
gicro-LPROLQG 2
Programmerjs Reference Manual

CP/M Version *

F.G.McCabe

Revised Second Edition

C

This manual describes the «icro-PROLOG system from the programmer's
» point of view. It describes the syntax of micro— PROLOG, the various built-

in features/ and how to interact wi th the system. Also included is a
""" chapter which describes the machine code level interface, and how to aug-
u ment the system with built-in predicates. In so far as it is specific to

any particular micro-PROLOG implementation, this manual describes the CP/M
• version.

The specification of «icro-PROLO€ is subject to change without notice.

September, 1980
Kay, 1981

2nd Printing

(c) F.G. McCabe 19$)
(c) Logic Programming Associates Ltd., 1981

CP/M is a registered trade mark of Digital Research Inc.

Contents
•

Chaster • fJSS
•

1. Introduction 1

2. Syntax of micro-PROLOG 2

2.1 Character set • • 2
2.2 Numbers 2
2.3 Constants • 2
2.4 Variables 3
2.5 Lists 3
2.6 Atoms * ^
2.7 Clauses • •• 5
2.8 Comments 5
2.9 Meta-variable 6
2.9.1 Meta-variable as Predicate Symbol 6 -̂ .
2.9.2 Meta-variable as an atom 6 ^
2.9.3 Meta-variable as the body of a clause 7
2.10 Lexical syntax •_, 7
2.10.1 Token seperators • • • \ • • • • ^
2.10.2 Special tokens ' . . « . 7
2.10.3 Alpha-numeric tokens 7
2.10.4 Number tokens 8
2.10.5 Graphic tokens 8
2.10.6 Quoted strings 8
2.10.7 T h e lexical rules . . • . . . • . . . • • 8

3. Interacting with the Bicro-PROLOG system 10

3.1 Keyboard control 11
3.2 Supervisor commands .13
3.2.1 Entering clauses 1 3
3.2.2 Listing the program •13
3.2.3 Executing programs 14 ̂ /'
3.2.3.1 Commands in the supervisor . •14
3.2.3.2 Controlling Execution 1 5
3.2.4 Tracing Execution 1 5
3.2.4.1 Warning ... 17
3.2.5 Loading and saving programs from disk 17
3.2.5.1 File specification . . . 17
3.2.6 Exiting the system 1 7
3.3 The oicro-PROLOG Editor 18
3 .3 .1 Edi t Commands • • • • 1 8
3.3.2 Cursor Movement Commands18
3.3.3 Edit change Commands . ,19
3.3.4 Restructuring Lists .21
3.3.5 Further Extension 2 2
3.4 Pragmatic Considerations for Programmers 22
3.5 Sura ma ry .24

4. Simple PROLOG

4.1 Syntax of Simple PROLOG sentences - 2 6

4.2 The Sirrple PROLOG system 26
4.2.1 Add 27
4.2.2 List 27
4.2.3 Delete '. . . 2 7
4.2.4 Kill 27
4.2.5 Does 28
4.2.6 Which 28
4.2.7 One 28
4.2.3 Save 29
4.2.9 Load . 2 9
4.2.10 Accept 29
4.2.11 Edit 29
4.3 All Solutions 30
4.4 Summary 30

5. Built-in Programs 3 1

5.1 Arithmetic Relations .31
5.1.1 SUM • • . •31
5.1.2 PROD 32
?• I oj L>Cdw . . • • • • • • • • • • • . . J C,

5.2 String operations 3 2
5 .c .1 LcSS a 33
5.2.2 STRING „ —v . . .33
5.3 Console Input/Output Operations ^ . 33
J »J . I K > v > . . . J **

5 *1 ") o i /
• J.fc, r • • J*»

5 . <J . J r rJH

3 .J . *»Kr lLL . . . * m j j

5.4 Disk I/O 35
5.4.1 OPEN . . 3 5
5.4.2 CREATE 3 6
5.4.3 CLOSE . . . • • • • • • • « • • . . 3 6
5.4.4 READ36
5.4 .5 W R I T Ep 3 6
J .H . 0 W jO

J. *»o l butrV jO

5c5 Type Predicates 3 7
5.5.1 NUM. . . . • • . • • • • . . . • • • 3 7
P.J.C C O N jf
5 e "t eve Tfl

• J aj d \ 3 • • m J <J

5 . 5 . * * V A K . « . . v . . * . . . « ^O

5.6 Logical operators 38
J e O . l w K • • J O

J . O . c N w I . . . • J O

j.6.3 IF. • jV
5 . 6 o 4 E Q e • . . . • c 39
5.7 Data Base operations 3 9
J e « .1 C L . . . e . . . » • • * . V ̂ U

5.7c2 ADDCL 40
5.7.3 DELCL . . •• » • • e G . • . • . .41
5.8 Library procedures 4 1
J . O c l L I S T e . o » ** '

5 « 8 » c S A V E o . '• . . . o . . . • . . . «> *»'
5.8.3 LOAD . . . • • • o . • • . . . • . .41
5.9 Module Construction Facilities 41
J.V. I LKiiUD **c

5.9.2 OPMOD 4 2
5.9.3 CLMOD 42

'— ' 5.10 Miscellaneous Predicates 43
5.10.1 Did A3
5.10.2 QT . « • • • • • • • • • • • • • . A3

— • 5.1G.3 / . . • • • • • • • • • • • • • • • Ai
5. 10. A FAIL . . . • • • • • • • • • • • • A 3

-» 5.10.5 <SUP> A3

6. Implementing High-level features w i th low-level primitives A5
~*s

6.1 Negation A5
-1 6.2 One-of A6

6.3 Conditionals • A6
""* 6. A Lists of solutions A7
-J 6.5 The Simple PROLOG front end A9

6.5.1 The translator A9
-j 6.5.2 Organization o f Simple PROLOG programs 5 0
j 6.5.3 Evaluation of Simple PROLOG queries 51

6. 5. A Summary « • • • • • • • • • • • • • . 3 1

i 7. Adding assembler coded subroutines 52

7.1 Data registers 5 2
"1 7.1.1 Warning 53
-» 7.2 Type tree r-y 5A

7.3 Predicate symbol declaration 56
-? 7. A Inserting a program 5 6

A. Error conditions and messages 5 8

B. Useful addresses 59

C. Changing the lexical rules 60

D. The Simple PROLOG .front end program 6A

E. The micro-PROLOG Editor 66

References . 6 9

Chapter 1

Introduction

This manual describes the Bicro-PflOLOG programming system. PROLOG is a
computer Language based on predicate logic, in particular the clausal fern
of logic CRobinson 1965,19793. The procedural interpretation of logic was
conceived in 19?2 by Kowalski C19743, this enabled logic to be v iewed as a
concrete programming language.

The f i rst PROLOG (which stands for Programming in LOGic) was imple-
mented in 1972 in Marseil les by Colmeraur and Roussell CColmeraur 1973] in
the medium level programming language ALGOL-W. A more e f f i c i e n t and
improved implementation was made in 1973 CRoussell 19753, this t ime in
FORTRAN. This implementation reached a wide audience in countries as far
afield as Poland, Hungary, U.S.A., Canada, Sweden, Portugal, Belgium and
the ILK. Subsequently to the Marseilles PROLOG various other i tr.pl en enta-
tions have been built, the principal ones being in London CClark and McCabe
19793, Edinburgh CWarren et al. 19783, Water loo CRoberts 19773 and a new
implementation from Marseilles CKanoui £ Van Caneghem 19-8.03.

• icro-PRCLOG is a small, disk based implementation for the Z-80 micro-
processor operating under CP/M. The object ive of niero-PROLOG has been to
build a very basic system, which can easily be extended by the user. As
part of this philosophy the built-in syntax is very simple and basic, but
also very flexible. Extensibility is further enhanced by the provision of
an interface for adding sub-programs writ ten in other languages, for exam-
ple ASSEMBLER and FORTRAN.

This manual is not a E£22££ for logic programming, but it is intended
to be used as a reference manual by the programmer who already has some
basic knowledge about logic programming. It describes the »icro-PROLOG
system in some detail, but does not attempt to teach the principles of
logic programming to the novice. For an introductory text on Logic as a
programming formalism se*e the primer "A micro-PROLOG primer" by CClark,
Ennals & McCabe 19813, and the book "Logic for Problem Solving" CKowalski
19793; for a more formal treatment see "Predicate Logic as a computational
Formalism", by Clark C19793.

— Chapter 2
*

Syntax of •icro-PROL06

The syntax of •icro-PROLOS is very simple, making up in generality
what it lacks in sophistication. Most mainframe PROLOG systems nowadays
have very powerful grammars built into them; typically some kind of opera-

~" tor precedence g rammar . Whi le this might have been desirable, space
_ linitations make this difficult to do in »icro-PROL06. Instead we modelled

the syntax of micro-PROLO€ on LISP syntax CMcCarthy 1962D.
•— There are only four different kinds of syntactic objects that Bicro—

PROLOG knows about: Numbers, Constants, Variables and Lists; which are all
""" kinds of term. Note that there are no general facilities for arbitrary
_ funct ion symbols, the only one a l lowed is tfte list cons t ruc to r and for

which there is a specially condensed syntax c.f. OEC-10 PROLOG and LISP.

2.1 Character set
s, ^*

_ ricro-PRCLOG uses the 7 bit ASCII character set, together with extra ^
characters, such as special graphics characters, that may be supported by
the underlying machine. Characters are represented internally by 8 bit
numbers in the range 1..126. The characters corresponding to '0 and 127 are

""" not legal in »icro-PROLO€, and are ignored if used,

2.2 Numbers

Numbers are integers in the range -2^5.^15-1. A positive number is
""" writ ten as a contiguous sequence of digit characters, with no leading sign
._ character, eg. 0 30 1025 32767.

I A negat ive number is wr i t ten w i t h the leading sign cha rac te r "-"
— contiguously fol lowed by a positive number. For example, -1 -30 & -32767

are all negative numbers. If a sign character does not have a positive
'"** number contiguously fo l lowing it, then it is not regarded as the sign
_j character of a number. Thus "-" on its own is a valid syntactic object,

differing from any number.
•

; ' ' 23 Conjtants ,̂ >-

— Constants are the simple unstructured objects of wicro-PROLOG. They
j are used to name individuals in the program, such as "fred", "A1" etc., but

— they are a lso used to label programs w i t h predicate symbols, such as
"Append", "P" etc.

•""I A constant is normally "written as a alphabetical letter, followed by a
J sequence of letters and digits (though see definition of variable below).

This is similar to the way identifiers are writ ten in conventional program-
..- m-ing languages. The "-" character also counts as an alphabetic character;
\ t'nis can be used to split up long names wi th several English words. Some

examples of constants are:

"- A1 Fred A-1 All-sol
J

Constants can also be wr i t ten using the non alphanumeric characters
~ such.as "." "1" "," etc. This kind of constant is written as a sequence of
j graphical characters, which include such characters as:

Syntax of Bicro-PSCLOG

Final ly , a constant can also be w r i t t e n as a quoted string, in w h i c h
case there are no r e s t r i c t i ons on the c h a r a c t e r s t h a t can be used in the
constant. A quoted s t r ing cons is t s of a sequence of cha rac t e r s surrounded
by the double quote charac te r : ". If the quote cha rac t e r is i t se l f to he
part of the string then it is typed twice : "". Using t h i s s t r ing notation
means tha t we can have constants of the f o r m :

"1" "The man" "A?1 "S100" "A '"'quoted'"' string"

If an A S C I I control cha rac te r occurs in a constant then it is n o r m a l l y
displayed by the micro-PROLOG sys tem as a "Achar" sequence. For e x a m p l e
the Control-A character is displayed by micro-PROLOS as *^to reflect the
key c o m b i n a t i o n needed to enter control cha rac te r s at the keyboard.

2.4 VarjabJLes

Variables are represented by a l p h a n u m e r i c names w h i c h consist of a
single Le t te r fo l lowed by a sequence of digits. The f i r s t charac te r must be
one of the var iable p re f ix characters, w h i c h in standard m i c r o PROLOG are:
"x", "y", "z~",~~'7X'T "Y""T""fT. SoJ'for e x a m p l e , "x", "XV1 and "Y30" are
var iab le names since they consist of a v a r i a b l e p r e f i x c h a r a c t e r f o l l o w e d
by only digits, whereas "yes", "x12c" are not var iable n-mes. The number
w h i c h f o l l o w s the variable p re f ix character should be in the range 1..127,
o t h e r w i s e t w o a p p a r e n t l y d i s t i n c t n a m e s w i l l 6V m a p p e d t o t h e s a m e

-- var iable . " \
When a variable is recognised on input it is a l w a y s converted to an

internal form, w h i c h means that when a variable is printed the original
,m name of the va r iab le is not used. Instead, the var iables are displayed in

+ Uo .• si si • • « • « / » < * M y « l MV" II7II It II II It ll_ II llu 4 II II _ 4 II TkA P A * f^4tne sequence X, Y , I , x, y , 2 , X i , .., 2 1 , ... Tne set OT
— var iable p r e f i x characters can be altered by the user to select f rom one of

the popular variable conventions (see Appendix C).
-• Var iab les and constants are general ly seperated f r o m each other by one
_j or more of the seperator characters: space, carriage-return/new-Line, and

tab. The actual number of seperators between constants and variables is
. .* not important, and they are ignored by the micro-PROLOG system.

i See Section 2.10 for a f u l l e r description of «icro-PROL06's lexical
•~* syntax.

^ 2.5 Lists
*^ * *••

The only function symbol recognised in aicro-PROLOS is the binary
* - funct ion symbol "I". Function terms using this symbol are w r i t t e n in f u l l y
_j bracketed i n f i x form.

We generally view the "I" funct ion symbol as a List constructor in the
... same way that "." is used in LISP, and in other PROLOG systems. As in LISP

I and in DEC-10 PROLOG there, is a more convenient ijst notation when a term
J n a m e s a l i s t of i tems. Such a L i s t is w r i t t e n as the sequence of its
^ e l emen t s separated by spaces or carr iage returns, and enclosed w i t h
i brackets,
j For example, the Lis t of numbers f rom 1 to 5 would be w r i t t e n as

mj (1 2 3 A 5)
j

w h i c h is ident ical to the term:

j • (1 K 2 I C 3 K 4 I < 5 ! < » » »

^ and both f o r m s are acceptable as input to the system.
Note that the special charac ters "(", ")" and "I" need no spaces on

Syntax of •icro-PRCLOS

"either side of them, whatever context they are in. Of course these
charac te rs may apcear in a quoted constant in which case they ,ire treated
just as if they were ordinary characters.

, The empty list just consists of two brackets: "O" and it is logically
interpreted as a single constant.

*• When a term is displayed by the «icro— PR CLOG system it is b<? displayed
in list notation rather than in fully bracketed form.

1 If a term is not exac t ly a list, for example if the 'tail' of the term
- is a variable, then a bar ("I") is interposed between the last element of

the List and the term naming the tail of the list. This allows partial use
i of the list notation, revert ing to the original bar notation w h e n
J necessary. For example, the list structure:

^ (A B C l x)

5
* refers to the list whose first three elements are A, B and C, and whose

tail is named by the variable "x11, In full bar notation this term would be
] written as:
•

(A K B K C I x)))
•̂

^ Elements of lists are in general arbitrary terms,~Nand in particular
can themselves be lists. The list of unit lists of numbers f rom 1 to 5 is

-, writ ten as:

(CD (2) (3) (4) (5))

In full bar notation this is written as:

Although the bar is the only function symbol in nicro-PROLOG other
function symbols can easily be simulated by using a prefix notation. In-
stead of wr i t i ng "f (t1 ,..,tn)" w r i t e the list "(f t*1 .. t*n>" where the
function symbol is named by a constant, and forms the first element of a
list. The rest of the elements t*1 .. t*n of the list correspond to the
arguments tt,..,tn of the function term.

In fact this method is not much less efficient in terms of .space used,
and time of execution, though it is perhaps less convenient to write. Of
course, we can also have terms where the function symbol is no longer named
by a constant but by a variable or a list structure. For example the list
"(x t1 .. tn)", has a 'function symbol1 which is a variable, can be inter-
preted as a term 'for all possible values of "x" ".

Alternatively, the function symbol may have structure:

((RECORD PAYROLL) employee salary)
((RECORD INVOICE) customer total)

All raicro-PROLQG constructs are expressed in terms of the four types
of term discussed so far: Numbers, Constants, Variables and Lists. The
higher level syntactic constructs such as atoms and clauses make use of
these basic objects, and they are generally list structures.

2.6 Atoms

An atom is a term written using the special prefix form described
above for functions. For example, an atom which has predicate symbol P and
arguments A, B, C and D would be wri t ten as the list:

Syntax of micro-PRCLOS

(P A 9 C 0)

For imp lemen ta t i on reasons the predicate symbol of an atom must be £
a ic ro -PRCLOG constant OP variable. In p a r t i c u l a r predicate symbols w i t h
s t ructure , such as "<(F x) A)", are not al lowed.

Some atoms, in pa r t i cu la r those w h i c h r e fe r to ce r t a in b u i l t - i n prog-
rams, can have a syntax w h i c h is s l i g h t l y d i f f e r e n t f r o m tha t of the no rma l
atom. If the b u i l t - i n program can execute w i t h o u t any a r g u m e n t s and i t is
an program i m p l e m e n t e d in assembler , then the atom can be jus t a constant
rather than a uni t list. For example , the terms:

(PP)
PP

•

are equivalent a toms if they occur in the body of a clause (where PP is a
bui l t - in program for pr in t ing terms, see Chapter 5).

This a b i l i t y to use jus t the constant name of a re la t ion is res t r ic ted
to the class of built-in programs w h i c h are w r i t t e n in assembler and are
normal ly executed wi thou t arguments. (The fea ture is described here for
the sake of completeness; it is most heav i ly used by micro-PROLOG itself.)

2.7 Clauses ^

A clause is represented by a term w h i c h consists of a list of atoms,
the f i r s t atom being the head of the clause, and the rest of the list being
the body of the clause. The predicate symbol of the head atom aust be a
constant. For example, a s imple assertion consists of a unit list of its
head atom:

((Pred x y)>

If there is a body to a clause then, unl ike conventional PROLOGS, there is
no i m p l i c a t i o n ar row wr i t t en between the head and the body. For example,
the program for appending two lists together is wri t ten:

((Append () x x))
((Append C x l X) Y (x!Z))

(Append X Y Z»

F u r t h e r m o r e , the re are no e x p l i c i t connect ives l i k e "8" or "and"
between the atoms in the body.

2.8 Comments

• icro—PROLOG has no built-in means of handling comments in user prog-
ramse However, one suggestion for adding comments is to have dummy clauses
in the program, clauses w h i c h the programmer knows w i l l never unify. For
example:

((Pred) th is is a comment)

The advan tage of w r i t i n g c o m m e n t s in t h i s way is t h a t the system
'knows1 where each comment is to be kept, and it always prints in the same
re la t ive position in the program. The disadvantage is a s l ight s lowing
down in execution speed as the system tries, and fails, to use the comment
clause.

Syntax of »icro-PROLO€

2.9 Me ta^varjabje

As an extension to the clausal syntax described above we allow variab-
les in the c lause to name 'meta- level1 components of the clause. A
variable can be used in place of the predicate symbol of an atom in the
body, it can name a whole atom in the body, or it can be used to name the
Vest1 of a body. These various uses of variables in the bodies of' clauses
are called the 'meta-variable1 facility. This is to indicate that at run-
time the variables concerned will be bound to terms which name the relevant
components of the clause.

The meta-variable is very important to the usability of «icro— PROLOG,
it enables many of the second order programs found in LISP (say) to be also
available in »icro— PROLOG as PROLOG programs. The meta-variable facility
is still a f i rst order logic construct however, and it does not a f fec t the
semant ics of logic.

The interpreter checks a call atom for the correct form. If the form
is incorrect, or if the variable is unbound for some reason, then the
system reports a "Control Error" and aborts the execution, - ,

2.9.1 M e t a v a r a t U e as d c a t e

A variable can be used as the predicate symbol of an atom in the body
cf a clause. In this case the variable must be bound to a constant when
the atom is called. The constant is taken as the predicate symbol of the
atom for this call, and it must have associated with it a program of one
sort or another as in a normal atom; otherwise the execution aborts wi th a
"Clause Error" or "Control Error" message.

This form of the meta-variable can be used to implement the equivalent
of the MAP functions in LISP. It is also similar to the facilities to pass
procedures as parameters commonly found in more conventional programming
languages like Pascal, ALGOL etc. In the example program below "Apply"
applies a test to each of the elements of its list argument. A call to
Apply takes the form: "(Apply OK <list»" and it succeeds if "(OK <el»" is
true of each element of "<list>".

((Apply x ()))
((Apply x (y |Y))

(x y)
(Apply x Y))

2 .9 .2 Met a^va r j ab^l e as an a torn

A variable can also be used to name an atom in the body of a clause.
In this case the variable must be bound to a term which names an atom when
the variable is 'called*. An atom is, of course, just a list whose first
e lement is a constant (the predicate symbol) fo l lowed by the a tom's
arguments.

This variant of the meta-variable is used to implement some of the
meta-level extensions to the language. For example, the following program
'evaluates1 a list as though it were a list of atoms:

((Eval ()))
((Eval (x t X))

x
(Eva l X))

This use of the meta-variable does not have a direct counterpart in

Syntax of uicro-PRCLOG

Pascal, it uojld correspond to passing an exgressjicn as a parameter r« a
procedure; tne closest comparison is w i t h the call-by-name mechan ism "
ALGOL CNaur 19623

2.9.3 Meta-varjabjle as jthe bpd^ of a cUyse

The f inal variant of the meta-var iable is its use as the body cf a
clause. In pa r t i cu la r it names the tail of the body of a clause. A
variable in tMs case represents a list of procedure calls, rather than
just a single call. For example/ the following program encodes the dis-
junctive operator OR (Available as a built-in program):

(Cufi x y) I x)
(COR x y) I y)

The use of the bar in these two clauses implies that the variables "x"
& "y" name lists of atoms, and during execution they must be bound to lists
of the correct format. Each list is interpreted as the body of the clause.

Again, this use of the meta-variable has a loose counterpart in con-
ventional programming languages; in particular the closest comparison is
w i th the labej. parameter passing mechanism of ALGOL 60, the replacement
body is 'jumped to1 rather than being called as with the meta-variable as
atom.

2.10 Lexjca^l syntax

In this section we describe in more detail the lexical syntax that
nicro-PROLOS uses; the section should be omitted on a first reading of the
manual. The lexical syntax determines how the sequence of characters input
to Bicro-PROLOG (either from the console or from a disk file) are grouped
together into tokens,,

In some sense the notion of token is a generalisation of word; in that
tokens f o r m the smal lest groups of cha rac te rs that can have a meaning
associated wi th them; for example numbers, names and special symbols like
"(" are all tokens. The lexical rules themselves however, do not attach
meaning to tokens, they" merely define what tokens are. In •icro-PROLOG
there are five different types of token: special tokens, numeric tokens,
alpha-numeric tokens, graphic tokens, and quoted strings.

2.10.1 Token separators

The boundaries between tokens are determined by separator characters
and by certain changes in token type. For example, a numbeTToken can be
immediately followed by a graphic token since they are of different type,
however two successive number tokens must be separated by at least one
separator character. The separator characters are space, carriage return,
line feed and tab. Apart from their role as token separators, separator
characters are ignored on input (but see quoted strings below).

2.10.2 ScecjaJ tokens

Special tokens consist of single characters, called special charac-
ters. They therefore need no particular consideration as to token boun-
daries: they can be grouped together with no intervening separators. The
special tokens recognised are:

() I

Syntax of «icro-PRCLO€

2.10.3 A^lcha^rujirerjc tokens

~- Alpha-numeric tokens are defined in a similar way to identifiers in
normal programming languages. They consist of a letter (lower or upoer

"""" case letter) followed by a sequence of letters, digits. The sign character
_ can also be used in alpha-numeric tokens to aid readability. Some example

alcha-numeric tokens are:

A A1 x A1b3fred All-sol A-1 -A

^ 2.1 C.A Nufber tokens

Numeric tokens are tokens w h i c h name integers. They consist of
secuences cf digits w i t h possible a leading negative sign character. Some

""" excmple number tokens are:

"" 0 1 - 3 100345678 -9009

Note that if a -alpha-numeric token occurs immediately to the left of
"~. .- a number token then they must be separated by at least one separator
^ character, but an alpha-numeric token can occur immediately to the right

of a number.

2.10.5 Graohj^ tokens

Graphic tokens are names which are built up from the non alpha-numeric
(and non special) ch? ' ->c ters . The sign character can also appear in

— graphic tokens. This includes such characters as "<" "=" "2" etc. Some
example graphic tokens are:

<- = < '-* &

— 2.10.6 Quoted strjmjs

~"" The final kind of token is the quoted string. This is used when the
__ lexical roles of characters need to be ignored; it allows arbitrary charac-

ters to be grouped together as a single token. The quoted string is
— def ined as a quote charac te r (") fo l lowed by an arbitrary sequence of

• * characters (excepting the quote character itself) and terminated by another
" — quote character . The quote character can itself be represented in the

— string by doubling it: by writing two quote characters in succession. Thus
the string:

"A quoted "' string"

_j» has the text:

~- A quoted " string

2.10.7 The .lexica.1 ruUs

:- The parser in micro—PROLOG has the fairly simple task of parsing the
- A list syn tax descr ibed above. It has merely to recognise the list con-

struct, and to distinguish between variables, numbers and constants,
~" There is a f a i r l y close correspondence be tween the lex ica l types
_i recognised and the distinctions the parser needs to make: numbers are made

from numeric tokens, graphic tokens and quoted strings form constants.

8

Syntax of aicro-PRCLOG

•

Numbers Constants

A /\
(1 2 ($ "A str i

Special tokens

The remaining kind of token: the alpha-numeric token is recognised
either as a variable or as a constant by the parser. «i cro-PROLOG recog-
nises variables be examining the f irst character of alpha-nutr eric tokens
(ca l led the p re f i x character) . If this c h a r a c t e r is a var iab le p re f i x
character and the rest of the token is made up of digits then the token is
read as a variable, otherwise it is taken to be a constant:

Alpha-token

| x ' r es t of token I- U_i '

•(Prefix digits
O" char

. In standard Bicro-PROLOG the variable prefix characters are "x", "y'V
"z'V "X", "Y" and "2". Appendix 0 gives details of how the set of variable
prefix characters can be modified so that the various .popular variable
conventions can be implemented: lower case/upper case variables, variables
prefixed by the "*" character and so on.

Chapter 3

:ilD2 W.Tth the aicro-PROLOG s^ste»

The »icro-PROLOG supervisor is a PROLOG program w h i c h provides a
simple operating environment for the user. It al lows programs to be en-
tered, executed, edited, saved and loaded on disk files. The supervisor
also provides some ex tens ions to the language, in the fo rm of built-in
programs which would otherwise have to be programmed by the user. In this
chapter we describe the user interface to the supervisor.

The standard »icro-PROLO€ disk contains the following files:

PROLOG.COM
TRACE.LOG
SIMPLE.LOG .--̂
EDIT.LOG \

The fi le "PROLOG.COM" is the «icro-PROLOG system itself, and the other
files are actual micro-PROLOG programs. To start micro-PROLOG you should

1. Insert the •icro-PROLO€ disk (or a disk with nicro-PROLOfi on it)
into a suitable disk drive (the B drive say).

2. Log in to the disk (not strictly necessary but it is easier)

3. Type the command "PROLOG*".

For example, if your computer has two disks: the "A" disk and the "B" disk,
to execute micro-PROLOG from the "B" disk type:

•»

A> b:
B> prolog

When nicro-PROLOG is started up the following banner should appear at
the console:

Micro-PROLOG r.vv S/N *****
(C) 1981 Logic Programming Associates Ltd.
99999 Bytes Free
&„

The first two lines form the »icro— PROLOG banner, and give details of
the release (r) and vers ion (vv) number. The message "99999 BYTES FREE"
indicates how much memory is allocated for work space. The allocation is
divided into two f ixed areas: approximately 12% of the available memory is
allocated to the storage of text for the dictionary (where the names of
constants in the dictionary are stored), and the rest forms the heap and
stack space. This latter region is where the user programs are stored, and
where evaluation of programs takes place.

The last line which starts wi th a "&." shows the system level prompt
wh ich is output by the supervisor. It indicates that the system is waiting
for input from the console keyboard.

•icro— PROLOG can also be invoked wi th an initial command line* Any
characters that are typed on the command line after the word "prolog" are
taken to be the initial input to the system (i.e. without waiting for the
prompt). For example,

m

Interacting with the »icro-PROLO€ syste«

B> prblog load fi le

is equivalent to:

B> prolcg

&. LOAD FILE

CP/M automatical ly converts characters appearing in the command lir.e tc
upper case before passing them on to micro-PROLOG.

Olcier versions of micro-PROLOG used the line edit facilities built
into C?/M; the main problem wi th this is that those faci l i t ies are not
especially convenient or powerful. The line editor now built into Micro-
PROLOG is better; it is based on the line^ditor in Micro-SOFT BASIC (V.5);
though wi th certain simplifications.

When reading from the keyboard the system prompts the user for input
with a "." prompt (this is part of the "&." prompt that micro-PROLOG gives
at the top level). Any c h a r a c t e r s typed in are stored in an internal
buffer and are only 'read' by nicro-PROLOG after the carriage return is
pressed. This corresponds to the 'input mode1 of the line editor. The
following control keys have special significance in the input mode:

<Backspace> or <Rubout> will delete the last character typed in
<Return> exits the entry mode and process input
<Escape> echos a "$" and enters edit mode (see below)
<Control-P> toggles the print device (as in CP/M)
<Control-Q> quotes the next key (ignore key function)

Certain other control keys provided by CP/M are not supported by this
Line editor; these include:

9

<Control-R> Review the line
<Control-X> Cancel input
<Control-U> Same

•

Edit mode
t

In the edit mode of the line editor edit commands are entered using
single letters. These letters can be in either upper or lower case and are
never echoed to the screen, The edit commands provide fairly simple" char-
acter level editing functions such as cursor movement, replacing, searching
etc.

In the descriptions of the commands below we shall talk about a
'cursor1. This is similar in principle to the cursor on a screen, except
that since the line editor is one dimensional the cursor can only move to
the left or to the right. The cursor can only be 'over* an exist ing
character in the keyboard buffer. Any attempt to move it outside existing
text will cause the bell to be sounded on the terminal.

Similarly, if a character is typed as an edit command wh ich is not
recognised, or is illegal for some reason the bell is sounded on the
console, and the command ignored. The edit commands are summarised as
follows:

i Insert mode (start accepting characters)

11

Interacting with the Bicro-PRCLO€ syst<

<Rc tu rn>

<space>

<backspace> or <Rubout>

s <char>

c <char>

d

k <char>

Echoes the rest of the input buf fer and
ex i ts the editor and al lows «icro-PROLOG to
process the edited line.

'cursor1 one character to the right. TheMove
c h a r a c t e r is echoed to the screen. If al-
ready at the end of the line then the bell is
sounded instead.

O
Move the 'cursor ' left one character . A
b a c k s p a c e is echoed to the screen. If al-
ready at the start of the line then the bell
is sounded. Note that unlike in input mode
the backspace does not delete the char under
the cursor.

Searches the keybo"a~rd buffer from the current
position for the <char>. The characters bet-
ween the cursor and the target are displayed
on the screen. If the <char> is not found
then the bell is sounded and the cursor is
left at the end of the Line.

Replaces the character under the cursor with
<char>

Deletes the cha rac te r under the cursor.
Characters which are deleted are enclosed in
•Vs.

Similar to search, except that the characters
between the cursor and the target are de-
leted. As w i th delete, the deleted characters
are enclosed by "/"s.

Lists the rest of the line and positions the
cursor at the beginning of the line.

Toggles the print mode; analogous to the
Control-P key when in insert mode. (A "p"
wi l l toggle a <Control-P> typed in insert
mode).

This is used to extend the line. The rest of
the line is displayed and insert mode is
entered.

This cancels the rest of the line from the
cursor position and enters input mode. Use-
ful when retyping a whole line.

Any number of terms can be typed on a line, and a term can be spread
over many lines. Any excess terms (terms are read one at a time) are saved
in the buffer until the next 'read console' is executed, in which case the
buffer is read without disturbing the user. Constants and variable names
must not be split across lines.

When entering a term, which is spread over more than one line, each

' 12

Interacting with the aicro-PSCLOG systc-.*

successive line is prompted w i t h "n."/ where n is the number of unmatched
Let t b rackets typed so far. For example we might have the fol lowing typed
in:

&. ((
2.App(
3,)x x
2.))
&.

3.2 Supervisor commands

From the user's point of view the superv isor cons i s t s of a set cf
commands. Commands are typed in when the supervisor has issued a "&."
prompt. Usually a given command can also be accessed by the appropriate
procedure call. Furthermore, the supervisor a l lows you to define and invoke
your own commands. In this sectiorr-w^e describe the various commands
available. The general format of supervisor commands is:

&.<Command verbXCommand Data>

where the "command verb" is a constant, and the command data is a term
whose exact form is dependent on the actual command.

3.2.1 Entering clauses '

The simplest supervisor command consists of just a clause. The clause
is added to the program at the end of the set of clauses defining the
appropriate relation. For example:

S.((Parent Mary John))
S.((Parent Peter John))
&.((App()x x))
&.«App(x lX)Y(x lZ»
1oCApp X Y Z)) "
&.

3»2«2 Llstjng the grogram

The PROLOG program currently in the workspace can be listed at the
console wi th the "LIST" command. When a program is listed it is displayed
in an indented format to aid readability of the program.

There are two variants of the LIST command:

LIST ALL •

lists the entire program, whereas

LIST (predl pred2 .. predn)

lists the programs predl, pred2^. ,predn:

&.LIST ALL
CCApp () X X))
(CApp C X I Y) 2 C X l x))

(App Y Z x))
((Parent Mary John))
((Parent Peter John))

Interacting with the »icro-FRCLOG system

5.LIST (Parent)
((Parent Mary John))
((Parent Peter John))
S.

3.2.3 Exe^cutjna or oo, rams

•i icro-PROLOG programs are executed by using the run command "?". This
takes as argument a goal statement. A goal statement has the same form as
the body of a clause, it consists of a list of goal atoms; the run command
executes each of the atoms in the goal in turn,

If the evaluation is completed successfully then the supervisor dis-
plays its normal prompt:

&.?((Parent x1 x))
&.

otherwise if the evaluation fails then a "?"^is displayed before the next
prompt:

&.?((Parent x1 x2) (Parent x2 xD)

&.
**

»icro-PXOLO€ does not automatically print any response if the evalua-
tion of the goal succeeds. If output is needed then it has to be explicitly
programmed into the goal, for example to find a Parent of John, and print
the name we could use the goal statement:

&.?((Parent x JohnKPP The parent of John is x))
The parent of John is Mary
&.

3.2.3.1 CoBaands in the Supervisor

The supervisor also provides an alternative way of invoking certain
kinds of evaluation. Namely, in the special case where the goal is a
single atom, and that atom is unary (i.e. only one argument) then the goal
can be executed by mentioning the predicate symbol and then its argument;
this is without any extra parentheses and question marks:

&.<predicate> <argument>

This a l lows you to define new 'commands1 to the system. For example
suppose that we had the clause:

((Exprint x) (? xKPP x))

By typing:

&.Exprint (goall goal2 .. goaln)

the Exprint program is invoked as though it was called with

((Exprint (goall goal2 .. goaln))

It executes the list of goals and then prints the list in its successful
form, i.e. with its variables replaced by their answer bindings.

The "?" command that we saw above is itself defined by the clause:

U

Interacting with the «icro-PROL06 system

(C ? X) I X)

This c lause uses the me ta -va r i able f e a t u r e w h e r e the body, of the
clause is reolaced by the value of the variable "X". Other supervisor
commands are themselves just micro— PROLOG programs ' jt are invoked using
this fac i l i t y .

3.2.3.2 Controlling Execution

To interrupt the execution of a goal two interrupt keys are provided,
If the Con.trol-S key is pressed, then execut ion* is suspended. Execut ion
continues as scon as Control-S is typed again.

To break into an execution the Control-C key is used. When a break is
detected the message

BREAK!

is d isplayed at the console, the current execut ion is stopped and the
system returns to the supervisor. These interrupt conventions are in line
wi th these for CP/M as a whole.

When an evaluation is aborted, for whatever reason (see Appendix A for
possible abort conditions) the reason for the abort and the procedure call
currently being executed are displayed,

3. 2. A Xracjng Execution

A trace package is provided with the system (as a separate file). The
trace program allows, interactively, selective tracing of the execution of
a goal.

ii2£ lu^s l5.sii.il* 11 li DS^UJJIX 12 i25^ l£s irsss
£5.1:2*. 9D i25^JD3 l?r2SI5!!!5is. Then instead of the normal

"?" for executing goals, use: "??" to trace a goal. The format of a traced
goal is:

&.??((goal1)..(goaln)) 9

and each of the subgoals are traced and executed in turn.
When entering a subgoal for the first time the message

ENTER (pred <seq. of args of call».

is displayed at the console. At this point one of the trace commands
described below may be entered, The term printed represents the procedure
call just before any attempt at evaluation, with all of the known values of
variables substituted in place.

If the predicate symbol of the call refers to a built-in program then
the call is immediately executed. (This means that it is only possible to
t race user programs.) If the call is for a user program then the trace
package reads a t race command from the console,

The trace commands allow selective tracing of the program. For exam-
ple, low level (or already debugged) programs can be skipped: i.e. executed
without tracing. The allowed trace commands are:

Continue, Skip, FINISH and FAJL

*f the Skip command is typed, or if the procedure call is of
a built-in relation, the sub-goal is executed without tracing. In
this case one of two things normally happen: ei ther the sub-

15

interacting wim xne »icro->-T<u_ija sysie«

computat ion faUs or it succeeds. If the sub-computation fails
then the message

FAIL (pred <seq. of argu»ents of call»

is displayed at the console, and the system backtracks. Of course
this may cause calls that previously succeeded to fail, in which
case more than one FAIL message may appear.

If the sub-computation succeeds then the message

FINISH (pred <se<v of arguments of call»

is displayed. In this case the procedure call is printed with the
answer bindings substituted, so that you can see the result of
the sub-computation invoked. If the call was the last in the body
of a clause then the calling computation is also succeeded, in
which case a "FINISH" message is displayed for it too, and so on
up to the goal.

Af ter finishing a sub-computation, any uncompleted sub-goals
are entered and traced in turn, until the top-level goal ultima-
tely fails or succeeds.

.P.o.Dtjnue The Continue command allows the trace to be continued
inside the newly entered sub-computation. When this command is
used the trace program looks for a clause to match the call, and
when it finds one it traces each of the atoms (if any) that occur
in the body of the clause selected. If no clause unifies, or if
backtracking 'causes failure of the call the fajl message for the
call is displayed as described above.

If the clause that unified wi th the call was an assertion,
then since there are no (more) a toms to t race inside the sub-
computation, the call is succeeded and a "FINISH" message
displayed. Otherwise each of the atoms in the body of the clause
are entered and traced in turn.

IlDi§Jb The fiyiJii trace command al lows one to arbi trarily ^succeed
a call. This command is most useful when developing programs top
down, in w h i c h case the low level programs can be s imulated
during a t raced execut ion without causing the "CLAUSE ERROR"
message.

^- f3ll The f^Jir trace command allows the user to arbitrarily fail
the call, and cause the system to backtrack. The fail command
causes the "FAIL" message to be displayed before the sys tem
backtracks. Like the FINISH command, FAIL is most useful when
developing programs, where it can fail a particular call without
causing an abort message.

• The trace program insists that a legal trace command be typed. If an
erroneous command is input the program displays the message:

ENTER S C FINISH OR FAIL
•

and prompts the user again.
Since the trace package is itself wri t ten in Blcro- PROLOG it would be

possible to implement a more sophisticated version of this simple program.

16

Interacting with the •icro-PROLOG system

3.2.4.1 Warning

The use of the trace program great ly increases space demands on the
workspace, thus programs wh ich run without tracing may wel l " run-out of
space when traced.

32.5 Loadjng and sayjnj programs f rom Djsk

* The supervisor a l lows the user program to be saved onto a disk file,
and subsequently loaded back into the workspace. The two commands "SAVE"
and "LOAD" respect ively save and load the user's programs.

«• The formats of the load and save commands are:
i
!

LOAD <file-name>
„ SAVE <file-name>

— 32.5.1 File specification

* The file name is a constant which describes a file in the CP/M style.
,'-.. The general format of a CP/M file descriptor is:
(y.'V*

<Drive Letter>:<File name>.<File type>

The drive letter and file type are optional, in wh ich case the colon and
„ dot (respectively) are ommited. »icr or PROLOG uses the file type "LOG" as

the default file type if one is not given, and it uses the current 'logged-
in1 disk drive if a drive is not specifically specified. Since the colon
and the dot are not alphabetic characters a file name using them must be
written inside string quotes. Some example constants describing files are:

~~~ "A: TRACE.LOG"
- -« TRACE

{ * "TRACE.LOG"
"OTHER.ASM"
"B:OTHER"

Or-
The "LOAD" command reads a program from the file specified and adds

the program into the user's workspace as if it were typed in. Any program
already in the system is not disturbed in any way by the load; the new
clauses are added to the end of any existing relations. In this way the
programmer can have a library of programs, on a number of different files
and load from them when building up a new program.

The "SAVE" command saves the program currently in the workspace into
the named file. The entire workspace is saved, this may include such extra
programs as the trace package, if it had been loaded. If the program is
saved onto an already existing file, then the old file is renamed with file
extension ".BAK". This automatically ensures that back-up copies of files
are created.

3 .2.6 Ex_i tjn<g the system

To leave the Bicrcr-PROLO€ system use the command:

CT. <The "." is arbitrary - it can be anything>
A>



Interacting with the «1cro-PRCLO€ system

3-3 £-iri

The Micro-PECLCS editor al lows the PROLOG programmer to edit -programs
wi th in the ai cro-PROLOG environment. It is a context editor which takes
into account the list structure of aicro-PROLOG clauses and terms. Since
the edi tor is i t se l f w r i t t e n in nicro-PROLOG it is easy to ex tend and
rr.odify, should the need arise. The source of the editor program is given
in Appendix E.

The editor's context consists of a current_term, and the immediate
sub-term that the current term is icv To act as an 'aide de memcire1 the
editor uses the current term to form its prompt when the editor is ready to
accept a command. At the top-most level of editing a program (where the
current term is one of the clauses of the program) the editor pref ixes the
prompt wi th a number; this number indicating the index, within the prog-
ram, of the current clause. If at any time the current term 'pointer' is
rot a term or clause in the program then the editor displays "No term" or
"No clause" as its prompt.

33.1 Edjt_ Commands

Before using the editor it is necessary to LOAD it in to the workspace
using the "LOAD" command. In the standard nicro-PROLOG system the editor
is in the fi le "EDIT.LOG"; so to LOAD it in type:

&.LOAD EDIT .

The editor is invoked using the command "Edit program", for example to
edit the "likes" program type:

• &.Edit likes

The editor uses the first clause in the program (if the program is
non-empty) as the initial current term pointer. In the case of the likes
program this could be:

C13(( l ikes John Mary)).

When the editor displays its prompt it is ready to accept an edit
command, which at the top level can be any of the insert, append, kill,
next, back, enter and out commands. The edit commands are divided into
two groups: those wh ich move the current term pointer of the structure of
the terms being edited, and those which change the terms in some way.

3.3.2 'Cyrsor^Movernen^^Commands

There are four commands which can be used to walk over the program;
these are next, back, enter and out.

1 «» The n (next) command changes the current term to the next term to
the right in the immediate context. At the top level this means move
to the next clause. So, for example, if the current term is "(A B)",
and the immediate context is "(C (A B)(D))" then the "n" command moves
the current term to "(D)":

(A B).n
(D).

If the current term was already at the last term in the immediate
context, or if it was the last clause in the program, the pointer is

18



' Interacting wi th the aicro-PRCLOG system

stepped on, but the cu r ren t t e rm is "No term", (or "No clause" at the
top level) i n d i c a t i n g tha t i t is not a c t u a l l y po in t i ng to a tern. It
is i m p o s s i b l e to step beyond t h i s point.

2. The b (back) c o m m a n d is the inverse of the n command, it is used
t o s tep t a c k t o t h e t e r m t o t h e l e f t o f t h e c u r r e n t t e r m i n t h e
i m m e d i a t e context, or to step to the previous clause. To undo the
e f f e c t of the previous "n" c o m m a n d above:

( D ) . b
(A B).

I f the cu r r en t t e r m w e r e a l r e a d y the f i r s t t e rm , t h e n the b
c o m m a n d steps back to in f r o n t of it, a g a i n c a u s i n g the p r o m p t to
become "No term" ("No clause"), e.g.

(A B) .b
C.b
No term.

It is not possible to move before th is point.

3. ' The e (enter) command steps 'into1 a te rm or clause so as to edit
its components. The term being stepped into must be a list s tructure
(there being no concept of the inside of a number or constant). The
i m m e d i a t e context becomes the list just entered, and the current term
is the f i r s t element (if any) of that list. So in our example if we
enter the list "(A B)" we change our immed ia t e context and point to
"A":

(A B) .e
A-

or
C 1 3 C C l ikes John X; ( l ikes X Mary)) .e
( l ikes John X).

•
4. The o (out) command is the inverse of the enter command. The

c u r r e n t i m m e d i a t e context becomes the cu r ren t te rm, and the 'old1

i m m e d i a t e context (prior to the corresponding e command) is reestabli-
shed as the immedia te context. The o command is also used to exi t
the editor, when at the top level:

( l i k e s John X).o
C 1 D ( ( l i k e s John X M l i k e s X Mary)) .o
Edit of l ikes f in i shed

The o command may f a i l if the entered term has been incorrectly
changed, in par t i cu la r if on returning to the outer level the predi-
cate symbol of the head of the clause has been changed. When an edit
command f a i l s the editor responds w i t h a "?" and re-prompts at the
appropriate level.

W i t h these four cursor control commands any sub-term of a program
can be reached. In the next section we look at those edit commands
that di rect ly change the current term.

3.3.3 Ed i t_chanQe^Commands

There are f ive commands w h i c h directly affect the current term; these

19



-j

Ll

Interacting wi th the »icro-PRCLC6 syste»

are j inser t a new t e rm, append a new tern, k i l l the cu r r en t tern, substi-
tute it by ano ther and text edi t the term.

1. The 2 ( inser t ) command inserts a term before the current tern.
The 2. T S f o l l o w e d by the tern to inser t as in:

(A 3).i (F)
( F ) .

The new t e r m just inserted becomes the new current tern, the old
one can be regained by stepping on to it w i t h the n command.

At the top l eve l the i, c o m m a n d i n s e r t s a new c l ause i n t o the
program. In th i s case the f o r m of the clause is checked to ensure
that at least the predicate symbol of the clause is the appropriate
one.

2. The a (append) command appends a new term (or clause) a f t e r the
current term. O t h e r w i s e it is l ike the i, command.

3. The k ( k i l l ) command deletes the current term f rom the i m m e d i a t e
context. The previous term (or clause) to the left becomes the new
c u r r e n t t e rm, i f t h e r e i s no t a p r e v i o u s t e r m (or c l a u s e ) t h e n the
current term becomes "No term" ("No clause"). We can delete a parti-
c u l a r e l emen t of a l ist by us ing a sequence of cursor m o v e m e n t
commands to move to the required term and then using the k command,

For example, to delete the thi rd element of "(A* B C 0)":

( A B C D).e
A.n
B.n f ' .
C.k
B.o
(A B D).

4. The s (substitute) command replaces the current term with a new
term. The argument to s is a pair:

(t1 t2)

The t e r m t1, is urnlie.c! w i t h the cur rent term, and then the
current term is replaced by t2. The use of un i f i ca t ion a l lows quite
p o w e r f u l pat tern ma tch ing , but more impor tan t ly the spec i f i ca t ion of
the rep lacement can make use of variables bound in th is match. For
example to reverse the f i r s t two elements of a list:

( A B C D ) . s ( ( x y l z ) ( y x l z ) )
(B A C 0). -

$2l£* The s command is not available at the top level.

5. The t (text) command al lows the current term to be changed using
the l ine editor. It works by displaying the term on a new line and
posi t ioning the cursor"undernea th the f i r s t character. The edit mode
commands described above are then ava i lab le to m o d i f y the text of the
term. Upon typing the <re turn> key the system reads the text back in
and replaces the current terra by it.

Note that va r i ab l e s are not handled properly by this command, in
• pa r t i cu la r any variables become new var iab les after processing. This

is not a serious deficiency when using the "t" command at the clause

20



Interacting with the «icro-PROLOG systea

Leve l of the editor, or w h e n only changing constants. ( future
^ ' versions of nicro-PROLOG wil l fix this problem)

™" 3.3.4 Rest rueturjng^Ljsts

"" Given the importance of lists in •icro-PROLOG/ it is especially impor-
- tant to be able to repair an arbitrarily danaged list. Where it is just

a sub-term of a list that is dam-aged, the above commands are sufficient.
~~ However , a problem ar ises if some b r a c k e t s have been put in the wrong
_ places. For example, a left bracket can be easily missed as in:

^ C13 (CProg A X) PR X Y)

~" and a right bracket could be put in too far to the left, as in

""" C23 ((Prog A X ) C P R ) X Y)

or too far to the right, as in

C33 ((Prog A X (PR X Y ) ) )

O
— The editor has two simple primitives which can be used to repair this kind

of global damage: wrap and unwrap.

^ 1, The u (wrap) command takes a number of terms from the immediate
context and wraps them up into a list, which becomes the current term.

— The w command has an argument: the number of terms to wrap starting
from the current term. If 0 (zero) is used then no terms are wrap-

""" ped, i.e. the empty list "O" is inserted. If 1 (one) is used then
— the current term only is wrapped, if 2 (two) then the current plus the

next term are wrapped, and so on up to the number of the remaining
-^ terms in the immediate context. For example, to wrap up the middle

two elements "(A B C D)":

( A B C D).e
A.n f

- B.w 2
(B O.o
(A (B C) D).

2. The u (unwrap) command is the inverse of the wrap command. The
current term must be a list, the effect is to remove the outer pair of
brackets of the list. The f irst element of the list becomes the
current term, and the other elements are inserted into the immediate
context. To undo the effect of the wrap above we could perform the
following sequence:

CA (B C) D).e
A e n
(B O.u
BcO
( A B C D ) .

Now we we can see how to use these two commands to repair the various
terms we showed above:

a) ((Prog A X) PR X Y)

This case is quite simple, we wrap up the sub-list "PR X Y1*

21



Interacting with the aicro-PRCLOG system

into a single list, so that it is put into the correct form:

C13((Prog A X) PR X Y).e
(Prog A x).n
PR.w 3
(PR X Y ) .o

(Prog A XMPR X

b) ((PR A X) (PR) X Y)

The second example is a Little more complex, a right bracket has
been inserted too far to the left. To repair this we need to unwrap
the list "(PR)", and re-wrap including the missing arguments:

C23((Prog *& A XMPR) X Y).e
(Prog A X).n
(PR).u
PR. w 3
(PR X Y).o

X)(PR X Y)).

c) ((Prog A X(PR X Y)))

In this example we have first to wrap up the sub-list "Prog A X"
to form an atom of the right form:

C33((Prog A X (PR X Y)) .e
(Prog A' X (PR X Y)) .e
Prog.w 3

' (Prog A X).o
((Prog A XKPR X Y)).

Now we have one too many pairs of brackets at this level, so we
unwrap:

((Prog A XMPR X Y)).u
(Prog A X).o
C33((Prog A X) (PR X Y)) .

This last unwrap has "removed* the right bracket that was too far
to the right.

3.3.5 Further Extension^*^** *** **^*^***^»*» «»^»»«w^»^»«« •» „ .

This editor represents a first attempt at the development of a term
oriented structure editor for «i cro-PROLOG. Further possibilities for
improvement are context searching and combining commands together with a
repeat count. Since the editor is itself wr i t ten in wicro-PROLOG these
enhancements should be quite straight forward.

^"^ Er^SIP^tjc Considerations for Programmers

The principal limiting resource in Bicro— PROLOG is space. To help to
conserve space mi cro-PROLOG incorporates a number of space saving features.
To nvaxitnise their effect the programmer should be aware of them, so this
section describes some of them and how they operate. Note that space saving
does not a f f e c t the logic of the running program; it may only a f fec t
whether a program can run in the space available.

The features of «icro-PROL06 which affect the space used by a program

22



Interacting *ith the «icro-PRCLO€ systea

are:

L.

L:

1. Organization. The evaluation area in Biero-PROLOG is organised as
a s tack and a heap. The s tack contains the act ivat ion records and
the variables of the execution. This g rows w i t h recursion and
pops normally only on backtracking. The heap contains the values
of variables, clauses ^nd other permanent data objects.

Periodically the stack and heap collide, at w h i c h tine the
heap is garbage co l lec ted. The garbage co l lec to r is ac tua l l y
called whenever the stack and heap grow too close to each other;
the point at wh ich this is done is automatical ly computed by the
system depending on the available memory and the relative sizes
of the s tack and heap.

The garbage collector is a 'Mark and Collect1 garbage col-
lector, w h i c h means that al l the f ree space in the heap is
col lected together into a list. The heap is also 'cut down1 if
there is free space at the end of it. This has the e f fec t (hope-
fully) of leaving a clear region of memory between the stack and
heap, allowing execution to continue.

If the garbage collector fai ls to find sufficient space
then the evaluation aborts wi th the message "SPACE ERROR".

Note that the al location algorithm means that as memory gets
tight the garbage collector gets called more and more often; this
can have a d ramat i c e f f e c t on the per fo rmance of the sytem.
Normally garbage collection takes a very short time (about 0.25
sees) and isn't a big overhead.

2. Success Popping. •icro-PROLO€ performs special actions in certain
circumstances, when a procedure call has been deterministic. When
such a cal l comple tes it is popped off the s tack just like a
normal recursive call in a more conventional programming lan-
guage. (The record of the evaluation is not needed for
backtracking purposes.)

The alternative situation, where Bicro—PROLOG cannot detect
that a computation is deterministic, results in the record of the
evaluation being left even after the successful completion of a
procedure calU

The expert programmer can give more information about when a
program is deterministic by inserting the "/" control primitive
in suitable places in his program (see Chapter 5).

3. Ja.il £5cu£sjon is the name given to that form of recursion which
is actually equivalent to a loop. aicro-PROLOG can detect this
spec ia l case of recursion, and when a tail recurs ion is also
deterministic then aicro— PROLOG optimises the call; it does not
grow the stack when entering the calL For example, if all the
cal ls preceding the last call are determinist ic then, when
entering Qn in:

((Pred ...)(Q1 ...) .. (Qn ...))

1 the stack is not grown at all for the first evaluation step of
1. — Qru Initially the stack grows in the normal way, but since it is

the last call and since the evaluat ion is determin is t ic then
* " Biero-PROLOG 'knows1 that it will eventually be able to success
| _ pop the activation record for "Pred". Further, since there are no

more references into the procedure "Pred" Biero-PROLOG pops the
a - "Pred" entry f rom the s tack as the last call "(Qn ...)" is en-

tered. The net e f fec t is not to grow the s tack at all for the

23



Interacting with the aicro-PRCLOS syste«

last cal l in a procedure when in a completely determinist ic
evaluation.

A classic example of the power of tail recursion in saving
scace is in append. If we wr i te the append program as:

((append () x x))
((append C x l X ) Y ( x l Z ) )

(append X Y Z)> •—v

then for normal calls to this append program (appending two lists
together for example) the stack does not grow during execution
!°.£ i£?2 i£D9ilJ Si IDB^^s. *n this way the recursive definition of
append is executed as though it were written in a WHILE loop.

Often, there may be several calls in the body of a clause
all of which execute deterministi cally. In this situation after
each of the calls in the body, except for the last call, have
completed then the stack is popped leaving no trace of the eval-
uation of the stack. For the last call the top of the stack is
overwritten with the new record, hence the stack does not grow at
all for the last call. This has the effect of turning a recursive
evaluation of the sub-goal into a loop evaluation,

^- Non-structure sharing. «icro~PRCL06 is a so-called 'non-structure
sharing1 implementation. Briefly this means that when a variable
is bound during unification its value is explicitly computed and
placed, if necessary, in the heap.

The effect of this, together with garbage collection, suc-
cess popping and tail recursion, is to limit the amount of data
currently in the work-space to that which is actually needed,
though it does lead to an overall increase in memory turn-over.
It also has a space benefit in that for certain simple, but
common, cases the value of a variable takes actually less space
than in the more normal 'structure-sharing* implementations,

. To take full advantage of these space saving optimizations the
programmer should try to ensure that «icro-PROL06 can always detect deter-
minism in a program. This means, for example, putting the base case of a
program (such as append) before the general case, and using the conditional
form where it is applicable (see Chapter 5). Programs optimised for space
in this way tend to be less optimal with respect to speed of execution, anc
vice versa. "

3.5 Summar^

Here is a summary of the supervisor commands we have discussed:

<clause> Add a clause.
?«Goal sequence» Execute a goal.
??«Goal sequence» Trace execution of a goal.

C Continue trace.
S .Skip t race - execute subgoal

without tracing.
FAIL Arbitrarily fail subgoal.
FINISH Arbitrarily succeed a sub-goal.

Edit <predicate symbol> Edit a program.
n next term/clause
b previous term/clause
c enter term/clause
o exit term/editor



Interacting wi th the «icro-PRCL06 systea

•j t insert new t e r m / c l a u s e
a t append a new t e r n / c l a u s e
k delete t e r m
s (*1 t2) u n i f y cu r r en t t e rn w i t h t1

and replace by t2
t text edit the current term w i t h line editor
w n w r a p n terms in to a sub-list
u unwrap sub-fist

LOAD < f i l e descriptor> Load a program f r o m the f i le .
SAVE " " Save a program to the f i le.
QT. Ex i t •icro-PROLOG.
LIST ALL List the program on the console.
LIST (P1 P2 .. Pn) List the programs named.
AC Abort execution of a goal
AS Suspend e x e c u t i o n u n t i l AS is

pressed again.
Toggle p r i n t e r 01 /o f f
Quote the next key pressed on the keyboard

25



Chapter 4 —

Sjaole PROLOG
\

In th is chapter we look in detai l at a way of extending the basic
micro- PROLOG system by using a front end program. This technique a l lows us
to w r i t e PROLOG programs using a more friendly syntax. Sentences of this
surface syntax have a simple structure and often many fewer parentheses.
The"~fUe "SIMPLE.LOG" contains a module which defines a set of commands
which allow one to w r i t e and use Simple PROLOG programs rather than micro-
FRCLO€ programs.

4.1 Syntajc of SjmDJ.e PROLOG sentences
**

A Simple PROLOG sentence (or clause) cons is ts of either an atorrHc
sentence or a mo.lecu.ljK sentence. Atomic sentences are just atoms, and
can have two forms:

John likes Mary
PRED(2 3 x)

i.e. an atom is either a binary predicate ("likes"), in which case it is
wri t ten in infix form wi th no parentheses; or a non-binary predicate, in
which case it is wr i t ten as the predicate symbol. ("PRED") followed by a
list of arguments surrounded by parentheses and separated by spaces.

Molecular sentences consist of an atomic head fol lowed by the word
"if" f o l l owed by a conjunct ion of literals separated by "&" or "and".
Literals are either atoi*s:

x li kes y if y li kes x1
and

PREDCx y z) if PQ(x y z) and y LESS z
r

or negated a t o m s w h i c h are w r i t t en as "Not" fo l l owed by a conjunct ion
enclosed in parentheses, as in:

x likes y if Not(y likes Peter)

x GE y if Not(y LESS x)
and

PREDCx y z) if x LESS y and Not( PR(y z x) & QUALIFY(x))

Sjmp^le PROLOG System

J

Simple PROLOG is implemented as a «icro— PROLOG module that is LOAOed
in at the beginning of a session. It provides a small set of commands
that enable you to interact w i th the •icro-PROLOG system as though it were
a Simple PROLOG system.

Thus to start a Simple PROLOG session enter «icro— PROLOG using the
LOAD command:

A>prolog load simple
Micro PROLOG r.vv S/N xxxxx
(C) 1981 Logic Programming Associates Ltd.
99999 Bytes Free
&S.

26



Siaple PRO.OS

In Simple PROLOG the various functions to add new sentence etc. are
invoked by a set of commands, some of wh i ch are described below. For A
more detailed description of how to use this system see the nicro-PROLOG
Prixer.

A.2.1 Add /—NN

The "Add" command al lows you to add a simple PROLOG sentence into the
workspace. The format of the command is:

£. Add (Peter likes x if NotCx likes John))
So

Notice that the sentence to be Added to the program is surrounded by
brackets. This makes it a single list argument to the "Add" command. A
simple PROLOG command can be typed in whenever the «icro— PROLOG system
displays its "&." prompt.

Sentences are usually added to the end of the program for the approp-
riate relation. To add into the middle of a program the form

Add n sentence

is used, w h e r e the number "n" r e f e r s to whe re in the relat ion the new
clause is to be added. For example, to add to the beginning of the
"ijkes" relation use

8. Add 0.(Peter likes John)
&. .

4.2.2 Ljst

The "Ljst" command displays the program on the console. To display
the whole of your program type

8. List All
Peter likes John
Peter likes X if

Not (X likes John)
&.

To display just a single relation, the "likes" relation say, use

&. List likes

To print a simple program on the printer use the AP toggle function
before "List"ing the program. This will automatically print the program on
the printer as it is displayed on the screen,

4.2.3 Delete/

."SfiSte" a single clause from the program. Its usage is

&. Delete likes 3

which deletes the third likes sentence.

4.2.4 KUU

"£111" will delete an entire relation; to remove the likes relation

27



Simple PRCLC€

type

8. Kill likes

4.2.5 Does . ^_^

The "Does" command makes a YES/NO query of the program. It has as
argument a conjunction of literals, like the body of a molecular sentence.
If the goal is successful the command responds wi th

YES

otherwise it responds with

NO

For example

8. Does (John likes Mary)
YES
8. Does (SUM(2 3 x) & x LESS 5)
NO

4.2.6 Which

The "Whjch" query attempts to find answers to questions. The form of
the answer required is specif ied by the question. The syntax of this
command i s

W h i c h ( te rm body)

where term denotes the form of the answer requi red, and body is the query
to be evaluated. For example to list those people that like John use:

8. Which (x x Likes John) »
Answer is Peter
Answer is Mary
No (more) answers

To list the pairs of people who like each other:

8. Which ( ( x y) x likes y and y likes x)
Answer is (Peter Mary)
No (more) answers

To compute the sum of 3 and 5 -

8. Which (x SUM(3 5 x))
Answer is 8
No (more) answers

A . 2. 7 One ,
*

The "One" query is similar to "Which" except that it prompts after
each solution, If you respond with "C" then the next solution is sought,
otherwise use "F" to finish looking for solutions:

S.One (x x likes John)

28



Simple PROLOG

Answer is Peter.C
Answer is Mary.C
No (more) answers
&.

4.2.8 Save

The Simple PROLOG program in the memory can be saved for later use via
this ccmnand. The form of the "Save" command is

&. Save. .J ile-name

where file-name is a fi le name in the normal micro-PROLO€ form.

4-2.9 Load ;

The "Load/' command is used to re-load a previously Saved Simple PROLOG
program. For example:

&. Load fred

4.2.10 Accept

If entering a lot of data the "Accept" command can be used as an aid
in generating large relations. It enables binary atomic sentences to be
added without using the "Add" command all the time. It is restricted to
binary relations. The "Accept" command is used as follows:

&. Accept likes
likes.(John Mary)
likes.(John Peter)

likes.(P S Q)
What is (P S Q)?
likes.

likes.End
S.

The "Accept" command prompts for each pair with the name of the rela-
tion involved. If a pair is not entered the response is queried and you
are reprompted for another pair.

4.2.11 "Edit"

The line editor can be used to edit an. individual sentence"locally by
using this "Edit" command (Do not confuse with the structure editor). The
Edit command is invoked as follows:

S.Edit likes 1 (the predicate symbol followed by the clause number)

The system responds with the sentence (surrounded by brackets) which
can then be eaited in a similar manner to the "t" command in the structure
editor.

29



Siaple P3GLOS

4.3 A11_Solutions

A special Simple PROLOG predicate "Is-All" can be used to mimic the
action of "Which". Instead of displaying the answers however, i t "puts
then in a list and returns the list of solutions. The general form of the
predicate is:

x Is-All (term conjunction)

For example in: I

&. Which (x x Is-All (y y likestjjohn))

the query "(z z likes John)" looks exactly like a "Which" query in itself.
But instead of printing the answers, they are put into a list and bound to
x:

•

Answer is (Mary Peter)
No (more) answers
8.

4.4 Summary

Simple PROLOG illustrates how easily the basic «icro-PRCLO€ system can
be augmented by the use of a front end program. In this case Simple merely
adds a few commands which compile to and from the syntax of Simple- and
micro-PROLOG, In Chapter 6 we look at how this is done in more detail.

30



Chapter 5

Built-in

In some ways the character of a PROLOG system is determined more by
the built-in programs than by any other single factor. The selection pro-
vided, their f lexibil ity and ef f ic iency are all key fac tors determining the
final usability of the system. Tn «icro-PROL06 this problem is made worse
by the severe space constraints on a micro-computer.

A special feature of the built-in programs in aicro-PROLOG is that
they model as closely as possible normal relations. For example the SUM
re la t ion can be v i e w e d as a co l lec t ion of addi t ion sums, and the PROD
relation consists of the various ' t imes tables'. Consequently the built-in
programs must a t tempt to simulate all the various possible patterns of use
of the relation; and the SUM built-in program must be able not only to add
up numbers, but also to subtract them.

For reasons relating to e f f i c ien t implementat ion «icro-PROL06
compromises to some extent and generally al lows some of the uses of its
built-in programs but not all. In particular the assembler coded built-in
programs only implement the deterministic uses of the relations they repre-
sent.

So, in general each built-in program may have several uses. This helps
to mimimise the number of names the programmer has to know, and also helps
to keep Bicro-PROLCS programs 'reversible1.

If a particular call to a built-in program has an illegal use (for
example if SUM is called wi th two or more arguments as variables) then the
system reports a "Control Error" and aborts the execution. An error of this
kind usually occurs only if there are too many variables in the call.

The 35 or so built-in programs are divided into a number of functional
groups: the ar i thmet ic operations, string operations, input/output opera-
tions, type predicates, data base operations, logical operators, nodule
construct ion faci l i t ies, program l ibrary operat ions and miscel laneous
programs. We take each group in turn and describe the formats and semantics
of each built-in program.

5.1 Arvthmetjc Relations

The three ar i thmet ic relations SUM, PROD, and LESS cater for the
normal operations on integers of addition, subtraction, multiplication,
division and comparison,

5.1.1 SUM';

(SUM x y 2) "x+y=z"
•

When used with numeric arguments the SUM program can:

^« £!?£.£* 3 5iJEs H all arguments are numbers then SUM succeeds only
if the f irst two numbers add up to the third. (16 bit arithmetic
is used, wi th an overflow error trap.) For example, (SUM 20 30
50) succeeds.

2. Add t%o numbers together. If the first two arguments are numbers
and the third a variable then the call succeeds by binding the
third argument to the sum of the first two. For example, (SUM 30
-2 x) binds "x" to 28.

31



Built-in Prograas

3. Subt£act t^o nuaberSjt If the third argument is a number, and
either the f i rs t or the second also a number (wi th the remaining
argument a var iab le) then the cal l succeeds by binding the
var iab le in the cal l to the result of subt ract ing the f i rs t
number (or second) f rom the third. For example , (SUM x 3 15)
binds "x" to 12, as does (SUM 3 x 15).

If an addi t ion or sub t rac t ion resul ts in an over f low, then micro-
PBOLQG reports an "Overf low"_error, and aborts the current evaluation.

5.1.2 PROD

(PROD x y z <u» "x * y <+u> = z, u i s optional"

The PROD program implements multiplication and division. The allowed
uses are: .

•£.£.§.£]$ 5 P£2^£ls H PR0& "is called with three arguments, all of
which" are numbers, then the product of the first two numbers is
checked against the third number. If they are the same then the
cal l succeeds, o the rw ise it fails. For example, (PROD 3 4 12)
succeeds.

If PROD is called with just the first two argu-
ments known (numbers)/ and the third argument a variable, the
call succeeds by binding the variable to the product of the two
numbers. For example, (PROD 3 -4 x) results in "x" being bound to
-12.

L:

There are two forms of the PROD program which can be
used for division. For so-called perfect division where the
divisor divides exactly into the dividend the three argument form
is used:

(PROD x 10 30),
(PROD 10 x 30) *

I In this form the PROD call only succeeds if the division is
a « . perfect, in which case the variable is bound to the quotient.

In the second form the PROD program has four arguments, the
| 'fourth argument forms the remainder of the division.^ For example,
| . (PROD 3 x 17 y) results in "x" being bound to 5 and "y" to 2, as

does (PROD x 3 17 y).

I 5.1.3'LESS'*:

L;

L:

(LESS x y) "x is less than y"

The LESS built-in predicate implements the inequality test for num-
bers. Only one ar i thmet ic usage is allowed, where both arguments are
numbers. In this case the call succeeds if the first number is numerically
less than the second; if they are equal or if the first number is greater
than the second the call fails. For example, (LESS 3 2) succeeds. Sa.JLs.

^ »2 Strjng ope^ratjonsf

In oicro-PROLOS strings are represented by constants. There are two
built-in programs that manipulate the names of constants. The LESS predi-
cate performs a textual comparison of two constants' names and STRING is

32



Built-in Programs

used tc t rans fo rm L i s t s of charac te rs to constants and v i ce versa.

5.2.1 LESS

(LESS x y) "x lexicographical ly less than y"

Like the inequality test for numbers, this test for constants tests
that the f i rst argument (which is a constant) is textually less than the
second ( w h i c h must also be a constant). The ordering used is the lexico-
graphical orcering, based on the ordering of the unaerlying character set
(namely ASCII), and compares the names of the constants.

For exanple, (LESS FRED FREDDY) succeeds since "FRED" is lexically
less than "FREDDY".

5.2.2

(STRING <list> <constant» the <list> of letters forms <constant>

~~ . The STRING built-in program enables the programmer to take apart a
constant into its constituent characters, and vice versa to pack a list of

(' 7" characters into a single constant. There are essentially two uses of the
•-" program:

1. Unpacking: to produce a list of characters from a constant. In
.. this use the second argument should be bound to a constant (not a

number or list), and the second unbound. The e f f e c t of the
•— program is to bind the f irst argument to a list; if the empty

constant '*' is used then the result is the empty list. So, for
example, "(STRING x fred)" results in "x" being bound to "(f r e
d)", and "(STRING x "A*")" binds "x" to "(A *)".

The f i r s t argument may be part ial ly instantiated; this
— would allow some comparison of the list of characters and the

constant, as wel l as being able to 'p ick off some s p e c i f i c
'•"" characters of the constant. In the case where the two arguments
^ are fully gound a check is performed to see that the list does

name the constant. Some examples of this use are:

(STRING (f r x d) fred) x = e
,%. (STRING (f rlx) fred) x = (e d)
\-'' (STRING (f rlx) gerry) fails

»- The list of characters must be just that: a list of
constants which have single character names.

takes'a list of letters and produces a constant"
fron it. i It is the inverse of the unpack use of STRING. Some
example uses:

(STRING (f r e d) x) x = fred
(STRING O x ) x = ""

5»3 Console Input/Output Operations'

The input/output facilities are divided into two groups: Console I/O
and Disk I/O.' Console I/O refers to terms read from the keyboard and
displayed on the console, and disk I/O transfers terms to and from the disk
system. The I/O facilit ies described here are the first example of a non-
logical feature of aicro- PROLOG, this is because they depend on their
behaviour (reading and writ ing terms) for their meaning.

33



Built-in rrograns

There are four built-in programs for dealing wi th Console I/O: Read,
Print, PrettyPrint term and RFILL, which respectively read a tern from the
console, print a list of terms, pretty print a. list of terms and 'pre-fill'
the keyboard buffer w i th a list of terms.

»

5.3.1 R

(R x) "read a term from the keyboard and bind to x"

The Read program reads a single from the keyboard and binds its argu-
ment to the term ^ t reads in. It must be cal led w i t h a var iab le as its
argument, otherwise a "Control Error" is reported.

Any variables typed in appear as variables in the term, though they
are completely new variables differing from any others that may appear in
the program.

See Section 3.1 for details of how »icro- PR CLOG accepts terms from the
keyboard. •

5.3.2 £

(P <seq. of ter«s» "print the <seq. of ter«s> on the console"

The Print program prints its arguments on the console output device.
Each character in the terms of its arguments are printed as they are,
rather than being specially 'exhibited1. There is no implicit new line
after the print operation has completed: though it can of course be prog-
rammed by printing control characters.

For example, if the console uses Control-L to clear the screen then

CP AL)

clears it. Any variables occurring in the list of terms are displayed as
"X", "Y", "Z",..,"z",MX1V.,"z1V'X2" and so on, corresponding to the
order that the var iables are encountered during the Print. Var iables
appearing in more than one term will have the same print name. Note
that if there are more than 128 different variables, then subsequent var-
iables are displayed as "???".

5.3.3 PP'

(PP <seq. of teras» "Pretty Print <seq. of tcr»s>"

The PP program displays its arguments in a pretty printed format.1 This
is probably the best way to view the structure of terms constructed by the
your program. It is used for example by the LIST program when displaying
clauses.

The PP program uses a rudimentary algorithm for distributing terms
accross lines. Each time a term of odd nesting depth is encountered it is
put onto a new line with some indentation which depends on the depth. For
example the term "((P Ct)XQ Ct1 t2)»" is displayed as:

<(P (t))
(G Ct1

t2))>

If a term that happens to name a clause is displayed in this manner,
it has the effect of displaying the head of the clause on a single line and
each atom in the body on a separate line and slightly indented, exhibiting
the structure of the clause.

34



Built-in Programs

Any control charac te rs occu r r i ng in t e r m s that are pretty printed are
displayed in the MA<char>" format . If a quoted s t r ing type of constant is
p r e t t y p r i n t e d t hen i t i s d i s p l a y e d i n i t s quo ted f o r m , w i t h t w o quote
characters on e i t h e r side. For e x a m p l e the call :

(P "(The man")

displays:

(The man

on the con-sole, whereas the call:

. (PP "(The man")

displays:

"(The man"

on the console. The pretty print operation is a lways completed by a car-
r iage r e t u r n / l i n e feed, so a new l ine on the screen is p e r f o r m e d by:
"(PP)" or "PP".

5.3.4 MILL

(RFILL <seq. of terns» "Fi l l keyboard b u f f e r w i t h <seq. of ter»s>.

The RFILL .program is used to 'pre-fill1 the keyboard buf fe r prior to
keyboard entry.' It is s i m i l a r to the "PP" buil t - in program, in that it
t a k e s a l i s t of t e r m s as a r g u m e n t s and ' w r i t e s ' these t e r m s i n t o the
keyboa rd b u f f e r . T h i s p rog ram i s very u s e f u l t o i m p l e m e n t e d i t o r s i n
micro-PROLOG as in the s t ructure edi tor and in the S i m p l e f ron t end.

For example, to pre-f i l l the keyboard b u f f e r w i t h a sentence such as
"John l ikes Mary" we would call: -"(RFILL (John l ikes Mary))".

When a subsequent read "(R x)" is executed it is as though th is term
had already been typed in at the keyboard, The "R" program detects that a
previous "RFILL" has been executed, and instead of s tar t ing the input w i t h
the input mode as is normal, it s tar ts in edit mode. The contents of the
b u f f e r a re a l so d i sp l ayed . In gene ra l i t i s as t hough the ed i to r w e r e
primed w i t h a "I" command, (as opposed to the "i" command it is normally
primed wi th) .

RFILL also has the side effect of clearing any previous contents of
the keyboard buffer. If several terms had been typed on a l ine then any
'unused* terms would be ignored.

5.4~Djsk~I/0 J

Biero-PRCLOG supports f i l e s of text under CP/M, i.e. f i l e s of . A S C I I
characters. These are accessed sequentially via the built-in programs READ,
W and W R I T E or r andonmly via the SEEK program. Up to four f i l e s may be
ac t ive d u r i n g an eva lua t ion at any one t ime , any a t t empt to have more
results in the 'Too many files opened" message.

5.4.1 OPEN*

(OPEN file-name) "open f i l e for reading"
*

This built-in program opens a f i l e for reading. The "file-name" is a
constant w h i c h names a f i l e according to the CP/M f i l e naming conventions

35



(see Section 3.2.5.1 for details).
If the f i le was previously open for writ ing then the file is f i rst

'flushed1 and closed down before starting the read. This means that it is
not possible to sinultanously read and wr i te to a file. The f irst charac-
ter of the fi le is read in by the OPEN program, so if the f i le is empty" or
if it is not there then the message: "File not found" is printed, and the
OPEN call fails.

If the fi le was already open for reading then the f i le is 'rewound1 to
the beginning by the OPEN program.

5.4.2 CREATE

(CREATE file-name) "create a new file for writing"

The CREATE program opens a new file for writing. Any old file of the
same rame is f i rst re-named to have extension ".BAK", and the new file is
then created. This means that f i les are automatical ly backed up.

If the file is already open for writ ing then it is merely rewound to
the beginning.

5.4.3 CLOSE :

( L O S E file-name) "close down the file"

In CP/M there are no special actions associated with closing a file
which is being read only; however a file which is being written to must be
explicitly closed down, otherwise the disk file may not contain the right
data. This CLOSE program performs this operation and releases the file
from Ricro-PROLOGb It is also used to close down fi les opened for read
access.

5.4.4 READ'
^**—*^ *

(READ file-name x) "read a term from <file-name> into x"

The READ program reads a single term from the named file and binds its
argument to the term. If the call reads past the end-of-file then the READ
call fails.

5.4.5 W R I T E

(WRITE file-name <seq. erf ter»s» "write <seq. of ter»s> to the file"

The WRITE program wr i tes the terms in the <seq. of tcrms> into the
file, in the same fo rm as the PP program. This ensures that any term
writ ten onto a disk file can be subsequently read back in as the same term,
wi th the exception of variables which are renamed,

5.4.6 W ;

(W file-name"<setj. of ter«s» "write <seq. of ter«s> to the file"

The W program is the same as the WRITE program except that the terns
are wr i t ten in the same way that "P" displays terms on the console. Note
that terms wr i t ten using "W" may not be re-readable as terms.

5.4.7 SEEK-

(SEEK file-name pos) "file is at pos"

36



Built-in Programs

The SEEK program identifies 'where1 in a file the program is currently
pointing. There are two modes/ either the- 'DOS' argument is unbound en
ent ry to SEEK, or it is a number. The 'pos* number is in ter-ms of the
number of charac ters f rom the start of the file.

If the pos i t ion argument is unbound then SEEK returns the current
position in the file; if the argument is given then the file is positioned
to the position given,

Ext reme care should be exerc ised if wri t ing into the middle of a file,
as there is no protection against overwriting already existing terms on the
file.

SEEK can be used to implement a system where one or more programs can
be on disk instead of in memory. The fo l lowing pro- jram w i l l do this
autcxnati cal ly :

((RPRED x y z) {file x contains clauses of the form (ylY) >
.(SEEK x z) {starting from z>
(READ x y1) {read in candidate clause>
(SEEK x z1) {where are we now?>
(OR {either its the right clause:>

((EQ (ylY) y1)IY) {and execute the body of clause just read>
((RPRED x y z1)))Kor continue down the x file until y is found>

To tis.e this program (ignore the bits be tween the eurly brackets)
to keep the clauses for likes (say) on the disk file LIKES (say) replace
the clauses for "likes" in the program with the single clause:

(Uikeslx)
(RPRED LIKES (l ikeslx) 0))

The file LIKES must also have been OPENed prior to using the program
for "likes". The LIKES file can be generated either by using SAVE (see
below) or special ly wr i t ten by another program. The l ikes clauses in
"LIKES" can be general (including recursive); and that there can be more
than one file with the "likes" clauses on it (just use more than one rule
as above). *

• •- • •

5-5 T̂ £e PredjeateY

The type predicates test a single argument for their type: ; whether it
is numeric/ constant etc. •*

5.5.1
** ̂  ** * .-

(NUM n) "n is a number"

The NUM built-in predicate tests to sec if its single argument is
numer ic or not. If it a number the call succeeds/ if the argument is a
variable then the evaluation aborts with a "Control error"/ otherwise the
call fails. For example/ (NUM 3) succeeds.

5.5.2 ~CON'

(CON c) "c is a constant"

The CON built-in predicate test to see if its single argument is a
constant. For example/ (CON CON) succeeds/ whereas (CON ())/ and (CON 1)
both fail. If the argument is a variable then the evaluation aborts with a

37



. Built-in Prograas

control error.

5.5.3 SYS
•

(SYS t) "t names an atom which is built-in"

SYS tes ts to see if its argument is a built-in program or not. It
succeeds if it is, fai ls if it is a user defined program or if there is no
such program.

5.5.4 V A R

(VAR x) "at the time of the call x is a variable"

Strictly non-logical, the VAR built-in type predicate checks to see if
its argument is currently a variable. (It is non-logical because a success-
ful call is invalidated if the variable is subsequently boundJ

5-6 Lcajcajj operators'

The basic clausal form of logic programs is extended to include some )
other connectives via the logical operator built-in programs. These prog- ~"
rarrs implement disjunction (OR), negation-as-fai lure (NOT) conditionals
(IF) and identity (EQ). These can be used to increase the eff iciency and
(sometimes) the readability of «icro-PROLO€ programs.

5.6.1 OR*

(OR goall goal2) "either goall or goal2 is true"
•*

The disjunctive operator OR has two arguments: each of which is a list
of atoms. The OR program succeeds by succeeding either of the two goals in
the call. For example, (OR ((SUM 3 2 x) (P x OK))( (P not ok))) succeeds in
the first branch, and prints "5 OK" on the console.

An empty goal (named by the empty list "()") a l w a y s succeeds, and
hence if used as an argument to OR acts as a 'true1 branch.

5.6.2 NOT:

(NOT pred arguments)

The NOT operator implements negation-as-failure CClark 1978D. A neg-
ated a tom has the fo rm "(NOT pred args)" where "(pred args)" is the
corresponding un-negated atom.

Negation-as-fai lure is not logical negation, but corresponds to the
rules

If a goal is improvable (i.e. any attempt to prove it
ends in finite failure) then assume that the goal is false.

For a great number of cases (especial ly when using negation to test a
condition) negation-as-failure is adequate, and coincides w i th the clas-
sical- concept of negation.

The negated atom should contain no variables, otherwise the NOT prog-
ram may behave incorrectly. In particular if the atom succeeds by binding a
variable in it then the NOT program fails, whereas the system should abort,
since logically the negated atom can neither be false nor true. A simple
example illustrates the difficulties that can arise: given the two clauses:

38



Built-in Programs

((Not- test -A B))
(CNot- test -B A)5

and the goal statement:

_ ?((NOT Not-test-A x)(Not-test-B x))
/

This goat logically should succeed, but w i th our NOT it fai ls because the
NOT call fails. However the equivalent goal:

?((Not-test-B xKNOT Not-test-A x))

succeeds, wi th "x" equal to "A". A logic program should not be this sensi-
tive to ordering of sub-goals.

5.6.3 IF!

(IF atom goal A goalB) "If atom is provable then IF is
provable if goalA is

else it is
provable if goalB is"

The IF program implements the conditional form. It is primarily used
for efficiency because in practice the excessive use of conditionals ham-
pers readability. A statement of the form:

((A ...)(IF (C ...) (bodyA) (bodyB))

is (almost) equivalent to the pair of clauses:

((A ...) (C ...) bodyA)
((A ...) (NOT C ...) bodyB)

together with control information which says that the conditional test
"(C ...)" need not be executed more than once.

Condit ionals are a mixed blessing because less use can be made of
unification. For example in the two clauses for A above it could be that
the heads of the two clauses would naturally be slightly different. This
neans that when the conditional form is used the head must be the 'most
general1 of the two, with extra equalities in the conditional branches to
bind the variables.

5.6.4 JQI]

(EQ t1 t2) "t1 is Identical to t2"

The EQ program implements the identity component of the equality
axioms: viz x=x. For example, (EQ (x1 x2) (A B)) results in Mx1" * "A",
and Mx2" = "B".

5.7 Data base ope^rat|ons^

oicro-PROLOG has a collection (3) of programs that enable clauses to
be accessed, added and deleted from the user's work-space at run-time. Note
that these facil it ies are dangerous (they are non-logic) and should be used
withr care. They are included because the supervisor needs them and also
because they facilitate certain language extensions. (See Chapter 6 for
examples of how they are used in this way.)



Built-in Programs

CL

(CL <clause» "clause is a clause in the program"
CR (CL <clause> <start-#> <index-#» "clause after start-# at index-3"

•

This program accesses clauses from the user's work-space. This is one
of the few built-in programs that is at all non-deterministic as it can be
used to backtrack through an entire relation, The only input constraint on
CL is that the p red ica te symbol of the c lause is known. For example /
(CL ( C A t t x ) l X ) } succeeds if there are any "At" clauses in the workspace/
in which case the variable "x" is bound to the arguments of the head atom
of the clause/ and the variable "X" is bound to the (possibly empty) list
of atoms that make up the body of the clause.

The three argument form of "CL" can be used to find particular clauses
in the program, the start-0 is the f irst clause to start looking at/ and
the index-ff is the actual index of the clause found in the relation. For
example this can be used to find where a clause is in a relation:

(CL (dikes John lx)ly) 1 X)

returns in "X" where the first clause that matches "(dikes Johnlx)ly)M is ^}
in the "likes" program. (If the three argument form is used the second
argument «ust be given). We can also use it to see what the nth clause is
as in:

(CL ( ( l ikeslx) Iy) 4 4 )

5.7.2 ADDCC

(ADDCL clause <n» "add clause to the program {after nth clause >"

The ADDCL program is used to insert clauses into the workspace. The
clause to be added is named by a term constructed according to the syntax
of clauses: a list of atoms/ with the f irst atom being the head.

From a logical point of view/ the syntax of clauses is such that the
term wh ich names a clause in the meta language is identical to the term
which is the clause in the object language. Any variables that appear in
the tern naming a clause appear as variables in the clause that is added to
the workspace. For a detailed examination of the relationship between meta j
level terms and object level terms and clauses see chapter 12 of Kowalski
C19791.

This way of naming clauses (using 'real* variables to name variables
of the clause) is actually logically incorrect/ but PROLOG has always been
done in this "way.

If ADDCL is used w i t h a single argument then the clause is added to
the end of the appropriate program. Otherwise it is inserted after the n*
clause in the program. For example/ if "0" is used as the clause number/
the clause is inserted at the front of the program. For example/ (ADDCL
((append 0 x x))) adds the clause

((append () x x))

to the end of the "append" program.
There i s _ a restriction "on the use of ADDCL: namely that clauses can

only be added to user defined programs/ not to built-in programs. This
means "that it is not possible to redefine the built-in programs/ whether
they are implemented in micro-PROLO€ or assembler.

40



Built-in Programs

5.7.3 DELCL

(DELCL clause) "delete clause from the workspace" or
(DELCL pred n) "delete clause n from program pred".

The_pro<jr«3m DELCL is used to delete clauses from the user's workspace.
In the - ' f i r s t f o r m the program is searched for the clause, and if it is
fcund (unified w i th the clause) then the appropriate clause is deleted. In
the second form the clause to be deleted is specif ied by a predicate symbol
and an o f f s e t . For example, (DELCL ((append I x1) I x2 ) ) looks for an
"append" c lause and deletes i t, the va r iab les "x1" and "x2" are uni f ied
w i t h the head arguments and body of the clause respectively.

The restr ic t ions that apply to ADDCL also apply to DELCL: only user
programs can have clauses deleted from them. If the clause is not part of
the program then the call to DELCL fails.

5.3 JrJb£a£Y ££ocedu£es

The program library faci l i t ies from the supervisor are also available
as built-in predicates. These allow saving of programs, loading programs
and listing programs at the console.

5.8.1 LIST

(LIST ALL)
or (LIST <list of predicate symbols» "list program(s) at console"

The LIST program either lists the entire user program at the console,
or, if given a list of predicate symbols as a parameter, just individual
programs.

For example, LIST ALL lists the whole program,
(LIST(Likes Fred Angie)) lists programs "Likes", "Fred" & "Angie'

5.8.2 SAVE/

(SAVEf i l e )
or (SAVE file <list of predicate syobbis» "save program on disk"

:v " . .
The SAVE program saves the user's program on the disk file/ The second

form of the SAVE program allows selective saving of the user's program onto
disk. For example, (SAVE "AjTEST.LOG") saves the entire work space on the
disk file "TEST.LOG" on drive "A". The old file, possibly from a previous
"SAVE", is renamed with extension ".BAK", ensuring automatic backing up of
programs.

5.8.3 LOAD

(LOAD file) "load program from disk file"

This program reads the disk file/ and loads the program 'contained on
it. For example, (LOAD TRACE) loads the program in the disk fi le
"TRACE.LOG" on the logged in disk.

5»9 tfodyi£ Construction fa cj^jf tides'

»icro-PROLO€ o f fe rs a limited facility for constructing modules.
These enable programs to be put together f rom different sources wh i le

41



Bxmt-in

avoiding name clashes.
A module has four components: a nane, (which is a aicro— PROLOG cons-

tant) a locaj djctjonarv which are the symbols appearing in the nodule
which are private to that module, a list of names wh ich are being -'made
available1 by the nodule: the Export .Ijst, and a list of names that the
module imports from the outside: the Ijcort .Ij.st.

Modules are LOADed and SAVEd automatical ly by the LOAD and SAVE prog-
rams. For the LOAD the function is completely automatic: f i les containing
modules have a different structure to ordinary program files, and for the
SAVE program there is the extension:

(SAVE file module-name)

which saves the module named (and its sub-modules) on the specified file.
The LIST program can also be used to list the contents of a module; by

using

(LIST module-name)

At any one time there is what is called the 'current1 module. This
defines what programs are currently available. In the current module the
symbols that are available are those appearing in the Import/Export lists
as wel l as the local names. However when the current module is LISTed, or
SAVEd only those programs from the Export list and the local programs are
displayed.

The supervisor uses the current module's name as its prompt, so if the
current module were called "simple" then instead of the "&." prompt we get
the prompt:

simple.

There are three programs that are provided to control the uses of
modules: CRMOD, OPMOD and CLMOD.

5.9.1 CRMOD'

(CRMOD module-name <Export list> <Import list» "create module"

CRP.OD creates a new module of name module-name, and enters it; i.e.
makes it the current module. The Export list and the Import list are as
defined above.

5.9.2 OPMOD"

(OPMOD module-name) "open module"

OPMOD enters "the already existing module "named; i.e. it becomes the
new current module. •

5.9.3 CLMOD:

CLMOD "close module"

CLMOD drops out of the current module* back into what was the previous
current module. It is not possible to drop out of the base module.

42



r

Built-in Programs

5.10 Mjsce.Ujneous fredjcates

In this sect ion we <1raw together a rag-bag of functions not covered
above. These include the dictionary relat ion and some control functions.

5.10.1 D I C T

(DICT module <Export list> <Import list> <seq. of constants»

The DICT program contains the dict ionary of the current module.

5.10.2 QJ

QT "exi t to monitor"

Execution of this program will cause an exit from the aicro— PROLOG
system into CP/M.

5.10.3 / •

/ for controlling backtracking

The slash program is used to control backtracking. Its effect is to
eliminate backtracking between the call wh ich invokes the clause, and the
"/" evaluation. For example, in the program

((P ...HA ...MB ...)/(C ...))

the a toms (A ...) and (B ...) are executed in the normal way. If they
succeed then the slash is executed. Slash a lways 'succeeds'; it is used for
its side ef fect .

j It suppresses further backt rack ing in the evaluation of the (A ...)
!...«, and (B ...) atoms and it also removes any alternative clauses for P that

have not yet been tried. In other words if (C ...) fails, then the call (P
j — alternative ways of executing the (A ...) and (B ...) atoms, and there may
j have been more (P ...) clauses; none of which will be tried.
1 k The slasS can also be used to *tell' «icro-PROL06 that certain prog-

_ rams are actual ly determinist ic, a l lowing the sys tem to make space
1 • optimizations.
i
C7V" 5.10.4 FAIL1

! .. FAIL "false".
"v . «- - - ' • .

j — The FAIL predicate always evaluates to false.^ This is used to fail a
I branch of the proof, FAIL has no clauses, but the interpreter knows about

it and does not report a "CLAUSE ERROR".

\ • 5.10.5 <SUP>
I *

<SUP> is the supervisor.

I > The supervisor appears as the program for the predicate symbol
"<SUP>". It is a very simple program with just a few clauses. Its main

! -. function is to call user programs, and other built-in functions. The
actual program is shown here:

— (("<SUP>")
(CMOD Y) {find the current module name (system use only)>

t^-.-».

! " 43



Built-in Programs

(P Y) {print module name as protnpt>
(R X) {read in command word>
("0" X)/ \ {process command determi ni sti cal ly>
0'<SUP>")) {tail recurse on supervisor (look for next command>

(("<>" X)
(CON X) {if command is a constant..>
(R Y) {read in single argument>
(X Y ) ) {execute command (using meta-variable)>

<("<>" ( X I Y ) ) {if command is a nicro-PROLOS clause..>
(ADDCL ( X I Y ) ) ) {add it to the program>

(("<>" X) {come here if command fails/ or illegal input>
(PP ?))



Chapter 6

Inpleaentinq High-level features with low-level primitives

This chapter is dedicated to the would be supervisor wr i ter : that is
the programmer who wishes to extend «icro-PROt06 wi th high level features.
To illustrate how one might go about extending the system we take a nurr.ber
of fairly simple extensions and describe in seme detail how they are imple-
mented using the low-level primitives giyen,

A common kind of extension involves extending the language towards a
richer notation which is closer to full first order standard form CKowalski
19793. However, since we tend to rely on the operational semantics of the
interpreter for the implementation of a new feature, we generally have to
compromise to some extent on its logical nature to achieve a reasonable
eff iciency. Usually, a subset only of the full power is implemented.

The extensions we consider are negation, 'One-of, conditionals, lists
of solutions. Negation and conditionals are already in the supervisor.
Finally we describe how to extend the system by implementing a front end to
the syten, in particular we look at the "Simple" system discussed in Chap-
ter 4.

Most PROLOG systems do not support full logical negation, but rather
attempt to implement 'negation-as-fai lure'. This can be shown, under cer—.
tain circumstances, to be equivalent to classical negation and for a full
treatment of this see Clark C19783. In this section we concern ourselves
only with its implementation.

The essence of the negation-as-fai lure rule is that an atom is true
w i th respect to a logic program only if its provably true, and fa lse
otherwise. So negation can be implemented by the simple trick of reversing
the normal failure and success pattern of the interpreter. We fail a ner
gated call if the call succeeds, and we succeed the negated call if the'
call fails.' A simple «icro-PROLO€ program that does this is:

*

((NOT x) x / FAIL)
((NOT x»

Operationally (the only way this program can be understood), what occurs
when NOT is called, for example:

(NOT (EQ A B))

is that the argument of NOT (which names an atom) is itself called using
the meta-variable facility.

If the atcxn in the NOT call succeeds then the slash is executed. The
effect of the slash is to remove all the choice points inside the called
atom. Moreover, it also removes the second NOT clause from consideration,
After the slash the built-in predicate FAIL is executed, which of course
fails. Now, since there are no more choices left for NOT and for the called
atom (they have been explicitly removed) the call to NOT also fails. Hence
if the call to the atom succeeds, then the call to NOT fails.

If however, the call to the atom fails, then the second clause for NOT
is tr.ied. This clause always, unconditionally, succeeds. So the NOT call
succeeds if ihe atom fails:



laplesenting High-level features with lev-level primitives

&.??((NOT (F.Q A B)))
ENTER (NOT (EQ A B»).C
ENTER (EQ A B).C
FAIL (EQ A B) .
FINISH (NOT (EQ A 8»
&.

Roughly then, th is is the behaviour we want f rom the NOT program.
However there is an important case where the program goes wrong. If the
call to the argument atom succeeded, but only by binding a variable in it
then it is wrong to fai l the NOT call, wha t we should do is abort the
execution wi th a "CONTROL ERROR".

It is too expens ive to do the required check though, and for cases
where the atom has no variable in it the check is not necessary anyway, so
we do rot program it up.

Finally a syntact ic convenience: as it stands the NOT program above
requires a single argument that itself names an atom. This leads to two
extra brackets when it is used, compared wi th a normal atom. A more elegant
approach is to al low NOT to accept a list of arguments, this list naming an
atom: the f irst argument is the predicate symbol, and the rest are the
arguments to the atom. The result of this is that we can wr i te our negated ^
atoms w i t h no extra brackets:

(NOT EQ A B)

The modified program that accepts this is:

((NOT I x) x / FAIL)
((NOT 1 x))

6-2 One-of j

The 'One-of operator is a useful way of telling the" system' that a
particular call to a program is actually functional: there is only one'
solution, This then al lows the system to economise on space by not saving
the backtracking points left after finding the first solution.

In writ ing this program we choose the same format as for negation: the
'One-of1 symbol comer, at the front of the atom involved. For example,

(One-of Member (B x) ((A 32MB 1) (C 3MB 2)))

only finds the first "(B x)M pair in the list.
The 'One-of1 program is simple: we find the first -solution, by using

the meta-variable fac i l i ty as in NOT, and then remove all the remaining
backtracking points by slash:

((One-of I x) x /)

6-3 SSD̂ JiJSUjil

Conditionals are used to express conditional branches in a program
clause: one of two branches is executed depending on the result of some
test. The ideal we want to aim for is for a statement of the form:

((A ...XIF (C ...)((THEN ...)M(ELSE ...))))

to be logically identical to the pair of clauses:

((A ...)(C ...MTHEN ...» !



Inpleaenting High-level features with low-level priaitives

( ( A ..JCNOT C ...MELSE ...»

together w i t h control information that the test "(C ..J" only needs to Le
performed once. However we have to compromise, so we actually implement th*
conditional to be equivalent to the pair of clauses:

( (A ...)(0ne-of C ...MTHEN ...»
((A ...)(NOT C ...KELSE ...»

The IF program has two clauses. The first calls the conditional tec-t,
and if that succeeds it removes the second clause, by using slash, anj
executes the THEN branch. The se- jncNlF clause (which is only entered '(
the conditional test fails) simply executes the ELSE branch.

((IF x X Y)
x
/
I X)

((IF x X Y) I Y)

A more complete solution, which allows backtracking on the conditional
test, would call the conditional test twice: once in such a way as to avoid
binding any variables in it, and if that succeeds then to call it again in
the 'then' branch to bind the variables. The problem with this solution is
that it calls the conditional test tw i ce which is exact ly what we wanted to
avoid! For this reason the simpler program is the one actually embedded in
the supervisor as the IF program.

60 4 Ljjts of so^lutjons'

A common requirement in logic programs, particularly for data-base
applications, is for a complete list of answers to be constructed, rather
than a single one at a time. To answer this need we extend the language to
allow a primitive 'set1 construct.

What we would like is for an expression of the form "{< , , >IP>"
•which signifies a set of tuples each corresponding to a different way of
solving P, to be wri t ten in Bicro-PROLOG. What we settle for is a program
All which has the form "(All x y z)" which unifies "x" wi th a list of ter-ns
'V" each of which corresponds to a solution of the atom "2". Note that the
termination of a call to All is entirely governed by whether all of the
answers to "2" can be found in a finite time, and that duplicate solutions
are noj removed.

The strategy we follow when programming All is to call the atom "2"
and every time it succeeds add to a global variable the term 'V" and then
art i f icial ly fail. When all the alternatives for the atom are exhausted the
call to All succeeds by binding the list constructed to the answer
variable.

Although PROLOG is an applicative (i.e. side ef fect free) language,
the primitives ADDCL and OELCL can be used to program up global variables
which can be overwritten. For example to maintain a variable called
'Global' we have in the workspace a clause of the form:

((Global Value))

whe re Value is the current value of the Global variable. To a c c e s s the
variable's value we simply have a call to Global:

(Global x)

47



lapleaenting High-level features with low-level primitives

To update the value of the global variable we first delete the current
clause using DELCL, and then ADDCL a new clause with the updated value.

\

CDELCL ((Global oldvalue)))(ADOCL ((Global newvalue)))

If we w i s h to simultaneously a c c e s s and delete the value of a global
variable we can do so by using the DELCL to unify a variable with the old
value:

(DELCL ((Global x)))

For example in our All program we maintain as a global variable the
list of solutions found so far. When a new solution is found we want to add
it to the list, to do this we a c c e s s the list and remove the global
variable at the same time using

(DELCL ((Global X)))(ADDCL ((Global (new term IX))))

The program for finding all solutions can be written as:

((All x y 2) '")
(ADDCL ((Global ()))) •
z
(DELCL ((Global Y)))
(ADDCL ((Global (ylY»»
FAIL)

((All x y z)
(DELCL ((Global x))))

The difficulty with this program is that it does not allow for the
possibility of more than one All call being invoked at once: an All call
may itself have All calls imbedded in it.

The program for All presented below is a little more complicated since
it keeps t rack of different calls to the same program (even nested calls).
To to this we have a second global variable All-num which counts the number
of times the All program has been called, and we have renamed the original
global variable to All-list.

((All x y z)
(DELCL ((All-num X1)))
(SUM X1 1 X2) . '
(ADDCL ((All-num X2)))
(ADDCL ((All-list X1O)))
(All-find X1 x y z))

((All-find X1 x y z)
2

(DELCL ((All-list X1 Y) ) )
(ADDCL ((All-list X1 (y lY)))>
FAIL)

((All-find X1 x y z)
(DELCL ((All-list X1 x))))

( (Al l -num 0))



lapleaenting High-level features with loir-level primitives

6-5 The Sjm&le PROLOG .front end

In this .section we look at the i nplementation of the Simple PRCLO«3
system described in Chapter 4. It i l lustrates how a more friendly system
can be built f rom the iMcro-PRCLO€ basics.

The ma in funct ion of the f ront end program is to compi le be tween
Simple PROLOG sentences and 0icro—PROLOG clauses / and to invoke evaluation
of Simple PROLOG queries. Of course the correspondence is very close:
Simple PROLOG is essentially syntact ic sugar for • icro-PROL06. The prin-
ciples behind the implementation apply to more •omplex transformations,
such as a natural language front end system.

6.5.1 The translator

The kernel program in Simple is "parses-to", this translates between
Simple PROLOG and nicro-PROLOG, Here we shall look at a simplif ied version
of the program, one that only knows about binary predicates.

A Simple PROLOG sentence has a very simple (sic) structure: it con-
sists of a list of terms which are grouped into atoms; the atoms of the
sentence are seperated by some constants which act as key words. On the
other hand •icro-PROL06 clauses have a list structure: a clause consists of
a list of atoms, each atom is itself a list the first element of it being
the predicate symbol.

We can represent a Simple PROLOG sentence as a list of terms:

(John likes Mary if Mary likes John)

or, more generally, we can represent it by a pair of lists, the
nee between them being the Simple PROLOG sentence:

Sentence

(John likes Mary if Mary likes John

Listl
9

We can name this difference between the two lists by a term of the form
"CListl to listZ)":

((John likes Mary if Mary likes John ...) to «..)

This latter representation is very useful when parsing the Simple PROLOG
sentence; we can write the parser as:

((parse (x to y) (XIY) )
(is-aton (x to x1) X)
(is-body (x1 to y) Y (if)))

The English reading of this is:

To parse the sentence represented by the list "x to y"
into the clause wi th head X and tail Y, first find an atom X
between x and x1, then parse the body Y from x1 to y using
the '?yword "if".



laplcsenting High-level features with low-level primitives

(John likes Mary if Mary likes John ......)
^v v

x ' Y

Since we are only parsing binary predicates of Simple, the program
for determining what an atom is is easy:

C(is-atcn» (Cx1 x x2ly) to y) (x x1 x2)))

This sentence says that three terms define an atom, they are represented
using the pair of lists "(xl x x2ly)M and "y", the difference between them
is the list "(x1 x x2)", and this list is the «i cro-PROL06 atom "(x x1
x23". Notice how easy this transformation is, the first three terms of the
list representing the Simple PROLOG sentence only need to be slightly re-
ordered to put them into the »icro-PROL06 representation of an atom.

The body of a Simple PROLOG sentence is a sequence of atoms, each atom
is preceded either by the keyword "if" for the first atom, or one of "S" or
"and" for each remaining atom in the body. This makes the definition of
the "i s-body" program straight forward:

(Cis-body (CxIxD to x2) (XIY) z)
(in-key-list x z)
(is-atom (x1 to x3> X)
(is-body (x3 to x2) Y (8 and)))

The base case, where the body of the sentence is empty 1s equally
straight forward:

((is-body (x to x) () z))

The empty list is named here by the pair "(x to x)"; which says that for
any list x the difference between it and itself is empty.

Although the above programs are written in Simple PROLOG the actual
translator is of course writ ten in aicro-PROLOG, The program is equally
good at translating from Simple into aicro—PROLOG as it is at translating
from Micro to Simple PROLOG.

6.5.2 P£cjarnzajtjon of Sjmp^e PROLOG p£p.S£§m,§

As we mentioned above the Simple front end program compiles Simple
PROLOG programs into «icror-PROLOG format. It also stores the Simple
programs as »icro-PROLOG clauses. This al lows the »icro-PROLOG system
itself to be used for evaluating Simple PROLOG queries.

However, since Simple is itself a »icro-PROLOG program some way has to
be found of separating the two programs: the Simple PROLOG program and the
front end program itself. The reason for wanting to searate them is for
program list .g and saving programs: the Simple PROLOG user does not want
to see the 'ont end program when his Simple PROLOG program is Listed or
Saved in a file.

This separation is achieved by using the module construction tools
described in Chapter 5. The front end program is formed into a module
called "Simple" which effectively hides the program from the user. All
that regains visible is the user's Simple PROLOG program. This also
a l lows us to use the built-in SAVE and LOAD programs to Save and Load

50



lapleaenting High-level features with loir-level prinitives

Simple PROLOG programs.

6.5.3 E v a u a t o n s of lfiiS PROLOG guerjes

"
In this section we look at hew the "Which" command is implemented.

W h i c h " t a k e s a goal and a te rm in S i m p l e fo rmat , c o n v e r t s the goal to
aicro-PSCLOG format and then, using the meta variable, evaluates the query.
If the query is successfu l the term is printed and the next solution to the
query is found by art i f ic ial ly failing.

"Which" uses the program "is-body" above to parse the Simple query.
However "i s-bcdy" expects either the empty body or a keyword, such as "if"
or "and" on the front of the body; so "Which" tacks-on a suitable keyword
to the query.

( ( W h i c h ( x ! y ) )
(is-body ((if ly) to ()) z ( i f ) )
(exec x 2))

where "exec" executes the «i cro-PROLOG query "z" using "?" and displays the
result "x" for each solution:

( (exec x z)
(? z)
(P x)
PP
FAIL)

((exec x z)
((PP No (more) Solutions))

The "One" command is implemented in essentially the same manner. The
main d i f f e r e n c e is that instead of just failing af ter each solution is
printed the console is queried; if the user replies "C" (for continue)
then the next solution is sought, o the rw ise the "One" command just
terminates.

6. 5. A. Summary

This section illustrates some of the techniques which can be used to
implement a front end system to «i cro-PROLOG. Simple is a module which
defines some new commands which implement the various necessary functions.
It translates from the Simple PROLOG syntax into mi cro-PROLOG syntax, and
Simple programs are actually stored in «i cro-PROLOG form. Queries are
answered by f i rst translating to ai cro-PROLOG form and then using the meta
variable faci l i ty to evaluate them.

The listing of the full Simple program is given in Appendix D.

51



Chapter 7

Adding asseabler coded subroutines

It is part of .the philosophy of »icro-PROLOG that it should be as
extensible as possible. This is reflected in the flexibility of the syntax,
as wel l as in the inherent extensibility of PROLOG. A further kind of
extension provided for in «icro—PROLOG is the ability to add programs to
the system that are wr i t ten in other languages, in particular assembly
coded programs, and have them automatically executed by the system like any
other program.

To this end we have an interface which, if followed exactly, al lows a
'foreign1 program to be called by the system and parameters to be passed
between it and nicro-PROLOG. This interface is also used by the bulk of the
built-in programs, so this chapter also gives a flavour of how they are
implemented.

A user coded program is invoked in the normal way, by an atom in a ~)
goal statement, or in a clause. Like the built-in machine coded programs
the extent to which it behaves like a normal program, written as clauses,
depends on how many of the program's uses have been catered for, though
the interface only handles deterministic uses. If a non-deterministic use
is to be handled, then it can be programmed up using a Bicro-PROLOG program
that explicitly sequences through the non-deterministic choices.

The principal interface between ai cro-PROL06 and a user coded (or any
other) machine language program consists of three components. A number of
d§I§ IS921lS£5 are provided through w h i c h parameter values are passed
between aicro— PROLOG and the machine coded program. A Type tree is used to
specify what types of arguments the program can accept, how many of them,
and what patterns of use are supported. The type tree also specifies the
actual entry points into the program, so that depending on the particular
cal l d i f ferent entry points may be entered. The third component of the
interface is the predicate s^mbp^ declaration. This declares to micro-
PROL06 a constant which describes the name to be used to access the program
and its initial entry point.

To illustrate the method for inserting a new program into Bicro-PROLOG
we take as a simple case study a psuedo random number generator.

The algor i thm we use is based on KnuthC19683. The most important
properties of this algorithm are that it passes every statistical test for
randomness, and it is guaranteed to have a cycle length of 2^6 (The maximum
possible length of cycle w i th a 16 bit number).

The formula for computing the next random number in a sequence is:

.rand(n+1) = 13849 + 16385 * rand(n)

The format of a call to our random number generator is:

(RND var)

and it succeeds by binding the variable to the next random number in the
sequence.

"̂  55^5 £.§3.!.§ters

There are eight of these registers provided in the system, corres-
ponding to up to eight arguments in a call. No user coded program may have

52



Adding assembler coded subroutines

rr.cre than e igh t arguments , though the sys t em does not c h e c k this. Of course
most programs have considerably f e w e r than e ight arguments, in w h i c h case
not all of the regis ters are used. However , those tha t are not used mus t
rot be a l tered in any way by the user program.

A Data regis ter has two separate components, one for input data to the
user program, and one for r e tu rn ing results . The input side is two bytes
long: s u f f i c i e n t for a 16 bit n u m b e r , or a po in te r . The o u t p u t s ide is
three bytes long and compr i se s a 'value cell ' . A Value ce l l has a one byte
type f ie ld , and a two byte data f ie ld . The f o r m a t of a data register is:

Output Value Cell

Type Value Input V a l u e

The input component of the data register is determined by the type
tree. It can be e i ther a variable, number, constant or list pointer. The
type is not made expl ic i t as it is assumed that the type checking of the
type tree enables the selected entry point to 'know1 the type of data in a
given input register. The user must under no circumstances a f f e c t the value
in the input register: the value can be read, but not modif ied.

The output component has its type f i e l d i n i t i a l l y set to OFFH. To pass
b a c k a v a l u e i t i s necessa ry to a s s i g n the type of the a n s w e r to t h i s
f ie ld , and to place the appropriate value in the value f ie ld. If the type
f i e ld is left at OFFH then no value is passed back, and the corresponding
var iab le is l e f t unbound.

The various data types that are recognised by Bicro—PROLOG include:

NUMBER = 4

N I L = 1 6
CONSTANT = 8
LIST = 3

Data f i e l d h o l d s a 16 bi t n u m b e r in two's
complement form.
The empty list. Data f i e l d ignored.
Data f i e ld points to a constant structure
Data f i e l d points to a list cell

A Constant has a structure of the fo rm:

Value Cell Name of Constant FF

A list cell consists s imply of two value cells contiguous in memory,
w i th the head cell f i r s t and on an even byte boundary.

Head Value Cel l Tail Value Cel l

7.1 .1 Warrnncj

There are other types recognised by Bicre-PROLOG, but all other values
are reserved by «i cro—PROL.06. The type f ie ld is checked at various points
in the system, and an i n v a l i d type m a y resul t in Bicro-PROLOG be ing
aborted*

In f a c t i t i s env isaged tha t the type most c o m m o n l y used by user
programs is that of number. It is for the sake of completeness that the
other types have been described.

53



Adding assembler coded subroutines

7.2 J*£j? IlfS

Type checking of arguments to a machine coded program is-controlled by
the type tree. This is a data structure that is part of the program, and
must be provided w i t h it. Only if no arguments are expected to a call nay
this tree be omitted, but if the programmer wants the system to check that
it is called w i t h no arguments then a tree can be specif ied to check for
this.

Each node in the t ree has 5 fields, corresponding to the possible
types that an argument in the call can have. Each different type of argu-
ment leads to a sub-tree of the type tree, w i th an empty subtree signifying
that a particular type of argument is not allowed. The empty subtree is
mark?d by having the value OFFH in the corresponding field of the node.
The depth of the tree corresponds wi th the argument position in the call:
the root of the tree deals w i th the first argument, and the nodes in the
second level (i.e. those immediately descended from the root) deal w i th
the second argument position,

Type tree node:

Leaf Num Con List Var 0
For example the type tree fop the SUM predicate may be represented as
follows:

I

V ,'

1
num

.1

1
nun
!

leaf
check

1
nun

1

1
var

1
leaf
add

•

1
var

1
1
1

num
1

leaf
subtract

1
var

ntJRl

num
1

leaf
subtract

1st Arg

Arg

3rd Arg

Sub-programs

And for our RND program it is:

I
var
I

leaf

1st Arg

1. The "Leaf" field refers to the end of the argument list: i.e. no
argument. The subtree rooted at the leaf f ield is actual ly an
entry point into the code of the user program proper. At this
point all of the parameters to the call will have been parsed and
the appropriate values placed in the data registers. Furthermore,
since the path from the root node of the tree to the entry point

- is unique the code can simply access the values in the knowledge
that the types are as expected. All that is left for the program
to do is to compute the answer values, place the result in the
output halves of the data registers and return.



Adding assembler coded subroutines

W h e n return ing f r o m a leaf p rog ram (by e x e c u t i n g a "RET"
instruction) the system checks the return code for success or
faUure. If the "Z" f lag is set then the s y s t e m assumes success,
and the v a r i a b l e s are bound as spec i f ied, i f however , the "Z"
f lag is reset then the call is assumed to have faUed. In this
case the micro-PROLOG system back t racks in the normal way.

2. The "Nun" f ie ld has rooted f ron it a non-empty subtree if a
number was al lowed in the current argument position. If a number
is present, and the number subtree is non-empty then the number
in the ca l l is loaded into the appropr ia te data register, the
number subtree fo l lowed and the next argument considered.

3. If the "Con" subtree is non-empty then a constant is al lowed as a
legal argument. If a constant appears as an actual parameter then
the constant's address is loaded into the input da.ta register.

4. If the "Ljst" subtree is non-empty then a list is al lowed as an
actual parameter. Note that this means that a non-empty list as
well as the empty list is allowed, If a list is encountered as an
actual parameter then a pointer to a value cell wh ich points to
the list (or has NIL as a type) is placed in the data register:
not a pointer to the list itself.

5. If the "Var" subtree is non-empty then a variable is allowed as
an actual parameter. If a var iab le is used w h e r e one is not
allowed then a "CONTROL ERROR" is reported, similarly if only a
variable is allowed but a variable not used as an actual para-
meter, then a "CONTROL ERROR" also results. The Variable subtree
is used when the programmer expects to return a result in that
argument position, although there is no actual compuls ion to
return a value. Note that, of course, values can not be returned
other than through a variable!

Each field in the node is a single byte unsigned number in the range
5,.255. If a fion-empty subtree is rooted at a part icular f ie ld then the
number in the field is a relative of fset : it is the distance, in bytes,
between the target node or entry point and the base of the current nodee If
an actual parameter i s of a type which has no legal subtree for it, for
example if a number is supplied as a parameter but a number is not allowed,
then the call fajjLs, unless the actual parameter was a variable, or a
variable was the only type allowed.

To set up the type tree interface, for our RND program for example, we
must start the initial entry point of the program as follows:

ORG <BOS> ;Where <BOS> is the contents of BOS
RNDPRG: LO IX,RNDTRE ;load IX wi th type tree for this prog

JP TRWALK ;entry point inside »icro-PROLO€
;which processes the type tree

The actual RND program, together wi th its type tree is given here:

RNOTRE: DEFB -1,-1,-1,-1,RNDT2-RNDTRE
RNDT2: DEFB RNDENT-RNDT2,-1,-1,-1 ,-1

RNDENT: LD HL,CSEED) ;Get last random number generated
LD DE,16335
CALL rLTPLY ;multiply by factor
LD DE,13849 ;add in offset

55



Adding assembler coded subroutines

J 1
•« —j.

J ..

v.

"3

*£

ADD HL,DE
LD (SEED),HL
LD (DATA1+OUTDTA),HL

A, A
<DATA1+OUTYPE),A
A

LD
LD
CP
RET

SEED: DEFS 2

;New randon nunber generated
;Store it for the next call
;Store in output register for answer
;Set up the answer type in the reg.

;Set successful return code
;Return to micro-PROLOG

;Storage for random number seed.

7.3 Predicate svrpboj. declaration

The predicate symbol declaration is used to describe the name of the
new program, and its initial entry point, to the nicro-PROLOG system. The
predicate symbol is defined by a constant structur.e like that seen above.
Note that the declaration of a constant is not in itself sufficient, since
nicro-PROLOG does not yet ' know* about it. The new constant has to be
patched into the system dictionary before the program can be used.

The constant declaration for our RND program can be coded in assembler
as fol lows:

DEFB 4
DEFW RNDPRG
DEFM 'RND1

DEFB OFFH

;Number type
;Initial entry to RND program
;Text string of name of predicate symbol
;Byte terminator of name string

The entry in the dictionary takes the form of a list cell/ and can be coded
as:

NEWDCT: DEFB 8
DEFW RND
DEFB 3
DEFW <SDICT>

7. A Insert jnc; a gfogram

;Constant type
;Point to new constant
;List type
;Point to top of system dictionary
;Where <SDICT> is the contents of SDICT

In the «icro-PROLOG system there are two pointers which are necessary
to adjust and know about when inserting a new program. The first is "BOS",
wh ich points- to the first available byte of memory.

Appendix B gives a table of useful addresses within the micro-PROLOG
system (including BOS).

Vf
•icro-PROLOG Available RAM

10QH BOS

The second is a pointer to the top of the system dictionary (SDICT).
The procedure for adding a new program to micro-PROLOG (once it is

assembled into the right location) involves loading the new program star-
t ing at (BOS), updating the "BOS" pointer, and updating the sys tem
dictionary pointer.
£?£l£ It wil l be aopreciated that any one attempting to augment Bicro-PROLOG
by adding new assembler built-in programs should be reasonably proficient
in (a) programming in assembler, (b) interfacing to CP/M (in particular be
able'to u^e that ef fect ively and (c) usjng «i cro-PROLOG. Finally, be very
careful as it is very easy to damage «icro-PROL06. (Never modify in any
way the original distribution disk.) The interface described above is a
very s imple and p o w e r f u l one; it is used by the great ma jo r i t y of the

56



Adding assembler coded subroutines

built-in programs in standard micro-PROLOG.
Acding built-in programs does not invalidate the licence agreement;

however it is not permit ted to sell or o therwise distribute an augmented
version of pi cro-PRGLOG without the w r i t t e n permission of the copyright
holders of «i cro-PROLOG. Of course any augmentations that you build are
net the property of the copyright holders.

o

57



Error messaae

OvcrfLow Error
Clause Error
.Ccrtrol Error

Space Error

Diet Error

Syntax Error
Br33k!
Too many files opened
Fi Le not found
Directory full
Disk full
File closing error
File Error
Not w r i t e mode
System Abort

Appendix *-

Error conditions and ressage3

Condjtjon

Arithmetic overflow in an arithmetic operation.
When a call is made to a program with no clauses.
When a call is made to a system function.
with too many variables, or when a meta-variable
is used and it is not in the correct form.
The heap has run out of space, (usually only
occurs af ter extensive calls to garbage collector)
The dictionary area has overflowed. Try to rewrite
program with fewer constants.
Badly formed term. The read operation is restarted.
The user has interrupted the execution of the system.
Too many active files for Micro-PROLOG.
The file specified in a OPEN call was not on disk.
The directory space on the disk is full.
The disk is full.
An error on closing a file.
Attempted to wr i te or read from an unopened file.
Shouldn't happen.
Shouldn't happen. (Fatal error in Micro-PROLOG)

58



Name Address

DIVIDE
INTCHK
LEXTYP
LINKDE
LINKHL
MLTFLY
KSG
PROLOG
TRWALK

0115
0109
0118
01 CC
01 OF
0112
0106
0100
0103

Appendix B

Useful addresses

E f f e c t

DE=dividend,BC=divisor DE=quotient,HL=remainder
None Polls for interrupts
A reg. ASCII character. C contains type byte.
DE points to value cell DE dereferenced.
HL " " " " HL
HL=mul ti pi i er, DE=m'cand HL=product
Call followed by text,0 Message displayed on console

None Micro-PROLOG cold start
IX points to type tree Execute built-in predicate

DATA1
DATA2
DAT A3
DATA4
DATA5
DATA6
DATA?
DATA8
EOS
BOS
SDICT
LEXTAB
NOVARS
ERRCHR

01 A5
01 AA
01 AF
01 B4
0199
01 BE
01 C3
01 C8
0006
0121
011C
0124
0123
01 A4

Data Areas

Data registers 1..8 (five bytes each)

Pointer to end of available memory (two bytes)
Pointer to base of available memory (two bytes)
Pointer to top of system dictionary (two bytes)
Lexical type table (128 bytes)
Number of variable prefix characters (one byte)
Contains character used to print error variables (one byte)

59



Appendix C

Changing the lexical rules

The Micro-PROLOG tokeniser is a table driven system that separates the
sequence of charac ters in the input into tokens. The table it uses, wh ich
is cal led LEXTAB, describes the character set in terms of different sub-
sets: the separator characters, the special characters, the digits, the
letters, the graphic characters, the sign and quote characters, and the
variable pref ix characters.

Each c h a r a c t e r ' s membership of these subsets is represented by a
single byte in the table, wi th each bit in the byte representing a diffe-
rent set. If the appropr ia te bit in the byte is on (i.e. "V), then it
signifies that the character belongs to that set.

By modifying these subsets the lexical rules can be made to look very
different; for example by merging the graphical and letter sets into one
(the letter set) then the distinction that Micro-PROLOG makes between the
two sets is ignored. This would allow such tokens as:

SA 21 A'B

However, the subset most likely to be of interest is the variable
prefix character set. This subset defines the conventions that Micro-PROLOG
uses to distinguish variables from constants. In standard Micro-PROLOG the
variable prefix subset is:

" "7 "\

Tokens beginning wi th these letters are recognised as variables. By chan-
cing this set we can implement different conventions for variables. This
approach is a response to the current multiplicity of ways of recognising
variables.

To implement the convention of tokens beginning w i th lower case let-
ters being recognised as variables, and upper case as constants (as in IC-
FROLOG CClark & McCabe 19793 all that is necessary is that the variable
prefix character set be changed to: '

<••-," "U " *'v"A.a D .. z >

To implement the OEC-10 convention of upper case variables, lower case
constants the variable pref ix set should be changed to:

C'A" "B" .. "Z">

Finally to implement the convention, found in the original Marseilles
PROLOG and in Water loo PROLOG, of using the character "*" in front of a
token to signal a variable, the variable prefix character set should be:

{"*">

Note that in this case the character "*" will also have to be made a
letter.

Apart from reading variables, it is necessary to print them, prefe-
rably in the f o r m a t that var iab les are read in. In Micro-PROLOG all
variables are printed w i th a variable prefix character (possibly) followed
by a sequence of digits.

60



Changing the Lexical rules

This is of cour«e the kind of token that would subsequently be read as
a variable. The p re f i x charac ter used is taken from the table of lexical
types/ each var iable pref ix character defined in the table wil l be used
when printing variables, in the order that they appear in the'table. Thus
the f i rs t seven var iables (in standard Micro-PROLOG) are printed as:

X Y Z x y 2 X1 ...

f*T's~- 'v>

o-

To actually chanqe types of the various characters it is necessary
to use the CP/M utility "ddt" to modify the prolog program. This utility
is a general debuqginq package and is part of standard CP/M. We need to
examine and modify certain Locations in prolog. ddt is
executed by using the CP/M command:

This loads the prolon system irto memory and enters the command mode
of ddti The initial response of ddt is Like:

DDT MER 2 . X X
Next pr
2F80 0100

Be careful to not** down the number under "next" as it is needed Later,
ddt works entirely in hex arithmetic. The various addresses we use below
are absolute memory addresses, as this is how CP/M is organized; in parti-
cular you should be careful about modifying memory Locations other than
described below as "ddt" al lows you to chance an^ memory location including
ddt and CP/M! The table LEXTAB consists of 128 single byte en-
tries. Each character in the ASCII character set has an entry associated
w i th it; the entry is found by adding the value of the character to the
base address of LEXTAB.

Each bit in the entry corresponds to one of the subsets d i scussed
above, if the bit is on then the character is said to belong to the approp-
r ia te set, if off then the cha rac te r does not belong to the subset in
question. Note that th*» two characters corresponding to 0 (Nul) and 127
(Del) are illegal, and belong to none of the subsets.

Each byte in LEXTAB is organised as:

Graphic character
Special character
Digit character
Letter

7 6 5 * 3 2 1 0

LQuote character (")
•Seoarator character
Variable prefix character
•Sign character (-)

Some example entries of LEXTAB are:

Char
••— ••

"A"
"x"
It H

!••••!

Hex
2DH
MH
6DH
20 H
22H

SVSQfiSDL
10001001
00000001
01 000001
00100000
000 '.0000

Hex
89H Sign, Graphic & Letter
01H Letter
41H Var. prefix &
20H Separator
10H Quote

Letter

61



Changing the lexical rules

"(" 26H 00000100 = 04H Special
"0" 30H 00000010 = 02H Digit

•

So, to implement our "*" convention for variables we have to change
the table entries for "*", "X", "Y", *7", V, "y" & "z". The six letters
have existing table entries of "41" (hex) wh ich ref lects that they are both
letters and variable pref ix characters; these entries have to be changed
to be just letters. The letters are in two groups of three successive
by tes in the table: "X", "Y" & "Z" and "x", "y" & "2". The table entry
for any character can be found by adding the value of the ASCII representa-
tion of the character to the base address of LEXTA8 (which is 0124 in hex).
For example "X" in the 88th character in the ASCII sequence, (which i s 58
in hex), so the entry for "X" is 124 + 58 (hex). We can use the ddt "h"
command to do this hexadecimal ari thmetic for us:

-h58/!24
017C FF34

The first number printed is the address in memory (ignore the second num-
ber) of the table entry for "X", the entries for "Y" and '7" immediately _
follow it. To modify the entry we use the ddt "s" command. This command /
enables memory locations to be modified in sequence. The old value of the
byte is printed, and it is changed by entering (in hex) the new value of
the byte. Af ter carriage return is pressed the next memory location is
examined, allowing it to be changed too. The "s" command is terminated by
using "." instead of the new value of a byte. To change the "X", "Y" and
*7" entries we can type as in:

-s17C
017C 41 1
0170 41 T .
017E 41 T
017F XX 7 ;

The "x" character is "78" (hex) in the ASCII code, so to change V 8 "y"
and "z" to be just letters we do:

-h78d£124
019C FF54
-s19C ' "^
019C 41 1
019D 41 T
C19E 41 T
019F XX 7

Now we have to declare the "*" character as a variable prefix charac-
ter. We must also change it from being a graphic character to being a
letter, this is so that the tokeniser t reats "*123" as a single alpha-
numeric token. The "*" character must therefore have the code 41 (hex) as
its entry in LEXTAB. To change the entry we do w h a t we did for the
letters, we add the ASCII value of "*" to the base address of LEXTAB and
use the "s" command to change the entry byte. Now "*" has ASCII value 2A
(hex), so the required entry is computed by:

014E OOFA

And we change the entry by:

62



Changing the lexical rules

DUE 08 M
OUF XX 7" . •

* , •

A spec ia l counter (NOVARS) conta ins the number of va r iab le p re f i x
characters in the table that are to be used when printing variables. This
single byte counter should be changed, if the variable pref ix character set
is changed, to re f lec t the number of p re f ix characters. This number should
never be greater than the actual number of variable pref ix charac ters in
the"~fable, and it should also be at least one. So we have to change this
location to 1 (one) which is the new number of variable prefix characters:

012406 1
0125 00 7

This completes the changes to make the variable convention "^'fol-
lowed by digits. All that is now required is to exit ddt and save the
memory image in the file "prolog.com", which has the effect of updating the
old prolog system wi th the changes. ddt is exited by typing:

-AC

A> Save 47 prolog.com

The number in the save command is found by converting the original "next"
value printed out by "ddt"e When "ddt" is first entered it gives the length
of prolog in pages. The save command expects this number in decimal form,
whereas "ddt" displays it in hex, so you have to convert it.

Warning
Some of the entries in LEXTAS should not be changed. In particular the

characters that are special should not be removed from the special set
(o therw ise the syntax • ana lyser may not be able to recognise terms
properly), and no new characters should be added to the special set. Fur-
thermore, the sign character subset should a lways be C"-">, and the quote
character subset should remaitf C'"">. Apart from these restrictions, and
from the obvious condition that the digit set should be C'O" "1" .. "9">,
there are no contraints.

Secondly, you should be careful about choosing which letters you use
as variable prefix characters, since the "R" program converts single let-
ter tokens into var iables if the single letter is a var iab le pref ix
character. This means that certain programs which expect single letter
responses (such as the editor which uses "e", "u" and "w" (among others))
to be constant:, may have to be modified. In particular if the letters
"u", "v" and "w" were added to the standard set of variable prefix charac-
ters then the editor will have to be changed to use something other than
"u" and "w" for the unwrap and wrap commands.

Note that the various PROLOG programs supplied wi th Micro-PROLOG will
also have to be changed to reflect the new variable conventions you have
implemented. This has to be done using a conventional text editor, such
as the C F ' M "ed" editor.

63



Changing the lexical rules

Appendix D

The Simple PROLOG front end progr

Simple
(Add List Kill Delete Does One Which Save Load Accept Edit
All Not Is-All For-All)

(End diet C & and if)
((version 2.12b))
((Add X)

(NUM X) / (R Y) (Add X Y))
( (Add X) /

(Add 32767 X ) ) .
((Add X Y)

(parse ( ( Z l x ) l y ) Y) (declare Z) (ADDCL C ( Z l x ) I y ) X))
((Edit x)

(diet x) (R y) (NUM y) (CL - ( (x 1x1) Ix2) y y)
(parse ((x 1x1)1x2) X) (RFILL X) (R Y)
(parse ( C x l X D l X Z ) Y) (ADDCL ( ( x lX1 ) lX2 ) y) (DELCL x y))

((List X)
(NOT EQ X All) / (List-pred X))

((List All)
(CL ((diet x ) ) ) (List-pred x) FAIL)

((List All))
((Which ( X I Y ) ) -

(is-body (?) Z (? !Y) ) (Whichex X Z))
((One ( X I Y ) )

(is-body (?) Z (? !Y ) ) (Oneex X Z))
((Does X)

(is-body (?) Y (? !X)) (IF (? Y) C(PP YES)) ((PP NO))))
((Load X)

(LOAD X))
((Save X)

(SAVE X))
((Delete (x l y ) ) /

(parse 2 (x ly ) )
(OR ((DELCL z) ) ( (PP No such sentence))))

((Delete X)
(CON X) (R Y) (IF (DELCL X Y) () ((PP No such sentence))))

((Kill X) (DELCL X 1) (Kill X))
((Kill X)

(P Program X deleted) PP)
( (Accept X)

(declare X) (Acceptin X))
((parse (X lY ) Z)

(Atom Z X x) (is-body (if) Y x))
((is-body X () ()))
((is-body X ( Y I Z ) (x l y ) )

(Mem x v) (Literal Y y z) (is-body (and &) Z z))
((Literal X x y)

(Special-Aton X x y) / )
((Literal X x y)

(Atom x X y))
((Atom (X ()|Y) (X) Y)
/)

((Atom (X Y Zlx) (Y X Z) x)

64



(CON Y ) / )
((Aton (X ( Y i l ) l x ) (X Y I Z ) x ) )
((Special-Atom (Not lx ) (Not y lz ) z)

(is-body (?) x (? l y ) ) )
((Special-Atom (Is-All x (y lz)) (x Is-All ( y l Z ) I Y ) Y)

(is-bcdy (?) z ( ? IZ ) ) )
((Special-Atom (For-All x (y lz ) ) (X For-AU(y I Z) I Y) Y)

(is-body (?) x ( ? I X ) )
(is-body (?) z ( ? I Z ) ) )

((List-pred X)
(CL ( ( X I Y ) I Z ) ) (Rev-parse ( ( X I Y ) I Z ) x) (Plx) PP FAIL)

((List-pred X) )
((Rev-parse ( x l y ) z)

(Atom z x z1)
(Rev-body y z1 "if

"))
((Rev-body O () x ) )
((Rev-body (x l y ) (z lZ) z)

(Literal x Z Z1)
(Rev-body y Z1 "and

"))
((Oneex X Y)

(? Y) (P Answer is X) (R Z) (IF (EQ I C) (FAIL) ()))
((OneexIX)

(PP No (More) answers))
((Whichex X Y)

(? Y) (P Answer is X) PP FAIL)
((Whichex X Y)

(PP No (more) answers))
((Acceptin X)

(P X) (R Y)
(OR ((EQ Y End))

((OR ((EQ (Z x) Y) (ADDCL ((X Z x))»
((P What is Y ?)PP))

(Acceptin X)) ) )
((Mem X (X IY ) ) /)
((Mem X (Y IZ) )

(Mem X Z)) -
((declare x)

(OR ((CLUdict x))))((ADDCL ((diet x))))»
((Not IX)

(? X) / FAIL)
((Not IX))
((Is-All X (YIZ) )

(DELCL ((All-nun x))) (SUM x 1 y) (ADDCL ((All-nun y»)
(All-find x X Y Z))

((For-All x (ylz))
(NOT ? ( (? z) (NOT ? x))»

((All-find X Y Z x)
(? x) (ADDCL ((All-list X Z))) FAIL)

((All-find X Y Z x)
(Collect X Y ) )

( (Al l -num 0))
((Collect X ( Y I Z ) )

(DELCL ((All-list X Y))) /
(Collect X Z))

((Collect X ()))
CLMOD

65



The Siaple PROLOG front end progr;

Appendix E

The Kicro-PRCLOG Editor

Ed(£dit)(t n s b e o u w k i a )
( (Vers ion 2.12))
(CD-C () O ()))
((D-C ( X I Y ) (X) Y) )
((Rev-list () X X) )
((Rev-list (X IY) 2 x)

(Rev-list Y ( X I Z ) x ) )
((DcwnC X (() Y Z))

(NOT VAR X)
(o-i x Y z))

((Acp-C () X X))
((App-C ( X I Y ) Z ( X l x ) )

(App-C Y Z x))
((BackC ( ( X I Y ) Z x) (Y (X) y>)

(App-C Z x y))
((EsckC (() (X) Y) (() () (XlY»»
((NextC (X Y ( Z l x ) ) (y (Z) x))

(App-C Y X y))
( (NextC (X (Y) ()) ( (Y IX ) () ())»
((Delete-in-C (() X Y) (() () Y)))
((Delete-in-C ( (X IY) Z x) (Y (X) x)»
((Front-C 0 () X X) )
((Front-C X (YIZ) x (Yly))

(LESS 0 X)
(SUM 1 z X)
(Front-C 2 Z x y))

(CDisplayC (X () Y) )
(P No tern)
/)

((DisplayC (X (Y) Z))
(P Y ) )

((Edit-in-C (x y z) i (x (Z) Y»
(R Z)
(App-C y 2 Y))

((Edit-in-C (x y 2) a (x1 (Z) z»
(R Z)
(App-C y x xD)

((Edit-in-C X k Y)
(Delete-in-C X Y))

((Edit-in-C (X (Y) Z) s (X (x) Z))
(R y)
(EQ y (Y x ) ) )

((Edit-in-C (X (Y) Z) t (X (x) Z))
(RFILL Y)
(R x))

((Edit-in-C X n Y)
(NextC X Y ) )

((Edit-in-C X b Y)
(BackC X Y ) )

((Edit-in-C (X Y Z) w (X (x) y»
(R 2)
(App-C Y Z XD
(Front-C z x y X1)>

66



(CEdit-in-C (X (Y) 2) u (X (x) y))
(NOT VAR Y)
(App-C Y 2 (x ly ) ) )

(CEdit-in-C (X (Y) 2) e (X (x) 2))
( D c w n C Y y)
(Ecit-tern y x ) )

((UpC (X Y 2) x)
(App-C Y 2 y)
(Rea l i s t X y x ) )

((EdC X Y o)
(UpC X Y)
/)

((EdC X Y 2)
(Edit-in-C X 2 x)
/
(Edit-term x Y ) )

((EdC X Y 2)
(PP ?)
(Edit-term X Y ) )

((Edit-term X Y)
(DisplayC X)
(R 2)
(EdC X Y 2))

((Insert-in-P 0 1 Y)
(ADDCL Y D ) )

((Insert-in-P X X Y)
(SUM 1 2 X)
(ADDCL Y 2»

((Append-in-P 0 1 Y)
(ADDCL Y 0)5

((Append-in-? X Y 2)
(SUM 1 X Y)
(ADDCL 2 X) )

((Goto-P X Y ( C X l Z ) l x ) )
(CL ( (X l2 ) l x ) Y Y)
/)

((Goto-P X Y "No clause")
(LESS -1 Y ) )

CCE-in-P X Y 2 i x y)
( R y)
(Insert-in-P Y x y))

«E-in-P X Y 2 a Y1 Z1>
(R 21)
(Append-in-P Y Y1 21))

((E-in-P X Y 2 k x y)
(DELCL X Y)
(SUM 1 x Y)
(Goto-P X x y))

C(E-in-P X Y Z n x y)
(NOT ? ((EQ Z "No clause") (LESS 0 Y) ) )
(SUM 1 Y x)
(Goto-P X x y))

((E-in-P X Y Z b x y)
(SUM 1 x Y)
(Goto-P X x y))

((E-in-P X Y (Z lx ) e Y ( (Xly) lz))
(Edit-term (() (Z) x) ( (Xly) lz) )
(DELCL X Y)
(SUM 1 X1 Y)

67



The Ricro-PROLCG Editor

(ADOCL ( ( X l y ) l z ) XD)
((E-in-P X Y (Z IZ1 ) t Y x)

C3FILL CZ IZD)
CR x )
CEQ x ( C X I x D Ix2))
(ADOCL x Y)
CDELCL X Y ) )

((EdP X Y Z o)
(PP Edit of X finished)
/)

((EdP X Y Z x)
(E-in-P X Y Z x y 2)
/
(Edit-P X y 2))

((EdP X Y Z x)

(Edit-P X Y Z))
((Edit-P X Y Z)

(P C Y 3 Z)
(R x)
(EdP X Y Z x))

((Edit X)
(NOT SYS X)
(OR (CCL C ( X I Y ) I Z ) 1 1)

(Edit-P X 1 ( ( X I Y ) I Z ) ) ) ((Edit-P X 0 "No clause"))))
CLMOD

68



References

Clark, K.L., C19783, Negation as Failure. Logic and Data Bases, (H.Gallaire
and J.Ninker, Eds.), Plenum Press, New York, pp. 293-322.

Clark, K.L., C19803, Logic as a programming Calculus. To be published in
1981 by Springer-Verlag, New York.

Clark, K.L., McCabe, F., C19791, Control facilities of IC-PROLOG. Expert
systems in the Micro-Electronic Age. Ed D.Michie Edinburgh Univ.Press.

Clark K.L., Ennals, J.R., McCabe, F., C19813, A Micro-PROLOG Primer, Logic
_ " Programming Associates Ltd.

* Colmerauer, A.,C19733, Les systemes-Q ou un Formalisme pour Analyser et
Synthetiser des Phrases sur Ordinateur. Publication Interne No.43, Dept.

"" d'Informatique, Universite de Montreal.

"̂~ Colmerauer, A.,C19783, Metamorphosis Grammars, Natural Language Communica-
- tion with Computers, (U Bole, Ed.), Lecture Notes in Computer Science No.

63, Springer-Verlag, pp. 133-189.

__ . Kanoui H., Van Canaghem M., C198Q3, Implementing a very high level language
on a very low cost computer. Groupe d'Intelligence Artif icielle, Universite

" d'Ai x-Karsei lie, Luminy.

""* Knuth D.E., C19683 The Art of Computer programming, pp 147-151. Addi son
.i Wesley. Volume II, Semi-numerical algorithms.

Kowalski, R.A., C197A3, Predicate Logic as Programming Language. Proc, IFIP
^ 7.A, North Holland Publishing Co., Amsterdam, pp. 569-574.

_ Kowalski, R.A., C19793, Logic for Problem Solving. Artificial Intelligence
j series, North Holland Inc., New York,
*

McCarthy, J., Abrahams, P.W., Edwards, O.J., Hart, T.P., Levin, K.I.,
^ ~ C19623, LISP Programmers ManuaL MIT Press, Cambridge, Mass.,
t

Moss, C.D.S., C19793, A New Grammar for Algol 68, Dep. Rep. 79/6, Imperial
} College, London.
i
*

Naur, P., ed. C19623 Revised Report on the Algorithmic Language Algol 60.
IFIP 1962

Roberts G.W., C19773/ An implementation of PROLOG, MSc thesis, Waterloo,
Ontario, Canada.

•H

I Robinson, J.A., C1965D , A Machine Oriented Logic Based on the Resolution
Principle. J. ACM 12 (January 1965), pp. 23-41.

i
I Robinson, J.A., C19793, Logic: Form and Function, Edinburgh Univ.Press,

1

, P., Groupe d'Intelligence Artificielle, Universite d'Aix-
Marseille, Luroiny, Sept. 1975.

69


