
OS-9 Internet

Software Reference Manual

OS-9/Internet was designed and implemented by Kim Kempf and Andy
Nicholson. Many thanks are due to Microware and its staff for making this
product possible. Special thanks to Yeongleh Lee, Daryl Jarman, Kim
Kempf, Pam Weber, and Peter Dibble for their help for this update; the
information and proofreading are greatly appreciated.

Copyright 1992 Microware Systems Corporation. All Rights Reserved.
Reproduction of this document, in part or whole, by any means, electrical,
mechanical, magnetic, optical, chemical, manual or otherwise is
prohibited, without written permission from Microware
Systems Corporation.

This manual reflects Version 1.4 of OS-9/Internet. Version 1.4 of
OS-9/Internet is to be used with Version 2.3 or greater of the OS-9
Operating System.

Publication Editor: Ellen Grant, Walden Miller
Revision: B
Publication Date: July, 1992
Product Number: INT-68-NA-68-MO

The information contained herein is believed to be accurate as of the date
of publication. However, Microware will not be liable for any damages,
including indirect or consequential, from use of the OS9/Internet,
Microware-provided software or reliance on the accuracy of this
documentation. The information contained herein is subject to change
without notice.

This software is provided as-is. There are no warranties, expressed
or implied.

The software described in this document is intended to be used on a single
computer system. Microware expressly prohibits any reproduction of the
software on tape, disk or any other medium except for backup purposes.
Distribution of this software, in part or whole, to any other party or on any
other system may constitute copyright infringements and misappropriation
of trade secrets and confidential processes which are the property of
Microware and/or other parties. Unauthorized distribution of software may
cause damages far in excess of the value of the copies involved.

For additional copies of this software and/or documentation, or if you have
questions concerning the above notice, the documentation and/or software,
please contact your OS-9supplier.

OS-9 is a registered trademark of Microware Systems Corporation
UNIX is a trademark of AT&T Bell Laboratories

Microware Systems Corporation • 1900 N.W. 114th Street
Des Moines, Iowa 50325-7077 • Phone: 515/224-1929

Acknowledgements

Copyright and Revision
History

Disclaimer

Reproduction Notice

Trademarks

OS-9 Internet Software Reference Manual
Table of Contents

I

Chapter 1

Basic Networking Terminology 1-1.
Protocols 1-6.
Internet Addresses 1-8.
Port Numbers 1-11.
Networking Files 1-13.
Header Files 1-15.
OS-9/Internet Operation 1-16.

Chapter 2

Socket Overview 2-1.
Establishing a Socket 2-3.
Reading Data Using Sockets 2-7.
Writing Data Using Sockets 2-7.
Setting Up Non-Blocking Sockets 2-8.
Broadcasting on OS-9/Internet 2-9.
Controlling Socket Operations 2-10.

Chapter 3

Connecting to a remote Host with FTP 3-1.
File Naming Conventions 3-3.
Available FTP Commands 3-4.
Locating Files on the Remote Host 3-5.
Copying Files from the Remote Host to Your Local System 3-6.
Copying Files from Your Local System to the Remote Host 3-7.
Copying Multiple Files 3-8.
Exiting FTP 3-9.

Chapter 4

Establishing a Socket 4-1.
Beginning a Telnet Session 4-1.
Available Telnet Commands 4-2.
Capturing Information from a Telnet Session 4-4.
Ending a Telnet Session 4-5.

OS-9/Internet Overview

Sockets

Transferring Files with FTP

Using Telnet

OS-9 Internet Software Reference Manual
Table of Contents

II

Chapter 5

OS-9 Bootstrap Protocol (BOOTP) 5-1.
Overview 5-1.
OS-9 BOOTP Server Utilities 5-2.
Setting Up the Bootptab Configuration File 5-4.

Chapter 6

arpstat 6-2.
bootpd 6-3.
bootptest 6-4.
ftp 6-6.
ftpd 6-11.
ftpdc 6-12.
hostname 6-12.
ibdgen 6-13.
idbdumb 6-14.
ifgen 6-15.
ifstat 6-19.
inetstat 6-20.
ipstat 6-21.
ispstart 6-22.
lestat 6-23.
mbinstall 6-24.
routed 6-25.
telnet 6-26.
telnetd 6-29.
telnetdc 6-30.
tftpd 6-31.
tftpdc 6-31.

Chapter 7

The OS-9/Internet Library 7-1.
The OS-9/Internet Socket Library 7-2.
_ss_sevent 7-3.
accept() 7-4.
bind() 7-6.
connect() 7-7.
endhostent() 7-8.
endnetent() 7-8.
endprotoent() 7-9.
endservent() 7-9.
gethostbyaddr() 7-10.

Using the BOOTP Server

OS-9/Internet Utilities

Socket/Network C Libraries

OS-9 Internet Software Reference Manual
Table of Contents

III

gethostbyname() 7-12.
gethostent() 7-13.
gethostname() 7-14.
getnetbyaddr() 7-15.
getnetbyname() 7-16.
getnetent() 7-17.
getpeername() 7-18.
getprotobyname() 7-19.
getprotobynumber() 7-20.
getprotoent() 7-21.
getservbyname() 7-22.
getservbyport() 7-23.
getservent() 7-25.
getsockname() 7-26.
getsockopt() 7-27.
htonl() 7-29.
htons() 7-30.
inet_addr() 7-31.
inet_Inaof() 7-32.
inet_makeaddr() 7-33.
inet_netof() 7-34.
inet_network() 7-34.
inet_ntoa() 7-35.
listen() 7-36.
ntohl() 7-37.
ntohs() 7-38.
recv() 7-39.
recvfrom() 7-40.
send() 7-42.
sendto() 7-44.
sethostent() 7-46.
setnetent() 7-47.
setprotoent() 7-48.
setservent() 7-49.
setsockopt() 7-50.
shutdown() 7-52.
socket() 7-53.

OS-9 Internet Software Reference Manual
Table of Contents

IV

Appendix A

Appendix B

Example 1: Socket Operations B-1.
Example 2: Beam and Target B-8.
Example 3: Ethernet Raw Socket Support for ISP B-14.

Appendix C

Using routed C-1.

Appendix D

Appendix E

Error Codes

Example Programs

Using the routed Daemon

Implementation Notes for
SysMbuf

Glossary

Chapter

1

1-1

OS-9 /Internet Overview

OS-9/Internet allows you to communicate with other computer systems
connected by Internet from your OS-9 system. Once connected, you can
send and receive data from other systems and log on to other systems.

This chapter introduces you to the basics of networking and provides you
with a working knowledge of Internet.

If you are already familiar with networking, skip this chapter and go on to
the following chapters:

This chapter covers the following topics:

 Basic networking terminology
 Available network protocols
 Network addressing
 Files used in networking
 Available header files

A computer network is the hardware and software used to allow
computers to communicate with each other. Each computer system
connected to the network is a host. Hosts can be, and usually are, located
at different sites. Hosts can also be of different types. For example, you
may have your OS-9 system connected to a network that consists of other
OS-9 systems and/or UNIX, VAX/VMS, or other systems.

An internet is the connection of two or more networks that allows
computers on one network to communicate with computers on another
network. An internet is sometimes referred to as the internetwork .

Networks are connected to each other by gateways. Gateways are
computers dedicated to connecting two or more networks.

A gateway routes messages from one network to another network.

Basic Networking
Terminology

OS-9/Internet Overview
Chapter 1

1-2

Host

Host

Host

Host

Host

Host

Host

Host

Gateway
Network Network

OSI Model for Networks

The International Organization for Standardization (ISO) created a model,
known as the Open Systems Interconnection model, or OSI model, as a
conceptual framework for developing protocol standards. A protocol is a
set of rules or conventions that allow modularity and portability.

The OSI model contains seven conceptual layers organized as follows:

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Session

Presentation

Network

7

6

5

4

3

2

1

OS-9/Internet Overview
Chapter 1

1-3

These layers are defined as follows:

 Physical Hardware Connection
The physical layer specifies the physical interconnection including the
electrical characteristics of voltage and current. It is the lowest layer of
the architecture.

 Data Link
The data link layer is the hardware interface layer. Because the raw
hardware delivers only a stream of bits, this layer defines the format of
frames and specifies how two machines recognize frame boundaries.
Because transmission errors can destroy data, this layer includes error
detection in the form of a frame checksum. You can think of this as a
window to the physical wires and communication to particular Ethernet
hardware (such as the AM7990 LANCE device).

 Network
The network layer specifies the format of a particular network and
contains the functionality that completes the definition of the interaction
between the host and the network. It defines the basic unit of transfer
across the network and includes the concepts of destination addressing
and routing. The IP protocol is an example.

 Transport
The transport layer provides end-to-end reliability by having the
destination host communicate with the source host. This layer double
checks to make sure that no machine in the middle has failed. The TCP
protocol is an example.

 Session
The session layer keeps the connection open while an application
is running.

 Presentation
The presentation layer provides the interface between the network and
the application. The presentation layer is concerned with the
representation of data being exchanged. It converts the application data
into some standard form by using encoding rules.

 Application
The application layer communicates directly with the application
processes and provides all services directly required by the
application process.

OS-9/Internet Overview
Chapter 1

1-4

Datagrams

When information is passed from one host to another, either on the same
network or across gateways, the data is called a packet. Packets are the
actual physical data to transfer across the network layer. A datagram is a
specific type of packet and is the basic unit of information passed on a
network. The Internet calls this unit the Internet datagram or IP datagram.

A datagram is divided into a header area and a data area. The datagram
header contains the source and the destination Internet Protocol address
and a type field identifying the datagram’s contents.

Figure 1.1
Illustration of a Basic Datagram

Header Area Data Area

The datagram size depends on the network’s maximum transfer unit
(MTU). Because each network may have a different MTU, Internet divides
large datagrams into smaller fragments when the datagram needs to pass
through a network that has a small MTU. The process of dividing
datagrams into fragments is known as fragmentation.

Fragmentation usually occurs at a gateway somewhere along the path
between the datagram source and its final destination. The gateway
receives a datagram from a network with a large MTU and must route it
over a network for which the MTU is smaller than the datagram size. The
size of the fragment must always be a multiple of eight and is chosen so
each fragment can be shipped across the underlying network in a single
frame. A frame is passed across the data link layer and contains an
encapsulated datagram.

OS-9/Internet Overview
Chapter 1

1-5

The addition of information to the datagram is called encapsulation.
Datagrams are encapsulated with information as they pass through layers
of the network. The following illustrates this concept:

Data

Initial Packet of Data to Transfer

DataTCP Header

IP Header

Initial Packet with
16–Bit TCP Source Port Number

16–Bit TCP Destination Port Number

Protocol = IP
Internet 32–Bit Source Address

Internet 32–Bit Destination Address

Ethernet 48–Bit Source Address
Ethernet 48–Bit Destination Address

Ethernet
 Header

DataTCP Header

IP Header DataTCP Header Ethernet
 Trailer

Ethernet Frame

Protocol = TCP

Fragments are reassembled to produce a complete copy of the original
datagram before it can be processed at the destination. However, the
datagram may remain fragmented until it reaches its ultimate destination.

OS-9/Internet Overview
Chapter 1

1-6

Client and Service Processes

The terms client and server appear frequently in networking
documentation. A server process provides a specific service accessible
over the network. A client process is any process that wishes to use a
service provided by a server.

When client and server processes communicate, both processes must
follow a set of rules and conventions. These rules are known as a protocol.
Without protocols, hosts could not communicate with each other.

The protocols that you need to be familiar with when using
OS-9/Internet are:

 Internet Protocol (IP)

 Transmission Control Protocol (TCP)

 User Datagram Protocol (UDP)

Internet Protocol (IP)

The Internet Protocol (IP) is the Internet datagram delivery protocol. IP is a
lower-level protocol located above the network interface drivers and below
the higher-level protocols such as the User Datagram Protocol (UDP) and
the Transmission Control Protocol (TCP). IP is the protocol that provides
packet delivery service for higher level protocols such as TCP and UDP.
Programs may use IP through the higher-level protocols such as UDP
and TCP.

Internet

Network

TCP TCP

Network

User
Program

Interface
Driver

Protocol

User
Program

Protocols

OS-9/Internet Overview
Chapter 1

1-7

Due to the IP layer orientation, datagrams flow through the IP layer in
two directions:

 from the network IP to user processes
 from user processes down to the network

The IP layer provides for a checksum of the header portion, but not the
data portion of the datagram. IP computes the checksum value and sets it
when datagrams are sent. The checksum is checked when datagrams
are received.

A checksum is a small, integer value used for detecting errors when data is
transmitted from one machine to another.

The IP layer supports fragmentation and reassembly. If the datagram is
larger than the MTU of the network interface, datagrams are fragmented on
output. Fragments of received datagrams are dropped from the reassembly
queues if the complete datagram is not reconstructed within a short
time period.

If an error is discovered while a datagram is in the network interface driver
layer, the error is passed to the user process.

Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) is layered on top of the IP layer.
It is a standard transport level protocol that allows a process on one
machine to send a stream of data to a process on another machine. TCP
provides reliable, flow controlled, orderly, two-way transmission of data
between connected processes. You can also shut down one direction of
flow across a TCP connection, leaving a one-way (simplex) connection.

Software implementing TCP usually resides in the operating system and
uses IP to transmit information across the underlying Internet. TCP
assumes that the underlying datagram service is unreliable. Therefore, it
performs a checksum of all data to help implement reliability. TCP uses
IP’s host level addressing and adds its one per-host collection of port
addresses. The endpoints of a TCP connection are identified by the
combination of an IP address and a TCP port number.

The TCP packets are encapsulated into the IP datagrams:

IP
Complete Network Packet Header

Complete
TCP

Datagram

OS-9/Internet Overview
Chapter 1

1-8

User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is also layered on top of the IP layer.
UDP is a simple, unreliable datagram protocol that allows an application
on one machine to send a datagram to an application on another machine
using IP to deliver datagrams. Conceptually, the important difference
between UDP datagrams and IP datagrams is that UDP includes a protocol
port number, allowing the sender to distinguish among multiple application
programs on the remote machine.

Like TCP, UDP uses a port number along with an IP address to identify the
endpoint of communication.

UDP datagrams are not reliable. They can be lost or discarded in a variety
of ways, including a failure of the underlying communication mechanism.
UDP implements a checksum over the data portion of the packet. If the
checksum of a received packet is incorrect, the packet is dropped without
sending an error message to the application. Each UDP socket is provided
with a queue for receiving packets. This queue has a limited capacity, and
any datagrams that arrive once the capacity of the queue is reached are
silently discarded.

The UDP packets are also encapsulated into the IP datagrams:

IP
Complete Network Packet

Header

Complete
UDP

Datagram

Regardless of which protocol you use to send messages across a network,
each host is assigned a 32-bit Internet address, or IP address.

An IP address consists of two portions: a network portion, netid, and a host
portion, hostid.

IP addresses are usually represented visually as four decimal numbers,
where each decimal digit encodes one byte of the 32-bit IP address. This is
referred to as dot notation. IP addresses specified using the dot notation
use one of the following forms:

 a.b.c.d
 a.b.c
 a.b
 a

Internet Addresses

OS-9/Internet Overview
Chapter 1

1-9

When four parts are specified, each is interpreted as a byte of data and
assigned, from left to right, to the four bytes of an IP address. When an IP
address is viewed as a 32-bit integer quantity, VAX bytes are ordered from
right to left (d.c.b.a).

When a three part address is specified, the last part is interpreted as a
16-bit quantity and placed in the right most two bytes of the
network address.

When a two part address is supplied, the last part is interpreted as a 24-bit
quantity and placed in the right most three bytes of the network address.

When only one part of the address is specified, the value is stored directly
in the network address without any byte rearrangement.

Each integer is chosen carefully to make routing efficient. Basically, an IP
address identifies a network to which a host is attached and the specific
host attached to the network.

Networks are separated into several classes. The three primary classes of
IP addresses are:

Class A
Used for networks that have more than 65536 hosts. Seven bits are
allocated to the netid and 24 bits to the hostid. For example, the 32-bit
hexadecimal value 0x0102ff04 is equal to 1.2.255.4. This represents a
Class A address with a netid of 1 and a hostid of 0x02ff04.

A two part address format is convenient for specifying Class A network
addresses as net.host.

0 netid hostid

0 1 8 16 24 31

OS-9/Internet Overview
Chapter 1

1-10

Class B
Used for intermediate-sized networks with between 256 and 65536 hosts.
Fourteen bits are allocated to the netid and 16 bits to the hostid. An
example Class B decimal address is 128.100.0.5.

A three part address format is convenient for specifying Class B network
addresses as 128.net.host.

1 0 netid hostid

0 1 8 16 24 31

Class C
Used for networks with fewer than 256 hosts. Twenty-one bits are
allocated to the netid and only 8 bits to the hostid. An example Class C
decimal address is 192.100.2.10.

1 1 0 netid hostid

0 1 8 16 24 31

Using C language specifications, numbers supplied as parts in a dot
notation may be interpreted as:

The numbers designated as: Contain:

Decimal no leading character(s).

Octal a leading 0.

Hexadecimal a leading 0x or 0X.

Specifying IP addresses in dot notation allows you to determine the
network class from the three high-order bits. The IP address has been
defined to allow you to extract either the hostid or the netid. Gateways
base routing on the netid and depend on such efficient extraction.

OS-9/Internet Overview
Chapter 1

1-11

In addition to IP addresses, port numbers are used. Port numbers
distinguish which process on one system is communicating with which
process on another system. Port numbers are selected by the user and the
system when the Internet sockets are opened and bound. Port numbers are
unsigned word values, so the maximum number of ports in the system
is 65535.

Port numbers less than 1024 are reserved. Select port numbers greater than
1024 for your services.

Important: Sockets are discussed in Chapter 3, Sockets.

The following is an example showing the use of port numbers. This
example uses ftp, a utility used for transferring files between systems. ftp
is discussed in Chapter 5, Transferring Files with FTP.

In this example, a user on a client OS-9 system named delta is using a
service, ftp, from a server OS-9 system named gamma. You can think of
the connection as a quintuple association between the following:

 protocol
 local host IP address
 local host port number
 foreign host IP address
 foreign host port number

As shown in the services file, ftp has a standard port number of 21. Any
requests to port 21 will reach the ftp daemon. The ftp daemon (the server)
will bind to port number 21 and wait for connections from the client.

Important: Binding sockets is discussed in Chapter 3, Sockets.

To initiate the ftp (or client) request, the client system, delta, connects to
port number 21 on the server system, gamma. A port number on delta is
needed; however, the specific port number used is unimportant. The ISP
system produces a random port number for the client system in order to
complete the quintuple association.

Important: Connecting sockets is discussed in Chapter 3, Sockets.

In this case, the association is as follows:

{tcp, 128.10.0.3, 21,

gamma
server

delta
client

tcp, 128.10.0.7, 1500}

Port Numbers

OS-9/Internet Overview
Chapter 1

1-12

This association shows the following information:

 TCP is the protocol used.
 The local host IP address is 128.10.0.7.
 The local host port number is 1500.
 The foreign host IP address is 128.10.0.3.
 The foreign host port number is 21.

The following shows graphically how ftp and the quintuple
association work.

The gamma system has ftpd bound to port number 21 and is waiting for a
connection. The delta system initiates a connection to gamma system
port 21.

gamma
server

delta
client

{tcp,*,21} {tcp,delta,1500}

Once the connection is established, the quintuple association is complete.
Then, ftpd forks the daemon child, ftpdc, to handle the ftp connection. The
appropriate paths to the socket are duplicated by ftpd and passed to ftpdc
when forked. ftpd closes the appropriate socket path and waits for
another connection:

gamma
server

delta
client

{tcp,*,21} {tcp,delta,1500}

server child forked
{tcp,gamma,21}

If another user wishes to ftp a file from gamma to delta, the following
association occurs:

gamma
server

delta
client

{tcp,*,21} {tcp,delta,1500}

server child forked
{tcp,gamma,21}

forked server child
{tcp,gamma,21}

client
{tcp,delta,1501}

Important: The client as a system simply chose port number 1501.

OS-9/Internet Overview
Chapter 1

1-13

With this, there are two unique associations:

{tcp,gamma,21,delta,1500}
{tcp,gamma,21,delta,1501}

To view these associations, use the inetstat utility. Refer to Chapter 8,
OS9/Internet Utilities, for information on inetstat.

Four files are necessary to provide the network with pertinent information:

The file: Is a list of:

hosts hosts known to your system. At a minimum, you need to add an entry for
each of your hosts (including the host you are using) to the file.

networks networks analogous to hosts. Update this file for your environment.

protocols protocols used by the user-level Internet software.

services services used by the user-level Internet software.

Each of the data files is normally created from the official data base
maintained at the Network Information Control Center (NIC). However,
local changes may be required to bring it up to date regarding unofficial
aliases, unknown hosts, networks, and/or services.

Each file contains single line entries consisting of a number of fields and
(optionally) comments. Fields are separated by any number of blanks
and/or tab characters. A pound sign (#) indicates the beginning of a
comment. The comment includes all characters up to the end of the line.

The hosts File

The hosts file contains information regarding the known hosts on the
DARPA Internet. For each host, a single line entry should be present. Each
entry contains the following:

 internet address
 official host nam
 aliases (optional)

Network addresses are specified in the conventional “.” notation using the
inet_addr() routine from the Internet address manipulation library. Host
names can contain any printable character other than a field delimiter,
newline, or comment character.

The following example hosts entry consists of an address, name,
and comment:

192.1.1.1 balin #documentation

Networking Files

OS-9/Internet Overview
Chapter 1

1-14

Important: You can arbitrarily choose the Internet addresses for a LAN
not connected to other networks. If you use OS-9/Internet to connect to an
existing LAN or the Internet, consult your local network administration
conventions to determine the proper network address.

The networks File

The networks file contains information regarding the known networks
which comprise the DARPA Internet. A single line entry should be present
for each network. Each entry consists of the following information:

 official network name
 network number
 aliases (optional)

Network numbers are specified in the conventional “.” notation using the
inet_network() routine from the Internet address manipulation library.
Network names can contain any printable character other than a field
delimiter, newline, or comment character.

The following example networks entry consists of a name, number, alias,
and comment:

arpanet 10 arpa #just a comment

The protocols File

The protocols file contains information regarding the known protocols
used in the DARPA Internet. A single line entry should be present for each
protocol. Each entry contains the following information:

 official protocol name
 protocol number
 aliases (optional)

Protocol names can contain any printable character other than a field
delimiter, newline, or comment character.

The following example protocols entry consists of a name, number, alias,
and comment:

udp 17 UDP # user datagram protocol

OS-9/Internet Overview
Chapter 1

1-15

The services File

The services file contains information regarding known services available
to the DARPA Internet. A service is a reserved port number for a specific
application. For example, ftp is a service reserved at port 21. Each service
also specifies the protocol it uses. Because each network can have a unique
services file, networks can offer different services.

A single line entry should be present in the services file for each service.
Each entry contains the following information:

 official service name
 port number at which the service reside
 official protocol name
 aliases (optional)

Service names can contain any printable character other than a field
delimiter, newline, or comment character.

The port number and protocol name are considered a single item; a slash
character (/) separates the port number and protocol name (for
example, 512/tcp).

The following example services entry consists of a service name, port
number, protocol name, alias, and comment:

shell 515/tcp cmd #no passwords used

To create a service, you need to select a port number greater than 1024
(port numbers less than 1024 are reserved), a protocol, and a name and add
this information to the services file.

Three C calls are available for using services. Refer to the descriptions of
getservent(), getservbyport(), and getservbyname() in Chapter 9,
Socket/Network C Libraries, for more information.

Three header files are associated with Berkeley sockets:

Header File: Description:

in.h Contains the main structure used in all Internet applications.

inetdb.h Contains structures on the Internet database.

socket.h Contains structures which are imbedded in the Internet system, as well as
many macros such as AF_INET.

Important: Chapter 3, Sockets, contains more detailed information
about sockets.

Header Files

OS-9/Internet Overview
Chapter 1

1-16

The main internet application structure is sockaddr_in which is defined in
the in.h header file. The structure is defined as follows:

struct sockaddr_in {

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

} sockaddr_in;

struct in_addr {

 u_long s_addr;

};

The hostent structure is in the netdb.h header file. It is used to get address
information about any host in the inetdb database:

struct hostent {

 char *h_name; /* pointer to host name */

 char **h_aliases; /* pointer to the pointer to the alias for the host */

 int h_addrtype; /* host address type */

 int h_length; /* length of host */

 char *h_addr; /* pointer to the address of the host */

};

A short overview is provided here for basic understanding of
Internet modules.

OS-9/Internet consists of four major software components:

 the socket manager (SOCKMAN)
 the protocol handlers (TCP/UDP/IP
 the mbuf facility (F$Mbuf)
 the interface manager (IFMAN)

The socket manager provides program-level access to the network systems.
The socket abstraction was designed as a part of the Berkeley Standard
Distribution of UNIX (BSD4.x). This abstraction was designed to support
multiple protocols and address families under one data-driven interface.
The socket layer (SOCKMAN) handles all interactions with the user
program through the socklib.l library. SOCKMAN also provides access to
the protocol modules that handle the network-specific functions of
the communication.

Important: Refer to chapter 3, Sockets, for more information
about sockets.

OS-9/Internet Operation

OS-9/Internet Overview
Chapter 1

1-17

SOCKMAN calls the protocol handlers on behalf of the user programs.
SOCKMAN automatically binds and calls the protocol modules.
SOCKMAN provides a calling interface and standard services (such as
timers) to allow future protocols to be developed and integrated into the
system without affecting existing protocols. Finally, SOCKMAN (with the
cooperation of IFMAN) provides a list of active device drivers which are
called by the lowest level of the protocol routines.

Important: The protocol modules are actually OS-9 subroutine modules.

The Internet system uses the mbuf facility to dynamically allocate the
memory it needs. This mbuf memory pool is allocated from the kernel
when the Internet system is started. The Internet system then allocates
memory exclusively from this mbuf memory pool. This makes memory
requests for the Internet system faster than allocating memory from
the kernel.

The interface manager (IFMAN) maintains information about configured
network link-level interfaces in a hardware-independent manner. IFMAN
is unusual compared to traditional OS-9 file managers in that it is a
“passive” entity. IFMAN simply maintains a list of data structures that
describe the characteristics and state of the network interfaces.

The data structure for the particular device contains all the appropriate
information for protocol modules directly calling the driver. This is
important because some network data is not intended for any process on
the target machine but rather the network software itself (for example,
routing or broadcast data).

OS-9/Internet Overview
Chapter 1

1-18

The following illustrates the OS-9/Internet system:

TCP

SOCKMAN

IP Config

lo

le0 le1 ENP0

IP

IP Route

IFMAN

UDP

Chapter

2

2-1

Installing OS-9/Internet

This chapter covers the following topics:

 hardware set up
 installing Internet
 making device descriptors for the VME/147 and VME/167 system
 making device descriptors for CMC and ENPLLD systems
 the ipconfig data module
 getting Internet up and running on VME/147 and VME/167 systems
 OS-9/Internet implementation notes

Before installing OS-9/Internet on your system, read the notes appropriate
to your system:

 Notes to VME/147 Users

The VME/147 is pre-configured to use with Ethernet. However, make sure
that the Ethernet address is in the battery-backed RAM (BBRAM).

This installation procedure applies to all versions of the VME/147 CPU
except the RF/-SRF (Reduced Feature) versions. –RF/–SRF versions do
not have an on-board Ethernet interface.

The Ethernet address consists of six bytes:

 The first three bytes are the manufacturer’s ID (Motorola ID =
08 00 3E).

 The last three bytes are the serial number of the specific VME/147
system (2x xx xx). These bytes should match the last three bytes of the
Ethernet Station ID printed on the label attached to the rear of the
front panel.

The Ethernet driver combines the three bytes found in BBRAM at address
FFFE 0778 with 08 00 3E to form the six-byte Ethernet address.

Important: This is the physical hardware Ethernet address which is not
the same as the Internet address.

Introduction

Hardware Set Up

Installing OS-9/Internet
Chapter 2

2-2

You can use Motorola’s 147 debugger, the ROM debugger, or sysdbg to
confirm that the Ethernet address is in the BBRAM. The MVME/147 User
Manual contains a discussion of the Ethernet ID.

After you have confirmed/set the BBRAM ID, connect your Ethernet cable
to the Ethernet connector on the MVME/712 module. Confirm that the
Ethernet transceiver power LED, located on the VME/712 module, is lit.

Notes to VME/167 Users

The VME/167 is pre-configured to use with Ethernet. However, make sure
that the Ethernet address is in the battery-backed RAM (BBRAM).

The Ethernet address consists of six bytes:

 The first three bytes are the manufacturer’s ID
(Motorola ID = 08 00 3E).

 The last three bytes are the serial number of the specific VME/167
system. These six bytes are found on a label on the back of the front
panel of the CPU board. Ensure that these six bytes match the bytes in
BBRAM at address FFFC 1F2C.

You can use Motorola’s 167 debugger, the ROM debugger, or sysdbg to
confirm that the Ethernet address is in the BBRAM. The MVME/167 User
Manual contains a discussion of the Ethernet ID.

After you have confirmed/set the BBRAM ID, connect your Ethernet cable
to the Ethernet connector on the MVME/712 module. Confirm that the
Ethernet transceiver power LED, located on the VME/712 module, is lit.

Notes to VME/374 Users

The vme374 driver is known to work with the Motorola VME/374
Multi-Protocol Ethernet Module using the standard default “common
environment” ROMs that come with the board. The driver automatically
provides the VME/374 with firmware code; no ROM change is required.

Setting the Ethernet Address
The VME/374 has NVRAM used to store the station Ethernet address. This
is preset. You do not need to make changes unless you determine the
Ethernet the board is using is not correct. You can connect an RS-232
terminal to the P2 connector on the VME/374. On power up with the
standard ROMs, a configuration menu can reset the Ethernet address. This
procedure is described in the Motorola manual for the board. Alternately,
you can place the Ethernet address in the me0.a device descriptor and that
address will override the board setting. A label on the inside of the front
panel gives the proper Ethernet address for your particular board.

Installing OS-9/Internet
Chapter 2

2-3

VME/374 Jumper Settings
Check all jumper options on the VME/374 to make sure they are
appropriate for your system configuration. The factory jumper settings
should be satisfactory for most systems. Change the BG/BR jumpers if
your system uses a level other than level 3 for bus request/grant. There are
no IRQ jumpers. The descriptor specifies the level and vector the
VME/374 uses. The default setting is IRQ level 4 and vector 206.

The port address for the VME/374 is shipped as A32 space at 0xffd00000
and the enclosed descriptor is also set to this. To change to A24 or a
different A32 address, you must change the me0.a file and remake the
descriptor to match the hardware setting.

The VME/374 decodes to a lmeg window (0x0 – 0xfffff). In A32 space,
the VME/374 can be addressed in the range:

0xf8000000

0xfff00000

J7 sets the module base address. To change to A24 space:

 Remove the jumper on pins 1 - 2 on J7.
 Remove the jumpers on pins 9 - 10, 11 - 12, and 13 - 14 on J6.
 Move all the jumpers on J8 to the opposite row of pins.
 Set the base address on J7.

The VME/374 can appear in any lmeg window in A24 space.

Considerations for Use with a VME/165 CPU Module
The Motorola VME/165 CPU module does not provide a D16 master
access window which is required to access the VME/374. If you are using
the VME/374 with a VME/165 CPU, you must use the included driver
module, vme374_dl6. This driver uses only word-length memory accesses
and properly operates on the VME/165. The result is a bigger and slower
driver than the normal vme374 driver. However, this is required on the
VME/165 and it does not appear to affect performance.

Direct Memory Access (DMA) Considerations
As shipped, the me0 descriptor is set to cause the driver to enable DMA.
The VME/374 firmware needs to know the location of the host CPU’s local
memory in the VMEbus address space to properly translate the host
addresses to bus addresses. The descriptor is set assuming the host CPU’s
local memory appears at bus address 0x00000000. If your CPU’s local
memory appears at 0x00400000 on the VMEbus, change vme374_hmoff
value in the descriptor (me0.d) as follows:

*
* The following is the VMEbus slave access address for the main CPU’s
* memory.
 dc.l 0x00400000 u_int vme374_hmoff; /* host memory (DMA) offset */

Installing OS-9/Internet
Chapter 2

2-4

If for some reason you cannot or do not want to use DMA, change the
use_dma value in the descriptor:

 dc.w l u_short use_dma; /* 0=host copy, 1=374 dma copy */

When set to 0, the host copies the data from the VME/374’s shared
memory. Note that the copy is not performed within the IRQ service
routine so it does not affect IRQ latency. The driver firmware buffers up to
128 incoming packets in the VME/374’s RAM before any are lost.

Depending on the type of allowed slave access, you may need to change
the address modifier used by the VME/374 when accessing the host CPU’s
memory. By default, the descriptor is set to use A32 supervisor access as
specified by the vme_am value:

dc.w 0x0d u_short vme_am; /* address modifier code for VMEbus DMA */

If you change the VME/374 to respond as an A24 slave, you may have to
change vme_am to 0x3d to cause the VME/374 DMA to use A24 super
access.

Other Values in the Descriptor
The only other value that you may adjust is the maximum number of
mbufs to allocate for DMA receive. In DMA mode, the driver pre-allocates
mbufs and the VME/374 firmware copies the received Ethernet frame
directly into the mbuf. This further speeds the received packet processing
speed. Each mbuf reserved for DMA consumes about 1600 bytes of mbuf
allocation. Therefore, be sure that the SysMbuf allocation is sufficient to
handle the amount of mbuf you wish to use.

dc.w u_short rcv_max; /* max recv mbufs to use for DMA */

Notes to CMC/ENP101 Users

The enp10i driver is known to work with the CMC enp10i Ethernet Node
Processor. This card must be using the K1 kernel version 4.7. The ROMs
on the enp10i should read:

E10LLD 4.0

KI 4.7

CMC enp10i Jumper Settings
Check all the jumpers on the enp10i to make sure they are appropriate for
your system configuration. The factory jumper settings should be
satisfactory for most system.

Installing OS-9/Internet
Chapter 2

2-5

The port address for the enp10i is shipped as a slave in A24 or VME
standard address space at location 0xde0000. The supplied descriptor is set
up for address 0xde1000 due to address considerations for the enp10i. If
the address changes, this must be reflected within the eni0 descriptor. If
jumpered to A32 or VME extended address space, you must adjust the
“0d” address modifier within the eni0.d file. The port address change can
be reflected within the if_devices file. Refer to the section “Making Device
Descriptors for CMC and ENPLLD Systems” for making the
eni0 descriptor.

With many newer VME CPU boards, specific address regions within their
memory map reflect A24 or standard VME address space. Make sure the
port address within the descriptor reflects this properly.

To verify the port address, use a debugger (either rombug, sysdbg, debug,
or srcdbg) to access the card. The following is a dump of the card using
a debugger:

debug: d4 de1000

0x00DE1000 – 00000004 00F809E2 00F80198 00F70E00 ...F.x.b.x...w‘.

0x00DE1010 – 00000000 00000000 00000000 00000000

0x00DE1020 – 00000000 00000000 00000000 00000000

0x00DE1030 – 00000000 00000000 00000000 00000000

Verify that the first long word is 00000004. This verifies the existance of
the enp10i card.

Changing the enp10i’s memory verifies the address modifiers within the
eni0 descriptor. Try changing the memory using the following
debugger commands:

debug: cw de1020 16 bit read/write test
0x00de1020 : 0000 .

debug: cl de1020 32 bit read/write test
0x00de1020 : 00000000 .

For the above change memory tests, the 16-bit access is the only one
required to work, for the driver will only do 16-bit accesses to the enp10i
board. If the 16-bit access test is successful (that is, no bus errors occur),
the drivers can access the enp10i.

DMA Considerations
As shipped, the driver will perform DMA. The enp10i driver does not
translate the host addresses to the bus addresses, they must be identical.
The enp10i card itself will only DMA in A24 or VME standard address
space. Verify that memory is available and that the enp10i can access
this memory.

Installing OS-9/Internet
Chapter 2

2-6

To install OS-9/Internet, obtain the following information from your
network administrator:

 this node’s name, Internet address, and broadcast address

 names and Internet addresses of nodes and networks with which this
node will communicate

On some OS-9 DevPaks, ISP is included. If your system already has an
ISP directory, skip to Step 3.

1. Create an ISP Directory on the Hard Drive. Use the makdir utility to
create an ISP directory:

makdir /h0/ISP

2. Copy the Internet Software from the Floppy Diskettes to your Hard
Drive. Use the dsave utility to copy the Internet floppy diskettes into
the ISP directory. Use a buffer size appropriate for your installation.

chd /d0

dsave –eb=20 /h0/ISP The buffer size of 20 is used
as an example

3. Edit the if_devices File. Change your current data directory to
/h0/ISP/DRIVERS:

chd /h0/isp/drivers

Edit the if_devices file to include your Internet and broadcast
addresses. Also, verify the I/O address and interrupt vector in the
if_devices file.

Refer to the appropriate section on making device descriptors
(Making Device Descriptors for the VME/147 and VME/167
Systems or Making Device Descriptors for CMC and ENPLLD
Systems) for more information.

Important: On most systems, especially DevPaks with ISP included, the
only items to change in this file are the Internet and broadcast addresses.

4. Edit the hosts File. Change your current data directory to
/h0/ISP/ETC:

chd /h0/ISP/ETC

Edit the hosts file to include this host’s name and Internet address, as
well as other host’s names and Internet addresses.

Installing Internet

Installing OS-9/Internet
Chapter 2

2-7

5. Edit the networks File. Edit the networks file to include all networks
with which this node needs to communicate. Save the networks file.

6. Create the inetdb Data Module

The idbgen utility creates a data mocule named inetdb from the hosts,
networks, protocols, and services files. The output data module is left in
the current directory. It must be resident in the module directory for the
Internet utilities to work. This allows embedded, diskless systems to use
Internet and have access to the information contained in the four files.

Load idbgen if it is not currently in memory:

load –d /h0/ISP/CMDS/idgben

Run idbgen:

idbgen

7. Edit the socket.a File

Change your current data directory to /h0/ISP/SOCKDESC:

chd /h0/ISP/SOCKDESC

Edit the socket.a file. Go to the end of the file and replace the string
myhostname in the net_name field with your host name:

net_name dc.b “myhostname”,0,0,0,0,0,0,0,0,0

Remake the socket descriptor using the supplied makefile:

make –u socket

8. Edit the ipconfig.a File

Change your current data directory to /h0/ISP/IPCONFIG:

chd /h0/ISP/IPCONFIG

Installing OS-9/Internet
Chapter 2

2-8

Edit the ipconfig.a file. It should be similar to the following:

* Internet Configuration

 dc.l 0 flags
* 0x0001 gateway flag
 dc.b 0,0,0,0 default Internet destination
 dc.w host_rts

 dc.w net_rts

 align

host_rts

 dc.b 0,0,0,0 must terminate routing lists
 dc.b 0,0,0,0

net_rts

 dc.b 0,0,0,0 must terminate routing lists
 dc.b 0,0,0,0

The default Internet destination field is the IP address of the network’s
gateway. If you have a stand-alone network, verify that this field is set to
the following:

dc.b 0,0,0,0

If this system is a gateway, you can set up static routing tables in the
host_rts and net_rts fields. If you are running routed, you do not need to set
the gateway flag.

Save the ipconfig.a file.

Remake the ipconfig module using the supplied makefile:

make –u ipconfig

Important: Refer to the section entitled The Ipconfig Data Module if you
need more information.

Important: The files in the distribution package assume the following file
and directory organization. They will not assemble and link correctly if the
organization is different.

/h0

ISP

load.isp start.isp CMDS DEFS DRIVERS ETC IPCONFIG LIB SOCKDESC

Installing OS-9/Internet
Chapter 2

2-9

The device descriptor contains the parameters that affect the operation of
the drivers. The ifgen utility uses the if_devices file as a template for
creating the device descriptor. The driver is shipped with all the parameters
properly set for the VME/147 or the VME/167, except the Internet address,
which is site specific.

For the VME/147, the device descriptor is le0_147 and the driver
is am7990.

For the VME/167, the device descriptor is ie0_ie167 and the driver
is i82596.

If you have an existing IP Ethernet network, the administrator of that
system can help you choose an Internet address that is appropriate for your
site. If you are initially setting up a network between just a few systems,
you can simply use the network number example that already appears in
the descriptor. The example Internet address is a class C address.

Important: Never assign a host number with all zeros or ones (binary) as
this is reserved for broadcast use.

The bdaddr field must be set to the Internet address that is recognized as
broadcast for this host. Usually this is a matter of substituting the inetaddr
with 255 or 0 as the host, as shown in the following examples of the
if_devices file.

For the VME/147:

le0_147 uses am7990 at 0xFFFE1800 vector 68 level 5 poll

0 mtu 1500\

submask 0\

flags notrailers, broadcast\

inetaddr 192.52.109.1 \

bdaddr 192.52.109.255

For the VME/167:

ie0 uses ie167 at 0xFFF46000 vector 0x67 level 5 poll 0

mtu 1500\

submask 0\

flags notrailers, broadcast\

inetaddr 192.52.109.1 \

bdaddr 192.52.109.255

Making Device Descriptors
for VME/147 and VME/167
Systems

Installing OS-9/Internet
Chapter 2

2-10

The if_devices file is located in the ISP/DRIVERS directory. You must
remake the device descriptors to include the Internet address for the
system. The following is a summary of the procedure to make
the descriptor:

chd ISP/DRIVERS

umacs if_devices or use any editor you choose
load –d /h0/isp/cmds/ifgen

ifgen <if_devices

Next, change directories and create the object code for the descriptor.

For the VME/147:

chd am7990

make –u

For the VME/167:

chd ie167

make –u

To check if le0 or ie0 have been updated, use one of the following
commands:

dir –e ../../cmds/le0_147

or

dir –e ../../cmds/ie0_167

Next, add the host’s name and appropriate Internet address to the hosts file,
update the networks file, and use the idbgen utility to update inetdb:

chd ../../etc

<update hosts>

<update networks>

load –d ../cmds/idbgen

idbgen

Use the following command to check that inetdb has been updated:

dir –e inetdb

Start the Internet system for device packs by executing start.isp:

chd ..

start.isp

Installing OS-9/Internet
Chapter 2

2-11

The device descriptor contains the parameters that affect the operation of
the drivers. The ifgen utility uses the if_devices file as a template for
creating the device descriptor. The driver is shipped with all the parameters
properly set for the enp10i or the enp100l, except the Internet address,
which is site specific.

For the enp10i, the device descriptor is eni0 and the driver is enp10i.

For the enp100l, the device descriptor is cnp0 and the driver is enp100i.

If you have an existing IP Ethernet network, the administrator of that
system can help you choose an Internet address that is appropriate for your
site. If you are initially setting up a network between just a few systems,
you can simply use the network number example that already appears in
the descriptor. The example Internet address is a class C address.

Important: Never assign a host a number with all zeros or ones (binary) as
this is reserved for broadcast use.

The bdaddr field must be set to the Internet address that is recognized as
broadcast for this host. Usually this is a matter of substituting the inetaddr
with 255 or 0 as the host, as shown in the following examples of the
if_devices file.

To make the device descriptors, first change your current data directory
to ISP/drivers:

chd isp/drivers

Update the if_devices file. Place the appropriate Internet address in the
following field:

inetaddr xxx.xxx.xxx.xxx

bdaddr xxx.xxx.xxx.255

The last digit of the bdaddr field should be 255 or 0.

Load the ifgen device:

load –d ../cmds/ifgen

The if_devices file is located in the ISP/DRIVERS directory. You must
remake the device descriptors to include the Internet address for the
system. The following summarizes the procedure to make the descriptor:

ifgen <if_devices

chd ENPLLD/ENP10i or ENPLLD/ENP100i
make

Making Device Descriptors
for CMC and ENPLLD
Systems

Installing OS-9/Internet
Chapter 2

2-12

To check if cnp0 or eni0 have been updated, use one of the
following commands:

dir –e ../../../cmds/cnp0

or

dir –e ../../../cmds/eni0

Next, add the host’s name and appropriate Internet address to the hosts file,
update the networks file, and use the idbgen utility to update inetdb:

chd ../../../etc

<update hosts>

<update networks>

load –d ../cmds/idbgen

idbgen

Use the following command to check that inetdb has been updated:

dir –e inetdb

If you are using a 68000 or 68010 CPU, change SYSMbuf_020 to
SysMbuf_010 in the load.enp100i, load.enp10i, and load.both files:

chd ..

<make changes>

Start the Internet system in the following way:

 Execute start.eni if the system is using enp10i.
 Execute start.gate only if system is working as router (or gateway).

ipconfig contains routing information for the ip protocol module. The
ipconfig, as shipped, works on a network with no gateway access
requirements. ISP Version 1.3 (and greater) includes a routed program to
automatically modify the routing tables based on broadcasts from other
routed programs on gateway machines. Generally, you should run the
routed program rather than modifying the ipconfig table entries.

On a system that is not acting as a gateway, routed updates the IP routing
tables to allow access to other networks based on the gateway broadcasts.

On a system that is acting as a gateway, routed broadcasts its routing tables
on all connected networks. Thus, the network gateway information is
determined dynamically from the network, rather than fixed in the static
ipconfig table.

The Ipconfig Data Module

Installing OS-9/Internet
Chapter 2

2-13

Although you do not need to alter the ipconfig module for OS-9/Internet to
work, you may wish to alter it, depending on your system.

If you do not run routed and you attempt to communicate with a host on a
different network, Internet will refuse to attempt the connection, as it
knows of no way to reach that host. You can change this by altering the
ipconfig module.

If there is a default host to send all non-routable packets to, change the
default host entry in ipconfig.a to that host.

You may specify host-specific routing by adding entries to the
host-specific routing table.

You may specify network routing by adding entries to the network
routing table.

Important: Host-specific and network routing tables must be terminated
with a null entry.

This is the routing information as OS-9/Internet is shipped:

* Internet Configuration

 dc.l 0 flags
* 0x0001 gateway flag
 dc.b 0,0,0,0 default Internet destination
 dc.w host_rts

 dc.w net_rts

 align

host_rts

 dc.b 0,0,0,0 must terminate routing lists
 dc.b 0,0,0,0

net_rts

 dc.b 0,0,0,0 must terminate routing lists
 dc.b 0,0,0,0

For the purpose of the following example, assume your machine is on
network 192.9.200.x.

To route all packets destined for networks 192.9.100.x and 192.9.101.x
through a host at 192.9.200.34, use network routing.

To route all packets for host 192.8.50.24 through host 192.9.200.33, use
host-specific routing.

All other packets should go to your network’s general gateway at
192.9.200.32.

Installing OS-9/Internet
Chapter 2

2-14

In this example, change your ipconfig.a file as follows:

* Internet Configuration

 dc.l 1 flags
* 0x0001 gateway flag
 dc.b 192,9,200,32 default Internet destination
 dc.w host_rts

 dc.w net_rts

 align

host_rts

 dc.b 192,8,50,24 all packets for this guy go to
 dc.b 192,9,200,33 this guy

 dc.b 0,0,0,0 must terminate routing lists
 dc.b 0,0,0,0

net_rts

 dc.b 192,9,100,0 route this network through here
 dc.b 192,9,200,34

 dc.b 192,9,101,0 this one too...
 dc.b 192,9,200,34

 dc.b 0,0,0,0 must terminate routing lists
 dc.b 0,0,0,0

Then, remake a new ipconfig using the make utility:

chd /h0/ISP/CMDS change to directory containing ipconfig file
attr –w ipconfig make it possible to write to ipconfig
chd ../IPCONFIG change to directory containing ipconfig source
umacs ipconfig.a make changes
make make new ipconfig module

Two procedure files are provided as examples of loading and starting the
ISP system. Use the test procedure described here the first time you
run ISP.

1. Run the load.isp procedure file to load all the modules into memory:

$: chd /h0/isp or whichever directory you are using for ISP
$: load.isp

2. Initialize the network memory handler. For example:

$: mfree

Getting Internet Up and
Running on VME/147 and
VME/167 Systems

Installing OS-9/Internet
Chapter 2

2-15

Current total free RAM: 1786.25 K-bytes

$: mbinstall

$: mfree

Current total free RAM: 1658.25 K-bytes

The free memory decrease is due to the allocation to ISP.

3. Run routed (or ispstart) to open a socket and initialize the entire
ISP system:

$: routed<>>>/nil& or ispstart&

$: procs –e

 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O

 2 0 0.0 128 15.50k 0 w 0.04 0:01 tsmon <>>>term

 3 2 0.0 128 4.00k 0 w 0.47 0:01 shell <>>>term

 7 3 0.0 128 20.00k 0 s 0.02 0:00 routed <>>>/nil

 8 0 0.0 128 2.00k 0 e 0.00 0:00 ifman

 9 0 0.0 128 2.00k 0 s 0.00 0:00 sockman

 10 3 0.0 128 18.25k 0 * 0.10 0:00 procs <>>>term

Ensure that the routed (or ispstart), ifman, and sockman processes appear.

4. Check the Ethernet hardware.

For VME/147 users, check the Ethernet hardware as follows:

$ lestat /le0

this=003f7130 next=00243350 prev=00242eb0 static=003f7cb0 size=00000208

name=le0 driver=am7990 mtu=1500 flags=0022

af=2 port=0 ipaddr=192.9.200.55

Ethernet address = 8:0:3e:20:3f:6f

busy=0 running =1

in=2 out=1 inerr=0 outerr=0 coll=0

unkirq=0 recv=0 irecv=3 fram=0 oflo=0 crc=0 rbuf=0 miss=0 bogus=0

xirq=1 trys=1 xmit=1 more=0 one=0 defer=0 tbuf=0

uflo=0 1col=0 1car=0 retry=0 babl=0 enq=0 tailirq=0 seen=0

Ensure that the displayed Ethernet address is reasonable for your system.

After initialization, the driver sends an ARP request for its own address as
a test of the driver transmit and receive capability. You can see this attempt
in the xmit/ recv counters of the lestat display. Then, telnet to a known,
working Internet host. Check the last line of the lestat display for the
error/attempt status.

Installing OS-9/Internet
Chapter 2

2-16

The last three lines of the display provide important information about the
health of the driver and LANCE interface. In general:

This line is the receive status:

unkirq=0 recv=0 irecv=3 fram=0 oflo=0 crc=0 rbuf =0 miss=0 bogus=0

This line is the transmit status:

xirq=1 trys=1 xmit=1 more=0 one=0 defer=0 tbuf=0

This line is the error status:

uflo=0 lcol=0 lcar=0 retry=0 babl=0 enq=0 tailirq=0 seen=0

The receive and transmit status lines contain error counters as defined by
the LANCE device. These are not errors; they are conditions that arise as a
normal part of Ethernet operations. However, if these values increase
greatly in value over a short period of time a problem may exist.

The error status line contains counters for unexpected conditions that affect
the ability to communicate on the Ethernet.

Unexpected increases of the value in lcar usually indicate a transceiver
cable problem. Try reseating or replacing the transceiver cable if this
error persists.

Unexpected increases in lcol and babl usually indicate a problem with the
Ethernet cable. Check the hardware for open cables, shorts, or
bad terminators.

For VME/167 users, check the Ethernet hardware as follows:

$ iestat /ie0

this=01eb9830 next=01eba370 prev=01ec2480 static=01eb9460 size=00000208
name=ie0 driver=ie167 mtu=1500 flags=0022
af=2 port=0 ipaddr=192.9.200.40
Ethernet address = 8:0:3e:21:10:c0
in=2744 out=2770 inerr=0 outerr=0 coll=0

unkirq=0 irqs=5517
rirq=2734 irecv=2744 rmiss=0 rloop=5
xirq=2770 trys=2770 enq=0
v_addr=fff46000 v_port=fff46000 v_ca=fff46004 v_irq=fff46000
v_shram=1e03e20 size=0x18910 (100624)
Selftest spinloops=676 res1=6c335394 res2=00000000
SCP=1e03e60 ISCP=1e03e70 SCB=1e03e80 CB=1e03eb0 (32) RFD=1e04330 (32)
TBD=1e10530 (32) next=1e17250 last=1e1c730
SCB cmd=0000 status=0040 t_on=175 t_off=25 CUS:Idle RUS:Ready
cmds issued=2774 cmds complete=2774 scbloops=0 dropped=0
cmds linked=0 cu starts=2774 cu idle=2775 needxirqstart=0 xirqstarts=0

Recv errors: crc=0 align=0 resource=0
 dmaover=0 rcvcoll=0 short=32
Xmit errors: lcar=0 lcol=0 lcts=0 udma=0
Xmit status: mtry=0 defer=106 heartbeat=2736 collisions=131

Installing OS-9/Internet
Chapter 2

2-17

Ensure that the displayed Ethernet and IP addresses are reasonable for
your system.

After initialization, the driver sends an ARP request for its own IP address
as a test of the driver transmit and receive capability. This is shown in the
in/out counters of the iestat display. Refer to the following discussion if
any values in the lines marked Recv errors: or Xmit errors: are non-zero.
Then, telnet to a known, working Internet host. Check the iestat again for
error/attempt results.

The second set of lines are provided for those familiar with the operation
of the i82596 and the software driver. These items are pointers to i82596
shared memory data structures, statistical counters, and the last known
i82596 chip status.

Some of the values are described here:

 t_on and t_off i82596 bus throttle ON/OFF timer values. These items
(respectively) set the maximum time the i82596 can remain on the local
bus and the minimum time it must stay off the local bus.

On the VME/167, t_on and t_off are determined by sC, where s is the
desired time in µs and C is the CPU clock rate in MHz. Thus, for a t_on
time of 7µs on a 25MHz CPU, use 175 (7 multiplied by 25).

 rmiss indicates the number of packets that the i82596 could not receive
because no space was available in the chip receive queue. If rmiss is
non-zero, the i82596 is receiving packets at a rate higher than the CPU
can process them. Increasing the chip’s receive queue will reduce the
packet loss. Change the max_rfd value in the ie0.d device descriptor to
adjust the receive queue.

 dropped indicates the number of packets that the driver has prepared
for the chip to transmit, but were discarded because the chip command
queue is full. This usually happens when the i82596 is busy due to
packets being received or due to transmit deferral of previous packets.
Change the max_cbl value in the ie0.d device descriptor to adjust the
command queue.

 cmds linked indicates the number of i82596 commands that the driver
linked into the chip’s command queue while the command queue was
active. If cmds linked is non-zero, the CPU is providing transmit
packets at a rate higher than the i82596 can transmit them. This is
generally good.

 The cmds issued and cmds complete values must always be the same.

Installing OS-9/Internet
Chapter 2

2-18

 needxirqstart and xirqstarts count the number of times the driver tried
to link a packet in the i82596 command queue while the chip was
working on the last entry of the queue. The driver xmit irq routine must
restart the command queue because the i82596 is about to go idle. The
needxirqstart and xirqstarts values must always match.

 cu starts and cu idle indicate (respectively) the number of times the
driver started the command unit and the number of “command unit idle”
interrupts issued by the chip. cu starts + 1 must always equal cu idle.

 lcol , lcal , and lcts with non-zero values usually indicate a network
hardware problem. Check or replace the transceiver cable, the MAU
(media access unit), or backbone cable.

5. If the ISP software seems to be operating from these tests, start
Internet by typing the following commands:

chd /h0/ISP change to the ISP directory
start.isp call load.isp

To start Internet on your system automatically when the system is booted,
edit the startup file in the root directory as follows:

chd /h0 change to the root directory
umacs startup edit startup file

Add the following line to your startup file:

chd ISP; start.isp

After adding this line, re-boot the system and verify that all OS-9/Internet
functions are available to test the new startup file. The Internet system is
now ready for startup. Two procedure files are provided to facilitate
starting the system:

load.isp load all necessary Internet files
start.isp start Internet system

Installing OS-9/Internet
Chapter 2

2-19

OS-9/Internet uses the BSD4.x IPC (interprocess communication) socket
facilities. Not all the services or features of the BSD IPC are provided, but
most are present. Some facilities cannot be implemented on OS-9.
Consequently, alternatives are supplied.

The following items in this implementation are significantly different from
BSD IPC:

 Sockets can be bound to the AF_INET domain.

 Only SOCK_STREAM (TCP) and SOCK_DGRAM (UDP) socket
types are supported.

 The select() function is difficult to implement on OS-9. The
_ss_sevent() function is provided in sockman and pkman to allow a
process to wait until data is available on multiple paths.

 Network database functions (such as gethostname()) access the inetdb
data module rather than the data files in /etc. This allows the entire
implementation to exist in ROM. Changes to these files require
recreating the inetdb module and loading the new copy into memory.
Otherwise, the functions and their BSD counterparts behave identically.

 The function synopses list the errno values received when the function
fails. The errors listed are only the more interesting ones. Be aware that
other standard OS9 errors can be returned such as E_PERMIT,
E_PTHFUL, and E_MEMFUL.

 You can use normal OS-9 read() and write() functions to perform I/O on
stream sockets. However, the bytecount given for read() is the
maximum number of bytes to read during the call, not the number of
bytes to return (as defined by other OS9 file managers). For example, if
24 bytes of data are received, read(p,buf,100) returns the 24 bytes
instead of waiting for 76 more bytes. This is consistent with UNIX I/O
programming and makes such applications easier to port.

 sockman does not support the readln() and writeln() functions.

 Non-blocking I/O and out-of-band data are not yet fully supported

OS-9/Internet
Implementation Notes

Chapter

3

3-1

Transferring Files with FTP

OS-9/Internet allows you to copy files from one system to another using
the ftp utility. ftp is the user interface to the ARPANET standard File
Transfer Protocol. You can use it to log into a remote system, look at the
directories on the remote machine, and transfer files to and from a remote
network site.

This chapter covers the following topics:

 connecting to a remote host with ftp
 file naming conventions
 available ftp commands
 locating files on the remote host
 copying files from the remote host to your local system
 copying files from your local system to the remote host
 exiting ftp

More information on ftp is provided in the utility description in Chapter 6,
OS-9/Internet Utilities.

The syntax for ftp is as follows:

ftp [<host>] [<opts>]

host is the network site (remote host) to which you want to connect. When
you enter host on the command line, ftp immediately attempts to establish
a connection to an FTP server on that host. For example, if you want to
establish connection with a remote site called iggy, enter the
following command:

$ ftp iggy

Connecting to a remote Host
with FTP

Transferring Files with FTP
Chapter 3

3-2

After pressing [Return] , you would see something similar to
the following:

Connected to iggy.

220 iggy OS-9 ftp server V1.0 ready

Name (iggy:ellen):

Name (iggy:ellen): ellen

Password (iggy:ellen): <<not shown for security>>

331 password required for ellen

230 user ellen logged in

Connected to iggy.

Mode: stream Type: ascii Form: non-print Structure: file

Verbose: on Bell: off Prompting: on Globbing: on

Hash mark printing: off Use of PORT commands: on

ftp>

You are now in the command interpreter. Notice the last four lines. These
lines are a current status report and the ftp prompt (ftp>). The status
report displays information about the current ftp modes:

Mode: Description:

Mode Specifies the transfer mode. Currently, stream is the only valid mode.

Type Specifies the representation type. The representation type tells ftp the
type of information with which it will deal. The following values are valid:

ascii Specifies network ASCII. This is the
default type.

binary Specifies image data.

Form Specifies the file transfer form. Currently, non-print is the only valid Form.

Structure Specifies the file structure. Currently, file is the only valid Structure.

Verbose When this option is on, all responses from the FTP server are displayed.
In addition, when a file transfer completes, statistics regarding the
efficiency of the transfer are reported. When this option is off, the
information is not displayed.

Bell When this option is on, a bell announces the completion of file transfers.
When off, ftp is silent when the file transfer completes.

Prompt When this option is on, you receive prompts during multiple file transfers
to selectively retrieve or store files. When this option is off, you do not
receive prompts during multiple file transfers.

Glob Globbing refers to the expansion of wildcards for remote file names. If this
option is on, wildcards used in remote file names are expanded for
commands such as mdelete, mget, and mput. If globbing is off, file names
are taken literally.

Hash mark printing Specifies whether a hash mark (#) should be printed for each buffer
transferred.

Transferring Files with FTP
Chapter 3

3-3

If you do not enter the host on the command line, ftp enters its command
interpreter and displays the current status report of the ftp modes. This
report is the same as if you had entered a host name.

To connect to a host from the command interpreter, you need to use the
open command. For example:

ftp> open iggy

Connected to iggy.

220 iggy OS–9 ftp server V1.0 ready

Name (iggy:ellen): ellen

Password (iggy:ellen):

331 password required for ellen

230 user ellen logged in

ftp>

Before transferring files with ftp, you should be aware of the file naming
conventions. ftp processes the local files that are specified as parameters
to ftp commands according to the following rules:

 If the first character of the file name is an exclamation point (!), the
remainder of the parameter is interpreted as a shell command. ftp forks a
shell with the parameter supplied and reads (writes) from the standard
output (standard input) of that shell. If the shell command includes
spaces, you must quote the parameter.

 Failing these checks, if globbing (wildcard expansion) is enabled, local
file names are expanded.

Important: Remote file names are not processed. They are passed just as
they are typed, except for the mdelete, mdir, mget, and mls commands. For
these commands, the remote file names are expanded according to the rules
of the remote host’s server.

File Naming Conventions

Transferring Files with FTP
Chapter 3

3-4

The following ftp commands are available. More information about these
commands is provided in the ftp utility description in Chapter 6,
OS-9/Internet Utilities.

Command: Description:

$ [<command>] Runs as a shell command on the local machine.

append [<local> [<remote>]] Appends local to a file on the remote machine.

ascii Sets the file transfer type to network ASCII (default).

bell Announces the completion of file transfers with a bell.

binary Sets the file transfer type to support binary image transfer.

bye/quit Terminates the ftp session and exits.

cd/chd Changes the current data directory on the remote system.

close Terminates the remote session and returns to the ftp command
interpreter.

connect Connects to a remote ftp.

debug [<value>] Toggles socket level debugging mode.

delete [<remote>] Deletes a file on the remote system.

dir/ls [<remote dir> [<local file>]] Displays a remote directory listing.

form Sets the file transfer form.

get/recv <remote> [<local>] Copies remote to the local system.

glob Toggles wildcard expansion (globbing) of remote files names for
mdelete, mget, and mput.

hash Toggles printing hash marks (#) for each buffer transferred.

help/? Prints a help message.

lcd/lchd [<directory>] Changes the current local directory.

mdelete [<remote>] Deletes multiple files on the remote system.

mdir/mls [<remote dir> <local file>] Redirects the display of remote directories to a local file.

mget [<remote>] Copies the remote files to the current local directory.

makdir/mkdir [<remote dir>] Creates a directory on the remote system.

mode [<name>] Sets the transfer mode to name.

mput [<local>] Expands wildcards in the local list and copies each file in the
resulting list to the current remote directory.

open [<host> [<port>]] Establishes a connection to the specified host FTP server.

pd/pwd Prints the name of the current remote directory pathlist.

prompt Toggles interactive prompting for commands that involve multiple
file transfers.

put/send [<local> [<remote>]] Copies a local file to the remote machine.

quote [<params>] Sends the specified parameters to the remote FTP server.

remotehelp/rhelp Requests help from the remote server.

rename [<old> <new>] Renames the remote file old to have the name new.

rmdir [<remote dir>] Deletes a directory on the remote machine.

sendport Toggles the use of PORT commands.

status Shows the current status of ftp.

struct [<name>] Sets the file structure to name.

type [<name>] Sets the representation type to name.

user [<user name> [<password>] [<account>]] Identifies yourself to the remote FTP server.

verbose Toggles verbose mode.

Available FTP Commands

Transferring Files with FTP
Chapter 3

3-5

Once in the command interpreter, you can use any of the available ftp
commands. For example, you can move around the directory structure of
the remote host, copy files to or from the remote host, change ftp
parameters, and make new directories on the remote host.

Because ftp is generally used to transfer files between systems, you need to
be able to locate files on the remote host.

You can use either dir or ls to display the directories on the remote host.

For example:

ftp> dir

200 PORT command ok

150 Opening data connection for dir –ea (192.9.200.58,1046) (0 bytes).

 Directory of . 11:44:44

 Owner Last modified Attributes Sector Bytecount Name

––––––– ––––––––––––– –––––––––– –––––– ––––––––– ––––

 1.78 92/04/03 1306 –––wr–wr 104 248 .login

 0.0 92/02/22 2007 d–ewrewr F4 96 PROJ

 1.78 92/03/12 0841 ––––––wr 124 56984 mbox

 1.78 92/03/12 0840 ––––––wr 10C 9939 srcfile

226 Transfer complete

477 bytes received in 0.19 seconds (2.45 Kbytes/s)

To display the directory PROJ, enter dir proj at the ftp prompt:

ftp> dir proj

200 PORT command ok

150 Opening data connection for dir –ea proj (192.9.200.58,1047) (0 bytes).

 Directory of proj 11:46:14

 Owner Last modified Attributes Sector Bytecount Name

––––––– ––––––––––––– –––––––––– –––––– ––––––––– ––––

 1.78 92/02/22 2007 ––ewrewr F8 128 mine

226 Transfer complete

234 bytes received in 0.11 seconds (2.08 Kbytes/s)

If you want to change your current data directory on the remote system,
enter cd or chd and the directory name. For example:

ftp> chd proj

200 CWD command ok

Now when you display the current data directory with the dir command,
the directory PROJ is displayed. Using cd or chd without parameters
returns you to the original directory.

Locating Files on the
Remote Host

Transferring Files with FTP
Chapter 3

3-6

If you lose track of where you are on the remote system, you can enter pwd

for a Unix system, or pd for an OS-9 system:

ftp> pd

251 “/h0/DOC” is current directory

The get command allows you to transfer files from the remote host to your
local system. For example, to copy the file srcfile to your current directory
on your local system, enter:

ftp> get srcfile

200 PORT command ok

150 Opening data connection for sbf.driver

(192.9.200.58,1051) (9939 bytes).

setting srcfile to 9939 bytes

226 Transfer complete

10149 bytes received in 0.39 seconds (25.41 Kbytes/s)

ftp>

get also allows you to give the file a different name on the local system.
For example, if you want to call the file srcfile2 on your local system, enter
the command:

ftp> get srcfile srcfile2

You can also use the recv command to copy files from the remote host to
your local system. recv has been provided for your convenience.

If you want to check that the file was copied to your local system, use the
ftp command $ [<command>]. This command allows you to run the
command as a shell command. This means that to display your current
directory on your local machine, you would enter:

ftp> $ dir

 Directory of . 11:57:12

NOTES PROGRAMS TEXT animate.c arrayex.c

arrayex.r aschart.c aschart.r balance balance_sheet

race.c race.r race1.c srcfile2 stpit.c

stpit.r tour.c tour.r train.c train.r

ftp>

Copying Files from the
Remote Host to Your Local
System

Transferring Files with FTP
Chapter 3

3-7

Copying Multiple Files

You may copy more than one file at a time using the mget command, and
you can use wildcards to specify the files. ftp expands the wildcards
according to the normal wildcard file rules:

 An asterisk (*) matches any group of zero or more characters.
 A question mark (?) matches any single character.

For example, to copy all the files from the remote host to your local
system’s current data directory, you would type mget * . If prompting is on,
mget prompts you before copying each file. This allows you to selectively
copy only certain files.

ftp> mget *

mget mbox? y

mget srcfile? n

mget PROJ/mine? n

ftp>

In this example, the file mbox was copied to your local system’s current
data directory. srcfile and PROJ/mine were not copied. Notice that when
you specify an asterisk (*), mget also copies files in subdirectories located
in the current directory. Therefore, mget may copy more files than
you expect.

The put command allows you to copy files from your local system to a
remote system. For example, to copy the aschart.c to the remote
system, enter:

ftp> put aschart.c

200 PORT command ok

150 Opening data connection for aschart.c

(192.9.200.58,1057).

226 Transfer complete

227 bytes sent in 0.01 seconds (22.17 Kbytes/s)

put allows you to rename the file that you are copying. For example, if you
want the file aschart.c to be called aschartnew.c on the remote system,
enter the command:

ftp> put aschart.c aschartnew.c

Copying Files from Your
Local System to the Remote
Host

Transferring Files with FTP
Chapter 3

3-8

Now when you display the remote directory, the file aschartnew.c
is displayed:

ftp> dir

200 PORT command ok

150 Opening data connection for dir –ea (192.9.200.58,1058) (0 bytes).

 Directory of . 10:52:50

 Owner Last modified Attributes Sector Bytecount Name

––––––– ––––––––––––– –––––––––– –––––– ––––––––– ––––

 1.78 92/04/03 1306 –––wr–wr 104 248 .login

 0.0 92/02/22 2007 d–ewrewr F4 96 PROJ

 1.78 92/02/22 1052 ––––––wr 78030 212 aschartnew.c

 1.78 92/03/12 0841 ––––––wr 124 56984 mbox

 1.78 92/03/12 0840 ––––––wr 10C 9939 srcfile

226 Transfer complete

541 bytes received in 0.21 seconds (2.52 Kbytes/s)

ftp>

You can also use the send command to copy files from your local system to
the remote host. send has been provided for your convenience.

You may copy more than one file at a time using the mput command, and
you can use wildcards to specify the files. ftp expands the wildcards
according to the normal wildcard file rules. For example, to copy all the
files from your local system’s current data directory that end in .c, you
would type mput *.c . If prompting is on, mput prompts before copying
each file. This allows you to selectively copy only certain files.

ftp> mput *.c
mput race.c? y
200 PORT command ok
150 Opening data connection for race.c (192.9.200.58,1059).
226 Transfer complete
2993 bytes sent in 0.06 seconds (48.71 Kbytes/s)
mput animate.c? y
200 PORT command ok
150 Opening data connection for animate.c (192.9.200.58,1060).
226 Transfer complete
723 bytes sent in 0.01 seconds (70.61 Kbytes/s)
mput tour.c? n
mput train.c? y
200 PORT command ok
150 Opening data connection for train.c (192.9.200.58,1061).
226 Transfer complete
904 bytes sent in 0.01 seconds (88.28 Kbytes/s)
.
.
.
ftp>

Copying Multiple Files

Transferring Files with FTP
Chapter 3

3-9

In this example, the file tour.c is not copied to the remote system. If
prompting had not been turned on, all files ending with .c would have been
copied to the remote system.

When you finish your ftp session and want to return to your local system,
enter the quit command at the prompt:

ftp> quit

200 Goodbye

$

You are returned to your local system.

The bye command is also available for your convenience. It works the
same as quit. Use whichever command is easier for you to remember.

Exiting FTP

Chapter

4

4-1

Using Telnet

You can establish sockets in several ways. The sequence required to
establish connected sockets and unconnected sockets are different. Further,
connected sockets are established differently on the client and server sides.

By using telnet, you can establish a connection to a login server at another
site. telnet uses the TELNET protocol to allow you to login to another
machine, called a remote host. Once you login to the remote host, your
terminal appears to be connected to that machine, and any keys you enter
are automatically passed to the remote host.

This chapter covers the following topics:

 beginning a telnet session
 available telnet commands
 capturing information from a telnet session
 ending a telnet session

To establish a connection with a remote host, use the telnet command. The
syntax for telnet is as follows:

telnet [<opts>] [<hostname> [<portnum>]]

telnet supports the following options:

Option: Description:

-? Displays the on-line help message.

-d Turns on socket level debugging.

-o Shows options processing.

If you call telnet without parameters, you enter telnet’s command mode.
This is indicated by the prompt:

telnet>

In command mode, telnet accepts and executes commands.

If you call telnet with parameters, telnet performs an open command with
those parameters.

Once a connection has been opened, telnet enters input mode. In this mode,
text typed is sent to the remote host. To issue telnet commands while in
input mode, precede them with the telnet escape character, control-right
bracket (<control>]).

Establishing a Socket

Beginning a Telnet Session

Using Telnet
Chapter 4

4-2

While in command mode, the normal terminal editing conventions
are available.

The following commands are available in telnet’s command mode. More
detail concerning each command is available in the telnet utility
description in Chapter 6, OS-9/Internet Utilities.

Command: Description:

capture [<param>] Captures all I/O of a telnet session to a specified file. Four parameters
are currently available:

<file> specifies the file in which to write the I/O
on turns on capture mode.
off turns off capture mode
close closes the capture file

close Closes the current connection and returns to telnet command mode.

display Displays current telnet operating parameters.

mode Tries to enter line-by-line or character-at-a-time mode.

open <host> Opens a connection to the specified host.

quit Closes any open telnet connections and exits telnet.

send [<chars>] Transmits special characters to telnet:
ao Abort Output
ayt ‘Are You There’
brk Break
ec Erase Character
el Erase Line
escape Current Escape Character
ga ‘Go Ahead’ Sequence
ip Interrupt Process
nop ‘No Operation’
synch ‘Synch Operation’ Command

set <param> Sets telnet operating parameters by setting local characters to specific
telnet character functions. The following parameters are supported:

echo Character to toggle local echoing on/off.
erase <local> Sets the telnet erase character.
flushoutput <char> Sets the telnet flushout character.interrupt
<char> Sets the telnet interrupt
character.kill <char> Sets the telnet kill character.
quit <char> Sets the telnet quit character.

status Shows the current status of telnet.

toggle <param> Toggles telnet operating parameters:
crmod Toggles the mapping of received carriage
returns.localchars Toggles the effects of the set using the set

command.
debug Toggles debugging mode.
netdata Toggles the printing of hexadecimal

network data in debugging mode.
options Toggles the viewing of option

processing in debugging mode.

z/$ Suspends the current telnet session and forks a shell.

? [<command>] Prints the help display.

Available Telnet Commands

Using Telnet
Chapter 4

4-3

Connecting to Another Host from Comand Mode

To connect to a remote host from the command mode, use open:

telnet> open iggy

open opens a connection to a specified host. If you do not specify a host,
telnet prompts you for the host name. The host name may be the name of a
host or an Internet address specified in the dot notation. You can also
specify a port number for the telnet connection. If you do not specify a port
number, telnet attempts to contact a TELNET server at the default port.

Once you connect to a remote host, you can log into the system as normal.

Displaying the Current Telnet Operating Parameters

Telnet allows you to display the current operating parameters that you have
specified. To do this, use the display command:

telnet> display

won’t map carriage return on output

won’t recognize certain control characters

won’t turn on socket level debugging

won’t print hexadecimal representation of network traffic

won’t show options processing

[^E] Echo

[^]] Escape

[^X] Erase

[^K] Flush output

[^Y] Interrupt

[^T] Kill

[^R] Quit

telnet>

The output from display shows what parameters are currently operating. To
change any of the parameters, use the toggle command to change the first
five parameters. The set command changes the remaining parameters.

For example, to view the options processing in debugging mode, you
would enter:

telnet> toggle options

will show options processing

telnet>

Using Telnet
Chapter 4

4-4

After executing this command, the current operating parameters will

look like the following:

telnet> display

won’t map carriage return on output

won’t recognize certain control characters

won’t turn on socket level debugging

won’t print hexadecimal representation of network traffic

will show options processing

[^E] Echo

[^]] Escape

[^X] Erase

[^K] Flush output

[^Y] Interrupt

[^T] Kill

[^R] Quit

telnet>

The set command works in the same manner.

Displaying the Current Status of Telnet

You can also display the current status of a telnet session. To do this, use
the status command:

telnet> status

No connection.

Escape character is ‘^]’.

capture closed.

telnet>

This is useful if you cannot remember whether you have any existing
connections and to see whether you are capturing the session.

You can capture the I/O of a telnet session with the capture command.
When you use capture, you capture the I/O in a specified file. For example,
to place the capture in the file newtest, enter the following:

telnet> capture newtest

capture to file newtest.

telnet>

Capturing Information from
a Telnet Session

Using Telnet
Chapter 4

4-5

This command creates and opens a file called newtest and turns on the
capture mode. If the specified file already exists, an error is returned.

Once the capture mode is turned on, you can begin your session by issuing
an open command to a remote host. You can display directories on your
screen, check the processes running on the system, list files to your screen,
etc. and your commands and the system’s replies will all be captured in the
file on your local system. When you return to your local system, you can
list the contents of the captured file:

$ list newtest

OS-9/68020 V2.4.x82 Iggy_vme147 - 68030 91/11/08 16:24:00

User name?: ellen

Password:

Process #25 logged on 91/11/08 16:24:03

Welcome!

$ dir

 Directory of . 16:24:16

ELLEN WORKSTUFF mbox srcfile

$ procs

 Id PId Grp.Usr Prior MemSiz Sig S CPU Time Age Module & I/O

 25 26 1.78 128 8.00k 0 w 0.45 0:00 shell <>>>pks00

 30 25 1.78 128 24.00k 0 * 0.05 0:00 procs <>>>pks00

$ mdir

 Module Directory at 16:24:30

kernel syscache ssm init tk147

rtclock rbf scsi147 rb5400 d0

rbvccs h0 scf sc8x30 term

$: logout

$

You can capture the I/O of a telnet session with the capture command.
When you use capture, you capture the I/O in a specified file. For example,
to place the capture in the file newtest, enter the following:

To end a telnet session from the command mode, use the quit command:

telnet> quit

$

You are returned to your local system.

Ending a Telnet Session

Using Telnet
Chapter 4

4-6

To end a telnet session from the remote host, simply logout:

iggy$: logout

Connection closed by foreign host.

$

Again, you are returned to your local system.

Chapter

5

5-1

Using the BOOTP Server

The OS-9 Bootstrap Protocol (BOOTP) allows you to boot from the
network. OS-9 BOOTP clients require a bootp server on the connected
network to support the BOOTP protocol as specified in RFC-951
(Croft/Gilmore) and TFTP as specified in RFC-906 (Finlayson). It also
requires the server to support the BOOTP Vendor Information Extensions
described in RFC-1048 and RFC-1084 (Reynolds).

The OS-9 BootP server is based on the Carnegie Mellon University
implementation. Microware does not provide or support the bootp server
for UNIX or other operating systems. Contact the University Computer
Center at Carnegie Mellon for the availability of the BootP server on other
operating systems.

This chapter covers the following topics:

 overview of the BOOTP server
 OS-9 BOOTP server utilities
 setting up the bootptab configuration file

BOOTP is a client-server protocol. The OS-9 system being booted is the
client and is implemented as a standard OS-9 CBOOT boot driver in ROM.
The client system makes requests to a server system on the network. The
server may or may not be an OS-9 system. The client requests the server to
identify the following:

 the client’s Internet (IP) address
 the name (pathlist).
 the size of an OS-9 bootfile

The server subsequently transfers the bootfile across the network back to
the client using the TFTP protocol.

The OS-9 ROM boot code starts the OS-9 network boot option (BOOTP)
either through the menu selection <le> or automatically with no operator
intervention. The client broadcasts the BOOTP request on the network
containing the client’s hardware address (Ethernet address) retrieved from
SRAM. A server responds with the following information:

 the client’s IP address.
 the server’s IP address
 a path to the bootfile
 the size of the bootfile

OS-9 Bootstrap Protocol
(BOOTP)

Overview

Using the BOOTP Server
Chapter 5

5-2

The client then sends a TFTP request for its bootfile to the server. The
responding server calls the TFTP service to transfer the bootfile to the
client. The BOOTP client reads the OS9 bootfile as it is transferred across
the network and copies it into local RAM in the same manner as other boot
device drivers.

After the file is successfully read in by the client, BOOTP returns to the C
booting subsystem to complete the bootstrap and passes control to the
OS-9 kernel.

ISP network drivers can use the IP address determined by BOOTP. This
eliminates the need for otherwise identical LAN driver device descriptors
to carry different IP addresses.

A BOOTP server includes the startbootp procedure, a bootptab
configuration file, and the following utility programs:

Name: Description:

bootpd Responds to BOOTP client requests with BOOTP server responses.
bootptest A simple program to test bootpd

server response.
hostname Sets and/or prints the hostname

string in SOCKMAN.

tftpd Responds to tftp read requests and forks tftpdc to handle the transfer.
tftpdc Reads a bootfile for a client using

the TFTP protocol.

These utilities are discussed in the next chapter. The utility programs are
located in the /h0/ISP/CMDS directory, and the startbootp procedure file
and bootptab configuration file are located in the
/h0/TFTPBOOT directory.

The startbootp procedure starts the OS-9 bootp server and the associated
utilities. The following is an example startbootp file:

-t

* start BootP servers

setenv PORT /term

setenv PATH /h0/CMDS:/h0/ISP/CMDS

hostname delta

tftpd -D=/h0/TFTPBOOT<>>>/nil &

bootpd /h0/TFTPBOOT/bootptab<>>>/nil&

OS-9 BOOTP Server Utilities

Using the BOOTP Server
Chapter 5

5-3

You can call startbootp from the OS-9 startup file, if appropriate, by adding
the following lines to your startup file:

$ chd /h0/TFTPBOOT

$ startbootp

The OS9boot.hostname file should have the public read permissions set for
tftpd to access. Use the following command to turn on the public read
permissions for the OS9Boot file:

attr -pr os9boot.*

The OS9 bootpd server is derived from the Version 2.1 bootpd source
code. This source code contains the following notice:

/*

 * Copyright (c) 1988 by Carnegie Mellon.

 *

 * Permission to use, copy, modify, and distribute this program for any

 * purpose and without fee is hereby granted, provided that this copyright

 * and permission notice appear on all copies and supporting documentation,

 * the name of Carnegie Mellon not be used in advertising or publicity

 * pertaining to distribution of the program without specific prior

 * permission, and notice be given in supporting documentation that copying

 * and distribution is by permission of Carnegie Mellon and Stanford

 * University. Carnegie Mellon makes no representations about the

 * suitability of this software for any purpose. It is provided “as is”

 * without express or implied warranty.

 *

 *

 * Copyright (c) 1986, 1987 Regents of the University of California.

 * All rights reserved.

 *

 * Redistribution and use in source and binary forms are permitted

 * provided that this notice is preserved and that due credit is given

 * to the University of California at Berkeley. The name of the University

 * may not be used to endorse or promote products derived from this

 * software without specific prior written permission. This software

 * is provided as is’’ without express or implied warranty.

 */

Using the BOOTP Server
Chapter 5

5-4

When bootpd is first started, it performs the following functions:

 reads a configuration file to build an internal database of clients and
desired boot responses for each

 listens for BOOTP boot requests on UDP socket port 67 (bootps)

 checks the file time stamp on the configuration file before processing a
boot request. If the file time stamp has changed since the last check, it
re-builds the client database

The configuration file has a format similar to that of termcap in which two
character case-sensitive tag symbols represent host parameters. These
parameter declarations are separated by colons (:). The general format is
as follows:

hostname:tg=value...:tg=value...:tg=value:

hostname is the actual name of a BOOTP client and tg is a two-character
tag symbol. Most tags must be followed by an equal sign and a value.
Some tags may also appear in a boolean form with no value (:tg:).

 bootpd recognizes the following tags:

Tag: Description:

bf Bootfile

bs Bootfile size in 512-octet (byte) blocks

ha Host hardware address

hd Bootfile home directory

hn Send hostname

ht Host hardware type

ip Host IP address

sm Host subnet mask

tc Table continuation (points to similar “template” entry)

vm Vendor magic cookie selector

There is also a generic tag, Tn, where n is an RFC-1048 vendor field tag
number. This can allow you to immediately use future extensions to
RFC-1048 without first modifying bootpd. You can represent generic data
as either a stream of hexadecimal numbers or as a quoted string of ASCII
characters. The length of the generic data is automatically determined and
inserted into the proper field(s) of the RFC-1048-style bootp reply.

The ip and sm tags each expect a single IP address. All IP addresses are
specified in standard Internet dot notation and may use decimal, octal, or
hexadecimal numbers (octal numbers begin with 0, hexadecimal numbers
begin with 0x or 0X).

Setting Up the Bootptab
Configuration File

Using the BOOTP Server
Chapter 5

5-5

Specifying the Type of Hardware

The ht tag specifies the hardware type code as:

 an unsigned decimal, octal, or hexadecimal integer
 ethernet or ether for 10Mb Ethernet

Specifying the Hardware Address

The ha tag takes a hardware address. The hardware address must be
specified in hexadecimal. You may include optional periods and/or a
leading 0x for readability. The ha tag must be preceded by the ht tag (either
explicitly or implicitly; see tc).

Specifying the Host Name, Home Directory, and Bootfile

The host name, home directory, and bootfile are ASCII strings which may
be optionally surrounded by double quotes (“”). The client’s request and
the values of the hd and bf symbols determine how the server fills in the
bootfile field of the bootp reply packet.

 If the client specifies an absolute path name and that file exists on the
server machine, that path name is returned in the reply packet.

 If the file cannot be found, the request is discarded and no reply is sent.

 If the client specifies a relative path name, a full path name is formed by
prepending the value of the hd tag and testing for the file’s existence.

 If the hd tag is not supplied in the configuration file or if the resulting
bootfile cannot be found, the request is discarded. Because OS-9
BOOTP clients normally supply os9boot as the bootfile name, the
relative path name case is used.

Clients which specify null boot files always elicit a reply from the server.
The exact reply depends on the hd and bf tags.

 If the bf tag specifies an absolute path name and the file exists, that path
name is returned in the reply packet.

 If the hd and bf tags together specify an accessible file, that file name is
returned in the reply.

 If a complete file name cannot be determined or the file does not exist,
the reply contains a zeroed-out bootfile field.

Using the BOOTP Server
Chapter 5

5-6

In each case, existence of the file means that, in addition to actually being
present, the file must have its public read access bit set. tftpd requires this
to permit the file transfer. Set the hd tag to /h0/TFTPBOOT or to the same
directory as given on the tftpd command line.

All file names are first tried as filename.hostname and then simply as
filename. This provides for individual per-host bootfiles.

The following table further illustrates the interaction between hd, bf, and
the bootfile name received in the BOOTP request:

Homedir
specified: Bootfile specified:

Client’s file
specification: Action:

No No Null Send null file name

No No Relative Discard request

No Yes Null Send if absolute else discard request

No Yes Relative Discard request

Yes No Null Send null file name

Yes No Relative Lookup with .host

Yes Yes Null Send home/boot or bootfile

Yes Yes Relative Lookup with .host

Specifying the Size of the Bootfile

The bootfile size, bs, may be either a decimal, octal, or hexadecimal
integer specifying the size of the bootfile in 512-octet blocks, or the
keyword auto. Specifying auto causes the server to automatically set the
bootfile size to the actual size of the named bootfile at each request.
Specifying the bs symbol as a boolean has the same effect as specifying
auto as its value. OS9 BOOTP clients require bs or bs=auto.

Sending a Host Name

The hn tag is strictly a boolean tag. It does not take the usual equal sign
and value. Its presence indicates that the host name should be sent to
RFC-1048 clients. bootpd attempts to send the entire host name as it is
specified in the configuration file; if this will not fit into the reply packet,
the name is truncated to just the host field (up to the first period, if present)
and then tried. In no case is an arbitrarily-truncated host name sent. If
nothing reasonable will fit, nothing is sent.

Using the BOOTP Server
Chapter 5

5-7

Sharing Common Values Between Tags

Often, many host entries share common values for certain tags (such as
name servers). Rather than repeatedly specifying these tags, you can list a
full specification for one host entry and shared by others using the tc (table
continuation) tag. The template entry is often a dummy host which does
not actually exist and never sends bootp requests. This feature is similar to
the tc feature of termcap for similar terminals.

Important: bootpd allows the tc tag symbol to appear anywhere in the
host entry, unlike termcap which requires it to be the last tag.

Information explicitly specified for a host always overrides information
implied by a tc tag symbol, regardless of its location within the entry. The
tc tag may be the host name or IP address of any host entry previously
listed in the configuration file.

Sometimes you need to delete a specific tag after it has been inferred with
tc. To delete the tag, use the construction tag@. This removes the effect of
tag. For example, to completely undo the host directory specification, use
:hd@: at an appropriate place in the configuration entry. After removal
with @, you can reset a tag using tc.

Blank lines and lines beginning with a pound sign (#) are ignored in the
configuration file. Host entries are separated from one another by
newlines. You can extend a single host entry over multiple lines if the lines
end with a backslash (\). You can also have lines longer than 80 characters.

Tags may appear in any order, with the following exceptions:

 The host name must be the very first field in an entry.
 The hardware type must precede the hardware address.

Individual host entries must not exceed 1024 characters.

Using the BOOTP Server
Chapter 5

5-8

An Example Bootptab File

An example /h0/TFTPBOOT/bootptab file follows:

First, we define a global entry which specifies the stuff every host uses.

#

the bs tag is required for OS-9 BOOTP clients

bf is set (to anything) to cause the bootfile.hostname lookup action

#

global.dummy:sm=255.255.255.0:hd=/h0/TFTPBOOT:bs:

#

individual hosts

#

boop: tc=global.dummy:ht=ethernet:ha=08003E205284:ip=192.52.109.96:

vite: tc=global.dummy:ht=ethernet:ha=08003e20c300:ip=192.52.109.57:

boesky: tc=global.dummy:ht=ethernet:ha=08003E202eae:ip=192.52.109.61:

Chapter

6

6-1

OS-9/Internet Utilities

Fourteen utilities are provided for use with the OS-9/Internet software:

Utility: Description:

arpstat ARP Table Information
arpstat reports or changes the ARP table information.

bootptest Test Bootpd Server
bootptest tests the bootpd server.

ftp File Transfer Protocol
ftp transfers files to and from remote systems. There are many ftp
commands for file manipulation between systems.

hostname Host Name for Bootpd
hostname prints or sets the host name for bootpd.

idbgen Internet Database Generation
idbgen builds the Internet data module from the four data files: hosts,
networks, protocols, and services. idbgen must be run each time any of
these files are updated.

idbdump Internet Database Display
idbdump displays the current entries of the Internet data module.

ifgen IF Device Descriptor Generation
ifgen generates the necessary assembler code for all IF device
descriptors provided for in the if_devices file.

iifstat IF Device Status
ifstat generates an IF device status report.

inetstat Report TCP status
inetstat prints information about open TCP sockets and the status of TCP.

ipstat IP Information
ipstat reports or changes IP information.

ispstart Internet Startup
ispstart starts up the Internet system.

lestat Lance Device Status
lestat generates a LANCE device status report.

mbinstall F$MBuf Installation
mbinstall installs the F$MBuf system call.

telnet Telnet User Interface
telnet provides the user interface for communication between systems on
the Internet system. telnet provides the ability to log on to remote systems.

Five daemon server programs and three connection handlers are
also provided:

Daemon: Description:

bootpd Bootp Server Daemon

ftpd FTP Server Daemon

ftpdc FTP Server Connection Handler

routed Route Daemon

telnetd Telnet Server Daemon

telnetdc Telnet Server Connection Handler

tftpd TFTP Server Daemon

tftpdc TFTP Server Connection Handler

OS-9/Internet Utilites
Chapter 6

6-2

Report/Change ARP Table Information

Syntax

arpstat [<opt>]

Description

arpstat reports or changes the ARP (Address Resolution Protocol) table
information. By default, all entries in the ARP table are shown. The IP
address, Ethernet address, a timer value, and a flag value are given for
each entry.

Options

Option: Description:

-? Displays the description, options, and command syntax for arpstat.

-a Shows all entries in the ARP table. This is the default.

-d[=]<hostname> Deletes the entry in the ARP table for <hostname>.

-n Shows numbers rather than names.

-s[=]<hostname> <physaddr> [temp] Adds <hostname> with the physical address specified by <physaddr>.
temp specifies that the entry should be added temporarily. The entry will
be deleted after 20 minutes. If the word temp is not added, the entry will
remain until removed with the -d option.

arpstat

OS-9/Internet Utilities
Chapter 6

6-3

Respond to BOOTP Request From Booting System

Syntax

bootpd [<opts>] {<configfile>}

Description

bootpd is the server daemon that handles client BOOTP requests. bootpd
must be run as super user.

The -d option causes bootpd to display request activity which is useful to
diagnose BOOTP client request problems. Each additional -d (up to three)
appearing on the command line gives more debugging messages.

Each time a client request is received, bootpd checks to see if the configfile
has been updated since the last request. This allows you to change
configfile without restarting bootpd.

bootpd is normally run in an ISP startup file as follows:

bootpd /h0/etc/bootptab <>>>/nil&

bootpd looks in inetdb (using getservbyname()) to find the port numbers it
should use. Two entries are extracted:

Entry: Description:

bootps the bootp server listening port

bootpc the destination port used to reply to clients

If the port numbers cannot be determined this way, the port numbers are
assumed to be 67 for the server and 68 for the client.

Options

Option: Description:

-? Displays the syntax, options, and command description of
bootpd.

-d Log debug information to <stderr>.

bootpd

OS-9/Internet Utilites
Chapter 6

6-4

Test for BOOTP Server Response

Syntax

bootptest {<opts>}

Description

bootptest sends a BOOTP request to the network and waits for a response
from a BOOTP server. If a response is received, bootptest attempts to read
the bootfile from the server. bootptest provides a way to test a BOOTP
server setup without using an actual diskless client.

The -h, -e, and -n options are not really options as all must appear on the
command line. -h accepts a name which is converted to an IP address
using gethostbyname().

If no name is available for a host, the IP address can be given in dotted
decimal notation.

You can broadcast by specifying 0 or 255 as the host portion of the IP
network address. This solicits a response from any BOOTP server on the
named network.

A real BOOTP client uses all ones (255.255.255.255) for the IP address
when it boots because it does not yet know its IP address. An IP address of
all ones is received as a broadcast by any IP host with a socket bound to
the bootps port (UDP 67). bootpd uses the contents of the BOOTP
message to tell from where the broadcast came.

The bootptab configuration file on the bootpd server must specify an entry
for the system on which bootptest is running. bootptest cannot do a proxy
test for another host because the bootpd server directs the BOOTP
response to the intended client’s IP address, not the IP address from which
bootptest is running.

The most useful test is a simple assurance test that bootpd is properly
running on the server system. Run bootptest naming loopback or the host’s
own hostname and see if a response is received from bootpd. Use the -d
option in bootpd to display log messages.

bootptest

OS-9/Internet Utilities
Chapter 6

6-5

Options

Option: Description:

-? Displays the syntax, options, and command description
for bootptest.

-e=<etheradr> In colon notation.

-f=<filename> Copy bootfile into <filename>.

-h=<hostname> Target server IP address (name or dotted decimal).

-n=<filename> Bootfile name for bootp server.

Example

The following is an example of bootptest:

bootptest -h=192.52.109.255 –e=8:0:3E:20:52:84 –n=os9boot

OS-9/Internet Utilites
Chapter 6

6-6

File Transfer Manipulation/Remote Internet Site Communication

Syntax

ftp [<opts>] [<host>]

Description

ftp is the user interface to the ARPANET standard file transfer protocol.
ftp transfers files to and from a remote network site.

If <host> is specified on the command line, ftp immediately attempts to
establish a connection to an FTP server on that host.

If <host> is not specified, ftp enters its command interpreter. A current
status report of the ftp modes is displayed and ftp waits for instructions.
When waiting for commands, ftp displays the prompt ftp . For example:

ftp

Not connected.

Mode: stream Type: ascii Form: non–print Structure: file

Verbose: on Bell: off Prompting: on Globbing: on

Hash mark printing: off Use of PORT commands: off

ftp>

Important: These fields are discussed in Chapter 3, Transferring Files
with FTP.

File Naming Conventions

Local files specified as parameters to ftp commands are processed
according to the following rules.

 If the first character of the file name is an exclamation point (!), the
remainder of the parameter is interpreted as a shell command. ftp then
forks a shell with the supplied parameter and reads (writes) from the
standard output (standard input) of that shell. If the shell command
includes spaces, the parameter must be quoted; for example, “! ls –lt”. A
useful example of this mechanism is: “dir !more”.

 Failing these checks, if globbing (wildcard expansion) is enabled, local
file names are expanded.

ftp

OS-9/Internet Utilities
Chapter 6

6-7

Important: ftp does not process remote file names. They are passed just
as they are typed, except for the mdelete, mdir, mget, and mls commands.
The file names passed to these commands are expanded according to the
rules of the remote host’s server. Expansion is accomplished by sending ls
to the server.

File Transfer Protocols

The FTP specification specifies many parameters which may affect a file
transfer. OS-9/ISP currently supports the following type, mode, and
structure parameters.

type may be:

 ascii specifies network ASCII
 image or binary specify image

Currently, the only mode supported is stream.

Currently, the only structure supported is file.

Commands

Once in the command interpreter, the following ftp commands
are available:

Command: Description:

$ [<command>] Runs as a shell command on the local machine. If <command> is not
specified, it starts an interactive shell.

append [<local> [<remote>]] Appends <local> to a file on the remote machine. If you do not specify
<remote>, the <local> name is used in naming the remote file. If you
specify neither <local> nor <remote>, ftp prompts for the appropriate
information. File transfer uses the current settings for transfer type,
structure, and mode.

ascii Sets the file transfer type to network ASCII. This is the default.

bell Announces the completion of file transfers with a bell.

binary Sets the file transfer type to support binary image transfer.

bye Terminates the ftp session and exits (same as quit).

cd Changes the current directory on the remote system (same as chd).

chd Changes the current directory on the remote system (same as cd).

close Terminates the remote session and returns to the ftp command interpreter.

connect Connects to remote ftp.

debug [<value>] Toggles socket level debugging mode. When debugging is on, ftp prints
each command sent to the remote machine, preceded by the string ––>

NOTE: <value> is currently accepted as a parameter, but is not
implemented in this release.delete [<remote>]

OS-9/Internet Utilites
Chapter 6

6-8

Command: Description:

delete [<remote>] Deletes a file on the remote machine. If <remote> is not specified, ftp
prompts for the file name.

dir [<remote> [<local>]] Displays a remote directory listing. If <remote> is not specified, dir
displays the current remote directory. If <local> is specified, dir redirects
the directory listing to the specified file instead of to standard output.

form Sets the file transfer form. non–print is the only form currently supported.

get <remote> [<local>] Copies the file <remote> to the local system. If <local> is not specified, get
copies <remote> to a file with the same name. get uses the current
settings for transfer type, structure, and mode while transferring the file.
This command is the same as recv.

glob Toggles globbing (wildcard expansion) of remote file names for mdelete,
mget, and mput. If globbing is turned off, file names are taken literally.

hash Toggles printing # (hash marks) for each buffer transferred.

help [<command>] Prints a help message about a command if specified (same as ?). If no
<command> is specified, help displays a list of available commands.

lcd [<directory>] Changes the current local directory (same as lchd). If no directory is
specified, ftp prompts for the directory name.

lchd [<directory>] Changes the current local directory (same as lcd). If no directory is
specified, ftp prompts for the directory name.

ls [<remote> [<local>]] Displays an abbreviated directory from the remote system. If <remote> is
not specified, ls displays the current remote directory. If <local> is
specified, ls redirects the directory listing to the specified file instead of to
standard output.

mdelete [<remote>] Deletes multiple files on the remote system. You can specify <remote>
using file name wildcards (for example, ch*.doc).

mdir [<remote> <local>] Redirects the display of the contents of remote directories to a local file.
You can specify <remote> using file name wildcards (for example,
chap*.doc). If <local> and <remote> are not specified, ftp prompts for the
appropriate information.

mget [<remote>] Copies the remote files to the current local directory. You can specify
<remote> using file name wildcards (for example, chap*.doc).

makdir [<remote>] Makes a directory on the remote system (same as mkdir). If <remote> is
not specified, ftp prompts for the directory name.

mkdir [<remote>] Makes a directory on the remote system (same as makdir). If <remote> is
not specified, ftp prompts for the directory name.

mls [<remote> [<local>]] Redirects the display of remote file/directory listings to the file <local>. You
can specify <remote> using file name wildcards (for example, chap*.doc).
If <remote> and <local> are not specified, ftp prompts for the appropriate
information.

mode [<mode>] Sets the transfer mode to <mode>. Currently, only stream is accepted as
<mode>.

mput [<local>] Expands wildcards in the list of <local> and copies each file in the
resulting list to the current remote directory.

open [<host> [<port>]] Establishes a connection to the specified host FTP server. An optional
port number may be supplied, in which case ftp attempts to contact an
FTP server at that port. If the auto–login option is ON (default), ftp also
attempts to automatically log the user in to the FTP server. If <port> is not
specified, ftp prompts for the host name.

pd Prints the name of the current remote directory pathlist (same as pwd).

OS-9/Internet Utilities
Chapter 6

6-9

Command: Description:

prompt Toggles interactive prompting for commands that involve multiple file
transfers. Interactive prompting occurs during multiple file transfers to
allow you to selectively retrieve or store files. By default, prompting is
turned ON. If prompting is turned off, any mget or mput transfers all files,
and any mdelete deletes all files.

put [<local> [<remote>]] Copies a local file to the remote machine. If <local> is not specified on the
command line, ftp prompts for both the local and remote file names. If
<local> is specified on the command line and <remote> is not specified,
ftp uses the local file name in naming the remote file. File transfer uses
the current settings for transfer type, structure, and mode. This command
is the same as send.

pwd Prints the name of the current remote directory pathlist (same as pd).

quit Terminates the ftp session and exits (same as bye).

quote [<params>] Sends the specified parameters, verbatim, to the remote FTP server. A
single FTP reply code is expected in return. If no parameters are specified
on the command line, ftp prompts for them.

recv <remote> [<local>] Copies a remote file to the local system. If <local> is not specified, recv
copies <remote> to a file with the same name. recv uses the current
settings for transfer type, structure, and mode while transferring the file.
This command is the same as get.

remotehelp [<command>] Requests help from the remote FTP server (same as rhelp). If specified,
<command> is supplied to the server as well.

rename [<old> <new>] Renames the remote file <old> to have the name <new>. If <old> and
<new> are not specified on the command line, ftp prompts for the
appropriate information.

rhelp [<command>] Requests help from the remote FTP server (same as remotehelp). If
specified, <command> is supplied to the server as well.

rmdir [<remote>] Deletes a directory on the remote machine. If <remote> is not specified on
the command line, ftp prompts for the directory name.

send [<local> [<remote>]] Copies <local> to the remote machine. If <local> is not specified, ftp
prompts for both the local and remote file names. If <local> is specified
and <remote> is not, send uses the local file name in naming the remote
file. File transfer uses the current settings for transfer type, structure, and
mode. This command is the same as put.

sendport Toggles the use of PORT commands. By default, ftp attempts to use a
PORT command when establishing a connection for each data transfer. If
the PORT command fails, ftp uses the default data port. When PORT
commands are disabled, no attempt is made to use PORT commands for
each data transfer. This is useful for certain FTP implementations which
ignore PORT commands, but incorrectly indicate they have been
accepted.

NOTE: This command does not have any effect. It is accepted as a legal
command, but not implemented. PORT commands are always used in the
current implementation of ftp.

status Shows the current status of ftp.

struct [<struct>] Sets the file structure to <struct>. Currently, the only valid <struct> is file.

OS-9/Internet Utilites
Chapter 6

6-10

Command: Description:

type [<type>] Sets the representation type to <type>. The valid values for <type> are:
ascii for network ASCII.
binary or image for image.
tenex for local byte size with a byte size of eight (used

to talk to TENEX machines).
If <type> is not specified, the current type is printed. The default type is
network ASCII.

user [<user> [<password>]
[<account>]]

Identifies you to the remote FTP server. If <user> is not specified, ftp
prompts for it. If the password and/or the account field is not specified and
the server requires it, ftp prompts for it after disabling local echo. Unless
ftp is called with auto–login disabled, this process is performed
automatically on initial connection to the FTP server.

verbose Toggles verbose mode. In verbose mode, all responses from the FTP
server are displayed. In addition, if verbose mode is on, when a file
transfer completes, it reports statistics regarding the efficiency of the
transfer. By default, if commands are coming from a terminal, verbose
mode is ON; otherwise, verbose mode is OFF.

? [<command>] Prints a help message about a command if specified (same as help). If no
<command> is specified, ? displays a list of commands available.

Important: You may use quotation marks (“”) around command
parameters having embedded spaces.

Options

You may specify options at the command line or to the
command interpreter.

Option: Description:

–? Displays the description, options, and command syntax for ftp.

–d Turns on debugging mode.

–g Does not expand wildcard file name expansion (that is, globbing).

–n Does not attempt auto–login upon initial connection. If auto–login is
enabled, ftp uses the login name on the local machine as the user identity
on the remote machine, prompts for a password, and optionally, an
account with which to login.

–s Does not set the file size on received data. By default, ftp attempts to
pre–extend the file when getting a file. Often, a remote server includes the
file size in the response string when it opens a data connection. ftp
recognizes a byte specification with the form (xxxx bytes), if the response
code is 150 or 125. If the file size is not included or a different response
code is used, ftp does not attempt to pre–extend the file.

–v Turns off verbose mode. Verbose mode shows all responses from the
remote server and reports on data transfer statistics.

OS-9/Internet Utilities
Chapter 6

6-11

Incomng FTP Server Daemon

Syntax

ftpd [<opt>] <redirections>&

Description

ftpd is the incoming ftp daemon process. It must be running to handle
incoming ftp connection requests. ftpd forks the ftpdc communications
handler each time a connection to the ftp service is made.

ftpd has two available options.

Option: Description:

-d Prints debugging information to the standard error path

-l Prints user login information to the standard error path

To save this information for later use, redirect the standard error path to an
appropriate file on the command line:

ftpd –d </nil >>>–/h0/ISP/ftpd.debug&

ftpd –l </nil >>>–/h0/ISP/ftpd.login&

If neither option is used, redirect the standard error path to the null driver
along with the standard input/output paths:

ftpd <>>>/nil

Important: End the command line with an ampersand (&) to place ftpd in
the background (for example, ftpd /nil&). Only supers users can run ftpd.

Options

Option: Description:

–? Displays the description, options, and command syntax for ftpd.

–d Prints debugging information to standard error.

–l Prints login information to standard error.

ftpd

OS-9/Internet Utilites
Chapter 6

6-12

FTP Server Communications Handler

Syntax

The ftpd utility must fork this utility.

Description

ftpdc is the incoming communications handler for ftp. Each time an ftp
service connection is made, ftpd calls this process. Do not fork this process
by any other method.

The two ftpd options are passed directly to ftpdc along with the standard
error path. Consequently, this process is completely transparent.

Display or Set Internet Name of Host

Syntax

hostname [<name>]

Description

hostname prints or sets the string returned by the socket library
gethostname() function. By default, gethostname() returns the net_name
string appearing in the /socket device descriptor. You can use hostname to
override the default to return any string up to 32 characters. bootpd
requires gethostname() to return the proper string that names the host on
which it is running. If the name is properly set in the socket descriptor, you
do not need to run hostname.

ftpdc

hostname

OS-9/Internet Utilities
Chapter 6

6-13

Generate Network Database Module

Syntax

idbgen [<opts>]

Description

idbgen generates an OS-9 data module (inetdb) from the four network
database files: hosts, networks, protocols, and services.

Any time a change is made to any of these files, you must use idbgen to
generate a new data module.

By default, idbgen looks for the network database files in the current
directory. However, you may use the –d option to specify the directory
containing the files.

Options

Option: Description:

–d=<str> Specifies the directory to find the network database files.

–r=<num> Sets the module revision to <num>.

–x Places the module in the execution directory.

ibdgen

OS-9/Internet Utilites
Chapter 6

6-14

Display Internet Database Entries

Syntax

idbdump [<opts>]

Description

idbdump displays a formatted listing of the entries of the Internet database
currently loaded in memory. If no options are specified, idbdump displays
each entry in the database. Specific options display the appropriate type of
database entry. For example, the command idbdump –n displays only the
network entries:

idbdump –n

module id: 1

Network Entries:

loopback 127

sun–ether 192.9.200 sunether ethernet localnet

sun–oldether 125 sunoldether

arpanet 10

Options

Option: Description:

–? Displays the description, options, and command syntax for idbdump.

–h Displays the hosts entries.

–n Displays the networks entries.

–p Displays the protocols entries.

–s Displays the services entries.

idbdumb

OS-9/Internet Utilities
Chapter 6

6-15

IF Device Descriptor Generation

Syntax

ifgen –z=<file>

ifgen <if_devices

Description

ifgen uses the contents of the if_devices file when creating assembly
language descriptor files. You may specify the if_devices file using the -z
option or by redirecting ifgen’s standard input. The if_devices file
contains simple instructions describing the contents of the descriptors.

Device Descriptor Templates

ifgen uses templates to create assembly language descriptor files. ifgen
replaces the following with the information found in the if_devices file.

Option: Description:

%A Internet address

%B Broadcast/destination address

%D Directory for device driver

%F Interface flags

%I Device descriptor name

%L Interrupt level

%M Manual transmission unit of device

%N Device driver name

%P Port address

%S Subnet mask

%T Polling priority

%V Interrupt vector

%i Internet name

%l Link level address

The following is a sample device descriptor template:

*
* Template for ifdgen descriptor generation utility
*
 nam %I device descriptor module

 use ../desc/defsfile

TypeLang set (Devic<<8)+0
Attr_Rev set (ReEnt<<8)+0
 psect %I,TypeLang,Attr_Rev,1,0,0

ifgen

OS-9/Internet Utilites
Chapter 6

6-16

 dc.l %P port address
 dc.b %V auto–vector trap assignment
 dc.b %L IRQ hardware interrupt level
 dc.b %T exclusive polling table priority
 dc.b Updat_ device mode capabilities
 dc.w FM_name file manager name offset
 dc.w Dvr_name device driver name offset
 dc.w 0 DevCon
 dc.w 0,0,0,0 reserved
 dc.w 2 option byte count

OptTbl dc.b 0x9 DT_INET
 dc.b 0 pad
OptLen equ *–OptTbl

* Internet address
 dc.l bname ; offset to interface name
 dc.w %M ; maximum transmission unit
 dc.w %F ; interface flags
 dc.w sockaddr_in ; struct sockaddr
 dc.l %S ; subnet mask
 dc.w bdaddr ; broadcast/dest address
 dc.w linkaddr ; link–level (Ethernet) addresss
 dc.l 0
 dc.l 0
 dc.l 0
 dc.l 0
 dc.l 0
*
* driver–specific stuff can be placed here
*
 use %I.d

 align
net_name dc.b “%i”,0
 align
linkaddr dc.b %l
 align
bdaddr dc.b %B
 align
sockaddr_in dc.w 2 AF_INET address family
 dc.w 0 port
 dc.b %A direct address (internet)
socksiz equ *–sockaddr_in
 ifgt 16–socksiz padd to at least 16 bytes
 rept 16–socksiz
 dc.b 0
 endr
 endc
 align
FM_name dc.b “ifman”,0 file manager
 align
Dvr_name dc.b “%N”,0 device driver
 ends

OS-9/Internet Utilities
Chapter 6

6-17

The if_devices File

The if_devices file contains specific entries for each descriptor to make.
Each entry consists of a number of fields. Each field is indicated by a
leading keyword:

Keyword: Template Flag: Function:

inetaddr %A Internet address

bdaddr %B Broadcast/destination address

dvrdir %D Directory for device driver

fkags %F Interface flags

name %I Device descriptor name

level %L Interrupt level

mtu %M Manual transmission unit of device

uses %N Device driver name

at %P Port address

submask %S Subnet mask

poll %T Polling priority

vector %V Interrupt vector

iname %i Internet name

laddr %l Link level address

Important: The exception to the keyword value entry format is the device
descriptor name. If this field appears first in an if_devices entry, you may
omit the name keyword.

The value following each keyword replaces the template flag when the
descriptor is remade using ifgen.

More than one value may follow the interface flags keyword. The
following keywords indicate the values:

Keyword: Template value: Function:

notrailers IFF_NOTRAILERS Do not accept trailer packets

debug IFF_DEBUG Debug mode

broadcast IFF_BROADCAST Allow broadcast packets

point IFF_PT_TO_PT Point to point link

take_nofwd IFF_TAKE_NFWD Accept “no forward” packets

noarp IFF_NOARP No ARP packets

You may continue any entry on the following line by placing a backslash
(\) at the end of the line to continue. Continue all entries longer than 256
characters on another line.

OS-9/Internet Utilites
Chapter 6

6-18

If a field is not included in the if_devices file, the default value of zero is
used for numeric fields.

For example, the following if_devices file describes three descriptors.

#

parameter driver for ifdev device descriptors

#

lo0 uses ifloop at 0 mtu 65535 flags notrailers,take_nofwd \

inetaddr 127.0.0.1

lo1 uses ifloop at 1 mtu 65535 flags notrailers,take_nofwd \

inetaddr 126.0.0.1

le0.147 uses am7990 at 0xFFFE1800 vector 68 level 5 poll 0 mtu 1500 \

flags notrailers,broadcast \

inetaddr 192.9.200.1

To work correctly, ifgen relies on a specific directory structure. The uses
field specifies the device driver name and the directory in which to make
the device descriptor. The Desc directory must contain the device
descriptor template. Ifgen must be run from the parent directory of Desc.
For example, the sample if_devices file minimally assumes the following
directory structure:

Desc Am7990 Ifloop

Running ifgen from the parent of these directories creates the desired
descriptors in the proper directories.

Options

Option: Description:

–z=<file> Specifies the pathlist of the if_devices file to use.

OS-9/Internet Utilities
Chapter 6

6-19

IF Device Driver Status

Syntax

ifstat <if device>

Description

ifstat prints information about the status of an IF device.

Options

Option: Description:

–? Displays the description, options, and command syntax for ifstat.

–a Shows information of all interface devices.

–l Shows information of local interface device /lo0.

Example

$ ifstat –l

this=002bcfe0 next=00354070 prev=002b82e0 static=00354040 size=00000208
name=lo0 driver=ifloop mtu=–1 flags=00a0
af=2 port=0 addr=7F000001
nada

$ ifstat –a

ifdev(0).if_next = 002bcfe0
ifdev(0).if_prev = 00354070
ifdev(0).if_mtu = 1500
ifdev(0).if_flags = 0022
ifdev(0).if_subnet = ffffff00
ifdev(0).if_addr = 192.9.200.3
ifdev(0).if_addr.family_type = 2
ifdev(0).if_addr.port = 0
ifdev(0).if_devnam = le0
ifdev(0).if_dvrnam = am7990

ifdev(1).if_next = 00354070
ifdev(1).if_prev = 002b82e0
ifdev(1).if_mtu = –1
ifdev(1).if_flags = 00a0
ifdev(1).if_subnet = 0
ifdev(1).if_addr = 127.0.0.1
ifdev(1).if_addr.family_type = 2
ifdev(1).if_addr.port = 0
ifdev(1).if_devnam = lo0
ifdev(1).if_dvrnam = ifloop

ifstat

OS-9/Internet Utilites
Chapter 6

6-20

Report TCP Status

Syntax

inetstat

Description

inetstat prints an Internet status report. By default, the following
information is displayed for each active connection:

 the path number
 the protocol used
 the local address
 the foreign address
 the state of the connection
 a queue
 the process ID

Options

Option: Description:

–? Displays the description, options, and command syntax for inetstat.

–a Prints information about all open sockets.

–n Shows the numbers rather than the Internet names.

–t Prints TCP statistics.

Example

$ inetstat

Active connections

 Path Proto Local Address Foreign Address State Q Pid

 185 tcp vite.telnet yme.1872 established 0 0

 0 tcp vite.telnet wahz.3641 time_wait 0 0

 71 tcp vite.telnet bobo.1035 established 0 0

inetstat

OS-9/Internet Utilities
Chapter 6

6-21

Report/Change IP Information

Syntax

ipstat [<opt>]

Description

ipstat reports or changes IP information.

Options

Option: Description:

–? Displays the description, options, and command syntax for ipstat.

–a <–n|–h|–f> <Destination> <gateway> Adds an entry to the host/net/default routing list.

–c <–n|–h|–f> <Destination> <gateway> Changes to gateway if entry with matched Destination on host/net
routing list.

–d <–n|–h|f> <Destination> <gateway> Deletes an entry from the host/net/default routing list.

–f Prints the default information.

–h Prints the host routing list.

–i Prints the IP static information.

–n Prints the net routing list.

Example

$ ipstat –i

Ip statistic information:
––
ipm_inpackets(# of packets received) = 602290
ipm_outpackets(# of packets sent) = 647851
ipm_complete(complete datagrams received) = 602286
ipm_badcheck(datagram received with bad checksum) = 0
ipm_runt(tiny datagram that were tossed) = 0
ipm_version(unacceptable version number) = 0
ipm_hlen(header length too short) = 0
ipm_orphan(datagrams that no one wanted) = 0
ipm_route(datagrams routed through this machine) = 0
ipm_qfull(datagrams dropped because recv q was full) = 0
ipm_raw(datagram that went to raw socket) = 0
ipm_ulp(datagrams that went to ulp’s) = 602225
ipm_icmp(icmp datagrams) = 61
ipm_nomem(no memory for processing packet) = 0
ipm_gwflag = 0
––

ipstat

OS-9/Internet Utilites
Chapter 6

6-22

Internet Startup

Syntax

ispstart&

Description

ispstart starts the Internet system. There are no options, parameters, or
output. An error is returned if ispstart cannot start the Internet system.

ispstart

OS-9/Internet Utilities
Chapter 6

6-23

LANCE Driver Status

Syntax

lestat <LANCE device>

Description

lestat prints information about the status of a LANCE device.

Example

$ lestat /le0

this=00344180 next=003c9840 prev=003eb6f0 static=00344210 size=00000144

name=le0 mtu=1500 flags=0022

af=2 port=0 ipaddr=192.9.200.57

in=11280 out=5398 inerr=1 outerr=0 coll=0

unkirq=0 recv=11280 irecv=11280 fram=0 oflo=0 crc=0 rbuf=0 miss=1 bogus=0

xirq=5398 trys=5398 xmit=5398 more=5 one=4 defer=53 tbuf=0

uflo=0 lcol=0 lcar=0 retry=0 babl=0 enq=0 tailirq=0 seen=0

The last three lines of the display provide important information about the
health of the driver and LANCE interface. In general:

 This line is the receive status:

unkirq=0 recv=0 irecv=3 fram=0 oflo=0 crc=0 rbuf=0 miss=0 bogus=0

 This line is the transmit status:

xirq=1 trys=1 xmit=1 more=0 one=0 defer=0 tbuf=0

 This line is the error status:

uflo=0 lcol=0 lcar=0 retry=0 babl=0 enq=0 tailirq=0 seen=0

The receive and transmit status lines contain error counters as defined by
the LANCE device. These are not really errors, but conditions that arise as
a normal part of Ethernet operations. Only worry about these values if they
increase greatly in value over a short period of time.

The last line (error status) contains counters for conditions that are
unexpected and affect the ability to communicate on the Ethernet.
Unexpected increases of the lcar value usually indicate a transceiver cable
problem. Try reseating or replacing the transceiver cable if this error
persists. Unexpected increases in lcol and babl usually indicate a problem
with the Ethernet cable itself. Check the hardware for open cables, shorts,
or bad terminators if this condition persists.

lestat

OS-9/Internet Utilites
Chapter 6

6-24

Mbuf Installation Utility

Syntax

mbinstall

Description

mbinstall installs the F$MBuf system call. Before mbinstall executes,
you must load the Sysmbuf module in memory.

mbinstall

OS-9/Internet Utilities
Chapter 6

6-25

Routing Daemon

Syntax

routed [<opts>] <redirections>&

Description

routed is a routing daemon which is supposed to be running in the
background at boot time to maintain the routing list.

routed uses UDP socket port 520 to listen and for response. About every
minute, routed checks to see if more than one Ethernet interface device is
active. If more than one is active, routed works as an Internet router and
supplies routing information to directly connected networks about every 30
seconds. This routing information, in the RIP data structure, helps the hosts
on the directly connected networks to update their routing table. Even
though a host has only one active interface device and does not work as a
router, routed helps to listen to the routing information being broadcasted
on the network and keep the routing list up to date.

About every 90 seconds, routed checks the routing list. If an entry has not
been updated for 3 minutes, the entry’s hopcount field is set to infinity and
marked for deletion. If the host is a router, this deletion information is
broadcasted to let other hosts update their routing table. This delays the
actual deletions for about 60 seconds to make sure the delete message was
passed throughout the network.

The -d option is for debugging purposes. routed supports some debug
information when routed –d is running. The debug information is printed
on the screen where routed is executed without an ampersand (&) (not in
background). routed displays the ifdev information currently in iflist, the
RIP information routed received, the add, delete, and update routing list
information, and the time stamp.

The -n option allows routed not to be a router (gateway) even though more
than one Ethernet interface device is active.

routed only maintains active entries. Passive entries added manually or
received from ipconfig are not changed.

Important: The command line should end in an ampersand (&) in order to
place the utility in the background. The super user must run routed.

Options

Option: Description:

–? Displays the description, options, and command syntax for routed.

–d Prints debug information.

–n Specifies that the daemon does not want to be a gateway.

routed

OS-9/Internet Utilites
Chapter 6

6-26

Provide Internet Communication Interface

Syntax

telnet [<opts>] [<hostname> [<portnum>]]

Description

telnet communicates with another host using the TELNET protocol. If
you execute telnet without parameters, you enter command mode. This is
indicated by the prompt telnet . In this mode, telnet accepts and executes
the commands listed below. If executed with parameters, telnet performs
an open command (see below) with those parameters.

Once a connection is opened, telnet enters input mode. In this mode, typed
text is sent to the remote host. To issue telnet commands from input mode,
precede them with the telnet escape character. The escape character is
initially set to control-right-bracket (^]), but you can redefine it. In
command mode, normal terminal editing conventions are available.

telnet

OS-9/Internet Utilities
Chapter 6

6-27

Commands

The following commands are available. You only need to type enough of
each command to uniquely identify it.

Command: Description:

capture [<param>] Captures all I/O of a telnet session to a specified file. Currently, capture
supports four parameters:
<file> Specifies a new file in which to write the I/O of a telnet

session. If <file> already exists, capture returns an error. When
<file> is specified, capture creates and opens the file, and turns
on capture mode.

on Turns on capture mode; begins to write I/O to the current
specified capture file.

off Turns off capture mode; stops writing I/O to the specified
capture file.
NOTE: This does not close the file.

close Closes the capture file.

close Closes the current connection and returns to telnet command mode.

display Displays the current telnet operating parameters. See toggle.

mode Tries to enter line–by–line or character–at–a–time mode.

open <host> Opens a connection to the specified <host>. If <host> is not specified,
telnet prompts for the host name. <host> may be a host name or an
Internet address specified in dot notation. If the port number is not
specified, telnet attempts to contact a TELNET server at the default port.

quit Closes any open telnet connection and exits telnet.

send [<chars>] Transmits special characters to telnet:
ao Abort Output
ayt ‘Are You There’
brk Break
ec Erase Character
el Erase Line
escape Current Escape Character
ga ‘Go Ahead’ Sequence
ip Interrupt Process
nop ‘No Operation’
synch ‘Synch Operation’ Command

set <param> Sets telnet operating parameters by setting local characters to specific
telnet character functions. Once set, the local character sends the
respective character function to the telnet utility. Specify control characters
as a caret (^) followed by a single letter. For example, control–X is ^X. set
supports the following parameters:
echo Sets character to toggle local echoing on and

off.
erase <local char> Sets the telnet erase character.
flushoutput <local char> Sets the telnet flushout character. This

character sends an Abort Output.
interrupt <local char> Sets the telnet interrupt character. This

character sends an Interrupt Process.
kill <local char> Sets the telnet kill character. This character

sends an Erase Line.
quit <local char> Sets the telnet quit character. This character

sends a Break.

status Shows the current telnet status. This includes the connected peer and the
state of debugging.

OS-9/Internet Utilites
Chapter 6

6-28

Command: Description:

toggle <param> Toggles telnet operating parameters:
crmod Toggles the mapping of received carriage returns. When

crmod is enabled, any carriage return characters received
from the remote host are mapped into a carriage return
and a line feed. This mode does not affect the characters
you type, only those received. This mode is not very
useful, but it is required for some hosts that ask the user
to perform local echoing.

localchars Toggles the effects of the set using the set command.
debug Toggles debugging mode. When debug is on, it opens

connections with socket level debugging on. Turning
debug on does not affect existing connections.

netdata Toggles the printing of hexadecimal network data in
debugging mode.

options Toggles the viewing of options processing in debugging
mode. Displays options sent by telnet as SENT; displays
options received from the telnet server as RCVD.

z Suspends the current telnet session and forks a shell.

$ Suspends the current telnet session and forks a shell.

? [<command>] Prints the help display. If <command> is specified, telnet prints information
about the specified command. Otherwise, it displays a general
help message.

Options

Option: Description:

–? Displays the description, option, and command syntax for telnet.

–d Turns on socket level debugging.

–o Shows options processing.

OS-9/Internet Utilities
Chapter 6

6-29

Incoming Telnet Server Daemon

Syntax

telnetd [<opts>] <redirections>&

Description

telnetd is the incoming telnet daemon process. It must be running to
handle incoming telnet connection requests. telnetd forks the telnetdc
communications handler each time a connection to the telnet service
is made.

Two options are available.

 -d prints debugging information to the standard error path
 -l prints user login information to the standard error path

To save this information for later use, redirect the standard error path to an
appropriate file on the command line:

telnetd –d </nil >>>–/h0/ISP/telnetd.debug&

telnetd –l </nil >>>–/h0/ISP/telnetd.log&

If neither option is used, redirect the standard error path to the null driver
(along with the standard in/out paths):

telnetd <>>>/nil

Important: End the command line with an ampersand (&) to place the
utility in the background. Only super users can run telnetd.

Options

Option: Description:

–? Displays the description, options, and command syntax for telnetd.

–d Prints the debug information to standard error.

– l Prints the login information to standard error.

telnetd

OS-9/Internet Utilites
Chapter 6

6-30

Telnet Server Communications Handler

Syntax

The telnetd utility must fork this utility.

Description

telnetdc is the incoming communications handler for telnet. Each time a
telnet service connection is made, telnetd calls this process. Do not fork
this process by any other method.

The two telnetd options are passed directly to telnetdc along with the
standard error path. Consequently, it is completely transparent to the user.

telnetdc

OS-9/Internet Utilities
Chapter 6

6-31

Respond to tftpd Boot Requests

Syntax

tftpd [<opts>] {<dirname> [<opts>]}

Description

tftpd is the server daemon that handles the client TFTP requests. Once a
BOOTP client has received the BOOTP response, it knows the name of its
bootfile. The client then issues a TFTP “read file request” back to the same
server machine from which it received the BOOTP response. tftpd forks
tftpdc to perform the actual file transfer.

tftpd in any system is a security problem because the TFTP protocol does
not provide any way to validate or restrict a transfer request; there is no
login procedure. To provide some level of security, tftpd only transfers
files from a single directory. You can specify this directory on the tftpd
command line. The default is /h0/TFTPBOOT.

Important: Bootfiles are assumed to be located in /h0/TFTPBOOT
or <dirname>.

Options

Option: Description:

–? Displays the syntax, options, and command description of bootpd.

–d Log debug information to <stderr>.

–D Directory that tftpd is allowed to access.

Respond to tftpd Boot Requests

Syntax

tftpdc is called by tftpd.

Description

tftpdc is intended to be run only by tftpd and therefore has no command
line options.

tftpd

tftpdc

Chapter

7

7-1

Socket/Network C Libraries

The OS-9/Internet library provides functions for retrieving information
from the Internet data files (hosts, protocols, networks, and services) and
for Internet address manipulation. The network data files are accessed from
the inetdb data module.

Each data access function links to inetdb and returns a structure pointing to
the appropriate entry from the data files. Because the structure contains
pointers instead of actual data, your programs should never modify the
data returned by the data access functions. Programs must also remain
linked to inetdb when using values returned by the functions.

There are two methods of linking to inetdb:

 a call to sethostent(), setnetent(), setservent(), or setprotoent() explicitly
links to inetdb

 a call to any of the Internet get functions implicitly links to inetdb

Once a process becomes linked to inetdb, these functions will not re-link
(increase the module link count) to the data module. Use the set functions
to assure that the module is properly linked when necessary.

To unlink a process from inetdb, use one of the end functions.

For example, the following program accesses the data module and prints
the host entries:

listhosts()

{

 struct hostent *host

 sethostent(); /* link to inetdb */

 while (host = gethostent()) {

 print_host_entry(host) }

 endhostent(); /* unlink from inetdb */

}

The OS-9/Internet Library

Socket/Network C Libraries
Chapter 7

7-2

The following functions comprise the netdb.l library:

endhostent() endnetent() endprotoent() endservent()
gethostent() gethostbyaddr() gethostbyname() getnetent()
getnetbyaddr() getnetbyname() getprotoent() getprotobyn
me() getprotobynumber()getservent() getservbyna
e() getservbyport() inet_addr() inet_lnaof()
inet_makeaddr() inetof() inet_network() inet_ntoa()
sethostent() setpeerent() setprotoent() setservent()

The socket library provides a BSD4.3-like socket interface. The following
functions comprise the socklib.l library:

_ss_sevent() accept() bind() connect()
gethostname() getpeername() getsockname() getsockopt()
listen() recv() recvfrom() send()
sendto() setsockopt() shutdown() socket()

The OS-9/Internet Socket
Library

Socket/Network C Libraries
Chapter 7

7-3

Set Event on Socket

Syntax

_ss_sevent(path, io_event)

int path, /* open path */

 io_event; /* event ID returned from _ev_link() or _ev_creat() */

Description

_ss_sevent() registers an event with the appropriate driver. The event is
incremented when the driver has data ready.

path is a path opened to a socket (sockman), a pseudo keyboard master, or
slave device (pkman).

io _event is the event ID returned from a call to either _ev_link()
or _ev_creat().

You can issue a _ss_sevent() on multiple paths to detect the presence of
data ready on multiple paths at once. The driver executes
_ev_setr(io_event, 1, 0x8000) when data is available for reading. A
process executes _ev_wait(io_event,1,32767) to wait for the data.

_ss_sevent() returns -1 if the driver cannot register the event.

Examples

if ((io_event = _ev_creat(0,–1,1,“myevent”) == –1) {

 fprintf(stderr, “can’t create event\n”);

 exit(errno);

}

if (_ss_sevent(net_path,io_event) == –1 ||

_ss_sevent(pkb_path,io_event) == –1) {

 fprintf(stderr, “can’t do _ss_sevent()\n”);

 exit(errno);

}

while (1) {

 if (poll_net()) break;

 if (poll_pkb()) break;

 if (_ev_wait(io_event, 1, 32767) == –1) {

 fprintf(stderr,“ev_wait failed\n”);

 exit(errno);

 }

}

_ss_sevent

Socket/Network C Libraries
Chapter 7

7-4

Accept Connection on Socket

Syntax

#include <types.h>

#include <socket.h>

int s, ns;

struct sockaddr addr;

int size, addrlen;

size = sizeof(struct sockaddr_in);

ns = accept(s, &addr, &addrlen);

Description

accept() takes the first connection on the queue of pending connections
and creates a new socket with the same properties as socket s. It allocates
and returns a new descriptor, ns, for the socket.

ns reads and writes data to and from the socket which connected to this
socket. It is not used to accept more connections. The original socket
remains open for accepting further connections.

s is the original socket. It was created by socket(), bound to an address
with bind(), and is listening for connections after a listen().

addr is a pointer that returns the address of the peer as known to the
communications layer. addr is returned in AF_INET format.

addrlen is a pointer to a value-result parameter used to pass the amount of
space pointed to by addr. It returns the actual length in bytes of the address
returned in AF_INET format.

If no pending connections are present on the queue and the socket is not
marked as non-blocking, accept() blocks the caller until a connection
is present.

If the socket is marked non-blocking and no pending connections are
present on the queue, accept() returns an error.

accept() is used with connection-based socket types, currently with type
SOCK_STREAM.

accept() returns -1 on error. If successful, it returns a non-negative integer
that is a descriptor for the accepted socket.

accept()

Socket/Network C Libraries
Chapter 7

7-5

Errors

If unsuccessful, accept() may return any of the following errors:

Error: Description:

E_ILLFNC The socket must be listening to call accept().

EOPNOTSUPP The referenced socket type or option is not supported.

EWOULDBLOCK The socket is non-blocking and no connections are present to be accepted.

See Also

bind() , connect() , listen() , select() , and socket()

Socket/Network C Libraries
Chapter 7

7-6

Bind Name to Socket

Syntax

#include <types.h>
#include <socket.h>

bind(s, name, namelen)
int s; /* socket */
struct sockaddr *name; /* pointer to the socket address */
int namelen; /* length of assigned name */

Description

bind() assigns a name to an unnamed socket. When socket() creates a
socket, it exists in a name space (address family) but has no assigned
name. bind() requests that the name pointed to by name be assigned to
the socket.

s specifies the path number of the socket.

name is a pointer to the socket address.

namelen specifies the length of the assigned name.

bind() returns 0 if successful. Otherwise, it returns –1 with the appropriate
error code placed in the global variable errno.

Errors

If unsuccessful, bind() may return any of the following errors:

Error: Description:

E_BMODE Not possible to bind this socket.

E_ILLFNC Socket already bound.

EADDRNOTAVAIL The specified address (name) is not available on the local machine.

EADDRINUSE The specified address (name) is already in use.

EINVAL The socket is already bound to an address (name).

EPERMIT The requested address (name) is protected, and the current user has
inadequate permission to access it.

ESOCKNOSUPPORT This socket type is not supported.

See Also

connect() , getsockname() , listen() , and socket()

bind()

Socket/Network C Libraries
Chapter 7

7-7

Initiate Connection on Socket

Syntax

#include <types.h>

#include <socket.h>

connect(s, name, namelen)

int s; /* socket */

struct sockaddr *name; /* pointer to the socket address */

int namelen; /* length of assigned name */

Description

connect() connects to a listening socket.

s specifies the path number of the socket to connect. If s is of type
SOCK_STREAM, connect() attempts to connect to another socket.

name is a pointer to the other socket.

namelen specifies the length of the assigned name.

A successful connection returns 0. Otherwise, it returns –1 with the
appropriate error code in errno.

Errors

If unsuccessful, connect() may return any of the following errors:

Error: Description:

EADDRNOTAVAIL The specified address is not available from this machine.

EAFNOSUPPORT Addresses in the specified address family cannot be used with this socket.

EISCONN The socket is already connected.

ETIMEDOUT Connection establishment timed out without establishing a connection.

ECONNREFUSED The attempt to connect was forcefully rejected.

ENETUNREACH The network is not reachable from this host.

EADDRINUSE The address is already in use.

EWOULDBLOCK The socket is non-blocking and the connection cannot be
completed immediately.

See Also

accept() , getsockname() , select() , and socket()

connect()

Socket/Network C Libraries
Chapter 7

7-8

Unlink from Network Database

Syntax

#include <socket.h>

#include <netdb.h>

endhostent()

Description

endhostent() indicates that the process is finished using the inetdb data
module. The link count of inetdb is decremented.

See Also

gethostent() , gethostbyaddr() , gethostbyname() , and sethostent()

Unlink from Network Database

Syntax

#include <socket.h>

#include <netdb.h>

endnetent()

Description

endnetent() indicates that the process is finished using the inetdb data
module. The link count of inetdb is decremented.

See Also

getprotoent() , getprotobyaddr() , getprotobyname() ,
and setprotoent()

endhostent()

endnetent()

Socket/Network C Libraries
Chapter 7

7-9

Unlink from Network Database

Syntax

#include <socket.h>

#include <netdb.h>

endprotoent()

Description

endprotoent() indicates that the process is finished using the inetdb data
module. The link count of inetdb is decremented.

See Also

getprotoent() , getprotobyaddr() , getprotobyname() ,
and setprotoent()

Unlink from Network Database

Syntax

#include <socket.h>

#include <netdb.h>

endservent()

Description

endservent() indicates that the process is finished using the inetdb data
module. The link count of inetdb is decremented.

See Also

getservent() , getservbyaddr() , getservbyname() , and setservent()

endprotoent()

endservent()

Socket/Network C Libraries
Chapter 7

7-10

Get Network Host Entry

Syntax

#include <socket.h>

#include <netdb.h>

struct hostent *gethostbyaddr(addr, len, type)

char *addr; /* pointer to address of host to get */

int len, /* length of address */

 type; /* type of address */

Description

gethostbyaddr() sequentially searches from the beginning of the hosts
entries of inetdb until a matching host address is found, or until EOF is
encountered. Host addresses are supplied in network order. A null pointer
(0) returns on EOF or error.

addr is a pointer to the Internet address of the host to get.

len specifies the length of the address in bytes.

type specifies the AF_INET address type.

gethostbyaddr() returns a pointer to a structure containing the fields of a
hosts entry in the inetdb data module. hostent has the following structure:

struct hostent {

 char *h_name; /* official name of host */

 char **h_aliases; /* alias list */

 int h_addrtype; /* address type */

 int h_length; /* length of address */

 char *h_addr; /* address */

};

The fields are defined as:

Name: Description:

h_name A pointer to the official name of the host.

h_aliases A pointer to a pointer to a zero terminated array of alternate names for the host.

h_addrtype The type of address being returned. Currently, this is AF_INET.

h_length The address length in bytes.

h_addr A pointer to the network address for the host. Host addresses are returned in
network byte order.

gethostbyaddr()

Socket/Network C Libraries
Chapter 7

7-11

Important: gethostbyaddr() implicitly links to inetdb, if the calling
process has not previously linked to the data module.

Important: All information is contained in a static area. You must copy
the information to save it. Only the Internet address format is understood.

See Also

endhostent() , gethostbyname() , gethostent() , and sethostent()

Socket/Network C Libraries
Chapter 7

7-12

Get Network Host Entry

Syntax

#include <socket.h>
#include <netdb.h>

struct hostent *gethostbyname(name)
char *name; /* pointer to the name of the host */

Description

gethostbyname() sequentially searches from the beginning of the hosts
entries of inetdb until a matching host name or alias is found, or until EOF
is encountered. A null pointer (0) returns on EOF or error.

name is a pointer to the name of the host.

gethostbyname() returns a pointer to a structure containing the fields of a
hosts entry in the inetdb data module. hostent has the following structure:

struct hostent {
 char *h_name; /* official name of host */
 char **h_aliases; /* alias list */
 int h_addrtype; /* address type */
 int h_length; /* length of address */
 char *h_addr; /* address */
};

The fields are defined as:

Name: Description:

h_name A pointer to the official name of the host.

h_aliases A pointer to a pointer to a zero terminated array of alternate names for the host.

h_addrtype The type of address being returned. Currently, this is AF_INET.

h_length The address length in bytes.

h_addr A pointer to the network address for the host. Host addresses are returned in
network byte order.

Important: gethostbyname() implicitly links to inetdb if the calling
process has not previously linked to the data module.

Important: All information is contained in a static area. You must copy
the information to save it. Only the Internet address format is understood.

See Also

endhostent() , gethostbyaddr() , gethostent() , and sethostent()

gethostbyname()

Socket/Network C Libraries
Chapter 7

7-13

Get Network Host Entry

Syntax

#include <socket.h>

#include <netdb.h>

struct hostent *gethostent()

Description

gethostent() reads the next host entry from inetdb. gethostent() returns a
pointer to a structure containing the fields of a hosts entry in the inetdb
data module. hostent has the following structure:

struct hostent {

 char *h_name; /* official name of host */

 char **h_aliases; /* alias list */

 int h_addrtype; /* address type */

 int h_length; /* length of address */

 char *h_addr; /* address */

};

The fields are defined as:

Name: Description:

h_name A pointer to the official name of the host.

h_aliases A pointer to a pointer to a zero terminated array of alternate names for the host.

h_addrtype The type of address being returned. Currently, this is AF_INET.

h_length The address length in bytes.

h_addr A pointer to the network address for the host. Host addresses are returned in
network byte order.

Important: gethostent() implicitly links to inetdb if the calling process
has not previously linked to the data module. sethostent() explicitly
links the calling process to inetdb. endhostent() unlinks the calling
process from inetdb.

Important: All information is contained in a static area. You must copy
the information to save it. Only the Internet address format is understood.

See Also

endhostent() , gethostbyaddr() , gethostbyname() , and sethostent()

gethostent()

Socket/Network C Libraries
Chapter 7

7-14

Get Name of Current Host

Syntax

gethostname(name, namelen)

char *name; /* standard host name */

int namelen; /* size of name array */

Description

gethostname() returns the standard host name for the current processor.
The returned name is null-terminated unless insufficient space is provided.

name is a pointer to the standard host name.

namelen specifies the size of the name array.

If successful, gethostname() returns a value of 0. Otherwise, it returns 1
and places the appropriate error code in the global variable errno.

Important: Host names are limited to 31 characters. gethostname()

returns the host name from the device descriptor. sethostname() currently
does nothing.

gethostname()

Socket/Network C Libraries
Chapter 7

7-15

Get Network Entry

Syntax

#include <netdb.h>

struct netent *getnetbyaddr(net, type)
long net; /* net number */
int type; /* net number type */

Description

getnetbyaddr() sequentially searches from the beginning of the networks
entries of inetdb until a matching net address and type is found, or until
EOF is encountered. A null pointer (0) returns on EOF or error.

net is the network number.

type is the network number type.

getnetbyaddr() returns a pointer to a structure containing the fields of a
networks entry in the inetdb data module. netent has the
following structure:

struct netent {
 char *n_name; /* official name of net */
 char **n_aliases; /* alias list */
 int n_addrtype; /* net number type */
 long n_net; /* net number */
};

The members of this structure are:

Name: Description:

n_name A pointer to the official name of the network.

n_aliases A pointer to a pointer to a zero terminated list of alternate names for
the network.

n_addrtype The type of the network number returned. Currently, this is only AF_INET.

n_net The network number. Network numbers are returned in machine byte order.

Important: getnetbyaddr() implicitly links to inetdb if the calling
process has not previously linked to the data module.

Important: All information is contained in a static area. You must copy
the information to save it. Only Internet network numbers are understood.

See Also

endnetent() , getnetbyname() , getnetent() , and setnetent()

getnetbyaddr()

Socket/Network C Libraries
Chapter 7

7-16

Get Network Entry

Syntax

struct netent *getnetbyname(name)

char *name; /* network name */

Description

getnetbyname() sequentially searches from the beginning of networks
entries of inetdb until a matching name or alias is found, or until EOF is
encountered. A null pointer (0) returns on EOF or error.

name is a pointer to the network name.

getnetbyname() returns a pointer to a structure containing the fields of a
networks entry in the inetdb data module. netent has the following
structure:

struct netent {

 char *n_name; /* official name of net */

 char **n_aliases; /* alias list */

 int n_addrtype; /* net number type */

 long n_net; /* net number */

};

The members of this structure are:

Name: Description:

n_name A pointer to the official name of the network.

n_aliases A pointer to a pointer to a zero terminated list of alternate names for
the network.

n_addrtype The type of the network number returned. Currently, this is AF_INET.

n_net The network number. Network numbers are returned in machine
byte order.

Important: getnetbyname() implicitly links to inetdb if the calling
process has not previously linked to the data module.

Important: All information is contained in a static area. You must copy
the information to save it. Only Internet network numbers are understood.

See Also

endnetent() , getnetbyaddr() , getnetent() , and setnetent()

getnetbyname()

Socket/Network C Libraries
Chapter 7

7-17

Get Network Entry

Syntax

#include <netdb.h>

struct netent *getnetent()

Description

getnetent() reads the nextinetdb network entry. It returns a null pointer
(0) on EOF or error.

getnetent() returns a pointer to a structure containing the fields of a
networks entry in the inetdb data module. netent has the
following structure:

struct netent {

 char *n_name; /* official name of net */

 char **n_aliases; /* alias list */

 int n_addrtype; /* net number type */

 long n_net; /* net number */

};

The members of this structure are:

Name: Description:

n_name A pointer to the official name of the network.

n_aliases A pointer to a pointer to a zero terminated list of alternate names for
the network.

n_addrtype The type of the network number returned. Currently, this is AF_INET.

n_net The network number. Network numbers are returned in machine byte
order.

Important: getnetent() implicitly links to inetdb if the calling process
has not previously linked to the data module. setnetent() links to inetdb,
and endnetent() unlinks from inetdb.

Important: All information is contained in a static area. You must copy
the information to save it. Only Internet network numbers are understood.

See Also

endnetent() , getnetbyaddr() , getnetbyname() , and setnetent()

getnetent()

Socket/Network C Libraries
Chapter 7

7-18

Get Name of Connected Peer

Syntax

getpeername(s, name, namelen)

int s; /* socket */

struct sockaddr *name; /* pointer to the socket address */

int *namelen; /* size of name */

Description

getpeername() returns the name of the remote node (peer) connected to
socket s.

s specifies the path number of the socket.

name is a pointer to the socket address.

You should initialize the namelen pointer to indicate the amount of space
pointed to by name. namelen returns the actual size of the name returned
(in bytes).

If successful, getpeername() returns 0. Otherwise, it returns –1.

If unsuccessful, getpeername() may return the following error:

Error: Description:

ENOTCONN The socket is not connected.

See Also

bind() , getsockname() , and socket()

getpeername()

Socket/Network C Libraries
Chapter 7

7-19

Get Protocol Entry

Syntax

#include <netdb.h>

struct protoent *getprotobyname(name)

char *name; /* protocol name */

Description

getprotobyname() sequentially searches from the beginning of the
protocols entries of inetdb until it finds a matching protocol name or alias,
or until it encounters EOF. getprotobyname() returns a null pointer (0) on
EOF or error.

name is a pointer to the name of the protocol.

getprotobyname() returns a pointer to an object containing the fields of a
line in the protocols data base. protoent has the following structure:

struct protoent {

 char *p_name; /* official name of protocol */

 char **p_aliases; /* alias list */

 int p_proto; /* protocol number */

};

The members of this structure are:

Name: Description:

p_name A pointer to the official name of the protocol.

p_aliases A pointer to a pointer to a zero terminated list of alternate names for
the protocol.

p_proto The protocol number.

Important: getprotobyname() implicitly links to inetdb if the calling
process has not previously linked to the data module.

Important: All information is contained in a static area. You must copy
the information to save it. Only the Internet protocols are understood.

See Also

endprotoent() , getprotobynumber() , getprotoent() ,
and setprotoent()

getprotobyname()

Socket/Network C Libraries
Chapter 7

7-20

Get Protocol Entry

Syntax

#include <netdb.h>

struct protoent *getprotobynumber(proto)

int proto; /* protocol number */

Description

getprotobynumber() sequentially searches from the beginning of the
protocols entries of inetdb until it finds a matching protocol number, or
until it encounters EOF. getprotobynumber() returns a null pointer (0) on
EOF or error.

proto specifies the protocol number.

getprotobynumber() returns a pointer to an object containing the fields of
a line in the protocols data base. protoent has the following structure:

struct protoent {

 char *p_name; /* official name of protocol */

 char **p_aliases; /* alias list */

 int p_proto; /* protocol number */

};

The members of this structure are:

Name: Description:

p_name A pointer to the official name of the protocol.

p_aliases A pointer to a pointer to a zero terminated list of alternate names for
the protocol.

p_proto The protocol number.

Important: getprotobynumber() implicitly links to inetdb if the calling
process has not previously linked to the data module.

Important: All information is contained in a static area. You must copy
the information to save it. Only the Internet protocols are understood.

See Also

endprotoent() , getprotobyname() , getprotoent() , and setprotoent()

getprotobynumber()

Socket/Network C Libraries
Chapter 7

7-21

Get Protocol Entry

Syntax

#include <netdb.h>

struct protoent *getprotoent()

Description

getprotoent() reads the next protocols entry of inetdb. It returns a null
pointer (0) on EOF or error.

getprotoent() returns a pointer to an object containing the fields of a line
in the protocols data base. protoent has the following structure:

struct protoent {

 char *p_name; /* official name of protocol

*/

 char **p_aliases; /* alias list */

 int p_proto; /* protocol number */

};

The members of this structure are:

Name: Description:

p_name A pointer to the official name of the protocol.

p_aliases A pointer to a pointer to a zero terminated list of alternate names for
the protocol.

p_proto The protocol number.

Important: getprotoent() implicitly links to inetdb if the calling process
has not previously linked to the data module. setprotoent() explicitly
links the calling process to inetdb. endprotoent() unlinks the calling
process from inetdb.

Important: All information is contained in a static area. You must copy
the information to save it. Only the Internet protocols are understood.

See Also

endprotoent() , getprotobyname() , getprotobynumber() ,
and setprotoent()

getprotoent()

Socket/Network C Libraries
Chapter 7

7-22

Get Service Entry

Syntax

#include <netdb.h>

struct servent *getservbyname(name, proto)
char *name, /* name of service */
 proto; / name of protocol */

Description

getservbyname() sequentially searches from the beginning of the services
entries of inetdb until it finds a matching protocol name or alias, or until it
encounters EOF. If a non-null protocol name is supplied, searches must
also match the protocol. getservbyname() returns a null pointer (0) on EOF
or error.

name is a pointer to the name of the service.

proto is a pointer to the name of the protocol.

Important: getservbyname() implicitly links to inetdb if the calling
process has not previously linked to the data module.

getservbyname() returns a pointer to an object containing the fields of a
line in the services data base. servent has the following structure:

struct servent {
 char *s_name; /* official name of service */

 char **s_aliases; /* alias list */
 int s_port; /* port service resides at */
 char *s_proto; /* protocol to use */
};

The members of this structure are:

Name: Description:

s_name A pointer to the official name of the service.

s_aliases A pointer to a pointer to a zero terminated list of alternate names for the service.

s_port The port number at which the service resides. Port numbers are returned in
network byte order.

s_proto A pointer to the name of the protocol to use when contacting the service.

Important: All information is contained in a static area. You must copy
the information to save it.

See Also

endservent() , getprotoent() , getservbyport() , getservent() ,
and setservent()

getservbyname()

Socket/Network C Libraries
Chapter 7

7-23

Get Service Entry

Syntax

#include <netdb.h>

struct servent *getservbyport(port, proto)

int port; /* service’s port number */

char *proto; /* protocol name */

Description

getservbyport() sequentially searches from the beginning of the services
entries of inetdb until a matching protocol port number is found, or until
EOF is encountered. If a (non-null) protocol name is supplied, searches
must also match the protocol. getservbyport() returns a null pointer (0)
on EOF or error.

port specifies the service’s port number.

proto is a pointer to the protocol name.

Important: getservbyport() implicitly links to inetdb if the calling
process has not previously linked to the data module.

getservbyport() returns a pointer to an object containing the fields of a
line in the services data base. servent has the following structure:

struct servent {

 char *s_name; /* official name of service */

 char **s_aliases; /* alias list */

 int s_port; /* port service resides at */

 char *s_proto; /* protocol to use */

};

getservbyport()

Socket/Network C Libraries
Chapter 7

7-24

The members of this structure are:

Name: Description:

s_name A pointer to the official name of the service.

s_aliases A pointer to a pointer to a zero terminated list of alternate names for
the service.

s_port The port number at which the service resides. Port numbers are returned
in network byte order.

s_proto A pointer to the name of the protocol to use when contacting the service.

Important: All information is contained in a static area. You must copy
the information to save it.

See Also

endservent() , getprotoent() , getservbyname() , getservent() ,
and setservent()

Socket/Network C Libraries
Chapter 7

7-25

Get Service Entry

Syntax

#include <netdb.h>

struct servent *getservent()

Description

getservent() reads the next services entry of inetdb. It returns a null
pointer (0) on EOF or error.

getservent() returns a pointer to an object containing the fields of a line
in the services data base. servent has the following structure:

struct servent {

 char *s_name; /* official name of service */

 char **s_aliases; /* alias list */

 int s_port; /* port service resides at */

 char *s_proto; /* protocol to use */

};

The members of this structure are:

Name: Description:

s_name A pointer to the official name of the service.

s_aliases A pointer to a pointer to a zero terminated list of alternate names for
the service.

s_port The port number at which the service resides. Port numbers are returned
in network byte order.

s_proto A pointer to the name of the protocol to use when contacting the service.

Important: getservent() implicitly links to inetdb if the calling process
has not previously linked to the data module. setservent() links the
calling process to inetdb. endservent() unlinks the calling process
from inetdb.

Important: All information is contained in a static area. You must copy
the information to save it.

See Also

endservent() , getprotoent() , getservbyname() , getservbyport() ,
and setservent()

getservent()

Socket/Network C Libraries
Chapter 7

7-26

Get Socket Name

Syntax

getsockname(s, name, namelen)

int s; /* socket */

struct sockaddr *name; /* pointer to the socket address

*/

int *namelen; /* length of name */

Description

getsockname() returns the current local node name for the
specified socket.

s specifies the path number of the socket.

name is a pointer to the socket address.

You should initialize the namelen pointer to indicate the amount of space
pointed to by name. On return, it contains the actual size of the name
returned (in bytes).

getsockname() returns zero if the call succeeds. Otherwise, it returns –1.

If unsuccessful, getsockname() may return the following error:

Error: Description:

ENOBUFS Insufficient resources are available in the system to perform the operation.

See Also

bind() , getpeername() , and socket()

getsockname()

Socket/Network C Libraries
Chapter 7

7-27

Get Socket Options

Syntax

#include <socket.h>

getsockopt(s, level, optname, optval, optlen)

int s, /* socket */

 level, /* options level */

 optname; /* options name */

char *optval; /* buffer for requested option */

int *optlen; /* value result parameter */

Description

getsockopt() returns options associated with a socket. Options may exist
at multiple protocol levels, but they are always present at the uppermost
socket level.

s specifies the path number of the socket.

level specifies the options level. When getting socket options, you must
specify the level at which the option resides and the option name.

 To get options at the socket level, specify level as SOL_SOCKET.

 To get options at any other level, supply the protocol number of the
appropriate protocol controlling the option.

For example, to indicate that the TCP protocol will interpret an option, set
level to the protocol number of TCP (see getprotoent()).

optname specifies the name of the option. optname and any specified
options are passed uninterpreted to the appropriate protocol module
for interpretation.

optval is a pointer to the buffer for the requested option. optval and optlen
together identify the buffer in which to return the value for the requested
option(s). If no option value is to be supplied or returned, set optval
to zero.

optlen is a pointer to a value-result parameter. optlen initially contains the
size of the buffer pointed to by optval. optlen is modified on return to
indicate the actual size of the returned value.

getsockopt()

Socket/Network C Libraries
Chapter 7

7-28

socket.h contains definitions for socket level options (see socket() or the
chapter on sockets). Options at other protocol levels vary in format
and name.

If successful, the call returns zero. Otherwise, it returns –1.

If unsuccessful, getsockopt() may return the following error:

Error: Description:

ENOPROTOOPT The option is unknown.

See Also

getprotoent() , setsockopt() , and socket()

Socket/Network C Libraries
Chapter 7

7-29

Convert 32-Bit Values Between Host and Network Byte Order

Syntax

#include <types.h>

#include <in.h>

u_long netlong; /* network byte order representation */

u_long hostlong; /* host byte order representation */

netlong = htonl(hostlong);

Description

htonl() converts 32-bit quantities between host and network byte order.
On machines such as the 68000, htonl() is defined as a null macro in the
in.h include file.

netlong specifies the network byte order representation.

hostlong specifies the host byte order representation to convert.

htonl() is most often used with Internet addresses and ports as returned
by gethostent() and getservent().

See Also

gethostent() , getservent() , htons() , ntohl() , and ntohs()

htonl()

Socket/Network C Libraries
Chapter 7

7-30

Convert 16-Bit Values Between Host and Network Byte Order

Syntax

#include <types.h>

#include <in.h>

u_short netshort; /* network byte order representation */

u_short hostshort; /* host byte order representation */

netshort = htons(hostshort);

Description

htons() converts 16-bit quantities between host and network byte order.
On machines such as the 68000, htons() is defined as a null macro in the
in.h include file.

netshort specifies the network byte order representation.

hostshort specifies the host byte order representation to convert.

htons() is most often used with Internet addresses and ports as returned
by gethostent() and getservent().

See Also

gethostent() , getservent() , htonl() , ntohl() , and ntohs()

htons()

Socket/Network C Libraries
Chapter 7

7-31

Internet Address Manipulation

Syntax

#include <types.h>

#include <socket.h>

#include <in.h>

unsigned long inet_addr(cp)

char *cp; /* pointer to character string */

Description

inet_addr() interprets character strings representing numbers expressed
in the Internet standard “.” notation. inet_addr() returns numbers
suitable for use as Internet addresses. Internet addresses are returned in
network order (bytes ordered from left to right).

inet_addr() returns -1 for incorrectly formed requests.

Important: Refer to the first chapter for more information about
Internet addresses.

See Also

gethostent() , getnetent() , inet_lnaof() , inet_makeaddr() ,
inet_network() , inet_netof() , and inet_ntoa()

inet_addr()

Socket/Network C Libraries
Chapter 7

7-32

Internet Address Manipulation

Syntax

#include <types.h>

#include <socket.h>

#include <in.h>

int inet_lnaof(in)

struct in_addr in; /* Internet host address */

Description

inet_lnaof() returns the local host address portion of an Internet host
address. All local host address parts are returned as integer values.

in specifies the Internet host address to break apart.

See Also

gethostent() , getnetent() , inet_addr() , inet_makeaddr() ,
inet_network() , inet_netof() , and inet_ntoa()

inet_Inaof()

Socket/Network C Libraries
Chapter 7

7-33

Internet Address Manipulation

Syntax

#include <types.h>

#include <socket.h>

#include <in.h>

struct in_addr inet_makeaddr(net, lna)

int net, /* Internet network number */

 lna; /* local network address */

Description

inet_makeaddr() takes an Internet network number and a local network
address and constructs an Internet address from it.

net specifies the Internet network number.

lna specifies the local network address.

inet_netof() and inet_inaof() break apart Internet host addresses,
returning the network number and local network address part, respectively.

Important: Refer to the first chapter for more information about
Internet addresses.

See Also

gethostent() , getnetent() , inet_addr() , inet_lnaof() ,
inet_network() , inet_netof() , and inet_ntoa()

inet_makeaddr()

Socket/Network C Libraries
Chapter 7

7-34

Internet Address Manipulation

Syntax

#include <types.h>
#include <socket.h>
#include <in.h>

int inet_netof(in)
struct in_addr in; /* Internet host address */

Description

inet_netof() returns the network number portion of an Internet host
address. All local network address parts are returned as integer values.

in specifies the Internet host address to break apart.

See Also

gethostent() , getnetent() , inet_addr() , inet_lnaof() ,
inet_makeaddr() , inet_network() , and inet_ntoa()

Internet Address Manipulation

Syntax

#include <types.h>
#include <socket.h>
#include <in.h>

unsigned long inet_network(cp)
char *cp; /* pointer to character string */

Description

inet_network() interprets character strings representing numbers
expressed in the Internet standard “.” notation. inet_network() returns
numbers suitable for use as Internet network numbers. Network numbers
are returned as unsigned long values.

cp is a pointer to a character string.

inet_network() returns –1 for incorrectly formed requests.

See Also

gethostent() , getnetent() , inet_addr() , inet_lnaof() ,
inet_makeaddr() , inet_netof() , and inet_ntoa()

inet_netof()

inet_network()

Socket/Network C Libraries
Chapter 7

7-35

Internet Address Manipulation

Syntax

#include <types.h>

#include <socket.h>

#include <in.h>

char *inet_ntoa(in)

struct in_addr in; /* Internet address */

Description

inet_ntoa() takes an Internet address and returns a pointer to a string in
the base 256 notation a.b.c.d described in the first chapter.

Internet addresses are returned in network order (bytes ordered from left
to right).

Important: Refer to the first chapter for more information about Internet
addresses.

Important: The return value from inet_ntoa() is a pointer to static
information which is overwritten in each call.

See Also

gethostent() , getnetent() , inet_addr() , inet_lnaof() ,
inet_makeaddr() , inet_network() , and inet_netof()

inet_ntoa()

Socket/Network C Libraries
Chapter 7

7-36

Listen for Connections on Socket

Syntax

listen(s, backlog)

int s, /* socket */

 backlog; /* maximum length of queue */

Description

To accept connections, socket() first creates a socket, specifies a backlog
for incoming connections with listen(), and then accepts the connections
with accept(). The listen call applies only to sockets of type
SOCK_STREAM.

s specifies the path number of the socket.

backlog defines the maximum length to which the queue of pending
connections may grow. If a connection request arrives with the queue full,
the client receives an ECONNREFUSED error.

listen() returns 0 if successful. Otherwise, it returns a –1.

Errors

If unsuccessful, listen() may return one of the following:

Error: Description:

E_ILLFNC The socket must be bound in order to listen.

EADDRINUSE Cannot connect to port zero or a wildcard address.

EOPNOTSUPP The socket is not of a type that supports the operation listen.

See Also

accept() , connect() , and socket()

listen()

Socket/Network C Libraries
Chapter 7

7-37

Convert 32 Bit Values Between Network and Host Byte Order

Syntax

#include <types.h>

#include <in.h>

u_long hostlong; /* host byte order representation */

u_long netlong; /* network byte order representation */

hostlong = ntohl(netlong);

Description

ntohl() converts 32-bit quantities between network and host byte order.
On machines such as the 68000, ntohl() is defined as a null macro in the
include file in.h.

hostlong specifies the host byte order to be converted to from netlong.

netlong specifies the network byte order to convert to hostlong.

ntohl() is normally used with Internet addresses and ports as returned by
gethostent() and getservent().

See Also

gethostent() , getservent() , htons() , htonl() , and ntohs()

ntohl()

Socket/Network C Libraries
Chapter 7

7-38

Convert 32 Bit Values Between Network and Host Byte Order

Syntax

include <types.h>

#include <in.h>

u_short hostshort; /* host byte order representation */

u_short netshort; /* network byte order representation */

hostshort = ntohs(netshort);

Description

ntohs() converts 16-bit quantities between network and host byte order.
On machines such as the 68000, ntohs() is defined as a null macro in the
include file in.h.

hostshort specifies the host byte order to be converted to from netshort.

netshort specifies the network byte order to convert to hostshort.

ntohs() is normally used with Internet addresses and ports as returned by
gethostent() and getservent() .

See Also

gethostent() , getservent() , htonl() , ntohl() , and htons()

ntohs()

Socket/Network C Libraries
Chapter 7

7-39

Receive Message from Socket

Syntax

#include <types.h>
#include <socket.h>

int cc; /* length of message */

cc = recv(s, buf, len, flags)
int s; /* socket */
char *buf; /* buffer into which the message is received */
int len, /* length of buffer */
 flags; /* currently not supported */

Description

recv() receives messages from a socket. Use recv() only on connected
sockets (see connect()).

The message length is returned in cc. If a message is too long to fit in the
supplied buffer, excess bytes may be discarded depending on the type of
socket the message is received from (see socket()).

s specifies the path number of the socket.

buf is a pointer to the buffer into which the message is received.

len specifies the length of the buffer.

flags could be set to 0.

If no messages are available at the socket, recv() waits for a message to
arrive, unless the socket is non-blocking. In this case, –1 is returned with
the external variable errno set to EWOULDBLOCK.

You may use _ss_sevent() to determine when more data arrives.

Errors

If unsuccessful, recv() may return one of the following:

Error: Description:

E_BMODE Socket not bound.

ENOTCONN Socket not connected.

ESHUTDOWN Socket is marked for shutdown.

EWOULDBLOCK The socket is marked non-blocking and the receive operation would block.

See Also

connect() , getsockopt() , recvfrom() , send() , sendto() , and socket()

recv()

Socket/Network C Libraries
Chapter 7

7-40

Receive Message from Socket

Syntax

#include <types.h>

#include <socket.h>

int cc; /* length of message */

int s; /* socket */

char *buf; /* buffer into which message is received */

int len, /* length of buffer */

 flags; /* currently not supported */

struct sockaddr *from; /* buffer specifying sender of message */

int *fromlen; /* initialized to the size of from */

cc = recvfrom(s, buf, len, flags, from, fromlen)

Description

recvfrom() receives messages from a socket. You may use recvfrom() to
receive data on a socket in an unconnected state.

The length of the message is returned in cc. If a message is too long to fit
in the supplied buffer, excess bytes may be discarded.

s specifies the path number of the socket.

buf is a pointer to the buffer into which the message is received.

len specifies the length of the buffer.

flags could be set to 0.

from is a pointer to a buffer that specifies the sender of the message. If
from is non-zero, the source address of the message is filled in.

fromlen is initialized to the size of the buffer associated with from and
modified on return to indicate the actual size of the address stored.

If no messages are available at the socket, the call waits for a message to
arrive, unless the socket is non-blocking. In this case, –1 is returned with
the external variable errno set to EWOULDBLOCK.

You may use _ss_sevent() to determine when more data arrives.

recvfrom()

Socket/Network C Libraries
Chapter 7

7-41

Errors

If unsuccessful, recvfrom() may return one of the following:

Error: Description:

ENOTCONN Socket not connected.

ESHUTDOWN Socket is marked for shutdown.

EWOULDBLOCK The socket is marked non-blocking and the receive operation is blocked.

See Also

getsockopt() , recv() , send() , sendto() , and socket()

Socket/Network C Libraries
Chapter 7

7-42

Send Message from Socket

Syntax

#include <types.h>

#include <socket.h>

int cc; /* length of message */

cc = send(s, msg, len, flags)

int s; /* a socket created with socket() */

char *msg; /* the message to send */

int len, /* length of message */

 flags; /* currently not supported */

Description

send() transmits a message to another socket. Use send() only when the
socket is in a connected state.

cc specifies the length of the message.

s specifies the path number of a socket created with socket().

msg is a pointer to the message to send.

len specifies the length of the message.

flags is currently not supported. Set flags to 0.

If the message is too long to pass atomically through the underlying
protocol, an error is returned and the message is not transmitted.

If no message space is available at the socket to hold the transmitted
message, send() normally blocks, unless the socket has been placed in
non-blocking I/O mode. You may use _ss_sevent() to determine when you
can send more data.

No indication of failure to deliver is implicit in a send. Return values of –1
indicate some locally detected errors. send() returns the number of
characters sent or –1 if an error occurred.

send()

Socket/Network C Libraries
Chapter 7

7-43

Errors

If unsuccessful, send() may return one of the following:

Error: Description:

ENOTSOCK The parameter s is not a socket.

EMSGSIZE The socket requires that messages be sent atomically, and the
message size made this impossible.

EWOULDBLOCK The socket is marked non-blocking and the requested operation
would block.

See Also

recv() , recvfrom() , sendto() , and socket()

Socket/Network C Libraries
Chapter 7

7-44

Send Message from Socket

Syntax

#include <types.h>

#include <socket.h>

int cc; /* length of message */

cc = sendto(s, msg, len, flags, to, tolen)

int s; /* a socket created with socket() */

char *msg; /* message to send */

int len, /* length of message */

 flags; /* currently not supported */

struct sockaddr *to; /* address of target */

int tolen; /* size of to */

Description

sendto() transmits a message to another socket. You may use sendto()
with unconnected sockets.

cc specifies the length of the message.

s specifies the path number of a socket created with socket().

msg is a pointer to the message to send.

len specifies the length of the message.

flags could be set to 0.

to is a pointer to the address of the target.

tolen specifies the size of to.

If the message is too long to pass atomically through the underlying
protocol, an error is returned and the message is not transmitted.

If no message space is available at the socket to hold the message to
transmit, send() normally blocks, unless the socket has been placed in
non-blocking I/O mode. Use _ss_sevent() to determine when you can send
more data.

No indication of failure to deliver is implicit in a send. Return values of –1
indicate some locally detected errors. send() returns the number of
characters sent or –1 if an error occurred.

sendto()

Socket/Network C Libraries
Chapter 7

7-45

Errors

If unsuccessful, send() may return one of the following:

Error: Description:

EMSGSIZE The socket requires that messages be sent atomically; the message size
made this impossible.

EWOULDBLOCK The socket is marked non-blocking and the requested operation
would block.

See Also

recv() , recvfrom() , send() , and socket()

Socket/Network C Libraries
Chapter 7

7-46

Set Network Host Entry

Syntax

#include <sys/socket.h>

#include <netdb.h>

sethostent(stayopen)

int stayopen; /* flag */

Description

sethostent() links the calling process to inetdb, if necessary, and resets
the pointer to the beginning of the hosts entries. sethostent() returns a
null pointer (0) on EOF or error.

gethostent() reads the next hosts entry of inetdb. endhostent() unlinks
the calling process from inetdb.

Important: All information is contained in a static area. You must copy
the information to save it. Only the Internet address format is
currently understood.

Important: Currently, OS-9/Internet ignores the stayopen flag. It is
included for compatibility only.

See Also

endhostent() , gethostbyaddr() , gethostbyname() , gethostent() ,
gethostname() , and sethostname()

sethostent()

Socket/Network C Libraries
Chapter 7

7-47

Set Network Entry

Syntax

#include <sys/socket.h>

#include <netdb.h>

setnetent(stayopen)

int stayopen; /* flag */

Description

setnetent() links the calling process to inetdb, if necessary, and resets the
pointer to the beginning of the networks entries. setnetent() returns a
null pointer (0) on EOF or error.

getnetent() reads the next networks entry of inetdb. endnetent()

unlinks the calling process from inetdb

Important: Currently, OS-9/Internet ignores the stayopen flag. It is
included for compatibility only.

See Also

endnetent() , getnetbyaddr() , getnetbyname() , and getnetent()

setnetent()

Socket/Network C Libraries
Chapter 7

7-48

Set Network Protocol Entry

Syntax

#include <sys/socket.h>

#include <netdb.h>

setprotoent(stayopen)

int stayopen; /* flag */

Description

setprotoent() links the calling process to inetdb, if necessary, and resets
the pointer to the beginning of the protocol entries. setprotoent() returns
a null pointer (0) on EOF or error.

getprotoent() reads the next protocols entry. endprotoent() unlinks the
calling process from inetdb.

Important: Currently, OS-9/Internet ignores the stayopen flag. It is
included for compatibility only.

See Also

endprotoent() , getprotobynumber() , getprotobyname() ,
and getprotoent()

setprotoent()

Socket/Network C Libraries
Chapter 7

7-49

Set Network Services Entry

Syntax

#include <socket.h>

#include <netdb.h>

setservent(stayopen)

int stayopen; /* flag */

Description

setservent() links the calling process to inetdb, if necessary, and resets
the pointer to the beginning of the services entries. setservent() returns a
null pointer (0) on EOF or error.

getservent() reads the next services entry. endservent() unlinks the
calling process from inetdb

Important: Currently, OS-9/Internet ignores the stayopen flag. It is
included for compatibility only.

See Also

endservent() , getprotoent() , getservbyport() , getservbyname() ,
and getservent()

setservent()

Socket/Network C Libraries
Chapter 7

7-50

Set Options on Sockets

Syntax

#include <types.h>

#include <socket.h>

setsockopt(s, level, optname, optval, optlen)

int s, /* socket */

 level, /* socket level */

 optname; /* option name */

char *optval; /* option values */

int optlen; /* option length */

Description

setsockopt() sets options associated with a socket. Options may exist at
multiple protocol levels; they are always present at the uppermost
socket level.

s specifies the path number of the socket.

When setting socket options, you must specify the level at which the
option resides and the name of the option.

 To set options at the socket level, specify level as SOL_SOCKET.

 To set options at any other level, supply the protocol number of the
appropriate protocol controlling the option.

For example, to indicate that TCP protocol will interpret an option, set
level to the protocol number of TCP (see getprotoent()).

optname and any specified options are passed uninterpreted to the
appropriate protocol module for interpretation. The include file socket.h
contains definitions for socket level options (see socket()). Options at other
protocol levels vary in format and name.

optval and optlen access option values for setsockopt(). If no option
value is supplied, optval may be supplied as 0.

setsockopt() returns 0 if the call succeeds. Otherwise, it returns -1.

setsockopt()

Socket/Network C Libraries
Chapter 7

7-51

Important: OS-9/Internet currently does not support any
socket-level options.

Errors

If unsuccessful, setsockopt() may return one of the following:

Error: Description:

EBADF s is not a valid descriptor.

ENOTSOCK s is a file, not a socket.

ENOPROTOOPT The option is unknown.

EFAULT The address pointed to by optval is not in a valid part of the process
address space.

See Also

getsockopt() , getprotoent() , and socket()

Socket/Network C Libraries
Chapter 7

7-52

Shut Down Part of Full-Duplex Connection

Syntax

shutdown(s,how)

int s, /* socket */

 how; /* receive and send permissions * /

Description

shutdown() shuts down all or part of a full-duplex connection of the
socket specified by s.

s specifies the path number of the socket.

how specifies the method for receiving and sending permissions.

 If how is 0, further receives are disallowed.
 If how is 1, further sends are disallowed.
 If how is 2, further sends and receives are disallowed.

shutdown() returns 0 if it succeeds. Otherwise, it returns -1.

If unsuccessful, shutdown() may return the following error:

Error: Description:

ENOTCONN The specified socket is not connected.

See Also

connect() and socket()

shutdown()

Socket/Network C Libraries
Chapter 7

7-53

Create Endpoint for Communication

Syntax

include <types.h>
#include <socket.h>

int s; /* socket */

s = socket(af, type, protocol)
int af, /* address format */
 type, /* type of socket */
 protocol; /* protocol to use */

Description

socket() creates an endpoint for communication and returns a
data number.

s specifies the path number of the socket.

af specifies an address format with which addresses specified in later
operations using the socket should be interpreted. These formats are
defined in the include file socket.h. The following formats are accepted:

Format: Description:

AF_ETHER Ethernet address family.

AF_INET ARPA Internet address family.

AF_UNIX Local to host address family.

The socket’s indicated type specifies the semantics of communication.
Currently defined types are:

Type: Description:

SOCK_STREAM Provides sequenced, reliable, two-way connection based byte streams
with an out-of-band data transmission mechanism.

SOCK_DGRAM Supports datagrams (connectionless, unreliable messages of a fixed
(typically small) maximum length).

SOCK_RAW Raw socket for AF_ETHER (connectionless, unreliable
data transmission).

protocol specifies a particular protocol to use with the socket. Normally
only a single protocol exists to support a particular socket type, using a
given address format. However, many protocols may exist, in which case a
particular protocol must be specified in this manner. The protocol number
is particular to the communication domain in which communication is to
take place. For more information, refer to the earlier discussion in this
manual on the services and protocols database.

Important: Refer to the chapter on sockets for more information.

socket()

Socket/Network C Libraries
Chapter 7

7-54

SOCK_STREAM Sockets

Sockets of type SOCK_STREAM are full-duplex byte streams, similar to
pipes. A stream socket must be in a connected state before any data may be
sent or received on it. A connect() call creates a connection to
another socket.

Once connected, data may be transferred using read() and write() calls or
some variant of the send() and recv() calls.

The communications protocols used to implement a SOCK_STREAM
ensure that data is not lost or duplicated. If a piece of data for which the
peer protocol has buffer space cannot be successfully transmitted within a
reasonable length of time, the connection is considered broken and calls
will indicate an error with -1 returns, and with ETIMEDOUT as the
specific code in the global variable errno.

SOCK_DGRAM Sockets

SOCK_DGRAM sockets allow sending of datagrams to correspondents
named in send() calls. You can also receive datagrams at such a socket
with recv().

Socket Level Options

Socket level options control the operation of sockets. These options are
defined in socket.h. setsockopt() and getsockopt() set and get the
following options, respectively:

Option: Description:

SO_DEBUG Turns on recording of debugging information. This enables debugging in
the underlying protocol modules.

SO_REUSEADDR Indicates the rules used in validating addresses supplied in a bind() call
should allow re-use of local addresses.

SO_KEEPALIVE Enables the periodic transmission of messages on a connected socket. If
a connected party fails to respond to these messages, the connection is
considered broken and processes using the socket are notified via a
SIGPIPE signal.

SO_DONTROUTE Indicates that outgoing messages should bypass the standard routing
facilities. Instead, messages are directed to the appropriate network
interface according to the network portion of the destination address.

SO_LINGER Controls the actions taken when unsent messages are queued on a
socket and a close() is performed. If the socket promises reliable delivery
of data and SO_LINGER is set, the system blocks the process on the
close attempt until it is able to transmit the data or until it decides it is
unable to deliver the information. A time out period, referred to as the
linger interval, is specified by setsockopt() when SO_LINGER
is requested.

SO_DONTLINGER Controls the actions taken when unsent messages are queued on a
socket and a close() is performed. If SO_DONTLINGER is specified and a
close is issued, the system processes the close in a manner which allows
the process to continue as quickly as possible.

Socket/Network C Libraries
Chapter 7

7-55

If successful, socket() returns the descriptor referencing the socket.
Otherwise, it returns –1.

Important: Only the SO_REUSEADR option is supported in the current
implementation of OS-9/Internet.

Errors

If unsuccessful, socket() may return one of the following:

Error: Description:

EAFNOSUPPORT The specified address family is not supported in this version of
the system.

ESOCKTNOSUPPORT The specified socket type is not supported in this address family.

EPROTONOSUPPORT The specified protocol is not supported.

ENOBUFS No end buffer space is available. The socket cannot be created.

See Also

accept() , bind() , connect() , getsockname() , getsockopt() , listen() ,
recv() , send() , and shutdown()

Appendix

A

A-1

Error Codes

The following error messages can be returned by socket access to the
Internet software. Some of these error codes are appropriate for the ftp and
telnet programs. Some error codes are never returned in this
implementation but are listed here for future compatibility.

Error number: Description:

007:001 I/O operation would block

An operation that would cause a process to block was attempted on a
socket in non–blocking mode.

007:002 I/O operation now in progress

An operation that takes a long time to complete (such as connect()) was
attempted on a socket in non–blocking mode.

007:003 Operation already in progress

An operation was attempted on a non–blocking object that already had an
operation in progress.

007:004 Destination address required

The attempted socket operation requires a destination address.

007:005 Message too long

A message sent on a socket was larger than the internal message buffer
or some other network limit. Messages should be smaller than
32768 bytes.

007:006 Protocol wrong type for socket

A protocol was specified that does not support the semantics of the socket
type requested. For example, an AF_INET UDP protocol as
SOCK_STREAM is the wrong protocol type for the socket.

007:007 Bad protocol option

A bad option or level was specified in getsockopt() or setsockopt().

007:008 Protocol not supported

The requested protocol is not available or not configured for use.

007:009 Socket type not supported

The requested socket type is not supported or not configured for use.

007:010 Operation not supported on socket

For example, accept() on a datagram socket.

007:011 Protocol family not supported

007:012 Address family not supported by protocol

007:013 Address already in use

Only one use of each address is normally permitted. Wildcard use and
connectionless communication are the exceptions.

Error Codes
Appendix A

A-2

Error number: Description:

007:014 Can’t assign requested address

Normally results from an attempt to create a socket with an address not
on this machine.

007:015 Network is down

The network hardware is not accessible.

007:016 Network is unreachable

The network is unreachable. Usually caused by network interface
hardware that is operational, but not physically connected to the network.
This error can also be caused when the network has no way to reach the
destination address.

007:017 Network dropped connection on reset

The host you were connected to crashed and rebooted.

007:018 Software caused connection abort

A connection abort was caused by the local (host) machine.

007:019 Connection reset by peer

A peer forcibly closed a connection. This normally results from a loss of
the connection on the remote socket due to a time out or reboot.

007:020 No buffer space available

A socket operation could not be performed because the system lacked
sufficient buffer space or a queue was full.

007:021 Socket is already connected

A connect() request was made on an already connected socket. Also
caused by a sendto() request on a connected socket to a destination
which is already connected.

007:022 Socket is not connected

A request to send or receive data was rejected because the socket was
not connected or no destination was given with a datagram socket.

007:023 Can’t send after socket shutdown

007:024 Too many references

007:025 Connection timed out

A connect() or send() request failed because the connected peer did not
properly respond after a period of time. The time out period depends on
the protocol used.

007:026 Connection refused by target

No connection could be established because the target machine actively
refused it. This usually results from trying to connect to a service that is
inactive on the target host.

007:027 Mbuf too small for mbuf operation

007:028 Socket module already attached

008:029 Path is not a socket

Appendix

B

B-1

Example Programs

This appendix contains three examples. Each example includes a client
program and a server program. You should use these programs to better
understand how to use OS-9/Internet. These programs can also be used as
templates for writing your own programs.

The following programs, tcpsend.c and tcprecv.c, illustrate some of the
socket operations. tcpsend.c is the client program, and tcprecv.c is the
server program. These programs work together and provide a good
template for programs using TCP sockets.

There are two socket features to keep in mind when creating your
own programs.

 Both the sender and the server must create sockets. The subsequent
connect and accept operations create the link between the sockets.

 The operating system uses port numbers up to 1024, but applications
may choose any port numbers. However, normal user application
programs use port numbers greater than 5000. Because port numbers are
often compiled into programs (as done in this example), you need to
consider the allocation of numbers to avoid collisions. Strange things
happen when a port number is shared unexpectedly.

Example 1: Socket
Operations

Example Programs
Appendix B

B-2

The tcpsend.c Program

This program creates a socket, connects it to tcprecv, and sends data
through it. This program is complete and can be compiled on
OS-9 systems.

/* <<<<<tcpsend.c>>>>>>>

Syntax to execute the program: tcpsend host [file –]

Send the named file or standard input through a socket to the named host.

*/

#include <stdio.h>

#include <errno.h>

#include <types.h>

#include <socket.h>

#include <in.h>

#include <netdb.h>

#define RETRY_COUNT 10

#define SOCKET_PORT 2700

struct sockaddr_in ls_addr;

struct data {

 int code, count;

 char data[512];

};

char msgbuf[2048];

main(argc, argv)

register char **argv;

{

 register int count = RETRY_COUNT, s, ifile;

 register int totbytes=0;

 register struct data *pack = (struct data *)msgbuf;

 struct hostent *host;

 /*

 * If the first command line argument starts with

 * a ’–’ print a help message and quit.

 */

 if (*argv[1] == ’–’) {

 fprintf(stderr, “tcpsend <host> <file>\n”);

 exit(0);

 }

 /* Convert the host name from the command line into a host structure. */

Example Programs
Appendix B

B-3

 if ((host = gethostbyname(*++argv)) == NULL) {

 fprintf(stderr, “don’t know host ’%s’\n”, *argv);

 endhostent();

 exit(0);

 }

 /*

 * Open a file for input. If the second command line argument is

 * a ’–’, use standard input (path 0). If the second command line

 * argument is not ’–’, it “must” be a string that we will use as

 * a file name for the input file.

 */

 if (*argv[1] == ’–’)

 ifile = 0;

 else if ((ifile = open(*++argv, 1)) == –1) {

 fprintf(stderr, “can’t open file ’%s’\n”, *argv);

 endhostent();

 exit(errno);

 }

 /*

 Make a connection:

 * Open a socket:

 Request internet domain and a

 sequenced, reliable, two–way connection.

 * Initialize an internet–style socket address:

 –Take the family from the host type.

 –Use a port number that we think will be

 unique to this set of programs.

 –Copy the host address into the in_addr field.

 * Connect the socket to the address.

 * If the connect fails, keep trying up to

 RETRY_COUNT times.

 */

 while (1) {

 /* Create a socket */

 if ((s = socket(AF_INET, SOCK_STREAM, 0)) == –1) {

 fprintf(stderr,“can’t open /socket\n”, errno);

 endhostent();

 exit(errno);

 }

 /* Initialize a socket address */

 ls_addr.sin_family = host–>h_addrtype;

Example Programs
Appendix B

B-4

 ls_addr.sin_port = SOCKET_PORT;

 memcpy(&ls_addr.sin_addr.s_addr, host–>h_addr, host–>h_length);

 /* Connect the socket to the other socket specified in ls_addr. */

 if (connect(s, &ls_addr, sizeof ls_addr) == –1) {

 fprintf(stderr, “connect failed\n”);

 if (––count) {

 close(s);

 fprintf(stderr,“retry connect %d\n”, RETRY_COUNT – count);

 sleep(1);

 continue; /* retry */

 }

 endhostent();

 exit(errno);

 }

 break;

 }

 endhostent();

 printf(“Connection established\nSending file ’%s’...”, *argv);

 fflush(stdout);

 /* Copy the input file to the socket. */

 while ((count = read(ifile, msgbuf, sizeof(msgbuf))) > 0) {

 if (write(s, msgbuf, count) != count) {

 fprintf(stderr, “socket write error\n”);

 exit(errno);

 }

 totbytes += count;

 }

 if (count != 0) {

 fprintf(stderr, “read error on file\n”);

 exit(errno);

 }

 /* Close the socket and the input file, and exit. */

 close(s);

 close(ifile);

 printf(“sent %u bytes\n”, totbytes);

}

Example Programs
Appendix B

B-5

The tcprecv.c Program

This program creates a socket that accepts tcpsend’s connection and copies
the data from the socket into a file. This program is complete and can be
compiled on OS-9 systems.

/* <<<<<<tcprecv.c>>>>>>

 Syntax for executing program: tcprecv [– file]

 Copy a file from a socket into the named file.

*/

#include <stdio.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <sys/socket.h>

#include <netinet/in.h>

#define SOCKET_PORT 2700 /* This number must match the port number

 used by the sender. */

struct sockaddr_in ls_addr, to;

char msgbuf[20480];

main(argc, argv)

register char **argv;

{

 register int sx, s, count = 1, totbytes = 0, ofile;

 auto int size;

 /* If the first argument starts with a ’–’, give a help message */

 if (*argv[1] == ’–’) {

 fprintf(stderr,“tcprecv <file>\n”);

 exit(0);

 }

 /* Create a file to hold the data that will come through the socket.

*/

if ((ofile = creat(*++argv, S_IREAD|S_IWRITE)) == –1) {

 fprintf(stderr, “can’t open file ’%s’\n”, *argv);

 exit(errno);

/*

Create a socket for internet stream protocol.

The procedure is:

 Create a socket.

 Bind it to the socket port (the port amounts to the name).

Example Programs
Appendix B

B-6

 Listen for a connection.

 Accept the connection which creates a new socket.

 Read data from the new socket.

 */

if ((sx = socket(AF_INET, SOCK_STREAM, 0)) == –1) {

 fprintf(stderr,“can’t open /socket\n”, errno);

 exit(errno);

}

/* Bind the socket to SOCKET_PORT */

ls_addr.sin_family = AF_INET;

ls_addr.sin_port = SOCKET_PORT;

ls_addr.sin_addr.s_addr = 0;

if (bind(sx, &ls_addr, sizeof ls_addr) == –1) {

 fprintf(stderr,“can’t bind socket\n”);

 exit(errno);

}

/* Wait for a connection attempt on the socket */

if (listen(sx, 1) < 0) {

 fprintf(“tcp_listen – failed!\n”);

 exit(errno);

}

size = sizeof(struct sockaddr_in);

/*

Accept a connection.

This function picks up the pending connection, and

creates a clone of socket sx.

The clone can be used to send and receive data.

The original socket can listen for additional

connections, but it cannot send or receive.

Accept will set the to variable to the address of

the other end of the connection.

*/

if ((s = accept(sx, &to, &size)) < 0) {

 fprintf(stderr, “can’t accept\n”);

 exit(errno);

}

close (sx); /* We don’t expect another connection. */

printf(“connected to %d.%d.%d.%d\n”, to.sin_addr.s_addr);

Example Programs
Appendix B

B-7

while (count) { /* While data comes from the socket */

/* Read the socket */

 if ((count = read(s, msgbuf, sizeof(msgbuf))) < 0) {

 fprintf(stderr, “can’t recv (cnt=%d)\n”, count);

 exit(errno);

 else if (count == 0) {

 break;

 else { /* If the read got anything, write it. */

 if (write(ofile, msgbuf, count) != count) {

 fprintf(stderr, “can’t write output\n”);

 exit(errno);

 }

 totbytes += count;

 }

 }

 /* Close the socket and the output file. */

 close(ofile);

 close(s);

 printf(“read %d bytes\n”, totbytes);

}

Example Programs
Appendix B

B-8

The next two programs, beam.c and target.c, test the efficiency of the
network. beam.c is the client program, and target.c is the server program.

The beam.c Program

This program sends a steady beam of packets to a host to test efficiency of
the network. This program is complete and can be compiled on
OS-9 systems.

/* <<<<<<<<<<<<<beam.c>>>>>>>>>>>>>

 Syntax for executing the program: beam <hostname> <count>\n

*/

#include <stdio.h>

#include <types.h>

#include <machine/types.h>

#include <socket.h>

#include <in.h>

#include <netdb.h>

#include <errno.h>

#define PKT_SIZE 1024

#define START 1

#define NORMAL 2

#define END 3

#define PORT 20000

struct packet {

 long type;

 long size;

 long count;

 char buf[PKT_SIZE – 12];

};

main(argc, argv)

int argc;

char **argv;

{

 struct hostent *host;

 int s;

 struct packet pkt;

 struct sockaddr_in sockname;

 int count, msglen, i;

 /* Check to see if we have the correct number of parameters */

 if (argc < 3) {

Example 2: Beam and Target

Example Programs
Appendix B

B-9

 printf(“usage: beam <hostname> <count>\n”);

 exit(0);

 }

 /* Get the number of packets to beam */

 count = atoi(argv[2]);

 /* Get information concerning the host we are beaming to. */

 if ((host = gethostbyname(argv[1])) == (struct hostent *)0) {

 printf(“beam: can’t find entry for host %s\n”, argv[1]);

 exit(0);

 }

 /*

 Steps to sending UDP packets:

 1. Open a socket with type SOCK_DGRAM

 2. Bind socket to this process. Since we are a client, we

 don’t want a port, have the system get one for us.

 3. Sendto to the target.

 */

 if ((s = socket(AF_INET, SOCK_DGRAM, 0)) == –1) {

 exit(_errmsg(errno, “beam: socket call failed – ”));

 }

 sockname.sin_family = AF_INET;

 sockname.sin_port = 0;

 sockname.sin_addr.s_addr = INADDR_ANY;

 if (bind(s, &sockname, sizeof(sockname)) < 0) {

 exit(_errmsg(errno, “bind failed – ”));

 }

 /*

 Set up sockaddr_in for the send. From the host name we knwo

 the address, and target is already waiting on port 20000;

 */

 memcpy(&sockname.sin_addr.s_addr, host–>h_addr, host–>h_length);

 sockname.sin_port = PORT; /* port number to beam to */

 endhostent();

 /* Set up packets for transfer and transfer them all. */

 pkt.size = PKT_SIZE;

 for (i = 0; i <= count; i++) {

 if (i == 0) {

 pkt.type = START;

Example Programs
Appendix B

B-10

 } else if (i == count) {

 pkt.type = END;

 } else {

 pkt.type = NORMAL;

 }

 pkt.count = i;

 /* Send packet to host. */

 if (sendto(s, &pkt, pkt.size, 0, &sockname, sizeof(sockname)) < 0) {

 exit(_errmsg(errno, “beam: send failed – ”));

 }

 }

} /* end of main */

Example Programs
Appendix B

B-11

The target.c Program

This program receives a number of packets from a socket and checks if any
were lost. This will test the efficiency of the network. This program is
complete and can be compiled on OS-9.

/* <<<<<<<target.c>>>>>>>

 Syntax for executing the program: target&

*/

#include <stdio.h>

#include <types.h>

#include <machine/types.h>

#include <socket.h>

#include <in.h>

#include <netdb.h>

#include <errno.h>

#include <time.h>

extern char *inet_ntoa();

#define PKT_SIZE 1024

#define START 1

#define NORMAL 2

#define END 3

#define PORT 20000

struct packet {

 long type;

 long size;

 long count;

 char buf[PKT_SIZE – 12];

};

main(argc, argv)

int argc;

char **argv;

{

 register int path1, count;

 long bytesrecv;

 time_t starttime, endtime;

 double dtime;

 double rate;

 struct packet pkt;

 struct sockaddr_in name;

 auto int namelen;

 char buf[200];

Example Programs
Appendix B

B-12

 printf(“target is active\n”);

 /*

 * This process will read UDP or datagram sockets. The

 * sequence to this is the following:

 * 1. Open a socket with a type of SOCK_DGRAM

 * 2. Bind socket to process on port

 * 3. recvfrom the socket

 */

 if ((path1 = socket(AF_INET, SOCK_DGRAM, 0)) == –1) {

 exit(_errmsg(errno, “target: socket failed – ”));

 }

 /*

 * Before a bind, need to set up the sockaddr_in structure. Since

 * this is a server process we bind to a specfic port number.

 */

 name.sin_family = AF_INET;

 name.sin_addr.s_addr = INADDR_ANY;

 name.sin_port = PORT; /* port number */

 if (bind(path1, &name, sizeof(name)) == –1) {

 exit(_errmsg(errno, “target: bind failed – ”));

 }

 while (1) {

 /*

 * The ’name’ variable is of a sockaddr_in structure.

 * By passing this down to the recv from call, we can

 * know who just sent us one of our packets.

 */ namelen = sizeof(name);

 if ((count = recvfrom(path1, &pkt, sizeof(pkt), 0, &name,

 &namelen)) == –1) {

 exit(_errmsg(errno, “target: recv failed – ”));

 }

 /* Start the timming loop to see how efficient we are. */

start: starttime = time(0);

 bytesrecv = 0;

 if (pkt.type != START) {

 printf(“out of sequence packet received\n”);

 continue;

 }

 printf(“Begin\n”);

Example Programs
Appendix B

B-13

 /*

 * Loop until all the packets are received.

 * Keep track of the number of bytes received.

 */

 do {

 namelen = sizeof(name);

 if ((count = recvfrom(path1, &pkt, sizeof(pkt), 0, &name,

 &namelen)) == –1) {

 exit(_errmsg(errno, “target: recv failed – ”));

 }

 bytesrecv += pkt.size;

 } while (pkt.type == NORMAL);

 endtime = time(0);

 /*

 * If we did not get the ending packet, start timming

 * loop all over again.

 */

 if (pkt.type != END) {

 printf(“restarting ...\n”);

 goto start;

 }

 /* Figure and display stats */

 dtime = difftime(endtime, starttime);

 printf(“stats on exchange just completed:\n”);

 printf(“Start time : %s”, ctime(&starttime));

 printf(“End time : %s”, ctime(&endtime));

 printf(“%d bytes transferred in %.2f seconds\n”, bytesrecv, dtime);

 if (dtime == 0.0) {

 printf(“too fast for meaningful timing\n”);

 } else {

 rate = (double)bytesrecv / dtime;

 printf(“Transfer rate = %.2f bytes/sec (%.2f Kbytes/sec)\n”,

 rate, rate / (double)1024);

 }

 }

 close(path1);

} /* end of main */

Example Programs
Appendix B

B-14

The examples in this section, ethsendto and ethrecvf, test the ethernet raw
socket. For simplification, flow control in the test program is replaced by
tsleep(2) in ethsendto.c.

 If your receiving computer is faster than the sending computer, change
this to tsleep(1) or remove it.

 If the sending computer works faster than the receiving computer,
increase the tsleep() value.

In either case, an upper level protocol should offer flow control.

When using Ethernet raw sockets, the sen_type of the structure
sockaddr_eth should be the same in both sender and receiver. A different
number is used to handle different pairs of senders and receivers.
Otherwise, you need an upper level protocol to handle the communication
pair to avoid interlaying. sen_type should be in the range of 0x7f00 to
0x7fff. Do not use 0x0800, 0x0806, 0x0200, 0x1000, and 16 for sen_type,
as these values are reserved for IP, ARP, PUP, TRAIL, and NTRAIL.

When the ISP system works as a router (gateway), Ethernet is sent out
from the device in the last one of device_names of sockdesc/socket.a. For
example, in sockdesc/socket.a device_names is dc.b “/lo0 /eni0 /le0”, /le0
is the device an ether packet sends out from a raw ether socket. However,
in receive, an ether raw socket could receive AF_ETHER packet from both
device drivers.

To compile ethsendto.c, use the following command:

cc ethsendto.c –l=/h0/lib/socklib.l –v=/h0/ISP.portpak/DEFS

Example 3: Ethernet Raw
Socket Support for ISP

Example Programs
Appendix B

B-15

The ethsendto.c Program

This program tests the Ethernet raw socket. Before compiling this
program, you need to change dstaddr to the destination Ethernet address
that you need. To get the destination Ethernet address, use the command
enpstat /eni0 or the command lestat /le0 in the destination computer.

/* “ethsendto.c” */

#include <stdio.h>

#include <types.h>

#include <machine/types.h>

#include <socket.h>

#include <inet/eth.h>

#include <errno.h>

#define PKT_SIZE 1500

#define ETHERTYPE_ETH 0x7f00

#define AF_ETHER 12

#define START 1

#define NORMAL 2

#define END 3

struct packet {

 char type;

 short size;

 long count;

 char buf[PKT_SIZE – 5];

};

/* dstaddr should be changed to the destination node’s ethernet address */

static dstaddr[6] = {0x08, 0x00, 0x3e, 0x20, 0x2e, 0xae};

static ethaddr_any[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};

main(argc, argv)

int argc;

char **argv;

{

 int s;

 struct packet pkt;

 struct sockaddr_eth sockname, dst;

 int count, msglen, i;

 if (argc < 2) {

 printf(“usage: ethsendto <count>\n”);

 exit(0);

 }

 count = atoi(argv[1]);

Example Programs
Appendix B

B-16

 if ((s = socket(AF_ETHER, SOCK_RAW, 0)) == –1) {

 exit(_errmsg(errno, “ethsendto: socket call failed – ”));

 }

 sockname.sen_family = AF_ETHER;

 sockname.sen_type = ETHERTYPE_ETH;

 for (i=0; i<6; i++)

 sockname.sen_addr.ena_addr[i] = ethaddr_any[i];

 if (bind(s, &sockname, sizeof(sockname)) < 0) {

 exit(_errmsg(errno, “bind failed – ”));

 }

 dst.sen_family = AF_ETHER;

 dst.sen_type = ETHERTYPE_ETH;

 for (i=0; i<6; i++) {

 dst.sen_addr.ena_addr[i] = dstaddr[i];

 }

 pkt.size = PKT_SIZE;

 for (i = 0; i <= count; i++) {

 if (i == 0) {

 pkt.type = START;

 } else if (i == count) {

 pkt.type = END;

 } else {

 pkt.type = NORMAL;

 }

 pkt.count = i;

 /* Don’t send too fast to make receiver lose packets.

 * This is a raw ethernet socket, no ACK and no retransmission.

 * ACK or retransmission should be implemented by upper

 * level protocol if needed.

 * If the sender is slower than the receiver, decrease the tsleep value,

 * or take it off. You will see faster transmission speed.

 * If the sender is faster than the receiver, increase the tsleep value.

 * When upper level protocol is used, tsleep is no longer need.

 * Flow control should be taken care of by upper level protocol.

 */

 tsleep(2);

 if (sendto(s, &pkt, pkt.size, 0, &dst, sizeof(dst)) < 0) {

 exit(_errmsg(errno, “ethsendto: send failed – ”));

 }

 }

} /* end of main */

Example Programs
Appendix B

B-17

The ethrecvf.c Program

This program tests the Ethernet raw socket.

/* ethrecvf.c */

#include <stdio.h>

#include <types.h>

#include <machine/types.h>

#include <socket.h>

#include <inet/eth.h>

#include <errno.h>

#include <time.h>

#define PKT_SIZE 1500

#define AF_ETHER 12

#define ETHERTYPE_ETH 0x7f00

#define START 1

#define NORMAL 2

#define END 3

struct packet {

 char type;

 short size;

 long count;

 char buf[PKT_SIZE – 5];

};

static ethaddr_any[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};

main(argc, argv)

int argc;

char **argv;

{

 register int se1, count;

 long bytesrecv;

 time_t starttime, endtime;

 double dtime;

 double rate;

 struct packet pkt;

 struct sockaddr_eth name, from;

 auto int fromlen;

 int i;

 printf(“ethrecvf is active\n”);

 if ((se1 = socket(AF_ETHER, SOCK_RAW, 0)) == –1) {

 exit(_errmsg(errno, “ethrecvf: socket failed – ”));

Example Programs
Appendix B

B-18

 }

 name.sen_family = AF_ETHER;

 name.sen_type = ETHERTYPE_ETH;

 for (i = 0; i < 6; i++)

 name.sen_addr.ena_addr[i] = ethaddr_any[i];

 if (bind(se1, &name, sizeof(name)) == –1) {

 exit(_errmsg(errno, “ethrecvf: bind failed – ”));

 }

 from.sen_family = AF_ETHER;

 from.sen_type = ETHERTYPE_ETH;

 for (i = 0; i < 6; i++)

 from.sen_addr.ena_addr[i] = ethaddr_any[i];

 fromlen = sizeof(from);

 if ((count = recvfrom(se1, &pkt, sizeof(pkt), 0, &from,

 &fromlen)) == –1) {

 exit(_errmsg(errno, “ethrecvf: recvfrom failed – ”));

 }

 /*

 * Now “from” had returned the ethernet address of the sender of the packet

 * which we received from.

 */

start: starttime = time(0);

 bytesrecv = 0;

 if (pkt.type != START) {

 printf(“out of sequence packet received\n”);

 exit(1);

 }

 printf(“Begin\n”);

 do {

 fromlen = sizeof(from);

 if ((count = recvfrom(se1, &pkt, sizeof(pkt), 0, &from,

 &fromlen)) == –1) {

 exit(_errmsg(errno, “ethrecvf: recvfrom failed – ”));

 }

 /*

 * Now “from” had returned the ethernet address of the sender of the packet

 * which we received from. For upper level protocol, this is used to check

 * whether the packet we received is from the host we like or not.

 */

Example Programs
Appendix B

B-19

 bytesrecv += pkt.size;

 } while (pkt.type == NORMAL);

 endtime = time(0);

 if (pkt.type != END) {

 printf(“restarting ...\n”);

 goto start;

 }

 dtime = difftime(endtime, starttime);

 printf(“stats on exchange just completed:\n”);

 printf(“Start time : %s”, ctime(&starttime));

 printf(“End time : %s”, ctime(&endtime));

 printf(“%d bytes transferred in %.2f seconds\n”, bytesrecv, dtime);

 if (dtime == 0.0) {

 printf(“too fast for meaningful timing\n”);

 } else {

 rate = (double)bytesrecv / dtime;

 printf(“Transfer rate = %.2f bytes/sec (%.2f Kbytes/sec)\n”,

 rate, rate / (double)1024);

 }

 close(se1);

} /* end of main */

Appendix

C

C-1

Using the routed Daemon

routed is a network routing daemon available for OS-9/Internet. It is
called when you boot up the system. routed dynamically routes data and
automatically modifies the routing tables based on broadcasts from other
routed programs on gateway machines. Generally, you should run the
routed program rather than modifying the ipconfig table entries.

On a system that is not acting as a gateway, routed updates the IP routing
tables to allow access to other networks based on the gateway broadcasts.
On a system that is acting as a gateway, routed broadcasts its routing tables
on all connected networks. Thus, the network gateway information is
determined dynamically from the network, rather than fixed in the static
ipconfig table.

The examples in this section, ethsendto and ethrecvf, test the ethernet raw
socket. For simplification, flow control in the test program is replaced by
tsleep(2) in ethsendto.c.

To use routed, follow these steps:

1. Edit the networks file in the ETC directory. Add all networks with
which this node will communicate.

2. Use idbgen to create a data module containing the files hosts,
networks, protocols, and services. These files are located in the
ETC directory.

3. In the start.isp script file, replace the line ispstart with the following:

routed&

At this point, dynamic routing is in effect.

Using routed on Gateways

If your system is a gateway, you also need to edit socket.a in the
SOCKDESC directory and change the device_names field to include all
descriptors the system uses. For example:

device_names dc.b “/lo0 /le0 /eni0”

Using routed

Using the routed Daemon
Appendix C

C-2

Enclose any device that sockman opens or initializes in quotes. You must
include the device /lo0 as the first device.

This example shows a gateway configuration with two networks, /le0 and
/eni0. The descriptors have the network internet numbers.

After making this change in the socket.a file, remake the socket descriptor
and restart ISP. The system is now a gateway.

Appendix

D

D-1

Implementation Notes for SysMbuf

ISP Version 1.3 (and greater) includes a substantially improved mbuf
allocator. The previous version of this code used an event and allocated
memory from the general system memory (via F$SRqMem). This resulted
in many system calls per mbuf allocation (or return) and had the effect of
loading the system and potentially causing IRQ response delays during
periods of heavy network use.

When the routine is installed, all of the memory needed for mbufs is
allocated at once. This has a number of useful effects.

 Because all the memory is allocated at once, all the mbufs fall into a
particular range of addresses. Debugging memory allocation and wild
pointer problems may be easier if all the mbufs are in a known place.

 The mbuf allocator uses the F$SRqCMem call so that systems that are
using colored memory set up tables can be configured to allocate mbuf
memory from a designated area of memory, instead of anywhere the
system chooses.

The allocator uses a fixed-block allocation scheme. As a result of the
allocation method, you can use a bitmap to track free space. Hand-coded
assembler routines are used for the bit allocation, deallocation, and search
functions. For best performance on the processors with bitfield
instructions, a separate binary uses those instructions. You should use
SysMbuf_010 for processors less than 68020, and SysMbuf_020 for
processors 68020 or greater.

Because the mbuf code is called and shared by multiple IRQ service
routines, by default, it masks IRQs to level 7 to protect allocate and
deallocate. With the fast algorithm SysMbuf uses this is usually not a
problem. You can patch the module to limit the raising of the mask to the
level of the highest IRQ service routine that uses mbufs.

Use this feature with extreme care. If not done properly, this destroys the
integrity of the mbuf free space resulting in a non-functioning system.
Normally, you should not use this feature unless the operation of the
network interferes with a higher-level IRQ routine.

Implementation Notes for SysMbuf
Appendix D

D-2

The default minimum allocation blocksize is 64 bytes. This has been
demonstrated to be nearly the optimal size for these routines. A smaller
blocksize uses more bitmap memory and requires more iterations through
the code, but wastes less memory for small allocations. A larger blocksize
uses less bitmap memory and requires less iterations through the search
code, but wastes more memory for small allocations. ISP itself almost
never requests blocks less than 64 bytes. This allocations size allows up to
2048 bytes to be bitmapped in one 32-bit search/load/store. Ethernet mbuf
requests are never larger than 1536.

The following locations in the module are of interest:

Addr 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 2 4 6 8 A C E

–––– –––– –––– –––– –––– –––– –––– –––– –––– ––––––––––––––––

0000 4afc 0001 0000 08de 0000 0000 0000 08d2 J|.....^.......R

0010 0555 0c01 a000 000a 0000 0000 0000 0000 .U..

0020 0000 0000 0000 0000 0000 0000 0000 1c50P

0030 0000 0050 0000 0000 0000 0826 0006 8020 ...P.......&...

0040 0007 8008 0000 0000 0000 0040 0002 0000 ...H.......@....

0050 48e7 0040 43fa 0012 4e40 0032 2c4b 6100 Hg.@Cz..N@.2,Ka.

Offset Length Meaning

–––––– –––––– –––––––

003c long Processor identifier: 68010 or 68020 (not changable)

0040 short Max. IRQ mask level: 7 (patchable)

0042 short Reserved

0044 long Colored memory typecode: 0 (patchable)

0048 long Min. allocation blocksize: 64 (patchable)

004c long Memory to use for Mbufs: 128kb (patchable)

Appendix

E

E-1

Glossary

This section contains definitions for some of the terms used in this manual.

address class A classification of network Internet Protocol
addresses. The three main classes are A, B, and
C. The classes are separated according to the
number of hosts attached to each network. Each
Internet Protocol address consists of a network
portion (netid) and a host portion (hostid). An
Internet Protocol address identifies a network to
which a host is attached and specifies the
specific host attached to the network.

ARP Address Resolution Protocol. TCP/IP uses ARP
to dynamically bind a high level IP address to a
low-level physical hardware address.

ARPANET An early network established for networking
research by the Advanced Research Projects
Agency (ARPA). ARPA is now known as
DARPA. ARPANET consists of individual
packet switch nodes interconnected by leased
lines.

BBRAM Battery-backed RAM.

broadcasting A system that delivers a copy of a given packet
to all attached hosts. You may implement
broadcasting with either hardware or software.
See also packet.

checksum A small integer value computed from a sequence
of octets by treating them as integers and
computing the sum. A checksum is used to
detect errors that result when the sequence of
octets is transmitted from one machine to
another. Typically, protocol software computes a
checksum and appends it to a packet when
transmitting. When received, the protocol
software verifies the contents of the packet by
recomputing the checksum and comparing the
value sent. Many TCP/IP protocols use a 16-bit
checksum computed with one’s complement
arithmetic with all integer fields in the packet
stored in network byte order.

Glossary
Appendix E

E-2

client Any process that wishes to use a service
provided by a network server.

connected socket A socket which has been bound to a permanent
destination. See also socket.

connectionless A form of interconnection that allows
communication to take place without first
establishing a connection.

daemon A system process that runs in the background. It
has no attached terminal and never exits.

datagram socket A communications channel that is not
necessarily sequenced, reliable, or unduplicated.
Datagram sockets allow data packets, called
messages, to flow bi-directionally. Because
datagram sockets do not need to be connected to
a peer, messages are sent to a destination
address. See also socket.

DMA Direct Memory Access.

domain In the Internet, a part of a naming hierarchy.
Syntactically, an Internet domain name consists
of a sequence of names (labels) separated by
periods (dots). For example, mcrw.ulm.ia.us.

dotted decimal notation The syntactic representation for a 32-bit integer
that consists of four 8-bit numbers written in
base 10 with periods (dots) separating them.
Used to represent IP addresses in the Internet as
in: 192.10.54.3.

encapsulation The practice of adding additional header
information for each layer of the protocol
through which a packet passes.

file transfer protocol (ftp)
A high-level protocol used to transfer files
between systems. You can use ftp to log into a
remote system, known as a server, with a proper
login user name and password (if required). You
can then look at directories on the server and
transfer files to and from a server. See also
protocol.

Glossary
Appendix E

E-3

fragments The small pieces into which a datagram is
divided in order for a datagram to pass through a
network that has a small maximum transfer unit
(MTU). See also maximum transfer unit.

fragmentation The process of breaking an IP datagram into
smaller pieces to fit the requirements of a given
physical network. See maximum transfer unit.

gateway A computer dedicated to connecting two or
more networks. A gateway routes message
packets from one system to another. Gateways
route packets based on the destination network,
not on destination host.

globbing Refers to the expansion of wildcards for remote
file names.

host Any computer system that connects to a
network.

inetdb OS-9/Internet uses the data module inetdb to
contain the Internet data files. These files are
normally kept in the UNIX /etc directory. The
data in these files are kept in a data module
rather than in the files to allow a totally
ROM-based Internet system. The idbgen utility
creates inetdb from the four data files. Examples
of the four files are provided in the ETC
directory on the distribution disk.

Internet The connection of two or more networks that
allow computers on one network to
communicate with computers on another
network. The internet is sometimes referred to as
the internetwork.

Internet address A 32-bit address assigned to hosts using TCP/IP.
See dotted decimal notation.

Internet Protocol (IP) The Internet datagram delivery protocol that is
central to the Internet protocol family. Programs
may use IP through higher-level protocols such
as the User Datagram Protocol and the
Transmission Control Protocol or may interface
directly using a raw socket. Protocol options
defined in the IP specification may be set in
outgoing datagrams. See also User Datagram
Protocol (UDP) and Transmission Control
Protocol (TCP).

Glossary
Appendix E

E-4

IP datagram The basic unit of information passed across an
internet using Transmission Control
Protocol/Internet Protocol (TCP/IP). An IP
datagram is divided into a header area and a data
area. The datagram header contains the source
and destination Internet Protocol address and a
type field identifying the datagram’s contents.
See also Transmission Control Protocol (TCP).

ISDN Integrated Services Digital Network. An
emerging technology which combines voice and
digital network services in a single medium
making it possible to offer customers digital data
services as well as voice connections through a
single wire.

ISO International Organization for Standardization.
Best known for the seven-layer OSI Reference
Model.

maximum transmission unit (MTU)
The largest amount of data that can be
transmitted across a given physical network.

mbuf A common data structure used by all parts of the
ISP system for data storage. The mbuf data
structure provides an efficient way to store
variable-length data blocks.

multicast A special form of broadcast where copies of the
packet are delivered to only a subset of all
possible destinations. See broadcast.

network A computer network is the hardware and
software used to allow computers to
communicate with each other. For this manual,
the term network refers only to packet-switched
networks.

non-blocking A socket that is non-blocking will not block
when data is unavailable for reading.

packet A block of data for data transmission. Each
packet carries identification that allows
computers on the network to know whether it is
destined for them or how to pass it on to its
correct destination.

Glossary
Appendix E

E-5

peer Either of a pair of communicating sockets.

port The abstraction used by Internet transport
protocols to distinguish among multiple,
simultaneous connections to a single destination
host.

protocol A formal description of message formats, the
handling of error conditions, and rules that
govern how to locate, request, accept, and
terminate a service between two or more
machines. Protocols can describe both low-level
and high-level details. A communication
protocol allows you to specific or understand
data communication without depending on
detailed knowledge of a particular vendor’s
network hardware. See also Internet Protocol,
Transmission Control Protocol, and User
Datagram Protocol.

RAM Random Access Memory.

raw sockets Provide access to the low-level protocol that
supports sockets. This access to the underlying
protocols makes raw sockets useful for
development and testing. See also socket.

remote host A computer system to which you are logged on
over the network system.

server A process that provides a specific service.

socket An abstraction that allows application programs
to access communication protocols by serving as
an endpoint of a communication path
within/between operating systems.

stream socket Stream sockets imply a data stream is passed on
the socket. When used, a stream socket is
connected with another stream socket to form a
two-way pipe across the network. See also
socket.

telnet Allows you to log on to a remote host. Once
logged into a remote host, your terminal appears
to be connected to that machine, and any keys
you enter are automatically passed to the remote
host. See also remote host.

Glossary
Appendix E

E-6

Transmission Control Protocol (TCP)
A standard transport level protocol that is
layered on top of the Internet Protocol (IP).
TCP allows a process on one machine to send a
stream of data to a process on another machine.
TCP provides reliable, flow controlled, orderly,
two-way transmission of data between
connected processes. You can also shut down
one direction of flow across a TCP connection,
leaving a one-way (simplex) connection. See
also protocol and Internet Protocol.

unconnected socket A socket which has not been bound to a
permanent destination. See also socket.

User Datagram Protocol (UDP)
A simple, unreliable datagram protocol that
allows an application program on one machine
to send a datagram to an application on another
machine using the Internet Protocol (IP) to
deliver datagrams. UDP uses a port number and
an IP address to identify the endpoint of
communication. See also datagram and protocol.

Glossary
Appendix E

E-7

Notes

Index

I–I

Symbols
Empty, 6-4
_ss_sevent(), 7-3

A
accept(), 2-5, 7-4
AF_ETHER, 2-1, 7-53
AF_INET, 2-1, 7-4, 7-53
AF_UNIX, 2-1, 7-53
ARP

change table information, 6-2
report table information, 6-2

ARPANET, 3-1
arpstat, 6-2

defined, 6-1

B
beam.c, B-8
bind(), 2-4, 7-6
BOOTP

based on, 5-1
overview, 5-1
server response, 5-1
server utilities, 5-2

bootpd, 5-3, 5-4, 6-3
defined, 5-2, 6-1
tags, 5-4

bootps, 5-4
bootptab

example, 5-8
setting up, 5-4

bootptest, 6-4
defined, 5-2, 6-1

Bootstrap Protocol, 5-1
broadcasting, 2-9

C
change, IP information, 6-21
checksum, 1-7
Class A, 1-9
Class B, 1-10
Class C, 1-10
client, defined, 1-6
configuration file, bootptab, 5-4
connect(), 2-6, 7-7

connected sockets, 2-3
connection handlers, 6-1
connectionless sockets, 2-6
convert values, 7-29, 7-37
current status report, 3-2

D
daemon server programs, 6-1
data module, 7-21

inetdb, 7-1, 7-8, 7-9, 7-10, 7-12,
7-13, 7-15, 7-16, 7-17, 7-19, 7-20,
7-22, 7-23, 7-25, 7-46, 7-47, 7-48,
7-49

datagram
defined, 1-4
encapsulated, 1-4
flow through IP layer, 1-7
sockets, 2-2, 7-54

device descriptor, template, 6-15

E
encapsulated datagram, 1-4
encapsulation, 1-5

of TCP packets, 1-7
of UDP packets, 1-8

endhostent(), 7-8
endnetent(), 7-8
endprotoent(), 7-9
endservent(), 7-9
error messages, A-1
ethrecvf.c, B-17
ethsendto.c, B-15

F
F$MBuf, 6-1, 6-24
F$Mbuf, 1-16
file naming conventions, 3-3
file transfer

form, 6-8
manipulation, 6-6
protocol, 6-1, 6-7
set type, 6-7

file transfer protocol, 3-1
file transfer type, setting, 6-7
fragmentation, 1-4

Index

I–II

fragments, 1-4
reassembled, 1-5

frame, 1-4
ftp, 3-1, 6-6

$, 3-6
append file, 3-4, 6-7
available commands, 3-4
bye command, 3-9
change directory, 3-4, 6-7, 6-8
command interpreter, 6-6
completion of file transfer, 3-4
connect to, 3-4, 6-7
copy file, 3-4, 6-9
copy files, 6-8
copy multiple files, 3-4, 6-8
copying multiple files, 6-8
create directory, 3-4
current modes, 3-2
current status report, 6-6
debugging mode, 6-7
defined, 6-1
delete directory, 3-4, 6-9
delete file, 3-4, 6-8
delete multiple files, 3-4, 6-8
dir command, 3-5
display directory, 3-4, 6-8
display status, 6-9
end session, 3-4, 6-7, 6-9
establish connection, 3-4
exiting, 3-9
expand wildcards, 3-4
file transfer form, 3-2
get command, 3-6, 3-7
globbing, 3-4, 6-8
help, 3-4, 6-8, 6-9, 6-10
interactive prompting, 3-4, 6-9
ls command, 3-5
making directories, 6-8
mget command, 3-7
mput command, 3-8
open command, 3-3, 6-8
pd command, 3-6
print current pathlist, 3-4, 6-8
print hash marks, 3-4, 6-8
put command, 3-7

pwd command, 3-6
quit command, 3-9
quoting parameters, 6-9
recv command, 3-6
redirecting directory display, 6-8
rename file, 3-4
renaming file, 6-9
run shell command, 3-4
running shell command, 6-7
send command, 3-8
send parameters, 3-4
server daemon, 6-11
set file structure, 3-4, 6-9
set file transfer form, 3-4, 6-8
set file transfer type, 3-4
set representation type, 3-4, 6-10
set transfer mode, 3-4, 6-8
show current status, 3-4
socket level debugging mode, 3-4
syntax, 3-1
toggle use of PORT commands,
3-4, 6-9
user identification, 3-4, 6-10
verbose mode, 3-4, 6-10

ftpd, 6-11
defined, 6-1

ftpdc, 6-12
defined, 6-1

G
gateway, 1-10

defined, 1-1
illustrated, 1-1
routed, C-1

gethostbyaddr(), 7-10
gethostbyname(), 7-12
gethostent(), 7-13
gethostname(), 7-14
getnetbyaddr(), 7-15
getnetbyname(), 7-16
getnetent(), 7-17
getpeername(), 7-18
getprotobyname(), 7-19
getprotobynumber(), 7-20
getprotoent(), 7-21

Index

I–III

getservbyname(), 7-22
getservbyport(), 7-23
getservent(), 7-25
getsockname(), 7-26
getsockopt(), 7-27
globbing, 3-2, 6-6, 6-8

H
hardware

specify address, 5-5
specify types, 5-5

header file, 1-15
in.h, 1-15, 2-4, 7-29, 7-37
inetdb.h, 1-15
netdb.h, 1-16
sgstat.h, 2-8
socket.h, 1-15, 2-10, 7-28, 7-53,
7-54

host
defined, 1-1
get current host name, 7-14

hostent, 7-10, 7-12, 7-13
hostid, 1-8
hostname, 6-12

defined, 5-2, 6-1
hosts file, 1-13, 6-1, 6-13, 7-10, 7-12,
7-13, 7-46

example entry, 1-13
htonl(), 7-29
htons(), 7-30

I
idbdump, 6-14

defined, 6-1
idbgen, 6-13

defined, utilities, idbgen, 6-1
IF device descriptor, generating, 6-15
IF device driver, display status, 6-19
IF device status, 6-1
if_devices, 6-1, 6-15, 6-18

entries, 6-17
ifgen, 6-15, 6-18

defined, 6-1
IFMAN, 1-16
ifstat, 6-19

defined, 6-1
in.h, 1-15, 2-4, 7-29, 7-37

sockaddr_in, 1-16
inet_addr(), 7-31
inet_inaof(), 7-32
inet_makeaddr(), 7-33
inet_netof(), 7-34
inet_network(), 7-34
inet_ntoa(), 7-35
inetdb, 7-1, 7-8, 7-9, 7-10, 7-12,
7-13, 7-15, 7-16, 7-17, 7-19, 7-20,
7-21, 7-22, 7-23, 7-25, 7-46, 7-47,
7-48, 7-49

linking to, 7-1
inetdb.h, 1-15
inetstat, 6-20

defined, 6-1
interface manager, 1-16
International Organization for
Standardization, 1-2
internet, defined, 1-1
Internet address, 1-8

create, 7-33
return in network byte order, 7-35
return local host portion, 7-32
return network portion, 7-34
return suitable values, 7-31, 7-34

Internet database
displaying, 6-1
generation of, 6-1

Internet Protocol, 1-6
internetwork, defined, 1-1
IP, 1-6

ch, 6-21
report information, 6-21

IP address, 1-8
classes of, 1-9

ipstat, 6-21
defined, 6-1

ispstart, 6-22
defined, 6-1

L
LANCE, device status report, 6-1,
6-23

Index

I–IV

lestat, 6-23
defined, 6-1

linger interval, 2-10
listen(), 2-4, 7-36

M
maximum transfer unit, 1-4
mbinstall, 6-24

defined, 6-1
mbuf, 1-16, D-1

described, 1-17
installing, 6-24

messages, 2-2
MTU, 1-4

N
ne, 1-13
netdb.h, 1-16
netent, 7-15, 7-16, 7-17
netid, 1-8
network

database, 6-13, 7-8, 7-9
defined, 1-1
entry, 7-15, 7-16, 7-17, 7-47
host entry, 7-10, 7-12, 7-13, 7-46
protocol entry, 7-48
routing daemon, C-1
services entry, 7-49

Network Information Control Center
(NIC), 1-13
networking files

hosts, 1-13, 6-1, 6-13, 7-10, 7-12,
7-13, 7-46

example entry, 1-13
networks, 1-13, 1-14, 6-1, 6-13,
7-15, 7-16, 7-17, 7-47

example entry, 1-14
protocols, 1-13, 1-14, 6-1, 6-13,
7-19, 7-20, 7-21, 7-48

example entry, 1-14
services, 1-15, 6-1, 6-13, 7-22,
7-23, 7-25, 7-49

example entry, 1-15
networks file, 1-13, 1-14, 6-1, 6-13,
7-15, 7-16, 7-17, 7-47

example, 1-14
non–blocking sockets, 2-8
ntohl(), 7-37
ntohs(), 7-38

O
OS–9/Internet

illustrated, 1-18
starting, 6-1, 6-22

OSI model, 1-2

P
packet, defined, 1-4
peer

defined, 2-2
get name of, 7-18

port numbers, defined, 1-11
proto, 1-6, 1-7
protocol

defined, 1-6
entry, 7-19, 7-20, 7-21
Internet Protocol, 1-6
IP, 1-6
TCP, 2-2
Transmission Control P, 2-2
Transmission Control Protocol,
1-6, 1-7
UDP, 1-6, 1-8, 2-2
User Datagram Protocol, 1-6, 1-8,
2-2

protocol handlers, 1-16
protocols file, 1-13, 1-14, 6-1, 6-13,
7-19, 7-20, 7-21, 7-48

example entry, 1-14
protoent, 7-21

R
raw sockets, 2-2, 2-3
read(), 2-7
recv(), 2-7, 7-39
recvfrom(), 2-6, 2-7, 7-40
remote host

connecting to, 3-1
locating files on, 3-5
logging into, 4-1

Index

I–V

transferring files from, 3-6
remote Internet site communication,
6-6
remote system, copying files to, 3-7
report

IP information, 6-21
TCP status, 6-20

routed, 6-25, C-1
on gateways, C-1

routing daemon, 6-25

S
send(), 2-7, 7-42
sendto(), 2-6, 2-7, 7-44
servent, 7-22, 7-23, 7-25
server, defined, 1-6
service, defined, 1-15
service entry, 7-22, 7-23, 7-25
services, 1-13
services file, 1-13, 1-15, 6-1, 6-13,
7-22, 7-23, 7-25, 7-49

example entry, 1-15
sethostent(), 7-46
setnetent(), 7-47
setprotoent(), 7-48
setservent(), 7-49
setsockopt(), 7-50
sgstat.h, 2-8
shutdown(), 7-52
SO_DEBUG, 2-10, 7-54
SO_DONTLINGER, 2-10, 7-54
SO_DONTROUTE, 2-10, 7-54
SO_KEEPALIVE, 2-10, 7-54
SO_LINGER, 2-10, 7-54
SO_REUSEADDR, 2-10, 7-54
SOCK_DGRAM, 2-2, 2-3, 2-6, 7-53,
7-54
SOCK_RAW, 2-2, 2-6, 7-53
SOCK_STREAM, 2-2, 2-3, 7-4, 7-7,
7-36, 7-53, 7-54
sockaddr_in, 1-16, 2-4, 2-5
socket manager, 1-16
socket.h, 1-15, 2-10, 7-28, 7-53, 7-54
socket(), 2-3, 7-53
sockets, 7-53

accept connection, 7-4
accepting, 2-5
bind name to, 2-4, 7-6
connected, 2-3
connecting, 2-3, 4-1, 4-2
connectionless, 2-6
controlling operation of, 2-10
creating, 2-3, 2-4, 2-5, 2-6
datagram, 2-2, 7-54
defined, 2-1
establishing, 2-3, 4-1, 4-2
get name, 7-26
get options, 7-27
header files, 1-15
illustrated, 2-1
initiate connection, 7-7
listen for connection, 7-36
non–blocking, 2-8
operations, B-1
raw, 2-2, 2-3, B-15, B-17
receive message from, 7-39, 7-40
send message, 7-44
send message , 7-42
set event, 7-3
set options, 7-50
shut down, 7-52
SOCKMAN, 1-16
stream, 2-2, 7-54

SOCKMAN, 1-16, 1-17, 5-2
SOL_SOCKET, 7-50
startbootp, 5-2
stream sockets, 2-2, 7-54

T
target.c, B-11
TCP, 1-6, 1-7, 2-2

report status, 6-20
tcprecv.c, B-5
tcpsend.c, B-2
telnet, 4-1, 6-26

capture I/O, 4-2, 6-27
capturing information, 4-4, 4-5
close connection, 4-2, 6-27
close current connection, 4-2, 6-27
command mode, 4-1

Index

I–VI

daemon process, 6-29
defined, 6-1
display current operating
parameters, 4-2
display current parameters, 6-27
displaying current status, 4-4
displaying operating parameters,
4-3, 4-4
ending session, 4-5
fork shell, 4-2, 6-28
help, 4-2, 6-28
incoming communications handler,
6-30
mode, 4-2, 6-27
open connection, 4-2, 6-27
operating parameters, 4-2, 6-28
options, 4-1
send special characters, 6-27
set operating parameters, 4-2, 6-27
show current status, 4-2, 6-27
suspend current session, 6-28
suspend session, 4-2
syntax, 4-1
transmit special characters, 4-2

TELNET protocol, 4-1, 6-26
telnetd, 6-29, 6-30

defined, 6-1
telnetdc, defined, 6-1
tftpd, 6-31

defined, 5-2, 6-1
tftpdc, 6-31

defined, 5-2, 6-1
Transmission Control Protocol, 1-6,
1-7, 2-2

U
UDP, 1-6, 1-8, 2-2
User Datagram Protocol, 1-6, 1-8,
2-2
utilities

arpstat, 6-1
bootptest, 6-1
ftp, 6-6
hostname, 6-1
idbdump, 6-1
ifgen, 6-1

ifstat, 6-1
inetstat, 6-1
ipstat, 6-1
ispstart, 6-1
lestat, 6-1
mbinstall, 6-1
telnet, 6-1

utilties
ftp, 6-1
telnet, 4-1

W
write(), 2-7

With offices in major cities worldwide

WORLD
HEADQUARTERS
Allen-Bradley
1201 South Second Street
Milwaukee, WI 53204 USA
Tel: (414) 382-2000
Telex: 43 11 016
FAX: (414) 382-4444

EUROPE/MIDDLE
EAST/AFRICA
HEADQUARTERS
Allen-Bradley Europa B.V.
Amsterdamseweg 15
1422 AC Uithoorn
The Netherlands
Tel: (31) 2975/60611
Telex: (844) 18042
FAX: (31) 2975/60222

ASIA/PACIFIC
HEADQUARTERS
Allen-Bradley (Hong Kong)
Limited
Room 1006, Block B, Sea
View Estate
28 Watson Road
Hong Kong
Tel: (852) 887-4788
Telex: (780) 64347
FAX: (852) 510-9436

CANADA
HEADQUARTERS
Allen-Bradley Canada
Limited
135 Dundas Street
Cambridge, Ontario N1R
5X1
Canada
Tel: (519) 623-1810
FAX: (519) 623-8930

LATIN AMERICA
HEADQUARTERS
Allen-Bradley
1201 South Second Street
Milwaukee, WI 53204 USA
Tel: (414) 382-2000
Telex: 43 11 016
FAX: (414) 382-2400

As a subsidiary of Rockwell International, one of the world’s largest technology
companies — Allen-Bradley meets today’s challenges of industrial automation with over
85 years of practical plant-floor experience. More than 13,000 employees throughout the
world design, manufacture and apply a wide range of control and automation products
and supporting services to help our customers continuously improve quality, productivity
and time to market. These products and services not only control individual machines but
integrate the manufacturing process, while providing access to vital plant floor data that
can be used to support decision-making throughout the enterprise.

Publication 1771-6.4.11 September 1992 PN 955113-15
Printed in USA

	1771-6.4.11, OS-9 Internet Software Reference Manual
	Acknowledgements
	Copyright and Revision History
	Disclaimer
	Reproduction Notice
	Trademarks
	Table of Contents
	1 - OS-9 /Internet Overview
	Basic Networking Terminology
	Protocols
	Port Numbers
	Networking Files
	Header Files
	OS-9/Internet Operation

	2 - Installing OS-9/Internet
	Introduction
	Hardware Set Up
	Installing Internet
	Making Device Descriptors for VME/ 147 and VME/ 167 Systems
	Making Device Descriptors for CMC and ENPLLD Systems
	The Ipconfig Data Module
	Getting Internet Up and Running on VME/ 147 and VME/ 167 Systems
	OS-9/Internet Implementation Notes

	3 - Transferring Files with FTP
	Connecting to a remote Host with FTP
	File Naming Conventions
	Available FTP Commands
	Locating Files on the Remote Host
	Copying Files from the Remote Host to Your Local System
	Copying Files from Your Local System to the Remote Host
	Copying Multiple Files
	Exiting FTP

	4 - Using Telnet
	Establishing a Socket
	Beginning a Telnet Session
	Available Telnet Commands
	Capturing Information from a Telnet Session
	Ending a Telnet Session

	5 - Using the BOOTP Server
	OS-9 Bootstrap Protocol (BOOTP)
	Overview
	OS-9 BOOTP Server Utilities
	Setting Up the Bootptab Configuration File

	6 - OS-9/Internet Utilities
	arpstat
	bootpd
	bootptest
	ftp
	ftpd
	ftpdc
	hostname
	ibdgen
	idbdumb
	ifgen
	ifstat
	inetstat
	ipstat
	ispstart
	lestat
	mbinstall
	routed
	telnet
	telnetd
	telnetdc
	tftpd
	tftpdc

	7 - Socket/Network C Libraries
	The OS-9/Internet Library
	The OS-9/Internet Socket Library
	_ss_sevent
	accept()
	bind()
	connect()
	endhostent()
	endnetent()
	endprotoent()
	endservent()
	gethostbyaddr()
	gethostbyname()
	gethostent()
	gethostname()
	getnetbyaddr()
	getnetbyname()
	getnetent()
	getpeername()
	getprotobyname()
	getprotobynumber()
	getprotoent()
	getservbyname()
	getservbyport()
	getservent()
	getsockname()
	getsockopt()
	htonl()
	htons()
	inet_addr()
	inet_Inaof()
	inet_makeaddr()
	inet_netof()
	inet_network()
	inet_ntoa()
	listen()
	ntohl()
	ntohs()
	recv()
	recvfrom()
	send()
	sendto()
	sethostent()
	setnetent()
	setprotoent()
	setservent()
	setsockopt()
	shutdown()
	socket()

	A - Error Codes
	B - Example Programs
	Example 1: Socket Operations
	Example 2: Beam and Target
	Example 3: Ethernet Raw Socket Support for ISP

	C - Using the routed Daemon
	Using routed

	D - Implementation Notes for SysMbuf
	E - Glossary
	Index
	Back Cover

