2.3 .1 Function LEFT (A/N) 12-3
12.3 .2 Function RIGHT (A/N) 12-3
12.3.3 Function LEN(A) 12-4
12.3.4 Function INDEX (A/B) 12-4
12.3.5 Function INSTR(A/B/N) 12-4
12.3.6 Function SUBSTR(A/N1/N2) 12-5
12.3 .7 Function INCLUD(N/B/CN1D 12-5
12.3 . 8 Function VAL(A/N) 12-5
12.3 .9 Function STRN(X) 12 -6
12.3 .10 Function TRAN(A/B/N/C) 12 -6
12.3.11 Function INV(A) 12 - 6
12.3 .12 Function GENER(N/A) 12 -6
12.3 .13 Function SPACE(B) 12-7
12.3 .14 Function DATE(N) 12-7
12.3.15 Funct i on SHR(A) 12-7
12.3 .16 Function SHL(A) 12-8
12.4 Miscellaneous Functions 12 -8
12.4.1 Function PEEK(A) 12 -8
12.4.2 Function POKE(N) 1 2 -8
12.4.3 Function VPTR(A) - Variable pointer 12-9

CHAPTER 13. DISK ACCESS FEATURES

13.1 General 13-1
13.2 Assign 13-1

TABLE OF CONTENTS, CONT'D

Paragraph Title Page

13.3 10 Instruction — Direct Access to a Support 13-2
Device

13.4 LOAD Instruction 13-4
13.5 CALL Instruction 13-5
13.6 CHAIN Instruction 13-7

CHAPTER 14. INTRODUCTION TO FILE MANAGEMENT SYSTEM

14.1 General 14-1
14.2 File System General Characteristics 14-2
14.2.1 General Types of Operation Performed 14-2
14.2.2 Status/Error Codes 14-2
14.3 Description of Random Access File System 14-3
14.4 Description of Sequential Files 14-3
14.5 Description of Indexed Sequential (ISAM) Files 14-4
14.5.1 Characteristics of the ISAM File 14-5
14.5.2 Characteristics of the ISAM Record 14-5
14-6 Definitions 14-6

CHAPTER 15. FILE SYSTEM COMMANDS

15.1 General 15-1
15.2 Common File System Instructions 15-1
15.2.1 ASSIGN 15-2
15.2.2 Create a File — CFILE 15-3
15.2.3 Open a File — OPEN 15-3
15.2.4 Delete a File — DFILE 15-4
15.2.5 Rename a File — RENAME 15-4
15.2.6 Extend a File — EXTEND 15-5
15.2.7 Close a File — CLOSE 15-6
15.3 Random File Instruction 15-6
15.3.1 Field Instruction 15-6
15.3.2 ASSIGN - Random File System 15-7
15.3.3 Example of Random File Instructions 15-8
15.4 Sequential File System Instructions 15-8
15.4.1 READ a Sequential Record 15-8
15.4.2 BACKSPACE in Sequential File 15-9
15.4.3 WRITE a Sequential Record 15-9
15.4.4 Example of Sequential File Instructions 15-10
15.4.5 Remarks 15-10
15.4.6 Sequential Files for Magnetic Tape 15-11
15.5 Indexed Sequential File System Instructions 15-11
15.5.1 ASSIGN Instruction 15-12
15.5.1.1 Normal mode 15-12
15.5,,1,2 Copy mode 15-13

TABLE OF CONTENTS, CONT'D

Paragraph Title Page

15.5 .2 Create an Indexed Sequential File CFILE 1 5-13
15.5.3 Inserting a New Item — INSERT 1 5-14
15.5.4 Read an Indexed Sequential Item — SEARCH 1 5-1 5
15.5.5 Delete an Item -- DELETE 1 5-16
15.5.6 Sequential Read

Instruction
in ISAM File — UP 6 DOWN 1 5-16

15.5.7 Modify an Item -- MOD I F 15-18
15.5.9 Example of Indexed File Instructions 1 5-19

CHAPTER 16. BAL TRANSLATOR 8 EXECUTOR

16.1 General 16-1
16.2 BAL Translator - TR 16-1
16.3 BAL Executor - EX 16-3

APPENDIX A. BIBLIOGRAPHY A-1

APPENDIX B. ASCII CODES B-1

APPENDIX C. BAL AND FILE MANAGEMENT SYSTEM ERROR CODES

C .1 General C-1
C .2 Translation-Time Errors C-1
C .3 Execution Time Errors C-3
C .4 File Management System Status/Error Codes C-5

v i i i

CHAPTER 1 INTRODUCTION

1 .1 INTRODUCTION TO THE BAL LANGUAGE

In order for the computer to perform the desired
ca Icu l ations , you must provide it with the calculation method
to be used. It must be in a form the computer can understand,
and this form has come to be known as the BAL language.

The "sentences" in this language consist of a command (key)
word of 1 - 6 letters, followed by any other required or option­
al information. BAL is easy to learn because a small number
of command words is sufficient for most programming tasks.

One of the most important features of any programming lan­
guage is its input/output structure. The objectives of
input/output (I/O) are:

Input : The supplying of data to the computer for
program execution.

Output : The results of the calculations presented in
a format desired by the user.

The BAL I/O structure has been designed to facilitate the
conversational writing of management applications programs by
relatively inexperienced personnel. In general, data is ente­
red on the keyboard and output to the CRT display or printer.

To illustrate 8AL, consider the following examples. Their
purpose is to illustrate some of the instructions, which are
discussed beginning in Chapter 2.

Note that Appendix C is a list of all Mî^OftAL BAL commands in­
dexed to the page where they are described.

1 .1 .1 Example 1

The first example consists of dividing two numbers. An execu­
table program can be written as follows:

INSTRUCTIONS FUNCTION CHAPTER

050 PROGRAM "DIVISION" Program name 1
100 DCL N,D,Q Declaration of vari ables 3
150 SEGMENT 0 Segment number 12
200 REM DIVISION Remark 1
250 A S K= 1: "NUMERAT0R"=N Conversational Input 8
300 A S K= 1: " DENOMINATOR"=D Instructions 8
350 REM CALCULATE QUOTIENT Remark 1

1-1

INSTRUCTIONS FUNCTION CHAPTER

400 Q = N/D
500 PRINT=1: "QUOTIENT",Q
600 GOTO 250

1000 ESEG 0
1110 END

Assignment instruction
Output of Data
Branch Instruction
End Segment
End of Program

4
10
5

12
1

Note that the instructions of this program are numbered in
ascending order. This numbering is optional.

For the time being, skip the first three instructions and
look at instructions 200, 250 and 300. Instruction 200 is a
remark (comment) which has no effect on the program, but per­
mits you to add comments to explain various program
operations.

Instructions 250 and 300 are conversational instructions to
input numerical information. The instruction ASK=1: takes the
information which is input and stores it in memory. For
example, in executing instruction 250, the computer will dis­
play on the CRT screen the data in quotation marks, i.e., it
will print NUMERATOR. Then, it will wait for you to enter a
value for the numerator. The computer controls each entry. If
the character isn't a number, the computer will not accept
it. At that moment, you will hear a light "beep" to indicate
that there has been an error. Similarly, in executing in­
struction 300, DENOMINATOR will be displayed on the screen
and the computer waits for your input.

Instruction 400 takes the value which was read in by instruc­
tion 200 and assigned the variable N, then divides it by the
value read in at 300 which was assigned the variable, D. The
result of the division of the variable N by the variable D is
placed in Q .

Notice that the character used to indicate division is / (the
slash). If the instruction involved addition, it would be +
(plus), subtraction - (minus), or multiplication *
(asterisk). For example, LET C = B * D means multiply the va­
riable B by the variable D giving the result C.

Instruction 500 (PRINT-1:...) enables the computer to print
the results. PRINT followed by the names of the variables
that one desires to print; here the data enclosed in quotes
is printed, then the value of Q will be printed. Thus if Q
were computed to be 2 0 0 0 , the printout would be:

QUOTIENT 2000

1-2

The 1 after PRINT indicates that the data is to be written on
the video screen. If, in place of the 1, you had put 2, the
output would be on a line printer. In the instruction ASK=1:,
the number indicates that, it will use the video screen. BAL
does not allow the user to change theses device numbers.

Instruction 600 is interpreted as a transfer to instruction
250. The computer is going to branch to instruction 250 and
execute it. Then, it is going to continue normally with the
instructions that follow instruction 250; i.e. 300, then 400,
etc.

Instruction 600 could be changed by:

600 IF Q < 100 GOTO 250
700

The program would then be:

050
100
150
200
250
300
350
400
500
600
700

1000
1110

PROGRAM ••DIVISION"
DCL N,D,Q
SEGMENT 0
REM DIVISION
AS K=1: "NUMERAT0R"=N
ASK=1: " D E N O M I N A T O R S
REM CALCULATE QUOTIENT
LET Q = N/D
PRINT=1: "QUOTIENT",Q
IF Q < 100 GOTO 250
STOP
ESEG 0
END

In this case, if the value of the variable Q, (that is, the
result of the division) is less than 1 0 0 , the program is
going to continue from 250. Otherwise, (i.e., if Q is greater
than or equal to 1 0 0), it will continue execution at instruc­
tion 700 .

The IF-type command is called a conditional instruction. It
also exists under another form:

600 IF Q < 100 THEN 250 ELSE 700

This is interpreted as: if (IF) the value of Q is less than
100, then (THEN) the program continues from instruction 250.
However, if the value of Q is greater than or equal to 100,
the program continues with instruction 700 (ELSE).

Modification of the previous program then gives:

050 PROGRAM "DIVISION"
060 FIELD=M
100 DCL N,D,Q

1-3

150 SEGMENT 0
200 REM DIVISION
250 ASK=1: "NUMERATOR"=N
300 ASK=1 : "DENOMINATOR" = D
350 REM CALCULATE QUOTIENT
400 LET Q = N/D
500 PRINT=1:‘ TABV (2) , "QUOTIENT N/D", Q
600 IF Q < 100 THEN 200 ELSE 700
700 STOP

1000 ESEG 0
1100 END

Note that instruction 500 has also been changed. TABV(2) in­
structs the display to tab down two lines prior to printing
the quot i e n t .

1.1.2 Example 2 - Using a Subroutine

Suppose that a customer, C, wants to buy something. The ini­
tial price is P. If the order is 10 or more units, he is gi­
ven a 10% discount on the purchase price, M. In the case
where the number of units ordered is 25 or greater, the dis­
count is 2 0 X.

To establish the price for client C, the salesman has to car­
ry out a certain number of elementary operations — one after
another :

1. Ask for the name of the customer.
2. Ask for the quantity ordered — Q.
3. Ask for the unit price — P.
4. Calculate the price as

M = Q * P
5. See _i_f the quantity ordered is 25 or more. If

yes, then calculate the reduction of 2 0 % as
R = M * 0.20

and subtract the reduction from the price as
M = M - R

and then go to the next client.
6 . Otherwise, see jrf the quantity ordered is 10 or

more. If yes, then calculate the 10% reduction
as

R = M * 0.10
and subtract the reduction from the price as

M = M - R
and go to the next client.

If we write a BAL program for this sequence of operations we
have:

1 -4

PROGRAM STATEMENT EXPLAINED IN CHAPTER

100 PROGRAM "PRICE"
105 DCL C$=20,Q,P,R,M
106 SEGMENT 0
110 ASK=1: TABV(2), "CUSTOMER NAME",=C
120 ASK=1 : TABV<2), "QUANTITY"=Q
130 ASK=1: "UNIT PRICE"=P
140 LET M = Q*P
150 IF Q < 25 GOTO 160
1 52 LET R = M * 0.20
154 LET M = M-R
156 PRINT=1: TABV(2), C,Q,P,M
158 GOTO 110
160 IF Q < 10 GOTO 170
162 LET R = M * 0.10
164 LET M = M-R
166 PRINT=1: TABVC2), C,Q,P,M
168 GOTO 110
170 PRINT=1: TABV<2>, C,Q,P,M
180 GOTO 110
190 STOP
400 ESEG 0
410 END

Note that we simplify the program by writing the PRINT state
ment once and branching to it after statements 154 and 164.
This is shown below.

140 LET M = Q ★ P
150 IF Q < 25 GOTO 160
1 52 LET R = M * 0.20
1 54 LET M = M - R
156 GOTO 170
160 IF Q < 10 GOTO 170
162 LET R= M * 0.10
164 LET M = M - R
170 PRINT=1: TA8V<2>, C,Q,P,M
180 GOTO 110
190

Note that instructions 152, 154 and 162, 164 are identical if
you put a variable, for example R1, to designate the
reduction. Then the instruction sequence becomes

152 LET R = M * R1
162 LET R = M * R1

1-5

To avoid rewriting the identical set of instructions, BAl
lets you create a sub-program or subroutine. Consider the
example:

100 PROGRAM "PRICE"
105 DCL C$=20,Q,P,R, R1 ,M
106 SEGMENT 0
110 ASK=1 : TABV(2), "CUSTOMER
120 ASK = 1 : TABV(2), "QUANTITY"
130 ASK=1 : “UNIT PRICE" = P
140 LET M = Q* P
1 50 IF Q < 25 GOTO 160
1 52 LET R1 = 0.20
154 GOSUB 300
156 GOTO 170
160 IF Q < 10 GOTO 170
162 LET R1 = 0.10
164 GOSUB 300
170 PRINT=1 : TABV(2) , C,Q,P,M
180 GOTO 110
190 STOP
/300 LET R = M * R1

SubroutineJ310 LET M = M - R
1.3 20 RETURN
400 ESEG 0
410 END

Observe that the subroutine was composed
were ident i c a l to those in the preceding
ting these instructions, we put RETURN which indicates the
end of the subroutine and orders the computer to return to
the first executable instruction after the one which called
the subroutine.

To call a subroutine, use the instructions GOSUB, followed by
the number of the line which began the subroutine. Notice
that the price reduction in our program example was determi­
ned before the subroutine was called.

1-6

CHAPTER 2. THE STRUCTURE OF A BAL PROGRAM

2.1 REQUIRED STRUCTURE

As illustrated in the examples in Chapter 1, every BAL pro­
gram requires the following structure:

Elements Of The Program Inst ruct i on s

1. First instruction must be the PROGRAM "NAME"
program name.

2. Declarations -- a group of
instructions naming and
declaring all variables used
in the program.

FIELD=
D Cl____

FIELD=
DCI____

3. The body of the program/ which
consists of one or more segments/
each of which begins with SEGMENT n
instruction/ ends with ESEG n.

Each segment contains a body of
instructions which perform various
program functions. The variables
are common to all segments.

SEGMENT 0
a

a

•
ESEG 0
SEGMENT 4

a

a

ESEG 4

Segment 0 is required/ others are SEGMENT k
optional Cup to 16 total) and
can appear in any order.

e

One segment can call another/ like
a subroutine, but one segment
cannot refer to instructions inside
another segment.

ESEG K

4. The END statement. END

2.2 PROGRAM NAME

The first statement of every BAL program must begin with the
keyword PROGRAM, followed by the user-assigned program name
of 1 to 15 characters, enclosed in parentheses.

Example: PROGRAM "SAMPLE"

2-1

2.3 DECLARATIONS

The instructions which name and declare the program variables
follow the program name. All variables used in a program must
be declared prior to the appearence of a SEGMENT n statement.
The variable declaration instructions are described in detail
i n Chapter 3 .

The declared variables are common to all segments -- and can­
not be declared local to a single segment. Also appearing
prior to the SEGMENT 0 statement, are the FIELD statements
which define the types of memory that support the variables
being declared. BAL allows three types of memory to be used:
the central memory and the virtual memory of the minifloppy
disks and the large hard disks.

2.4 BODY OF THE PROGRAM

The body of a BAL program consists of one or more segments,
each of which includes a group of instructions. Every program
must include a Segment 0; other segments are optional. See
Chapter 10 for complete details on segmentation, including
instructions which allow one segment to transfer control to
another .

Instructions are constructed as detailed in following
chapters. The maximum length of an instruction line is 255
characters. Blanks may be used freely within instructions to
improve readability, except for the equal (=) sign which may
not be preceded by a blank.

2.4.1 Line Numbers

Within a segment the user may assign line numbers to the BAL
instructions. Line numbers are optional, but if they are
used, must be in ascending order within the same program
segment, and be in the range from 1 to 9999. Note that line
numbers in one segment are independent of line numbers in any
other segment .

2.4.2 Comments

The importance of comments in a program cannot be
over-estimated. The extra time required to document a program
as it is written is repaid whenever questions arise, or chan­
ges are contemplated.

2-2

«

BAL provides four ways to include comments within a program:

1 . The REM Instruction - Allows the user to enter an
entire line of comments. When REM is typed as the
keyword of an instruction line, everything following
(to the next carriage return) is considered to be a
comment by BAL.

2. * * Instruction - Has the same function as REM, but
may be used to produce a neater listing, especially
when blank lines are needed in the listing for
clarity.

3. . Instruction - Functions the same as the asterisk,
but also forces an advance to top-of-form operation,
so that the comment will always appear at the top of
a printed listing page. This is useful in placing
page headings on your listings.

4. ; construct - The semicolon can be typed on a line
to the right of a statement, then followed by a
comment. Everything entered on a line after the semi"
colon is considered by BAL to be a comment.

EXAMPLES :

PROGRAM "EXAMPLE"
REM VARIABLE DECLARATIONS FOR INDEXES
D CL A,B,C,D, D4#,D5#,D6#
*
*

. THIS COMMENT WILL APPEAR AS THE TOP
LINE OF A PAGE.

D C L
SEGMENT 0

100 A = 2 . 0 ; I n i t i a l i z e A

!

2-3

CHAPTER 3 DESCRIPTION AND DECLARATION OF VARIABLES

3.1 INTRODUCTION

BAL, Like all programming languages, uses an assortment of
characters to communicate with the system.

To communicate the characters to the computer, one uses a
type-writer-like keyboard. After processing, the computer di­
rectly transmits the information back to the CRT screen, the
printer, or to the disk.

The character set used for BAL is:

o 26 characters of the alphabet:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

o 10 numeric characters:
0 1 2 3 4 5 6 7 8 9

o special characters which are subdivided into:

o symbols of operation
- subtraction
+ addition
* multiplication
/ division

o parentheses
(left parenthesis
) right parenthesis

o comparison symbols
= equal
< less than
> greater than

<= less than or equal
>= greater than or equal
<> not equal

o punctuation characters
. period
, comma
; semi-colon
? question mark
: colon

3-1

o other special characters
' apostrophe
" quotation
$ dot lar sign
% percent
a at
S and
H number

The user should take care to distinguish:

o The number zero and the tetter 0; usually the zero
will have a slash through it/ but there is no strict
rule about it.

o The number one and the letter I.

The blank character (or space) will be represented by a blank
or by the symbol

3.2 THE VARIABLES

3.2.1 Genera t

A variable is capable of taking on different values during
the execution of a program. In the computer/ the variable is
assigned a memory location. The contents of the location can
change as various operations use it.

In the case of a constant/, it too is assigned a memory loca~
tion but the contents remain unchanged throughout the lifeti­
me of the program.

The instruction

100 LET Y = X

places the numeric value located in the X location in the Y
location as well. The value will still remain in the X
location/ it has merely been copied.

There was to be a name for each location; and in the program/
you will refer to the contents by the variable name.

All variables must be declared at the beginning of the
program. Detailed information on instructions for declaring
variables is found in Chapter 4.

♦
3-2

3.2.2 Variable Names

The name of the variable can be:

o A single alphabetic character (A through 1 , 0
excluded) .

o An alphabetic character (A through Z 0 excluded)
followed by a single digit number to 9).

This allows 25 x 10 or 250 variable names. Note that A and
A0 , B and B 0 ,etc. are the same variable names; whereas A and
A1, B and B1, etc. are different variables. The following va­
riable names are valid:

B or B0 (actually the same variable name)
C4
D9
K
W3

The names of the following variables are invalid:

A01 - two digits only
B12 - two digits only
01 - alphabetic 0 not allowed
04 - variable name must begin with alphabetic

character
1A - name may not begin with a numeral

3.2.3 Types of Variables

BAL uses three kinds of variables:

o Short numeric variable (type 1 or type 2)
o Long numeric variable
o Character string variables

5.2.3.1 Short Numeric Variables

These are integer variables of two types:

o Type 1 , whose range is -128 < x < 127
o Type 2 , whose range is -32768 < x < 32767

These variables allow for rapid calculations. The space occu
pied in memory is 1 character or byte for type 1 and two cha
racters or bytes for type 2. To define a variable of type 1,
the variable name must be appended with the character ft in
the DCL statement; for type 2, with the character %. Note
that this suffix is used with the variable only when it is
defined. (See 3.5 for an explanation of the DCL statement.)

3-3

EXAMPLE: R3 ff - Range -128 to 127
A1% - Range -32768 to 32767

These variables are initialized to zero before execution of
the program.

3.2.3.2 Long Numeric Variables

These variables are floating point variables, allowing opera­
tions with numbers to 14 significant digits. Long variables
do not have an appending identifier. They can be of varying
length .

These variables are initialized to zero before the beginning
of the program. Note, however, that you must re-initialize
these variables if restarts of your program are allowed,,

3.2.3 .3 Character String Variables

These variables can represent strings of characters, ranging
from 1 to 256 characters. The variable name, at the time of
declaration, must be followed by a dollar sign ($) and the
length, in number of characters.

EXAMPLE: 20 DCL A1$=125
30 DCL B$=10

String variable A1 will be 125 characters in length; string
variable B will be 10 characters.

If the length specification is omitted, the length is impli­
citly declared to be 15 characters.

Prior to program execution, all string character locations
are initialized as the character "blank". However, you must
re-initia l ize these variables (as necessary) if restarts of
your program are allowed.

Note that the $ suffix is used only when the variable is
defined.

3.3 CONSTANTS

Constants may be used in the program, expressed as follows;

Decimal Constants - Expressed as a decimal number, as
4 or 4 .3 .

Hexadecimal Constants - Expressed as a short numeric,
preceded by a slash (1), as /3f .

String Constants - Expressed in quotation marks, as
(string literal) "STRING".

3-4

%

3.4.1 Equivalencing Variables

As each variable is placed in memory, the system notes its
address. It is therefore possible to equivalence variables ~
that is, have 2 or more named variables occupy the same phy­
sical memory location. The variables must be defined in the
same type of memory.

Example: 10 FIELD=M
20 DCL A$=128
30 FIELD=M,A
40 DCL X1#,X2#,YX(63>

The variable X1 occupies the same memory locations as the
first byte of string A. Variable X2 occupies the same address
as the next byte of A; and array Y occupies the same memory
locations as bytes 3 through 65 of string A.

3-5

String A Equ i v . Variab les
Address XXXX

Byte 1 X1

Byte 2 X2

Byte 3 Y (1)
• ■ •

• • •

Byte 65 ----- --
Y (63)

This allows for easy breakdown (or construction) of a string
-- such as a disk record -- into its component parts.

3.5 DCL INSTRUCTION

This instruction declares the variables which will be stored
in memory as specified by the last FIELD instruction which
was encountered in the program. The variables are noted and
their addresses are assigned in the sequential order of defi­
nition in the DCL instruction.

The general format of a DCL instruction is:
DCL V1 , ..., Vn where a series of variables can

be declared by a single DCL
instruction.

For each variable/ the DCL instruction specifies:

o The variable name/ A through Z (0 excluded), option­
ally followed by a single digit, 0 through 9.
Example, A3.

o The variable type, as:

numeric: a short variable (type-1 or
type-2) or a long (14 signifi
cant digits) floating point
variable.

alphanumeric: a character string

3-6

o The associated dimensions (vector or table), if neces­
sary. The variable type is defined by an identifier
which is:

o The Length specification (for Long variabLes and
string variabLes).

- short variable (occupying 1 byte)

X - short variable (occupying 2 bytes)

$ - string variabLes (occupying a maximum of
256 bytes)

The identifier is used only when the variable is declared in
the DCL instruction.

Example: 100 DCL A#, A1%(10), B$=12(128), T=7(12,8)

Long variables operate differently from short integer varia­
bles and do not require identifiers. A variable cannot have
more than one identifier--i.e., it cannot be declared several
times under different identifiers.

Long variables and character strings have an implicit length.
However, the user can specify a length by following the va­
riable with an equal sign (=) and its length in bytes.

Examples: T=4 Can be interpreted as a long variable
four bytes in length.

T=4(17,18) Can be interpreted as a table of
dimension 17 x 18; each element is de­
fined as four bytes in length.

T1* = 10(15) Can be interpreted as a vector of 15
values; each element is a string 10
bytes in length.

3.5.1 Remarks

o The maximum length for character strings is 256.

o The maximum length for long variables is 8 bytes -
this corresponds to 14 decimal digits plus the deci­
mal point and the sign.

3-7

o The associated dimensions (vector or table), if neces­
sary. The variable type is defined by an identifier
which is:

o The Length specification (for long variables and
string variables).

- short variable (occupying 1 byte)

% - short variable (occupying 2 bytes)

$ - string variables (occupying a maximum of
256 bytes)

The identifier is used only when the variable is declared in
the DCL instruction.

Example: 100 DCL A#, A1X(10), Bî=12(128), T=7(12,8)

Long variables operate differently from short integer varia­
bles and do not require identifiers. A variable cannot have
more than one identifiei---i.e., it cannot be declared several
times under different identifiers.

Long variables and character strings have an implicit length.
However, the user can specify a length by following the va­
riable with an equal sign (=) and its length in bytes.

Examples: T=4 Can be interpreted as a long variable
four bytes in length.

T=4(17,18) Can be interpreted as a table of
dimension 17 x 18; each element is de­
fined as four bytes in length.

T1*=10(15) Can be interpreted as a vector of 15
values; each element is a string 10
bytes in length.

3.5.1 Remarks

o The maximum length for character strings is 256.

o The maximum length for long variables is 8 bytes -
this corresponds to 14 decimal digits plus the deci­
mal point and the sign.

3-7

If m is the Length of the variable, the number of decimal di­
gits -- that is, the precision of the information is: (m-1) *
2. If n is the desired precision--that is, the number of de­
cimal digits, the length of the variable must be (n/2 + 1).
Thus T=6 has a precision of (6-1) * 2 or 10 decimal places.

If one wants a precision of 5 decimal places, a length of 4
would have to be specified.

<5/2 + 1) (2.5 + 1) 3.5 4

Example: 5 PROGRAM "DIVISION"
10 FIELD=M
15 DCL N,D, Q
50 SEGMENT 0

200 ASK = 1 : "NUMERATOR"
300 A S K = 1 : " DENOMINATOR
400 LET Q = N/D
500 PRINT=1: N, D ,Q
600 GOTO 200
700 ESEG 0
800 END

The variable are assumed to be long variables with a maximum
precision of 14 digits. All variables are located in central
memory.

If we change instruction 15 to

15 DCL N=6, D=6, Q

the program will use the variables N and 0 with a precision
of 10 decimal places; and a precision of 14 for the variable
Q .

3,5.2 Sequence of Declaration Instructions

100 PROGRAM "Name"
... FIELD........
. . . D C L
... D C L

0 • a FIELD.........
DCL ..a,......

ass FIELD.........
D C L

SEGMENT 0

3-8

For each FIELD, there must be as many DCL instructions as ne­
cessary to List the desired variables. The number of FIELDS
is unlimited.

3.6 HANDLING ARRAYS AND MATRICES

3.6.1 Arrays

Occasionally, it is desirable to group information together
when there is a common relationship among the data. One exam­
ple would be the grades of a class on a particular exam. It
would be possible to represent each grade with a separate
variable, but the relationship among the data would be lost.
BAL allows the information to be expressed as a group by de­
claring a variable name to be a group variable name, speci­
fying how many items are in the group. The declaration would
be as follows for a group of 50 items called J8 .

200 DCL J8(50)

Throughout the life of the program, variable J8 would be the
name of the group. To express the value of a single item with­
in the group, subscripting is performed. Thus to refer to the
fifth item, one would specify J8(5). Since it is not possible
to write J85 to indicate a subscript in parentheses as a con­
vention. The following example assigns J85 to another vari­
able .

250 LET B = J8C5)

Such a group as J8 is commonly called a single dimension
array.

3.6.2 Matrices

There are occasions when there are two relationships among a
group of data. This can be expressed with a matrix. To de­
clare such a group:

300 DCL J (50,10)

To refer to an individual item within the group— as with an
assignment statement--requires two subscripts. The subscripts
are used to refer to the row and column location of an indi­
vidual data item within the structure. Hence, to specify the
item located in the fourth row, ninth column of the group J

3-9

would require a specification of J(4/9). A matrix declaration
of 1((50,10) means that there are 50 x 10 or 500 data items in
the group.

Consider an example of a matrix. We have a high school con­
taining four grades of students--9th, 10th, 11th, and 12th.
There are boys and girls in each grade. It would be possible
to define the school with a matrix as S(2,4) or S(4,2). That
is, two types of students and four types of grades. To refer
to the girls in the 9th grade would mean a specification of
one of the eight matrix positions.

3.6.3 Declaring Arrays and Matrices

Arrays and matrices may be declared using any type variables:

The length of each data item is declared by default. One byte
for short variables, type-1 ; two bytes for type-2 ; eight by­
tes for long variables; and 15 bytes for string variables.

The user can specify the lengths of group variables of the
long or string type by using the following convention:

The number before the parentheses is the length
specification. The numbers within parentheses specify the
list or matrix size. The minimum length for a long variable
is 1 byte; the maximum is 8 bytes. For a string variable, the
minimum is 1 ; the maximum is 256 bytes.

Note that, once a variable has been declared as to type, the
symbol (#,%,$) is not used within the body of the program to
specify the variable type. Thus you write:

100 LET Y = KC15)

not 100 LET Y = KS(15)

to specify location 15 within the string list K .

3 . 6 .4 Examples

The obvious advantage of arrays and matrices is the use of
one variable name for many data items. But there is a second

A3 # (5) B#(5,6)
CX(10) D%(7,5)
J1(15) L(4,9)
K $ (25) M2$(8,8)

short variables, type -1
short variables, type - 2
long variables
string variables

R 4 = 3 (9)
W $ = 9 (25)

N = 3 (8,7)
X9$=256(5,70)

3-10

advantage. Since the elements may be selected using a vari­
able as a subscript, the entire group can be operated on
systematically. Consider a program having as a declaration:

100 DCL A(50),B,I#

The following code would initialize list A to 5's:

500 FOR 1-1 TO 50
510 LET A (I)=5
520 NEXT I

Finding the average of all the elements of A is easily done;

600 LET B=0
610 FOR 1=1 TO 50
620 LET B=B+A(I)
630 NEXT I
640 LET B=B/50

By extension, it is possible to perform other statistical
operations as well as matrix operations. However, these tech­
niques are equally applicable to business problems. Consider
an application requiring the retention of an account number,
an account name, and a balance.

The declaration might be as follows:

200 DCL A(50); account number
210 DCL A1$=25(50); account name
220 DCL A2C50); account balance

In this case, elements with the same subscript in each of the
lists refer to the same account. If the balance is to be ze­
roed at the beginning of the year, this is easily done (see
lines 500-520 above, substituting A2 for A).

To search for a matching account number, assuming B contains
the account sought:

800 FOR 1=1 TO 50
810 IF A (1)=B GOTO 850
820 NEXT I
830 PRINT=1 :TABV(1>,"N0 SUCH ACCOUNT"
840 STOP
850 PRINT=1:TABV(1>/'ACCOUNT",B,"IS",A1(I)

3-11
♦

t

?

Note that, once a variable has been declared as to type, the
symbol (#,%,$) is not used within the body of the program to
specify the variable type. Thus you write:

100 LET Y = K(15)

not 100 LET Y = K$(15)

to specify location 15 within the string list K .

3.6.4 Examples

The obvious advantage of arrays 'and matrices is the use of
one variable name for many data items. But there is a second
advantage. Since the elements may be selected using a vari­
able as a subscript, the entire group can be operated on
systematically. Consider a program having as a declaration:

100 DCL A (50),B,I#

The following code would initialize list A to 5's:

500 FOR 1=1 TO 50
510 LET A (I)=5
520 NEXT I

Finding the average of all the elements of A is easily done;

600 LET B=0
610 FOR 1=1 TO 50
620 LET B = B+ A(I)
630 NEXT I
640 LET B=B/50

By extension, it is possible to perform other statistical
operations as well as matrix operations. However, these tech­
niques are equally applicable to business problems. Consider
an application requiring the retention of an account number,
an account name, and a balance.

The declaration might be as follows:

200 DCL A(50); account number
210 DCL A1$=25(50); account name
220 DCL A2(50); account balance

In this case, elements with the same subscript in each of the
lists refer to the same account. If the balance is to be ze­
roed at the beginning of the year, this is easily done (see
lines 500-520 above, substituting A2 for A).

t

3-12

To search for a matching account number, assuming B contains
the account sought:

800 FOR 1=1 TO 50
810 IF A (1)=B GOTO 850
820 NEXT I
830 PRINT=1:TABV(1),"N0 SUCH ACCOUNT"
840 STOP
850 PR INT=1 :TABV(1),"ACCOUNT",B,"IS",A1(I)

3-13

CHAPTER 4. ASSIGNMENT INSTRUCTION

4.1 INTRODUCTION

The object of assignment instructions is to assign a value
(number or character) to a variable (number or character).
This is the most frequent method of calculation used in BAL.

4.2 SYNTAX

The general form of the assignment instruction is:

C LET]V = z

LET - Optional keyboard

V - a numeric or character string variable that could be
simple or indicative.

z - a numeric or character expression

The effect of this instruction on the program is that the ex­
pression z will be calculated if necessary and its value will
be assigned to the variable V.

Examp le :

*LET X=4
A="GIRL"
X1=-A/B
C = A2
D(I,J)=A(M,N)+B

i'lote the following:

1 . No more than one variable is allowed to the left of the
equal sign of the instruction.

A=-3 or A2 =-3 * A is valid
A+2=-3 is not valid

The effect of the instruction is to assign the value
(numeric or character) of the expression on the right
to the variable on the left.

2. A frequently used application of this instruction is
reass i g n me nt.

* The keyword LET is optional.

4-1

X=X+1 means:

Take the numeric value of X CIO, for example); add one
to it (making it 11); assign the result to X. The mem­
ory location assigned to X is thus increased by 1 .

3. The expression z may be a constant. The assignment in­
struction is often used to assign an initial value to a
variable. Constants may be decimal or hexadecimal.

4. Variables should be initialized before they are used.

4.3 NUMERIC EXPRESSIONS

A complete numeric expression is made up of one logical or
arithmetic operator and two variables. It could be represen­
ted as :

constant constant
or or

Expression=s i g n .v a ria b le 1 .operator .v a riab le 2

Example: - 3 * * A2

4 . 4 LOGICAL EXPRESSIONS

8 AL uses the following logical operators:

AND — logical AND
OR -- logical OR
OX — exclusive OR

The logical operators are used in numeric expressions just as
the arithmetic operators. However, the variables in logical
expressions must be of the short type.

4.5 ARITHMETIC EXPRESSIONS

PAL uses the following arithmetic operators:

+ addition
- subtraction
* multiplication
/ division

For example, the expression A * B means multiply A times B;
while Â + B(1) means add the array value B (I) to A. If I were

4-2

equal to 3 , A equal to 100 and the array positions of B were
respectively: B(1)=10, B(2>=45, B(3)=30 AND B(4)=18, then
the above expression A + B (I) would be equal to 130.

If the first variable of an arithmetic expression is posi­
tive, the user can place a plus sign before it. The plus sign
is optional. If the first value is to be expressed as nega­
tive, the negative sign is mandatory.

The following numeric expressions are correct:

A - B1
-A - B (I,J)
-10.3 * B (I, J)
C1/12.4
-14/13
B

The following arithmetic expressions are incorrect:

A * B * C -- only one operator allowed
-10.5 ++ B(125) — too many operators
A * (B/C) — only one operator allowed per

line; also parentheses are not
allowed in an arithmetic ex­
pression.

The usual form of a numeric expression is in the LET state­
ment . For examp le :

CLET3 A = -B + C

which will calculate a value and assign it to variable A.

NOTE : In arithmetic expressions, the variables must be
either all long or all short. Mixing long and short
modes is not allowed.

4.6 FUNCTION EVALUATION

The assignment instruction is used in the evaluation of math­
ematical and string functions. The general form is:

CLETDV = F(v1)

llhere V is a destination variable of the proper type, as re­
quired by the function; and F(v1) is one of the mathematical,
string, or miscellaneous functions described in Chapter 12.

E xa mple :
N=M0D(N1,N2>
B= DATE(4)

4-3

CHAPTER 5 PROGRAM FLOW AND CONTROL INSTRUCTIONS

5.1 GENERAL

In principle, the execution of program instructions is sequen
t ia l. However, there are certain instructions which can con­
trol program execution, permitting the testing of some condi­
tion and branching by the program to any desired instruction.
These instructions are:

GOTO
OF. . .GOTO
ON . . .GOTO
I F . . .GOTO
IF...THEN...ELSE
FOR . . .NEXT
GOSUB
OF. . .GOSUB

5 .2 GOTO INSTRUCTION

Syntax :

GOTO n

When this instruction is executed, the program will uncon­
ditionally branch to and execute the instruction at line n,
Line n could be anywhere in the segment— -before or after the
instruction GOTO n.

5 .3 OF...GOTO INSTRUCTION

Syntax :

(OF v GOTO n1C, n2, ... ,np3

where the nx ̂s a (.-j ne number of the instruction to be branch
ed to. The value v is the index variable. The value of the
variable v at the time the program executes the multiple
GOTO instruction will determine which nx is the line number
of the next instruction. Variable v may have a maximum value
of 124; i.e., there may be up to 124 branch points listed in
a multiple GOTO instruction.

If v=1, branch to instruction n1
If v=2, branch to instruction n2

9
«

If v=p, branch to instruction np

5-1

If the value of v is less than or equal to zero or greater
than p, the OF instruction will be ignored and the computer
will execute the next sequential instruction. If v is not an
integer, it will be truncated and only the integer portion
will be used.

Example:
200 OF L GOTO 230, 250, 270
210 GOTO 300
220 REM 10% REDUCTION
230 LET T = T * 0.85
260 GOTO 300
265 REM 17X REDUCTION
270 LET T = T * 0.83
300

Depending on the value of L (assigned earlier in the
program), one systematically executes 0%, 10%, 15%, or 17%
reduction on the total T. Instruction 210 is for the case
where L is out of range (less than 1 or greater then 3);
i .e ., there is no applicable reduction. If L = 1, there is a
branch to instruction 250; for L=3, a branch to instruction
270.

Note that the program of this example could be written more
efficiently using an array and a FOR...NEXT loop.

5.4 ON...GOTO INSTRUCTION

Syntax :

ON v GOTO n-j ,0 3 ,0 3

where n-j, n2 / 03 designate line numbers of instructions, v is
a numeric index variable.

The execution of this instruction proceeds as follows:

0 If v has a negative value, the instruction a line
n-j is executed.

0 If v is positive, the instruction at 03 is executed.

For example, in the program at the beginning of the chapter,
we can replace instructions 130 and 140 by one instruction;

120 A S K= 1: "VALUE" = V
130 ON V GOTO 150, 200, 170
150 LET N = N + V

5-2

5.5 IF...GOTO INSTRUCTION

The If instruction permits a conditional branch. The syntax
i s :

IF v<| operator Vj GOTO n

inhere v-j and v^ are variables (and/or constants) of the same
type,, n is a line number to be executed if the condition is
true, and the operator is a relational operator. We say that
v<j operator Vj expresses a condition. If that condition is
true, there is a branch to instruction.; if the condition is
not true, the next executable instruction is sequence is
executed.

Example; IF Z = 5.2 GOTO 151

If the value of Z is equal to 5.2, the instruction at line
151 is executed, If the value of Z is not equal to 5.2, the
next instruction in sequence is executed.

L i I F . ..THEN...ELSE INSTRUCTION

The compound IF instruction permits alternative branch
poi nt s .

IF v-j operator V2 THEN n-j ELSE n2

where v-j and V2 are variables (and/or constants) of the same
type, n-j and n2 are line numbers, and the operator is a rela
tional operator. If the condition expressed by "v-j operator
V~" is true, there is a branch to instruction ; if not,
there is a branch to instruction 0 2 »

Example: IF N < 0 THEN 170 ELSE 150

Wet e the following conditions for the use of the compound IF

1 „ The variables v<| and V2 must be of the same type.
They could be:

short variables (1 or 2 bytes)
long variables
character string variables

2. The relational operators used BAL are:

< less than
= equal to (or included in - alphanumeric)
> greater than
>= greater than or equal to
<= less than or equal to
<> different from or not equal to

5“3

A

The signs are found on the keyboard of the CRT ter­
minal. In the case of < = , > = , or <> , you must type
two characters ,

3. When v-j and v^ are numbers, the computer executes a
simple comparison of the values v-j and V£ at the mo­
ment of execution.

4. Comparisons of strings for equality — When two cha­
racter strings are compared for equality, the first
string is considered equal to the second if it is
contained within that second string. A single space
(blank) within a character string is considered sig­
nificant, but multiple spaces are considered the
same as a single space. Leading spaces are ignored,
but trailing spaces are significant.

Examp les :

a. String C1 = "JrfpYESbfpi* -- String to be compared
String C2 = "YESJ^OUIfeWY" -- Reference string

If C1 = C2 THEN n^ ELSE n£ -- For rh* above
strings, this condition is true, so instruc­
tion n-j is executed.

b . For string C1 = "YES", the relation is again
true, C1 is contained in C 2 „

c. For string C1 = "£ÿtWfcf|WYES", the relation is
true. The leading blanks are ignored.

d„ For C1 = "YfeJU, the relation is false (trailing
blanks are significant and are not found in
C2), so the branch to is taken.

e. For C1 * "YESOUI" the relation is false. Note
that C2 includes a blank between YES and OUI.
If C1 were "YES^OUI" or even "YESfeW^OUI", the
relation would be true.

5. String comparison for other than equality -- In com­
paring two character strings, they do not necessarily
have to be of the same length. The computer compares
the strings from left to right, character by charac­
ter. Comparison stops as soon as a decision is poss­
ible or at the end of the shortest string.

The relative value of the characters follows the
ASCII character set:

n i »0 # $ X & 1 () & 4* / - 9 /
0 1 2 3 4 5 6 7 8 9 •

•
■
f < = > ?

9 A B C D E F G H I J K L N 0
P Q R S T U V W X Y Z C / 3 A -

5-4

For example, compare:

C1 = " J 4 F 0 R D & W versus C2 = " FORDJôJrf"

In comparing the first character of C1, which is a
blank, b, and the first character of C2, which is F,
note that the blank is less than F (blank precedes
F in the character set).

Then the following relations are as shown:

I F C1 < C2 ..., or
IF C1 <=C2 ... the result is true; for
IF C1 > C2 ... the result is false.

If C2 were "JrfFORD^", then:

IF C1 < C2 ... the result is false
IF C1 <=C2 ... the result is true
IF C1 <>C2 ... the result is false

Note that we'd get the same results as above for C2 =
"*F0".

Note that the line numbers specified in the IF instruction
must be for some instructions within the same segment and
cannot be for the IF instruction itself.

5 .7 FOR...NEXT INSTRUCTIONS

The FOR...NEXT instructions are used to construct a program
loop to perform a repetitive series of similar calculations.

The general form of these instructions is :

FOR v = v-j TO V2 CSTEP V3]

: I
NEXT v

The key words are FOR, to, STEP, and NEXT

The value v is a numeric variable, the index variable for
the loop. The variable must be the same in both instruction
FOR and NEXT. THis name identity assures the correspondence
between FOR and NEXT of a given loop. This is especially im­
portant when loop are placed within loops. Note that v cannot
be a constant. However, v-j , V2 , and V3 can be numeric varia­
bles or constants. If "STEP V3 " is omitted, the value is as­
sumed for the increment. —

5-5

ï

5.7.1 Simple Loops

There are two types of instructions in Loops:

o The control instructions that define the loops: FOR
and NEXT

o The calculation instructions that are placed between
the instructions FOR and NEXT.

Calculation instructions are those that are executed each
time the program executes the loop. The control instructions
(FOR and NEXT) satisfy the functions of:

0 Initializing the index variable,

0 Increment i ng the index variable,

0 Testing for the end of the loop

5.7.2 Effect of the Instructi on FOR/NEXT

The instructions would be executed in a repetious manner with
the following values of v:

v=v-j at the first execution

v = v j +Vj at the second execution, i.e., step v^ .

v= (v-j +V3) +V3 at third execution and so on until
v takes a value of v2 •

Then there is a normal exit of the loop and the program con­
tinues with the next executable instruction following the
NEXT statement for the loop.

5.7.3 Step of the Loop (STEP)

The step of the loop V3 can be a positive or negative,
allowing v (the index) to take increasing or decreasing
values. If, by programming error, the step were zero, the
program would go into an "infinite loop". The loop would re­
peat itself indefinitely and would need outside intervention
to stop the program. If, by programming error, V3 has a value
contradictory with those of v1 and v2 , the loop is rejected.
For example:

FOR L = 1 TO 5 STEP -2
FOR L = 1 TO -20 STEP 1

5 -6

5.7.4 Index Value v

When a loop is executed, the index v possesses a value during
each execution of the loop. This value is available as a us­
able variable for calculations, either as an ordinary variable
or as a subscript for an array.

When the program exits the loop (normally or abnormally),
the index can still be used in calculations. The value that
it has would be the one at the time of the last pass through
the loop. Note that if a loop is terminated normally, the fi­
nal value of the index variable is always greater than the
value V2 •

5.7.5 Examples

Program loops simplify many operations requiring subscripts
or indices. For example, to set to zero all the elements of a
list of L elements, one could write:

200 FOR L = 1 TO L STEP 1
210 LET A (J) = 0
220 NEXT J

To calculate the sum of the elements of L, one could write:

200 LET S = 0
210 FOR J = 1 TO L STEP 1
220 LET S = S + A (J)
230 NEXT J
240 LET M = S/L

Instruction 240 gives the average of the values of L » Also,
loops often are useful for non-indexed variables. In this
case, the role of the loop is to compute the number of times
the calculations is executed.

5 „7.6 Abnormal Conditions

Normal conditions for using a loop were defined above.
However, one can vary these conditions, varying what can or
cannot be accepted by the system. Abnormal conditions are:

o Abnormal exit provoked by a condition included in
the instructions calculating the loop.

o Re-entering the loop without executing the instruction
FOR: this is prohibited by the system and can cause
unforseen errors of calculation.

The variables v, v-j , v?, vj must be of the same numeric type.
That is, either short (type 1 o r 2) or long numeric
variables.

5-7

5.7.7 Successive Loops

These are separate Loops placed one before the other:

FOR I = ...
a

NEXT I
FOR I = ...

NEXT I

In this case, the first loop will be terminated (normally or
abnormally) before the second is started. It is possible here
to adopt the same name for the index of the two loops, be­
cause there is re-initialization at the beginning of each
loop .

5.7.8 Nested Loops

Loops can be nested to two or more levels. THe BAL system lim
its the number of nested loops to 15. Two loops are said to
be nested if one is executed entirely within the range of the
other .

E x am ple : |->FOR I =
r+FOR J — ...

LNext J

— NEXT I

For each single step of the index variable of the exterior
loop, the interior loop will be executed (completely in the
case of a normal exit; incompletely in the case of an abnor­
mal exit). Observe that the indexes of the nested loops have
diffenent names;

We would use nested loops in manipulating a 2 -dimensional
table.

Example: 100 LET S = 0
110 FOR I = 1 TO N1 STEP 1
120 FOR J = 1 TO N2 STEP 1
130 LET S = S + A (I,J)
140 NEXT J
150 NEXT I

This calculates the sum of the values of a table with two
dimensions .

5-8

The following diagrams summarize the possible cases of loops
that are permitted or forbidden. The case of overlapping
loops is logically forbidden because that demands that the
computer execute the NEXT 1, continuing the J loop and simul­
taneously re-starting the I loop.

>FOR I . . . — >F0R I... j— -»•FOR I...
L n e x t i FOR J . . . — ;---- »FOR J...

NEXT J <— -NEXT I
r*F0R I — NEXT I -------NEXT J
L n e x t i

All per mi tted ___________ ____ _____Forbi dden

Nesting with an abnormal exit of the loop by testing is per­
mitted wuth the condition that the return is placed outside
the exited loop, for example:

100r*F0R I

200

300

400

]— >F0R J

r-*F0R K

11Ig Ôt Ô *700— I Permi tted

500
600
700
800

L. NEXT K
INEXT J
......«-----

L n e x t i

As opposed to:

100 r*F0R I

200
300

400
500

Forbi dden

600 S— NEXT I

which is forbidden. The error is a run-time error and would
not be detected as an error during compilation. Unpredictable
results would occur during execution.

5-9

5.8 SUBROUTINES

The concept of sub-programs or subroutines is an important
one in programming. It allows you to write a section of a
program once, and then to invoke it when it is needed, rather
than repeating the coding each time it is used. Programs
which utilize subroutines tend to be easier to read and have
the added advantage of requiring less memory space.

5.8.1 General Structure

A subroutine is a collection of instructions within a BAL
program which generally will be used several times, invoked
from different areas in the main program. Consequently, these
instructions may refer to the same variables and line nymbers
as the main program (the calling program). Note that there
are no local variables within subroutines in BAL. Thus, when
using arrays and indexes with subroutines, you must be care­
ful so that no confusion occurs with indexes and arrays used
in the calling program.

The difference between a main program and a subroutine is the
way in which execution of the BAL instructions is started.
There are two instructions which govern the execution of
sub-routines: 60SUB and RETURN. The 60SUB instruction is co­
ded in a calling program when it is desired to pass control
to a subroutine. The RETURN instruction is coded in a subrou­
tine when control is to be passed back to the program which
called the subroutine.

5.8.2 GOSUB Instruction

Syntax :

GOSUB n

where n is the first line number of the subroutine. This in­
struction calls subroutine n. When the call occurs, the
system performs the following actions:

o It saves the line number of the GOSUB instruction
itself. This is necessary so that the subroutine can
return control to the next instruction in the calling
program.

o It passes control to the subroutine beginning at line
n (within the same segment as the calling until a
RETURN instruction is encountered.

5-10

Examp Le :
100 A = X
110 B = Y
120 GOSUB 500

200 A = 4.1
210 B = A + 0.7
220 GOSUB 500

500 C = A + B
510 D = A * B
520 PRINT=1: "THE ANSWERS ARE",C,D
530 RETURN

In this example, the variables A and B are set by the calling
program, and then the subroutine is called. Lines 500 through
530 are executed once due to the GOSUB instruction on line
120, and a second time due to the GOSUB instruction on line
220. Notice that the subroutine may refer to the same varia­
bles and line numbers as the main program.

5.8.3 (OF...GOSUB Instruction

Synt ax ;

OF v GOSUB n-|, rig, ..., np

v is variable of the short or long type and n-j, ng, ...,
n p are line numbers referencing the beginning lines of the
various subroutines.

When v = 1, the program will branch to the subroutine whose
first line begins on line n1 . When v = 2, the program will
branch to line 0 2 * arid so on. The maximum number of subrouti­
ne references that may occur in an OF ... GOSUB instruction
is 124.

If the value of v is less than 1 or greater than p, the sys­
tem will ignore the subroutine request and transfer to the
next executable instruction following the OF...GOSUB
instruction. No error message will be generated.

The value of v should be an integer. If v is a floating point
variable instead, the system will truncate the value to an
integer and use it as the index. For example:

5-11

LET J = 2.9

... OF J GOSUB 910/ 920/ 930/ 940/ 950

will generate a value of 2 for J and the branch to 920 will
occur .

The characteristics of the OF ... GOSUB instructions thus are
similar to the OF ... GOTO.

5.8.4 RETURN Instruction

within the section of code making up the subroutine/ there
must exist one or more RETURN instruction. The Syntax of the
instruction is:

RETURN

When the RETURN is encountered/ the subroutine initiated by
the GOSUB becomes inactive. Hence/ the instruction sequence
of the subroutine halts. The next instruction to be executed
by the program is the first executable instruction following
the GOSUB request. Thus, there is a branch from the subrout­
ine back to the calling program.

5.8.5 Remarks

1 . The subroutines must be in the same segment as the in­
structions which call them.

2. There could be several RETURN instructions in the same
subroutine that correspond to different points of exit.
For example/ the following subroutine will assign values
to 1/ depending upon the values of S found:

410 IF X >= 1000 GOTO 420
415 I = 1
416 RETURN
420 IF X >= 5000 GOTO 430
425 I = 2
426 RETURN
430 IF X >= 10000 GOTO 440
435 I = 3
536 RETURN
440 I = 4
446 RETURN

5-12

Subroutine results:

X I

X<1000 1
1000<= X<5000 2
5000<= X<100000 3
X >= 10000 4

The subroutine contains four RETURN instructions, but natu­
rally in the execution of the subroutine, only one is execu­
ted depending on the value of X

3. Notice that the RETURN instruction does not always return
to the exact same line of the calling program. It depends
upon which G0SUB instruction called the subroutine,

4. If a RETURN instruction is encountered during program exe­
cution when a subroutine has not been called by a G0SUB
instruction, an error message will be generated.

5.8,6 Nested Subroutines

A subroutine can call another which can call a third
subroutine, etc. In each case the program will correctly save
the return points. BAL allows a maximum of 16 levels of s u b ­
routine nesting.

Important Note

Successive or nested subroutines must be in the same SEGMENT
as the G0SUB instruction which calls them.

1
*

5-13

CHAPTER 6. CONVERSATIONAL DATA ENTRY

6.1 GENERAL

Entering data according to a controlled format is an impor­
tant aspect of all interactive computer systems. BAL uses two
instructions for this purpose: ASK and MASK.

The ASK instruction allows you to display items on the CRT
screen and to enter a new value for a single variable. The
MASK instruction allows you to specify alternative actions to
be taken when invalid data entry is attempted.

6.2 ASK INSTRUCTION

The ASK instruction is very powerful. Like any BASIC input
instruction, it allows you to input a value for a variable.
However, it also gives you the option to: 1) specify branch
conditions if invalid data is entered, 2) specify the format
of and display the contents of one or more variables, 3) con­
trol the CRT display format, positioning the data anywhere on
the screen, and 4) specify the format for the input variable.

Paragraph 6.2.1 describes the simplest form of the ASK
instruction, but this form is seldom used. Paragraph 6.2.2
describes the more general form of the instruction.

6.2,1 Simple ASK instruction

The syntax of the simplest form of the ASK instruction is:

ASK-1 : = V

[___ Name of the variable to receive data input
from the keyboard.

Required equal sign.

Required colon.

_________ CRT logical device number. This can be a
constant or a variable with a value of 1 .

__________ Keyword. Note that the keyword must be writ­
ten ASK= , with no blanks between ASK and the
equal sign.

When this instruction is executed, the computer waits for in­
put from the keyboard. When data is entered, it will be dis­
played on the CRT display starting from the current position

6-1

i

of the cursor, and will be entered into variable V in memory.
The type of data which can be entered is controlled by the
declaration of the variable. (Note that data entry and error
conditions can be affected by the MASK instruction. See 6.3.)
If an error is made while typing, pressing the 3 key deletes
the data already typed and starts the data entry process
over .

6.2.2 ASK Instruction - General Format

The general format for the ASK instruction is:

ASK= dev. nbranchl : ftabl |7<format)1 nvi] = ft
no. L H s t J y Li i s L ___________________JL J,

,Vi] = ptab~]f?format),
listJl
$

i
Name of variable to
receive data input
from keyboard.

Format specification for
input variable.

Screen and cursor control for
input variable.

Display control for one or more va­
riables to be displayed, as:

Tab-list

Format

Vi

Provides screen and
cursor control to posi­
tion display data any­
where on screen.
Format specification
for item(s) to be
di sp layed .
Name(s) of variable(s)
to be displayed.

Listing of one or more branch conditions.
A branch will be made to one of the lines
listed if certain keys are pressed or in­
valid data is entered.

Constant or variable representing CRT logical
device number.

Brackets surround optional fields and the brackets themselves
are not to be entered in the BAL program.

6-2

Device Number

The device number may be an integer constant or a short inte­
ger variable with a value of one, specifying the CRT display
screen.

Branch List

The elements of the branch list are:

C,E=line, 1=li ne, U= li ne, D=li ne, /XX=lineD

The line numbers represent the line numbers of BAL
statements, one of which will be given control when invalid
data is entered or when certain keys are pressed. Several
branch conditions are available, provided they are enabled by
the appropriate MASK instruction. Any, all, or none of these
can be specified in an ASK statement, in any order. The con-
ditions are:

E (Error) — Branch to the specified line if an error
is made, such as incorrect format, non-
numeric input where only numeric
required, etc. (Requires MASK 16.)

The branch conditions below are valid only if you press
the appropriate key prior to entering any data or after
pressing annulation combination CTRL-/C.

I (Interrupt)-- Branch to specified line if ESCAPE key
is pressed. (MASK 128 may not be set.)

U (Up) -- Branch to specified line if Up Arrow is
pressed.

D (Down) — Branch to specified line if Line Feed
(equivalent to Down Arrow) is pressed.

/XX -- Branch to specified line if the key which
generates ASCII code/XX is pressed. The
code can be expressed in hexadecimal or
decimal. (Note that the sign bit is un­
used so /41 is equivalent to /C1 .) For
example, if /41 is specified and the
letter A is pressed, the branch is taken.
This provides literally dozens of bran­
ching possibilities, limited only by the
maximum length of an ASK instruction,
256 characters .

See Appendix A for a list of standard
ASCII codes.

6-3

Note 1: If you have typed input data, then decide to press
a branch key, the branch will not occur. However,
entering the annulation code erases the input field
and restarts the data entry process. The branch
keys are then valid.

Note 2 : Annulation Code is normally parametrized to CTR-L
(pressing C whole holding down CTRL key).

Tab List

This list of optional items describes the information which
can be displayed on the CRT screen before you are able to en­
ter a new value for a variable. Any or all of these items can
be used in an ASK instruction, in any order.

HOME Moves the cursor to the home position
(upper left corner of screen -- first
character of first line).

CLEAR

PAGE

TABV(n)

TAB(n)

BELL

Clears the CRT screen and moves the cur­
sor to the home position.

Same as clear.

Moves the cursor to the beginning of the
line and down n lines, where n is a non-
negative short integer variable or
constant. TABV(O) returns the cursor to
the beginning of the current line. The
TABV function is the equivalent of a
line feed.

Moves the cursor horizontally and posi­
tions the cursor at column n. Note that
this is an absolute positioning, begin­
ning from column 1, no matter where the
cursor is in the line at the moment.

Causes a beeping tone.

Note that these tab items are sent to the CRT in the order ir,
which they appear in the ASK instruction.

Format

The format item preceding a variable controls the display or
entry of that variable. See paragraph 9.4 for a complete des­
cription of formats. If no format is specified, the declara­
tion of the variable (DCL) controls the characters which may
be entered.

6-4

Variables V i a n d V c

- Variable Vi represents one or more variables to be
displayed prior to data entry. This variable can be an
explicit character string. All variables in the list
will be displayed using the last format preceding them
in the list. The occurence of one format item overri­
des any prior format item in the list. If no format
item is given, the variable is displayed free-format.

- Variable V E is the variable which accepts the data to
be entered from the keyboard. Data will be entered
using the format specified for input. If no format is
specified, data entry is governed by the declaration
of the variable in the DCL instruction.

6.2 «3 Examples of ASK Instruction

1 .

2 .

3 .

4 .

100 AS K=1: "ENTER A VALUE" = A

On execution of this instruction, the computer
displays ENTER A VALUE, starting from the current
position of the cursor. It then waits for data in­
put from the keyboard. The data you type is ente­
red into variable A in memory and displayed on the
screen, immediately after VALUE, with no blanks,
as: ENTER A VALUEtO

100 ASK=1: "ENTER A VALUE" = TAB(30>, A

This is similar to the above example. The only
difference is that, after ENTER A VALUE is
displayed, the cursor is tabbed to column 30 of
the current line (counting from the left). The
data you type then appears on the screen starting
at column 30.

ENTER A VALUE

t-wCo l 1

10

Col 30

100 AS K=1: TABC5), "ENTER A VALUE" = TAB(30),A

Note that the only difference between this in­
struction and that of example 2 is that the system
tabs to column 5 before displaying ENTER A VALUE.

99 T = "ENTER A VALUE"
100 ASK=1: T A B (5), T = TAB(30), A

6-5

f

*•

These two instructions perform the identical func-
tion of example 3. Note that a character string
can be specified as a variable, as well as expli­
citly specified.

5 . 99 T = "ENTER A VALUE"
100 ASK = 1 : CLEAR, TABV<3>, TAB (5), T = TAB(30), A

This example is similar to example 4. The diffe-
rences are that the screen is first cleared, then
the cursor is tabbed down 3 lines (vertical tab).
The remainder of the example is identical to exam­
ple 4 .

ENTER A VALUE 10

Col 5

6 . 98 T = "ENTER A VALUE"
99 T1 = "TOTAL"

100 ASK=1: CLEAR, TABV(3>, TAB(5), T = TABC3Q), A
101 ASK=1: TABV<0), TAB<35), T1 = TAB(45), A1

The execution of instruction 100 is identical with
that of example -5. After you enter the data for A,
instruction 101 is executed. TABV<0) returns the
cursor to the beginning of the current line (no
line advance). The cursor is then tabbed to column
35 and TOTAL is displayed. The cursor is then tab­
bed to column 45 for the input of data for A 1 .

t_Col 30

ENTER A VALUE 10
t f

TOTAL
A

12.7

[__Col 5 Col 30__j L-Col 35 L_Col 45

7. 98 1=5
99 J=30

100 ASK=1, E=12 0 0 , D=150 : CLEAR, TAB (I), T = TAB (J), A

When these instructions are executed, the follo­
wing occurs:

a . Variable 1 is set to 5; variable J is set to
30.

b 0 The CRT screen is cleared and the cursor is mo­
ved to the home position.

6-6

I

c. The cursor is tabbed to column 5 (TAB(1)).

d. The va ri ab le, T, is displayed.

e. The cursor is tabbed to column 30 (TAB(J)).

f. At this point, you can press the LINE FEED key
(Down Arrow) to cause a branch to line 150. The
remainder of the ASK instruction will be
ignored. This type of branch would be useful if
the instruction were allowing you to modify the
value of A, and you chose to continue without
changing the current value of A.

g. If LINE FEED was not pressed, the computer
waits for data entry. If an error is made (such
as entering an alphabetic character where a nu­
meric is expected) the system takes the E=line
branch to instruction 1200.

Note that the other branch conditions could al­
so have been used in this example.

These examples illustrate the great flexibility of the ASK
instruction. You can use this instruction to display a
variable, request new data for that same or another variable,
and specify alternate actions in case of an error or the en­
try of a cursor control function. Examples of the ASK in­
struction using format specifications are found in paragraph
6.4a

6.3 MASK INSTRUCTION

The MASK instruction is used to control the entry of informa­
tion using the ASK instruction and to determine the action to
be taken if an error occurs. The syntax is:

MASK n

where n is a short integer variable or constant. The value of
n specifies which combination of 8 options is to be establis­
hed for error handling. Any one or all options can be selec­
ted simultaneously. The options are:

1 Delete all invalid characters typed.

2 Cause the terminal to sound a beeping tone once
for each invalid character.

4 Erase the entire field when any single invalid
character is entered and require all data to be
re-entered.

6-7

8 Do not require the user to enter a carriage re­
turn if the variable has been completly filled.

16 Enable the E=line transfer (as specified in the
ASK instruction) when an invalid character is
entered. Any existing value in the variable is
not changed.

32 Do not modify the value of the variable v if
the first character entered is a carriage
return .

64 Do not display the character(s) entered. This
permits the entry of invisible system
passwords, etc .

128 Inhibit the 1= branch, which is caused by pres­
sing ESCAPE.

Options may be combined by using the sum of individual op­
tions desired. Thus, MASK 21 is equivalent to masks of 16, 4
and 1 .

Once a MASK instruction has been executed, those options spec
ified remain in force as the program is executed until a new
MASK instruction is encountered.

If no MASK instruction is included in a program, MASK 3 is
assumed (MASK 1, Delete invalid character 8 MASK 2, Beep for
each invalid character). You may include multiple MASK in­
structions in your program.

6-4 FORMATS

Each format is composed of a list of field controls, separa­
ted by commas. The entire format must be enclosed in paren­
theses. Each field control is one of the characters listed
below, optionally followed by an integer to indicate the
number of repetitions of that character. A character string
(within quotes) may also be used as a field control, and it
will be displayed in free-format.

Code Explanat ion

U Enter any character (including all punctuation
characters) except cursor control functions. Input
of all characters specified is required; an error
will occur if you do not enter data exactly as the
format specifies.

6-8

w

A

0

Z

M

B

C

+

£

L

y

*

/

"TITLE"

Enter any character except cursor control
functions. Entry of data is optional; input of
exact number of characters is not required.

Alphabetic, A to Z or space (input of all specified
characters is required)

Alphabetic, A to Z or space (input of exact number
of characters specified is not required)

Numeric, 0-9 Input is required, thus non­
significant zeros must be entered if the number to
be input is less than the number of digits
specified.

Numeric, 0-9 (input not required, so non­
significant zeros are not needed).

Alphanumeric (A-Z, 0-9) (input of all specified
characters is required).

Alphanumeric (input of exact number of specified
characters is not required).

You must enter a '+' or before the first signi­
ficant digit.

You must enter a before the first significant
digit, if negative. Entry of a '+' sign is
opt iona l.

Any character string may be entered (length is as
specified by the DCL statement).

Not used for ASK statement (PRINT only).

Imp licit decimal point (computer places decimal
point in input data). Used to convert units in
which input specified. For example, allow input of
percentage as whole numbers, not fractions. See
examples for illustration.

Replaces all non-significant zero in an output with
asterisks.

Explicit decimal point (User must enter decimal
po in t).

Skip one position (space)

Skip one line vertically.

Literal string.

I 6-9

Each field control is matched on a one-foi— one basis with the
variables in an ASK or PRINT statement. If there are more
field controls than variables, the extra controls are not
used. If there are more variables than controls, then the
format is recirculated; that is, the next variable will use
the first field control again. The appearance of a new format
cancels any previous format, even if some field controls were
not used.

6.4.1 Examples

1. 100 ASK=1: "REFERENCE" = (ZZZZZ), R1

The computer requests the user to input R1, the
value of the Reference. Data must be 5 required
digits without a sign.

2. 100 ASK=1: "TICKET OFFICE CODE" = (NNNZZ), C(K)

The computer requests the user to input the
Ticket Office Code, C(K). The code is composed of
at least two required digits (ZZ) and up to three
additional digits (NNN), without a sign.

3. 100 ASK=1: "TOTAL" = (+++++), T

The computer requests the input of the total, T,
which must be entered as a leading + or - sign
followed by 0 to 4 digits.

4. 100 A S K= 1: "VALUE" = (-----), V

The computer requests the input of the value, V,
which must be entered as 0 to 5 digits. For a
positive number, the typing of the + sign is op­
tional. For a negative number, the typing of a
minus sign as the left-most character is re­
quired. If a sign is entered, it counts as one
of the five input digits.

5. 100 A S K= 1: "UNIT PRICE" = (NNNVNN), P

The computer requests the input of the Unit
Price, P, which must be entered as five digits
without a sign or decimal point. The price is ty­
ped in cents, but the computer converts it to
dollars with the implicit point.

6. 100 A S K=1 : "UNIT PRICE" = (NNN.ZZ), P

The computer requests the input of the Unit
Price, P, in the floating point format. You must

type three optional digits representing whole
dollars, then the decimal point, followed by two
required digits.

7. 100 AS K=1: "WEIGHT IN GRAMS" = (NNVNNN.NN), P1

The computer requests the input of the Weight in
Grams, P1, which must be entered in the floating
point format. The number is entered as up to 7
digits, with a required decimal point. Because
the V format is used, the computer will convert
the value of grams to kilograms before internal
usage.

8. 100 A S K= 1: "ARTICLE CODE" = (ZZAAAUZ), C(L,J)

The computer requests the input of a string of 7
required characters: 2 digits, then 3 letters,
then any character, then a digit.

9. 100 ASK=1 : "ARTICLE CODE" = (NNNAAZ), C

The computer requests the input of the Article
Code, C. This code must be entered as 0 to 3
digits, followed by 2 letters (required), then 1
digit. The following entries would be valid for
this format:

XT3
121T3
82TT3

10. 100 ASK = 1 : "CHECK DIGIT FOR", (Z9), S = (Z), C

The computer displays the message CHECK DIGIT FOR
and the value of variable S. The format (Z9) cor»“
trois the display of S. Then the variable C,
which must be a single digit, will be accepted.

Note: In any format specification, several identical field
control elements can be replaced by that element, fol”
lowed by a number to represent the repeat factor. For
example :

NNN.ZZ can be N3.Z2
NNVNNN.NN can be N2VN3.N2

6 — 11

CHAPTER 7 DATA FILES WITHIN THE PROGRAM

7 ,1 INTRODUCTION

Three instructions permit establishing and accessing data
within the program:

o DATA to establish a data set (a set of numeric or
string constants)

o READ=0: to retrieve the data and assign it to a
group of variables.

o RESTORE to be able to reuse the data after the
first usage.

7.2 DATA INSTRUCTION

The elements of the DATA set are placed in the segment by
using one or more consecutive DATA instructions of the form:

DATA c^ , c 2'................ cn

The user enters numeric or string constants separated by com­
mas (no comma before c-j or after cp) . The DATA instructions
must be grouped together in each segment, and must be placed
at the end of the segment. The effect of several DATA in­
structions in the same segment is cumulative. This means that
the values that are included are considered as though they
were in a single DATA statement in the corresponding order.
For example:

200 DATA 1.25, 3., "VALUE"
210 DATA 14, 12
220 DATA "NO"

is equivalent to one DATA instruction:

200 DATA 1.25, 3., "VALUE", 14, 12, "NO"

This permits entering several DATA instructions as a single
line.

The DATA instructions can only be read in the segment where
they have been defined. They are ignored by the other
segments. Each segment can contain DATA instructions.

The constants, C, are written according to the ru les enumer­
ated below. The maximum number of constants in any one segment
is 32,767.

7“1

7.2.1 Decimal Constants

A decimal constant is composed of:

o A sign (required if value negative;
positive) .

o The integer portion of the constant

o The decimal point.

optional if

optional
o The fractional portion of the constant.

Examples: 12 123.5 .145

7.2.2 Character Strings

Character strings consist of some number of alphanumeric ch a-
racters enclosed in quotes.

Examples: " V A L U E R " " W W N O

7_c2 .3 Hexadecimal Constants

A hexadecimal constant consists of the two hex digits prece
ded by a slash, /.

Examples: /FF /4E

Note that the data incorporated in the DATA statement in a
segment can be modified by editing the instructions and re­
compiling the program.

7.3 READ INSTRUCTION

The data in the DATA instruction in any segment is used in
the program by READ instructions in that same segment.

Syntax :

READ=0 : v«,, v2 , ,vn

Where v-j through vp are short numeric variables or simple
characters or indexes, separated by commas.

The 0 indicates that the file is defined in the program. The
READ-0 instruction refers only to DATA files in the same
segment.

*
7-2

!

Upon execution of the READ instruction, each variable in the
instruction is assigned the next DATA value in sequence. The
program checks to be sure that the variable type corresponds
with the data value to be assigned to that variable. That is,
a character string cannot be assigned to a numeric variable,
etc. If this correspondence is not satisfied, an error mess­
age is output and the program aborts.

Example:

200 DATA 12, 14, 1, "NO"
210 DATA 15
215 DATA "VALUE", 17, 3.05
250 ESEG 3

After the execution of instruction 140, the values associated
with variables requested are:

A = 12
B (1) = 14

L = 1
C(1) = "NO"

L2 = 15
C1 = "VALUE"

and after the execution of instruction 150, the variables as-
sociated with D and H are:

Although there may be more than one DATA statement in a
given segment, the net effect is the same as if all
pieces of data were in the same DATA statement.

The DATA statements must immediately precede the ESE6
statement with no other executable instructions
intervening.

Several READ=0: statements may read successive pieces
of data from the same or multiple DATA lines.

After the DATA is all exhausted, it is not automatic­
ally restored upon return to the beginning of the file.
A RESTORE instruction is needed.

40 READ=0: A, B(1), L, C(L>, L2, C1

D = 17
H = 3.05

Summa rizing

7-3 r

?
i

7.4 RESTORE INSTRUCTION

The effect of reading data from a DATA statement is as if a
pointer was being moved to the next available piece of data
after each READ of a variable. Once a piece of data has been
READ, it cannot be used again (the pointer has passed it by)
- unless the RESTORE command is used to re-activate all the
data of the segment. The effect of RESTORE is to move the
pointer back to the first constant in the data list.

The syntax of the instruction is:

RESTORE

If (by error) a segment does not contain a DATA statement and
a RESTORE instruction is issued, it is ignored and execution
of the program continues at the next statement.

*
7-4

CHAPTER 8. PRINT INSTRUCTION

8.1 GENERAL

BAL uses the PRINT instruction to provide display information
and program results on the printer or the CRT screen. There
are two forms of this instruction: The simple form, and a
more general form complete with formatting specifications.

8.2 SIMPLE PRINT INSTRUCTION

The format is:

PRINT3 log . :
no

4

Ctab-li st,3V
_______ ________ /

repeatable^

L Name of va ri ab le to be output

Tab list similar to ASK
instruction.

HOME - Do not use with printer,
CLEAR Advance paper to top
PAGE of next page.
TABV(n) - Advance printer

carri age n li nes .
TAB(n) - Positions print head

at column n.

Constant or short integer variable
representing logical device number,
where :

1 = CRT display
2 = Printer

When this instruction is executed, the computer performs the
specified tab functions, then outputs to the specified logi­
cal device in free-format.

Examples:

1. 100 PRINT=2: A,B

This instruction prints the values of A and B on
the printer.

8-1

2 200 PRINT=2 : TAB(20), V 1 , TAB(50>, V2

The system will first move the printing head to the
20th position; then print the value of variable VI.
The printing head will then move to position 50 and
print variable V 2 . The horizontal locations 20 and
50 are counted from the first column position (of
the screen or the printer)--just as in the ASK
statement.

3. 300 PRINT=1: CLEAR, TAB(20>, H7, TABV(3), TAB(20),Y

The CRT screen will be erased; the cursor will move
to column 20 and display H7. Then three lines will
be skipped, the cursor will move to column 20, and
Y will be di splayed„

8.3 PRINT INSTRUCTION - GENERAL FORM

Syntax :

PRINT® log .C,format line n o .3 jCTab H s t ,]C(Format),]CVi3,
repeatable

Note that the difference from the simpler form of PRINT is
the use of formatting to establish a specific format for out-
put of data, rather than allowing data output in free format.
SAL offers comprehensive format control, as explained below.

8.4 FORMAT CONTROL

A format is composed of elements which control: spacing and
tabbing, vertical spacing, and the printing of numeric and
string variables and string literals.

Three types of format control can be used in printing, as
described in following paragraphs:

8 « 4.1 Imbedded Format Control

The simplest method of format control is to imbed the format
control characters in the list of variables to be printed:

PRINT=n:CTab li st,3(format), Vi

For example: PRINT=2: TABV(1), TAB(5), (ZZ>, V(J>

8-2

In this example TABV and TAB control spacing, (ZZ) specifies
the format of the output variable as two required numeric
digits. Note that only two digits may be printed, no matter
what the actual size of V(J) may be. (See 8.4.4 for a com­
plete description of format control characters.)

8.4.2 Fixed Format (FMT) Instruction

The FMT instruction is used to specify a format external to
the Print instruction. This format control statement can then
be used to control the output format of more thn one Print
instruction.

The general format is: PRINT=n, format line no: Vl,...Vn
Line No. FMT(item, item,,item)

Note that all items in the FMT instruction must be separated
by commas and the entire list of items must be in
parentheses.

Example: PRINT=2, 90: V1 , V(J)
®

90 FMT(/1 , X 5 , ZZ, X5, N.ZZ)

In this example, the printer will skip one line (/1), space 5
positions (X5), print variable V1 in the ZZ format (two di­
gits must be printed, even if zeros), space 5, print variable
y (J) as one optional digit, decimal point, two required
digits. (See 11.4.4 for complete details on format control
characters.)

As previously mentioned, this FMT statement can be used by
several Print instructions. As the line is printed, each item
to be printed is matched with the next format control charac­
ter in the list and printed in the specified format. Note
that an error will occur if you try to print a string with a
variable format control, or vice versa.

If more format control items occur in the list than variables
to be printed, those format controls left over are ignored.
If there are more variables than format controls, the list of
format controls is re-circulated until all variables are
printed.

The FMT statement is fixed and cannot be varied during the
execution of a program. Note that FMT is a non-executable
statement and provision must be made to branch around it. If
a FMT is sequentially encountered during program execution,
there will be a run-time error. One simple solution is to
group all of the FMT statements together and place them below
the last STOP instruction of a segment.

8-3

8.4.3 Variable Format (FM) Instruction

This instruction has a similar effect to the FMT instruction,
but has an important difference. It is an executable instruc-
tion and can be changed during program execution. Thus, you
can change the format used by a Print instruction as the
program is executed.

The general form of this statement is:

S= FM(item, item,,item)

then,

PRINT = n : ((S)), Vl,...Vn

Note that the item list in the FM statement has the same form
as the item list in the FMT statement. It must consist of
blanks, control items or constants. Variables are not allowed.
In this case, the FM statement is assigned to a variable (string
type only). This variable is then specified in the Print in-
struction within two sets of parentheses (()).

Using the FM statement in our previous example, the printout
would be identical:

S=FM(/1, X5, ZZ, X5, N.ZZ)
PRIN T= 2: ((S)), V1, V(J)

Note, however^ that you are not restricted to one FM format
per instruction. This provides a great deal of power.

Examp le :

S=FM(/1, X5, "ACCOUNT NUMBER:", X5, ZZZZZ)
A= FM(/1 , X5, "SUBTOTAL: $", X11 , ZZZZZ)
PRINT=2: ((S)), V 1 , ((A)), V(J)

This example prints the value of two variables, each control­
led by a variable format. One of the variable formats could
be changed, and the instruction used again, this time to
print a total.

8 .4 .4 Format Control Characters

The format control characters, their effect on your program,
and examples are presented below. Note that these formats
control output (printing) on both the printer and CRT
display, as selected by the Print instruction.

The format control characters are the same for ASK and PRINT
instructions, but their effects are different as you will see
in the following descriptions.

8-4

Format Control Characters - Numeric

Example

Char ._____________Description______________ Format Data Printout

N

Z

V

+

Print a number 0-9. Leading
zeros are not printed, either
before or after a decimal
point.

Print a number, 0-9. Leading
zeros will be printed, either
before or after a decimal
point.

External decimal point, which
will be printed in the speci­
fied output data.

Implied decimal point. Speci­
fies an internal representa­
tion of a decimal point,
which is considered in the
calculations. This will not
print a decimal point Tn tïïe
output data if none is speci­
fied in the format. But it
will force the specified deci­
mal point to the correct posi­
tion in the data.

Requires the printing of the
appropriate sign, plus or
minus. If this control is
represented as a single
character (+NNNN) the sign
will always be printed in the
same position, to the left of
the number. If the sign is
represented as two or more
characters (+++NN), the sign
will float and be printed im­
mediately to the left of the
most significant digit.

Similar to the above, but re­
quires the printing only of
the minus sign. Plus is assu­
med by the absence of a sign
in the printed output.

(NNNNN)
or

(N5)

123 #1*123

(ZZZZZ)
or

<Z5)

123 00123

(NNN.NN) 123 ##1 ,23

(ZZZZ.Z) 12 .3 0012 .3

(ZVZZ .ZZ) 3.125 0312 .50

(+NNNNN) 1234 + 1234

(+NNNNNÎ 12 + 12

(++++++) 1234 + 1234

(++++++) -12 «•12

(+NNNNN) 123456 •s-23456

Note that you can print only
the number of digits, plus
sign spec i f i ed in the format .
Be careful specifying formats
to avoid truncating your
output !

(-NNNNN) -123 “ 123

(— — NN) -123 -123

(- - - - -) +123 123

I 8-5

L Left justification of the
printed data. All spaces in

(L--ZZZ) + 12 012*i|rf

front of the number are sup­
pressed, and an equal number

(L- -ZZZ) -12 012#~

of spaces are generated fol­
lowing the data. The sign is
positioned to the right of
the number.

* Replaces all non-significant (*ZZZZZ) 12 ****12
zeros in an output with
asteri sks .

IMPORTANT NO TE: When using a format, you can output only the
number of digits specified in that format; as opposed to free
format where all digits in the number print wherever the sys-
tern places them on a line. If your format specifies fewer dig­
its than actually exist, the output will be truncated and
only the least significant digits will be printed. If a sign
is specified in a format, it requires one of the allowable
digit positions, when printed.

Examples: Actual value in memory =-123456.789 (will b® in
floating point format)

Format Actual Printout

(N6.N3) 123456.789
(N9) 123456789
<N5> 56789
C-N9) -12345678
(-N10) -123456789

Format Control Characters - Strings

Example__ ___

Char . ___________Description______________Format String Printout

U Print any printable character. (UUUUUU) FORMAS FORMAS
Unprintable characters, such or
as cursor control characters, CU6)
will be mapped to blanks.

NOTE the following special
C 3 S 6 S a
1. String shorter than format (UUUUUU) FOR FOR M V

specified--Avai lable cha- or
racters printed left justi- (U6)
fied, remainder of format
field filled with blanks.
Note that blanks are not
truncated, they take up
space on the listing or
screen

f
8-6

-

1

2. String longer than format (UUU) FORMAT FOR
specified --Characters
printed from beginning of
string to number of posi­
tions specified. «Remaining
characters are lost.

N O T E : W, B, C, A, and 0 for­
mats may be used. They have
exactly the same effect as U.
Note that this is not true
when they are used in the ASK
instruction.

E Prints a character string of (E) Any St r . Any St r.
any length, where length of
the specified string is as
defined in its DCL instruc­
tion .

Miscellaneous Format Control Characters

Xn Advances print head (or cur­
sor) n spaces from its pre­
sent position, where n is a
decimal constant.

(X1Q) Moves print head
10 spaces to the
right.

/ c Advances the form (or dis- (/2) Advances two lines
play cursor) c lines, where
c is a decimal constant.

"TEXT" A string literal to be prin- ("HELLO") HELLO
ted. Can be any printable
ASCII characters and must be
enclosed in quotation marks
within the format.

8j.4.5 Examples Illustrating the Output Format Elements For
Numeric Variables

! . (ZZZZZ) This format involves printing with all posi­
tions displayed; including non-significant
zeros. The format assumes that the number is
positive. A floating point number is trunca­
ted and only th® integer is printed.

Examples :

23 is printed as 00023
246.60 is printed as 00246

8-7

(NNNNN)

(+ZZZZ)

(-ZZZZ)

(+NNNN)

(-NNNN)

This format involves printing only the ' ■re­
ger portion of the variable. Non-significant
zeros are not printed. This format assumes
that the number is positive. As in the above
example, a floating point number is
t runcated.

Examp le :

23 is printed as 23 - i.e., right-
justified in the field.

Specifies printing only the integer portion
of the variable, preceded by an obligatory
plus <+) or minus (-) sign. Non-significant
zeros are printed.

Examp les :

-21.72 is printed as -0021
21 is printed as +0021

Specifies printing only the integer portion
of the variable preceded by a minus (-) sign,
if the number is negative. Non-significant
zeros are printed.

Examples :

17 is printed as ¢0017
-34 is printed as -0034
0 is printed as ¢0000

Specifies printing only the integer portion
of the variable preceded by a plus sign or
minus sign. The non-significant zeros are not
printed; they are replaced by spaces.

Examples :

17 is printed as +PP17
-3.8 is printed as -*$fef3
0 is printed as +tfM0O

Specifies the printing of only the integer
portion of the variable preceded by a minus
sign (if negative). Non-significant zeros are
not printed.

Examples :

17 is printed as ¢¢¢17
-3.8 is printed as -$$$3
0 is printed as ¢¢¢¢0

7. (+++++) Specifies the printing of only the integer
portion of the variable with the number pre­
ceded by a plus or minus sign.

Examples:

17 is printed as ## + 17
-64 is printed as ##-64
0 is printed as #####

8. (-----) Specifies the printing of only the integer
portion of the variable, with the number fol­
lowing the minus sign (if negative).

Examples :

13 is printed as ###13
-6 is printed as ###-6
0 is printed as #####

9. (+++NNNN) Specifies the printing of only the integer
portion of the variable with the number fol­
lowing the plus or minus sign.

E xamp les :

14 is printed as ##+##14
23635 is printed as #+23635

10. (+++ZZZZ) Examples:

14 is printed as ##+0014
0 is printed as ##+0000

11. (---ZZ) Examples:

3 is printed as ###03
-1 is printed as ##-01
0 is printed as ###00

12. (NNNVNN) The V aligns with the decimal point in the
internal representation. This format does not
print a decimal point.

Examples :

, 3.18 is printed as ##318
, '25 .648 is printed as #2564
0.0 is printed as ####

t 8-9

13 .

14 .

15 .

8 .4

1 »

2 o

(NNNV.NN) The V aligns with the decimal point in the
internal representation and the . in the ex­
ternal representation.

Examples:

3.18 is printed as J4J43.18
25 .648 is printed as j*25.64
0.0 is printed as J*)*#)*#

(NNVNNN.NN) In this format, the V of the internal repre­
sentation is not in the same position as the
. of the external representation. This type
of format is used in the conversion of unit.
Suppose that the calculations are done in
kilograms; this format is then used to print
the result in grams.

Example:

The value 3.125 kg is printed as b3125 .00
in the printout.

When the V is absent, it is assumed at
the same position as the decimal point.

<L-— -ZZZ) The L permits a left justification of the
information. The value 12 is given as 01
in the field. The value -12 would be given as
012)4}*-.

.6 Examples Illustrating Formats for Character String Va ri a b les

CUUU) Specifies a 3 character string,,

Examples :

String "ABCDE" is printed as ABC
String "A" is printed as Atfif.

(E) Specifies the printing of all the characters
of the string. The computer left justifies
them on output. The string length is taken
from the declaration.

Examp les :

String "ABCDE" is printed as A8CDE.
String "A" is printed as A.

8-10

CHAPTER 9. INPUT/OUTPUT PORT INSTRUCTIONS

9 .1 GENERAL

Input/Output Port instructions allow you to transfer a byte
of data to/from the CPU input/output ports.

9.2 INPUT PORT

The format of this instruction is:

INP N1,N2

This instruction transfers the one byte contents of input
port N2 into variable N 1 .

9.3 OUTPUT PORT

The format of this instruction is:

OUT N1,N2

This instruction transfers the one byte contents of variable
N1 to output port N 2 .

Ml and N2 are short variables.

Note: Refer to your Hardware System Reference Manual for a
discussion of I/O ports utilized, and applicable bit
assignments .

9-1

1

CHAPTER 10 SEGMENTATION

10.1 GENERAL

ALL BAL. programs can be written in segments, where each sea
ment consists of an independent program which works with va­
riables that are common to aLL segments. Advantages of this
scheme are:

1. IndividuaL segments can be translated and debugged
without the need to translate the entire program«
This saves time for Large programs.

2. Large programs that cannot be contained in main me­
mory at one time can be segmented. The BAL operating
system will load all segments into memory at once if
space allows. If not, BAL will automatically swap
segments from disk to memory as the program is
executed. This is done as the LDGO.SEG instruction
is used and is transparent to the user.

10.2 SEGMENT DECLARATION INSTRUCTIONS

A segment begins with the instruction:

SEGMENT cC/NOLISTD

where c is a decimal constant between 0 and 15.

A segment ends with the instruction:

ESEG c

where c has the same value as its associated SEGMENT
statement .

Example:

1 PROGRAM "TEST”
2 FIE L D=M

10 DCL
100 SEGMENT 0
... SEGMENT 0

900 ESEG 0

0

1 0 -1

«

600 SEGMENT 2

1200 ESEG 2

100 SEGMENT 5

^•SEGMENT 2

SEGMENT 5

1100 ESEG 5
1999 END

This program is composed of 3 segments, numbered 0, 2, and 5.

NOLIST (optional) indicates that the current segment is not
to be included on a program listing. However, if an error is
detected in the segment, a listing of the segment begins with
the instruction in error.

Note that:

o Segment 0 is the principal segment and is resident
in memory. It must always be present.

o Segments need not appear in the program in sequen­
tial order (with the exception of Segment 0).

o A maximum of 16 segments may be in a program.

o The line numbering of the BAL instructions within a
segment must always be sequentially increasing.
However, each segment has separate line numbering.

o The last instruction of any program is always END,
whether there is one or many segments. The line nu#i"
ber (if used) of the END statement must be higher
than the immediately preceding instruction (as is
necessary for the instruction that terminates a
segment: ESEG) .

10,,3 CALLING SEGMENTS

Each segment can call one or several segments with the
instruction:

LDG0.SEG v

whose role is to load segment v into main memory and begin
execution with the first instruction of segment v. The varia
b le v is a short integer variable or a constant.

10-2

Examp le :

100 SEGMENT 0

500 LOGO SEG 3

600 ESEG 0

100 SEGMENT 3

900 ESEG 3

Suppose that segment 0 is active. At the execution of i
struction 500, the computer will transfer control to se
3 , loading it from disk into central memory if it is no
ready there. Control is then passed to the first instru
of segment 3.

1 0 .4 RETURN FROM A SEGMENT

Mhen a computer encounters the instruction:

RET.SEG

it passes control to the instruction following the last
ment call (LDG0.SEG). The segment left by the return is
1 1 vat ed ,

10 o4 .1 Example 1

r~

100 SEGMENT 0

200
210

LDG0 .SEG 1

500
600
610

ESEG 0
SEGMENT 1 ,

700
710

LDGO SEG 2

800 RET.SEG
900 ESEG 1

1000 SEGMENT 2
1010

"1100 RET.SEG

2500 ESEG 2
9999 END /

SEGMENT 0

SEGMENT 1

SEGMENT 2

10-3

fi­
gment
t a l-
ct i on

seg-
de a c -

At instruction 200 of segment 0, segment 1 is Loaded (if not
already in memory) and control transferred to instruction 610
of this segment. At instruction 700 of segment 1, LDG0.SEG 2
ends execution of segment 1, loads segment 2 (if necessary)
and passes control to. instruction 1010 of segment 2.

In segment 2 , instruction 1100, a RET.SEG, is encountered.
Segment 2 is ended, segment 1 is reloaded if not in memory,
and control is returned to the instruction following the last
segment call, in this case instruction 710 of. segment 1.

The return from segment 1 to segment 0 is a similar operation.
Note that a STOP statement could be used in any of these seg­
ments to halt the program.

Note:

o A segment attempting to call itself results in an
execution time diagnostic error.

o The number of segments that can be used in central
memory depends on main memory capacity and the length
of the segments.

o The variables are common to all the segments. Local
variables do not exist.

You can compare the function of calling a segment to that of
calling a subroutine.

f 10-4

CHAPTER 11. MISCELLANEOUS INSTRUCTIONS

There are three instructions that can be used to halt a
program. Two cause a temporary halt; one causes a return to
the operating system when encountered.

11 „1 WAIT INSTRUCTION

Syntax :

WAIT v

where v is a short integer variable or constant. It causes a
halt of v seconds, after which the program will continue
execution. Any characters typed during this waiting period
are ignored, with a beeping tone sounded.

F v amp le ;

258 WAIT 15

will cause a halt of 15 seconds.

11 .2 PAUSE INSTRUCTION

Syntax :

PAUSE v

where v may be any variable or literal. The variable v will
be displayed on the screen and the system will halt. To con
t inue execution, enter a carriage return (RETURN).

Exa*p less

300 PAUSE 33 will display a 33 on the screen.

500 PAUSE "HALT 5" will display "HALT 5" on the
screen.

600 PAUSE I will display the current value of X.

11«3 STOP INSTRUCTION

Synt a_x :

STOP

11-1

4

The program will halt and return control to the operating
system.

11.4 OP ADR

Syntax :

OP ADR

If any character was typed on the keyboard, the program bran
ches to address ADR; otherwise, sequential program execution
continues. The typed character is not displayed, and of it"
self has no effect on the program.

1
i

11-2

r

CHAPTER 12 FUNCTIONS

12 »1 GENERAL

The BAL language uses internal functions that are classed in
the following categories:

1. Mathematical functions

2. String functions

3. Miscellaneous functions

The functions are used with the assignment instruction.

Example:

100 LET X = ABS(B) or 100 X = ABS(B)

12.2 MATHEMATICAL FUNCTIONS

12.2.1 Function ABS(v)

This function calculates the absolute value of a number.

Examples :
#

ABS (14 .3) gives 14.3
ABS (-14 .3) gives 14.3

12.2.2 Function INT(v)

This function provides the largest integer less than or equal
to v.

Examp les :

INTC-3.9) i s gi ven as -4
I NT (-3 .1) i s gi ven as -4
INT(-3) i s gi ven as -3
I N T (0) i s gi ven as 0
I N T (3 .9) i s gi ven as 3

12.2.3 Function M0D(B,C)

This function computes the absolute value of the remainder of
13 divided by C. B and C must be variables of the same type.

Example

A = MOD(B,C>
A = M O D (7,3)
A = 1

Note: A and B must be different variables

12.2.4 Function ROliN(vl,N)

This function rounds off the number in v-j to the number of
decimal places indicated by N.

Example:

X = R0UN(Y,2>

If Y = 1289.864, X takes the value 1289.86
If Y = 1289.8681, X takes the value 1289.87
If Y =-1289.8681, X takes the value -1289.87

v ̂ must be a long variable.
N must be a short integer variable.

12.2.5 Functions FIX(x) and FP(x)

The two functions permit the decomposition of a number into
its integer part and its fractional part.

Examp le :

A= FIX(3.9) is given as 3
B = FP<3.9) is given as 0.9

The variable v must be a long variable.

1 2 . 2 .6 Function SGN(v)

This function gives the sign of v.

Example:

Y = S 6 N (x)

The value of Y is 1 if X > 0
The value of Y is 0 if X = 0
The value of Y is -1 if X < 0

12-2

12.2.7 Function CONV(v)

This function permits converting a short variable to a long
variable; a long variable to a short variable (with
truncation); or a string to a numeric (and vice versa).

Note: When a numeric is converted to a string, the resulting
string is right justified. Because all strings are nor­
mally left justified, you may wish to use the SHL func­
tion to left justify the string.

A similar situation occurs when converting a string to
a numeric. The resulting number will be left justified
in its field, where the normal number is right
justified. The SHR function will right justify the
numeric.

Example:

Numeric F = 12345
String S = ABCJrtflflW
After S= CONV (F) , S = I W 1 2 3 4 5
After S=SHL(S), S = 1 2 3 4 5 J W

12 .ZSTRING FUNCTIONS

12.3.1 Function LE FT(A,N)

This function yields a sub-string containing the first N cha­
racters of A.

Example:

X = "ABCDEF"
Y = LE FT(X,3)

Y will be "ABC"
N must be a short integer variable.

12 .3.2 Function RIGHT (A,N)

This function yields a sub-string containing the last N cha­
racters of A.

Examp le :

N = 3
X = "ABCDEF"
Y = RIGHT(X,N)

Y will be "DEF"
Si must be a short variable

12-3

12*3.3 Function LEN(A)

This function returns the length of string A as declared in a
DCL statement.

If A was declared as DCL A$=20, then for:

N = LEN(A)

N will be 20.
N must be a short variable.

12.3.4 Function INDEX(A,B)

This function returns the position of the first character of
string B in string A.

Note: When a numeric is converted to a string, the resulting
string is right justified. Because all normal strings
are left justified, you may wish to use the SHL f u n c ­
tion to left justify A similar.

Example:

A = "ABCDEF"
B = "CD"
N = INDEX(A,B)

N will be 3
N must be a short variable.

1 2 .3.5 Function INSTRCA,B,N)

This function returns 0 or 1, depending upon whether or not
string B exists in string A, starting front the Nth character
of A.

Examp le :

A = "ABCDEF"
8 = "CDE"
N = INSTR(A,B,3)

N will be 1
N must be a short variable.

12-4

12.3.6 Function SUBSTR(A,N1,N2)

This function returns a sub-string of Length N2 extracted
from A, starting from the N1th character.

Example:

A = "ABC DE F"
B = SUBSTR(A,3,2>

B will be "CD"
N1 and N2 must be short variables.

12.3.7 Function INCLUD(N,B,CN13)

Replaces characters in specified string, starting with the
Nth character of that string. N1 characters are replaced by
the first N1 characters of string B. If N1 is not specified,
the entire string B is used.

Examp le :

A = "1234567"
B = "ABC"
A = INCLUD(3,B,2)

A will be: 12AB567
Variable N must be a short variable.

12.3.8 Function VAL(A,N)

This function returns a number containing the BCD numeric va
lue of the string expressed using ASCII code. The conversion
starts from the Nth character and stops at the first charac­
ter that is not a number or a decimal point.

Examp le :

A = "ABC12.3DEF"
V = V A L(A,4)

V will be equal to 12.3
Variable N must be a short variable. The resul­
ting variable (here V) must be a long variable.

12-5

12.3.9 Function STRN(X)

This function returns a string of characters containing the
value of X expressed in ASCII code. The characters in the new
string are left justified. A plus sign will be omitted/, a mi™
nus sign will be included.

Example:

X = 123.45
A = STRN(X)

Variable A will be " 1 2 3 . 4 5 M W
X must be a long variable.

12.3.10 Function TRAN(A,B,N,C)

This function translates the characters of string C , using
string A as the identifier characters and string B as substi­
tution characters. The characters of string B map one to one
for string A for a length N of string B.

Example:

A = "ABCDEF"
B = "1234"
C = "ABC DE FAGBHC"
D = TRAN(A,B,3,C)

String D will be "123 DEFI G2H3" .
Variable N must be declared as a short variable.

12.3.11 Function INV(A)

This function returns the inverted form of the specified
string, A. Note that A and B must be different variables.

Example:

A = "12345"
B = INV(A)

B would then be "54321".

12.3.12 Function GE NER(N,A)

This function generates the first character of string A
exactly N times.

1 2 - 6

Example:

A = "DEF"
B = "BBBB"
B = G E NE R(3,A)

B will be "DDDB"
N must be a short variable.

12.3.13 Function SPACE(B)

This function generates a string of B blanks.

Example:

A = ABCDEF
A = S PA CE(6)
A = M W W K

12.3.14 Function DATE(N)

This function initializes a character string with the date or
time according to the value of N, where N is:

1 year
2 month
3 day of the month
4 day of the year
5 hour
6 minute
7 second
8 tenth of a second

Examples :

A = DATE(1) A = 1980
A = DA TE(2) A = 2 M W (February)

12.3.15 Function SHR(A)

This function right shifts character string A until the right­
most character is non-blank.

Example:

A='WCDtfE* or
B = SHR < A)
B now is " M W C D ^ E "

m i d c m

«• l cx u z n
I

12-7

12.3.16 Function SHL(A)

This function Left shifts the character string A until the
leftmost character is non-blank.

Example:

Taking the original value of A from the above
example, B=SHL(A) would give:

B= CDbEbbb or | Cf Df | E| J J

12.4 MISCELLANEOUS FUNCTIONS

12 »4 .1_ Function PEEK

PEEK is used to return the contents of any memory location.

I=PEEK(M) Where I is type 1 short variable Cone byte)
M is type 2 short variable.

When this instruction is executed, I will contain the con­
tents in decimal of the memory location specified by M.

Example:

I = P E E K (/E8C0)

Î will contain the one byte contents of memory
location/EBCO, expressed as a decimal single byte varia­
ble (-128 to + 1 2 7) .

12.4.2 Function POKE

The format of this function is:

M=POKE(I) Where: M is a type 2 short variable.
I is a type 1 short variable Cone
byte, decimal), or a one byte
hexadecimal constant.

This instruction loads the byte specified by I into the «sera
ory address specified by M (in decimal or hex). This can be
useful in a program where you wish to modify certain opera­
ting system parameters.

12 -8
$

12.A.3 Function VPTR(5) - Variable Pointer

This function is used to determine the memory address of a
variable. The format is:

M=VPTR(S)

This instruction will return the memory address (in decimal)
of the variable S. M must be a short numeric variable. S can
be any variable name.

12-9

CHAPTER 13 DISK ACCESS FEATURES

13.1 GENERAL

This chapter contains descriptions of a number of instruc­
tions which provide access to various disk features. These
instructions are often used with the File Management System
described in Chapters 14 and 15, but are described in this
separate chapter because they are available in BAL whether or
not your PROLOGUE system has been configured with the File
Management System options.

These instructions are:

ASSIGN - Assigns a logical number to a device and es­
tablishes various I/O characteristics.

10 - Used for direct I/O, on a sector-addressed
basis, with a disk.

LOAD - Used to load an object program (usually a
subroutine) into memory under BAL control.

CALL - Calls a program loaded by LOAD.

CHAIN - Used by one BAL program to load and transfer
control to another executable BAL program.

13.2. ASSIGN

This instruction must be executed in order to access a sup­
port device for I/O. Note that ASSIGN has options in addi­
tion to those discussed here, which are used with File Man­
agement System instructions. This is discussed in paragaph
14 .2 .1.

Syntax :

ASSIGN = N.LOG, Device C,Options]C: ERROR]

Where:

N.LOG - Logical number from 1 to 15. (See Chapter 14
for a detailed definition of logical numbers.)

Device - Must be a string variable or literal, expres­
sing the unique name of a support device,
such as FL0.

13-1

Opt ions Code Definition Default

WR Open for Writing Read only

:ERR0R - Optional error branch parameter, consisting
of two parts, :ADDR, E.
- ADDR is any program line number, which

will be branched to if a non-zero status/
error code is returned.

- E is the variable in which the code will
be returned.

(See Chapter 14 for a detailed discussion
of the status/error code.)

This instruction performs the following functions:

1 . If this instruction references a logical number cur­
rently assigned to a file, that file is closed.

2. The syntax of the support device name is analyzed,
and an error message is returned if incorrect.

3. A descriptor is prepared for the file routines, con­
taining the designation of the specified support de­
vice and the WR option, if chosen.

This instruction assigns a logical number to the specified
device, allowing you to read and write on the device using
the 10 instruction. Note that file management instructions,
as described in Chapter 15, and the 10 instruction are mu­
tually exclusive. The 10 instruction requires the programmer
to manage file allocation, where the file management system
handles that automatically.

13.3 10 Instruction — Direct Access To A Support Device

Sometimes it may be useful to short-circuit the file system
organization and put the files at the disposal of the user,
or the file system may not be configured into your version of
PROLOGUE. In this case disk I/O is handled using the 10
instructi o n .

10 = N .L0G,Function C,Sector]C: ERROR},Variab le

Where:

N.LOG - Logical number from 1 to 15. (Must be one or
two byte short numeric variable.)

Function - Must be a one or two byte short numeric
variable specifying one of the functions
provided by the PROLOGUE disk driver
routine, as follows:

40H - Read
8 0 H - Write
82H - Write and initialize (premark)

Sector - Starting sector address for the reading or
writing of data. If omitted, default is
sector 0. This can be a long or short nu­
meric variable.

: ERROR - Optional error branch parameter, consisting
of two parts, :ADDR, E.
- AODR is any program line number, which

will be branched to if a non-zero status/-
error code is returned.

- E is the variable in which the code will
be returned.

Variable - Any variable containing the address of the
data buffer where output data is to be found

• or input data is to be placed.

This instruction is thus used to write a block of data to a
sector on the disk or to read a block of data into memory.
Note that data is read or written on a sector-by-sector basis
(256 by tes).

Example Program

This program recopies the contents of the diskette in floppy
0 onto the diskette in floppy 1.

PROGRAM "COPY"
DCL SX
DCL E#
DCL D$ = 256(16)
SEGMENT 0
ASSIGN = 1, "FLO"
ASSIGN = 2, '*FL1 ",WR

10 10 = 1,/40,S:90,E,0(1),4096
10 = 2,/82,S:D(1),4096
S = S + 16
GOTO 10

90 IF E = 4 GOTO 99
PRINT=1: BELL,TABV(1),"ERROR

;Sector number
;Error code receptor
;Buffer (1 default granule)

;FL0 is logical #1, read only
;FL1 logical #2, read/write

;Read 1 granule from FLO
;Write data to FL1
;Next granule

;Jump if end of disk
",E ;Print unexpected error

99 STOP
ESEG 0

13-3

13.A LOAD INSTRUCTION

This instruction allows the BAL program to load an object
program (usually a subroutine) into memory.

Syntax :

LOAD = N .LOG, Variable C î ERRORD

Where;

N.LOG - Logical number from 1 to 15/ as assigned to
the object file by the ASSIGN instruction.

Variable - Specifies the load address of the object
program:
a. If a short variable is supplied, it con­

tains the loading address in memory for
the object file.

b. If a long variable or string variable is
supplied, the address of this variable
is the load address of the object pro­
gram, i.e., the program is loaded into
the specified variable and following va­
riables up to the length of the program.
In this case, it is the responsibility
of the programmer to ensure that enough
variable space is declared to accommodate
the object program.

: ERROR - Error branch parameter as described above,
in the 10 instruction.

Examples ;

1 . ASSIGN = 1 , "FLO.CVB"
LOAD = 1, /AOQO

Object program CVB (implicit type -0) is read from the
disk and loaded into memory, starting at address /A000.

2. DCL AX
SEGMENT 0
A = /A000 ;load address
ASSIGN = 1, "FLO.CVB"
LOAD = 1, A

This program produces the identical result as example 1.

3 . DCL PS = 256
SEGMENT 0
ASSIGN = 1, "LOAD"
LOAD = 1,P

1 3-A

The object file "LOAD", which is found on the user sup­
port device, is assigned Logical number 1 and loaded in­
to memory beginning at the address of variable P. If
the object program is longer than 256 bytes, it will be
located in the 256-byte area specified by P and those
variables declared following P.

4. DCL AX, PS = 256
SEGMENT 0
ASSIGN = 1, "LOAD"
A = VPTR(P)
LOAD = 1 ,A

This produces the identical result as example 3.

13.5 CALL INSTRUCTION

This instruction is used to call a subroutine, specifying a
parameter to be passed (which can be a pointer to a string of
parameters), and either the starting address of the subrou­
tine, or the name of the variable into which the subroutine
was loaded by the LOAD instruction.

Syntax :

CALL Data,Address

Where:

Data - A parameter to be passed to the
subroutine.

Address - Address of the subroutine, as:
a. If the Address variable is a one or two

byte short numeric, it contains the
starting address of the assembly lan­
guage program.

b. If the Address variable is a long
numeric or string variable, the address
of the variable itself is the starting
address of the assembly language pro­
gram.

When the assembly language program is called:

Registers HL contain the starting address of the data.
Registers BC specify the length of the data.

Examples :

1 . DCL X
SEGMENT 0
CALL X, /A000 ;Execute routine at /A000

13-5

2. In this example, we wish to pass several parameters
(A,B,C,D,) to a subroutine. They are declared as a conse­
cutive group, then the group is equivalences as parameter X,
which is passed to the subroutine. The subroutine will of
course be written to expect a group of parameters starting
at the address of X.

DCL A$=4, B$ = 4, C$=6, D$=2 •
9 Declare A,B,C,D

FIELD =0,A •
9 parameter field starts
a
9 over at A

0 CL X$=16 a
9 Equivalence X to A,B,C,D

DCL P$=256 a
9 Space for subroutine

SEGMENT 0
ASSIGN =1, "LOAD" •

9 Assign log # to routine
L0AD=1,P •

9 Load subroutine
CALL X,P a

9 Call subroutine at P,
•
9 pass parameter X

In this example, we output the character contained in the
variable I to the display.

DCL MX, I » , XS, J
•SEGMENT 0
M = VPTR(X) •

9 Return address of X
FOR J = 1 TO 5
R EAD=0 : I •

9 Read DATA into I
M = POKE (I) a

9 Put value if I into M
M = M=1
NEXT J
M = VPTR (X)
I = /41
CALL I,M •

9 Sent to CRT character /41,
a
9 'A'

STOP a
9

DATA a
9 Assl'y routine

REM 4E, /CO, M C , /01, /C9
LD C <HL); CALL 14C RET

ESE6

4. In this example, we input any character (including control
code which normally would be filtered by ASK statement)
from the keyboard to variable I

PROGRAM "INPUT"
D CL I#,MX, X$,J
SEGMENT 0
M=VPTR(X) ;M=address of var X
FOR J=1 TO 5
READ=0:I
M= P 0 K E (I)
M=M+1
NEXT J
M=VPTR(X)

13-6

10 CALL I,M
PRINTED :"VALUE OF INPUT CHARACTER" I,TABV<1)
GOTO 10
DATA /CD,/49,/01,/77,/C9
REM CALL CI;LD(HL), A;RET
ESEG 0

13.6 CHAIN INSTRUCTION

CHAIN = N ; LOG C: ERROR]

This instruction can be used to chain type -T (BAL intermed-
iate) files. One BAL program can execute an ASSIGN instruc­
tion to assign a logical number to another intermediate file,
then execute a CHAIN instruction to load and execute that
file. C: ERROR is the optional error branch parameter, as des­
cribed in the 10 instruction.

Example:

PROGRAM "NAME"
D C L

SEGMENT 0

ASSIGN=2,"PGM2"
CHAIN 2

STOP
ESEG 0
END

During normal execution of this programn the CHAIN 2 instruc­
tion is encountered (it can be anywhere in the program). When
the STOP instruction is executed, porgram execution of the
current program halts and Programjis automatically loaded
from the disk and executed. PGM2

13-7

CHAPTER 14. INTRODUCTION TO FILE MANAGEMENT SYSTEM

14.1 GENERAL

The File Management System is an option of the PROLOGUE Op­
erating System, which can provide you with a simp le and con­
venient means of handling files of information. It includes
three different means of handling data files, all of which
handle the problems of mass storage "housekeeping" and allow
your BAL program to manage data files by name on your PROLOGUE
disk, using simple BAL language instructions. In your BAL
program you need not concern yourself about about tracks,
sectors, disk addressing, or calling file handling subrou­
tines .

The three file management systems are:

1 . Random Access (Relative Files) — The files in this
system are a sophisticated virtual memory.

2. Sequential File System — Files are written to/read
from memory and the disk in a sequential fashion, and
appear one after the other, in the order they were
originally written to the file.

3. Indexed Sequential Access Method (ISAM) -- This sys­
tem organizes data files of any length by keyword,
indexing them for very rapid random access.

These three systems are available as PROLOGUE options and
operate within all the logical constraints of the PROLOGUE
Operating System. You can obtain:

* Sequential and Random File Systems Only
* Indexed Sequential Access Method File System Only
* All three File Management Systems

Note: Random and Sequential are provided in a single soft­
ware module, which is often referred to as the
Sequential File System.

This chapter provides you with a general description of the
File Management System and a glossary of the terms used in
the Instruction descriptions. Chapter 15 describes the in­
struction syntax.

14-1

14.2 FILE SYSTEM GENERAL CHARACTERISTICS

14.2.1 General Types of Operation Performed

Each of the file systems operates with files of data, organ­
ized in different fashions. Certain types of operation must
occur with each:

1. An ASSIGN statement must be executed. This refers to the
file (or device) by name and assigns it certain
characteristics. The functions performed by ASSIGN are:

a. Specifies the file type, as random, sequential, in­
dexed sequential.

b. Assigns the file a logical number, which is then used
by the various BAL instructions to refer to this file,
rather than having to use the filename.

c. Establishes whether writing is to be allowed on this
file.

2. The file must be created, referring to the assigned logi­
cal number, and perhaps establishing additional character
i s t i c s .

3. The file must be OPENed to allow operations to occur.
This positions an imaginary file pointer pointing to the
correct data position in the file. (Many instructions,
such as READ and WRITE, open the file automatically.)

4. Various read/write/positioning operations occur, depen­
ding on the file type.

5. The file is closed, and the logical number is released.

14.2.2 Status/Error Codes

Whenever a file system instruction is executed, the system
returns a status/error code which indicates the result of the
operation. This can be zero (®), which indicates that the
command was executed as expected; can be a normal status in­
dication, such as end-of-file, or can be an error indication.
This code can then be analyzed in your program and appropri­
ate action can be taken.

The parameter, ERROR, in which the code is returned is option
a l , but is dangerous to ignore, for the program is aborted if
any non-zero status/error code is returned and no variable is
available in which to place it.

14-2

14.3 DESCRIPTION OF RANDOM ACCESS FILE SYSTEM

As mentioned above, this system obeys all the constraints of
the PROLOGUE Operating System regarding volume, filename,
etc. It merely deals with data files, as opposed to source
files or executable programs.

This file system operates as a sophisticated virtual memory.
You begin by using a FIELD instruction in the declaration
section of your program to declare a virtual .memory file.
This virtual memory file contains all variables subsequently
declared by following DCL instructions until a new FIELD in­
struction is encountered.

Thus, once a random file is created, all of its elements are
defined as variables. When the file is to be used, it is as­
signed a logical number, then the variables are used in your
program just like any other variables. The differences are:
1) these variables are on the disk, not in memory, and 2) you
can assign a file of random elements as either read/write or
read-only.

14.4 DESCRIPTION OF SEQUENTIAL FILES

A sequential file is a group of contiguous records, such as a
record of the day's transactions made by some type of data
collection device in a retail store.

If you were to look at the sequential file on disk, it would
appear thus:

} \

You can perform the following operations with sequential
files: create them, open them (required prior to read or
write), write data into them (as a record, which is some
group of associated bytes), read the data back, close the
file, and delete the file.

Operations with the file always occur in regard to a file
pointer. Items are always read with the pointer starting from
the beginning of a file, and progressing down record-by­
record to the item(s) required. Items are always added to the
end of a sequential file, never in the middle.

Summary of important points regarding sequential files

1. A file must be assigned (by the file system ASSIGN instruc

Record N
XX Bytes

Record 1 Record 2 Record 3 Record 4
XX Bytes XX Bytes XX Bytes XX Bytes

14-3

tion) before it can be used. This establishes it as a se­
quential fi le, assigns a logical number, and establishes
whether or not writing is allowed. The logical number is
then used for reference to the file by various BAL instruc­
tions.

2. Sequential files can be opened for reading or writing, but
not both.

a. If the file is opened for reading, the.pointer is posi­
tioned before the first record in the file. A READ in­
struction reads that record and positions the pointer
before the next record in the file.

b. If the file is opened for writing, the pointer is posi­
tioned behind the last record in the file.

3. After a READ, the pointer points to the next sequential
file (or to end-of-fi le).

4. A BACKSPACE instruction can be used to back the pointer
to the preceeding file. No data is read by this instruc­
tion .

5. After a WRITE, the pointer is positioned behind the last
record in the file.

6. It is not possible to modify records in a sequential
file.

7. Status codes will be returned after each sequential file
instruction is executed.

a. Zero (0) indicates that the expected operation occur­
red with no errors.

b. Any other code indicates either a status condition
(such as end of file) or an error.

8. When using magnetic tape, you can write to or delete only
the last file on the tape.

14.5 DESCRIPTION OF INDEXED SEQUENTIAL (ISAM) FILES

An indexed sequential file consists of any number of records
of information (up to the storage capacity of the volume).
Each record is composed of a unique record key and data asso­
ciated with that key. As a simplified example, you can com­
pare ISAM files to using your dictionary. If you wish to look
up the meaning of the word FILES, you make one access to the
section covering words beginning with F, another access to
the page keyed as Fil or File, and a third access to the in­
dividual entry on that page which defines the meaning of the

14-4

word Files. In this case, the word FILES is a unique key
which points to associated useful data.

An ISAM file operates in a similar fashion. You specify a Re­
cord Key for each item stored by the system. This is a 2 to
20 byte uni que identifier for every data item in the file. It
could be item number, invoice number, part number, customer
name, or some combination of data — whatever you choose to
uniquely identify your records.

These keys are organized and stored alphabetically by the
File Management System in such a manner that whenever you wish
to retrieve an item, you specify the key and the system looks
it up and goes directly to the recorded data.

14.5.1 Characteristics Of The ISAM File

When an ISAM file is created, the following characteristics
are defined:

1. File type -- file type is defined as:

* Record Key Left Justified
* Record Key Right Justified
* Record Key Not Justified

See 14.6 for more detail on justification of record
keys .

2. Length of article — Length of the data items to be
stored. ^ v —

3. Length of the Key — All keys must be declared as the
same length, 2 to 20 bytes.

14.5.2 Characteristics Of The ISAM Record

Once the ISAM file is created, you can insert, read, modify
and delete individual records. The record has the following
format :

Number of bytes 2 2 to 20 1 0 to 32,767

Opt i ona l Record
Type of Data Length

Ident i fier
Key Index Data

W h er e:

Length Identifier - Optional, but if used returns the
length of the data in an input
record.

14-5

Record Key 2 to 20 bytes which uniquely identi­
fy this record.

Index One byte which allows the user to
divide a file into 8 sub-levels. If
not specified, assumed to be 1.
See 14.6 for more detail on the Index

Data This is the data item associated
with the record key..

14.6 Definitions

This section includes detailed definitions of various terms
used in the instruction description in Chapter 15.

1. Logical Number (N.LOG)

This is a number between 1 and 15, assigned to a file when
it is ASSIGNed. It serves to uniquely identify this file
and allows various 8AL file system commands to refer to
the file by number.

The file system permits you to open and manipulate several
files at one time, a minimum of 4 (default value) and a
maximum of 16. The maximum number of open files is esta­
blished when your PROLOGUE system is configured. The Log­
ical Number (N.LOG) can be a constant or short variable of
value 1-15.

If you attempt to use an illegal number, or open a file
when the maximum number is already open, an error will be
returned.

2, Sector Address

In certain Random file system instructions, a sector ad­
dress can be specified. This refers to a disk sector of
256 bytes, where the first sector of the first track is
sector 0, and sectors are numbered consecutively through
the maximum number available on the disk.

3. C:ERR0R3 8 Status/Error Code

The optional parameter C :ERR0R3 contains two elements,
ADDR, E. ADDR specifies the line number for a program
branch which is taken any time the file system returns a
status/error code unequal to zero.

The two byte integer variable E is used to receive the
status/error code which is returned after every file sys-

14-6

tern instruction is executed (or attempted). The status-
/error code indicates normal instruction execution, a
normal status condition, or an error condition. Appendix
C contains a complete list of error codes which can be re­
turned by the system.

Although this parameter is optional, it is usually impor­
tant to analyze the codes that are returned and take ap­
propriate action. If a non-zero code is returned by the
file system when no ERROR branch parameter is available,
the program displays the error code and debug address of
the failing instruction, then aborts and returns to the
PROLOGUE command level.

4. Input/Output Buffer

Sequential and Indexed Sequential instructions which read
and/or write data require you to establish a buffer area
in memory (via the DCL instruction), used for the input or
output of data. In a BAL file instruction you can specify
the name of your buffer variable and its length. This al­
lows you to specify a length longer than the declared va­
riable length and set up various overlays as your buffer.
As a default case, the declared length of your buffer va­
riable is assumed.

Both sequential and indexed sequential files require you
to specify the data length, theoretically up to 32K bytes
of data, but actually limited by your available memory
space.

Not all instructions read/write the same size buffers, so
specify carefully.

5. Record Key

The Record Key serves to uniquely designate a data item in an
Indexed Sequential file. Each key is 2 to 20 bytes in length,
all keys are a standard length for any one file, and no two
keys may be the same.

The keys are stored in a separate file on the diskette (file
type -I, generated by File Management System) and are alpha­
betized so that the lowest numbered key appears first. The
keys each point to their associated data, serving as a fast
lookup table for locating data items.

The key can be composed of any type of numeric or ASCII data.

6. File Type

When a file is created, type is defined as keys left justi

14-7

fied (shifted), right justified, or non-jus tified . The se­
lection of correct justification of keys is important.

A. Left Justified Record Key -- The key is assumed to be an
ASCII character string and, if necessary, any input string
is left shifted, eliminating blanks until the first char­
acter is non-blank. In most cases, this is no problem,
because a character string normally appears left-justified
in its field. This type of record key is usually specified
where an alphanumeric ASCII string is to be used as the
key.

Example: Assume that the following characters are entered
into a 10 character string field:

ABCDEF6HIJ
AVDCF***|<* 05 indicates a blank)
! 0 9 0 4 5 * 0 *
123**0****

As discussed above, all keys are alphabetized and stored
on the disk in a coherent manner. The keys are alphabeti­
zed according to their ASCII codes, starting from the
leftmost character, then stored with the lowest numbers-
/alphabetics first. This evaluation is done left-to-right
according to the ASCII priority, as illustrated in the ta­
ble below. (See Appendix B for a complete ASCII code table.)
Thus many, but not all, special characters evaluate as
less than numbers, which evaluate as less than alphabetics
(the /30 code of the zero is less than the /41 code of the
A) .

Relative Value of ASCII Character Set
* ! M # $ X * • (> * ♦ , - . /
0 1 2 3 4 5 6 7 8 9 : ; < * > ?
8 A B C D E F 6 H I J K L M N 0
P Q R S T U V V X Y Z C \ 3 * <

B. Right Justified Record Key — The key Is assumed to be an
ASCII character string. It necessary, any input string
is shifted to the right, eliminating padded blanks until
the right-most character is non-blank.

This type of key is often used where different length c h a ­
racter strings of numbers are entered as keys. In compar­
ing numbers, evaluation occurs from right to left, as
opposed to ASCII string evaluation which occurs from left
to right. Right shifting the keys forces an evaluation as
a number, even though the characters are in ASCII.

For example, consider the ASCII strings of numbers:

14-8

001
02

007
00200

000300

The above strings are shown as they would be stored when
right shifted. If sequentially printed out, they wouId ap­
pear in the order shown.

If you were to use the same character strings as left-
justified keys (entering strings with padded blanks), they
would be left justified and evaluated from the left ac­
cording to their ASCII codes, and appear as follows when
a Iphabet i zed:

000300
001

00200
007
02

Note that the order of the numbers has changed. If you
wished to sequentially list these files, they would be
printed in the order shown.

C. Non-justified Keys (Binary) — In this file type, the keys
are not shifted, but appear in the field and are evaluated
exactly as the programmer carefully places them. This type
of key is generally used when binary or hexadecimal data,
or a combination of non-ASCII data, is to be used as a re­
cord key.

If a file type with a shifted key is used, all characters
are assumed to be ASCII, which only uses the lower 7 bits
of the byte. Thus, the 8th bit of any byte would be ignor­
ed, a definite problem if the data is not meant to be
ASCII. For example, if the single byte numeric F1H (1111
0001) is inadvertantly handled as ASCII, it would become
7 1 H (0111 0001).

Note that any unique data can be used in the record keys,
but the construction of keys should be carefully consid-
red if the sequential order of the files is important for
printouts. The file system includes UP and DOWN instruc­
tions which can sequentially read the various items.

7. Index

A single byte is associated with each key
This index allows you to divide the items
8 sub-groups, or sub-levels, with each of

in an ISAM file,
in a file into 1 to
the eight bits de-

14-9

fining a sublevel, per the following table

Index Byte Value
»- leve l Decimal Hexadecimal

1 1 1
2 2 2
3 4 4
4 8 8
5 16 10
6 32 20
7 64 40
8 128 80

Every item in the ISAM file can be assigned to several index
sub-levels, but must belong to at least one. If the index is
not important in your program, just set it at 1 in all cases.

The index could be used to divide your file into several sub­
files. When an item is searched for in the file, it is iden­
tified by key and index, where at least one sub-level of the
stored index must match one of the specified search index
sub-levels for a successful search. It is not required that
all sub-levels match for a successful search.

Example:

Assume that you have an inventory file in which all items are
keyed by part number. Using the index you can divide them in­
to groups based on any criteria you wish, such as lead time,
pricing level, stocking location, etc.

Lead Time Sub-Level Index Decimal
Status (bit) Value

Available from
stock 1 1
30 days ARO 2 2
60 days ARO 3 4
90 days ARO 4 8
Critical item 8 128

Thus, an index of 8 defines an item with a 90 day leadtime.
An index of 136 defines an item with a 90 day leadtime which
has also been assigned critical status.

14-10

CHAPTER 15 FILE SYSTEM COMMANDS

15.1 GENERAL

This chapter presents the 8AL file system commands used with
the BAL language. If you are not familiar with the File Man­
agement System, you may wish to refer to Chapter 14, which
is an introduction to the system. Chapter 14 also contains
detailed definitions of various parameters which will be used
in the command descriptions in this Chapter.

The file management system is configured as a part of the
PROLOGUE Operating System, operates only with sectored
devices (disks) and magnetic tape, and obeys all the con­
s t a n t s of the PROLOGUE Operating System regarding volume,
filename, etc.

If you attempt to use file system commands with a version of
PROLOGUE which was not configured with the proper file system
software option, the error message "Module Not Present In The
System" will be output.

File System commands are organized in this chapter in the
following order:

1. Common instructions -- Used in all file structures.

2. Random File instructions

3. Binary File instructions

4. Sequential File instructions

5. Indexed Sequential Access Method instructions

15.2 COMMON FILE SYSTEM INSTRUCTIONS

Instructions which are common to all file structures are:

ASSIGN - Assigns a logical number to a file and
establishes various file characteristics.

C FILE - Create a file

OPEN - Open a file for operations.

DFILE - Delete (Destroy) a file.

15-1

RENAME Rename a file

EXTEND - Extend the disk space assigned to a file.

CLOSE - Close a file.

15.2.1 ASSIGN

This instruction must be executed in order to access any file
on a support device.

Syntax ;

ASSIGN = N .LOG/ Name C,0ptions3C: ERROR]

Where:

N .LOG

Name

Options

: ERROR

Logical number from 1 to 15.

A string variable or literal string
(enclosed in quotes) which can specify:
- any legal PROLOGUE filename of the form

CDevice.DNameC-Type3C:Keys].
- the unique name of a support device,, such

as FLO.

Code

WR

EX

SQ

SI

Definition Default

Open for Writing Read only

Open as exclusive Sharable file
file, which cannot
be shared by several
processors

Sequential organi-
zat i on

Indexed Sequential
organi zat ion

If neither SO
nor SI is spec-
ified, the file
can be accessed
by blocks or
sectors

Optional error branch parameter, consisting
of two parts, : ADD R, E.
- ADDR is any program line number, which

will be branched to if a non-zero status/-
error code is returned.

- E is the variable in which the code will
be returned.

This instruction performs the following functions:

15-2

1. If this instruction references a logical number cur­
rently assigned to a file, that file is closed.

2. The syntax of the support name or filename is
analyzed.

3. A descriptor is prepared for the file routines, con­
taining the designation of the file and the options
chosen.

Note that the Name can be specified as a support device, such
as FLO, FL1, etc. In this case, the files cannot be managed
by the File Management Sytem instructions and must be handled
directly via the 10 instruction, with the programmer keeping
track of sector assignments, and other housekeeping details.
See paragraph 13.3 for complete details on this instruction.

15.2.2 Create A File — C F ILE

Syntax :

C FILE

Where:

N .LOG

N .LOGJC,0 = record length}
j VO

Logical number from 1 to 15, as assigned by
ASSIGN instruction.

D=record - Record length in bytes for Sequential files
length only. Must be a constant or short numeric

variable. Default is 256 (one sector).

VD - Variable record length option for the file.

This instruction performs the following functions:

1. Closes the file if open.

2. Creates and opens the file according to the type de­
clared by the corresponding ASSIGN instruction.

15.2.3 Open A File — OPEN

Syntax :

OPEN = N .LOG C: ERROR}

Where :

N.LOG - Logical number from 1 to 15.

15-3

:ERROR - Optional error branch p a r a m e t e r consisting
of two parts, :ADDR, E.

- ADDR is any program line number, which
will be branched to if a non-zero status/-
error code is returned.

- E is the variable in which the code will
be returned.

This instruction:

1. Closes the file if open.

2. Opens the file according to the mode indicated in the
corresponding ASSIGN instruction, i.e., open for
read/write, open for read only.

15.2.4 Delete A File -- DFILE

Syntax :

DFILE = N .LOG C : ERROR]

Where :

N .LOG - Logical number from 1 to 15.

:ERROR - Optional error branch parameter, as descri­
bed above for the OPEN instruction.

This instruction:

1. Closes the file if open.

2. Deletes the file, releasing the disk space.'

15.2.5 Rename A File — RENAME

Syntax :

RENAME = N.LOG,NewName C : ERROR]

Where :

N.LOG - Logical number from 1 to 15.

NewName - New filename, in the standard PROLOGUE for­
mat of CDevice.]NameC-Type]C:Keys]

15-4

: ERROR - Optional error branch p a r a m e t e r as describ­
ed above for the OPEN instruction.

This instruction:

1. Opens the specified file if closed.

2. Assigns it the specified NewName, deleting the old
name from the directory.

NOTE: After this operation, the specifed file remains Open.

15.2.6 Extend A File — EXTEND

Syntax :

EXTEND = N .LOG C,no of sectors]C:ERROR}

Where:

N . LOG

no of
sectors

: ERROR

- Logical number from 1 to 15.

- The number of sectors by which the assigned
file space is to be extended.

- Optional error branch parameter, as describ­
ed above in the OPEN instruction.

This instruction:

1. Opens the file if closed.

2. Assigns the number of extension sectors specified.
If the optional number of sectors is omitted, the
file is extended one granule by default.

The EXTEND instruction has two basic uses:

1. In Random files it is used to add space to a specific
file to allow for the declaration of additional
variables.

2. In Sequential and Indexed Sequential, it is used to
ensure that sufficient room is available on the volu­
me for the size of file desired. For example, if you
wish to create a sequential file containing 300
256-byte records, you might execute an EXTEND instruc
tion to make sure 300 sectors are available. It is
better to have the EXTEND fail than to receive an
End-of-volume error message somewhere in the middle
of writing your file.

15-5

V

When a file is extended, the file system attempts to allocate
as much contiguous space as possible. If the volume is not
very full, the system first attempts to allocate space at
granule 8, if space is not available, then at granule 16 and
so forth, jumping in blocks of 8 granules. If the space is
available, it will be allocated, even if non-contiguous. How­
ever, the file cannot be extended to more than 18 n o n c o n t i g ­
uous blocks.

Note: The EXTEND instruction is not used often for ISAM
files. However, if you use it, plan to allocate 30%
more space than your actual data. This is required for
keys, indexes and housekeeping.

15.2.7 Close A File — CLOSE

Syntax :

CLOSE = N . LOG C : ERROR!

This instruction closes the specified file if open.

15.3 RANDOM FILE INSTRUCTIONS

Random files are a form of sophisticated virtual memory. The
user declares his random file on the disk, thereafter refers
to the variables in the file as though they were in memory.

Two fi le instructions are used in Random files: first, FIELD
to declare the magnetic peripheral as the location for follow­
ing variables being declared (via DCL instructions); next,
the ASSIGN instruction to assign a logical number and various
characteristics to the file before it is first used.

15.3.1 FIELD Instruction

Syntax 1 :

FIELD = N.LOG C,beginning sector!

Where :

N.LOG - Logical number from 1 to 15. (Logical number
0 is the memory.)

beginning - The starting sector of the random file, where
sector the default is sector 0. Note that this

sector is specified relative to the begin­
ning of the random file, allowing equivalen-
cing of variables.

All variables declared following this instruction (until a
new FIELD = is encountered) will be a part of the specified
random file.

15-6

Syntax 2;

FIELD = N.LOG,X

Where:

X - Any previously declared variable.

This instruction has the effect of equiv a lencing variables in
the random file. All variables declared following this in­
struction, will be located beginning at the address of varia­
ble X.

15.3.2 ASSIGN - Random File System

Syntax :

ASSIGN = N .LOG, "FileName" C,OptionsDC:ERR0R3

Where :

N.LOG - Logical number from 1 to 15.

F i leName - Any legal PROLOGUE filename of
CDevice.]NameC-TypeDC:Keys3.

the form

Options - Code Definition Default

WR Open for Writing Read only

EX Open as exclusive
file, which cannot
be shared by several
processors

Sharable file

: ERROR - Optional error branch parameter, consisting
of two parts, :ADDR, E.
- ADDR is any program line number, which

will be branched to if a non-zero status/-
error code is returned.

- E is the variable in which the code will
be returned.

This instruction must be executed prior to the execution of
any instruction which uses one of the variables contained on
this random fi le.

A random file is automatically opened upon the execution of
the first instruction utilizing one of the variables in that
file. If the file does not yet exist, it is created.

15-7

15.3.3 Example of Randow File Instructions

The example program writes 256 bytes in the file.

PROGRAM "EXAMP"
D CL IX
FIELD = 1
DCL T#(256)
SEGMENT 0
ASSIGN = 1, "TABLE",WR
FOR I = 1 TO 256
T (I) = I
NEXT I
ESEG 0

By replacing the ASSIGN instruction in the example as
fo l lows :

ASSIGN * 1, "FL1",WR

the variables will be located on floppy 1, and not subject to
file management. They must be controlled through the 10
instruction, described in Chapter 13.

15.4 SEQUENTIAL FILE SYSTEM INSTRUCTIONS

The length of records in a sequential file is fixed. Thus,
the space required for a file of N records of length L is
exactly N*L bytes.

Note that the Sequential file is type SO, and the type must
be specified by an ASSIGN instruction upon each utilization
(opening) of a sequential file.

A sequential file can be opened for reading or writing, but
not both. If you attempt to write on a file that has been
opened for read, an error will be returned (and vice versa).

When a sequential file is opened for Read, the pointer points
to the beginning of the file. When it is opened for Write,
the pointer points behind the last record in the file.

;Begin at sector 0

;File name TABLE, write OK
;Create and open file here

15.4,1 READ A Sequential Record

Syntax :

READ = N.LOG : C,ERROR,! Input Buffer

Where :

N .LOG - Logical number from 1 to 15, as assigned by
ASSIGN instruction.

15-8

: ERROR

Input
Buffer

Optional error branch parameter, consist i ng
of two parts, :ADDR, E.
- ADDR is any program line number, which

will be branched to if a non-zero status /-
error code is returned.

- E is the variable in which the code will
be returned.

Name of the buffer for input of the record.

This instruction reads the next sequential record following
the pointer into the Input Buffer.

The following errors can occur:

1. End of file mark encountered.

2. Length of input buffer is not exactly the length of
the data record recorded in the file. The appropriate
error code will be returned and no data is read.

15.4,2 BACKSPACE In Sequential File

Syntax ;

BACKSPACE » N.LOG C : ERROR]

Where :

N.LOG - Logical number from 1 to 15.

: ERROR - Error branch parameter as described above.

This instruction opens the specified file if closed, then po
sitions the pointer ahead of the preceeding record. The in­
struction re-positions the pointer only, no data is read.

It is possible to encounter the beginning of file. If so,
the appropriate error number is returned.

15.4,3 WRITE A Sequential Record

Syntax :

WRITE = N.LOG : CERROR,] Output Buffer, Length

Where:

N.LOG - Logical number from 1 to 15.

15-9

i

: ERROR - Optional error branch p a r a m e t e r as
described above.

Output - Variable containing the record to be output
Buffer to the sequential file.

Length - Specifies the length of the output buffer

This instruction opens the specified file if closed, then
writes the record from the output buffer, adding it as the
last record in the file.

If the length of the output buffer is not exactly the same
length as the standard length of the records in the file, the
operation is aborted, no data is written, and the appropriate
error number is returned in E.

15.4.4 Example of Sequential File Instructions

This example writes 100 records to the file, then re-reads
them.

;record length=2 bytes

;close and re-open for read

15.4.5 Remarks

1. When a STOP or ESEG 0 instruction is executed, all files
presently open are automatically closed by the system.

2. The end-of-file pointer is written when the file is
closed.

3. You must close the files before removing the disk contain­
ing the file from its support device.

4. The same file can be used simultaneously for read and
write.

DCL 1%
SEGMENT 0
ASSIGN = 1, "FILE", WR,SQ
C FILE = 1,D = 2
FOR I = 1 TO 100
WRITE = 1 : I
NEXT I
ASSIGN = 1, "FILE”, SQ

10 READ = 1 : I
PRINT=1: (N32), I
GOTO 10
ESEG 0

1 5-10

15.4.6 Sequential Files For Magnetic Tape

1. The labels of these files are the ECMA-13 standard
organi zat i o n .

2. The label HDR2 is processed.

3. The tape blocks can be of variable length.

4. All programs using sequential files on sectored support
devices can use the same files on magnetic tape, with
these except ions:

a. Two sequential files on tape cannot be opened
s i mu It aneously.

b. Only the last file on a magnetic tape can be deleted.

5. The standard mnemonic for magnetic tape is BM.

15.5 INDEXED SEQUENTIAL FILE SYSTEM INSTRUCTIONS

A Sequential file is type SI, and the type must be specified
by an ASSIGN instruction upon each utilization (opening) of an
indexed sequential file.

Note the following characteristics of an indexed sequential
file.

1. The length of the record keys is constant in the same
file. This length is defined at the time the file is
created, and is 2 to 20 bytes, inclusive.

2. The length of the data associated with each record key
is fixed for the same file. This length is also de­
fined when the file is created.

3. When reading data, an input buffer must be specified.
The length of this buffer can be specified, and can be
longer or shorter than the declared length of the buf­
fer variable. Thus data can be read in starting with
a specified variable and overlayed into several
variables. For example, A,B,C and D can be declared,
in order, as 12 byte strings. A 48 byte indexed se­
quential data item can be read into buffer A, speci­
fied as 48 bytes. Data will thus be available in A, 8,
C, and D.

If no buffer length is specified, the declared length
of the buffer variable is assumed, by default.

15-11

When reading data, if the specified input buffer is
too large, the unused portion is filled with ASCII
blanks, / 2 0 . If the input buffer is too small, it
will contain only the beginning portion of the data
and an error code will be returned to signal loss of
data .

15.5.1 ASSIGN Instruction

This instruction must be executed in order to access an in­
dexed sequential file.

15.5.1.1 Normal Mode

Syntax :

ASSIGN s N.LOG, Name C,0ptions]C: ERROR}

Where :

N.LOG - Logical number from 1 to 15.

Name - Any legal PROLOGUE filename of the form
CDevice.]NameC-Type3C:Keys3.

Opt ions - Code Definition Default

WR Open for Writing Read only

EX Open as exclusive
file, which cannot
be shared by several
p rocessors

Sharable file

SI Indexed Sequential
organi zat ion

: ERROR - Optional error branch parameter, consisting
of two parts, :ADDR, E.
- ADOR is any program line number, which

will be branched to if a non-zero status/“
error code is returned.

- E is the variable in which the code will
be returned.

This instruction assigns a logical number to the indexed se­
quential file and assigns it as a normal mode file. Any time
an item is inserted, the table of record keys must be modi­
fied to maintain coherence of organization. In normal mode,
any sectors that must be modified are saved before any modi­
fication is done. (In a very large file, a maximum of 5 or 6

15-12

sectors may be modified.) Thus, if a power failure should
occur during modification, the old record key organization is
preserved and coherence of the file can be restored. This is
important, because an incoherant file is unuseable under the
file system.

15.5.1.2 Copy Mode

Another mode of indexed sequential operations is available,
copy mode. In this mode, the previous status is not saved
prior to an insert function, thus operations are speeded up
considerably. This mode is generally used only when copying
a file, where recovery can be accomplished if a problem
occurs.

This mode is specified by an ASSIGN instruction, of syntax:

ASSIGN = N.LOG, SI, Options, C

The parameters of this instruction are the same as described
above. C specifies Copy mode.

15.5.2 Create An Indexed Sequential File — CFILE

Syntax :

CFILE = N.LOG, [Options}

Where :

N.LOG

Options

Logical number from 1 to 15.

Opt i on Descri ption Default

D= Data length Specify length Length = 0
for this file

K = Key length Length of record key, for
binary type file (keys not
shifted)

LK= Key length Length of record key, for
file with keys left shifted

RK= Key length Length of record key, for
file with keys right shifted

Notes :

1. If option D is present, it must appear in the command
line prior to any other option.

15-13

2. One of the key Length options must be present, speci­
fying a record key Length between 2 and 20, inclusive.

3. The Data elements in any file are of fixed Length, as
specified in this instruction.

4. This instruction creates a file of record keys with the
filename specified in the ASSIGN, plus the suffix I,
and another file of data elements with the specified
filename and suffix D.

15.5.3 Inserting A New Item — INSERT

Syntax :

INSERT* N.LOG, Key C,Index]:CERROR,]VC,L]

Where;

N.LOG - Logical number, from 1 to 15.

Key - Variable containing the record key for the
current record. This key must be unique and
cannot already exist on the file.

Index - Optional one byte index. Default = 1.

: ERROR - Optional error branch parameter, consisting
of two parts, :ADDR, E.
- ADDR is any program line number, which

will be branched to if a non-zero status/-
error code is returned.

- E is the variable in which the code will
be returned.

V - Name of the variable which begins the output
buffer which contains the item to be asso­
ciated with the record key.

L - Optional length of the output buffer. If
this parameter is omitted, the output buffer
length is the declared length of the buffer
variable, V.

This instruction adds the key to the Key file, automatically
classified in the correct alphanumerical order, and the spe­
cified index is attributed to it (or the default index of 1).
(See paragraph 13.6 for more details on the Index.) After
the insert, the file pointer points to the inserted key. The
data is written into the data file.

Mote that the Insert instruction cannot be used to modify
date, because the specified key must not previously exist in

15-14

the file (an error is returned if the key already exists.)
The MODIF instruction is used to change an existing item.

15.5.4 Read An Indexed Sequential Item — SEARCH

Syntax :

SEARCH = N.LOG, Key C,Index}:CERROR,}VC,L}

- Logical number, from 1 to 15.

- Variable containing the record key for the
item which is to be read.

- Optional one byte index associated with the
specified key. Default = 1.

- Optional error branch parameter, as descri-
bed above in the INSERT instruction.

- Name of the variable which begins the input
buffer which is to receive the data item as­
sociated with the record key.

- Optional length of the input buffer. If
this parameter is omitted, the input buffer
length is the declared length of the buffer
variable, V.

This instruction causes a search for the specified key. If
it is found, the associated data item is read into the input
buffer. This instruction returns only the data.

If the input buffer is larger than the data item, unused by­
tes are padded with ASCII blanks. If the buffer is smaller
than the data item, the first part of the record is read in
and a status/error code is returned indicating loss of data,,

If the specified key cannot be found, the appropriate
status/error code is returned.

If you are using several Index sub-levels, the specified key
snay be found, but not with the specified Index. In this
case, the appropriate status/error code, but no data*, is re­
turned.

Where :

N.LOG

Key

Index

: ERROR

V

L

Search, the file pointer points to

15-15

After the
key.

the specified

15.5.5 Delete An Item DELETE

Syntax ;

DELETE = N . LOG , Key C,IndexDC:ERRORD

Where;

N.L06 - Logical number/ from 1 to 15.

Key - Variable containing the record key for the
record to be deleted.

Index - Optional one byte index associated with the
specified key. Default = 1.

: ERROR - Optional error branch parameter/ as descri­
bed above in the INSERT instruction.

The file system locates the specified item and deletes it
from the file, if all index sub-levels have been specified.
If you have assigned several index sub-levels to the item,,
but do not specify them all in the DELETE/ only the specified
Index sub-levels will be deleted. The record key, item and
the remaining index bits will remain on the file.

15.5.6 Sequential Read In ISAM File — UP & DOWN Instr.

After an item is read, the file pointer still points at that
item. The UP and DOWN instructions allow you to read the
preceding or following item in the file. This allows you to
sequentially search through a file, or to sequentially read
the items for printing.

Two types of UP/DOWN instructions are available. They are;

Syntax 1 :

UP = N.LOGE,Index]:CERR0R,]VC,L1

DOWN = N.L06C/Index3;CERROR/3VC/L3

UP points to and reads the key, index, and data of the item
preceding the original location of the pointer.

DOWN points to and reads the key, index and data of the item
following the original location of the pointer.

Where;

N.L06 - Logical number, from 1 to 15.

15-16

Index - Optional one byte index. This would only be
specified when interested in items in a par­
ticular index sub-level.

: ERROR - Optional error branch parameter, as descri­
bed above in the INSERT instruction.

V - Name of the variable which begins the input
buffer. Note that this input buffer must be
of correct length to receive the key, index,
and data of the item to be returned.

L - Optional length of the input buffer. If
this parameter is omitted, the input buffer
length is the declared length of the buffer
variable, V.

These instructions return the values of key, index and data,
as illustrated below.

V (input buffer) Key Inde x Data

I____ Up

1 I

2-

Note that the input buffer length for UP and DOWN is longer
than that for SEARCH, where the key and index are known and
only the data bytes are returned.

As in the other file instructions, if the optional buffer
length parameter is omitted, the length is assumed as the de-
clared length of the buffer variable, V.

If the input record is smaller than the buffer length, unused
bytes are padded with ASCII blanks (/20). If the input re­
cord is larger than the specified buffer, the first part of
the record is read in, and a status/error message is returned
indicating loss of data.

Syntax 2: UP.L 8 DOWN.L

UP .L = N.LOGC,Index]:CERR0R,]V2C,L]

DOWN.L = N.LOGC,Index]:CERR0R,]V2C,L]

15-17

Every ISAM record includes two length bytes which record the
length of that record. These versions of UP and DOWN return
the length bytes, in addition to the key, index and data, as
illustrated below. The only difference in the instruction
syntax is the name of the instructions and the input buffer,
<V2) which must be an addtional 2 bytes in length.

V2 (input Record Key Index Data
buffer)= Length

Up to 32K bytes

1 byte

2-20 bytes

2 bytes

The buffer length considerations discussed for UP and DOWN
apply for UP.L and DOWN.L as well.

15.5.7 Modify an Item — MODI F

Syntax :

MODI F = N.L06, Key C,Index]:C E R R 0 R ,D VC ,U

Where :

N.L06 - Logical number, from 1 to 15.

Key - Variable containing the record key for the
record to be modified.

Index - Optional one byte index, which must match at
least one of the index sub-levels of the item.
Default = 1.

: ERROR - Optional error branch parameter, as
described above in the INSERT instruction.

V - Name of the variable which begins the output
buffer which contains the modified data and/or
index to be associated with the record key.

L - Optional length of the output buffer. If
this parameter is omitted, the output buffer-
length is the declared length of the buffer
variable, V.

15-18

% ;

This instruction Locates the specified record key, then modi­
fies the associated index and/or data. You supply the new
index in the optional Index parameter, the new data in the
output buffer. Note that the length of the new data item
must be the same as the item being replaced. If not, the ap­
propriate status/error code is returned and no change is made
to the file.

An existing indexed sequential item can only be changed by
the MODI F instruction. You can modify the data and/or the
index, but never the record key. To change a record key as­
sociated with an existing data record, you must first read
the item into memory, then delete it from the file, then in­
sert using the new record key.

After this instruction is executed, the file pointer points
to the item which was modified.

15,5,9 Example of indexed file instructions.

This program creates a new indexed sequential file of 25
records and lets the user retrieve them randomly.

100

200

2 10

900
1 00 0

PROGRAM "ISAM"
DCL R%, E #
DCL LX, K$=20,I#,D$=254
•SEGMENT 0
ASSIGN=1, "ISAM", WR,SI
0FILE=1:100,E ;delete if existing
CFILE=1,D=254,RK=20
FOR R=1 TO 25 ; write 25 records
K=C0NV(R> ; key
D=C0NV(R) ; data
INSERT=1,K:D
PRINT=1:R
NEXT R
ASK=1,I=900:TABV<1),"ENTER KEY"=R;enterESC to
K=C0NV(R)
K=SHR(K) ; justified right
SEARCH®1,K:210,E,D ; read record
PRINT=1:TABV<1>,"KEY:",K,"INDEX :",1,"DATA:",D
GOTO 200
IF E<> 78 GOTO 1000
PRINT = 1 :TABV(1),"RECORD NOT FOUND"
GOTO 200
STOP
PRINT=1:"FILE MANAGEMENT ERROR: ", E
ESEG 0
END

exit,

15-19

15.5.9 Indexed file instruction (continued)

Example 2

This program shows an example of uses of instructions MOD IF,
DELETE, DOWN.

PROGRAM "ISAM/2"
DCL R%,E#
DCL K #=20,1#,D#=254
SEGMENT 0
ASSIGN=2, "ISAM",WR,S : ; same file previously

created by program "ISAM"
10 ASK=1,1=900,U=100,D=200 : "ENTER KEY FOR SEARCH OR UP

ARROW FOR PREVIOUS RECORD OR DOWN ARROW FOR FOLLOWING
RECORD"
= R
K = C ONV(R)
K=SHR(K)
SEARCH =2,K:90,E,D
ASK = 1,1 = 900,U=10,01=50 :"K :",K,"CURRENT DATA:",D, "ENTER
NEW DATA OR CTRL-A TO DELETE RECORD OR UP ARROW TO QUIT
AND SEARCH FOR ANOTHER KEY OR ESC TO END P R O G R A M E D
MOD IF = 2, K,î D
PRINT =1 î "MODIFICATION DONE-", BELL,TABV(1)
GOTO 10

50 DELETE =2,K:D
PRINT=1:"RECORD", K, "DELETED",BELL,TABV(1)
GOTO 10

90 IF E<>78 GOTO 1000
PRINT=1:"RECORD NOT FOUND"
GOTO 10

100 U P = 2 :110,E,K,275 ; input buffer includes key, index, data
PRINT = 1 :"KEY:",K, "DATA:, D, TABV<1)
GOTO 10

110 IF E 0 6 4 GOTO 1000 ; IF NOT BEGINNING OF FILE: ABNORMAL
PRINT=1:"BEGINNING OF FILE", BELL
GOTO 10

200 D0WN=2:210,E,K,275
PRINT=1:"KEY:",K,"DATA:,D,TABV<1)
GOTO 10

210 IF E<>48 GOTO 1000 ; if not end of file : abnormal
PRINT=1 "END OF FILE", BELL,BELL
GOTO 10

900 PRINT =1/"NORMAL END"
CL0SE=2
STOP

1000 PRINT =1: "FATAL FMS ERROR :",E
STOP
ESEG
END

15-20

CHAPTER 16. BAL TRANSLATOR & EXECUTOR

16.1 GENERAL

BAL is a compiler language which requires a BAL source file
as input to a translator module. The translator (named TR)
translates this source file and produces an intermediate
file. This file can only be loaded and executed under control
of the BAL Executor module (named EX).

This source file can have any valid filename and is written
in the BAL format as described in this manual, using the P R O ­
LOGUE Editor (ED), described in detail in the BOSS PROLOGUE
User's Reference Manual, publication number, B-1003. The
source file is assigned implicit type -S if the type is not
specified.

16.2 BAL TRANSLATOR - TR

When a BAL program has been prepared in the proper format
using the PROLOGUE editor, it must be translated by the BAL
Translator Routine, which is cataloged on a BAL disk as TR-O.
Use the Translate command as follows (example given using our
sample program, BALDEMO above):

Command Syntax:

->CDevice.HTR,FilenameC,0ptions3

Where :
CDevice.DTR - Specifies the Translator program.

Filename - Specifies a BAL source file. The
filename must be in the correct
PROLOGUE format as: CDevice ,]Name
C-TypeDC:KeysD . If Type is omitted,
type -S is assumed.

Opt i ons

Opt i on

NL
LIS=LO

Several compilation options can be speci­
fied, in any order, separated by commas.
They are:

Definition Default Case

No Listing
Listing on line
printer

Listing on CRT Display
if no list option spec
fied.

16-1

ND No debug -- Debug Debug addresses
addresses are not
output on the program
listing

supp lied

TP Partial translation Complete translation

DEST=Filename Specifies name of re­ Intermediate file is
sulting intermediate assigned the same
file. Type -T is the name as the source
default case. file with file type

-T

This command results in the translation of the specified source
file with the indicated options. Note the following:

1. If NO is omitted, the program listing is produced with de-
bug addresses calculated and listed to the left of each
program line. These are the actual memory addresses of the
code for that instruction. These addresses are necessary
when using the Debug option in correcting the program.
See paragraph 16.4 for complete details on DEBUG.

2. If TP, partial translation, is specified you can select
certain segments of your program to be translated. The
system prints:SEGMENT NUMBER:. You must enter a
segment number followed by a carriage return. The next
segment number is then requested. When you respond with a
carriage return instead of a number, the selected segments
are translated.

This option is useful if several segments of your program
are working correctly and you wish only to translate one
or more segments in which errors have been corrected. Note
that if segment 0 changes, the entire program must be
trans lated.

3« When DEST=Fi lename is specified, you can assign any valid
filename to your intermediate BAL file.

When program errors are detected during translation, they are
handled as follows:

1 . If the listing is on the CRT, an error message is dis­
played and output halts, giving you time to note the
error. The offending character is enclosed in parentheses
and an error message is listed. See Appendix C. for com­
plete list of error messages and descriptions. Pressing
ESC continues the translations.

16-2

2 . If the Listing is on the printer, an error message is
printed below the instruction in error and output con­
ti nues .

Example: DCL A,B,CD
***(0) DECLARATION ERROR DBU6 ADDRESS 0007

When a translation time error is fatal you will note that
a program length of zero is listed at the end of the
translation for the segment in which that error occured.

Examp les :

1„ TR,FL1 .BALDEMO Translator program loaded from Sys­
tem support device (FLO in this
case), BAL source file BALDEMO-S (S
assumed as default case) loaded from
floppy 1 and translated; intermedi­
ate file generated on User support
device (FL1 in our example) and
named BALDEMO-T by default; listing
output on CRT display.

Note: To halt the translation, press the ESC (Escape)
key. To return to PROLOGUE after ESC, press the R
key.

16,3 BAL EXECUTOR

The BAL Executor (cataloged on the diskette as EX-0), is the
run-time package used to execute translated BAL programs. Use
the Execute command as follows.

Command Syntax:

->CDevice.DEX,IntFilenameC,D83

Where :

CDevice .3 EX

Int Filename

CDB3

Specifies BAL Executor package.

Specifies intermediate 8AL file, pro­
duced by TR routine. Can be any valid
filename. Type -T is assumed as the
default case.

Specifies execution of the program un­
der DEBUG control. See the BAL Refer­
ence Manual for a complete description
of use of the DEBUG package.

16-3

When this command is executed, the BAL Executor is loaded
into memory, then the specified BAL program is loaded into
memory and executed. If any run-time errors occur, an error
message is displayed (see the BOSS BAL Reference Manual for
list of error messages), the BAL program is aborted and the
PROLOGUE prompt is returned.

An error message will be in the format:

ERROR N IN SEGMENT X AT ADDRESS YY

Where : N is the error number.
X is the program segment.
YY is the Debug address within the segment.

16-4

APPENDIX A. BIBLIOGRAPHY

Refer to the following documents for additional detail on topics
discussed in this manual.

Title Publication No.

BOSS System Operator's Manual

BOSS PROLOGUE User's Reference Manual

BOSS PROLOGUE System Programmer's
Guide

BOSS BASIC Reference Manual

B-1001

B-1003

B-1004

B-1005

A-1

APPENDIX 8 ASCII CODES

DEC HEX CHAR DEC HEX CHAR DEC HEX CHAR

OOO 00 NUL 043 2B + 086 56 V
001 01 SOH 044 2 C 087 57 U
002 02 STX 045 2D - 088 58 X
003 03 ETX 046 2E • 089 59 Y
004 04 EOT 047 2 F / 090 5 A Z
005 05 ENQ 048 30 0 091 5B Z
006 06 ACK 049 31 1 092 5 C \
0 0 7 07 BEL 050 32 2 093 5 D 3
0 0 8 08 BS 051 33 3 094 5 E A

0 0 9 09 HT 052 34 4 095 5F <
0 1 0 OA LF 053 35 5 096 60 fi

011 OB VT 054 36 6 097 61 a
012 OC FF 055 37 7 098 62 b
013 OD CR 056 38 8 099 63 c
014 OE SO 057 39 9 100 64 d
015 OF SI 058 3 A •• 101 65 e
016 10 DLE 059 3B •9 102 66 f
017 11 DC1 060 3 C < 103 67 g
018 12 DC2 061 3D = 104 68 h
019 13 DC3 062 3 E > 105 69 i
020 14 DC4 063 3 F 9• 106 6A j
021 15 NAK 064 40 a 107 6B k
0 2 2 16 SYN 065 41 A 108 6C l
023 17 ETB 066 42 B 109 6D m

024 18 CAN 067 43 c 110 6E n
0 2 5 19 EM 068 44 D 111 6F o
0 2 6 1 A SUB 069 45 E 112 70 P
027 1 B ESCAPE 070 46 F 113 71 q
028 1 C FS 071 47 G 114 72 r
0 2 9 1 D GS 072 48 H 115 73 s
0 3 0 1 E RS 073 49 I 116 74 t
031 1 F US 074 4A J 117 75 U

032 20 SPACE 075 4B K 118 76 V

033 21 i• 076 4C L 119 77
0 3 4 22 M 077 4D M 120 78 X

035 23 # 078 4E N 121 79 y
036 24 $ 079 4F 0 122 7 A Z
037 25 X 080 50 P 123 78 c
0 3 8 26 & 081 51 Q 124 7 C ••
039 27 • 082 52 R 125 7D 3
0 4 0 28 < 083 53 S 126 7E
041 29) 084 54 T 127 7F DEL
0 4 2 2 A * 085 55 U

ASCII i s an acronym for ,American Standard Code for Inform
t i on Exchange.

B-1

Standard Abbreviations for ASCII Characters 0 through 31
(00 through 1F Hex)

ACK
BELL
BS
CAN
CR
DC1
DC2
0C3
DC4
DLE
EM
ENQ
EOT
ESC
ETB
ETX
FF
FS
GS
HT
LF
NAK
NUL
RS
SI
SO
S OH
STX
SUB
SYN
US
VT

Acknowledge
Bell
Backspace
Cancel
Carriage Return
Direct Control 1
Direct Control 2
Direct Control 3
Direct Control 4
Data Link Escape
End of Medium
Enquiry
End of Transmission
Escape
End Transmission Block
End Text
Form Feed
Form Separator
Group Separator
Horizontal Tab
Line Feed
Negative Acknowledge
Null
Record Separator
Shift In
Shift Out
Start of Heading
Start Text
Substitute
Synchronous Idle
Unit Separator
Vertical Tab

B-2

APPENDIX C BAL AND FILE MANAGEMENT SYSTEM ERROR CODES

C.1 GENERAL

When you are using the BAL system, errors may occur during
translation of your program or execution of the program.
This appendix contains a complete list of the various errors
which may occur when using the BAL System and the optional
File Management System. They are grouped according t-o
Translation-Time errors, Execution Time errors, and File Ma­
nagement System status/errors.

Note that errors may occur when using various PROLOGUE Opera­
ting system routines. This includes errors which may occur
using the peripherals. Refer to the PROLOGUE User’s Manual
for a complete list of these error codes, and suggested reco­
very procedures.

C.2 TRANSLATION-TIME ERRORS

When program errors are detected during translation, they are
handled as follows:

1. If the listing is on the CRT, an error message is dis­
played and output halts, giving you time to note the
error. The offending character is enclosed in parentheses
and one of the error messages listed below is displayed.

Pressing ESC continues the translation.

2. If the listing is on the printer, an error message is
printed below the instruction in error and output con­
ti nues .

3. Example: DCL A,B,CD
*** <D) DECLARATION ERROR DBUG ADDRESS 0007

4« When a translation time error is fatal, you will note that
a program length of zero is listed at the end of the
translation for the segment in which that error occured.

Message Displayed Remarks

Keyword Incorrect 1. Attempt to begin a program with a
statement other than PROGRAM.

2. Spelling error. PRINT spelled
PRIMT; GOTO written GO TO or with
zeros, not letter 0; keyword typed
in lower case (must be all caps),
etc.

C-1

Ettiquete Error

Value Not Binary

Segment Number
Incorrect

End of Instruction
Incorrect

FOR-NEXT Incorrect

Syntax Error

Incorrect Operator

Variable Type
Incorrect

Format Error

Support Variable
Incorrect

Dec l a rat ion Error

Binary Code Too
Large

3. The equal sign that is part of seve­
ral keywords (ASK=, PRINT=, READ=)
may be misused, i.e., ASK = (no spa­
ce allowed).

Error in use of instruction: GOTO READ,
IF A=B GOTO C (cannot GOTO A variable).

Attempt to use alphanumeric when binary
required, e.g. SEGMENT = typed instead
of SEGMENT 0.

Attempt to use segment number larger
than 15, use of incorrect segment num­
ber with ESEG.

Last portion of instruction can't be
decoded. Often occurs when the ; is
used to add comments to a line and is
misspelled or edited out. Also can be
a typing error (such as for input va­
riable in ASK instruction).

Often an attempt to use FOR without a
corresponding NEXT.

Instruction constructed incorrectly.
Incorrect operand, spelling error, er­
ror in required punctuation, e.g., must
be ASK=1: not ASK=1;.

One of operators (+,-,*,/) omitted or
used incorrectly.

Incorrect variable type used. Ex: numeric
variable used in instruction to
manipulate a string; string used as in­
dex in FOR-NEXT loop.

Incorrect ASK or PRINT format.

Variable used incorrectly in FIELD sta­
tement or in equiva lencing variables.

Error in DCL instruction. Often a ty­
ping error, such as DCL A,B,CD. Could
be an attempt to declare two variables
with the same name.

Object code generated for this instruc­
tion (usually a complicated ASK or
PRINT) is too large. Find a way to
shorten the instruction.

C-2

String Incorrect Error in string construction. May have
forgotten to indicate string by quote
marks, as "STRING"; or tried to exceed
the specified string Length.

BCD Incorrect Can occur if you use construction
A=B**C (legal in some systems).

Stack Overflow Must reduce number of nested FOR-NEXT
Nested FOR Loops loops to the mximum of 16.

C .3 EXECUTION TIME ERRORS

The following errors can occur when you execute your BAL
program. When one of these errors occurs, an error message
is printed or displayed in the format below, the program is
aborted, and you return to the PROLOGUE command level.

ERROR NN IN SEGMENT XX AT DEBUG ADDRESS YYYY

Where : NN is the error code as listed below.
XX is the program segment being executed.
YYYY is the debug address of the instruction

which was in error.

Note: Error codes are in decimal.

Code Description Remarks

100 Segment non-existent Attempt to reference a
existent segment.

non -

101 End of DATA for READ
instruction

Need to add DATA elements or
use RESTORE instruction.

102 Zero index in a table Zero index, e.g., B(0) illegal

103 Index too large Attempt to use an index
larger than the maximum
clared value.

va lu«»
de-

104 String used as index Illegal

105 Incorrect return in a
G0SUB

106 Overflow of long
numeric variable

Overflow of capacity of
variable.

long

107 Too many levels of
G0SUB or LDG0-SEG

Sixteen levels maximum.

*

C-3

Code Description Remarks

108 Arithmetic overflow

109 Intermediate file
i ncorrect

110 Long numeric variable
incorrect

111 Wrong peripheral no
in ASK or PRINT

112 Format error

113 Variable too large

114 Memory overflow

115 Instruction unknown

116 Logic No. not de­
clared by ASSIGN

117 Logical number re­
ferring to fi le, not
a support device.

118 External variable
forbidden at this
place in this
i nst ruct i on

119 Logical number re­
ferring to support
device, not file

120 File or support
device write pro­
tected.

Error in structure of BAL in­
termediate file. Re-translate.

ASK=1 is only legal number.
PRINT=1 or PRINT=2 OK, all
others incorrect. Check your
variable PRINT=A:..; for cor­
rect value.

Variable too large to be con­
tained in specified memory.

Revise your program into sev­
eral smaller segments which
can be called into memory as
needed.

Could have clobbered part of
memory.

Attempt to use an instruction
referencing a logical number
before an ASSIGN has been ex­
ecuted, assigning a number to
the specified file.

In 10 instruction, attempt to
refer to the logical number
of a file. Can only refer to
a peripheral device.

In instruction which uses a
file, have referred to the
logical number assigned to a
peripheral device. This is
used only by 10 instruction.

For a file, you must supply
the correct password for write,
for device, remove write pro­
tection tab.

C-4

Code Descri ption Remarks

121 Name furnished is
support device name
not file n a m e .

122 Input Buffer too In file management, the spec-
small ified input buffer is too small

to contain the the length or
index of the instruction
Searched for.

C.4 FILE MANAGEMENT SYSTEM STATUS/ERROR CODES

Each time you use one of the File Management System
instructions, a status/error code will be returned (in para­
meter E, if specified). This code either indicates a normal
status condition of the file, or indicates that an error
occurred. The codes and descriptions are listed below.

Code (decimal) Status/Error Condition

00
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54

55
56

57
58
59
60

61
62
63

Normal execution of command
File unknown
File already exists
File closed
File already open
File cannot be shared
Attempt to extend file beyond 18 extension
blocks
Volume overflow
Incorrect password (part of filename)
End of file
Di rectory full
Logical number too large (15 maximum)
Logic number table full
File not opened by you
Sector address unknown
No directory (volume not created by file
system)
Requested file function unknown
Function does not exist in system (may not
be configured into this version of PROLOGUE)
Support non-shareable
Volume still contains files
Incoherence in the structure of the volume
File type incorrect (Example, attempt to
INSERT in a sequential file.)

Record length incorrect
Loss of information on write
Loss of information on read

C-5

Code

64
70
71
72
73
74
75
76
77
78
79
80

81
82

(decimal) Status/Error Condi t ion

Beginning of file
Key length too small
Key length too large
Too many files open
Index value of zero
Key already blocked
Overflow of file of keys
Incoherence in the file of keys
Overflow of data file
Key does not exist
Key exists but not with specified index
Overflow of the structure of keys. No more
room for keys.
Key already exists
Input buffer smaller than the key

C-6

	TABLE OF CONTENTS

