* , Tur®gDOS Users”

STRUGGLING THROUGH
R. Roger Breton

This newsletter has been. very long .imr
coming. Rﬁl

mine, only ﬁnrt of that. ggault
directly minei '.The -major partlon of
the fault, L=fee1 Iies with the facf

that all except a vefyqfew of vou seeq
to feel that.this users’ ggoup 1s to

be treated as a m¢g321ne subscrzp;;on;

wherein you pay a' subscriptiom,, fee and

the publlsher does the rest. For the
umy!-ccuulﬁ. l.li:'ie, let'ﬁ&\eﬂ‘.pha" 32 tk""

ke v,

this is not‘so!

TUG stands for “the. TurboDGS Users’

Group”: a “name and trademark mos;
carefully chosen,” ‘Note that it 1s$!§
"Users” Group," not a,"User’s Group."

In both ‘English and . legalese the
implication “is that this-is a group
of, by, and for the users.of TurboDOS

collectlvely. I am again goxng to
reiterate “that it ib: not: my. inteéntion
to provide "Roger Breton's TuxboDOS
Newslettetr.™ - Were. thatxmy Lntentlon,

it would be ‘sc named,:
issue schedule- would be Jkept, . .and the
“price would be- proportlenate‘vﬂhﬁ

o _q-'!

TUG is fot desd, :neither has it yet
been mortally- wounded,#, but , it is
certainly not well.. Framkly, I am
rapidly
lack of ~* collective ' interest . is
destroylng ‘my ‘interest. Eor all of
you that - have been with me from the
beglnnlng, “let ' me’-state th@t if I
don“t receive:enough &npgtuto f;ll the
next issue before the next issue, geﬁﬁ
~. to. bed then the. next lSSueg“‘tﬁé
fourth 1ssue frowm me; may well be your
last,
the last-at $20. 00 per year. .

For thése of you uho are : méw
subscribers :‘(since..the. last lssue)
rest &assured that‘you ‘will receive 4

total of fout: issues: for.. .your money,
come what' may, ui

Part of the delay ip this. isgue was

that I foolishly -gave my. malllug 115(

Group Newsletter, Volume 3, Number 1

. the fault is of | cour e'

> 83 Very tlghtf

reaching the point. whe*e the‘

At the very :least, }1t w111 De

o

Page 1

TABLE OF CONTENTS

Editorial o-cooc--c-o---ooo-coo'o.oo.:1:'

,,,,,,,

BatC& ProceéS&ngWQM..........,......’
VeriRon 1.43. ABIVEERS gopceseneesees 47

HEEEILD KOOI G LIO O OO LIO OO -

L0 @ h1gh§yw~¢rusted programmer “to -
“ncorpéritesinto ‘a good data b?se last

November. ”“@hls ,1nd1v1dual got the:
‘programs aimost done, -, ;then lost ‘Her
§y3t¢m'(llnerally) But. not. ‘to fearl-
'f"‘h k:}nnl’1~rn, wa1'|13g 'Esei- ’.rnc UaFn' nn
‘tape<backupl.: Uafortunately,A a “méans -
of reading. the.tape. was 'ho " longer -

available, “and: .wasn ‘t, made avallable:
until the: last; week 1n June.$ “This
comedy of - errors has caLsed severa1

things to ‘happen: flrst»Anever ‘again
‘Will another 1nd1v1du41 no matter how
trusted, -.rdceive. my: only copy of
anytb;ng,M .second, .the. almost
Vo lume 2:37- issue became outdated
‘third, i# the:interim;I, had completed‘i
4 set fsibo—flle utllltles' to be K
commerclally _m&rketedJ o fourth

needed - smnethm,g for tlp.s issue'in a
‘hurﬁ&; jand fifth, I feel gullty that
“this issue ‘has been so ang in ébmlng.
The result, iyou are, all rece1v1ng Ty
DO-file dbilities)in thelr entlrety in

this lssue, source; codg an& all. Rest
assured ithat your TUG memﬁefsh] - fee
is only ~a. fractaqn, qf what “this

utility packago was to, have gone for
commercxall . Enloy! .

_<7<><><><><><><><><5<><><5<$<><><><><>
VERSIONS |

kwgoger 'rBreton

THere has been con51derab1e * donfusion
?aﬁeﬂt th& _variousg TurboDOS versions:
At théﬁéifférences are ‘and * whether

‘ot not vatsystem should be updated I
hope in this wexy, short arplcle to
dispell at .least some of the myths*»
that havg-ar1sen.
TurboDOS has
‘folloving-versions:

POLA PRI
t .

beenvﬁiésented in the

-.1.00-1.16, 1.20-

done

TurboDOS Users”

VERSIONS ~- Continued

1.22, 1.30, 1.40-1.43. The last
version in each range was the "stable'
debugged issue of that versiom (though
there may be a series of patches
required to fix the bugs). The
current version is 1.43. Sl

[4
Versions .1.00 through 1.16. were the
earlist. versions of TurboDOS created

and issyed when ME/M didn” t work and:
MP/M-2:yas a dream. As.a- result _a
proprietary form of file locking, via
the $.LOK pseudo-file, was used and
record locklng was?not+ p6551b1ea booso
Versions 1.20 thrOugh l 22 wene the:
first MP/M-compatible versions as
regards file and record locking. They
still used . extended BDOS :functiocd
numbers to perform TurboDOS-only:
functions, however, and many of’ ‘the-

newer CP/M and MP/M programs will not

work because of this.,, ¢~ W, o
Version 1.30 eliminated.?\-yﬁﬁe
BDOS/TurboD0S function. ;:. ..conflict,

greatly improved overall.' performarice,
and introduced the ab111ty to uﬁe.l6—
bit slaves., ..: ~

Versions 1.40 and 1.41 introduced 16~
bit masters, allowing a sigmificant
leap 1in performance, .and. the, ability
to network with IBM-PC’s.

the
and

Version 1.42 greatly improved
networking capabilities of 1.41
added several new functioms. .,
Version 1.43 agaipn improved networking,
capabilities, added more, functions, am:lif
increased the number of f11es that may.,

be opened from a few hundred to well
over a thousand, allowing increased
power with database programs., Y

A system should always be upgraded to,
the most-recent .version;unless there
has been a considerable investment .in
software that will not work,under the
newer version.

OCOOOOGHIOOOROLHLRLOOH0

Group Newsletter, Volume 3, Number 1

TUG'N, the TurboDOS Users” Group
Newsletter, is published quarterly by
the director of the TurboDOS Users”

Group (TUG),
TUG members.

and is available only to

M

Membership in TUG is available at the
following yearly rates: - domestic :Or
Canadian, :$20.00; foreign, $30.00.
-Specigl consideration is given to
contributors., .

PSRN R S ! ’
TUGEN _is- avallable on 8" SSSD CP/M or
5.25" 80-track TurboDOS standard °
format diskettes for a nominal fee.

J,TUG'N. is-also available via modem at
.no - charge under special circumstances

-and - by @ppointment -only. Write for
details,

Back: tissues are available at the
following 'rates: Volume 1:1,
+$7+50/10.00; Volume 2:1 -or 2:2,
$6.00/8.50.

5A113;§oﬁaents-copyright (C) 1986, by
the -BurboDOS :Users” Group and/or its

*¢ontributors, all rights reserved. HNo
material .contained herein may be
.reprodiced in any manner, in whole or
in - part, by any means whatsoever,
without the prior written permission
of the director of the TurboDOS Users”

Group., -Members are hereby granted.
unlimited 1license for their own
persqnal, non-commercial wuse. No
material may be given, sold or

otherwise disseminated to non-members ..

without the prior written. perm1881on
of, the dlrecto; of the TurboD0S Users”-
Group, - All. correspondence should be
addressed. to:, -
' ,R.MRoger,ﬁre;on, Director
TurboD0OS Users” Group
836 Portola Avenue, Suite 599
Livermore, CA 94550

arge- trademarks:
TUC,qiﬂch yrﬂthe TurboDOS Users Group
TurboDOS -~ Software.2000, Inc.
CP/M, MP/M -- Digital Research, Inc.

The following

TurboDOS Users Group Newsletter, Volume 3, Number i, ' Page 3

BATCH PROCESSING UNDER TurboDOS
R. Roger Breton
== Introduction ~~

As most of us are probably aware, the TurboDOS operating system provides an
extremely powerful tool in DO.COM, its batch processing utility. In a nutshell,
DO.COM will process the commands and/or program input it finds in an ASCII
auxilliary file, known as a DO-file, just as though they had been entered
directly from the.console keyboard at run~time. In this manner, routines that
are long, repetitive, or tedious may be performed by the system with little or
no human interaction.

What some may not realize, though it I8 covered in the TurboDGS User”’s CGuide, is
that one or more arguments may be used to allow DO.COM to perform a task that
has identical functions but different specifics, such as an edit-gssemble-link-
test process.

Associated with DO.COM ie & utility, BATCE.COM, for background command
processing via a dedicated slave processor in the system. This is accomplished
through a special FIFO DO-file with the name BATCH.DO.

In addition to TurboDOS” own utilities, DO.COM and BATCH.COM, a series of
sixteen auxiliary utilitiesz specifically designed for use within a DO-file to
allow DO.COM to alter .the operations performed according to a series of
internally or externally specified conditiones is introduced. Since the key to
these utilities is conditicnality, DO-files incorporating them sre known as
conditional DO-files, and provide another level cf ctility and sheér computing
power to the TurboDOS user. By their use, DO-files to meet virtusally any
reasnable condition may be created.

In order to minimize verbage and confusion, all utilities mentioned herein will
be referred to as type COM. It should be clearly umderstood that type OMD
utilities, for 16~bit systems, are azlso provided.

Also, since several of the command lines to b exampled here use either single
or double quotes as part of the command line itself, all commands will be
enclosed in angles <>, and will represent literal strings of the characters
making up the command, - plus the terminating carriage return. Standard TurboDOS
conventions are used, wherein capital letters are used to represent explicit
terms and lower-case letters are used to represent non—specific generic terms,
Braces {} are used to eaclose optional terms: the braces themselves are not
part of the command. '

-- The DO Command --

The batch processing utility DO.CCM is executed via the following command line:
<00 {uud:}filename{.typ} {argl arg2 ... argR}>. As with all TurboDOS command
lines, this represents a sor: of computar "sentence," with "DO™ being the verb
and "{uud:}filensme{.type}" being the object. The string of arguments may be
taken as a collection of modifiers.

The term "{uud:}filensme{.typ}" is standard TurboD0OS mnotation for a file
representation, in this case the DO-file to be executed. The term "{uud:}"

TurboDOS Users Group Newsletter, Volume 3, Number 1, ======= Page’4

represents an optional user/drive designation, such as the literal "4B:", in
TurboDOS 1.4x format. For versions of turboDOS earlier than 1.4x, the "uud:"
designation should be assumed to be "d:", as cross-user performance 1is not
normally allowed except for global operation, even for priviledged users. Cross
user operation is never allowed for non-priviledged users in any TurboDOS
version, again except for global operations. If either the user code and/or
drive letter is missing, then the current user and/or drive is assumed. The
term "filename" represents any legal TurboDOS filename, and is NOT optional.
The term "{.typ}" represents any legal TurboDOS filetype. If a filetype is not
specified, type ".DO" is assumed.

The term "{argl arg2 ... argN}" represents an argument string of zero to "N"
arguments., There may be any reasonable number of arguments in the command, all
of which are separated from the DO-file and each other by white space -- spaces
and/or tabs.

-- Simple DO-Files --

In its simplest form, a DO-file is nothing more than an ASCII text file
containing a list of command lines identical to the form they would take were
they entered from the keyboard at each running. This may be seen by studying a
common example, a short file backup procedure using the COPY command with its
ARCHIVED option. In this example, we are backing up the first thirty-one users
of drive B: (hard-disk) to drive E: (floppy disk), keeping the same user
numbers. We ourselves will be on drive A: user 0.
If we were to manually do this, the procedure would be as follows:

1) Enter COPY

2) Enter 0B: OE:;NAC

3) Wait for the system to perform the task.

4) Enter 1B: 1E:;NAC

5) Wait for the system to perform the task.

-- Repeat 4) and 5) for users 2 through 29.

62) Enter 30B: 30E:;NAC

63) Wait for the system to perform the task,

64) Enter a carriage return.

And we are done! Except, of course, for any floppy disk changes required, which
would have to be donme in any case,

Had we created a DO-file, DAILY.DO, to do the work for us, our procedure would
have become:

1) Enter DO DAILY

2) Wait for system to perform all the tasks.,

TurboD®S' Users Group Newsletter, Volume 3, Number 1, === Page 5

DONE!

DAILY.DO would consist of the following:

CcorY

0B: OE:;NAC
1B: 1E:;NAC
2B: 2E:;NAC

28B: 28E:;NAC
29B: 29E:;NAC
30B: 30E:;NAC
<cr>

Notice that the commands are exactly as we would have entered them manually,
including the final solo carriage return,

Creation of the DO-file is simplicity itself. Using any text editor or word
processor, we would have simply entered our commands one at a time, just as we
would have entered them had we been actually running them. If Wordstar or other
word processor were used, it should have been used in the non-document mode.

—- Cascading DO-Files —

One DO-file may call another. The companion to DAILY.DO above is WEEKLY.DO.
Were a weekly backup to be performed, the attributes of all files on user areas
0 through 31 of drive B: would have first been set to non-archived, then the
normal daily backup would have been performed. This might have been done via
the following DO-file, WEEKLY.DO:

SET

0B:;N-A
1B:;N-A
2B:;N-A
28B:;N-A
29B:;N-A
30B:;N-A
{cr>

DO DAILY

Please note that WEEKLY.DO ends with the command <D0 DAILY>., Therefore,
entering the command <D0 WEEKLY> would have caused all the commands in WEEKLY.DO
to be executed, including the execution of the command <DO DAILY>, which would
have then caused all the commands in DAILY.DO to be executed! Both DO-files
would be executed via a single command!

There 1is no fixed limit on the number of DO-files that may be cascaded, the
limit depends upon the memory available for the DO-file command stack, and A.DO
may call B.DO, which may call C.DO, which may call D.DO, etc. In a similar
manner, A.DO may call B.DO and C.DO and D.DO from the same original file, or may
call B.DO five times, or whatever.

There is only one restriction on the cascading of DO-files, and that is for a

TurboDOS Users Group Newsletter, Volume 3, Number 1, =s====s===s=== ======= Page 6'

DO-file <calling itself. Since TurboDOS keeps track of which DO-file calls
which, a DO-file calling itself will quickly build up a nest of pointers, and
can easily get completely out of hand. Therefore, when a DO-file calls itself,
the 1line doing the calling should NOT end with a carriage return (which is
really a carriage return/linefeed pair), but rather end with a linefeed omnly.
This will trick TurboDOS into NOT creating another stack entry for the same DO-
file.

As an example of this in action, suppose we were to be creating a new utility,
UTILITY.COM, and knew ahead of time that it would take many iteratioms until it
was just right. We might create first the following DO-file, UTILITY.DO:

WM UTILITY.MAC

M80 UTILITY,UTILITY=UTILITY
GEN UTILITY.COM

UTILITY

<cr>

UTILITY

DO UTILITY<1f>

An analysis of the above shows that first we would enter the text editor WM.COM
(Wordmaster) and edit the file UTILITY.MAC, which is our souce code for
UTILITY.COM. Wordmaster takes its input ONLY from the keyboard (some other text
editors do not), and will function perfectly in this context.

After editing our source code, we exit Wordmaster, whereupon the DO-file would
promptly assemble our source code with the command M80 UTILITY,UTILITY=UTILITY,
which would create the files UTILITY.REL and UTILITY.PRN.

The DO-file would then use GEN.COM, TurboD0S“s own linker (and a very good onel!)
to 1link UTILITY.REL into UTILITY.COM. Since there is no UTILITY.GEN file,
GEN.COM would go interactive, and would take the name of the REL-files to be
linked from the DO-file. In this case, there is only one REL-file, UTILITY,
followed by a solo carriage return to exit the interactive mode.

After UTILITY.COM has been linked, it would be tested by entering the command
UTILITY. We would then note any possible errors in performance.

As expected, we would then be placed back into Wordmaster by having UTILITY.DO
call itself. This process might be repeated indefinitely if the command <DO
UTILITY> is NOT ended with a carriage return (a linefeed is wused instead);
TurboDOS would then keep only ONE stack entry, no matter how many iteratiomns
were made,

Once everything was finally correct with UTILITY.COM, we would exit from the DO-
file by entering an attention-abort sequence, typically BREAK/control-C. We
would then be left with UTILITY.MAC, our corrected source code; UTILITY.PRN, our
assembly print file; UTILITY.REL, our relocatable object code module; and
UTILITY.COM, our finished command file,

-- DO-File Program Input --
In all of our examples thus far, a command file was shown taking its input

directly from the DO-file. Were we, in a normal manner, to enter the command
line <COPY>, the command file COPY.COM would be loaded into memory and we would

TurboD@S Users Group Newsletter, Volume 3, Number 1, Page 7

find ourselves 1in interactive mode, operating from inside the command file
itself (asterisk prompt) rather than at the operating system level (TurboDOS
prompt, such as OA}). We would then enter our sub-commands one at a time until
we were finished, whereupon we would exit the interactive mode by entering a
null sub-command (solo carriage return).

There 1is absolutely no difficulty encountered in making these entries from the
DO-file. Simply remember to put everything in the DO-file in the exact order
you would enter it directly: do not forget any solo carriage returns.

In the UTILITY.DO example above, we noted that Wordmaster took its input solely
from the keyboard, whereas Wordstar and many other word processor and text
editors would take their input from the DO-file. What makes this difference and
how would we know? The difference as to whether a program will accept imput
from a DO-file, or will only accept input from the keyboard depends solely on
how that program is written. Assuming the program was writtemn in assembly
language and it uses the standard console input functions, C-functions 2 and 10,
as the input means, then it will also accept input from the DO-file. 1If, on the
other hand, it uses the direct console I/0 function, C-function 6 (and that omnly
in the get combined status/input mode}, as console input, thenm it will NOT
accept input from a DO-file, and input MUST come from the console. Wordmaster
falls into this latter category, while Wordstar is of the former type.

How can we tell into which category a given program will fall? Alas, there is
no way other than to test the program in a DO-file. Fortunately, such a test is
very rapid and easy to make.

— DO-File Arguments --
Looking back at UTILITY.DO, we see it as it originally was:

WM UTILITY.MAC

M80 UTILITY,UTILITY=UTILITY
GEN UTILITY.COM

UTILITY

<cr>

UTILITY

DO UTILITY<1f>

Since the purpose of this DO-file was to edit, assemble, link and test a new
utility, it would be much more useful if it would handle any new utility. We
may do this by changing every "UTILITY" in the DO-file into an argument. Since
the argument is always the same, they will all be the same argument. The new
DO-file, which we”ll call EALT.DO (after the initials of the functionms
involved), would now look like: N

WM {1}.MAC

M80 {1},{1}={1}
GEN {1}.COM

{1}

<cr>
{1}
DO {1}<1f>

Assuming that we are still working on the program UTILITY.COM, we would execute

TurboDOS Users Group Newsletter, Volume 3, Number 1, =====s====== EE=mm== Page~ 8

our new DO-file with the command <pO EALT UTILITY>., In the command line, "DO"
is the command itself, "EALT" is the name of the DO-file to be executed, and
"UTILITY" is the first (and only) argument, which will replace every occurance
of "{1}", the first argument place marker, in the DO-file.

In order to do this replacing, a temporary DO-file, EALT.DO$, is created on-the-
fly and contains all the replacements. It is this temporary DO$-file that is
executed. The DO$-file is deleted after execution, unless, of course, you
attention-abort out, as with our example, in which case we would have to
manually delete it.

Any reasonable number of arguments may be used. Looking at our DAILY.DO example
above, we may increase the flexibility to any hard-disk drive, A:, B:, C: or D:,
backed up to either floppy drive, E: or F:, by making the DO-file contain two
arguments:

COPY

0{1}: 0{2}:;NAC
1{1}: 1{2}:;NAC
2{1}: 2{2}:;NAC
28{1}: 28{2}:;NAC
29{1}: 29{2}:;NAC
30{1}: 30{2}:;NAC
<cr>

To use this DO-file to back up hard-disk drive C: to floppy drive F:, we would
execute the command <DO DAILY C F>.

It 1is important for us to remember that the substituted arguments are truly
substituted, and that argumented DO-files are cascaded as easily as any others
if planned properly. Witness our example WEEKLY.DO file converted to arguments:

SET
0{1}:;N-A
1{1}:;N-A
2{1}:;N-A
28{1}:;N-A
29{1}:;N-A
30{1}:;N-A

<cr>

DO DAILY {1} {2}

By making the <DO DAILY> command <DO DAILY {1} {2}>, we will cascade the
arguments into the DAILY.DO file.

-—Arguments with Spaces --

Normally, the arguments are separated by spaces in the command line,
Occasionally, some argument may appear that in itself requires spaces. Suppose
the DO-file RUNBAS.DO contains the command line <MBASIC {1}>. The argument
would usually be the name of a file of type BAS. An execution command might be
<DO RUNBAS AR> where "AR.BAS" is the name of an MBASIC accounts receivable
program,

TurboDDS’ Users Group Newsletter, Volume 3, Number 1, Page 9

Let us assume, however, that the AR.BAS file itself has some argument or switch
involved, such as "$512" for 512-byte records. In this case, the execution
command should be <DO RUNBAS AR $512>, but this won’t work, as only "AR" would
be taken as the first argument, and "$512" would be taken as the second argument
and, since no second argument is called for, "$512" would be ignored.

The solution is both simple and elegant: enclose the argument in single or
double quotes! The correct command line would be either <DO RUNBAS “AR $5127>
or <DO RUNBAS "AR $512">. Why either single or double quotes? 1In case the
argument called for should contain quotes within itself: in the command <DO
DOFILE “"TEST"“> the argument is "TEST" (quotes included), not TEST.

-— Defaulted DO-File Arguments ~--

When creating argumented DO-files, we often run across the situation where the
argument is normally a specific value, and only occasionally a differing one.
In this case, we may use defaulted arguments. Using our trusty DAILY.DO again,
let us assume that almost all our work is done on hard-disk drive B:, and that
we almost always back up to floppy drive E:: The other hard-disk drives are for
special use, seldom changed (hence seldom backed up), and floppy drive F: is a
5~1/4" floppy only rarely used. In this case, we could make our DAILY.DO file
look like:

COPY
0{1,B}: 0{2,E}:;NAC
1{1,B}: 1{2,E}:;NAC
2{1,B}: 2{2,E}:;NAC
28{1,B}: 29{2,E}:;NAC
29{1,B}: 29{2,E}:;NAC
30{1,B}: 30{2,E}:;NAC
<cr>

We now have maximum flexibility. Should we wish to backup B: to E: (normal), we
simply enter the command <DO DAILY ““>., The ““ is two single-quotes togther,
and causes a NULL ARGUMENT to be entered. A null argument may be either two
single-quotes or two double-quotes. A null argument is still an argument, and
AT LEAST ONE ARGUMENT MUST BE ENTERED if defaulted arguments are wused. This
triggers TurboDOS to make the DO$~file required. The command <DO DAILY> is NOT
acceptable, as no DOS-file would be created and TurboDOS would try to run the
DO-file as it stands.

In a like manner, if we wished to backup drive D: to drive E:, the command could
be <DO DAILY D>. Since "D" is a valid argument, the DO$-file will be created
and the second argument will assume its defaulted value.

To backup drive C: to drive F: the command <DO DAILY C F>, with both arguments,
is required, but to backup drive B: to drive F:, either <DO DAILY B F> or <DO
DAILY "" F> may be used. The former uses explicit arguments, while the latter
uses a null argument for the first argument, causing the default, "B", to be
substituted.

TurboDOS Users Group Newsletter, Volume 3, Number 1, =================== Page‘lo‘

-- Background Batch Processing —-

TurboDOS has a very simple yet elegant method of using its DO.COM utility to
perform time-consuming operations not requiring human intervention as a
completely invisible background process. This is through the use of a dedicated
processor, the special FIFQO DO-file BATCH.DO, and the utility BATCH.COM.

For most systems, the key issue here is the dedicated processor. Before
throwing up your hands, however, and saying that hardware costs prohibit using
backgroud batch processing, please bear in mind that time consuming processes,
such as a Dataflex re-index operation or some large sort routine, may take hours
to run, and represent lost time on the terminal upon which they are done. The
cost of an additional slave processor might well be quickly realized in the
savings of lost operator time. Even some relatively trivial function such as
copying floppies onto the hard disk take considerable operator time, and can be
better relegated to a background process.

To set up the background processor, install a slave with its own OSSLAVEx,SYS
file, patching its AUTUSR parameter to 80 so it will automatically boot
priviledged to user 0 of drive A:, and its WARMFN to 00,"BATCH “,"AUT" so it
will warmstart to the file BATCH.AUT. A console on the slave is not required.
In fact, since it is priviledged, a console should be avoided.

Create BATCH.AUT with the command line <AUTOLOAD |DO BATCH\RENAME AUTOLOAD.AUT
BATCH.AUT\SET BATCH.AUT;GR>. Note that there are really three commands in this
command line, and that the new file BATCH,AUT is set global and read-only.

The next step is to create the special FIFO DO-file BATCH.DO. A FIFO (First-In-
First-Out) file is a very special file type supported by TurboDOS, having always
a fixed number of records set at the time the file is created and accessing
those records on a strictly first-in-first-out basis. A FIFO file is somewhat
like a Unix "pipe," and is much like placing marbles in a real pipe. The first
marble in is the first out the other end. The pipe will be able to contain a
specific number of marbles at one time, which is analogous to the length (number
of records) of a FIFO.

The subject of FIFO files cannot be covered in detail here, but that shouldn’t
stop us from being able to create BATCH.DO and successfully use it. We create
BATCH.DO with the command <FIFQ BATCH.DO>, then answer the following questions
as they appear on the screen (our entries are underlined):

FIFO file not found, creating new file

Enter FIFO type (Ram/Disk): D

Suspend processing on full/empty (Y/N): Y
Enter maximum number of records (1-65535): 200
FIFO file created

Taking each question in turn, the body of a FIFO-file may be RAM- (memory-)
resident or Disk-resident. RAM-resident FIF0“s are much faster, but limited to
a maximum of 127 records (usually much less), and the benefits of RAM-resident
FIFO s are not usually realized in BATCH.DO,

A FIFO is "empty" when none of its records contain current data, and "full" when
all contain current data. When a fifo is empty, it cannot be read (nothing left
to read), and when it is full it cannot be written (no room to write). Under

TurboD0S Users Group Newsletter, Volume 3, Number 1, Page 11

such conditions, attempting to access the FIFO will produce either a suspension
of operation until the read or write can take place or an error message will be
returned dropping the processor to the operating system level. Since we have no
console on our processor, we need to suspend operation,

The size or length of a FIFO-file is counted in records. Each record of
BATCH.DO represents one command line that may be “piped" into the FIFO. Command
lines will be written 1in at one end and read out of the other in a steady
stream, therefore, there should be enough records allocated to allow the largest
desired "queue" of command lines to be contained. The length of time for any
single command line to be processed is, of course, dependent upon the operations
to be performed.

Please bear in mind that we are speaking of command lines here, not commands.
One command line may contain many commands, and a single command may be the
execution of a DO-file consisting of any reasonable number of commands,

After BATCH.DO has been created, it must be located on user area 0 of drive A:
and must be set global. Do NOT set it read-only.

After rebooting, the dedicated slave will attempt to process BATCH.DO, which
will be empty. The dedicated slave will then suspend operation (wait) until a
command line is written to BATCH.DO, whereupon it will immediately process the
command line, then wait for the next.

Command 1lines are written to BATCH.DO from anywhere on the system by the
BATCH.COM utility. You need not be priviledged to send a command line to
BATCH.DO. As an example, the command line <BATCH SORT FILA.DAT |SORT
FILB.DAT |SORT FILC.DAT>, when executed from user 5 of drive C:, sends BATCH.DO
this command line <5C:\SORT FILA.DAT\SORT FILB.DAT\SORTC.DAT>. Notice that the
first command 1is <5C:>, which will immediately move the dedicated slave’s
operation to the local drive and user, s8¢ the operator need not be priviledged
and so it will operate on the local files, just as the operator would. Also
notice that all vertical bars "|" have been converted to backslashes "\",
TurboD0S” standard command separator.

For those who need more than one background process, it is very easy to modify
BATCH.COM for files other than BATCH.DO. To make a "BATCH1" system, copy
BATCH.COM to BATCH1.COM, use the MONITOR.COM utility to modify BATCHI.COM as
follows:

Enter MONITOR

Enter LBATCH].COM

This will return an address "nnnn". Enter Ennnn

Respond to the "E" command as follows:

nonn: 00 = <cr>
nnnn: 42 = <cr>
nnnn: 41 = <cr>
nnnn: 54 = <Lcer>

nnnn: 43 = <cr>
nonn: 48 = <cr>
naonn: 20 = 31<cr>
nnnn: 20 = <esc>

Enter SBATCH1.COM
Exit MONITOR by entering Q

BATCH1.COM has been modified. Create the background process exactly as
previously described, substituting "BATCH1" for every occurance of "BATCH". Use
BATCH1.COM to access the processor.

-- Conditionality in DO-Files —-

What is meant by conditionality in DO~-files? Simply speaking, a DO-file is
conditional if it changes function or operation according to the conditions that
exist at the time of execution of the various commands within the the DO-file.
A considerable number of TurboDOS“s utilities are conditional in some form. The
command <COPY B: E:;NAC> will copy each of the files on drive B: to drive E: IF
AND ONLY IF the Archived attribute on that file is set. In other words, only
those files with the Archived attribute set will be copied. This is clearly a
conditional operation.

Because of this, our DAILY.DO and WEEKLY.DO examples above may be said to be
conditional DO-files, and truly are. If this is the case, however, why is so
much of this article devoted to conditionality and what is all this brouhaha
about conditional DO-files and the conditional utilities in the first place?
The difference is in implicit and explicit conditionality.

A large number of TurboDOS utilities, as stated above, have some implicit
conditionality. The conditional wutilities presented here, however, were
specifically written to provide conditionality in a direct, explicit manner.

-— Conditional Utilities —--

There are sixteen utilities presented here: 8ix were created as explicit
conditionals and ten were created to support the six conditionals, though two
are so basic to use with DO-files in general that they could hardly be classed
as conditional support utilities.

The early forms of these utilities were presented as part of my now-defunct
TurboTOOLS utility/module set, and were so popular that they have been
considerably expanded, improved and updated and are here in version 2.20, All
are presented in both 8- and 16-bit versions, and will operate under TurboDOS
version 1,22 and later.

The six explicitly conditional utilities are divided into three pairs: one
pair, IFFIL and IFNOTFIL, for the execution of a command string based upon the
presence of a specified file; one pair, IFUSR and IFNOTUSR, for the execution of
a command string based upon the presence of files on a given user area of a
given drive; and one pair, IFCHR and IFNOTCHR, for the execution of a command
string based upon the matching of an argument. The ten support utilities are
divided into three pairs and four singles: one pair, CRFIL and CRFILYES, for
the creation of dummy (zero-K) files for use by IFFIL and IFNOTFIL; one pair,

TurboDOS Users Group Newsletter, Volume 3, Number 1, =========== = Page 13

DLFIL and DLFILYES, for the deletion of dummy files; ome pair, ENDDO and
ENDDOYES, for the premature termination of a DO-file; one single, DOHALT, to
force the halting of the operation of a DO-file to allow human interaction; one
single, PROMPT, for the display of a special message file on the console screen;
one single, CLS, for the clearing of the console screen, and cone single, BEEP,
used to beep the console three times as an operator-alert signal. Each of these
sixteen utilities is described in detail later.
-- Basic Command Syntaxes —-—

As would be expected in an integrated package, the command syntax for each of
the sixteen utilities is related. The command syntaxes are:

IFFIL testfile commandlist

IFNOTFIL testfile commandlist

IFUSR uud: commandlist

IFNOTUSR uud: commandlist

IFCHR tchr mcﬁr commandlist

IFNOTCHR tchr mchr commandlist

CRFIL zerofile

CRFILYES zerofile {;promptstring}

DLFIL zerofile

DLFILYES zerofile {;promptstring}

ENDDO

ENDDOYES {;promptstring}

DOHALT {;promptstring}

PROMPT dispfile

CLS

BEEP

~- Designating File Names --

As can be readily seen, a majority of the utilities specify some file be
entered, either "testfile", '"zerofile" or "dispfile". All of these are to be
entered in the standard TurboDOS file name format of "{uud:}filename{.typ}".
The filename is not optional and must be explicit: wildcards, "?" or "*", are
not allowed. The user area/drive code designator and/or filetype are optional,

with the current user area, current drive and/or a null filetype assumed as
default.

TurboDOS Users Group Newsletter, Volume 3, Number 1, == == Padgé 14

A note about the user area/drive code designator "uud:": this is the TurboDOS
1.4x designator, and should be taken to mean "d:" for versions 1.22 and 1.30.
As a result, cross-user performance is not allowed except in TurboDOS 1.4x.
This is because 1.4x has a quite clever method of parsing the user code upon
which these utilities depend. As is always the case, '"{uud:}" may be taken to
mean that either the user area or the drive or both are optional. The current
user area and/or drive will be understood as default for any missing parameter.

It must be pointed out that IFUSR and IFNOTUSR require BOTH the user code
(except for versions 1.22 and 1.30) AND the drive to operate. If either is
missing, an error will occur.

-~ The Command List -~

The six explicit conditional utilities require a command list "commandlist" to
operate, if "commandlist" is missing, an error will occur. "Commandlist" may be
a list of one or more commands in the form <{|}command {|command {|command
{...}}}> where "command" is any legitimate TurboDOS command, with all required
options, etc. The vertical bar "|" is used as a command separator, and is
converted to the conventional backslash "\" prior to execution. In version l.4x
only, if the command list begins with a command separator, then the commands
will not be echoed to the console as they are run,

Provisions have been made for the nesting of multiple IFFIL, IFNOTFIL, IFUSR,
IFNOTUSR, IFCHR and IFNOTCHR command strings: the first (outer) nest must have
a single separator character, "|"; the second nest a double separator character,
"]|"; the third nest a triple separator character, "|||"; etc. The following
example would process as shown:

1 2 3 4 5 6 7
I | | | I | |
OA}IFCHR A A BEEP|IFCHR B B BEEP||IFCHR C C BEEP| | |BEEP

Breaking this down, the primary command at #1, IFCHR; will run the following
command line:

2 3 4 5 6 7

I | I I | |
0A} BEEP\IFCHR B B BEEP |IFCHR C C BEEP ||BEEP

Notice that the single special separator "|" has become a standard TurboDOS
separator "\", the double special separator "||" has become a single " |", and
the triple special separator "|||" has become a double " ||". 1In actual fact,

the leading special separator in any muliple group will have been replaced by a
space.

Notice also that command #2 is separated from the "0A}" prompt by four spaces.
These four spaces are an overwrite of the "A A " parameters, and are a result of
the method I chose to process the command string. Since leading spaces have no
effect on a command, command #2 will operated as desired.

Running the entire line will produce the operation depicted below, the dash-
numbers at the extreme right being the number of the command being executed:

OA}IFCHR A A BEEP|IFCHR B B BEEP||IFCHR C C BEEP|||BEEP -1

TurboDOS 'Users Group Newsletter, Volume 3, Number 1, = Page 15

0A} BEEP —2
OA}IFCHR B B BEEP |IFCHR C C BEEP ||BEEP --3
0A} BEEP —
OA}IFCHR C C BEEP |BEEP -5
0A} BEEP -6
OA}BEEP -7

The maximum length of the command line, countin
after the initial command. To emphasize this, g
the command line is depicted below:

| <=mmmm 126 characters absolute maximum =—-—-=-— >l
OA}IFCHR A A BEEP|IFCHR B B BEEP||IFCHR C C BEEP|||BEEP

The reason for this is that that 126 characters will comprise the command tail
for the original command, and this command tail must fit into the 128-byte
default DMA buffer at address 0080 (DS:0080 for 16-bit), with its actual length
as a leading byte and an ACSII null as a trailing byte. A longer command list
will be truncated by TurboDOS.

-- The Promptstring --

Four of the conditional-support commands, CRFILYES, DLFILYES, ENDDOYES and
DOHALT, allow an optional "promptstring" to be entered. Each of these four
commands cause a string of text, the prompt string, to be displayed, and will
halt the DO-file until a keyboard input is provided. With the exception of the
DOHALT file, any character except a "Y" or "y" will be assumed to be an "N", and
the specified action will not occur, allowing the DO-file to continue unchanged.

The prompt string displayed by these four commands will be a default prompt
peculiar to each command, unless the optional "promptstring" 1is specified.
"Promptstring™ may be any sting of printable ASCII characters except the
backslash "\", which TurboDOS would interpret as the end of the command, and the
dollar sign "$", which the utility would interpret as the end of "promptstring".
Due to the way in which TurboDOS parses commands, all lower-case letters will be
converted to upper case. Note that "promptstring" is considered an option, and
must start with a semicolon “;".

Two special characters are designated for use in the first positiom, or, if both
special characters are used, the first two positions after the semicolon. These
special characters are the circumflex """, which will cause the console screen
to clear, and the asterisk "*", which will cause the console to NOT beep (a beep
is the standard default). If these are the only characters in "promptstring"
the default prompt will be displayed with screen clearing and/or console
silencing. This may be best depicted in table form, where "xxxxx" represents
the text of "promptstring": ‘

TurboDOS Users Group Newsletter, Volume 3, Number 1, === Page 16

Promptstring Clear Bell Prompt
None or ; No Yes Default
He Yes Yes Default
3% No No Default
;7% or ;%7 Yes No Default
J XXXXX No Yes Promptstring
3 TXXXXX Yes Yes Promptstring
3 FXXXXX No No Promptstring
; TEXXXXX or *TRXXXX Yes No Promptstring

It is very important to watch your chracters carefully, especially trailing
spaces or tabs, as ";"*" will clear the screen and display the default prompt
without sounding the bell, while ";"* " will clear the screen and display a
space without sounding the bell. The space is not visible, therefore it is an
effective null prompt.

The maximum length of "promptstring" is 76 characters, not counting the
semicolon, the circumflex or the asterisk. ©Please bear in mind that if the
command using "“promptstring" is itself part of "commandlist" discussed
previously, the 126~byte total length still applies.

—- Utility Pairing --

As has been mentioned, most of these utilities are paired: IFFIL and IFNOTFIL;
IFUSR and IFNOTUSR; IFCHR and TFNOTCHR; CRFIL and CRFILYES; DLFIL and DLFILYES;
and ENDDO and ENDDOYES. This pairing is accomplished by having both members of
a pair identical except for one patchable byte. When this byte is 00 hex, the
first member of the pair is chosen, and when not 00 hex, the second member,
This patchable byte is always located at address 0103 for 8-bit wutilities and
DS:0100 for 16-bit. A table of the patches is:

Patch = 00 Patch <> 00
IFFIL IFNOTFIL
IFUSR IFNOTUSR
IFCHR IFNOTCHR
CRFIL CRFILYES
DLFIL DLFILYES
ENDDO ENDDOYES

By the use of this pairing technique a great reduction in the number of source
code files is achieved, as well as a simplification of the linking process.

—— Console Screen Clearing --

The wutilities CRFILYES, DLFILYES, ENDDOYES, DOHALT, PROMPT and CLS have the
ability to clear the console screen. This is accomplished via a twelve-byte-
maximum string of characters in a special patch area of the wutilities. This
twelve-byte string consists of the characters necessary to home the cursor and
clear the screen, with the remaining bytes padded with dollar signs (code 24
hex, 36 decimal), The default is a control-Z (code 1A hex, 26 decimal) and
eleven dollar signs, as this sequence will clear most terminals, Patch the
console clear-screen strings to the codes required by your terminals.

TurboDOS Users Group Newsletter, Volume 3, Number 1, ==ss=ss=s=======z=== Page 17

The 1locations of the first byte of the clear-screen strings for the above
utilities are address 0104 for 8-bit utilities and DS:0101 for 16-bit.

—- Conditional Utility Operation --

The file-conditional utilities, IFFIL and IFNOTFIL, have been created to execute
a command list based upon the presence of a file, The syntaxes and operations
of these utilities are:

IFFIL testfile commandlist

"Commandlist"™ will be executed IF AND ONLY IF "testfile" exists.

IFNOTFIL testfile commandlist
"Commandlist" will be executed IF AND ONLY IF "testfile" does not exist.

The user-conditional utilities, IFUSR and IFNOTUSR, have been created to execute
a command list based upon the assignment of files to a specific user area of a
specific drive. The syntaxes and operations of these utilities are:

IFUSR uud: commandlist

"Commandlist" will be executed IF AND ONLY IF there are files assigned to user
area/drive "uud:".

IFNOTUSR uud: commandlist

"Commandlist" will be executed IF AND ONLY IF there are no files assigned to
user area/drive "uud:"

The argument-conditional utilities, IFCHR and IFNOTCHR, have been created to
execute a command list based upon matching of a test .character to a character
entered into the DO-file as an argument. The syntaxes and operations of these
utilities are:

IFCHR tchr mchr commandlist

"Commandlist® will be executed IF AND ONLY IF "tchr" is identical to "mchr".
IFNOTCHR tchr mchr commandlist

"Commandlist" will be executed IF AND ONLY IF "“tchr" is not identical to "mchr".

The test character, "tchr", and the match character, "mchr", may be any single
printable ASCII character legal in a file name, as TurboDOS” filename parsing
facility is wused., Normally, an alphanumeric character should be wused and
punctuation marks avoided. Lower-case characters are automatically converted to
upper-case by TurboD0OS. If more than one character is entered for either "tchr"
or "mchr", only the first character is relevant.

In normal use, "tchr" is directly entered and "mchr" is indirectly entered, as
in the DO-file command line <IFCHR D {2} [COPY B:*.DAT;NCA|COPY B:*.MAS;NCA>.
The command list "[COPY B:*,DAT;NCA|COPY B:* MAS;NCA" will be converted to
"\COPY B:*,DAT;NCA\COPY B:* MAS;NCA" and executed IF AND ONLY IF the second DO-

TurboDOS Users Group Newsletter, Volume 3, Number 1, s==m=s = Page 18

file argument is "D". 1In actual practice, "tchr" and "mchr" are completely
interchangable. The command <IFCHR {2} D |COPY B:*,DAT;NCA|COPY B:* ,MAS;NCA> is
identical to the previous one.

-— Support Utility Operation —-

The support utilities consist of two files to create a dummy file, two to delete
a dummy file, two to terminate the DO-file, one to halt the DO-file, omne to
display a special prompt file, one to beep the console, and one to clear the
console screen.

The dummy-file creation utilities, CRFIL and CRFILYES, will create a dummy or
zero-K file (one that has no contents). While the principal use for a dummy
file is as a test file for IFFIL or IFNOTFIL, it is also suitable for use
wherever an empty file is required, as in a clean SYSLOG.SYS file to use with
the log-on/log-off procedures. Should a file of the selected name already exist
at that user area/drive, or if for any reason a file creation cannot take place
an error will be displayed and the utility aborted. The syntaxes and operations
of these utilities are:

CRFIL zerofile
"Zerofile" will be created.
CRFILYES zerofile {;promptstring}

"Zerofile" will be created IF AND ONLY IF the response to "promptstring" is "Y",
If "promptstring”™ is not specified, then the default prompt of "Okay to create
(zerofile) at this time?" will be used.

The dummy~file deletion utilities, DLFIL and DLFILYES, will delete a dummy or
zero-K file, Should a file of the selected name not already exist at that
user/drive, should it not be empty, should it be set read-only or FIFO, or if
for any reason a file deletion cannot take place an error will be displayed and
the utility aborted. The syntaxes and operations of these utilities are:

DLFIL zerofile
"Zerofile™ will be deleted.
DLFILYES zerofile {;promptstring}

"Zerofile" will be deleted IF AND ONLY IF the response to "promptstring" is "Y".
If "promptstring” is not specified, then the default prompt of "Okay to delete
(zerofile) at this time?" will be used.

Please mnote that the DLFIL and DLFILYES utilities are completely different from
the TurboDOS utility DELETE.COM, as they will only act upon a dummy (zero-K)
file,

The DO-file termination utilities will cause a termination of the DO-file, and
all pending or stacked DO-files, running on that processor. There is no effect
on DO-files on other processors. These utilities may be used to abort a DO-file
as the result of a conditional judgement. The syntaxes and operations of these
utilities are:

TurboDOS 'Users Group Newsletter, Volume 3, Number 1, Page 19

ENDDO
Terminate all pending and stacked DO-files.
ENDDOYES {;promptstring}

Terminate all pending and stacked DO-files IF AND ONLY IF the response to
"promptstring" is "Y". If "promptstring" is not specified, the default prompt
of "Okay to terminate DO-file at this time?" will be used.

The DO-file operation suspension utility, DOHALT, will cause the operation of a
DO-halt to stop and wait for a console input. The syntax and operation of this
utility is:

DOHALT {;promptstring}

"Promptstring" is displayed and the DO-file is halted pending keyboard input.
If "promptstring" is not specified, the default prompt of "DO-file halted, press
any key to continue." will be used.

The prompt-file display utility, PROMPT, will cause a the contents of a special
prompt~file to be displayed. The syntax and operation of this utility is:

PROMPT dispfile

The contents of "dispfile" are displayed. '"Dispfile" is an ordinary text file
with a few special features and limitations., It is perhaps easiest to think of
this file as a sort of super-promptstring, as the circumflex and/or asterisk are
used in the identical manner (first two bytes of the file) to provide screen
clearing and/or suppress the bell, The limitations are basically length and
function: the file may not exceed 2048 bytes (2K) total length, and to be
functional must not contain more lines of data than can be displayed on the
console,

The screen-clearing utility, CLS, simply clears the screen. Entering the
command <CLS> is the only mode of operationm,

The operator-alert utility, BEEP, is also a single-mode command utility, the
command being <BEEP>. When used, this utility will make the console beep three
times at about one-half second intervals. This beeping provides a clear and
distinct signal to alert the operator that interaction is required or that the
DO-file is finished.

-—- A Simple Working Example --

As a simple working example, let”s make a trivial BACKUP.DO file which may be
used for either backing-up or restoring in a system with four logical hard-disk
drives and two floppy drives. The secret to this file depends on the knowledge
that the hard-disk drives are drives A:, B:, C: or D: and that the floppy-disk
drives are E: and F:. Whether we are backing-up or restoring, therefore, may be
determined by comparing the desired drives.

Our finished DO-file will be normally executed via the simple command <DO BACKUP
dl d2 {W}> where "d1" is the source drive, "d2" is the destination drive and "W"

TurboDOS Users Group Newsletter, Volume 3, Number 1, s==s==== ====== Page

is the WEEKLY BACKUP switch, which is valid only if a backup, rather than
restore, is being done. Our DO-file is created as follows:

Determine if we have a BACKUP or a RESTORE: if neither, abort out,.

IFCHR A {1} CRFIL B.$
IFCHR B {1} CRFIL B.$
IFCHR C {1} CRFIL B.$
IFCHR D {1} CRFIL B.$
IFCHR E {1} CRFIL R.$
IFCHR F {1} CRFIL R.$
IFNOTFIL B.$ IFNOTFIL R.$ ENDDO

If we have a BACKUP, is it legal? If no, abort out.

IFFIL B.$ IFCHR E {2} CRFIL T.$

IFFIL B.$ IFCHR F {2} CRFIL T.$

IFFIL B.$ IFNOTFIL T.$ DLFIL B.$]ENDDO
DLFIL T.$

Same thing for a RESTORE.

IFFIL R.$ IFCHR A {2} CRFIL T.$

IFFIL R.$ IFCHR B {2} CRFIL T.$

IFFIL R.$ IFCHR C {2} CRFIL T.$

IFFIL R.$ IFCHR D {2} CRFIL T.$

IFFIL R.$ IFNOTFIL T.$ DLFIL R.$|ENDDO
DLFIL T.$

Do the actual BACKUP or RESTORE for all 32 users by calling a subordinate
file BACKUPX.DO.

IFUSR 0{1}: DO BACKUPX {1} {2} {3,@} 0

IFUSR 1{1}: DO BACKUPX {1} {2} {3,@} 1

IFUSR 2{1}: DO BACKUPX {1} {2} {3,@} 2

++. (Repeat command line for users 3 through 28)
IFUSR 29{1}: DO BACKUPX {1} {2} {3,@} 29

IFUSR 30{1}: DO BACKUPX {1} {2} {3,@} 30

IFUSR 31{1}: DO BACKUPX {1} {2} {3,@} 31

Clean up after ourselves,

IFFIL B.$ DLFIL B.$
IFFIL R.$ DLFIL R.$
BEEP

Our subordinate DO-file, BACKUPX.DO, consists of:

20

a

DO~

TurboDOS Users Group Newsletter, Volume 3, Number 1, Page 21

IFFIL B.$ IFCHR W {3} SET {4}{1}:*.*;N-A
IFFIL B.S COPY {4}{1}: {4}{2}:;NAC
IFFIL R.$ COPY {4}{1}: {4}{2}:;8X

By the wuse of these DO-files, a somewhat complex and tedious task has been
reduced to a single command.

-- A Complex Working Example --

To provide ourselves with a more exhaustive working example, let”s design a
different BACKUP.DO file to form the core of a more comprehensive backup system.
In this DO-file, the computer will ask us a series of yes/no questions, and
produce a BACKUP or RESTORE based upon cur an

[SE RV SRy, P - answere,

Create a nice sign-on screen, BACKUP,MSG.

Use BACKUP.DO to display this message and give us a chance to abort gracefully.

\PROMPT RACKUP .MSG\CRFILYES T.$;*DO YOU WISH TO CONTINUE?

IFNOTFIL T.$ ENDDO
DLFIL T.$

Notice the leading separator character "\" in the first command line, this will
cause the command <CRFILYES T.$;*DO YOU WISH TO CONTINE?> to not be itself
echoed to the comsole (in version 1.4x) and will produce a better-looking
ocutput.

Are we going to BACKUP or RESTORE?

CRFILYES R.$; "RESTORE (Y) OR BACKUP (N) FILES?

Assuming a BACKUP, is it WEEKLY or DAILY?

IFNOTFIL R.$ CRFILYES W.$;WEEKLY (Y) CR DAILY (N) BACKUP?

Assuming a RESTORE, restore only missing files or all files?

IFFIL R.S$ CRFILYES M,.$;MISSING-ONLY (Y) OR ALL (N) FILES?

Backup from which drive(s)?

CRFIL T.$

IFNOTFIL R.$ CRFILYES A.$;FROM DRIVE A (Y/N)?IDLFIL T.$
IFNOTFIL R.$ CRFILYES B.$;FROM DRIVE B (Y/N)?|DLFIL T.S
IFNOTFIL R.$ CRFILYES C.$;FROM DRIVE C (Y/N)?|DLFIL T.$
IFNOTFIL R.$ CRFILYES D.$;FROM DRIVE D (Y/N)?|DLFIL T.$

TurboDOS Users Group Newsletter, Volume 3, Number 1,

IFNOTFIL R.$ IFFIL T.$ IFFIL W.$ DLFIL W.$|DLFIL T.$|ENDDO

Restore from which drive?

Restore to

IFFIL
IFFIL
IFFIL

R.$
T.$
T.$

CRFIL
IFFIL
IFFIL
IFFIL
IFFIL
IFFIL

which drive?

$
.$ CRFILYES A.$;TO DRIVE A (Y/N)?|DLFIL T.$
$

CRFILYES E.$;FROM DRIVE E (Y/N)?|DLFIL T.$
IFFIL R.$ CRFILYES E.$;FROM DRIVE E (Y/N)?IDLFIL T.$
DLFIL R.$|IFFIL M.$ DLFIL M.$|DLFIL T.$|ENDDO

IFFIL R.$ CRFILYES B.$;TO DRIVE B (Y/N)?|DLFIL T.$
IFFIL R.$ CRFILYES C.$;TO DRIVE C (Y/N)?|DLFIL T.$
IFFIL R.$ CRFILYES D.$;TO DRIVE D (Y/N)?|DLFIL T.$
IFFIL R.$ IFFIL E.$ DLFIL E.$|IFFIL F.$ DLFIL F.$|IFFIL M.$

Backup to which drive?

Tidy

L M.$|DLFIL R.$|DLFIL T.$|ENDDO

IFNOTFIL R.$ CRFILYES E.$;TO DRIVE E (Y/N)?|DLFIL T.$

IFFIL T.$ IFNOTFIL R.$ CRFILYES F.$;TO DRIVE F (Y/N)?|DLFIL T.$

IFFIL T.$ IFFIL A.$ DLFIL A.S$|IFFIL B.$ DLFIL B.$|IFFIL C.$ DLFIL C.$
|IFFIL D.$ DLFIL D.$
IFFIL T.$ IFFIL W.$ DLFIL

things up.

IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFROTFIL

NWWWWWWWWWWWWWNW

s & o & & e ¢ o 8 & s & & »®
%MM{DMMMM‘U"U}MMM%MM

IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFNOTFIL
IFFIL W,
IFFIL
IFFIL
IFFIL
IFFIL
IFFIL
IFFIL
IFFIL

W.$|DLFIL T.$|ENDDO

IFFIL R.$ IFFIL E.$ IFFIL A.$ CRFIL REA.$
IFFIL R.$ IFFIL E.$ IFFIL B.$ CRFIL REB.$
IFFIL R.$ IFFIL E.$ IFFIL C.$ CRFIL REC.S

W.$ IFFIL A.$ IFFIL E.$ CRFIL DAE.$
W.$ IFFIL A,$ IFFIL F.$ CRFIL DAF.$
W.$ IFFIL B.$ IFFIL E.$ CRFIL DBE.$
W.$ IFFIL B.$ IFFIL F.$ CRFIL DBF.$
W.$ IFFIL C.$ IFFIL E.$ CRFIL DCE.$
W.$ IFFIL C.$ IFFIL F.$ CRFIL DCF.$
W.$ IFFIL D.$ IFFIL E.$ CRFIL DDE.$
W.$ IFFIL D.$ IFFIL F.$ CRFIL DDF.$
$ IFFIL A,$ IFFIL E.$ CRFIL WAE.$
$ IFFIL A,$ IFFIL F.$ CRFIL WAF,$
$ IFFIL B.$ IFFIL E.$ CRFIL WBE.$
$ IFFIL B.$ IFFIL F.$ CRFIL WBF.$
$ IFFIL C.$ IFFIL E.$ CRFIL WCE.,$
$ IFFIL C.$ IFFIL F.$ CRFIL WCF.$
$ IFFIL D.$ IFFIL E.$ CRFIL WDE.$
.$ IFFIL D.$ IFFIL F.$ CRFIL WDF.$

TurboD0S Users Group Newsletter, Volume 3, Number 1, Page 23

IFFIL D.$ CRFIL RED.$
IFFIL A.$ CRFIL RFA.$
IFFIL B.$ CRFIL RFB.$

IFFIL C.$ CRFIL RFC.$
IFFIL D.$ CRFIL RFD.S

- L A VAL wdi Al b Y

IFFIL
IFFIL
IFFIL
IFFIL

IFFIL R.$
.$
.$
.$
.S IFFIL
.$
oS
.$
.8

IFFIL
IFFIL K
IFFIL
IFFIL
IFFIL
IFFIL

Sl oG N 51

E
F
F
F
F
DLFIL R
DLFIL W.
A

B

C

D

E

F

> Ky Sy Ly Ly ATy 1y U Sy Uy DD D

IFFIL DLFIL
IFFIL DLFIL
IFFIL C.$ DLFIL
IFFIL D.$ DLFIL
IFFIL E.$ DLFIL
IFFIL F.$ DLFIL

UGPSZFU"UW;UPUW

Perform the backup or restore.

IFFIL DAE.$ DO BACKUPX
IFFIL DAF.$ DO BACKUEX
IFFIL DBE.$ DO BACKUPX
IFFIL DBF.$ DO BACKUPX
IFFIL DCE.$ DO BACKUPX
IFFIL DCF.$ DO BACKUPX
IFFIL DDE.$ DO BACKUPX
IFFIL DDF.$ DO BACKUPX
IFFIL WAE.$ DO BACKUPX
IFFIL WAF.$ DO BACKUPX
IFFIL WBE.$ DO BACKUPX
IFFIL WBF.$ DO BACKUPX
IFFIL WCE.$ DO BACKUPX
IFFIL WCF.$ DO BACKUPX
IFFIL WDE.$ DO BACKUPX
IFFIL WDF.$ DO BACKUPX
IFFIL REA.$ DO BACKUPX
IFFIL REB.$ DO BACKUPX
IFFIL REC.$ DO BACKUPX
IFFIL RED.$ DO BACKUPX
IFFIL RFA.$ DO BACKUPX
IFFIL RFB.$ DO BACKUPX
IFFIL RFC.$ DO BACKUPX
IFFIL RFD.$ DO BACKUPX
IFFIL M.$ DLFIL M.$
BEEP

EIDLFIL DAE.$
F{DLFIL DAF.S
E|DLFIL DBE.$
F|DLFIL DBF.$
E|DLFIL DCE.$
F |DLFIL DCF.$
E[DLFIL DDE.$
F IDLFIL DDF.$
E|DLFIL WAE.$
F|DLFIL WAF.$
E|DLFIL WBE.,$
F |IDLFIL WBF.$
E|DLFIL WCE.$
F|DLFIL WCF.$
E|DLFIL WDE.$
F |DLFIL WDF.$
A|DLFIL REA.$
B|DLFIL REB,$
C|DLFIL REC.$
D |DLFIL RED.S$
A|DLFIL RFA.$
BIDLFIL RFB.$
C IDLFIL RFC.$
D |DLFIL RFD.$

PR DD S S00 0000y
’11"-'-1’11WMMNNUUGO!:U&P»UUOOWW#‘P

Done!
Our subordinate DO-file, BACKUPX.DO, is as follows:

IFUSR 0{2}: BACKUPY {1} {2} {3} O

IFUSR 1{2}: BACKUPY {1} {2} {3} 1

IFUSR 2{2}: BACKUPY {1} {2} {3} 2

«es (Repeat the command line for users 3 through 28)
IFUSR 29{2}: BACKUPY {1} {2} {3} 29

IFUSR 30{2}: BACKUPY {1} {2} {3} 30

TurboDOS Users Group Newsletter, Volume 3, Number 1, ===s=====s========= Page 24

IFUSR 31{2}: BACKUPY {1} {2} {3} 31
Our secondary subordimate DO-file, BACKUPY.DO is:

IFNOTCHR R {1} DELETE {4}{2}:*.BAK;N|DELETE {4}{2}:-PRINT-*,%;N
IFCHR W {1} SET {4}{2}:%.%;N-A

IFNOTCHR R {1} COPY {4}{2}: {4}{3}:;NAC

IFCHR R {1} SET {4}{3}:%.%;N-R

IFCHR R {1} IFFIL M.,$ COPY {4}{2}: {4}{3}:;MX

IFCHR R {1} IFNOTFIL M.$ COPY {4}{2}: {4}{3}:;N

IFCHR R {1} IFCHR 0 {4} SET 0{3}:;NG

IFCHR R {1} SET {4}{3}:*.COM;NR

IFCHR R {1} SET {4}{3}:*.CMD;NR

Our sign-on message file, BACKUP.MSG, is:

& SYSTEM BACKUP ROUTINE

This routine will allow the BACKUP of data
FROM any combination of drives A:, B:, C:, or D:
TO either of the floppy drives E: or F:

OR

the RESTORATION of data
TO any drive A:, B:, C:, or D:
FROM either of the floppy drives E: or F:

Thus ends our complex example, which really shouldn”t be so complex, taken a
step at a time.

-— Source Codes —-

Source codes for the entire family of conditiomal and conditional support
utilities in both 8- and 16-bit versions are provided with this article. These
source codes may be readily typed-in, assembled and linked, providing you with
the power we have been discussing.

In order to save space, the 8-~ and 16-bit versions of the source codes are given
in "parallel." A very cursory examination will show that the 8-bit code is
given first, then the 16-bit code, then the common comments. A vertical bar "|["
is used as a separator between the 8- and 16-bit codes.

Type in these codes in a normal manner, using only the 8-bit or only the l6-bit,
whichever is proper for your system, (Please be certain to type in my copyright
line, as I spent many long hours creating these utilities.) Assemble the
finished code using Microsoft”s Macro-80 (M80) for the 8-bit or Software 20007s
TASM for the 16-bit. Use GEN.COM or TLINK.CMD to link the resultant modules
into working command files.

Again to save space, common routines have been placed into four subroutine
files. These files mst be separately assembled, and are joined with the
appropriate main modules at link time. The easiest way to prevent accidental

TurboD0S'Users Group Newsletter, Volume 3, Number 1, Page 25

ommision of a subroutine module is to create the following one-line GEN files
for the main modules involved. The main modules are always listed first:

IFFIL,SUBIF1,SUBIF2,SUBIF3 ;For IFFIL and IFNOTFIL
IFUSR ,SUBIF] ,SUBIF2 sFor IFUSR and IFNOTUSR
IFCHR ,SUBIF1 ;For IFCHR and IFNOTCHR
CRFIL,SUBIF2,SUBIF3,SUBIF4 ;For CRFIL and CRFILYES
DLFIL,SUBIF2,SUBIF3,SUBIF4 ;For DLFIL and DLFILYES
ENDDO,SUBIFS ;yFor ENDDO and ENDDOYES
DOHALT, SUBIF4 ;For DOHALT

PROMPT ,SUBIF2,SUBIF3,SUBIF4 ;For PROMPT

REEP ;For BEEP

CLS sFor CLS

In order to create the IFNOTxxx and xxxxxYES files, create first the base file
(IFFIL is the base file for IFNOTFIL, etc.) then use monitor (8-bit) or TBUG
(16-bit) to create the variant. This may best be done via the following file,
"IFPATCH.DO":

8-Bit 16~-Bit
MONITOR TBUG {1}
L{1}.coM E0100
E0103 FF

FF <cr>
<tab><cr> s{2}
s{2}.coM Q

Q

The "<tab><cr>" in the 8-bit DO-file will cause MONITOR to exit the
Examine/change mode. The above DO-files are, of course, executed via the
command <DO IFPATCH inputfile outputfile>, where "inputfile" would be "IFFIL",
"IFUSR", etc., and "outputfile" would be "IFNOTFIL", "IFNOTUSR", etc.

For those who do not wish to spend the time typing, all the source codes,
GENeration files, finished command files, and a complete copy of this article in
both Wordstar and ready-to-print forms is available om an 8" single-
sided/single~density CP/M format diskette directly from the author:

R. Roger Breton
836 Portola Av., Ste. 599
Livermove, CA 94550
Cost is $25.00 for TUG members, $35.00 for non members.

Source codes are also available at no charge via 1200 Baud modem. Modem

TurboDOS Users Group Newsletter, Volume 3, Number 1, s=======s====s====== Page’ 26

transfers are by appointment only, no exceptions. Call (415) 443-3131 Tuesday
through Friday (no Monday calls, please) between 1:30 and 6:00 p.m, Pacific time
for an appointment and protocols required.

Please bear in mind that these utilities are released to the public domain for
personal use only, and may not legally be distributed, for sale or for free,
without prior permission. Dealers wishing to provide these utilities to their
customers may purchase a license for $75.00, which includes a master diskette of
all source codes and documentation (also containing source and documentation for
a few other goodies). Send a COMPANY check (as proof of doing business) to the
above address.,

-~ Conclusion —-

As may be seen by the above discussion and examples, TurboD0S” very powerful
batch processing utilities, DO.COM and BATCH.COM provide considerable
flexibility in the implementation of batch-processing functions, When coupled
with the conditional utilities, IFFIL, IFNOTFIL, IFUSR, IFNOTUSR, IFCHR and
IFNOTCHR, and the conditional~support wutilities, CRFIL, CRFILYES, DLFIL,
DLFILYES, ENDDO, ENDDOYES, DOHALT, PROMPT, BEEP, and CLS, the DO-files becomes
practically a programming language. With a 1little imagination, extremely
powerful DO-files can be created to better realize the potentials of a TurboDOS
systems.

rs” Group Newsletter,

Volume 3, Number 1,

-~ Combined 8- and 16-Bit Source Codes --

;Routine to generate the following conditional utilities:

.
3

;Copyright (C) 1985, 19 6
sAuthor: R. Roger Breto
;Version: 2.20

;Dated: 26 January 1986

NAME (“IFFIL”)
.280

CSEG
JP BEGIN
NOTFLG::DB O

DB “-- Copyright (C) 1985, 1986, R. Roger Breton --~
l " COpergul. A

BEGIN: LD A,(NOTFLG)
OR A
JR Z,NOINIT
LD A,-1

LD (NOTFLG),A
CALL TSTFIL##
OR A

JR NZ,ABORT
CALL FNDFIL##
ID B,A

NOINIT:

LD A,(NOTFLG)
XOR B

JR NZ,EXIT
XOR A

CALL CMDLST##
OR A

JR NZ,ABORT
1D DE,0080H
LD A,(0050H)

CP OC3H
JR NZ,TDOS12
1D ¢c,18
CALL 0050H
JR EXIT

TDOS12: LD C,108
CALL 0005H
JR EXIT

ABORT: LD C,9
CALL 0005H

EXIT: JP 00O0OH

|
I

NOTFLG:

|IBEGIN:

|
!
I
I
|
|
I
d!
!
|
I
I
I
I
|
I
I
I
[
!
I
I
|
I
|
|
I
I
[
!
I

__NNIT:

__ABT:

_ EXIT

MODULE "IFFIL"

LocC

Data#

nwm E 0

‘DIl

1oC
JMP

BYTE

Code#
BEGIN

C) 1985,

IFFIL, IFNOTFIL

sProgram ID
;Z2ilog mnemonics

sLocat
ATNM £
Ul 1

e in data segment
N la

ag
;Locate in code segment

3 Skip
sNOT flag

1986, "

BYTE "R. Roger Breton --"

CMP

JZ
MOV

CALL
OR
JNZ
CALL

MOV
SHR
CMP

JNZ
XOR
CALL
OR
JNZ
MOV

MOV
INT
JMP

MOV
INT
MOV
INT

BYTE NOTFLG,=0

__NNIT

EYTE NOTFLG,=1

TSTFIL#
DX,DX
__ABT
FNDFIL#

CL,=7
AL,CL
NOTFLG,AL

__EXIT
AL AL
CMDLST#

DX ,DX
__ABT

DX, &0x0080

CL,=18
223
__EXIT

CL,=9
224
CL,=0
224

;Is NOT flag set?

;If no, skip
;Initialize NOT flag

;Test for file specified
sError?

;If yes, abort

;Is file present?

;Move results

;Make result TRUE/FALSE

sProcess cmd list?

yIf no, done

;Clear IFCHR flag
;Process command list
;Error?

;If yes, abort

;Point to command list
;Get version flag
;Version 1.3x or 1.4x?
;I1f no, skip

;Send command list

;Done
;Send command list

3Skip
;Print abort message

;Return to o/s

TurboDOS Users” Group Newsletter, Volume 3, Number 1, s======s========= = Page 28

END

I
! END

;Routine to generate the following conditional utilities: IFUSR, IFNOTUSR

;Copyright (C) 1985, 1986, R. Roger Breton

;Author: R,

Roger Breton

;Version: 2.20

;Dated: 26
NAME
.280

DSEG
NDSMSG: DB
NUSMSG: DB
NPUMSG: DB

PRVFLG: DB
TI4FLG::DB
SPCUSR::DB
CURUSR: :DB
DIRBUF: DB

CSEG

JP
NOTFLG::DB

DB

BEGIN: LD
OR
JR
1D
LD
NOINIT: LD
1D
OR

JP
LD
CP
JP
LD
CALL
LD
cP
JP
Lb
LD
BIT

January 1986

(“IFUSR’) | MODULE "“IFUSR" sProgram ID
| ;Zilog wmnemonics
|
| 10C Dataf ;Locate in data segment
INOTFLG: : BYTE 0 ;NOT flag

7,13,10, No drive specified.”,13,10,7$"

INDSMSG: BYTE "\7\r\nNo drive specified.\r\n$"
7,13,10,”No user area specified.”,13,10,7$”

INUSMSG: BYTE "\7\r\nNo user area specified.\r\n$"
7,13,10, Non-priviledged user.”,13,10,”$

INPUMSG: BYTE "\7\r\nNon-priviledged user.\r\n$"

0 IPRVFLG: BYTE 0 ;Priviledged user flag
0 1T14FLG: :BYTE 0 ;Version 1.4x flag
80H |SPCUSR : :BYTE 0x80 ;Specified user number
0 ICURUSR : :BYTE 0 ;Current user number
128 IDIRBUF: RES 128 ;Directory DMA buffer

| LOC Code# ;Locate in code segment
BEGIN | JMP BEGIN ;Skip
0 | ;NOT flag

“~- Copyright (C) 1985, 1986, R. Roger Breton —--~

| BYTE "-- Copyright (C) 1985, 1986, "

| BYTE "R. Roger Breton -—-"

I
A,(NOTFLG) |BEGIN: CMP BYTE NOTFLG,=0 ;18 NOT flag set?
A !

Z,NOINIT | JZ __NNIT ;If no, skip
A,~1 | MOV BYTE NOTFLG,=1 ;Initialize NOT flag
(NOTFLG) ,A |
DE,NDSMSG |__NNIT: MOV DX, &NDSMSG ;Point to no drive msg
A,(005CH) | CMP BYTE 0x005C,=0 ;Is drive default?
A |
| JNZ 81 ;If no, continue
Z ,ABORT | JMP __ ABT ;If yes, abort
A,(0050H) | ;Version 1.227
0C3H I
NZ,SUSER | ;If yes, skip
c,12 I_S1: MOV CL,=12 ;Get status/version
0050H | INT 223
A,C | CMP CL,=0x14 ;Version 1.4x
14H I
NZ,SUSER | JNZ __SUSR ;1f no, skip
A,-1 | MOV BYTE TI14FLG,=1 ;Set version 1.4 flag
(T14FLG) ,A |
|

7,B TEST CH,=0x80 ;Priviledged?

NPRIV:

SUSER:

TFLOOQP:

%8%55%@555%59%85555%

EEEEE
E

]
5g

LDIR

LD
CALL

CALL
PUSH
CALL
POP

SRA
DJNZ

XOR

XOR
CALL
OR
JR

CP
JR
LD
CALL
JR

Z,NPRIV
A,-1
(PRVFLG) ,A
DE , NUSMSG
A, (006BH)
A

Z ,ABORT
E,-1

C,32

0005H
(CURSUR) ,A
B,A
A,(0069H)
R

Z ,SUSER
(SPCUSR) ,A
DE ,NPUMSG
A, (PRVFLG)

A
7 ARORT

& oyen -~ a

NEWUSR##
HL,005DH
(HL),"?"
D,H

E,L

DE

BC,11

DE,DIRBUF
C,26
0005H
DE,005CH
c,17
0005H

AF
OLDUSR##
AF

B,8

A

TFLOOP
B,A

A, (NOTFLG)
B

NZ ,EXIT
A
CMDLST##
A

NZ ,ABORT
DE,0080H
A, (0050H)
0C3H
NZ,TDOS12
c,18
0050H
EXIT

JZ
MOV

1 MOV

CMP

JZ

MOV
MOV
INT
MOV

MOV
CMP
JZ

MOV
MOV

CMP

Jz
CALL
MOV
MOV

MOV
REP
MOV
MOV
INT
MOV
MOV
INT
PUSH
CALL
POP
MOV
SHR

cMp

JNZ
X0R
CALL
OR
JNZ
MOV

MOV
INT
JMP

__NPRV
BYTE PRVFLG,=1

DX ,&NUSMSG
BYTE 0x0068,=0

__ABT
DL,=255
CL,=32
224
CURUSR ,AL

AH, 0x0069
AL,AH
__SUSR
SPCUSR ,AH
DX , §NPUMSG

BYTE PRVFLG,=0

__ABT
NEWUSR#
DI,&0x005D
AL ,=63

cx,=11
STOS BYTE
DX,&DIRBUF
CL,=26

224

DX, &0x005C
CL,=17

224

AX

OLDUSR#
AX

CL,=7
AL,CL

NOTFLG,AL

__EXIT
AL,AL
CMDLST#
DX,DX
__ABT

DX, &0x0080

CL,=18
223
__EXIT

;1f no, skip
;Set priviledged flag

;Point to no user msg
;Was a user specified?

;If no, abort
;Get current user number

;Stash it

;Get spec user number
+Qame ag current?

;If yes, skip

;Stash it

;Point to non-priv msg
;Priviledged?

;If no, abort
;Move to spec user area
;Initialize FCB

;Set DMA buffer

;Find any file

;Save result

;Return to current user
;Restore results

;Make result TRUE/FALSE

;Process command list?

;1f no, done

;Clear IFCHR flag
;Process command list
;Error?

;If yes, abort

;Send command list
;Get T-function jump
;Version 1.3x or 1.4x?
;If no, skip

;Done

TurboDOS Users” Group Newsletter, Volume 3, Number 1, =s==s===s===s===== Page 30

ABORT:

EXIT:

LD ¢C,9 | __ABT: MOV CL,=9 ;Print abort message
CALL 0005H i INT 224
JP 0000H |_EXIT: MOV CL,=0 ;Return to o/s
f INT 224
|
END | END

;Routine to generate the following conditional utilities: IFCHR, IFNOTCHR

;Copyright (C) 1985, 1986, R. Roger Breton

yAuthor:

R. Roger Breton

;Version: 2,20

;Dated:

NTCMSG:

NMCMSG:

NOTFILG::

BEGIN:

NOINIT:

GMATCH:

26 January 1986

NAME (“IFCHR”) | MODULE "IFCHR" sProgram ID
.280 | ;Zilog mnemonics
|
DSEG | LOC Data# ;Locate in data segment

|NOTFLG: : BYTE 0 ;NOT flag

DB 7,13,10,"Illegal/missing test character.”,13,10,”$7
INTCMSG: BYTE “\7\r\nIllegal/missing test "
| BYTE “character.\r\n$"

DB 7,13,10, Illegal/missing match character.”,13,10,7$"-
INMCMSG: BYTE "\7\r\nIllegal/missing match "
| BYTE "character.\r\n$"

I

CSEG | LOC Codef ;Locate in code segment
JP BEGIN i JMP BEGIN ;Skip
DB 0 | ;NOT flag

DB “-- Copyright (C) 1985, 1986, R. Roger Breton --~
BYTE "-- Copyright (C) 1985, 1986, "
BYTE "R. Roger Breton -—-"

|

[.
LD A,(NOTFLG) |BEGIN: CMP BYTE NOTFLG,=0 ;Is NOT flag set?
OR A !
JR Z,NOINIT | JZ __NNIT ;If no, skip
ID A,-1 [MOV BYTE NOTFLG,=1 ;Initialize NOT flag
LD (NOTFLG),A |
LD DE,NTCMSG |__NNIT: MOV DX,&NTCMSG ;Point to no tst chr msg
1D HL,005DH | CMP BYTE 0x005D,=32 ;Was test chr specified?
LD A,” ’ |
cP (HL) |
JR Z,ABORT | JZ __ABT ;If no, abort
b C,(HL) I
1D DE,NMCMSG | MOV DX, &NMCMSG ;Point to no mch chr msg
1D HL,006DH | CMP BYTE 0x006D,=32 ;Was mtch chr specified?
cP (HL) |
JR Z,ABORT | JZ __ABT ;If no, abort
LD A, (HL) | MOV AL,0x006D ;Get match character
SUB C | SUB AL,0x005D ;Do the test
JR Z,GMATCH | JZ __MCH ;If a match, skip
1D A,-1 | MOV AL,l ;Set for no match
LD B,A I
LD A,(NOTFLG) |__MCH: CMP AL,NOTFLG ;Process command list?
XOR B I

TurboB0OS Users”

JR
LD
CALL
OR
JR
LD
LD
CcP
JR
LD
CALL
JR

ABORT: LD
CALL

g =9 7)

EXIT: JP

NZ ,EXIT |
A,-1 |
CMDLST## |
A |
NZ ,ABORT |
DE,0080H |
A,(0050H) |
0C3H |
NZ,TDOS12 |
c,18 |
0050H |
EXIT I
I
!
!
|
|
I

c,9
nnnsn

vV

0000H

Group Newsletter, Volume 3, Number 1,

Page 31

JNZ __ XIT ;If no, skip

MOV AL,=l ;8et IFCHR flag

CALL CMDLST# ;Process command list

OR DX,DX ;Error?

JNZ __ABT ;If yes, abort

MOV DX,&0x0080 ;Send command list
;Get version flag
;Version 1.3x or 1.4x?
;If no, skip

MOV CL,=18

INT 223

JMP _ XIT 3 Skip

MOV CL,=9 ;Print abort message

INT 224

MOV CL,=0 ;Return to o/s

INT 224

END

P LT

;Copyright (C) 1985, 1986, R. Roger Breton

;Author: R. Roger Breton
;Version: 2.20
;Dated: 26 January 1986
NAME (“CRFIL") | MODULE "CRFILE" ;Program ID
.280 | ;Zilog mnemonics
|
DSEG | LOC Data# ;Locate in data segment
|YESFLG: :BYTE 0 ;YES flag
ICLSSTR: :BYTE 26,"$$858$$889$8" ;Clear-screen string
FILMSG: DB 13,10, File $°
IFILMSG: BYTE "\r\nFile $"
FIXMSG: DB~ already exists.”,7,13,10,7$"
IFLXMSG: BYTE " already exists.\7\r\n$"
UCRMSG: DB “ unable to be created.”,7,13,10,7$"
|UCRMSG: BYTE " unable to be created \7\r\n$"
CRFMSG: DB “ successully created.”,13,10,7$”
ICRFMSG: BYTE " successully created.\r\n$"
PMISPT::DB -1 |PMTSPT: :BYTE 1
PMTBEL::DB -1 |PMTBEL: : BYTE 1
PMISTR::DB 13,10,°0kay to create $5$$$55858558588887
PMISTX::DB ~ at this time? $S$$59853559358555855858885888888
[PMTSTR : :BYTE “\r\nOkay to create $3$$$3355555555588"
[PMTSTX: :BYTE " at this time? "
: BYTE "$$58588855885885555855588885%88"
CSEG | 1LO0C Code# ;Locate in code segment
JP BEGIN | JMP BEGIN ;Skip
YESFLG::DB 0 | ;YES flag
CLSSTR::DB 26, 9588885588887 ;Clear-screen string
DB “-- Copyright (C) 1985, 1986, R. Roger Breton --~

| BYTE "-- Copyright (C) 1985, 1986, "
| BYTE "R. Roger Breton --"

TurboD0OS Users” Group Newsletter, Volume 3, Number 1,

I

BEGIN: CALL TSTFIL## |
OR A |

JR NZ,ABORT |

1D A, (YESFLG) |

OR A I

JR Z,NOYES |

X0R A |

CALL CHKPMT## |

CALL GETCHR## |

cP Y |

JR NZ,EXIT I

NOYES: CALL FNDFIL# |
LD DE,FLXMSG |

OR A |

JR Z,NOCRFL |

CALL NEWUSR## |

LD DE,005CH |

D ¢,22 |

CALL 0005H I

PUSH AF I

LD DE,005CH |

LD ¢,l6 |

CALL 0005H |

CALL OLDUSR## |

POP AF |

LD DE,UCRMSG |

OR A |

JR NZ,ABORT |

LD DE,CRFMSG |

NOCRFL: PUSH DE I
1D DE,FILMSG |

LD ¢C,9 |

CALL 0005H I

CALL PRTFIL## |

POP DE I

ABORT: LD ¢C,9 |
CALL 0005H |

EXIT: JP 0000H }
|

END |

BEGIN:

__NOCR:

'K>

g

CALL
OR
JNZ
CMP

J2
XOR
CALL
CALL
CMP
JNZ

: CALL

MOV
OR
JZ
CALL
MOV
MOV
INT
PUSH
MOV

MOV

INT
CALL
POP
MOV
OR
JNZ
MOV
PUSH
MOV
MOV
INT
CALL
POP
MOV
INT

: MOV

INT

END

TSTFIL#
DX ,DX
__ABT

BYTE YESFLG,=0

__NYES
AL,AL
CHKPMT#
GETCHR#
AL,=89
__EXIT
FNDFIL#
DX, &FLXMSG
AL,AL
__NOCR
NEWUSR#
DX, &0x005C
CL,=22

224

AX

DX, &0x005C
CL,=16
224
OLDUSR#
AX

DX , 5UCRMSG
AL,AL
__NOCR

DX , &CRFMSG
DX

DX, 8FILMSG
CL,=9

224
PRTFIL#
DX

CL,=9

224

CL,=0

224

;Test for file specified
;Was it?

;1f no, skip

;Is YES flag set?

;If no, skip

;Clear long-prompt flag
;Chk and display proumpt
;Get a reply character
;Is it a "Y"?

;If no, exit to o/s
;Check for file present
;Point to fl exists msg
;Did file exist?

;If yes, abort

;Move to spec user
;Create the file

;Save the error code
;Close the file

;Return to original user
s;Restore the error code
;Preset to no create msg
;Was file created?

;If no, abort

;Point to created msg
;Save message pointer
;Print output msg pt 1

;Print filename
;Restore message pointer
;Display the message

;Exit to o/s

;Routine to generate the following utilities: DLFIL, DLFILYES

;Copyright (C) 1985, 1986, R. Roger Breton

;Author: R. Roger Breton
;Version: 2.20

;Dated: 26 January 1986

NAME (°DLFIL”) |

.Z80 I

I

DSEG I

I

MODULE “"DLFIL"

Loc

Data#

YESFLG: :BYTE 0O

yProgram ID
;Zilog mnemonics

;Locate in data segment
;YES flag

"TurboD0S Users” Group Newsletter, Volume 3, Number 1,

FILMSG:
NFLMSG:
FFOMSG:
ROFMSG:

NMTMSG:

YESFLG:
CLSSTR:

BEGIN:

NOYES:

DB

DB

DB

DB

DB

CSEG

:DB
:DB

DB

CALL
OR
JR

OR

XOR
CALL
CALL
cp
JR
CALL
1D
OR
JR
LD
LD
LD
INC
OR
INC
OR
JR
CALL

ICLSSTR: :BYTE 26,"$$$$$$$88$88" ;Clear-screen string
13,10, File §°
|JFILMSG: RYTE "\r\nFile $"
“ does not exist.”,7,13,10,7$7
INFLMSG: BYTE " does not exist.\7\r\n$"
“ is a FIFO file, not deleted.”,7,13,10,7$"
IFFOMSG: BYTE " is a FIFO file, not deleted.\7\r\n$"
“ is set READ ONLY.”,7,13,10,7$°
IROFMSG: BYTE " is set READ ONLY.\7\r\n$"
“ is not empty, not deleted.”,7,13,10,78"
INMIMSG: BYTE " is not empty, not deleted.\7\r\n$"
“ unable to be deleted.”,7,13,10,7$"
INDLMSG: BYTE " unable to be deleted.\7\r\n$"
successully deleted.”,13,10,7§7
IDFLMSG: BYTE " successully deleted.\r\n$"
-1 |PMISPT: :BYTE 1
-1 |PMTBEL: : BYTE 1
13,10,70kay to delete $$$$3888585888888
7 at this time? $558555555885585558888588858888 o A
IPMTSTR: :BYTE "\r\nQOkay toc delete $$55$355858855888"
|[PMTSTX: :BYTE " at this time? "
I BYTE "$$85855585888588585585558885888"

|

| LOC Code# ;Locate in code segment
BEGIN | JMP BEGIN ;Skip
0 | ;YES flag
26,785838888888887 ;Clear-screen string

“-- Copyright (C) 1985, 1986, R. Roger Breton —-~
| BYTE "-- Copyright (C) 1985, 1986, "
BYTE "R. Roger Breton —-"

I

I
TSTFIL## |BEGIN: CALL TSTFIL# ;Test for file specified
A | OR DX ,DX - 3;Was it?
NZ ,ABORT | JNZ __ABT ;If no, skip
A, (YESFLG) | CMP BYTE YESFLG,=0 ;Is YES flag set?
A |
Z ,NOYES] JZ __NYES ;If no, skip
A | X0R AL,AL ;Clear long-prompt flag
CHKPMT## | CALL CHKPMT# ;Chk and display prompt
GETCHR## | CALL GETCHR# ;Get a reply character
Y’ | CMP AL,=89 ;Is it a "Y"?
NZ,EXIT | JNZ __EXIT ;If no, done
FNDF IL## |__NYES: CALL FNDFIL# ;Is the file there?
DE,NFIMSG | MOV DX,&NFLMSG ;Point to no-file msg
A | OR AL,AL ;Was file found?
NZ,NODLFL | JNZ __NODL ;If no, abort
DE,NMIMSG | MOV DX,&NMTMSG ;Point to not-empty msg
HL,007DH | MOV BX,&0x007D ;Check file size
A, (HL) I MOV AL, [BX]
HL I
(HL) I OR AL,1[BX]
HL |
(HL) | OR AL,2[BX]
NZ,NODLFL | JNZ __NODL ;If not zero, abort
NEWUSR## | CALL NEWUSR# ;Move to proper user

Page 33

LD
LD

CALL

LD
LD

CALL
CALL

LD
LD

BIT

JR
LD
1D

BIT

JR

CALL

LD
LD

CALL
PUSH
CALL
POP

OR
JR

NODLFL: PUSH

CALL
CALL
POP

ABORT: LD

CALL

EXIT: JP

END

;Routine to gemerate the following utilities:

DE,005CH
c,l15
0005H
DE,005CH
C,16
0005H
OLDUSR##
DE ,FFOMSG
A, (005DH)
7,A

NZ ,NODLFL
DE ,ROFMSG
A, (0065H)
7,A

NZ ,NODLFL
NEWUSR##
DE,005CH
c,19
0005H

AF
OLDUSR##
AF
DE,NDLMSG
A

NZ ,NODLFL
DE ,DFLMSG
DE

DE ,FILMSG
c,9

0005H
PRTFIL##
DE

c,9

0005H
0000H

MOV
MOV
INT
MOV
MOV
INT
CALL
MOV
TEST

JNZ
MOV
TEST

JNZ
CALL
MOV
MOV
INT
PUSH
CALL
POP
MOV
OR
JNZ
MOV

: PUSH

MOV
MOV
INT
CALL
POP
MOV
INT

: MOV

INT

END

DX, &0x005C
CL,=15

224

DX, &0x005C
CL,=16

224
OLDUSR#

DX ,&FFOMSG

BYTE 0x005D,=0x80

__NODL
DX , sROFMSG

BYTE 0x0065,=0x80

__NODL
NEWUSR#
DX, &0x005C
CL,=19

224

AX

OLDUSR#
AX

DX , 6NDLMSG
AL AL
__NODL

DX , sDFLMSG
DX

DX, &FILMSG
CL,=9

224
PRTFIL#
DX

CL,=9

224

CL,=0

224

;Copyright (C) 1985, 1986, R. Roger Breton

sAuthor:

;Version: 2.20

;Dated:

H

NAME (“ENDDO”)

.280

DSEG

PMTSPT::DB
PMTBEL::DB
PMISTR::DB

0
-1

13,10,70kay to abort the DO-file at this time?

R. Roger Breton

26 January 1986

I
I
|
|
IYESFLG::
|CLSSTR::

|PMTSPT: :
|PMTBEL: :

MODULE "ENDDO"

LOC
BYTE

BYTE 26,"$$5585558858"

BYTE
BYTE

Data#
0

0
1

;Open the file

;Close the file

;Back to current user
;Point to FIFO message
;I8 FIFQO attribute set?

;If yes, abort
;Point to read-only msg
;Is read-only attr set?

;1f yes, abort
;Point to proper user
;Delete the file

;Save the error code
;Back to current user
sRestore the error code
;Point to no-delete msg
3Good delete?

3If no, abort

;Point to delete message
;Save message pointer
;Print output msg pt 1

;Print filename
;Restore message pointer
;Display the message

;Exit to ofs

ENDDO, ENDDOYES

;Program ID
;Zilog mnemonics

;Locate in data segment

;YES flag
;Clear-screen string

L4

‘TirboD0S Users” Group Newsletter, Volume 3, Number 1, === Page 35

DB 988585885859555555555558595855595888887
|PMTSTR: :BYTE "\r\nOkay to abort the "
I BYTE "DO-file at this time? "
! BYTE "$8888885858889585585585885558588885558"

EDOMSG: DB 13,10,°DO-file aborted.”,13,10,7$"
|[EDOMSG: BYTE "\r\nDO-file aborted.\r\n$"
i
CSEG | 1LOC Code# ;Locate in code segment
JP BEGIN | JMP BEGIN ;Skip
YESFLG::DB O | ;YES flag
CLSSTR::DB 26, $5$5858858888” ;Clear-screen string

DB “-- Copyright (C) 1985, 1986, R. Roger Breton —~
I BYTE "-- Copyright (C) 1985, 1986, "
RYTE 'R Rnoov BRreton —-"

e Twla

!
|
BEGIN: LD A,(YESFLG) |BEGIN: CMP BYTE YESFLG,=0 ;Is YES flag set?
OR A |
JR Z,NOYES | JZ __NYES ;If no, skip
XOR A | XOR AL,AL ;Clear long-prompt flag
CALL CHRPMT## | CALL C“KPMT# ;Chk and display prompt
CALL GETCHR## | CALL GETCHR# ;Get a reply character
cp Y’ i CMP AL,=89 ;Is it a "Y"?
JR NZ,EXIT | JNZ __EXIT ;If no, exit to o/s
NOYES: 1D DE,0 |_NYES: MOV DX,=0 ;Prepare to terminate
LD A,(0050H) | ;Check the version
CP 0OC3H | 31.3x or 1.4x?
JR Nz,TDOS12 | ;If no, skip
D C,le6 | MOV CL,=16 ;Terminate the DO-file
CALL 0050H | INT 223
JR EDDONE | ;Skip
TDOS12:; 1D C,98 | ;Terminate the DO-file
CALL 0005H]
EDDONE: LD DE,EDOMSG | MOV DX, &EDOMSG ;Print terminated msg
b ¢C,9 | MOV CL,=9
CALL 0005H | INT 224
EXIT: JP OQ000H |__EXIT: MOV CL,=0 ;Exit to ofs
| INT 224
|
END | END

;Routine to generate the following utility: DOHALT

;Copyright (C) 1985, 1985, R. Roger Breton

;Author: R. Roger Breton
;Version: 2.20
;Dated: 26 January 1986

NAME (“DOHALT”) MODULE "“DOHALT" ;Program ID

!

.280 | ;Zilog mnemonics
I

DSEG I 1LO0C Data# ;Locate in data segment
[BYTE 0 ;Dummy flag byte

ICLSSTR: :BYTE 26,"$$$$$8588588" ;Clear-screen string
|PMTSPT: :BYTE 0
|PMTBEL: :BYTE 1

PMISPT: :DB 0
PMTBEL: :DB -1

TurboDOS Users” Group Newsletter, Volume 3, Number 1, ============== ==== Pagé 36

PMTSTR::DB 13,10,”DO-file halted, press any key to continue.”

DB 7 $88558550888585855855898588885888887
|PMTSTR: :BYTE "\r\nDO-file halted, "
| BYTE "press any key to continue,"

BYTE " $5855855585598585588998586558898888"

|
|

CSEG I LOC Code# ;Locate in code segment
|

Jp BEGIN JMP BEGIN ;Skip
DB 0 | ;Dummy flag byte
CLSSTR::DB 26,7$588$5888888” ;Clear-screen string

DB “-- Copyright (C) 1985, 1986, R. Roger Breton --~
| BYTE "-- Copyright (C) 1985, 1986, "
BYTE "R. Roger Breton --"

|
|
BEGIN: XOR A IBEGIN: XOR AL,AL ;Clear long-prompt flag

CALL CHKPMT## | CALL CHKPMT# ;Chk and display prompt
CALL GETCHR## | CALL GETCHR# ;Get a reply character
JP 0000H | MOV CL,=0 ;Exit to o/s

I INT 224

|
END I END

jRoutine to generate the following utility: PROMPT

3

;Copyright (C) 1985, 1986, R. Roger Breton
sAuthor: R. Roger Breton

;Version: 2.20

;Dated: 26 January 1986

NAME (“PROMPT”") | MODULE "PROMPT" ;Program ID

.280 | ;Zilog mnemonics
I

DSEG | LOC Data# . ;Locate in data segment
I BYTE 0 ;Dummy flag byte

ICLSSTR: :BYTE 26,"$5$588$$85888" ;Clear-screen string
FILMSG: DB 7,13,10,°File $°

[FILMSG: BYTE "\7\r\nFile $"
0SZMSG: DB~ is too large.”,13,10,7$”

|0SZMSG: BYTE " is too large.\r\n$"
FNFMSG: DB “ not found.”,13,10,7%"

IFNFMSG: BYTE " not found.\r\n$"

PMISPT::DB -1 |PMTSPT: :BYTE 1
PMTBEL::DB -1 IPMTBEL: :BYTE 1
PMISTR::DB “$$$~ |PMTSTR : :BYTE "$$$"
DS 2048 | RES 2048
|
CSEG | LOC Code# ;Locate in code segment
JP BEGIN le JMP BEGIN ;Skip
DB 0 [;Dummy flag byte
CLSSTR::DB 26, $$$$$55558887 ;Clear-screen string

DB “-- Copyright (C) 1985, 1986, R. Roger Breton --~
| BYTE "-- Copyright (C) 1985, 1986, "
| BYTE "R. Roger Breton —-"
|
BEGIN: CALL TSTFIL## |BEGIN: CALL TSTFIL# ;Test for file specified

"TurboDOS Users” Group Newsletter, Volume 3, Number 1, == Page 37

OR A | OR DX,DX ;Was it?
JR NZ,PRINT] JNZ __PRT ;If no, abort
CALL FNDFIL## | CALL FNDFIL# ;Find the prompt file
LD DE,FNFMSG | MOV DX, &FNFMSG ;Point to no file msg
1D A,B | OR AL,AL sWas file found?
OR A I
JR NZ ,ABORT i JNZ __ABT sIf no, abort
1D DE,O0SZMSG | MOV DX,&08ZMSG ;Point to oversize msg
1D HL,007DH | MOV BX,&0x007D ;Check file size
D A,(HL) | CMP BYTE [BX],=17 ;Too many records?
CP 17 |
JR NC ,ABORT | JNC __ABT sIf yes, skip
INC HL | MOV AL,1[BX] ;Way too many records?
LD A,(HL) !
CINC HL I
OR (HL) | OR AL,2[BX]
JR NZ,ABORT | JNZ __ABT ;If yes, skip
CALL NEWUSR## i CALL NEWUSR# ;Move to specified user
1D DE,005CH | MOV DX, &0x005C ;Open the file
D ¢,15 i MOV CL,=15
CALL 0005H | INT 224
1D DE,PMISTR | MOV DX,&PMISTR ;Point to DMA buffer
b B,16 ! MOV CX,=16 ;Set count
LOOPl: ©PUSH BC | _LP1: PUSH CX ;Save count
PUSH DE | PUSH DX ;Save DMA address
LD G,26 | MOV CL,=26 ;Set it
CALL 0005H | INT 224
1D DE,005CH | MOV DX, &0x005C ;Read a record
ID C,20 | MOV CL,=20
CALL 0005H I INT 224
POP HL | POP DX ;Restore DMA address
LD DE,128 | ADD DX,=128 ;Add offset
ADD HL,DE !
EX DE,HL l
POP BC i POP CX ;Restore Count
OR A | OR AL,AL ;Was it a good read?
JR NZ,LSTREC | JNZ __LREC ;I1f no, exit loop
DJNZ LOOP1 I LOOP __LP1 ;Do next record
LSTREC: 1D DE,005CH |__LREC: MOV DX,&0x005C ;Close the file
LD Cc,16 | MOV CL,=16
CALL 0005H I INT 224
CALL OLDUSR## | CALL OLDUSR# ;Return to original user
ID A,-1 | MOV AL,=1 ;Set long~prompt flag
CALL CHKPMT## | CALL CHKPMT# ;Process file as string
JR EXIT | JMP _ EXIT ;Skip
ABORT: PUSH DE |__ABT: PUSH DX ;Save message pointer
LD DE,FILMSG | MOV DX,&FILMSG ;Print file message
b ¢,9 | MOV CL,=9
CALL 0005H | INT 224
CALL PRTFIL## | CALL PRTFIL# ;Print filename
POP DE | POP DX ;Restore message pointer
PRINT: 1D C,9 |__PRT: MOV CL,=9 ;Display the message
CALL 0005H | INT 224
EXIT: JP 000OCH { EXIT: MOV CL,=0 ;Exit to o/s

INT 224

TurboDOS Users” Group Newsletter, Volume 3, Number 1, ======== ========== Page 38

|
END] END

;Program to beep the console or the printer three times,

]

;Copyright (C) 1985, R. Roger Breton
;Author: R, Roger Breton

;Version: 2.20

;Dated: 05 December 1985

2

NAME (“BEEP’) | MODULE "“BEEP" ;Program ID
.280 : ;Zilog mnemonics
DSEG] LOC Data# ;Locate in data segment
[PCLOCK : :BYTE 8 ;Processor clock rate
LSTFLG: DB 0 :LSTFLG: BYTE O ;List flag
CSEG | LOC Codef ;Locate in code segment
JP BEGIN I ;Skip patch points
PCLOCK: :DB 6 | sProcessor clock rate
|
BEGIN: CALL LCHECK | CALL LCHECK ;Check for list option
CALL RING” | CALL RING ;Ring the bell
CALL WAIT | CALL WAIT ;Wait
CALL RING] CALL RING ;Ring it again
CALL WAIT | CALL WAIT ;Wait
CALL RING | CALL RING ;Ring it one last time
JP 0000H i MOV CL,=0 ;Exit to ofs
| INT 224
I
LCHECK: LD HL,0080H |LCHECK: MOV BX,&0x0080 ;Point to command tail
LD A,(HL) | ;Get lst character
CE 0 | CMP BYTE [BX],=0 ;Is there a cmd tail?
RET 2 | JZ _DONE ;If no, done
LOOPl1: INC HL : |_LPl1: INC BX ;Point to next chr
LD A,(HL) I ;Get it
CP 0 | CMP BYTE [BX],=0 ;End of command tail?
" RET Z I JZ __DONE ;If yes, done
crP 7y | CMP BYTE [BX],=59 ;Semicolon?
JR NZ,LOOP1 | JNZ __LPl ;If no, try again
LOOP2: 1INC HL |_LP2: INC BX ;Point to next chr
LD A,(HL) | ;Get it
CP 0] CMP BYTE [BX],=0 ;End of command tail?
RET Z | RZ __DONE ;If yes, done
AND SFH | AND BYTE [BX],=0x5F ;Make it upper-case
CP “L” I CMP BYTE [BX],=76 ;Is it an "L"?
JR Nz,L00P2 | JNZ __LP2 ;If no, try again
LD A,-1 I MOV BYTE LSTFLG,=1 ;Set the list flag
LD (LSTFLG),A | .
RET |_DONE: RET ;Done
I
RING: LD E,7 [RING: MOV DL,=7 ;Get bell code
LD ¢,2 | MOV CL,=2 ;Preset for comsole
1D A,(LSTFLG) | CMP BYTE LSTFLG,=0 ;Is list flag set?
CP 0 I

‘TurboD0S Users” Group Newsletter, Volume 3, Number 1,

WAIT:

WIOLP:
WIMLP:
WIILP:

JR Z,RCON l JZ _RCON
b ¢C,5 | MOV CL,=5
CALL 0005H |_RCON: INT 224
RET : RET
LD A,(PCLOCK) |WAIT: MOV AL,PCLOCK
LD ¢C,192 |_OLP: MOV DL,=194
LD B,121 | : MOV CX,=101
NOP | NOP
DJNZ WIILP | LOOP __ILP
DEC C I DEC DL
JR NZ,WIMLP | JNZ _ MLP
DEC A | DEC
JR NZ,WTOLP | JNZ __OLP
RET | RET

]
END | END

'Program to clear the console screen

Copyrlght (C) 1985, R. Roger Breton

sAuthor:

R. Roger Breton

;Version: 2.20

;Dated:

.
s

CLSSTIR:

BEGIN:

03 December 1985

NAME (“CLS”) i MODULE "CLS"
.Z280 |
| ‘
] LOC Data#
| BYTE 0
|CLSSTR: :BYTE 26,"$5$$5$5858588"
| .
CSEG | LOC Code#
JP BEGIN]
DB 0 |
$

:DB 26,'$$$$$$$|$$$$’

1D DE,CLSSTR MOV DX,&CLSSTR

I
1D C,9 | MOV CL,=9
CALL 0005H | INT 224
JP 0000H | MOV CL,=0
| INT 224
|
END | END

If—Group subroutlne CMDLST

,Copyrlght (c) 1985, 1986, R. Roger Breton

sAuthor:

R. Roger Breton

;Version: 2.20

sDated:

26 January 1986

NAME (“SUBIF1”) | MODULE "SUBIF1"
.280 | ‘
I

Page 39

;If no, skip

;Set for list device
;Send the bell

;Done

;Set outer loop count
;Set middle loop count
;Set inner loop count
;Waste a little time

;Do inner loop

;Dec middle loop counter
;Do middle loop -
;Dec outer loop counter
;Do outer loop

sDone

;Program ID

3Zilog mnemonics

;Locate in data segment
;Dummy flag byte

;Locate in code segment
3Skip

sDummy flag byte
;Clear-screen string

;Clear the screen

;Exit to ofs

sProgram ID
;Zilog mnemonics

TurboD0OS Users” Group Newsletter, Volume 3, Number 1, ====

DSEG
MCLIMSG: DB

CSEG
CMDLST: :1LD
LD
LD
LOOP1A: LD
INC

CP
JR
cr
JR
Ccp
JR
LOOP1B: LD
INC

cp

CP

LINTAB:

REERRER

LOOP2: 1INC
L.ooP3: CP
JR
cr

INC

DEC
CP

SEPCHR: LD
LOOP4: INC

cp
JR
JR
ENDCT: LD

SUB

| LOC
7,13,10, Missing command
IMCLMSG: BYTE
I
I LOC
B,A |
HL,0081H |CMDLST::MOV
c,” - |
(HL) ,C |__LPlA: MOV
HL | INC
A, (HL) |
0 | CMP
Z ,ENDCT | Jz
9 | CMP
zZ,Loor1a | Jz
c | CMP
Z,L00P1A | JZ
(HL) ,C |__LP1B: MOV
HL | INC
A, (HL) |
0 | cMP
Z ,ENDCT | Jz
9 I CMP
NZ,LINTAB | JNZ
(HL),C | MOV
C |__NTAB: CMP
NZ,LOOP1B | JNZ
A,B |
B,0 I
A | OR
| MOV
NZ,LOOPlA | JNZ
HL [__LP2: 1INC
A,(HL) I
0 |_LP3: CMP
Z ,ENDCT | Jz
1 I CcMP
NZ ,LOOP2 | JNZ
HL | CMP
A, (HL) I
HL |
1 I
Z,SEPCHR | Jz
(H),\" | MOV
LOOP2 | JMP
(HL),” * | _SEP: MOV
HL | _LP4: INC
A, (HL) |
N I CcMP
Z ,LO0P4 | Jz
LOOP3 I JMP
(HL),0 | _NDCT: MOV
A,L |
129 I SUB
(0080H),A | MOV

Data#

list.”,13,10,7 87

;Locate in data segment

"\7\r\nMissing command list.\r\n$"

Codet#
BX,&0x0081

BYTE [BX],=32
BX

BYTE [BX],=0
__NDCT

BYTE [BX],=9
_LPIA

BYTE [BX],=32
__LplA

BYTE [BX],=32
BX

BYTE [BX],=0
__NDCT

BYTE [BX],=9
__NTAB

BYTE [BX],=32
BYTE [BX],=32
__LPIB

AL,AL
AL,=0
__LPl1A
BX

BYTE [BX],=0

__NDCT

BYTE [BX],=124
LP2

BYTE O1[BX],=124

__SEP
BYTE [BX],=92
__Lp2

BYTE [BX],=32
BX

BYTE [BX],=124
__LP4

__Lp3

BYTE [BX],=0

BX,=0x0081
0x0080,BL

;Locate in code segment
;8ave the IFCHR flag
;Point to cmd tail space
;Get a space

;Space the character
;Point to the next one
;Get it

;End of command tail?
;If yes, skip

;Tab?

;If yes, space it/do nxt
;Space?

;If yes, do next chr
;Space the character
sPoint to the next omne
;Get it

;End of command tail?
;1f yes, skip

;Tab? :

;If no, skip

;Space it

;Space?

;1f no, space it/do next
;Get IFCHR flag

;Clear it

;Was IFCHR flag set?
;Clear it anyway

;1f yes, do it all again
;Point to next character
;Get it

;End of command tail?
;If yes, skip
;Separator?

3If no, do next chr
;Next chr a separator?

yIf yes, skip
;Convert separator
;Do next character
sReplace with a space

;Do next character

;Separator?

;If yes, bypass it
;Back to the main loop
;Mark end of cmd tail
;Get position

;Get length

;Set length

TurboBO8 Users” Group Newsletter, Volume 3, Number 1, Page 41

AT
El‘ &

1D HL,0080H | MOV BX,&0x0080 ;Point to command tail
LOOPS: INC HL |_1LP5: INC BX ;Point to next character

LD A,(HL) ! ;Get it

cP 0 | CMP BYTE [BX],=0 ;End of command list?

JR Z,NOLIST | JZ __NLST ;If yes, skip

cp 7 | CMP BYTE [BX],=32 ;Other than a space?

JR NZ,IDSEP | JNZ __LDSP _ ;If yes, skip

JR LOOPS | JMP _ LP5 ;Check next character
NOLIST: LD DE,MCLMSG |_ NLST: MOV DX,&MCLMSG ;Point to missing msg

LD A,-1 | ;Set error return flag

RET | RET ;Done
LDSEP: CP “\~ |__1LDSP: CMP BYTE [BX],=92 ;Leading separator?

JR NZ,DONE | JNZ __DONE ;1f no, done

b (®L),” ° | {0V BYTE [3X],=32 ,S;u;f a space

]]

1D HL,0081H | MOV BX,=0x0081 ;Point to lst list chr

LD (HL),A | MOV BYTE [BX],=92 ;Stuff leading separator
DONE: XOR A |_DONE: XOR DX,DX ;Clear error return flag

RET I RET » ;Done

|
|

END
;I1f-Group subroutines: NEWUSR, OLDUSR

3

;Copyright (C) 1985, 1986, R. Roger Breton
sAuthor: R. Roger Breton

;Version: 2.20

;Dated: 26 January 1986

2

NAME (“SUBIF27) | MODULE "“SUBIF2" ;Program ID
.Z80 | ;Zilog mnemonics
|
CSEG | LOC Codet ;Locate in code segment

NEWUSR::LD A, (T14FLG##)
INEWUSR: :CMP BYTE T14FLG#,=1 ;Version 1.4x?
OR A]
RET 2 I JNZ _ RET ;If no, done
LD A,(SPCUSR##)
[TEST BYTE SPCUSR#,=0x80;Was user specified?

BIT 7,A |
RET NZ | JNZ __RET ;1f no, done
ID E,A | MOV DL,SPCUSR# ;Move to specified user
Lb C,32 | MOV CL,=32
CALL 0005H | INT 224
RET |_RET: RET sDone
I

OLDUSR::LD A, (T14FLG##)
|OLDUSR::CMP BYTE T14FLG#,=1 ;Version 1.4x?
OR A |
RET NZ I JNZ __RET ;If no, done
LD A, (SPCUSR##)
| TEST BYTE SPCUSR#,=0x80;Was user prev changed?
BIT 7,A |
RET NZ | JNZ __RET ;If no, done
LD A,(CURUSR##)
] MOV DL,CURUSR# ;Move to original user

LD E,A I
b ¢C,32 i MOV CL,=32
CALL 000S5H | INT 224
RET |__RET: RET ;Done
|
END | END
;1f-Group subroutines: TSTFIL, FNDFIL, PRTFIL
3
;Copyright (C) 1985, 1986, R. Roger Breton
;Author: R. Roger Breton
;Version: 2.20
;Dated: 26 January 1986
NAME (“SUBIF3“) | MODULE "SUBIF3" ;Program ID
.Z280 | ;Zilog mnemonics
|
DSEG | LOC Data# ;Locate in data segment
NFSMSG: DB 7,13,10,”No filename specified.”,13,10,7$"
INFSMSG: BYTE "\7\r\nNo filename specified.\r\n$"
AFLMSG: DB 7,13,10, Ambiguous filename specified.”,13,10,78"
|AFIMSG: BYTE "\7\r\nAmbiguous filename specified.\r\n$"
NPUMSG: DB 7,13,10, Non-priviledged user.”,13,10,7§"
INPUMSG: BYTE "\7\r\nNon-priviledged user.\r\n$"
PRVFLG: DB O |PRVFLG: BYTE 0 ;Priviledged user flag
T14F1G::DB 0 |T14FLG: :BYTE 0 ;Version 1.4x flag
SPCUSR::DB 80H |SPCUSR: :BYTE 0x80 ;Specified user area
CURUSR::DB 0 |CURUSR: :BYTE 0 ;Current user area
|
CSEG | 10C Code# ;Locate in code segment
TSTFIL::LD DE,NFSMSG |TSTFIL::MOV DX,&NFSMSG ;Point to no file msg
LD HL,005DH | MOV BX,&0x005D ;Point to lst fn chr
LD A,(HL) I . 3Get it
cp 7 | CMP BYTE [BX],=32 ;Was filename specified?
RET 2Z | JZ _RET ;If no, done
1D DE,AFLMSG | MOV DX,&AFLMSG ;Point to ambiguous msg
ID A,777 | ;Get a question mark
LD B,l11 | MOV CX,=11 ;Set count
TFLOOP: CP (HL) | _LP: CMP BYTE [BX],=63 ;Is fn/ft ambiguous?
RET 2Z | JZ _RET ;If yes, done
INC HL | INC BX ;Point to next character
DJNZ TFLOOP | LOOP __ LP ;Do “em all
LD A,(0050H) | ;Get T-function jump
SUB 0C3H | ;Version 1.30 or later?
RET NZ | ;If no, done
b ¢C,12 | MOV CL,=12 ;Get version number
CALL 0050H | INT 223
BIT 7,B I TEST CH,=0x80 ;Is user priviledged?
JR Z,TFSKIP | JZ __SKP ;If no, skip
LD a,-1 | MOV BYTE PRVFLG,=l ;Set priviledged flag
LD (PRVFLG),A |
TFSKIP: LD A,C |_SKP: CMP CL,=0xl4 ;Is this version 1.4x?
CP 14H |
RET Nz | JNZ __DONE ;If no, done
LD A,-1 | MOV BYTE TI14FLG,=1 ;Set version l1.4x flag

" "TarboDOS Users” Group Newsletter, Volume 3, Number 1,

T

ESEEE

FNDFIL: :CALL
LD
LD
CALL
PUSH
CALL
POP
RET

PRTFIL::LD
BIT
JR

1D
cr
JR
1D
SUB
Ccp
JR
INC
SUB
CP
JR
INC
SUB
PFPRTU: PUSH
XOR
Ccp
JR

(T14F1G),A
HL,006BH
A, (HL)

A
A
HL
HL

A,(HL)
(SPCUSR) ,A
E,-1

c,32

0005H

(CURUSR) ,A
B,A

A, (SPCUSR)
B

z
DE,NPUMSG

A, (PRVFLG)

-1

NEWUSR##
DE,005CH
c,35
0005H

AF
OLDUSR##
AF

A, (SPCUSR)
7,A
NZ ,PFNUSR

E,0

10
C,PFPRTU
E,"1°

10

10
C,PFPRTU
E

10

10
C,PFPRTU
E

10

AF

A

E

Z ,PFPRT2

CMP

JZ
MOV

!

|

I

|

|

|

|

I

| MOV
! MOV
| MOV
| INT
!

!

|

I

|

]

|

]

|

MOV
SUB

(o4

JZ
MOV
CMP

DONE: XOR

RET:

RET

|

|

|FNDFIL: :CALL
| MOV
| MOV
| INT
! PUSH
| CALL
| POP
| RET
|

|PRTFIL: :TEST
|
|
|
|
l
|

JNZ
MOV
MOV
CMP
JC

MOV
SUB
CMP
JC

INC
SUB
CMP
JC

SUB
_PRTU: PUSH
OR

JZ

BYTE 0x006B,=0

__DOKE
AL,0x0069

SPCUSR ,AL
DL,=255
CL,=32
224

CURUSR,AL
AL .SPCUSR

i gy A VWA

__DONE
DX , SNPUMSG
BYTE PRVFLG,=1

DX ,DX

NEWUSR#
DX, &0x005C
CL,=35

224

AX
OLDUSR#
AX

BYTE SPCUSR,=0x80

__NUSR
AL,SPCUSR
DL,=0
AL,=10
__PRTU
DL,=49
AL,=10
AL,=10
__PRTU
DL

__PRT2

CALL PFPCHR
PFPRT2: POP AF

I
|
I
|
|
!
I
|
| INC
|
l
|
|
I
|
|

CALL __PCHR
_PRT2: POP AX

=== Page 43

;Was user specified?

;If no, done
;Get user area

;Save it
;Get current user

;Save it
~Qame asg

PR S

snecifisd user?
specified user?

;1f yes, done
;Point to non-priv msg
s;Priviledged?

;Clear error msg pointer
sDone

;Move to specified user
;Check for file present

;Save error code

;Move to original user
;Restore error code
;Done

;Was user specified?

;1f no, skip

;Get user area code
s;Preset for 0-9
;User area less than 10?7
;If yes, skip
;Preset for 10-19
;Subtract 10

;Less than 207

;If yes, skip
;Preset for 20-29
;Subtract 10

;Less than 307

;If yes, skip
;Preset for 30 or 31
;Subtract 10

;Save the value
;User 0-9?

;If yes, skip
;Print first digit
;Restore value

PFNUSR:

PFNDRV:

PFACOL:

PFNDRU:

PFFNFT:

PFNTSP:

PFPCHR:

ADD
LD
CALL
1b
LD
OR
JR

ADD
CALL
JR
LD
BIT
JR
LD
CALL
LD
LD
LD
CALL
LD
CALL
1b
CALL
RET
INC
LD
RES
CP
JR
CALL
DJINZ
RET
PUSH
PUSH
PUSH
1D
CALL
POP
POP
POP
RET

END

A,48

E,A
PFPCHR
HL,005CH
A,(HL)

A
Z,PFNDRV

A,64
PFPCHR
PFACOL

A, (SPCUSR)
7,A

NZ ,PFNDRU
E,":"
PFPCHR
HL,005CH
B,8

A,’ L4
PFFNFT
E,I./
PFPCHR
B,3
PFFNFT

HL
E, (HL)
7,E

E

Z ,PFNTSP
PFPCHR
PFFNFT

HL
BC

AF
c,2
0005H
AF

BC

HL

ADD

MOV

CALL
NUSR: CMP

JZ
MOV
ADD
CALL
JMP
NDRV: TEST

JNZ

__ACOL: MOV
CALL

NDRU: MOV
MOV

|

|

]

|

I

!

]

|

I

I

|

|

I

|

|

|

|

|

|

I CALL
| MOV
| CALL
| MOV
I CALL
| RET
|_PFNT: INC
I MOV
I
|
|
!
I
|
|
I
[
]
|
I
|
I
I
|
I

CMP
Jz
CALL

: LOOP
RET

__PCHR: PUSH

PUSH

5

MOV
INT

POP
POP
RET

END

AL,=48
DL,AL
__PCHR
BYTE 0x005C,=0

__NDRV
DL,0x005C

DL,=64

__PCHR

__ACOL

BYTE SPCUSR,=0x80

__NDRU
DL,=58
__PCHR
BX, &0x005C
CX,=8

__PFNT
DL, =46
__PCHR
CX,=3

__PFNT

BX
DL, [BX]
DL,=0x7F
DL,=32
__NTSP
__PCHR
__PFNT

;If-Group subroutines: CHKPMT, GETCHR

3

;Copyright (C) 1985, 1986, R. Roger Breton
R. Roger Breton
;Version: 2.20
26 January 1986

;Author:

;Dated:

NAME
.Z280

(“SUBIF4”)

| MODULE “'SUBIF4&"

;Make it ASCII
;Print second digit

;Default drive?

;If yes, skip

;Get the drive code
;Make it ASCII
;Print it

3 Skip

;Was user specified?

;1f no, skip
;Print a colon

;Point to the FCB
;Set the count

;S8et the compare byte
;Print the filename
;Print a period

;Sat count

;Print the filetype
;Done

;Point to next character
;Get it

;Clear any attributes
;Is it a space?

;If yes, skip

;Print it

;Repeat for all ft chrs
;Done

;Save pointer

;Save counter

;Save compare byte
;Print the character

;Restore compare byte
sRestore counter
;Restore pointer
;Done

sProgram ID
;Zilog mnemonics

“TurboDOS Users”

Group Newsletter, Volume 3, Number 1,

DSEG I LOC Data#
ECOMSG: DB~ 7,13,10,7§%"
|[ECOMSG: BYTE " \r\n$"
|LPTFLG: BYTE 0
I
CSEG | LOC Code#
CHKPMT : : PUSH AF |CHKPMT : :MOV LPTFLG,AL
1D HL,PMISTR##| MOV BX,&PMTSTR#
OR A] OR AL,AL
JR NZ,CPLPMT | JNZ __LPMT
LD HL,0080H | MOV BX,&0x0080
LD A,(HL) [
CP 0 | CMP BYTE [BX],=0
JR Z,CPNPMT | JZz __NPMT
CPLUP1: INC H [_LPl: INC BX
LD A,(HL) I
CP 0 | CMP BYTE [BX],=0
JR Z,CPNPMT | JZ __NPMT
cP 7 i CMP BYTE [BX],=59
J NZ,CPLUPL | JNZ __1IP]
INC HL f INC BX
CPLPMT: LD A, (HL) |__LPMT: CMP BYTE [BX],=94
cp " |
JR NZ,CPASTR | JNZ __ASTR
CALL CPPCLS | CALL __CLS
CP 7%’ | CMP BYTE [BX],=42
JR NZ,CPPSTR | JNZ __PSTR
CALL CPNBEL | CALL __ NBEL
JR CPCSTR I JMP __PSTR
CPASTR: CP "%~ |__ASTR: CMP BYTE [BX],=42
JR NZ,CPPSTR | JNZ __PSTR
CALL CPNBEL | CALL __ NBEL
cp I CMP BYTE [BX],=94
JR NZ,CPPSTR | JNZ __PSTR
CALL CPPCLS | CALL __CLS
CPPSTR: CP 0 |__PSTR: CMP BYTE [BX],=0
JR Z,CENPMT | JZ __NPMT
| MOV SI,BX
LD BC,2048 | MOV CX,=2048
POP AF |
OR A | CMP BYTE LPTFLG,=0
JR NZ,CPENDL | JNZ __ENDL
LD BC,76 | MOV CX,=76
PUSH BC I PUSH CX
LD DE,PMTSTR##+02
I MOV DI ,&PMTSTR#+2
LDIR | REP MOVS BYTE
POP BC | POP CX
LD A,0 | MOV AL,=0
LD HL,PMTSTR##| MOV DI,&PMISTR#
CPIR | REPNZ SCAS BYTE
OR B | OR CX,CX
JR Z,CPENDP | JZ __ENDP
DEC HL ! DEC DI
CPENDP: LD (HL),” ©~ [__ENDP: MOV BYTE [DI],=32

=== = Page 45

;Locate in data segment

sLong-prompt flag

;Locate in code segment
;Save long-prompt flag

;Point to prompt string
;Long or short prompt?

;If long, skip

;Point to command tail

;Get length

;Is length zero?

o me m n aa PRSI P

;Point to next character
sGet it

;End of command tail?
;If so, no promptstring
3Is it & semicolon?

;If no, keep looking
;Get next character

;1st chr a circumflex?

;If no, skip

;Clear the screen

;Is 2nd chr an asterisk?
;If no, do promptstring
;Turn off bell

;Do promptstring

;Is 1st chr an asterisk?
;1f no, do promptstring
;Turn off bell

;2nd chr a circumflex?
;1f no, do promptstring
;Clear the screen

;End of prompt?

;1f so, no promptstring
;Set source to pointer
sPreset long-prompt cnt
s;Restore PROMPT flag
;Long or short prompt?
sIf long, skip

;Set short-prompt count
;Save count

;Set dest to pmtstr
;Transfer promptstring
;Restore count

;Get a null

;Set scan to pmtstr
;Find the end

;End of count?

;If yes, skip

;Point to the end

;End promptstring there

TurboDOS Users” Group Newsletter, Volume 3, Number 1,

INC
1D
INC
JR})
b
1D
LD

CPENDL:

CPNPMT :

OR
JR
1D
1D
CALL
LD
LD

CPSBEL:

OR
JR

CALL

CALL
CPPPMI: LD
CALL
RET

CPPCLS: PUSH

CALL
POP

CPNBEL: LD

CPSSKP: LD
INC

RET

GETCHR::1LD

CALL
OR
JR
AND
CP
JR

ECHOY: 1D

CALL
1D
RET

END

HL |
(HL),” ~ |
HL |
(gL)," 8" |
A,0 I
(PMTSPT##) ,A
A, (PMTBEL##)

A I
Z,CPSBEL |
E,7 |
c,2 |
0005H |

ENDL:

NPMT :

DE,PMTSTR##|__SBEL:

A,(PMTSPT##?
A

Z ,CPPPMT
C,9

0005H
PRTFIL##

DE ,PMTSTX##
C,9
0005H

HL
DE,CLSSTR##
c,9
0005H
HL
CPSSKP
A,0

— G — —— — — t— — — —

S

3
3

(2]
[
w

2
o
2]
[

(PMTBEL##) ,A

(HL),13
HL
A, (HL)

E,~1

C,6

0005H

A

Z ,GETCHR
5FH

’Y’

Z ,ECHOY
A,°N"
(ECOMSG) ,A
DE ,ECOMSG
c,9

0005H

A, (ECOMSG)

— —— —— —— — — ——— — — — Tt Wiy — — —— — —— O —— —— —

SSKP:

GETCHR::

=
Q
o
L]

MOV

MOV
MOV

CMP

JZ

MOV
MOV
INT
MOV

CMP

JZ
MOV
INT
CALL
MOV

TMOV

INT
RET
PUSH
MOV
MOV
INT
POP
JMP

: MOV

MOV
INC

RET

MOV
MOV
INT
OR
JZ
AND
CMP
JZ
MOV

¢ MOV

MOV
MOV
INT
MOV
RET

END

BYTE 1[DI],=32

BYTE 2[DI]},=36
BYTE PMTSPT#,=0

BYTE PMTBEL#,=0

__SBEL
DL,=7

CL,=2

224

DX , &PMTSTR#

BYTE PMTSPT#,=0

__PPMT
CL,=9

224
PRTFIL#

DX , §PMTSTX#
CL,=9

224

BX
DX ,4CLSSTR#
CL,=9

224

BX

__SSKP

BYTE PMTBEL#,=0

BYTE [BX},=13
BX

DL,=255
CL,=6

224

AL,AL
GETCHR

AL ,=0x5F
AL,=89
__ECOY
AL,=78
ECOMSG,AL
DX, &ECOMSG
CL,=9

224

AL ,ECOMSG

== Page 46

;Clear split-prompt flag

;Is bell flag set?

yIf no, skip
;Beep the console

;Point to promptstring
;Split—prompt flag set?

;If no, skip
;Print promptstring

;Print the filename
;Point to rest of pstr
;Print it :

s;Done
;Save the pointer
;Clear the screen

;Restore the pointer
3 Skip
;Turn off bell

;Overwrite with a CR
;Point to next character
;Get it

;Done

;Look for an imput chr

;Was a chr waiting?
;If no, look again
;Make upper-case ASCII
;Is it a "Y"?

;1f yes, skip

;Get an "N"

;Save it

;Echo it

;Restore the character
;Done

TurboD0OS Users” Group Newsletter, Volume 3, Number 1 s======= == Page 47

ADJUSTING OLDER DRIVERS TO VERSION 1.43

R. Roger Breton and John E. Lauber

As those of you upgrading from earlier versions know, the 16-bit drivers for
version 1.43 require some changes. The area of primary concern is the method
used to implement a poll routine. In the older versioms (prior to 1.43), a
three-word semaphore was required in the data segment and a two-word link was
required in the code segment immediately ahead of the poll routine, as show in
this sample:

LOC Data# ;Locate in data segment
POLSPH: WORD 0x0000 ;Event semaphore
__PSPH: WORD __ PSPH
WORD __PSPH
>
1.oC Code# ;Locate in code Segment
s
MOV DX, &POLLNK ;Get linkage address
CALL LNKPOL# ;Actvate the poll routine
s
CALL POLRTN ;Optional pre-test
MOV BX,&POLSPH ;Get semaphore address
CALL WAIT# ;Wait for the event
’
5
POLLNK: WORD 0x0000 ;Poll routine linkage
WORD 0x0000
POLRTN: IN AL,=STAT ;Get device status
TEST AL ,=MASK ;Did event occur?
JZ POLXIT sIf no, done
MOV BX,&POLSPH ;Get semaphore address
CALL SIGNAL# ;Signal the event
MOV BX,&POLLNK ;Get linkage address
CALL UNLINK# ;Deactivate poll routine
3
POLXIT: RET ;Done

In the 1.43-and-later environment, the poll linkage must be moved to the data
segment, with a pointer to the poll routine appended:

LOC Data# ;Locate in data segment
3
POLSPH: WORD 0x0000 ;Event semaphore
__PSPH: WORD __PSPH

WORD __PSPH
POLLNK: WORD 0x0000 ;Poll routine linkage

WORD 0x0000
WORD &POLRTN

LOC Codei# ;Locate in code Segment

TurboDOS Users” Group Newsletter, Volume 3, Number 1 ==s====s===========

MoV DX, &POLLNK ;Get linkage address
CALL LNKPOL# ;Actvate the poll routine
H
CALL POLRTN ;Optional pre-test
MOV BX, &POLSPH ;Get semaphore address
CALL WAIT# ;Wait for the event
H
H
POLRTN: IN AL,=STAT ;Get device status
TEST AL,=MASK ;Did event occur?
JZ POLXIT ;1f no, done
H
MOV BX,&POLSPH ;Get semaphore address
CALL SIGNAL# ;Signal the event
H
MOV BX,&POLLNK ;Get linkage address
CALL UNLINK# ;Deactivate poll routine

>
POLXIT: RET

yDone

This whole arrangement would normally require that two sets of drivers be kept,
the older style and the 1.43-and-later style. John Lauber has developed a
method of creating version-independent drivers that is both simple and elegant.
His method operates around a byte that is set to 00 in earlier versions and to
FF in version 1.43+, thus providing an on-the~fly method of controlling routing.
His code for so doing may be found in the following extract from an actual
driver, and consists of the subroutines LNKPLC and UNLNKC and a "different"
method of specifying the poll linkages:

Loc Data# ; locate in data segment

H
;parallel port Semaphore

b}
POTSPH: WORD 0 3 semaphore count
__PARL: WORD __ PARL
WORD __ PARL
H
1.0C Code# ; locate in code segment

H
PAROUT: : MOV DX ,=PORTB get status port

H
IN AX,DX ; check status
AND AH,=] ; is it ready?
MOV AH,CL s get output char
JNZ __PAROT ; poll if busy
3
MOV DX,=PORTA ; get data port
ouT DX,AX ; send data byte
RET
H
__PAROT : MOV POCHAR ,AH s save the output char,
MOV DX,&PARPL ; point to poll routine

CALL LNKPLC ;3 link it on

TurboD0S Users”

Group Newsletter, Volume 3, Number 1

MOV BX,&POTSPH ; point to semaphore
JMP WAIT# ; wait till output ready
LocC Data# ; locate in data segment
PARPL: WORD 0
WORD 0 3 poll linkages
WORD &PARFPR ; poll routine entry
RELOC 3 locate back in code segment
WORD 0 .
WORD 0 3y poll linkages
5
PARPR: MOV DX ,=PORTB ; get status port
IN AX DX 3 checl estatus
AND AH,=1 3 is it ready?
JNZ __PXIT ; exit if wnot
5
MOV AH,POCHAR 5 get output char
MoV DX,=PORTA ; data port address
oUT DX ,AX ; send it
>
MOV BX,&PARPL ; remove from poll list
CALL UNLNKC
MOV BX,&POTSPH ; signal as ready
JMP SIGNAL#
H
__PXIT: RET ; return results

3 Checks for TurboDOS poll version global
; to link a poll routine.
; On entry: DX => poll linkage structure in Data segment.

3
3> Link poll routine common.
)
bl

and determines proper way

3

LNKPLC: MOV AL,GEV143# ; load version global
TEST AL,AL ; greater than or equal v1.437
JNZ _1 3+ 1f so, continue
MOV BX,DX ; else, move pointer to reg
MOV DX,4[BX] ; load code pointer
SUB DX,=4 ; adjust for linkages

1: JMP LNKPOL# ; and continue routine

we we we we we

Un-link poll routine common.
Checks for TurboDOS poll version global
to un~link a poll routine.

and determines proper way

Page 49

UNLNKC: MOV AL,GEV143# ; load version global
TEST AL,AL ; greater than or equal vl1.43?
JNZ 1 3+ 1f so, continue
MOV BX,4[BX] ; else, load code pointer
SUB BX,=4 ; adjust for linkages
1: JMp UNLINK# ; and continue routine

The whole method pivots around the byte GEV143##. If this byte is 00, then the
driver presumes 1.42 or earlier and acts accordingly. If this byte is not 00,
then the driver presumes for 1.43 or later. The easiest method to set this byte
is to add the module GEV143.0 to the GENeration files of all 1.43 systems. In

TurboDOS Users” Group Newsletter, Volume 3, Number 1 =================

this manner, if the module is left out, TurboDOS will link the system and set
the label "GEV143" equal to "UndData", returning a 00 to the LNKPLC and UNLNKC
subroutines, If the module is included, the the label "GEV143" will be hard-
coded to FF, The source code for the GEV143 module is:

#TITLE "TURBODOS OPERATING SYSTEM VERSION DEPENDENT VARIABLE"
#PAGE 132,60

Hd
3 Author: John E. Lauber
3

MODULE "“GEV143"

; Greater than or equal to version 1.43 patchable variable.

H
GEV143::BYTE 0XFF

H

; Default to >= version 1.43
END

Thank you, John.

