8
:
a
H

»e

oy Sshsorzens ot
§__gg BsZesddennes =i,
e:f HEERNGESAN

nn LEEEREEECE

System
Software
Dokumentation

Sirius
COMPUTER

(.




o Sirius

SIRIUS 1
User’'s Guide

C

- for

P/M-86




NOTICES

COPYRIGHT © Sirius Systems Technology, Inc., 1982. All rights reserved.
® Digital Research, Inc. 1982. All rights reserved.

TRADEMARKS CP/M is a registered trademark of Digital Research, Inc. ASM-&S,
CBASIC-86, CP/M-86, and DDT-86 are trademarks of Digital
Research, Inc.

DISCLAIMER Sirius Systems Technology, Inc. makes no representations or
warranties of any kind with respect to the contents hereof and
specifically disclaims any implied warranties of merchantability or
fitness for any particular purpose. Sirius shail not be liable for errors
contained herein or for incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

Further, Sirius reserves the right periodically to revise this publication
and to make changes in the content hereof without obligation of SII’IUS

to notify any person of such revision or changes. ~—

PROPRIETARY This document contains proprietary information which is protected by

NOTICE ‘ copyright. All rights reserved. No part of this publication may be
reproduced, transcribed, stored in a retrieval system, transiated into
any language or computer or transmitted in any form, without the prior
written consent of Sirius Systems Technology, Inc., 380 El Pueblo
Road, Scotts Valley, California 95066.

PART NUMBER 100919-01
Printed in U.S.A.



1. Introduction

2. CP/M-86 Overview

3. CP/M-86
Basic Operating
Procedures

4. Device and
Media Management

5. File System
Management

CONTENTS
MSER Gu(DE

13 Manual Contents .....veveiiiiieienrressesensasaseenacnnnns 1

12 Manual Conventions . ...vveireniiviiserieenieensnnsannenaes 2
1.3 Related Publications ................. P 2
2.1 COMPONEMS . iiitieeireenesaraaasonsacssssssassancasanns 5
22 Input/OUtPUt DeVICES v . ovvvtinineietieeneresoseanasaesanns 5
2.3 Basic Operating Principles and Notes .....c.vieiiiiiennnen, 6
2.4 Entering and Modifying CP/M-86 Commands .........coeeeuenn 7
P2 11TV (= o o P 7
2.5.1 File SPBCHIErS v vvvitiereieeeenenenenensaceensasnenesanean 7
252 CP/M-86 File Extension Conventions ........ccvvvvnveecnnn. 10
2.5.3 Valid and Invalid File Specifiers .......cieiviiivieinerenen. 10
2.54 Wild-Card CharacterS ....eveviiereeeerennnneerannnnnnacas 11

31 Loading CP/M-86 ...t iiiitiriiiiiieieiiiiinentiescnenannns 13

32 Changing the Default Drive .....cveivirnnieniienennnennannes 13

3.3 Changing Diskettes at the CP/M-86 System Level ............. 13
3.4 Controliing Consoie OUtPUL ... ivieiieeeerereranenoonansnns 14

3.5 Loading CP/M-86 or Programs from Drive B .................. 14

4.1 Diskette Formatting — The FORMAT Program ................ 17
411 Using FORMAT ...ttt iieeerntecenorosessncnoasnnnas 17
412 Using FORMAT SWICHES . ....iviiiiiienriiiinrennnnennnns 18

4.2 Diskette Backup — The DCOPY Program .......cevuviveennnnn 19
42.1 Using DCOPY with interactive System Prompts. .............. 20
422 Using DCOPY without System Prompts ......ccovevvuieievnnn. 21

4.3 Operating System Copy — The BOOTCOPY Program ......... 22
4.4 Device and File Status — The STAT Program ........cveeenns 23
441 Available Space on Al Drives ...ttt 24
442 Available Space on a Specified Drive ..........ccciiviieens. 25
443 File INfOrmation ...vvierennetieenertenneasoannscnnsoennns 25
444 Setting a File or Diskette to Read-Only or Read-Write Status ... 26
445 Excluding File Names from the Directory ..........covvvevnn. 26
448 Dispiaying STAT Command Parameters .........cveeueeeenn 27
4.4.7 Displaying Drive CharactenistiCs ....covvivineiiiinrrrenennnns 27
448 Physical-to-Logical Device Assignments ..........ccevvvnnnn 28
51 The DIR Command ....vuuuiiiiiiiieeeererinnnnennenoannns 29
511 DIR Command Format .....coivetiinniirieaneananennnnns 29
512 DIR Command EXamples ....vivererrneeneencncneacnsocsns 29
52 The TYPE (Display) Command ......ccevveuieereroniecansnns 30

5.3 The ERA (Delete) Command ........ccvveerrnnrcroneneranens 31

54 The REN (Rename) Command ........ccovieviveeennnenenenns 31

5.5 PIP — Peripheral Interchange Program ......c.cceeeerenececanns 32

551 Loading PIP ..t it e e 32

5.52 Copying Files With PIP L it ittt iinentennns 33

553 Using PIP Parameters .....uvueiniiiiinnierrenrnnneneenes 35

5.5.4 Outputting Files To Logical Devices With PIP ................ 36

5.6 The SUBMIT Command and SUB FileS ......vveeviernnnnnnnn. 38



Text Files

Appendixes

6. Creating and Editing 6.1 Activating the Text Editor ...ttt 41
6.2 Basic Operating PrinCiples .....cvvriiiiiiiiiiiiiiiiinnennnnn. 41
B3 Creating a Text File ..uvvirenrnniinnnnineeeneeanenanonnnnn 42
6.4 Editing an Existing File .....ciiiiiiiininnriiernnraeenneanans 42
6.5 Text Transfers Between the Edit Buffer and ASCII Files ......... 43
6.6 The Character POINter .. ..vieenriieiniieiesetenrenacnnanans 45
B.7 MOAIfyiNg TeXl L iuntiiiiiiiiiiiirennsrnsresssnscncenncnnnes 46
6.8 Command String UsSage ....cciiiienrrnninierneeiernneanens 47
6.9 Sampie ED Session ...ttt ittt 48
6.10 ED Error Message and Error Indicators ....coeeeviiiiiiniannnn 49
6.11 Alternate Character SUMMAIY ......ccveevvrecennccacncnnnsas 49
6.12 ED Command SUMMAry ....iiveiieiineencenreeneeeananens 50
Appendix A: CP/M-86 Command Format Summary ............... 51
Appendix B: CP/M-86 Error MesSSages .......ccvevevneiennivnnnns 33
Appendix C. BDOS Error MESSagES ...vvvverrereneresrnncnnnanan 55
Appendix D: Error Codes and Defintions ........coviiiiiiiiiiae. 57
Appendix E SIRIUS Utility Error Messages ........cevieveeneenns. 59

Vi



FIGURES
2-1: File Specifier StruCture ......vviiviieereiireinnneeneennnn. 9
6-1: Edit Buffer/Edit File Interaction ......cooeiveenernnnennnnn. 44

vii



TABLES

2-1: Logical and Physical Devices ........cvriiiiriinnunnnn.. 6
2-2. Alternate-Key Command-Line Editing Functions ............. 7
2-3: CP/M-86 File Extension Conventions ........coveivvennnnn. 10
3-1: Console Output Alternate Characters ........eeeeeveeeenns. 14
4-1: STAT Command OptionNs ..evvvivniireeeennnnnniereennnns 24
4-2: Physical-to-Logical Device Assignments ............coeuven.. 28
5-1: PIP Command Parameters ........c.eeeivinireeeennnnnnnss 35
5-2: Logical Devices and Special Terms Used With PIP .......... 37
6-1: Edit Buffer - Text File Transfer Command .................. 43
8-2: Character-Pointer Related Commands ..........cvvvvevnn.. 45
6-3: Text Modification CommMaNnds .......vevrerrrevrereerennenn 46
6-4: Command String Alternate-Characters ............cvevunnn. 47
B-5. ED Error INdiCalorS v viee it iiieenennns 49
6-6. Text Editor Alternate-Character Commands .........ceevvnn. 49
6-7: Alphabetical List of ED Commands .....coovvivvvinnnnnn.. 50
A-1: CP/M-86 Command Format Summary ........cvvvvevnnnn.. 51
B-1: CP/M-86 Error Messages ..... PP 54
D-1: SIRIUS Error Code Definitions ..oovvvvenneinnieennnennnn. 58
E-1: SIRIUS Utility Error Messages .....vvvereniireennnnnnnn.. 59



e
MANUAL PRINTING CONVENTIONS

This manual uses two-coior printing in examples to differentiate
computer messages from user entries. Computer output is biack, and
user entries are grey.

The following symbois and abbreviations are used in examples to
represent pressing certain keys: « represents pressing the Return key,
and . represents pressing the Space bar.

Examples and parts of tables show Alternate function (Alt key)

characters as bold face upper case letters. For example, the key
sequence Alt C is indicated as C.

Xl



l

L
INTRODUCTION



L
1.1 MANUAL
CONTENTS

"
1. INTRODUCTION

This manual describes the CP/M-86 operating system, as used with the
SIRIUS 1 Computer. The manual is an introduction to the system

for new users. It can also serve as a quick reference guide for users
experienced with CP/M-based operating systems. The manual contains
basic operating-system information necessary for using CP/M-86 and for
develcping programs that run on the SIRIUS 1 Computer.

This manual contains the following six chapters and five a‘ppendixes:

» “Introduction” describes manual contents, conventions, and related
documentation.

» “CP/M-86 Overview" provides an overview of the operating
system.

» “Basic CP/M-86 Operating Procedures” describes loading the
operating system, changing the default disk drive, and controliing
console and printer output.

» “Device and Media Management" describes formatting and
copying diskettes; displaying diskette file statistics; marking files or
drives as read-only or as read-write; and assigning physscal
devices to logical devices.

> “File System Management” describes displaying the diskette
directory and the contents of ASCII files; deleting, renaming, and
moving files; and executing command files.

» “Creating and Editing Text Files” describes using the ED program
to create and modify ASCI! files.

» Appendix A, “CP/M-86 Command Format Summary,” provides an
alphabetic list of the syntax of each CP/M-86 command.

» Appendix B, “CP'/ M-86 Error Messages,” describes the error
messages generated by the CP/M-86 operating system.

» Appendix C, "BDOS Error Messages,” describes the error
messages issued by the Basic Disk Operating System portion of
CP/M-86, as used with SIRIUS 1.

» Appendix D, "SIRIUS Error Codes and Definitions,” error
messages.

> Appendix E, "SIRIUS Utility Error Messages,” describes the error
messages generated by the SIRIUS utility programs DCOPY,
FORMAT, and BOOTCOPY.



E————
1.2 MANUAL
CONVENTIONS

R —
1.3 RELATED
PUBLICATIONS

n

A form for readers’ comments has been inciuded at the back of the
manual. If the comment form has been removed, please send
comments to your SIRIUS 1 representative. A list of Sirius offices,
subsidiaries, and distributors appears at the back of this manual.

This manual uses the following conventions:

» Examples present computer- and user-generated material
differently. computer output is black; user entries are grey.

» In examples and command-format illustrations, nonprinting ASCH
characters, such as line feeds and carriage returns, appear as
symbols. For instance, J represents the character for a line feed;
+ represents a carriage return; .. represents a space.

» in exampies and parts of tables, Alternate function (Ait key)
characters are represented with boldface upper case letters. For
example, the key sequence Alt C appears in examples as C. (Use
of the Alt key is described in Section 2.3.)

» Command names, file names, and system prompts 6r responses
embedded in text appear in upper case.

» When command formats and standard user entries appear in text
for the first time, they are presented in bold-faced singie lines.

» In command formats and in Appendix A:

— Braces ({ }) indicate that one item in the enclosed group must
be selected. :
— A vertical bar (|) separates alternatives.

~ Brackets ([ ]) indicate that the enclosed item(s) are optionai.

— An ellipsis in brackets ([...]) indicates that the preceding
parameter can be repeated any number of times. A comma
preceding the ellipsis ([,..]) indicates that each parameter must
be separated from the others by a comma.

— General forms (which represent specific entries to be supplied
by the user - such as file names, drive names, and device
names) appear as single words, such as filename, drivename,
and logicaldevice. In command and error message formats,
general forms are italicized.

— The term system diskette refers to any diskette that contains
the CP/M-86 operating system.

Severai publications on SIRIUS 1 and on CP/M and CP/M-86 are
available. Introduction to the SIRIUS 1 Computer presents basic
operating procedures for SIRIUS 1. Users who are inexperienced with
computers should familiarize themselves with these procedures before
using this manual, SIRIUS 1 User's Guide for CP/M-86.



The following manuals provide additional technical information on
CP/M-86:

» SIRIUS 1 Programmer’'s Guide for CP/M-86 describes the 8086
assembler (ASM-86) and the Dynamic Debug Tool (DDT-86) used
to test and debug assembly language programs.

» SIRIUS 1 System Guide for CP/M-86 describes the internal
structure of CP/M-86, how to create an executable command file,
and the use of device, disk, and memory-management routines
provided by the operating system.

(93]



2

CPM/-86 OVERVIEW



R
2.| COMPONENTS

S —
2.2 INPUT/QUTPUT
DEVICES . .

5
2. CP/M-86 OVERVIEW

CP/M-86 is an operating system for the SIRIUS 1 Computer. The
structure of the CP/M-86 file system allows dynamic allocation of file
space and both sequential and random file access. Using this file
system, many programs can be stored in both source and machine-
executable form on one diskette. CP/M-86 includes a text editor (ED),
an 8086/8088 assembier (ASM86), and a dynamic test and debug
program (DDT).

There are four main components of CP/M-86: (1) the Basic Input/
Output System (BIOS); (2) the Basic Diskette Operating System
(BDOS); (3) the Console Command Process (CCP); and (4) the
Transient Program Area (TPA). Component functions follow:

» BIOS — provides the primitive input/output interface to the
diskette drives and input/output devices.

» BDOS — controls the diskette drives and file system.
» CCP — reads the keyboard and processes commands.

» TPA — holds programs lcaded from diskette.

CP/M-86 performs its input and output based on the four “logical”
devices described in Table 2-1. A logical device is the name of a
device (e.g., LST:) that programmers or operators refer to when doing
input or output processing. Speciai-purpcse programs, called drivers,
handle the transfer of data to and from these iogical devices. These
drivers interface with specific physical devices, which are actual
input/output devices such as disk drives and line printers.

The operator can assign a physical device to a logical device name
through the STAT command (as described in Section 4.4). For example,
the operator can direct output to any of four physical devices by
changing the physical-to-logical device association, as described in
Section 4.4 8. )

Table 2-1 describes the CP/M-86 logical and physical devices.

The names of the actual devices attached to the SIRIUS 1 computer
may or may not correspond to the physical device names listed in
Tabie 2-1. For example, the device TTY: is actually an RS-232-C serial
communications port to which a printer, plotter, or modem might be
attached. The driver programs in the BIOS define the correspondence
of physical device to actual device.

Section 4.4.8 centains instructions for assigning a physical device to
a logical device name.



S
Table 2-1: Logical and Physical Devices

DEVICE TYPE/NAME DESCRIPTION

Logical Devices

CON: Console device — the principal interactive console which
communicates with the operator. Typically, CON: is a
device such as a CRT or teletype.

LST: List device — the principal listing device; usually a hard-
copy device, such as a printer or teletype.

RDR: Paper tape reader device — the principal tape punching
device; normally a high speed paper tape punch or teletype.

PUN: Paper tape punch device — the principal tape reading
device, such as a simpie optical reader or teletype.

BAT: Batch mode-reader (RDR:) as input; a printer (LST:) as output.

Physical Devices

TTY: Serial output-port A (teletype-style printer — RS-232-C)
CRT: Keyboard and cathode ray tube display
uci: External console (to be developed)
PTR: High speed read (to be developed)
UR1: (To be deveioped)

UR2: (To be developed)

PTP: High speed punch (to be deveioped)
UP1: (To be developed)

UP2: (To be developed)

LPT: Paraliel port line printer (Centronics)
UL1: Serial printer — port B (RS-232-C)

2.3 BASICOPERATING This section (1) describes basic operating principles for using CP/M-

PRINCIPLES AND
NOTES

[0 }]

86's commands and (2) notes certain general characteristics of the
operating system. Some of the operating principies are expanded in
Chapter 3.

» The operator initiates CP/M-86 functions by entering commands at
the keyboard. The CP/M-86 commands and utility programs that
can be used to manipulate the data contained on diskettes are
described in Chapters 4, 5, and 6.

» The “default drive” is the currently selected drive, the drive to or
from which CP/M-86 is recording or obtaining data. Commands
entered to manipulate data act on the diskette in the default drive,
uniess the operator specifies another drive name in the command.

» Once CP/M-86 is loaded (as described in Section 3.1), the
console displays the letter name of the default drive, followed by
the command prompt. At the operating-system level, CP/M-86
always displays the name of the default drive with the system
command prompt (e.g., A or B). Because drive A is preferred for
loading the operating system, the screen always displays A after
lcading.

» Commands the user enters in response tc the prompt are referred
to as "system-ievel” cocmmands.



SR
2.4 ENTERING AND
MODIFYING CP/M-86
COMMANDS

R
2.5 FILE SYSTEM

2.5.1 FILE
SPECIFIERS

» All the commands described in this manual — except the ED
commands described in Section 6.2 — can be entered in upper or
lower case. CP/M-86 automatically converts commands entered in
lower case at the keyboard into upper case.

» The SIRIUS Alt (Aiternate function) key has two functions:

— It displays the symbol or invokes the function shown on the
front face cf another key.

— It acts as the Control key (for example, the function generally
referred to as a Control C is an Alt C on SIRIUS 1 and is
accomplished by striking C while keeping the Alt key
depressed).

The user communicates with the operating system by entering CP/M-
86 commands at the keyboard. Pressing the Return key at the end of
a command line sends the command to the operating system. A
command line can be up to 127 characters long.

The user can modify CP/M-86 commands at any time during entry,

until the Return key is pressed. To modify the command line, use the
Alt key functions described in Table 2-2.

e SRR
Table 2-2: Alt-Key Command-Line Editing Functions

ALT CHARACTER FUNCTION

Ait £ Causes physical end of line; display is shifted to
beginning of next line, but line is not sent to CPU until
Return key is pressed. Useful for entering command
fines that are longer than physical iine on screen.

Alt H or Moves cursor back one character position and deletes
Backspace key last character entered.

Alt J Terminates input (line feed).

R'::Lm :;.y Terminates input {carriage return).
Alt R Redisplays current command line.
Alt U Cancels current command line.
Alt X Backspaces (deletes) to beginning of current line.
Alt Z ASCII end-of-file character; ends input from console.

The SIRIUS 1 computer stores information on diskettes in the form of
files; a file is one or a group of related characters. A single file can
be any length, up to the data storage capacity of a diskette (600-
kbytes per side), a diskette directory can contain up to 128 entries. All
CP/M-86 file-related functions can be used in user-written programs.

A CP/M-86 file is identified by its file specifier, which consists of one
to three parts: a file specifier must contain a file name; it may also
contain a file extension and/or a drive name (the name of the drive
containing the diskette on which the file is recorded). If the crive
name is omitted from a fite specifier, CP/M-86 assumes that the file
is on the diskette in the default drive.

1



[y F)

The three elements of a file specifier are arranged in the foliowing
sequence, with no intervening spaces:

» Drive name — one letter followed by a colon.
» File name — one to eight characters.
» File extension — one to three characters.

Characters in a file specifier may be entered in upper or lower case.
The following characters may not be used in a file name or a file
extension < > ., ;. =?*[]

Exampies and command formats in this manual present file specifier
elements as follows: “filespecifier” represents a file specifier,
“drivename” represents a file specifier's drive name, “filename”
represents a file name, and “ext” represents a file extension. The
three parts of a file specifier are illustrated in Figure 2-1 and are
further described in the next subsections.



L]
Figure 2-1: File Specifier Structure

drivename:filename.ext

File extension — contains up to 3
characters. Any character can be used,
except< > . ,;:=7x*[]

Extensions are an optional part of file
specifiers, except for the file types shown
in Table 2-3.

File name — contains up to 8
characters. Any character can be used
except< > ., ;=727 []

Drive name — either A or B. The drive
name need not be specified when the
file resides on the diskette in the default
drive.




2.5.2 CP/M-86 FILE

EXTENSION

CONVENTIONS

2.5.3 VALID AND
INVALID FILE

SPECIFIERS

Examples:

A file specifier's file extension typically describes the form of the data
in the file. Conventions govern some types of files, and some
languages and application software packages assign file extensions
automatically. For example, BASIC-86 assigns the extension .BAS to
programs saved from that language. In addition, CP/M-86 defines the
meanings of several file extensions, as presented in Table 2-3.

Files can aiso be assigned extensions at the operator’s discretion. For
exampie, an operator might use the extension .TXT for all text files.

B e e
Table 2-3: CP/M-86 File Extension Conventions

FILE EXTENSION CP/M-86 INTERPRETATICN

.:A86 8086 assembly language source code

V,BAK Backup file created by ED program and some other

text editors

.BAS BASIC source code (Microsoft BASIC)

.CMD Executable command file

.C0OB COBOL source code

DAT Data file (assumed to be ASCII)

FOR FORTRAN source code

.H86 Hex file produced by assembler

INT Intermediate compiied code (CBASIC/86. CIS COBOL)
LST Listing of compilation or assembly

.OVR Overlay module

PRN Listing of compilation or assembly

REL Relocatable object code module

SuB Command file executed by SUBMIT command
SYM Symbol table of assembly or compiiation

XRF Cross-reference

$33 Temporary, system-generated file

Examples of valid file specifiers follow:

(O A

PAYROLL
B:1REPORT
PIP.CMD
BJACK.BAS
A:JOESMO

The following examples present invalid file specifiers: the notations
describe why the examples are invalid:



Exampies:

2.5.4 WILD-CARD
CHARACTERS

MARCHPAYROL File name contains more than 8 characters.

B:SALES[2] File name contains brackets, which are illegal
characters.

:JOESMO Drive name is entered as a number, rather
than a letter.

If the user attempts to name or save a file with a file name or
extension of more than the legal number of characters, CP/M-86
accepts the first eight letters of the file name and the first three
jetters of the extension as a valid file specifier.

However, if the user attempts to name or save a file with a file
specifier that is invalid in any other way, CP/M-86 responds with the
message invalid Format.

CP/M-86 wild-card characters allow the operator to use a single
commangd to perform one task on a group of files. :

Use of wild-card characters in CP/M-86 is similar to the use of wiid
cards in card games; the wild-card characters take on the meaning
that the system operator assigns to them by matching existing file
names.

The two CP/M-86 wild-card characters are the question mark (?) and
the asterisk (*).

The ? wild-card character means “match any character — or no
character — in this particular location in the file name or file extension.”
ror example, PAY-??? ROL matches each of these file specifiers:

PAY-JAN.ROL
PAY-FEB.ROL
PAY-MAR.ROL
PAY-JL.ROL

The = wild-card character means “pad with 7s.” This enables the
operator to refer to entire families of files. For example, * BAS refers to
all files with the extension BAS. As another example, WS=*.x identifies
any file whose file name (no matter how long) starts with WS,
regardless of extension.

Note that = pads all possible characters that follow it, within the file
name or the extension where it appears. This means that CP/M-86
cannot read or match any characters following the * in a file name or
extension. For example, *86.CMD matches all files with extension .CMD

Wild-card characters can be used in combination. For example,
?TEST.» refers to all files whose file name is four or five characters
long, the last four of which are TEST, regardless of file extension.

Note that the file specifier == refers to all files on the default or
designated drive.

1



3

CP/M-86 BASIC OPERATING PROCEDURES



]
3.1 LOADING
CP/M-86

L
3.2 CHANGING THE
DEFAULT DRIVE

Example:

R ———
3.3 CHANGING
DISKETTES AT THE
CP/M-86 SYSTEM
LEVEL

L ]
3. CP/M-86 BASIC OPERATING PROCEDURES

This chapter elaborates on some of the operating procedures
presented in Section 2.3 and describes procedures for loading CP/M-
86, changing the default drive, and controlling console and printer
output via the operating system. '

Additicnal background information on basic operating procedures for
SIRIUS 1 appears in the Introduction to the SIRIUS 1 Computer.

Use the following procedure to load CP/M-86:
1. Be sure both diskette drives are empty.

2. Turn on the system by pressing the switch located at the left rear
corner of the processor unit. The LED busy indicator on diskette
drive A lights up, and the system displays a power-up display
sequence which includes a symbolic request for insertion of the
system diskette (e.g., a flashing arrow and a diskette symbol).

3. Insert the system diskette (label up and label-edge last) into drive
A and close the drive door. When CP/M-86 is loaded, the system
dispiays a sign-on message (which presents system information,
including a keyboard configuration summary) and the CP/M-86
command prompt for the default or logged drive (A>).

As described in Section 2.3, the default drive is the working or
currently selected drive. The name of the default drive appears in the
CP/M-86 system prompt; for example, the system prompt B>
indicates that drive B is the default drive. To change the default drive,
respond to the system prompt by entering the letter of the desired
drive, a colon (:), and a carriage return. The following example
lllustrates changing the default drive to B from A.

e

A>bh: ¥
B>

As a general practice, enter Alt C whenever you change diskettes at
the CP/M-86 system level (i.e.. when the prompt is >). Entering Alt C
at the > prompt resets or clears the disk system and logs all active
drives. Active drives include the default drive, drive A (if it is not the
default arive), and any drive specified in CP/M-86 operations since
the last loading of the operating system.



R
3.4 CONTROLLING
CONSOLE OUTPUT

S
3.5 LOADING CP/M-86
OR PROGRAMS
FROM DRIVE B

14

CP/M-86 "logs" a drive by building and holding in memeory an
allocation map of the directory of the diskette in that drive. When the
user enters Alt C at the > prompt, the operating system always logs
drive A. However, if drive B is the default drive or has been active in
CP/M-86 operations, entering Ait C logs both drives.

If you attempt to write to a newly inserted diskette without first
resetting the disk system, CP/M-86 will not perform the write
operation and will display the following error message:

Bdos Err On X: R/O

where X represents the name of the drive containing the diskette. See
Appendix C for explanation of error messages.

When operating at the system level (i.e.,, when the command prompt
is >) anc when working with DDT and PP, the user can start or stop
computer output to either the console or the printer. Starting output to
the printer this way causes the printer to “echo” console display.
Stopping output to the console temporarily freezes the screen display.
Tabie 3-1 lists the Alternate characters used to control console
output.

Table 3-1: Console Qutput Alternate Characters

ALTERNATE
CHARACTER FUNCTION
Alt P Sends all console output to both LST: (for hardcopy)
and CON: (for screen display, if CON: is assigned as
CRT.). Re-entering Alt P stops output to LST:.. CAUTION:
Uniess a printer is on-line, entering Alt P freezes the
operating system; the operating system must pe
reicaded, and all data in memory is lost.
Alt S or © Temporarily stops output to CON:. Console (and printer,
Pause/Cont Key it output is being echoed to printer) remains frozen untii
any key is pressed. Ait S sends Device Control 3 (X-
QFF) to CPU.

Although CP/M-86 aiways attempts to load from drive A, the
operating system can be loaded from drive B. The option of loading
from B is useful if drive A is inoperable for any reason. To load the
system from drive B, follow steps 1 and 2 in the procedure in Section
3.1. Then insert the system diskette in drive B. After the sign-on
message appears, the screen displays this disk operating system
error message:

Drive = 0, Track = 0, Sector = 0, Error = FA
Bdos Err On A: Bad Sector

Enter Alt C to reset the disk system and to display the system
prompt, A>. Then log onto drive B by entering “b:" followed by a
Return.



Example:

In addition, you can load any CP/M-86 utility or program from a drive
other than the default drive by entering the drive name before the
command. For example, to load PIP from the B drive while working on

the A drive —
- ]

A>bpip «

15



4

DEVICE AND MEDIA MANAGEMENT



L
4.1 DISKETTE
FORMATTING — THE
FORMAT PROGRAM

4.1.1 USING FORMAT

L
4. DEVICE AND MEDIA MANAGEMENT

CP/M-86 includes these four programs for managing diskette files:
» FORMAT formats diskettes for system use.
» DCOPY copies a diskette’'s contents onto another diskette.

» BOOTCOPY copies the operating system tracks from one diskette
to another.

» STAT reports statistics and controls certain characteristics of
diskettes and files.

The FORMAT program prepares diskettes to receive data. In the
process, FORMAT automatically erases any previous files on the
diskette. New diskettes must be formatted before they can be used by
the system.

The basic procedure for formatting a diskette foilows:

1. Insert the system diskette in drive A and enter

format <

SIRIUS 1 loads FORMAT and displays the utility's one-line sign-on
banner near the top of the screen.

2. Once FORMAT is loaded, the system diskette can be removed.
Insert the diskette to be formatted in either drive.

3. At the bottom of the screen, FORMAT asks which drive contains
the diskette to be formatted, as follows:

Format drive? (A or B; press return key to end)
.Enter the letter name of the correct drive.

4. The system responds by displaying
Format drive X. Press space bar when ready.
where X is the drive name entered in step 3.

Check that the diskette to be formatted is in the correct drive (to
avoid possible data ioss) and press the Space bar.



Example:

4.1.2 USING
FORMAT SWITCHES

5. The formatting procedure takes approximately one minute for a
single-sided diskette. At the bottom of the screen, FORMAT
displays the number of each track as it is formatted. Near the top
of the screen, FORMAT displays the message —

Format drive X
where X is the drive name entered in step 3.

6. When formatting is compiete, near the top of the screen, FORMAT
displays —

Format drive X complete.

7. FORMAT prompts to repeat the process. To format another
diskette, repeat steps 2 through 5. To end the FORMAT program,
insert the system diskette in drive A, and enter Alt C or press the
Return key.

The following example illustrates a sample session using FORMAT to

format one diskette. The example shows FORMAT prompts and

messages consecutively, as they appear on the screen, but does not
indicate where on the screen the prompts and messages are
displayed.

PR R

A>format <

Diskstte FORMAT Utility - Version 2.7

Format drive? (A or B; press return key to end)b

Format drive B. Press space bar when rea.dy. —

Format drive B

Format drive B complete.

Format drive? (A or B; press return key to end) «

A>

The user can expand the FORMAT command by including a drive
name and optional “switches” that modify FORMAT program
operation. These additions must appear in the command line with the
FORMAT command stem; a switch value or group of switches must
be preceded by a $ (doliar sign). There are four switches:

C — Display the count of the tracks copied and the number of soft
errors encountered.

E — Display the locations of soft errors encountered.
Z — Display disk zone information (size of tracks and gaps).

D — Format a double-sided diskette (to be deveioped).



Example:

]
4.2 DISKETTE
BACKUP — THE
DCOPY PROGRAM

Tracks are circular sections of a diskette; SIRIUS diskettes have 80
tracks on a side. These tracks are grouped into eight zones; the drive
motor runs at a different speed on each zone. Soft errors are hard-to-
read sections or worn or flawed spots on the diskette that may make
it unreliabie for use. The $C switch (for counting tracks and soft
errors) allows the user to gauge the reliability of a diskette for
recording data. If 15 to 20 or more errors appear, repeat the FORMAT
process a few times. If this number of errors persists, discard the
diskette and try another.

One to four switches may be included in the FORMAT command line,
as follows:

format [drivename:] [$C| E| Z | D] «

The next example presents the command to format a disk in drive B
and then to dispiay (1) the number of tracks copied and (2) the
number and the locations of soft errors encountered in the process.

(See Appendixes D and E for explanation of FORMAT error
messages.)

S
A>format b:$ ce «

Soft format error: D=1, T=01, S=12, E=4C
Soft format error: D=1, T=01, S=FF, E=41
Soft format error: D=1, T=01, S=086, E=4A

Format complete.
80 tracks formatted: 3 soft errors.

A>

The DCOPY program copies the contents, including the system
tracks, of one diskette onto another diskette, creating a literal twin of
the source or copy-from diskette. in the process, DCOPY formats the
destination or copy-to diskette for CP/M-86 (eliminating the need to
run the FORMAT program separately).

There are two methods — long and short — for using DCOPY. With
the long method, the program prompts the user for the names of the
copy-from and copy-to drives. With the short method, the user enters
the program name and the copy-from and copy-to drive names in a
single command line, without prompts from DCOPY. The long DCOPY
method (described in Section 4.2.1) can be used to copy the contents
of one or more diskettes in either drive and to make more than one
copy. The short method (described in Section 4.2.2) can be used to
make a single copy of the diskette in the default drive; the copy-from
diskette must contain DCOPY. With this method, the system exits the
program immediately after the copy is compieted.

Several of the cptional switches described for the FORMAT program
can be included in the DCOPY command (see Sections 4.1.2 and
422).



4.2.1 USING DCOPY Use the following procedure to copy a diskette from either drive and
WITH INTERACTIVE to make muitiple copies.

SYSTEM PROMPTS
, 1. Insert the system diskette in drive A, clear the disk system by
entering Alt C, and enter the following command:

dcopy <«

SIRIUS 1 ioads DCOPY and displays the utility’s one-line sign-on
banner at the top of the screen.

2. Remove the system diskette from drive A if it is not the copy-from
diskette.

3. At the bottom of the screen, DCOPY asks for the name of the
drive containing the diskette to be copied:

Copy from drive? (A or B; press return key to end)

Insert the copy-from diskette in either drive and insert the copy-to
diskette in the other drive. Answer the DCOPY query with the
correct copy-from drive name. DCOPY assumes that the remaining
drive is the copy-to drive.

4. DCOPY repeats the particulars of the copy command and asks for
confirmation:

Copy from drive f to drive t. Press space bar when ready.
where f is the name of the copy-from drive, and t is the name of

the copy-to drive. Press the Space bar to start the DCOPY
process. Pressing any other key cancels the DCOPY command.

)

During the copy process, at the bottom of the screen, DCOPY
displays the number of each track as it is copied.

Near the top of the screen, DCOPY displays the message:
Copy from drive f to drive t

At the bottom of the screen, DCOPY displays the number of each
track as it is copied. When the copy is complete, the system
prompts with:

Copy from drive f to drive t complete.
Copy from drive? (A or B; press return key to end)

6. To make another copy, follow steps 3 and 4 above.

To exit DCOPY (return to the operating system), insert the system
diskette in drive A and enter Ait C or press the Return key.

The following example illustrates a sample session using DCOPY to
copy one diskette. The exampie shows DCOPY prompts and
messages consecutively, as they appear on the screen, but goes not
indicate where on the screen the prompts and messages are
displayed.

r
(&)



Exampie:

4.2.2 USING DCOPY
WITHOUT SYSTEM

PROMPTS

EXAMPLE

e -/}
A>dcopy <

Diskette COPY Utility - Version 2.4

Copy from drive? (A or B; press return key to end)a

Copy from drive A to drive B. Press space bar when ready. —
Copy from drive A to drive B

Copy from drive A to drive B complete.

Copy from drive? (A or B; press return key to_ end) «

A>

Use the following procedure for the short, one-command DCOPY
method:

1. To copy the system diskette or any diskette containing DCOPY,
insert the copy-from diskette in the default drive, insert the copy-to
diskette in the other drive, and clear the disk system with Alt C.

" Then enter the following command:

dcopy f: to &t «

"where f represents the copy-from drive name, and t represents the
copy-to drive name.

2. At the bottom of the screen, DCOPY displays the number of each
track as it is copied. When DCOPY has completed the copy
process, the system displays the following message:

Copy from drive f to drive t complete.

NOTE: DCOPY's short command form can include the switches C, E,
and Z, as for the FORMAT program (see Section 4.1.2). For
exampile, to display the count of tracks copied and of soft
errors encountered, and to copy the contents of a diskette in
drive A 10 a diskette in drive B, enter —

A>deopy a: to b $c «




.

4.3 OPERATING- The CP/M-86 BOOTCOPY program creates a system diskette by

SYSTEM COPY — THE copying the system tracks from a system diskette onto another

BOOTCOPYPROGRAM diskette. The system tracks contain the portion of the operating
system that “boots” or loads into memory when the user inserts the
system diskette at power-up or when the user presses the Reset
button to re-load the operating system. The system tracks also
contain the resident CP/M-86 commands, such as DIR and TYPE,
that do not appear on the diskette directory. If the destination diskette
aiready contains an operating system, BOOTCOPY writes over it. For
BOOTCOPY to run, the destination diskette must have been formatted
with the CP/M-86 FORMAT program. The BOOTCOPY process does
not affect any files on either diskette’s directory.

Like DCOPY, the BOOTCOPY program has both a short and a long
command form (see Section 4.2). The following procedure and
exampie depict the long form of BOOTCOPY (with interactive queries
from the program). The short, one-command version is described at
the end of this section.

To copy the operating system tracks from one diskette to another,
use the following procedure:

1. Load the operating system (if it is not already loaded) and enter
the following command:

bootcopy <

After loading, the BOOTCOPY program identifies itself with a sign-
on banner and then asks which drive contains the source or copy-
from diskette:

Source drive (A/B) ?

2. Enter the source drive name. The program identifies the selected
drive and requests confirmation:

Source disk in drive X and press <space>.
where X is the name of the drive entered in step 1.

Make sure that drive X contains the diskette whose system tracks
you want to copy.

3. Press the Space bar to begin the BOOTCOPY process.
BOOTCOPY reads the operating-system sectors into memory and
then xasks which drive contains the destination or copy-to diskette:
Destination drive (A/B) ?

4. Place the destination diskette in either drive and enter the drive
name. BOOTCOPY displays the following request for confirmation:

Destination disk in drive X and press <space>.

where X is the name of the drive entered in step 3. Press the
Space bar to complete the BOOTCOPY process.

~n

-~



Example:

———
4.4 DEVICE AND
FILE STATUS — THE
STAT PROGRAM

5. When the copy is complete, BOOTCOPY displays a confirming
message and again prompts for a destination drive:

Bootcopy complete.
Destination drive (A/B) ?

If you want to BOOTCOPY the same system tracks to another
diskette, insert another destination diskette and follow step 4
above.

To exit the program, press the Return key.

To BOOTCOPY from a different source diskette, exit the program
and then enter a new BOOTCOPY command.

The following exampie illustrates a sample session of BOOTCOPY:

L ]
A>bootcopy <
BOOTCOPY Version 1.6

Source drive (A/B) ?a
Source disk in drive A and press <space>. —

Reading system sectors...

Destination drive (A/B) ?b
Destination disk in drive B and press <space>. —

Writing system sectors...
Bootcopy complete.

Destination drive (A/B) ? +

A>

The command format for the short, one-command version of
BOOTCOPY follows:

bootcopy [drivename: to drivename:] «

With the short command form, BOOTCOPY exits to CP/M-86 after
completing one copy. To BOOTCOPY again, enter another
BOOTCOPY command.

Use the STAT program to display information about diskettes and files,
to specify whether file names are to be displayed in the directory, to
specity whether diskette contents can be user-modified, and to
change physical-to-logical device assignments.

23



4.4.1 AVAILABLE SPACE
ON ALL DRIVES

Example:

Parameters specified in the STAT command determine what
information about the system, the diskettes, or the files is displayed.
Reter to Table 4-1 for STAT commands, parameters, and formats.

SR
Table 4-1: STAT Command Options

COMMAND/PARAMETER BRIEF DESCRIPTION

stat <« Displays amount of available storage space on
diskette in gefault or active drive(s).

stat dev: < Displays physical-to-logical device assignments.

stat drivename: ¢! Dispilays amount of avaiiable storage space in
specified drive.

stat [drivename:] dsk < Displays diskette characteristics for active
drive(s) or specified drive.

stat drivename: = 1/0 « Temporarily sets a drive to read-only; enter Alt C

’ to restore R/W status

stat filespecifier < Displays file characteristics and read-write
status.

stat filespecifier $s < Displays file size and read-write status.

stat filespecifier {$r/ 0| r/w} < Sets file access attribute to read-only (R/0) or

read-write (R/W).
stat filespecifier {Ssys| $dir} < Takes file a system file or a directory file.
stat logicaigevice=physicaidevice «4 Changes physical-to-logical device assignments.
stat val <4 Lists available STAT command parameter options.

When entered with no parameters, the STAT command displays the
amount of available disk space and the read/write status of all active
diskette drives.

Active drives, as defined in Section 3.3, include the default drive and
any drive previously specified in CP/M-86 operations. As an

illustration, once the DIR B: command has displayed the directory of
drive B, that drive is an active drive even if it is not the default drive.

To display file information concerning the diskettes in drives A and B
when both drives are active, enter the following command:

stat «

The following example demonstrates using STAT when drive A
contains a diskette with 120K bytes of availabie storage and drive B
contains a read-only diskette with 215K bytes of available storage.

—'
A>stat «

A. R/W, Space: 120k
B: R/O, Space: 215k

A>




4.4.2 AVAILABLE
SPACE ON A
SPECIFIED DRIVE

Example:
4.4.3 FILE
INFORMATION

Example:

The STAT command followed by a drive name displays space
information for the diskette in the specifieg drive.

The following example illustrates using STAT to display the statistics
for a diskette in drive B that contains 120K bytes of available

memory. -
R
A>gtat b«

Bytes Remaining On B:120k

A>

When followed by a file specifier, the STAT command dispiays
information about the specified file(s). Wild-card characters (? and *)
can be used in the manner described in Section 2.5.

The CP/M-86 STAT display incorporates the following column heads:
Recs — The number of 128-byte records in the file.

Bytes — The number of 8-bit bytes allocated to the file.

Ext — The number of 16-Kbyte extents allocated to the file.

Acc — The accessing attribute of the file, which indicates whether
the file is read-only (i.e., write-protected) or read-write.

The next example demonstrates using STAT to display file information
for all files on the diskette in the logged drive that have names
beginning with S and extensions of .CMD.
L. . ]
A> stat sscmd +

Recs Bytes Ext Ace
4 K 1 R/W A.SET.CMD
5 2K 1 R/W A:SETUP.CMD
84 12K 1 R/W A:STAT.CMD
32 4K 1 R/W A:SUBMIT.CMD
Bytes Remaining on A: 364K
A>

When working with random (sparse) files, the $S parameter following
the file specifier adds an additional column, Size, to the display. The
following example illustrates using STAT to dispiay information for a
random file. The final record number is 10000, although far tewer
records have actually been allocated.



Example:

4.4.4 SETTING A FILE
OR DISKETTE TO
READ-ONLY OR
READ-WRITE STATUS

Example:

Example:

4.4.5 EXCLUDING
FILE NAMES FROM
THE DIRECTORY

26

A>stat test.dat $s &
Size Recs Bytes Ext Acc

0000 17 4K ' 2 R/W ATESTDAT
A>

As indicated in Section 4.4.3, if the user sets the accessing attribute
of a diskette or file to read-only, the data in the file or diskette cannot
be written over or erased (except under FORMAT or DCOPY). If a
diskette or file is set to read-write status, the user can modify or
erase the data.

Use STAT to change the accessing attribute of a file or diskette. The
command format to change a file's access attribute follows:

stat filespecifier { $r/0l$r/w} «

The command format to set a diskette to temporary read/only status
follows:

stat drivename: = r/o «

where drivename is the name of the drive containing the diskette.

The following example sets the file JOETXT on drive B to read-only.
)

A>stat b:joe.txt $r/o <«

You will not be able to write to (record on) the file JOE.TXT uniess
you reset its accessing attribute. To reset the file to read-write status,
replace Sr/o with Sr/w in the STAT command in the preceding
example. '

The next example demonstrates temporarily setting an entire diskette
on drive B to read-only status.

A>stat x=r/0 +

To restore a diskette to read-write status, enter Alt C at the system
prompt.

You can ensure permanent write-protection for a diskette by using a
write-protect tab. Covering the write-enable notch on the diskette
jacket with an adhesive write-protect tab will prevent any writing to
the disk until the tab is removed.

STAT can be used to exclude file names from the diskette directory
display. The excluded files, known as system files, are still available for
use although their presence is not indicated in the directory. The user
might set machine-readabie files, such as command files, tc system file
status in order to protect them from being accidentally written over or
aitered. Names of system files appear in parentheses when file status
information is listed by STAT.



4.4.6 DISPLAYING
STAT COMMAND
PARAMETERS

Exampile:

4.4.7 DISPLAYING
DRIVE
CHARACTERISTICS

Example:

Use the following command format to exclude a file name from the
diskette directory:

stat filespecifier $sys «

To reinstate a file name in the diskette directory, use the following
command format

stat filespecifier Sdir «

Enter the following command to dispiay all the parameters that can be
manipulated with STAT:

stat val: «

The system responds with a listing of the CP/M-86 STAT parameters,
as follows:

b
A>stal val <

Temp R/O Disk &=R/O

Set Indicator: &filename.typ $R/0 $R/W/ $SYS $DIR
Disk Statuss DSK: ¢DSK

Iobyte Assign:

CON: = TTY: CRT: BAT: UCIl:

RDR: = TTY: PTR: TURI1l: UR:

PON: = TTY: PIP. TUPlL: UP2:

IST: = TTY: CRT: ILPT: ULl

A>

To display disk drive characteristics, enter the STAT command followed
by a disk drive name and the special term, DSK.. The system responds
with a listing of the sizes of the tracks, blocks, and sectors on the
diskette, as well as the capacity of the diskette and its directory.

The following example iliustrates using STAT to display the disk drive
characteristics of a diskette in drive B.

e ————————————————_——— e ]

A>stat bidsk «

B: Drive Characteristics
4592: 128 Byte Record Capacity
574: Kilobyte Drive Capacity
128: 32 Byte Directory Entries
128: Checked Directory Entries
128: Records/Extent

16 Records/Block
64: Sectors/Track
O: Reserved Tracks

A>




4.4.8 PHYSICAL-TO-
LOGICAL DEVICE
ASSIGNMENTS

28

Example:

Example:

For explanation of the technical terms that appear in the preceding
display, see the S/RIUS 1 System Guide for CP/M-86.

The STAT command assigns a physical device to a logical device
name, within allowable physical-to-logical device relationships, as listed
in Table 4-2. Four logical devices appear in the first tabie column. For
each logical device, the user can assign any of the four physical
device names listed beside it in the second column. Physical devices
and logical device names are described in Section 2.2.

5 —
Table 4-2: Physical-To-Logical Device Assignments

LOGICAL DEVICE ASSIGNABLE PHYSICAL DEVICES

CON: TTY: CRT: BAT: UCt:
LST: TTY: CRT: LPT. UCt:
RDR: TT: PTR: URL URZ2:
PUN: TTY:  PTP: UP1: UP2:

One STAT command can assign all four logical devices, provided they
are separated by single commas. The command format for assigning
physical to logical devices foliows:

stat logicaldevice = physicaldevice [,.] «

The next example demonstrates changing the punch device to TTY,

changing the list device to LPT:, and changing the paper tape reader
to TTY..

{22

A>sgtat pun:=tty: Ist:=1pt:,rdr:=tty: «

Use the STAT command with the DEV: parameter to check the
physical/logical device assignments. The next example demonstrates
displaying the four logicai device assignments.
RS S

A>stat dev: «

CON: is CRT:
RDR: is TTY:
PUN: is TTY:
LST: 1is TTY:
A>




FILE SYSTEM MANAGEMENT



R
5.1 THE DIR
COMMAND

5.1.1 DIR COMMAND
FORMAT

5.1.2 DIR COMMAND
EXAMPLES

L
5. FILE SYSTEM MANAGEMENT

CP/M-86 provides four system-level resident or built-in commands and
two utility programs that assist in managing files:

» The DIR command displays the file names and extensions for the
files stored on the logged or specified diskette(s).

» The TYPE command displays the information stored in ASCII files.
» The ERA command deletes files from a diskette.
» The REN command renames an existing file.

» The PIP program (the Peripheral interchange Program) moves files
(or file parts) from one storage device or media to another.

» The SUBMIT program allows the operator to string several
commands together in one file.

All CP/M-86 commands can be entered in either upper or lower case.

The DIR command displays all or part of the contents of a diskette's
directory, a computer-maintained list of the file specifiers for the files
and programs residing on the diskette.

The format of the DIR command is —

drivename: |«
dir

filespecitier )+

If the DIR command is entered without a drive name or file specifier,
the system displays the directory for the diskette in the logged drive.
if a drive name is specified, the system dispiays the directcry for the
diskette in that drive. If a file specifier is given, the system lists the
file or files (wild-card characters can be used in the file specifier) that
match it.

If the diskette directory is empty or if DIR cannot find a file specifier
that matches the given file specifier, the system responds with a
message such as NO FILE.

To display the file directory for the diskette in the default drive, enter
the following:

dir «

29



Example:

The system responds as shown in the following hypothetical example:

A>dir «

A: PIP

CMD : STAT CMD : ASM86 TXT :SUBMIT CMD

A: BOOTCOPY CMD:DCOPY CMD:ED CMD : FORMAT CMD

A>

Example:

Example:

Example:

5.3 THE TYPE
(DISPLAY) COMMAND

Exampie:

Example:

Three DIR command line examples follow. To display all files on the
diskette in drive B (regardlesss of which drive is currently logged) —

A>dir b«

To display ali files with the extension .CMD on the diskette in the
default drive —

A>dir =.cmd «

To verify the existence of a file named ACCRED.INT on the diskette
in drive B —

A>dir baccred.int

The TYPE resident command displays the contents of an ASCII text
file. Use the Cont key to stop and start the display. A specific file
name must be given; wild-card characters cannot be used with TYPE.
The format of the command follows:

type filespecifier <«

Two command line examples follow. To display a file named
SUMMARY on the diskette in the default drive —

A>type summary «

To display the file named MEMO.BAK on the diskette in drive B —

A>type b:memo.bak «




R
5.3 THE ERA
(DELETE) COMMAND

Example:

Example:

L
5.4 THE REN
(RENAME) COMMAND

Example:

The ERA resident command deletes the directory entries of one or
more files. Unlike the FORMAT program, which erases the entire
diskette, ERA deletes only the directory entry, thereby freeing
previously allocated file space for re-use.

Wild-card characters can be used (with caution) to delete groups of
files with one ERA command.

The format of this command follows —

era filespeciiier <«

If no file is found with the file specifier entered in a command line,
ERA responds with the message NO FILE.

The following example shows erasing a file named ACCOUNTS.BAS
on a diskette in the default drive.

A>era accounts.bas

All files on a diskette can be erased via use of the *.* wiid-card
characters.

A>era ** o

The system responds to the preceding command (to erase all files on
a diskette) with the message —

ALL (Y/N) ?

Enter Y to erase all files on the logged or specified drive(s). Any other
response cancels the command.

The REN resident command changes the directory entry (the file
specifier) for a file. The format of the command foliows:

ren newﬁlespeciﬁer=oldﬁIespecifier' <

Wild-card characters cannot be used with REN. If the new file
specifier named in the REN command already exists, the system
responas with the message FILE EXISTS and cancels the command.

Each REN operation takes place on one drive only — either the
default drive or the drive named in the new file specifier. If the REN
command line names two different drives, the system responds with a
non-recognition query and cancels the command.

For example, to rename ACCOUNTS.BAS as BOOKS.BAS on the
default drive —

—

A>ren books.bas=accounts.bas: <

To rename PIP.CMD to COPY.CMD on drive B —



55PIP —
PERIPHERAL

Example:

Example:

INTERCHANGE

PROGRAM

5.5.1 LOADING PIP

32

Example:

A>ren b:copy.cmd=pip.cmmd <

If two drive names appear in a REN command, the system will repeat
the second portion of the command, followed by a question mark.

A>ren b:copy.cmd=pip.cmd <«
A:PIP.CMD?

A>

When REN (or any CP/M-86 program) responds to a command with a
non-recognition query such as the one above, check the format and
spelling of the problematic command line. Then re-enter the

cornmand while making the necessary changes.

The user can employ PIP and its command parameters to perform
many file-handling functions. PIP copies, prints, displays, and
combines diskette files. PIP can read one or more source files and
copy them individually (with the same or new file specifiers) onto
another diskette, or concatenate (combine) them into a single file on
the source diskette or on another diskette. It can also copy a portion
of a file to another file. Further, PIP can output a file to a peripheral
device such as a CRT or printer. Optional PIP command parameters,
described in Table 5-1 and Section 5.5.3, can modify data as it is
copied.

PIP commands can be entered in either of two ways. The first method
1s to load the PIP program without any file specifiers or parameters
(i.e., enter PIP followed by a Return). Once loaded in this manner, the
program displays its prompt, an asterisk (*) to indicate that it is ready
to accept the completion of a PIP command. The PIP program
remains loaded until Alt C or a Return — each entered as a complete
command line — returns the system to CP/M-86.

A>DIp «

This method of loading the PIP program enables the user to perform
a number of PIP operations without re-entering the command stem for
each one. »

The second method of loading the PIP program is to enter the PIP
command stem on the same line with the file specifiers and any PIP
parameters for the operation you are requesting. Pressing the Return
key loads PIP and simultaneously enters and executes the command
particulars (file specifiers and parameters). After execution, control of
the system returns to CP/M-86 (which responds with a> ). To load
and run PIP again, you must re-enter the PIP command stem plus the
command particulars for the next operation.

The exampies in this manual show the second (one-line) method of
entering PIP commands.



5.5.2 COPYING FILES The general format for PIP commands that copy files follows:

WITH PIP

Exampie:

Example:

Exampile:

pip destination=source{,source2...] [[parameteriist]] <«

The definitions of the three general forms in the PIP command
format follow: :

Destination — the name of the file or device that will receive the
data; destination can include a disk drive or a logical device
name tfollowed by a colon.

Source — the name(s) of the file(s) or device(s) that will be copied
onto the destination; source can include a disk drive or
device name followed by a colon.

Parameterlist — one or more command parameters (described in
Table 5-1) enclosed in brackets, immediately following the
name(s) of the affected file(s) or device(s).

Note that PIP parameters, when used, must be enclosed by square
brackets entered with the PIP command. In the command format
above, the first pair of brackets around parameterlist function as a
typographical device that indicates optional elements (see Section
1.2, “Manual Conventions”). The second pair of brackets are literal
characters to be entered in the command line. The use of PIP
parameters is discussed in Section 5.5.3.

The following example illustrates using PIP to make a copy of file X,
calling the new file Y, on the logged drive.

L e
A>pip y=x  + 4

You can abbreviate PIP commands under some circumstances. Only
one file specifier requires a file name when a file is copied from one
drive or device to another with no change in the file name itself;
CP/M-86 assumes the file name to be the same for both destination
and source.

The next three examples demonstrate alternative abbreviated
command lines that can be entered to copy file JOE.TXT from the
logged drive (A) to a different drive (B), without changing the file
name. Note that PIP always assumes the default drive in any file
specifier that contains no specific drive name.

S
A>pip b=joetxt <

(O
A>pip ijoetxt=a: <




34

Example:

Exampile:

Example:

A>pip br=3a joetxt <«

The wild-card character * can be used to manipulate groups of files.
For example, to copy all files with an extension of .CMD from drive A
(as the default drive) to drive B, without changing the file names —

A>pip br=cmd <«

The next exampie demonstrates file concatenation with PIP. To
concatenate (combine) files X, Y, and Z on drive A into one file
named Q on drive B, regardless of which is the default drive —

A>SDip bg=axayaz +




5.5.3 USING PIP
PARAMETERS

The user can modify copy operations by including command
parameters in brackets in the PIP command. (Section 5.5.1 describes
the use of brackets in PIP commands.) Table 5-1 describes the PIP
command parameters included in CP/M-86; exampiles illustrating
these parameters follow the table. »

|
Table 5-1: PIP Command Parameters

PARAMETER EFFECT

B

On

Pn

Qs2

SsZ

Tn

Transfers data in block mode; data is buffered until X-OFF (Alts) is
received from the source device. This aliows transfer of data to a file
from a continuous reading device. such as a cassefte. Diskette buffer
is cleared and more input data is read.

Deletes characters extending past column n. Use this parameter to
truncate ong lines sent to printer or display.

Echoes or outputs to the console the characters in the file affected by
the PIP operation.

Fiiters or removes the exisfing form feeds from the file. Use the P
parameter in the same PIP parameter list to insert new form feeds.

User number (to be developed).

Transters hex cdata. Checks ali data for proper hex file format. Removes
non-essential characters between hex records. System then prompts
for corrective action if errors occur.

Ignores :00 records in transfer of hex format file. (| parameter
automatically sets H parameter.)

Translates upper case letters to lower case.

Numbers each line, starting at 1 and incrementing by 1. Suppresses
leading zeros; line numbers are followed by colons. if N2 is specified,
includes leading zeros and inserts tabs following the line numbers.
Expands tabs if T parameter is set

Transters object files {non-ASCIl); normal CP/M-86 end-of-file
terminator is ignored.

Includes one form feed (page eject) every n lines (with initial form
feed). If n equals 1 or is omitted, form feeds occur every 60 lines. If F
parameter is used, deletes existing form feeds before new ones are
inserted,

Stops copying from source device or file when string s is encountered.
if no Q parameter is entered, copying stops at end-of-file. Use S
parameter to specify the string from which to start copying.

Reads system files (files with directory display suppressed by STAT
$SYS command).

Starts copying when string s is encountered. Use S and Q parameters
(start and quit strings) to select a portion of a file for copying. Copying
will start at the file beginning if no S parameter is entered. PIP
transiates start and quit strings into upper case if the user enters the
string on the same line as the PIP command itself. Strings are not
translated if the string is entered in response to the PIP prompt (*).

Expands tabs (1 characters) to every nth column.
Transiates lower case letters to upper case.

Verifies that data has been copied correctly by rereading after write
operations (destination must be file).

-~

Writes over R/O files without console interrupts.
Forces parity (high order) bn of each ASCIli character to zero.

35



Example:

Example:

Example:

Example:

Example:

5.5.4 OUTPUTTING
FILES TO LOGICAL
DEVICES WITH PIP

Five examples illustrating the use of PIP parameters follow.

To make a copy of X.TXT, renaming it Y.TXT (when both files reside
on drive B) and to instruct PIP to echo the file to the console,
transiate lower case letters to upper case, and verify the results —

A>pip by.xt=b:x.txt[euv] <

To copy a portion of file Y.TXT on drive B, starting at the beginning
of the source file and ending at the words “Once upon” and
continuing to the end of the file —

A>pip axtxt=b:y.txt{sOnce upon Z] «

To copy a portion of file X.TXT on the default drive (A) into a file
Y.TXT on drive B, starting at the beginning of the source file and
ending at the words “last straw.” —

A>pip y.xt=xtxt[ qlast straw.Z] <«

You can use PIP to create and format disk files so that files entered
with a text editor or word processing program can be printed within
CP/M-86. For example, to output or copy the file X.TXT from drive B
to the LST: device, expand tabs every 8 columns, and start a new
page every 60 lines (standard text-entry format transiated into CP/M-
86 PIP parameters) —

A>pip lst=b:x.txt{t8pE0] «

To copy the file X.TXT on drive B to the diskette in drive A (keeping
the same file name), delete the embedded form feeds, change the
page length to 52 lines, and number each line —

A>pip aa=b:x.txt{ nfpS2] «+

PIP can “copy” or output files to logical devices as well as to storage
media. Table 5-2 lists and describes the logical devices and the
special terms you can use with PIP; examples follow Table 5-2 to
illustrate the use of these terms.

When a logical device is specified as the source, PIP reads output
from that device until encountering an end-of-file marker. When
copying a keyboard entry to a logical device, enter Alt Z to indicate
end-of-file.



Exampile:

Example:

When a logical device is specified as the destination, PIP copies or
outputs the specified file to that device. For example, specifying the
logical device CON: as the destination in a P!P command will display
the file contents on the console screen.

The specification of logical devices in PIP commands is subject to
physical constraints. When a logical device name appears in either
the destination or source fields of a PIP command, the physical
device assigned to that logical device (see Section 4.4.8) must be
able to receive or send data as specified. For example, the logical
device LST: is an output device and cannot be a source of data.

-t
Table 5-2: Logical Devices and Special Terms Used With PIP

DEVICE FUNCTION

CON: Sends the specified data to the console device.
LST: Sends the specified data to the list device.
PRN: Similar to LST:, except that tabs are expanded at every eighth

character position, lines are numbered, and form feeds are inserted
at the beginning of the fite and at every 60th line. PRN: is equivalent
to LST: {t8np60].

PUN: Sends the specified data to the paper tape punch.
EOQF: Sends CP/M-86 end-of-file marker (Alt Z) to destination device.
NUL Sends 40 nulis (ASCHl 0s) to destination device (this can be issued

at the end of punched output).
RDR: Sends the specified data to the reader device.

Two examples follow.

To concatenate three .A86 files and output them to the CON: device,
followed by an end-of-file marker —

A>pip con:=x.286y.286,2.a86,e0f «

To send 40 nulls to PUN: and to copy the file X.A86 to PUN:, followed
by an end-of-file marker and 40 more null characters —

A>pip pun=x.a86,e0f nul: «




5.6 THE SUBMIT
COMMAND AND

SUB FILES

38

Example:

SUBMIT is a CP/M-86 utility that enables the user to perform a series
of CP/M-86 tasks with one command. Each SUBMIT command
executes a user-generated list of CP/M-86 commands stored in a
specified diskette file identified by the file extension .SUB. The
commands in the .SUB file can contain substitution parameters for
which specific values — such as file names — are substituted via the
SUBMIT command. For SUBMIT to run, SUBMIT.CMD must be on the
diskette in the default drive (see Sections 2.3 and 3.2); if the
submitted file is on another drive, the drive name must be included
with the .SUB file name.

To create .SUB files, use the text editor ED (see Chapter 6) or a word
processing application program. Each .SUB file is composed of a list
of CP/M-86 commands that the computer performs when executing
the .SUB file.

You can create master .SUB files by including in the .SUB file
substitution parameters for which you insert vaiues when entering the
SUBMIT command. A variabie for which a value must be supplied
each time the .SUB file is executed is represented by a substitution
parameter (a dollar sign $ followed by an integer, called the
parameter number). The first variable in a command file is
represented by the parameter $1; the second by $2; etc. If the .SUB
file contains no substitution parameters, you cannot vary the contents
of the submitted file.

When the .SUB file is executed, SUBMIT pairs the parameters
specified in the SUBMIT command with subsitution parameters $1
through $n in the .SUB file. If the number of parameters in the
SUBMIT command and in the .SUB file do not correspond, the
SUBMIT command is canceled, and the system displays an error
message. Entering another SUBMIT command as the last command
in a .SUB file creates chained command files.

The format of the SUBMIT command follows:
submit filename [parameteriist] «

where filename is the .SUB file name (entered with or without the
.SUB extension) that contains the prototype commands to be
executed, and parameteriist is the list of parameters, separated by
blanks, to repiace the substitution parameters named in the master
SUB file.

For example, suppose the file ASMBL.SUB contains the following
CP/M-86 commands:.

ASM86 $1

DIR $1.=

ERA =*=BAK

PIP $2:=8$1.PRN
ERA $1.PRN

To execute the commands listed in file ASMBL.SUB and to substitute
REPORT1 for $1 and PRN for $2 in the .SUB file —

15U

A>submit asmbl reportl prn <




SUBMIT reads the .SUB file, substitutes REPORT1 for all occurrences
of $1 and PRN for $2, and creates a file named $3$%$.SUB that
contains the following commands:

ASM86 REPORT1

DIR REPORT1.»

ERA =BAK

PP PRN:=REPORT1.PRN
ERA REPORT1.PRN

SUBMIT creates the $33.SUB file on drive A. When SUBMIT executes
the $$3.SUB file, drive A is automatically logged. Therefore, all the
commands listed in the .SUB file must reside on the diskette in drive
A, and the diskette must be R/W. Command processing is aborted if
any system error occurs during execution of a $33.SUB file.

39



0

CREATING AND EDITING TEXT FILES



T
6.1 ACTIVATING THE
TEXT EDITOR

———
6.2 BASIC OPERATING
PRINCIPLES

S S,
6. CREATING AND EDITING TEXT FILES

Use the CP/M-86 text editor (ED) to create or modify ASCII files.
ASCI! files can be programs, documents, or data for programs.

ED creates files from text entered at the keyboard. When used to
modify an existing file, ED reads the file to be edited into a portion of
memory called the edit buffer and modifies it according to operator
commands. The edit buffer is empty until the operator loads it with
either new text or text from an existing file. During the edit, the
changed file can be written to a temporary file, to which ED assigns
the same file name as the original file, with the extension of .$$$. ED
keeps the original file, which is assigned the extension .BAK, as a
backup file. After the edit, ED renames the temporary file to the
original file specifier.

For example, to modify the existing file, SAMPLE.TXT, ED creates a
temporary file named SAMPLE.S$3 to be used during the ED session
to contain the newly modified file. When the operator terminates the
sessicn, ED renames the original file as SAMPLE.BAK and renames
SAMPLE.$$S, the temporary file, SAMPLE.TXT. Refer to Section 6.7 for
a sample ED session.

Use the ED command to activate the CP/M-86 text editor. To initiate
ED, after the system prompt, enter —

ed filespecifier «

where ED is the command stem, and filespecifier is the name of the
file to be created or edited.

If no file with the given specifier exists, ED creates a new file,
assigning it that file specifier as a name, as described in Section 6.3.
If the file specifier is omitted from the command line, the system
responds with the error message DISK OR DIRECTORY FULL.

When activated, ED displays an asterisk (*) as its command prompt.

While inputting at the keyboard, terminate each line with a carriage

return (a line feed is supplied automatically with each carriage return).

ED assigns line numbers to each line of text for use during the
editing session. The line numbers are not written into the file. Use the
line numbers to refer to specific lines of text that are to be modified.

ED commands should be entered as lower case characters, even
though ED accepts both upper and lower case. !f the editing
commands |, F, S, N, J, M, and R are entered in upper case,
subsequent text will be translated to upper case, regardiess of how it
is entered or displayed on the screen.

41



N
6.3 CREATING A
TEXT FILE

Example:

6.4 EDITING AN
EXISTING FILE

42

Save in-process work at regular intervals. If data is accidentally
deleted from the edit buffer, this step will minimize the loss.

To create a text file, after the system prompt (>) enter the ED
command and the file specifier you wish to assign to the new file:

ed filespecifier «

Unless a file with the given file specifier already exists, the system
responds with the message NEW FILE and its command prompt.

Next prepare ED to accept text input by entering the | (insert))
command:

i«
ED indicates it is ready to accept input by displaying the first line

number. The following example illustrates opening a new text file
named JOE.TXT.

A>ed joetxt <

NEW FILE
S S
1:

To terminate text insertion, enter Alt Z. ED responds to an Alt Z by
displaying its prompt, an asterisk (*).

To edit an existing file, enter the file's specifier with the ED command.
After the ED command prompt, load the file to be edited into the edit
buffer by entering the A (append) command:

#a «

Enter a number before the A command to indicate the number of
lines of the file to be loaded into the edit buffer. The pound sign (#)
entered in the preceding command represents the number 65535, the
largest number of lines that ED will allow; enter the pound sign before
the A command to load the entire file into the edit buffer. If no integer
is included in the A command, ED assumes the number 1 (see Tabie
6-1).

In the following example, the file SAMPLE.TXT is loaded into the edit
buffer for modification.



Example:

]
6.5 TEXT TRANSFERS
BETWEEN THE EDIT
BUFFER AND AsCll
FILES

|
A>ed sample.txt <«

=#q, ‘.1
l: x

Use of the A command is explained in detail in Table 6-1.

The edit buffer is a text storage area in the computer memory. Editing
commands affect text in the editor buffer; they do not affect files on
the diskette. Table 6-1 describes the commands that move lines of
text between the edit buffer and the temporary file (with given
extension .$$$) created by ED to store work during an editing
session. Figure 6-1 illustrates use of these commands.

L. ]
Table 6-1: Edit Buffer - Text File Transfer Commands

COMMAND FORMAT COMMAND FUNCTION

nA + Appends to the last character in the edit buffer the next
n lines from original text file to be edited. Entering #A
loads 65535 lines of text or the entire file, whichever is
smaiter, into the edit buffer from the original text file.

aw + Writes the first n lines of the edit buffer into temporary
file. Remaining lines are moved up to the top of buffer.

E & Ends edit. Edit buffer is copied into temporary file, and
files are renamed.

H + Allows work accomplished so far to be saved. Buffer is
emptied, temporary file becomes new source file, and a
new temporary file is created (equivalent to entering an
E command, foliowed by the ED command with the file
specifier for the source file).

0 « Returns to original file. Edit buffer is emptied, temporary
file is deleted, and edit starts over again on original fiie.

Q + Quits the edit with no file changes, erases the BAK file
it one existed, and returns control to the operating system.

rfilename* <+ Reads specified file (whose extension must be .LIB) into
the edit buffer. if the file specifier is omitted,
X3S$SST3.LIB is read in. Input file is left intact. This
command is useful in inserting boilerplate information
into more than one file.

nxX Transfers n lines of data from edit buffer to temporary
file to which ED assigns the name X$3$$3$33%.LIB.

NOTES: Many ED commands can be preceded by an integer represented in the
command format column by n. If no integer is entered, ED assigns a value
of 1. If a pound sign (#) is entered for n, 65535 (the largest allowable
integer) is assigned. -

Commands can be entered in either upper or lower case, unless otherwise
noted.

* To avoid translation of all text following an R command into upper case, enter the
R command in lower case (see Section 6.2).

43



44

THE E AND

H CONMMAND
SENAME THIS
FiLE

FILENAME . BAK

Figure 6-1: Edit Buffer/Edit File Interaction

C APPEND
(A)

ORIGINAL
ASClHl FILE
FILENALIE . EXT

AFTER

BACKUP
FILE
FILENAME . 3AK

SOURCE
LIBRARIES

.LIB

(®) READ

WRITE
W)

eDIT
BUFFER

/\

INSERT
0]

TYPE
T

CONSOLE

MPORARY
FILE
FILENAME .

T

AFTER
EDIT

NEW ASCH
FiLE
FILENAME . EXT

l

THEOAND
Q COMALIANDS
CAUSE ED
TO ZRASE
THISFILE




SR
6.6 THE CHARACTER
POINTER

Once ASCII characters are in the edit buffer, ED creates a character
pointer (CP) in the buffer. The CP, not visibie on the screen, is moved
throughout the edit buffer under operator control. The location of the
CP determines where the commands perform their tasks. The line that
contains the CP is called the current line (CL).

The CP points to the imaginary space between two characters
(spaces are considered characters); it never points to the character
itself. The CP can also point to the beginning of the edit buffer
(before the first character) or to the end of the buffer (the end of the
last active character).

Always position the CP before editing text, or data may be
accidentally lost or modified.

The commands that manipulate the CP or display text in the vicinity
of the CP are described in Table 6-2. In the table, an n preceding a
command indicates that an optional value can be specified. If no
value is specified, ED assigns a value of 1. If the pound sign (#) is
entered for n, ED assigns a value of 65535. In the table, commands
may be entered preceded by either a plus (+) or a minus (—) sign. If
neither sign is entered, ED assigns a +.

. T
Table 6-2: Character-Pointer Related Commands

COMMAND FORMAT  COMMAND FUNCTION

=B Moves CP to beginning (+) or end (-) of the edit buffer.

=nC Moves CP n characters toward the beginning (-) or end
(+) of buffer. (Carriage return and line feed are counted
as two characters.)

=nL If n equals 0, moves CP to beginning of CL. If n does
not equal 0, moves CP to beginning of CL, then up (-)
or down (+) n lines. CP stops at top or bottom of edit
buffer if n is too large.

=nT If n equais 0, displays CL up to CP. if n equais 1,
dispiays CL from CP to end of the line. If n is greater
than 1, dispiays CL and the foillowing n-1 lines (+) or
the preceding n lines (-). This command does not move
the CP. (To dispiay the CL, enter 0TT.)

=n Moves CP as does the L command, and then displays
new CL.

n Moves CP to beginning of line number n.

n Defines a range of text between the current line and

line number n. This does not move the CP.

NOTE: An n preceding a command indicates that an optional value can be
specified. If no value is specified, ED assigns a value of 1. If the pound sign
(#) is entered for n, ED assigns a value of 65535. in the table, commands
preceded by a plus or minus sign (+) may be entered preceded by either a
plus (+) or a minus (-) sign to indicate CP movement forward or backward in
the file. I neither sign is entered, ED assigns a plus (+).

45



L
6.7 MODIFYING
TEXT

Once the CP has been positioned, text in the edit buffer can be

modified. Single characters or complete lines of text can be deleted.
Text from a different ASCII file can be added. or new data can be
inserted. Existing strings — groups of contiguous characters — can
be replaced with new strings. (Strings are limited to a maximum of
100 characters; a string of O-length, called a null string, is allowed.)
The commands used to modify text are described in Tabie 6-3.

L
Table 6-3: Text Modification Commands

COMMAND FORMAT

COMMAND FUNCTION

«nD

=nK

nfstring
or
nfstringZ

jstringt Z
string2Z
string 3

or njstring1Z
string2Z
string3Z

nmstring
or
nmstringZ

nnstring
or
nnstringZ

istring
or
istringZ

nsstring! Z string 2
or nsstring!Z
string22

Rstring

Deletes n characters preceding (-) or following (+) CP.

Deletes n lines preceding (-) or following (+) CL. if CP
is not at beginning of line, CL characters preceding (+)
or following (-) CP are not deleted.

Finds specified string. Use Alt Z if additional commands
will be entered in the same line. Search begins at CP.
Match is made n times, and CP is positioned after last
character in last matched string. If n matches cannot be
made, CP remains at its initial position. String can
include Alt L, which matches a carriage return/line feed
in a string.

Text between string 1 and string 3 is replaced with string
2. Searches for string 1, inserts string 2, places CP after
string 2, and deletes original characters between string 1
and string 3. Search begins at the CP, and substitution is
made n times. {f string 3 is not found, nothing is deleted.

Allows more than one command to be entered and or
executed repeatedly. String represents a string of
commands, rather than text. If n is greater than 1,
command string is executed n times. If n equals 0 or 1,
commandstring is executed repeatediy until an error
condition is encountered (e.g., end of bufter is reached
with F command). For example, the command string
MSGAMMA ZDELTA ZOTT substitutes DELTA for each
GAMMA in the buffer, and dispiays each changed line.

Finds specified string. Search begins at current or position
of CP. If string cannot be found in edit buffer n times,
contents of buffer are written to temporary file
(automatic #W command). input lines from original file
are read into edit buffer (automatic A command) until
buffer is half full or original file has been compietely
transferred. Search continues in this manner until string
has been found n times (or onginal file has been
completely transferred). This command is used when
entire original file cannot fit in edit buffer.

Inserts string in front of the CP. (A carriage return with-
out Alt Z is entered after string to put a carriage
return/line feed at the end.)

Searches for string 1 and substitutes string 2 for string
1 n times. Search begins at current position of CP.
Search is limited to contents of edit buffer.

Inserts file into edit buffer before CP. String represents a
file specifier whose extension is assumed to be .LIB.
(i.e., the command RMACRO inserts MACRO.LIB file
into buffer after CP).

46



|

6.8 COMMAND Two or more commands can be entered as a string (up to 128

STRING USAGE characters); as in the case of single command entries, ED executes
them only after a carriage return is entered. Table 6-4 lists the CP/M-
86 Alt characters that manipulate the input command string.

L
Table 6-4: Command String Alternate-Characters

ALTERNATE
CHARACTER FUNCTION

Ajt H or Backspace Deletes the preceding character.
At X Deletes the entire command string.

Alt C Clears the disk system and re-initializes the CP/M-86
operating system. Returns control to the operating
system without saving any of the text modifications that
are in the edit buffer.

Alt E Returns carriage without transmitting command line (128
characters maximum).

47



6.9 SAMPLE ED
SESSION

Example:

48

The following example illustrates use of some of the basic ED
functions described in this chapter. Brief explanations of the user
entries are shown on the right.

A>ed sample.txt
NEW

5 ]
This 18 a simple
flle to be used
to demonsttrate
how to use
& program called
ED.
Z
*b
b
This 18 a simple
file to be used
to demonsttrate
how to use
a program called
ED.

'ssﬁzqamzom

HOOPRQPEE, IO eADH

This is a sample
«3: SULBLEOLL

-
o

to demonstrate
*S: kbt

This is a sample
file t0 be used
to demonstrate
how to use

ED.

*5:1

the taxt Editor
known as

Z

3.4

t0 demonstrate
how to use

the text Editor
known as

ED.
*3clldishowZOtt

to show
*b3t

This i8 a sample
file to be used
to show

*2:1

ASCII text

4

b*t

This i8 a sample
ASCII text

to show
how to use

the text Editor
known as

ED. 2

)

C"‘m"‘@m"‘m"" QAPHAPE OO QROORH IO LapY

Edit a file called SAMPLE.TXT.

Insert text into edit buffer.

Terminate text insertion.
Move CP to beginning of buffer.
Display entire buffer.

Substitute SAM for SIM, changing
simple to sample.

Move CP to line 3 and change tt to t and then
display corrected lins.

Move CP to line 5 and delets it, then move CP

to beginning of buffer and
display entire contents.

Move CP to line 5 and insert new text.

Move CP to line 3 and display the rest
of the buffer

Move CP 3 columns, delete next 11 characters,
insert “show,” display new line.

Move CP to beginning of buffer
and display 3 linses.

Movs CP to line 2 and insert text.

Move CP to beginning and display entire
buffer.

Exit ED.




S ——
6.10 ED ERROR
MESSAGE AND

ERROR INDICATORS message format

When errors occur, ED displays the last character read before the
error and an error indicator. The following line shows the error

BREAK errorindicator AT lastcharacter

Tabie 6-5 lists and describes the ED error indicators.

... |}
Table 6-5: ED Error Indicators

ERROR INDICATOR

MEANING

?

>

Command is not recognized.

Memory bufter full (use D, K, N, S, or W command to
remove characters); F, N, oriS strings are too long.

Command cannot be execufed number of times specified.
LIB file cannot be opened (R command).

Table 6-6 summarizes the alternate characters available in ED.

e
Table 6-6: Text Editor Alternate-Character Commands

FUNCTION

L]
6.11 ALTERNATE
CHARACTER
SUMMARY
ALTERNATE
CHARACTER
Ait C
Alt E
Alt H
Alt1 or Tab Key
Alt L
Alt Z

Restart (use with extreme care — loss of data may occur).

Physical carriage return (not actually entered in
command) which allows commands longer than one line
to be entered at console. -

Character delete (same as BACKSPACE key).
Logical tab (columns 1, 8, 15, etc.).

Logical carriage return/line feed for use in search and
substitute strings.

String terminator.

49



R
6.12 COMMAND Table 6-7 summarizes the ED commands in an alphabetical listing.
SUMMARY

]
Table 6-7: Alphabetical List of ED Commands

COMMAND FUNCTION

nA Appends lines.

+B Moves CP to beginning of buffer.

=nC Moves CP by characters.

+nD Deletes characters.
E Ends edit and closes file (normal end).
nf Finds string.
H Ends edit; closes and reopens file.

i Inserts characters.

nj Places string in juxtaposition (between specified strings).
+nK Deletes lines.
+nL Moves CP by lines.

nm Enters and executes more than ocne command at a time.
nn Finds characters throughout original file.

o) Returns to original file.

nP Disptays next 23 lines (1 screen) in buffer.

Quits edit with no file changes.

R Reads library file into buffer.
nS Substitutes one string for another.
£nT Displays lines.
nw Writes lines intc temporary file.
nX Transfers text from edit buffer to temporary library file.
=n Moves CP and displays (=nLT).
n Moves CP to line n.
*v Enables/ disables line numbering.

st



O
APPENDIX A: CP/M-86 COMMAND-FORMAT SUMMARY

Table A-1 contains an alphabetical list of command formats for
CP/M-86 commands. For descriptions of ED and PIP subcommand
formats, refer to Chapters 5 and 6. Note that the brackets in the PIP
command format are literal characters, as described in Section 5.5.2.

Tabile A-1: CP/M-86 Command Formats

bootcopy [drivename: to drivename:] <
dcopy [drivename: to drivename:} Pu

. drivename:
dir {fiiespeciﬁer +

ed filespecifier <
era filespecifier «4

format drivename($switchi...]] <
pip destination=source{,source?..]){[ parameterlist]] <
ren newfilespecifier=oidfilespecifier

{filespecifier ({Sr/ ol $r/wi][{Ssys|Sdir}]} |
{vat}
[drivename:}dsk
stat — <
drivename:=r/o
{dev:}
{logicaldevice=physicaidevice],..]}

submit filespecifie{ parameterlist] <4
type filespecifier <.

NQOTE: See Chapters 5 and 6 for descriptions of PIP and ED commang formats.

51



A
APPENDIX B: CP/M-86 ERROR MESSAGES

Table B-1 presents the CP/M-86 error messages. Note that X:
represents the drive name in the error message formats, and n
represents a number.

83



1
Table B-1: CP/M-86 Error Messages

Message

Meaning

Bdos err on X; bad sector

Bdos err on X: R/O

COMMANDNAME?

DESTINATION IS R/O,
DELETE (Y/N)?

DISK READ ERROR:
filespecifier

DISK WRITE ERROR:
filespecifier

NO FILE =filespecifier

CANNOT WRITE:
gevicename

INVALID FORMAT:
invalidentry

CANNQT READ:
devicename or filename

QUIT NOT FOUND:
=source

START NOT FOUND:=
source

ABORTED: filespecifier

VERIFY ERROR:

filespecifier

FILE EXISTS

Fite Not Found

Invaiid Assignment

NO FILE

Invalid File indicator

invalid Disk Assignment

This can indicate a hardware problem, or a worn,
improperly tormatted or missing disk. Enter Alt C to
terminate the program and return to CP/M-86; then
enter Alt C again to reset the disk system. Or press the
Return key to ignore the error.

The drive has been assigned read-oniy status with a
STAT command, or the disk in the drive has been
changed without resetting the disk system with an Ait C.
CP/M-86 terminates the current program as soon as
you press any key.

If CP/M-86 cannot find the command you specified, it
returns the command name you entered followed by a
question mark. Check that you have typed the
command name correctly, or that the command you
requested exists as a .CMD file on the defauit or
specified disk.

PIP. The destination file specified in a PIP command
aiready exists and it is read/only. If you type Y, the
destination file is deleted before the file copy is done.

PIP. The input disk file specified in a PIP command
could not be read properly. This is usually the result of
an unexpected end of file. Correct the problem in your file.

PIP. A disk write operation could not be successfully

performed during a PP command, probably due to a full
disk. You shouid either erase some unnecessary files or
get another disk with more space and execute PIP again.

PIP. input file specified does not exist.

PIP. The destination specified in the PIP command is
illegal. An input device has probably been specified as
a destination.

PIP. The format of your PIP command is illegal. See the
description of the PIP command.

PIP. The source specified in the PIP command is illegal.
An output device has propably been specified as a source.

PIP. The string argument to a Q parameter was not
found in your input file.

PIP. The string argument to an S parameter couid not
be found in the source file.

PIP. The user has aborted a PIP operation by pressing
a key.

PIP. When copying with the V option, PIP found a
difference when rereading the data just written and
comparing it to the data in its memory buffer. Usually
this indicates a bad copy on the destination disk or drive.

CP/M-86 has been asked 1o create a new file using a
file specification that is already assigned to another file.
Either delete the existing file or use another file specifier.

CP/M-86 could not find the specified file. Check that
you have entered the correct drive specification or that
you have the correct disk in the drive.

STAT. An invalid device was specified in a STAT device
assignment. Use the STAT VAL display to list the valid
assignments for each of the four logical STAT devices:
CON:, RDR:, PUN:, and LST.. See Section 4.4.

CP/M-86 could not find the specified file, or no files exist.

STAT. This message resulits from an invaiid command
to set file attributes. These are the oniy options valid in
a STAT filespecitier [option] commang $r/ o, $r/w,
$sys. $dir.

STAT. An invalid STAT drive command was given. The
only valid drive assignment in STAT is STAT a=R/0.



L
APPENDIX C: BDOS ERROR MESSAGES

The SIRIUS 1 Basic Disk Operating System generates the error
messages described below. The appropriate recovery procedure for
each error situation is also presented. The upper case X: in the error
messages represents the name of the drive on which the error
occurred.

» Drive=nn, Track=nn, Sector=nn: Error=nn
Bdos Efr On X:=Bad Sector

The system generates this message in response to a read or write
error. The nn represents the hexadecimal number of the drive,
track, sector, or error-code number. The significance of the error-
code number is explained in Appendix D.

To correct this error condition, press the Return key and the
system will skip the problem sector. If the same error message
continues to appear, enter Alt C to abort the operation.

This error message may also indicate that a non-existent drive has
been selected or an attempt has been made to access a drive
with no diskette inserted. Enter Ait C to return to the system
prompt >; then be sure a diskette is inserted in the correct drive.

» Bdos Err On X: R/O

The system generates this message when the user attempts to
write on a disk in a drive set for read only (R/Q) with the STAT
command or if the user forgets to enter an Alt C to clear the disk
system when inserting a new diskette. To correct this error
condition, enter Ait C to return to the operating system. When the
prompt appears, enter Alt C again to clear the disk system.

(9]
[8))



O
APPENDIX D: ERROR CODES AND DEFINITIONS

Many of the error messages generated under CP/M-86 include error
code numbers (in hexadecimal). This appendix defines the error
codes. There are four general types of error codes:

1x — Cannot find sector

2x — Cannot read sector

3x — Sector verify error

4x — Formatting error

Tabie D-1 lists and defines the error codes that CP/M-86 and its
utility programs dispiay when an error condition arises.

57



58

Table D-1 Sirius Error Code Definitions

ERROR CODE

GENERAL DEFINITION

NUMBER DETAILED DEFINITION
COULD NOT COMPLETE READ-RELATED COMMAND
11 Noise encountered on sync line
12 Bad header block ID
13 Checksum error in header
14 Header GCR error
15 Wrong track
16 Wrong sector
17 Bad job code
INVALID DATA ON DISKETTE
21 Bad data block 1D
22 Checksum error in data
23 GCR error
24 Sync time out
DEFECTIVE DRIVE OR DISKETTE
31 Bad data biock iD
32 Verify error
33 Checksum error
34 GCR error
FORMAT PROGRAM ERROR CODES
41 No sync found (bad or missing diskette)
42 Bad header ID
43 Wrong track
44 Wrong sector
45 Bad header checksum
46 Gap error
47 GCR error
48 No data sync
49 Bad data ID
4A Data verify error
4B Data checksum
4C Gap 2 error
4D GCR error
MISCELLANEQUS
F3 Data not written due to disk change
F4 Cannot write to disk until logged (C)
F5 Wrong diskette type
F& Cannot start disk operation
F7 lllegal track number
F8 llegal drive number
F9 illegal disk operation
FB Drive motor not up to speed
FC Write-protected diskette
FD Bad track on diskette
FE Cannot compiete disk operation
FF Bad diskette or unformatted diskette



L
APPENDIX E: SIRIUS UTILITY ERROR MESSAGES

Table E-1 presents the error messages for the SIRIUS utility programs
DCOPY, FORMAT, and BOOTCOPY.

L
Table E-1: DCopy and Format Error Messages

MESSAGE

MEANING

Bad DCOPY command
Bad FORMAT command

Copy aborted at track xx.
Format aborted at track xx.

Cannot COPY double-sided
diskettes.
Cannot Format doubie-sided
diskettes.

Sector Write Error: D=xx,
T=xx, S=xx, E=xx.
CANNOT WRITE DISK LABEL

Operating system version
mismatch.

DRIVE DOCR OPEN
WRITE PROTECTED DISK

Bad Orive Number: press any
key to continue.

Read error. D=xx, T=xx,
=xx.E=xx CANNOT
READ TRACK

Soft Format error. D=xx, T=xx,
S=xx, E=ee

CANNOT SIZE TRACK

CANNOT FORMAT TRACK

-

The DCOPY or FORMAT command was entered
incorrectly. Re-enter the command.

The disk has a bad track and the program is
unable to continue. Run program again, or try
moving to another drive. If error persists, discard
diskette.

The computer being used does not have double
sided disk drives.

The program is unable to write the disk label to
the disk. The drive. track, sector and error code
numbers are indicated.

The operating system being used is not compatible
with the version of DCOPY or FORMAT. Use the
correct version of the program or load the correct
operating system. .

Close the drive door and restart the program.

The disk being written to has a write-protect label
on it. Remove the label and run the program again.
Files on the disk may be aitered if you do this.

An incorrect drive name was entered.

There was a disk read error on the indicated track
and sector. Re-attempt the program; discard the
diskette if the error persists.

A soft format error of type ee occurred at the
indicated track and sector on the indicated drive. If
there are more than 9 soft errors on a track, the
program will abort. Soft errors in moderate

.numbers are not harmful to diskette pertformance.

The disk that you are trying to format or copy to
may be bad. Run the program again to see if the
same error occurs. Discard the diskette if the error
persists.

You have a possibly bad disk. Run the program
again to see it the same error occurs. Discard the
diskette if the error persists.



60

./
Table E-1: Bootcopy Error Messages

MESSAGE

MEANING

OPERATING SYSTEM
MISMATCH

BAD BOOTCOPY COMMAND

NOT ENCUGH MEMORY
CANNQOT OPEN FILE

FILE READ ERROR

NO BOOT SECTORS ON
SQURCE DISK

NOT A SYSTEM IMAGE

WRONG DESTINATION DISK
LABEL TYPE

READ ERROR: Drive=xx,
Track=xx, Sector=xx,
Error=xx

WRITE ERROR: Drive=xx,
Track=xx, Sector=xx,
Error=xx

This version of BOOTCOPY is not compatible with
the currently running operating system. Use the
correct version of BOOTCOPY or load the correct
operating system.

The BOOTCOPY command was incorrectly typed.
Re-enter the command.

There is not enough memory in the system to do the
BOOTCOPY. Boot up a smaller operating system and
then run BOOTCOPY or try to build a smalier system.

BOOTCOPY could not open the input file. Make sure
that the file exists and that you spelled the file name
correctly.

BOOTCOPY could not read the input file. The file is
probably corrupt. Try to re-create the file.

The source disk does not have boot tracks.
Therefore there is no operating system to copy. Use
a source disketfte with boot tracks.

The boot tracks on the source disk do nct contain an
operating system. Use a system disk

The destination disk has an incorrect software
label. Format the disk with the correct version of
FORMAT,; any files on the disk will be lost.

There was a read or write error on the given track
and sector. Try to run the program again to see if
the same error occurs.



INDEX

ACHVE DIV ittt iiitieeeiieeeereneennennssennnnnns 13-14
Y 7.13-14
Al KBY o itiiiiitiiiiereeneneeraneesonneeennnnsnnnans reaves 24
Available space ........cciiiiiiiiiiiinnns st s et eeerenenens 25
Backup diskette ................ Ceeereeiiettaettetreeneanns 19
=10 5
BIOS ..iviviiiiann.... C et etaesecteenecanateneaneenennens 5
=00 70 (R eeeereeeanas 22-23
CCP i, e e ee e e e ia et eeteenaeeraetateneeannnn 5
Changing the default drive ....... Ceeieeteeait et 13
CNaracter PO, o vetiiieeereeeereeeersnnesonsseeasasannnnes 45
Character pointer, control COMMANGAS ..vvvverrrreeenrreeeeenes 45
Command line .....coevieeennnnnnnnn. Ciecetneeeaceteenenenns 7
Command prompt, SYStEBM . .uvittininirreeennenocessonnennns 6
0 6,14,28,37
(070 ¢ =T ] 1= o TU1 ¢ ¥ A 14
Conventions, MANUAE . .vuveeeeereeernnenenaneseenneesoeeosnns 2
1 PP 6,28
SN (=T o) O T - 45
(D]010] 2 o qoTo -1 1 1 N 19-21
D= - LU Qo 41V 6.13
Device assignments, physical-to-logical (STAT command) ...... 28
DIR command ......... ettt eeeeteeatteateeerateneneteenns 29-30
Diskette, DaCKUP COPY .vvvvernnreerereeennnereeaeennnonnnens 19
Drive CharaCteriStiCs ..vvverinvenerrrerennnnneeeeennnnennnnns 27
ED, aiternate Characters .......vvveeeeerinnieeeeeonnneenennns 47,48
ED, append command (A) ..veuirtiiiieniirrntetnnonoenans 42
ED, command StriNgS ...coveiiiiieieeeernrnnoneeensnnnannnnens 47
ED, cOmmand SUMMAIY ....vvvieeereeereseeeereneeenoeesoans 50
ED, edit buffer ............. eeeeenereeieaneana Cerreeaeee 41,43,44
ED, error message and error indicators ...........eeeveeieenns 49
(SR (1= TN o - Lo (¥« 4
(I (1= 3T o -Tod {1 A 41
ED, files .....cvuun.... C et aeceneaetaeeeae e nas 41,42
ED, insert command (1) ..vereveeniiereinreiineeennneennnanns 42
ED, line transfer command ......... e teteeeaeeae et 43
ED, new files .......... eeteceeteetere e aan Cheeeraaaaa 41.42
ED, prompt ........ Ceeeeaen ceeean et teeceicacieatecaennenaas 41
ED, Sample SESSION ...uviiiirrieiiirereeriniiinieneenens 48
ED, temporary file .....eeervriererrenninnreeeeennnnnnoeneens 41
ERA COMMANG ..iiiiitiiiiiiiiiirerernennnenneesnnnnnnnnn 31
1 7,41
File information ...... C et e e ea et et eeasaneaeneaeaaaeaentanennn 25 -
= = = . 7.8
File EXteNSION ©uiiet it iieiiniiiveeereeennnneeeneoannnnnnnas 7-10
File specifier «vovevvriinriiiiiiniiinnennns e eeeieeeeeraeean 7-10 41
=TT ] ] | 3
FORMAT Program ...vvetiitiiiiiieereeernsnneeneeernnnnnnes 17-19

61



Loading CP/M-8B ... c.vuiiiiiiirienrerernnerenceconnsennnnnns 13

Loading CP/M-86 fromdrive B .......cviieiiiiniinniiennnnn. 14-15
Loading the operating System ......c.iiuiereeneerecconcaacanans 13

o To o {1 To o 177 P 13-14
Logical deviCe .....cccvviurennsnrecnnnns Ceesesceaseatrscaanns 5-6
LSt iiiiiiiiierreeenctsencnnonaas Cetereeereceetatanesanas 6,28,37
Parameters (PIP command) .....5..ceeeieereeraonsricnnsnnees 35-36
Parameters (STAT command) ......c.coeeivinncresrsoeesannns .27
PhysSiCal GeVICE ...ivviurieriiierrienstossecassasasnscancaans 5-6
| O 32-37
PIPcommand .......ccovenen ettt iteereeeeteeeses et e 32
PIP, copying fil@sS ..iviieeieiiieneinceecocoasenonenennseannns 33-34
PIP, 10adiNg ..c.iviinriniiiieeinenasenssnnonscsoceananns .. 32
PIP, logical deviCesS ....vierriiereiinreniencnanenannnenas ceoes 36-37
PP, ParamMEterS v vviieinreerreeeeeeeannonsosssosssosansansas 35-36
PIP, special deviCes .....viiiiiiierrecnncesrassesncsasananns 37
REN command .........ccccvven. C e teeeeeeaeerseesieesesanes 31-32
REtUIN KBY o iiiivereeranenneensosnesnesnsonones SEEERERREREE 2
Selected drive . ..viiiiiiiiieiiiiciticer it eaeans 6,13
SigN-0N MEeSSAQE . vvvvvrirrnriererrecensansnnnes Ceeeereneaes 13
STAT Program ...veeerieeeeneseocsssacssssssscassscasanasoas 23-28
SUB files tvvviriiiieiniiierirnneananasonns Ceeerceeisncanons 38-39
SUBMIT cOMMANd .. .vitiiiiiiinnnrecrssaenosscsncsocancansns 38
Switch values, FORMAT ........... e 18-19
Switch values, DCOPY .. ittt tiiieieienratenaaannns 21
System-level COMMANAS ...cvviiiiirreirroernrnrssnnconcenns 6
System pPrompPt ... ittt iiet i i i e a o 6
BIE=5 =T 1 (o 4
TYPE COMMANG .ivtitietieceenenenncsossssossennccnannencs 30
User IMterachion . ..vveireirieernonnconroosesnssosnssnasosnnos 7
Wild-card charaClers ...iviiiiiiiieienenonesanensnnssncannns 1



]
OFFICES, SUBSIDIARIES, AND DISTRIBUTORS

FRANCE

Sirius Computer SAR.L.
28, rue Jean Jaures
92800 Puteaux

Phone: (33) 1-773-8564
Telex: 614764

ITALY

Harden S.p.A. Divisione Eiettronica
Via Giuseppina 110

26048 Sospiro (Cremona)

Phone: (39) 372-63136

Telex: 320588

UNITED KINGDOM
ACT (Microsystems) Ltd.
Shenstone House

Dudiey Road

Halesowen

West Midlands B63 3NT
Phone: (44) 021-501-2284
Telex: 339326

UNITED STATES

Sirius Systems Technology, Inc.
380 El Pueblo Road

Scotts Valiey, CA 95066
Phone: (408) 438-6680

Telex: 357403

WEST GERMANY
Sirius Computer GmbH
Orber Strasse 24

6000 Frankfurt 61
Phone: (49) 611-410223
Telex: 4185558



READER'S
COMMENTS
FORM

Your comments are a main source of ideas for improvement. Please
use this form to provide us with feedback on this document.

DOCUMENT
TITLE:
PART NUMBER:

YOUR GENERAL REACTION:

Overall quality: [ Excellent [0 Adequate [ Poor
Text clarity: O Very clear [ Adequate 0O Difficult
Usefulness of format: [ Helpful LJ Adequate [Jinconvenient

YOUR SPECIFIC COMMENTS:
Did you find any errors in the document?
If so, describe:

Was any important information omitted from the document?
If so, describe:

What sections of the document were especially useful to you?

What sections were of no use to you?

How could material be presented to be more helpful to you?

READER’S NAME:
JOB TITLE:
COMPANY:
ADDRESS:

Please complete and return this form to the office, subsidiary or dis-
tributor nearest you.



SIRIUS 1

CP/M-86™
System Guide

=
(== SIFNTUS—




CP/M-86™
System Guide

Cooyright © 1981

Digital Research
P.0O. Box 579
801 Lighthouse Avenue
Pacific Grove, CA 93950
(408) 649-3896
TWX 910 360 5001

All Rights Reserved



COPYRIGHT

Copvright © 1981 by Digital Research. All rights
reserved. No vart of this publication mav bhe
reproduced, transmitted, transcribed, stored in a
retrieval svstem, or translated into anv language or
computer language, in any form or bv anv means,
electronic, mechanical, maanetic, ootical, chemical,
manual or otherwise, without the prior written
vermission of Nigital Research, Post Office Box 579,
Pacific Grove, California, 93950.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

NDISCLAIMER

Digital Research makes no representatinns or
warranties with resvect to the contents hereof and
svecifically disclaims any implied warranties of
merchantabilitv or fitness for any wvarticular
puroose, Further, DNDigital Research reserves the
right to revise this oublication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

TRADEMARKS

CP/M is a registered trademark of NDigital Research.
ASM-86, "pP/M-86, CP/M-80, CP/NET, DDT-86, LINK-80,
MP/M, and TEX-80 are trademarks of Digital Research.

The "CP/M-86 System Guide" was vorepared using the
Digital Research TEX-80™ Text Formatter and printed
in the United States of America by Commercial Press/
Monterey.

Je Je Je Je d Je do de de de de de dede dede de de de e de de ek ke de ke deke ke Kk de K

* SGecond Printing: June 1981 *
de de dode g e de deode ko dedeodede dede ek hkdkkdddedekhkddkhhh



CPM Syplom Guade

Table of Contents

CP/M-86 System Overview

1.1 CP/M-86 General Characteristics . . . .
1.2 cp/M-80 and CP/M-86 NDifferences . . . .

Command Setup and Execution Under CP/M-86

2.1 CC@» Ruilt-in and Transient Commands . .
2.2 Transient Proqram Execution Models . .
2.3 The 8080 Memorv Model . . . ¢ ¢ ¢ « o«
2.4 The Small Memory Model ., ., . . . . . .
2.5 The Compact Memorv Model . . . . . . .
2.6 Base Page Tnitialization . . . . . . .
2.7 ™ransient Program T.0ad and Exit . . . .

Command (CMD) File Generation

Intel Hex File Format « « « o o o o o &
Ooeration of GENCMD ., . . . ¢ « o o« s &
Noeration of TMCMD | . . . ¢ ¢ « « + &
Command (CMD) File Format o« « « + o «

DWW w

Lo S I

Basic Disk Overating Svstem (BDOS) Functions

1 BDNS Parameters and Function Codes . .
.2 Simple BNDOS Calls e e e e s e e e e
3 BNOS File Overations . « ¢ o o o o o &
4 BDOS Memorv Management and T.oad e o

Basic I/0 System (BIOS) Organization

1 Organization of the BIOS . . . . « .« .
.2 The BIOS Jump Vector . .« « « o o o o o
3

4

Simple Peripheral DNDevices e e e e e .
BIOS Subroutine ®ntrvy Points . . . . .

BIOS Disk Definition Tables
Disk Parameter Tahle Format . « « « «

1
2 Table Generation Using GENDEF . . . . .
3 GENDEF Ou tpu t - . L] . L2 - * * * * L] - o

CP/M-86 Bootstrap and Adaptation Procedures

7.1 The Cold Start Load Owneration e o s
7.2 Organization of CPM,.SYS e e e e e e .

w ~

10
11

14

15
16
19
20

23
25
30
48

55
56
57
60

67

72
77

81
84



9 Q @ p

g

Appendixes

Blocking and DNeblocking Algorithms
Random Access Sfample Progqram . . .
Listing of the Boot Rom . . . . . .
LDBIOS Listing . . + ¢ ¢ & « o« « &
BIOS UTisting . . . . ¢« ¢ ¢ « « o

CBIOS Listing . « v ¢« o o « o o« o &

vi

87
95
103
113
121

137



4 6 A ®O9 QO w op

=4

Appendixes

ASM-86 Invocation . . . . . . .« . .
Mnemonic Differences from the Intel
ASM-86 Hexadecimal Output Format .
Reserved Words . « « « o o o o « o
ASM-86 Instruction Summary . . . .
Samole Program . + « « « o s o o o
Code-macro Definition Syntax . . .
ASM-86 Frror MessSades . . « o« o « o

DDT-86 Frror MessSadesS « + o+ o o o« o

ix

.

Assembler

79
81
83
87
89
93
99
101

103



Foreword

The CP/M-86 System Guide opresents the svstem programming
aspects of CP/M-86"", a single-user operating system for the Intel
8086 and 8088 1l6-bit microprocessors. The discussion assumes the
reader is familiar with CP/M  the NDigital Research 8-bit operating
system. To clarify svecific differences with CP/M-86, this document
refers to the 8-bit version of CP/M as OP/M-80TM, Elements common
to both systems are simply called CP/M features.

CP/M-80 and CP/M-86 are equivalent at the user interface level
and thus the Digital Research documents:

® An Introduction to CP/M Features and Facilities
® ED: A Context ®Bditor for the CP/M Disk System
® CP/M 2 User”s Guide

are shipped with the CP/M-86 vackage. Also included is %be CP/M~86
Programmer”s Guide, which describes aSM-86"" and DnT-86"M, nigital
Research”s 8086 assembler and interactive debugger.

This System Guide presents an overview of the CP/M-86
programming interface conventions. It also describes orocedures for
adapting CP/M-86 to a custom hardware enviornment. This information
parallels that presented in the CP/M 2 Interface Guide and the CP/M
2 Alteration Guide.

Section 1 gives an overview of CP/M-86 and summarizes its
differences with CP/M-80. Section 2 describes the general execution
environment while Section 3 tells how to generate command files.
Sections 4 and 5 respectively define the programming interfaces to
the Basic Disk Operating Svstem and the Basic Input/Output System.
Section 6 discusses alteration of the BIOS to support custom disk
configurations, and Section 7 describes the loading operation and
the organization of the CP/M-86 system file.

iii



Section 1
CP/M-86 System Overview

1.1 CP/M-86 General Characteristics

CP/M-86 contains all facilities of CP/M-80 with additional
features to account for increased processor address space of up to a
megabyte (1,048,576) of main memory. Further, CP/M-86 maintains
file compatibility with all previous versions of CP/M. The file
structure of version 2 of CP/M is used, allowing as many as sixteen
drives with up to eight megabytes on each drive. Thus, CP/M-80 and

CP/M-86 systems may exchange files without modifying the file
format.

CP/M-86 resides in the file CPM.SYS, which is loaded into
memory by a cold start loader during system initialization. The
cold start loader resides on the first two tracks of the system
disk. CPM.SYS contains three program modules: the Console Command
Processor (CCP), the Basic Disk Operating System (BDOS), and the
user-configurable Basic I/0 System (BIOS). The CCP and BDOS
portions occupy approximately 10K bytes, while the size of the BIOS
varies with the implementation. The operating system executes in
any portion of memorv above the reserved interrupt locations, while
the remainder of the address space is partitioned into as many as
eight non-contiguous regions, as defined in a BIOS table. Unlike
CP/M-80, the CCP area cannot be used as a data area subsequent to
transient program load; all CP/M-86 modules remain in memory at all
times, and are not reloaded at a warm start.

Similar to CP/M-80, CP/M-86 loads and executes memory image
files from disk. Memory image files are preceded by a "header
record," defined in this document, which provides information
required for proper program loading and execution. Memory image
files under CP/M-86 are identified by a "CMD" file tvype.

Unlike CP/M-80, CP/M-86 does not use absolute locations for
system entry or default variables. The BDOS entry takes place
through a reserved software interrupt, while entry to the BIOS is
provided by a new BDOS call. Two variables maintained in low memory
under CP/M-80, the default disk number and I/O Byte, are placed in
the CCP and BIOS, respectively. Dependence upon absolute addresses
is minimized in CP/M-86 by maintaining initial "base page" values,
such as the default FCB and default command buffer, in the transient
program data area.

Utility programs such as ED, PIP, STAT and SUBMIT operate in
the same manner under CP/M-86 and CP/M-80. 1In its operation, DDT-86
resembles DDT supplied with CP/M-80. It allows interactive
debugging of 8086 and 8088 machine code. Similarly, ASM-86 allows

assembly lanquage programming and development for the 8086 and 8088
using Intel-like mnemonics.

All Information Presented Here is Proprietary to Digital Research



CP/M~86 System Guide 1.1 Cpr/M-86 General Characteristics

The GENCMD (Generate CMD) utility replaces the LOAD program of
CP/M-80, and converts the hex files produced by ASM-86 or Intel
utilities into memory image format suitable for execution under
CP/M-86. Further, the LDCOPY (Loader Copy) program replaces SYSGEN,
and is used to copy the cold start loader from a system disk for
replication. In addition, a variation of GENCMD, called UMCMD,
converts output from the Intel LOC86 utility into CMD format.
Finally, GENDEF (Generate DISKDEF) is provided as an aid in
producing custom disk parameter tables. ASM-86, GENCMD, LMCMD, and

GENDEF are also supplied in "COM" file format for cross-development
under CP/M-80.

Several terms used throughout this manual are defined in Table
1-1 below:

Table 1-1. CP/M-86 Terms

Term Meaning
Nibble 4-bit half-byte
Byte 8-bit value
Word l6-bit value
NDouble Word 32-bit value
Paragraph 16 contiguous bytes

Paragraph Boundary An address divisible evenly
by 16 (low order nibble 0)

Segment Up to 64K contiguous bytes
Segment Register One of CS, DS, ES, or SS

Offset l6-bit displacement from a
segment register

Group A segment-register-relative
relocatable program unit

Address The effective memory address
derived from the composition
of a segment register value
with an offset wvalue

A group consists of segments that are loaded into memory as a single
unit. Since a group may consist of more than 64K bytes, it is the
responsibility of the application program to manage segment

registers when code or data beyond the first 64K segment is
accessed.

All Information Presented Here is Proprietary to Digital Research

2



CP/M-86 System Guide 1.1 CP/M-86 General Characteristics

CP/M-86 supvorts eight program groups: the code, data, stack
and extra groups as well as four auxiliary groups. When a code,
data, stack or extra group is loaded, CP/M-86 sets the resnective
segment register (CS, DS, SS or ES) to the base of the group. CP/M-
86 can also load four auxiliary groups. A transient program manages

the location of the auxiliary groups using values stored by CP/M~-86
in the user”s base page.

1.2 cp/M-80 and CP/M-86 Differences

The structure of CP/M-86 is as close to CP/M-80 as possible in
order to provide a familiar programming environment which allows
application programs to be transported to the 8086 and 8088
processors with minimum effort. This section points out the
specific differences between CP/M-80 and CP/M-86 in order to reduce
your time in scanning this manual if you are already familiar with
CP/M~-80. The terms and concepts presented in this section are
explained in detail throughout this manual, so you will need to
refer to the Table of Contents to find relevant sections which
provide specific definitions and information.

Due to the nature of the 8086 processor, the fundamental
difference between CP/M-80 and CP/M-86 is found in the management of
the various relocatable groups. Although CP/M-80 references
absolute memory locations by necessity, CP/M-86 takes advantage of
the static relocation inherent in the 8086 processor. The operating
system itself 1is usuallvy loaded directly above the interrupt
locations, at location 04004, and relocatable transient programs
load in the best fit memory region. However, you can load CP/M-86
into any portion of memory without changing the operating system
(thus, there is no MOVCPM utility with CP/M-86), and transient
programs will load and run in any non-reserved region.

Three general memory models are presented below, but if you are
converting 8080 programs to CP/M-86, you can use either the 8080
Model or Small Model and leave the Compact Model for later when your
addressing needs increase. You”ll use GENCMD, described in Section
3.2, to produce an executable program file from a hex file. GENCMD

parameters allow you to specify which memory model your program
requires.

CP/M-86 itself is constructed as an 8080 Model. This means
that all the segment registers are placed at the base of CP/M-86,
and your customized BIOS is identical, in most respects, to that of
CP/M-80 (with changes in instruction mnemonics, of course). 1In
fact, the only additions are found in the SETDMAB, GETSEGB, SETIOB,
and GETIOB entry points in the BIOS. Your warm start subroutine is
simpler since you are not required to reload the CCP and BDOS under
CP/M-86. One other point: if you implement the IOBYTE facility,
you“ll have to define the variable in your BIOS. .Taking these
changes into account, you need only perform a simple translation of

your CP/M-80 BIOS into 8086 code in order to implement your 8086
BIOS.

All Information Presented Here is Proprietary to Digital Research

3



CP/M-86 System Guide 1.2 CP/M-80 and CP/M-86 Differences

If you“ve implemented CP/M-80 Version 2, you already have disk
definition tables which will operate properly with CP/M=-86. You may
wish to attach different disk drives, or experiment with sector skew
factors to increase performance. If so, you can use the new GENDEF
utility which performs the same function as the DISKDEF macro used
by MAC under CP/M-80. You”®ll find, however, that GENDEF provides

you with more information and checks error conditions better than
the DISKDEF macro.

Although generating a CP/M-86 system is generally easier than
generating a CP/M-80 system, complications arise if you are using
single-density floppy disks. CP/M-86 is too large to fit in the
two-track system area of a single-density disk, so the bootstrap
operation must perform two steps to load CP/M-86: first the
bootstrap must load the cold start loader, then the cold start
loader loads CP/M-86 from a system file. The cold start loader
includes a LDBIOS which is identical to your CP/M-86 BIOS with the
exception of the INIT entry point. You can simplify the LDBIOS if
vou wish because the loader need not write to the disk. If you have
a double-density disk or reserve enough tracks on a single-density
disk, you can load CP/M-86 without a two-step boot.

To make a BDOS system call, use the reserved software interrupt
#244. The jump to the BDOS at location 0005 found in CP/M-80 is not
present in CP/M-86. However, the address field at offset 0006 is
present so that programs which "size" available memory using this
word value will operate without change. CP/M-80 BDOS functions use
certain 8080 registers for entry parameters and returned values.
CP/M-86 BDOS functions use a table of corresponding 8086 registers.
For example, the 8086 registers CH and CL correspond to the 8080
registers B and C. Look through the list of BDOS function numbers
in Table 4-2, and you®ll find that functions 0, 27, and 31 have

changed slightly. Several new functions have been added, but they
do not affect existing programs.

One major philosophical difference is that in CP/M-80, all
addresses sent to the BDOS are simply 1l6-bit values in the range
0000H to OFFFFH. In CP/M-86, however, the addresses are really just
16-bit offsets from the DS (Data Segment) register which is set to
the base of your data area. If you translate an existing CP/M-80
program to the CP/M-86 environment, your data segment will be less
than 64K bytes. 1In this case, the DS register need not be changed
following initial load, and thus all CP/M-80 addresses become simple
DS-relative offsets in CP/M-86.

Under CP/M-80, programs terminate in one of three ways: by
returning directly to the CCP, by calling BDOS function 0, or by
transferring control to absolute location 0000H. CP/M-86, however,
supports only the first two methods of program termination. This
has the side effect of not providing the automatic disk system reset

following the jump to O0000H which, instead, is accomplished by
entering a CONTROL-C at the CCP level.

All Information Presented Here is Proprietary to Digital Research

4



CP/M-86 System Guide 1.2 CpP/M-80 and CP/M-86 Differences

You”ll find many new facilities in CP/M-86 that will simplify
your programming and expand your application programming capabilitv.
But, we’ve designed CP/M-86 to make it easy to get started: in
short, if you are converting from CP/M-80 to CP/M-86, there will be
no major changes beyond the translation to 8086 machine code.
Further, programs you design for CP/M-86 are upward compatible with
MP/M-86, our multitasking operating system, as well as CP/NET-86
which provides a distributed operating system in a network
environment.

All Information Presented Here is Proprietary to Digital Research

5



Section 2
Command Setup and Execution Under CP/M-86

This section discusses the operation of the Console Command

Processor (CCP), the format of transient programs, CP/M-86 memory
models, and memory image formats.

2.1 CCP Built-in and Transient Commands

The operation of the CP/M-86 CCP is similar to that of CP/M-80.
Upon initial cold start, the CP/M sign-on message is printed, drive
A is automatically logged in, and the standard prompt is issued at
the console. CP/M-86 then waits for input command lines from the
console, which may include one of the built-in commands

DIR ERA REN TYPE USER

(note that SAVE is not supported under CP/M-86 since the equivalent
function is performed by DDT-86).

Alternatively, the command line mavy begin with the name of a
transient program with the assumed file type "CMD" denoting a
"command file." The CMD file type differentiates transient command
files used under CP/M-86 from COM files which operate under CP/M-80.

The CCP allows multiple programs to reside in memory, providing
facilities for background tasks. A transient program such as a
debugger may load additional programs for execution under its own
control. Thus, for example, a background printer spooler could
first be loaded, followed by an execution of DDT-86. DDT-86 may, in
turn, load a test program for a debugging session and transfer
control to the test program between breakpoints. CP/M-86 keeps
account of the order in which programs are loaded and, upon
encountering a CONTROL-C, discontinues execution of the most recent
program activated at the CCP level. A CONTROL-C at the DDT-86
command level aborts DDT-86 and its test program. A second CONTROL-
C at the CCP level aborts the background printer spooler. A third
CONTROL-C resets the disk system. Note that program abort due to
CONTROL-C does not reset the disk system, as is the case in CP/M-80.
A disk reset does not occur unless the CONTROL-C occurs at the CCP
command input level with no programs residing in memory.

When CP/M-86 receives a request to load a transient program
from the CCP or another transient program, it checks the program”s
memory requirements. If sufficient memorv is available, CP/M-86
assigns the required amount of memory to the program and loads the
program. Once loaded, the program can request additional memory
from the BDOS for buffer space. When the program is terminated,

CP/M~-86 frees both the program memory area and any additional buffer
space.

All Information Presented Here is Proprietary to Digital Research

‘ 7



CP/M=-86 System Guide 2.2 Transient Program Execution Models

2.2 Transient Program Execution Models

The initial values of the segment registers are determined by
one of three "memory models" used by the transient program, and
described in the CMD file header. The three memory models are
summarized in Table 2-1 below.

Table 2-1. CP/M-86 Memory Models

Model Group Relationships
8080 Model Code and Data Groups Overlap
Small Model Independent Code and Data Groups

Compact Model Three or'More Independent Groups

The 8080 Model supports programs which are directly translated
from CP/M-80 when code and data areas are intermixed. The 8080
model consists of one group which contains all the code, data, and
stack areas. Segment registers are initialized to the starting
address of the region containing this group. The segment registers
can, however, be managed by the application program during execution
so that multiple segments within the code group can be addressed.

The Small Model is similar to that defined by Intel, where the
program consists of an independent code group and a data group. The
Small Model is suitable for use by programs taken from CP/M-80 where
code and data is easily separated. Note again that the code and
data groups often consist of, but are not restricted to, single 64K
byte segments.

The Compact Model occurs when any of the extra, stack, or
auxiliary groups are present in program. Each group may consist of
one or more segments, but if any group exceeds one segment in size,
or if auxiliary groups are present, then the application program
must manage its own segment registers during execution in order to
address all code and data areas.

The three models differ primarily in the manner in which
segment registers are initialized upon transient program loading.
The operating system program load function determines the memory
model used by a transient program by examining the program group
usage, as described in the following sections.

All Information Presented Here is Proprietary to Digital Research

] 8



CP/M-86 System Guide 2.3 The 8080 Memory Model

2.3 The 8080 Memory Model

The 8080 Model is assumed when the transient program contains
only a code group. In this case, the CS, DS, and ES registers are
initialized to the beginning of the code group, while the SS and SP
registers remain set to a 96-byte stack area in the CCP. The
Instruction Pointer Register (IP) is set to 100H, similar to CP/M-
80, thus allowing base page values at the beginning of the code
group. Following program load, the 8080 Model appears as shown in
Figure 2-1, where low addresses are shown at the top of the diagram:

SS:
CCp

SS + SP: CCP Stack

CS DS ES:
DS+0000H: base
page

CS+0100H: IP = 0100H
code

data

code

data

Figure 2-1. CP/M-86 8080 Memory Model

The intermixed code and data regions are indistinguishable. The
"base page" values, described below, are identical to CP/M-80,
allowing simple translation from 8080, 8085, or 280 code into the
8086 and 8088 environment. The following ASM-86 example shows how
to code an 8080 model transient program.

eseg
org 100h
. (code)
endcs equ $
dsegq
org offset endcs
. (data)
end

All Information Presented Here is Proprietary to Digital Research

9



CP/M-86 System Guide 2.4 The Small Memory Model

2.4 The Small Memory Model

The Small Model is assumed when the transient program contains
both a code and data group. (In ASM-86, all code is generated
following a CSEG directive, while data is defined following a DSEG
directive with the origin of the data segment independent of the
code segment.) In this model, CS is set to the beginning of the
code group, the DS and ES are set to the start of the data group,

and the SS and SP registers remain in the CCP”s stack area as shown
in Figure 2-2,

cCp

SS + SP: CCP Stack

Cs: IP = 0000H

code
DS ES: base
page

NS+0100H:
data

Figure 2-2. CP/M-86 Small Memory Model

The machine code begins at CS+0000H, the "base page" values begin at
DS+0000H, and the data area starts at DS+0100H. The following ASM-
86 example shows how to code a small model transient pbrogram.

cseg
. (code)
dseg
org 100h
. (data)
end

All Information Presented Here is Proprietary to Digital Research

10



CP/M-86 System Guide 2.5 The Compact Memorv Model

2.5 The Compact Memory Model

The Compact Model is assumed when code and data groups are
present, along with one or more of the remaining stack, extra, or
auxiliary groups. 1In this case, the CS, DS, and ES registers are
set to the base addresses of their respective areas. Figure 2-3
shows the initial configuration of segment registers in the Compact
Model. The values of the various segment registers can be
programmatically changed during execution by loading from the

initial values placed in base page by the CCP, thus allowing access
to the entire memory space.

If the transient program intends to use the stack group as a
stack area, the SS and SP registers must be set upon entry. The SS
and SP registers remain in the CCP area, even if a stack group is
defined. Although it may appear that the SS and SP registers should
be set to address the stack group, there are two contradictions.
First, the transient program may be using the stack group as a data
area. In that case, the Far Call instruction used by the CCP to
transfer control to the transient program could overwrite data in
the stack area. Second, the SS register would logically be set to
the base of the group, while the SP would be set to the offset of
the end of the group. However, if the stack group exceeds 64K the

address range from the base to the end of the group exceeds a l6-bit
offset value.

The following ASM-86 example shows how to code a compact model
transient program.

cseg

. (code)

dseg

org 100h

. (data)

eseg

. (more data)
sseg

. (stack area)
end

All Information Presented Here is Proprietary to Digital Research

11



CP/M-86 System Guide 2.5 The Compact Memory Model

SS:
CCpP

SS + SPp: CCP Stack

CS: IP = 0000H

code
DS: base
page
DS+0100H:
data
ES:
data

Figure 2-3. CP/M-86 Compact Memory Model

All Information Presented Here is Proprietary to Digital Research

12



CP/M-86 System Guide 2.6 Base Page Initialization

2.6 Base Page Initialization

Similar to CP/M-80, the CP/M-86 bhase page contains default
values and locations initialized by the CCP and used by the
transient program. The base page occupies the regions from offset
0000H through O0OFFH relative to the DS register. The values in the
base page for CP/M-86 include those of CP/M-80, and appear in the
same relative vositions, as shown in Figure 2-4.

DS + 0000: LCO LC1 LC2

DS + 0003: BCO BC1l M80

DS + 0006: LDO LD1 LD2

DS + 0009: BDO BD1 XXX

DS + 000C: |[LEO | LEl | LE2

DS + 000F: BEO BE1l XXX

DS + 0012: LSO LSl LS2

DS + 0015: BSO BS1 XXX

DS + 0018: LX0 LX1 LX2

DS + 00183: BX0 BX1 XXX

DS + 00lE: LXO0 LX1 LX2

DS + 0021: BXO0 BX1 XXX

DS + 0024: LXO0 LX1 LX2

DS + 0027: BX0 BX1 XXX

NS + 002A: LXO0 LX1 LX2

DS + 002D: BXO0 BX1 XXX

DS + 0030: Not
e e . Currently
DS + 005B: Used
DS + 005C: NDefault FCB
DS + 0080: Default Buffer

DS + 0100: Begin User Data

Figure 2-4. CP/M-86 Base Page Values

All Information Presented Here is Proprietary to Digital Research

13



CP/M-86 System Guide 2.6 Base Page Initialization

Each byte is indexed by 0, 1, and 2,'correspondinq to the standard
Intel storage convention of low, middle, and high-order (most
significant) byte. "xxx" in Figure 2-4 marks unused bytes. uC is

the last code group location (24-bits, where the 4 high-order bits
equal zero).

In the 8080 Model, the low order bytes of LC (LCO and LCl)
never exceed OFFFFH and the high order byte (LC2) is always zero.
BC is base paraqraph address of the code group (16-bits). LD and BD
provide the last position and paragraph base of the data group. The
last position is one byte less than the group length. It should be
noted that bytes LDO and LDl appear in the same relative positions
of the base page in both CP/M-80 and CP/M-86, thus easing the
program translation task. The M80 byte is equal to 1 when the 8080
Memory Model is in use. LE and BE provide the length and paragraph
base of the optional extra group, while LS and BS give the optional
stack group length and base. The bytes marked LX and BX correspond
to a set of four optional independent groups which may be required
for programs which execute using the Compact Memory Model. The
initial values for these descriptors are derived from the header
record in the memory image file, described in the following section.

2.7 Transient Program Load and Exit

Similar to CP/M-80, the CCP parses up to two filenames
following the command and places the properly formatted FCB”s at
locations 005CH and 006CH in the base page relative to the DS
register. Under CP/M-80, the default DMA address is initialized to
0080H in the base page. DNue to the segmented memory of the 8086 and
8088 processors, the DMA address is divided into two parts: the DMA
segment address and the DMA offset. Therefore, under CP/M-86, the
default DMA base is initialized to the value of DS, and the default
DMA offset is initialized to 0080H. Thus, CP/M-80 and CP/M-86
operate in the same way: both assume the default DMA buffer
occupies the second half of the base page.

The CCP transfers control to the transient program through an
8086 "Far Call." The transient program may choose to use the 96-byte
CCP stack and optionally return directly to the CCP upon program
termination by executing a "Far Return.” Program termination also
occurs when BDOS function zero is executed. Note that function zero
can terminate a program without removing the program from memory or
changing the memory allocation state (see Section 4.2). The
operator may terminate program execution by typing a single CONTROL-
C during line edited input which has the same effect as the program
executing BDOS function zero. Unlike the operation of CP/M-80, no
disk reset occurs and the CCP and BDOS modules are not reloaded from
disk upon program termination.

All Information Presented Here is Proprietary to Digital Research

14



Section 3
Command (CMD) File Generation

As mentioned previously, two utility programs are provided with
CpP/M-86, called GENCMD and LMCMD, which are used to produce CMD
memory image files suitable for execution under CP/M-86. GENCMD
accepts Intel 8086 "hex" format files as input, while LMCMD reads
Intel L-module files output from the standard Intel LOC86 Object
Code Locator utility. GENCMD is used to process output from the
Digital Research ASM-86 assembler and Intel”s OH86 utility, while
LMCMD is used when Intel compatible developmental software is
available for generation of programs targeted for CP/M-86 operation.

3.1 1Intel 8086 Hex File Format

GENCMD input is in Intel "hex" format produced by both the
Digital Research ASM-86 assembler and the standard Intel OHS86
utility program (see Intel document #9800639-03 entitled "MCS-86
Software Development Utitities Operating Instructions for ISIS-II
Users"). The CMD file produced by GENCMD contains a header record
which defines the memory model and memory size requirements for
loading and executing the CMD file.

An Intel "hex" file consists of the traditional sequence of
ASCII records in the following format:

where the beginning of the record is marked by an ASCII colon, and
each subsequent digit position contains an ASCII hexadecimal digit
in the range 0-9 or A-F. The fields are defined in Table 3-1.

All Information Presented Here is Proprietarv to Digital Research

15



CP/M-86 System Guide 3.1 1Intel Hex File Format

Table 3-1. 1Intel Hex Field Definitions

Field Contents
11 Record Length 00-FF (0-255 in decimal)
aaaa Load Address
tt Record Type:
00 data record, loaded starting at offset

aaaa from current base paragraph

01l end of file, cc = FF

02 extended address, aaaa is paragraph
base for subsequent data records

03 start address is aaaa (ignored, IP set
according to memory model in use)

The following are output from ASM-86 only:

81 same as 00, data belongs to code segment

82 same as 00, data belongs to data segment

83 same as 00, data belongs to stack segment

84 same as 00, data belongs to extra segment

85 paragraph address for absolute code segment

86 paragraph address for absolute data segment

87 paragraph address for absolute stack segment
88 paragraph address for absolute extra segment

ad Data Byte

cc Check Sum (00 - Sum of Previous Digits)

All characters preceding the colon for each record are ignored.
(Additional hex file format information is included in the ASM-86

User”s Guide, and in Intel”s document #9800821A entitled "MCS-86
Absolute Object File Formats.")

3.2 Operation of GENCMD

A3

The GENCMD utility is invoked at the CCP level by typing
GENCMD filename parameter-list

where the filename corresponds to the hex input file with an assumed
(and unspecified) file type of HS86. GENCMD accepts optional
parameters to specifically identify the 8080 Memory Model and to
describe memory requirements of each segment group. The GENCMD
parameters are listed following the filename, as shown in the
command line above where the parameter-list consists of a sequence

of keywords and values separated by commas or blanks. The keywords
are:

8080 CODE DATA EXTRA STACK X1 X2 X3 x4

All Information Presented Here is Proprietary to Digital Research

16



CP/M-86 System Guide 3.2 Operation of GENCMD

The 8080 keyword forces a single code group so that the BDOS load
function sets up the 8080 Memory Model for execution, thus allowing

intermixed code and data within a single segment. The form of this
command is

GENCMD filename 8080

The remaining keywords follow the filename or the 8080 option and
define specific memory requirements for each segment group,
corresponding one-to-one with the segment groups defined in the
previous section. 1In each case, the values corresponding to each
group are enclosed in square brackets and sevarated by commas. Each
value is a hexadecimal number representing a paragraph address or
segment length in paragraph units denoted by hhhh, prefixed by a
single letter which defines the meaning of each value:

Ahhhh TLoad the group at absolute location hhhh

Bhhhh The group starts at hhhh in the hex file .

Mhhhh The group requires a minimum of hhhh * 16 bytes
Xhhhh The group can address a maximum of hhhh * 16 bvtes

Generally, the CMD file header values are derived directly from the
hex file and the parameters shown above need not be included. The
following situations, however, require the use of GENCMD parameters.

® The 8080 keyword is included whenever ASM-86 is used in
the conversion of 8080 programs to the 8086/8088
environment when code and data are intermixed within a
single 64K segment, regardless of the use of CSEG and
DSEG directives in the source program.

® An absolute address (A value) must be given for any group
which must be located at an absolute location. WNormally,
this wvalue is not svecified since CP/M-86 cannot
generally ensure that the required memory region is
available, in which case the CMD file cannot be loaded.

® The B value is used when GENCMD processes a hex file
produced by Intel”s OH86, or similar utility program that
contains more than one group. The output from OHB86
consists of a sequence of data records with no
information to 1identify code, data, extra, stack, or
auxiliary groups. 1In this case, the B value marks the
beginning address of the group named by the keyword,
causing GENCMD to load data following this address to the
named group (see the examples below). Thus, the B value
is normally used to mark the boundary between code and
data segments when no segment information is included in
the hex file. Files produced by ASM-86 do not require

the use of the B value since segment information is
included in the hex file.

All Information Presented Here is Proprietary to Digital Research

17



CP/M-86 System Guide 3.2 Operation of GENCMD

® The minimum memory value (M value) is included only when
the hex records do not define the minimum memory
requirements for the named group. Generally, the code
group size is determined precisely by the data records
loaded into the area. That is, the total svace required
for the group is defined by the range between the lowest
and highest data byte addresses. The data group,
however, may contain uninitialized storage at the end of
the group and thus no data records are present in the hex
file which define the highest referenced data item. The
highest address in the data group can be defined within
the source program by including a "DB 0" as the last data
item. Alternatively, the M value can be included to
allocate the additional space at the end of the group.
Similarly, the stack, extra, and auxiliary group sizes
must be defined using the M value unless the highest
addresses within the groups are implicitly defined by
data records in the hex file.

® The maximum memory size, given by the X value, is
generally used when additional free memory may be needed
for such purposes as I/0 buffers or svmbol tables. If
the data area size is fixed, then the X parameter need
not be included. In this case, the X value is assumed to
be the same as the M value. The value XFFFF allocates
the largest memory region available but, if used, the
transient program must be aware that a three~-byte length
field is produced in the base page for this group where
the high order byte may be non-zero. Programs converted
directly from CP/M-80 or programs that use a 2-byte
pvointer to address buffers should restrict this value to

XFFF or less, producing a maximum allocation length of
OFFFOH bytes.

The following GENCMD command line transforms the file X.HS86
into the file X.CMD with the proper header record:
gencmd x code(a40] data[m30,xfff)
In this case, the code group is forced to paragraph address 40H, or

equivalently, byte address 400H. The data group requires a minimum
of 300H bytes, but can use up to OFFFOH bytes, if available.

All Information Presented Here is Proprietary to Digital Research

18



CP/M~-86 System Guide 3.2 Operation of GENCMD

Assuming a file Y.H86 exists on drive B containing Intel hex
records with no interspersed segment information, the command

gencmd b:y data[b30,m20] extra[b50] stack[m40] x1[m40)}

produces the file Y.CMD on drive B by selecting records beginning
at address 0000H for the code segment, with records starting at
300H allocated to the data segment. The extra segment is filled
from records beginning at 500H, while the stack and auxiliary
segment #1 are uninitialized areas requiring a minimum of 400H
bytes each. In this example, the data area requires a minimum of
200H bytes. Note again, that the B value need not be included if
the Digital Research ASM-86 assembler is used.

3.3 Ogération of LMCMD

The LMCMD utility operates in exactly the same manner as
GENCMD, with the exception that LMCMD accepts an Intel L-module
file as input. The primary advantage of the L-module format is
that the file contains internally coded information which defines
values which would otherwise be required as parameters to GENCMD,
such the beginning address of the group”s data segment. Currently,
however, the only language processors which use this format are the
standard Intel development packages, although various independent

vendors will, most likely, take advantage of this format in the
future.

All Information Presented Here is Proprietary to Digital Research

, 19



CP/M-86 System Guide 3.4 Command (CMD) File Format

3.4 Command (CMD) File Format

The CMD file produced by GENCMD and LMCMD consists of the
128-byte header record followed immediately by the memory image.
Under normal circumstances, the format of the header record is of

no consequence to a programmer. For completeness, however, the
various fields of this record are shown in Figure 3-1.

- 128 Bytes -

GD#1|GD#2 |GD#3 |GD#4 |GD#5-GD#8. . .

Code,
Data,
Extra,
Stack,
Auxiliacy

FPigure 3-1. CMD File Header Format

In Figure 3-1, GD#2 through GD#8 represent "Group Descriptors.”
Each Group Descriptor corresponds to an independently loaded
program unit and has the following fields:

8-bit 16-bit 16-bit 16-bit 16-bit

G-Form | G-Length A-Base G-Min G-Max

where G-Form describes the group format, or has the value zero if
no more descriptors follow. If G-Form is non-zero, then the 8-bit
value is parsed as two fields:

G-Form:
4-bit 4-bit

X X X X G-Type

The G-Type field determines the Group Descriptor type. The valid

Group Descriptors have a G-Type in the range 1 through 9, as shown
in Table 3~2 below.

All Information Presented Here is Proprietary to Digital Research

20



CP/M-86 System Guide 3.4 Command (CMD) File Format

Table 3-2. Group Descriptors

G-Type Group Type

Code Group
Data Group
Extra Group
Stack Group
Auxiliary Group #1
Auxiliary Group #2
Auxiliary Group #3
Auxiliary Group #4
Shared Code Group

14 Unused, but Reserved
Escape Code for Additional Types

..-l
o
Nl OOV WK

.—J

All remaining values in the group descriptor are given in
increments of l6-byte paragraph units with an assumed low-order 0
nibble to complete the 20-bit address. G-Length gives the number
of paragraphs in the group. Given a G-length of 0080H, for
example, the size of the group is 00800H = 2048D bytes. A-Base
defines the base paragraph address for a non-relocatable group
while G-Min and G-Max define the minimum and maximum size of the
memory area to allocate to the group. G-Type 9 marks a "pure™ code
group for use under MP/M-86 and future versions of CP/M-86.

Presently a Shared Ccde Group is treated as a non-shared Program
Code Group under CP/M-86.

The memory model described by a header record is implicitly
determined by the Group Descriptors. The 8080 Memory Model is
assumed when only a code group is present, since no independent
data group is named. The Small Model is implied when both a code
and data group are present, but no additional group descriptors
occur. Otherwise, the Compact Model is assumed when the CMD file
is loaded.

All Information Presented Here is Proprietary to Digital Research

21



Section 4
Basic Disk Operating System Functions

This section presents the interface conventions which allow
transient program access to CP/M-86 BDOS and BIOS functions. The
BDOS calls correspond closely to CP/M-80 Version 2 in order to
simplify translation of existing CP/M-80 programs for operation
under CP/M-86. BDOS entry and exit conditions are described first,
followed by a presentation of the individual BDOS function calls.

4.1 BDOS Parameters and Function Codes

Entry to the BDOS is accomplished through the 8086 software
interrupt #224, which is reserved by Intel Corporation for use by
CP/M-86 and MP/M-86. The function code is passed in register CL
with byte parameters in DL and word parameters in DX. Single byte
values are returned in AL, word values in both AX and BX, and double
word values in ES and BX. All segment registers, except ES, are
saved upon entry and restored upon exit from the BDOS (corresponding
to PL/M-86 conventions). Table 4-1 summarizes input and output
parameter passing:

Table 4-1. BDOS Parameter Summary

BDOS Entry Registers BDOS Return Registers
CL Function Code Bvyte value returned in AL
DL Byte Parameter Word value returned in both AX and BX
DX Word Parameter Double-word value returned with
DS Data Segment offset in BX and
segment in ES

Note that the CP/M-80 BDOS requires an "information address" as
input to various functions. This address usually provides buffer or
File Control Block information used in the system call. In CP/M-86,
however, the information address is derived from the current DS
register combined with the offset given in the DX register. That
is, the DX register in CP/M-86 performs the same function as the DE
pair in CP/M-80, with the assumption that DS is properly set. This
poses no particular problem for programs which use only a single
data segment (as is the case for programs converted from CP/M-80),
but when the data group exceeds a single segment, you must ensure
that the DS register is set to the segment containing the data area
related to the call. It should also be noted that zero values are
returned for function calls which are out-of-range.

All Information Presented Here is Proprietary to Digital Research

23



CP/M-86 System Guide 4.1 BDOS Parameters and Function Codes

A list of CP/M-86 calls is given in Table 4-2 with an asterisk

following functions which differ from or are added to the set of
CP/M-80 Version 2 functions.

Table 4-2. CP/M-86 BDOS Functions

F# Result F# Result
0* System Reset 24 Return Login Vector
1 Console Input 25 Return Current Disk '
2 Console Output 26 Set DMA Address
3 Reader Input 27* Get Addr (Alloc)
4 Punch Output 28 Write Protect Nisk
5 List Output 29 Get AAddr (R/0 Vector)
6* Direct Console I/O 30 Set File Attributes
7 Get I/0 Byte 31* Get Addr (Disk Parms)
8 Set 1I/0 Byte 32 Set/Get User Code
9 Print String 33 Read Random
10 Read Console Buffer 34 Write Random
11 Get Console Status 35 Compute File Size
12 Return Version Number 36 Set Random Record
13 Reset Disk System 37* Reset drive
14 Select Disk 40 Write Random with Zero Fill
15 Oven File 50* Direct BIOS Call
16 Close File 51* Set DMA Segment Base
17 Search for First 52* Get NMA Segment Base
18 Search for Next 53* Get Max Memory Available
19 NDelete File 54* Get Max Mem at Abs Location
20 Read Sequential 55* Get Memory Region
21 Write Sequential 56* Get Absolute Memory Region
22 Make File 57* Free memorv region
23 Rename File 58* Free all memory
59* Program load

The individual BDOS functions are described below in three
sections which cover the simple functions, file operations, and
extended operations for memorv management and program loading.

All Information Presented Here is Proprietary to Digital Research

24



CP/M-86 System Guide 4.2 Simple BDOS Calls

4.2 sSimple BDOS Calls

The first set of BDOS functions cover the range 0 through 12,

and perform simple functions such as system reset and single
character I1/0.

Entry Return
> >
CL: 00H FUNCTION O
DL: Abort SYSTEM RESET
Code

The system reset function returns control to the CP/M operating

system at the CCP command level. The abort code in DL has two
possible values: 1if DL = 00H then the currently active program is
terminated and control is returned to the CCP. If DL is a 0lH, the

program remains in memory and the memory allocation state remains
unchanged.

Entry . Return
- —

CL: 01H FUNCTION 1 AL: ASCII Character

CONSOLE INPUT

The console input function reads the next character from the
logical console device (CONSOLE) to register AL. Graphic
characters, along with carriage return, line feed, and backspace
(CONTROL-H) are echoed to the console. Tab characters (CONTROL-I)
are expanded in columns of eight characters. The BDOS does not
return to the calling program until a character has been typed, thus
suspending execution if a character is not ready.

Entry Return
— -
CL: 02H FUNCTION 2
DL: ASCII CONSOLE OuUTPUT
Character

The ASCII character from DL is sent to the logical console.
Tab characters expand in columns of eight characters. 1In addition,
a check is made for start/stop scroll (CONTROL-S).

All Information Presented Here is Proprietary to Digital Research

‘ 25



CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry N Return
> .

CL: 03" FUNCTION 3 AL: ASCII Character

READER INPUT

The Reader Input function reads the next character from the
logical reader (READER) into register AL. Control does not return
until the character has been read.

Entry Return
- o
CL: 04H FUNCTION 4
DL: ASCII PUNCH OUTPUT
Character

The Punch Output function sends the character from register DL
to the logical punch device (PUNCH).

Entry Return
— o
CL: 0OSH FUNCTION 5
DL: ASCII LIST OUTPUT
Character

The List Output function sends the ASCII character in register
DL to the logical list device (LIST).

All Information Presented Here is Proprietary to Digital Research

26



CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry Return
- P
CL: 0O6H FUNCTION 6 AL: char or status
DL: OFFH (input)|]| DIRECT CONSOLE 1/0 (no value)
or
OFEH (status)
or

char (output)

Direct console I/0O 1is supported under CP/M-86 for those
specialized applications where unadorned console input and output is
required. Use of this function should, in general, be avoided since
it bypasses all of CP/M-86”s normal control character functions
(e.g., CONTROL-S and CONTROL-P). Programs which perform direct I/0
through the BIOS under previous releases of CP/M-80, however, should
be changed to use direct I/0 under the BDOS so that they can be
fully supported under future releases of MP/M and CP/M.

Upon entry to function 6, register DL either contains (1) a
hexadecimal FF, denoting a CONSOLE input request, or (2) a
hexadecimal FE, denoting a CONSOLE status request, or (3) an ASCII
character to be output to CONSOLE where CONSOLE is the logical
console device. If the input value is FF, then function 6 directly
calls the BIOS console input primitive. The next console input
character is returned in AL. If the input value is FE, then function
6 returns AL = 00 if no character is ready and AL = FF otherwise.
If the input value in DL is not FE or FF, then function 6 assumes

that DL contains a valid ASCII character which is sent to the
console.

Entry Return
- P

CL: O07H FUNCTION 7 AL: I/0 Byte Value

GET I/O BYTE

The Get I/0O Byte function returns the current value of IOBYTE
in register AL. The IOBYTE contains the current assignments for the
logical devices CONSOLE, READER, PUNCH, and LIST provided the IOBYTE
facility is implemented in the BIOS.

All Information Presented Here is Proprietary to Digital Research

27



CP/M-86 System Guide 4.2 Simple BDOS Calls

Return

Entry
: »
CL: 08H FUNCTION 8
DL: I/O Byte SET I/0 BYTE
Value

The Set I/0 Byte function changes the system IOBYTE value to
that given in register DL. This function allows transient program
access to the IOBYTE in order to modify the current assignments for
the logical devices CONSOLE, READER, PUNCH, and LIST.

Entry Return
P -
CL: 09H FUNCTION 9
DX: String PRINT STRING
Offset

The Print String function sends the character string stored in
memory at the location given by DX to the logical console device
(CONSOLE), until a "S$" is encountered in the string. Tabs are
expanded as in function 2, and checks are made for start/stop scroll

and printer echo.

Entry Return
T, g
CL: 0OAH FUNCTION 10 Console Characters
DX: Buffer READ CONSOLE BUFFER in Buffer
Offset

All Information Presented Here is Proprietary to Digital Research

28



CP/M-86 System Guide 4.2 Simple BDOS Calls

The Read Buffer function reads a line of edited console inpbut into a
buffer addressed by register NX from the logical console device
(CONSOLE) . Console inout is terminated when either the input buffer
is filled or when a return (CONTROL-M) or a line feed (CONTROL-J)

character is entered. The input buffer addressed by DX takes the
form:

DX: +0 +1 +2 +3 +4 +5 +6 +7 +8 « . . +n

mx{nclcl|c2|c3lcd]|c5fcb]|c? . o e ??

where "mx" is the maximum number of characters which the buffer will
hold, and "nc" 1is the number of characters placed in the buffer.
The characters entered by the operator follow the "nc" value. The
value "mx" must be set prior to making a function 10 call and mav
range in value from 1 to 255. Setting mx to zero is equivalent to
setting mx to one. The value "nc" is returned to the user and may
range from 0 to mx. If nc < mx, then uninitialized positions follow
the last character, denoted by "??" in the above figure. Note that
a terminating return or line feed character is not placed in the
buffer and not included in the count "nc".

A number of editing control functions are suoported during
console inout under function 10. These are summarized in Table 4-3.

Table 4-3. Line Editing Controls

Keystroke Result

rub/del removes and echoes the last character
CONTROL-C reboots when at the beginning of line
CONTROL-E causes physical end of line

CONTROL-H backspaces one character position
CONTROL-J (line feed) terminates input line
CONTROL-M (return) terminates input line
CONTROL-R retvpes the current line after new line
CONTROL-U removes current line after new line
CONTROL-X backspaces to beginning of current line

Certain functions which return the carriage to the leftmost position
(e.g., CONTROL~X) do so only to the column position where the prompt
ended. This convention makes operator data input and 1line
correction more legible.

All Information Presented Here is Proprietary to Digital Research

29



CP/M-86 System Guide 4.2 Simple BDOS Calls

Entry . : Return

- - >
CL: OBH FUUNCTION 11 AL: Console Status

GET CONSOLE STATUS

The Console Status function checks to see if a character has
been typed at the logical console device (CONSOLE). If a character

is ready, the value 0lH is returned in register AL. Otherwise a 00H
value is returned.

Entry Return

—— —
CL: 0CH FUNCTINON 12 BX: Version Number

RETURN VERSION NUMBER

Function 12 provides information which allows version
independent programming. A two-bvte value is returned, with BH = 00
designating the CP/M release (BW = 01 for MP/M), and BL = 00 for all
releases previous to 2.0. CP/M 2.0 returns a hexadecimal 20 in
register BL, with subsequent version 2 releases in the hexadecimal
range 21, 22, through 2F. To provide version number compatibility,
the initial release of CP/M-86 returns a 2.2.

4.3 BDOS File Operations

Functions 12 through 52 are related to disk file operations
under CP/M-86. 1In many of these operations, DX provides the NS-
relative offset to a file control block (FCB). The File Control
Block (FCB) data area consists of a sequence of 33 bytes for
sequential access, or a sequence of 36 bytes in the case that the
file is accessed randomlv. The default file control block normally
located at offset 005CH from the DS register can be used for random
access files, since bytes 007nH, 007EH, and 007FH are available for
this purpose. Here is the FCB format, followed by definitions of
each of its fields:

All Information Presented Here is Proprietary to Digital Research

30



CP/M-86 System Guide : 4.3 BDOS File Overations

dr |£f11€2]/ /|£8]|tl|t2|t3]|ex|sl|s2|rcld0]/ /|dn|cr|r0|rl}r2

00 01 02 ... 08 09 10 11 12 13 14 15 16 ... 31 32 33 34 35

where

dr drive code (0 - 16)
0 => use default drive for file
1 => auto disk select drive A,
2 => auto disk select drive B,

16=> auto disk select drive P.

fl...f8 contain the file name in ASCII
upper case, with high bit = 0

tl,t2,t3 contain the file type in ASCII
upper case, with high bit = 0
tl®, t2°, and t3° denote the high
bit of these vositions,
tl” = 1 => Read/Only file,
t2” = 1 => SYS file, no DIR list

ex contains the current extent number,
normally set to 00 by the user, but
in range 0 - 31 during file I/0

sl reserved for internal system use

s2 reserved for internal system use, set
to zero on call to OPEN, MAKE, SEARCH

rc record count for extent "ex,"
takes on values from 90 - 128

d40...4dn filled-in by CP/M, reserved for
system use

cr current record to read or write in

a sequential file operation, normally
set to zero by user

r0,rl,r2 optional random record number in the
range 0-65535, with overflow to r2,
r0,rl constitute a 16-bit value with
low byte r0, and high byte rl

For users of earlier versions of CP/M, it should be noted in
passing that both CP/M Version 2 and CP/M-86 perform directory
operations in a reserved area of memory that does not affect write
buffer content, except in the case of Search and Search Next where
the directory record is copied to the current DMA address.

All Information Presented Here is Proprietary to Digital Research

31



CP/M-86 System Guide 4.3 BDOS File Operations

There are three error situations that the BDOS may encounter during
file processing, initiated as a result of a BDOS File I/0 function
call. When one of these conditions is detected, the BDOS issues the
following message to the console:

BDOS ERR ON x: error

where x is the drive name of the drive selected when the error
condition is detected, and "error" is one of the three messages:

BAD SECTOR SELECT R/0O

These error situations are trapped by the BDOS, and thus the
executing transient program is temporarily halted when the error is
detected. No indication of the error situation is returned to the
transient program.

The "BAD SECTOR" error is issued as the result of an error
condition returned to the BDOS from the BIOS module. The BDOS makes
BIOS sector read and write commands as part of the execution of BDOS
file related system calls. If the BIOS read or write routine
detects a hardware error, it returns an error code to the BDOS
resulting in this error message. The operator may respond to this
error in two ways: a CONTROL-C terminates the executing program,

while a RETURN instructs CP/M-86 to ignore the error and allow the
program to continue execution.

The "SELECT" error is also issued as the result of an error
condition returned to the BDOS from the BIOS module. The BDOS makes
a BIOS disk select call prior to issuing any BIOS read or write to a
particular drive. If the selected drive is not supported in the
BIOS module, it returns an error code to the BDOS resulting in this
error message. CP/M-86 terminates the currently running program and

returns to the command level of the CCP following any input from the
console. -

The "R/O" message occurs when the BDOS receives a command to
write to a drive that is in read-only status. Drives may be placed
in read-only status explicitly as the result of a STAT command or
BDOS function call, or implicitly if the BDOS detects that disk
media has been changed without performing a "warm start." The
ability to detect changed media is optionally included in the BIOS,
and exists only if a checksum vector is included for the selected
drive. Upon entry of any character at the keyboard, the transient
program is aborted, and control returns to the CCP.

All Information Presented Here is Proprietary to Digital Research

32



CP/M-86 System Guide ' 4.3 BDOS File Operations

Entry Return
- -
CL: ODH FUNCTION 13

RESET DISK SYSTEM

The Reset Disk Function is used to programmatically restore the
file system to a reset state where all disks are set to read/write
(see functions 28 and 29), only disk drive A is selected. This
function can be used, for example, by an application program which
requires disk changes during operation. Function 37 (Reset Drive)
can also be used for this purpose.

Entry Return
> — -
CL: OEH FUNCTION 14
DL: Selected SELECT DISK
Disk

The Select Disk function designates the disk drive named in
register DL as the default disk for subsequent file operations, with
DL = 0 for drive A, 1 for drive B, and so-forth through 15
corresponding to drive P in a full sixteen drive system. In
addition, the designated drive is logged-in if it is currently in
the reset state. Logging-in a drive places it in "on-line" status
which activates the drive®s directory until the next cold start,
warm start, disk system reset, or drive reset operation. FCB”s
which specify drive code zero (dr = 00H) automatically reference the
currently selected default drive. Drive code values hetween 1 and
16, however, ignore the selected default drive and directly
reference drives A through P.

Entry Return
> >
CL: OFH FUNCTION 15 AL: Return Code
DX: FCB OPEN FILE
Offset

The Open File operation is used to activate a FCB specifying a
file which currently exists in the disk directory for the currently
active user number. The BDOS scans the disk directory of the drive
specified by byte 0 of the FCB referenced by DX for a match in
positions 1 through 12 of the referenced FCB, where an ASCII
question mark (3FH) matches any directory character in any of these
positions. Normally, no question marks are included and, further,
byte "ex" of the FCB is set to zero before making the open call.

All Information Presented Here is Proprietary to Digital Research

33



CP/M-86 System Guide 4.3 BDOS File Operations

If a directory element is matched, the relevant directory
information is copied into bytes d0 through dn of the FCB, thus
allowing access to the files through subsequent read and write
operations. Note that an existing file must not be accessed until a
successful open operation is completed. Further, an FCB not
activated by either an open or make function must not be used in
BDOS read or write commands. Upon return, the open function returns
a "directory code" with the value 0 through 3 if the open was
successful, or OFFH (255 decimal) if the file cannot be found. 1€
question marks occur in the FCB then the first matching FCB is
activated. Note that the current record ("cr") must be zeroed by

the program if the file is to be accessed sequentially from the
first record.

Entry o Return

— e ol
CL: 104 FUNCTION 16 AL: Return Code
DX: FCB CLOSE FILE

Offset

The Close File function performs the inverse of the open file
function. Given that the FCB addressed by DX has been previously
activated through an open or make function (see functions 15 and
22), the close function permanently records the new FCB in the
referenced disk directory. The FCB matching process for the close
is identical to the oven function. The directory code returned for
a successful close operation is 0, 1, 2, or 3, while a OFFH (255
decimal) is returned if the file name cannot be found in the
directory. A file need not be closed if only read operations have
taken place. If write operations have occurred, however, the close

operation is necessary to permanently record the new directorvy
information.

All Information Presented Here is Proprietary to Digital Research

34



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
- >
CL: 11H FUNCTION 17 AL: Directory
Code
DX: FCB SEARCH FOR FIRST
Offset

Search First scans the directory for a match with the file
given by the FCB addressed by DX. The value 255 (hexadecimal FF) is
returned if the file is not found, otherwise 0, 1, 2, or 3 is
returned indicating the file is present. In the case that the file
is found, the buffer at the current DMA address is filled with the
record containing the directory entry, and its relative starting
position is AL * 32 (i.e., rotate the AL register left 5 bits).
Although not normally required for application programs, the
directory information can be extracted from the buffer at this
position.

An ASCII question mark (63 decimal, 3F hexadecimal) in any
position from "fl" through "ex" matches the corresponding field of
any directory entry on the default or auto-selected disk drive. IEf
the "dr" field contains an ASCII question mark, then the auto disk
select function is disabled, the default disk is searched, with the
search function returning any matched entry, allocated or free,
belonging to any user number. This latter function is not normally
used by application programs, but does allow complete flexibility to
scan all current directory values. If the "dr" field is not a
question mark, the "s2" byte is automatically zeroed.

Entry Return
> -
CL: 12H FUNCTION 18 AL: Directory
Code

SEARCH FOR NEXT

The Search Next function is similar to the Search First
function, except that the directory scan continues from the last
matched entry. Similar to function 17, €function 18 returns the
decimal value 255 in A when no more directory items match. In terms
of execution sequence, a function 18 call must follow either a

function 17 or function 18 call with no other intervening BDOS disk
related function calls.

All Information Presented Here is Proprietary to Digital Research

35



CP/M-86 System Guide

Entry Return
- -
CL: 13H FUNCTION 19 AL: Return Code
DX: FCB DELETE FILE
Offset

The Delete File function removes files which match the FCB
addressed by DX. The filename and type may contain ambiguous
references (i.e., question marks in various positions), but the
drive select code cannot be ambiguous, as in the Search and Search
Next functions. Function 19 returns a OFPFH (decimal 255) if the

referenced file or files cannot be found, otherwise a value of zero
is returned.

Entry Return
- >
CL: 14H FUNCTION 20 AL: Return Code
DX: FCB READ SEQUENTIAL
Offset

Given that the FCB addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Read Sequential
function reads the next 128 byte record from the file into memory at
the current DMA address. The record is read from position "cr" of
the extent, and the "cr" field is automatically incremented to the
next record position. 1If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in oreparation for the next read operation. The "cr" field
must be set to zero following the open call by the user if the
intent is to read sequentially from the beginning of the file. The
value O0H is returned in the AL register if the read operation was
successful, while a value of 0lH is returned if no data exists at
the next record position of the file. Normally, the no data
situation is encountered at the end of a file. However, it can also
occur if an attempt is made to read a data block which has not been
previously written, or an extent which has not been created. These
situations are usually restricted to files created or appended by
use of the BDOS Write Random commmand (function 34).

All Information Presented Here is Proprietary to Digital Research

36



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
> >
CL: 15H FUNCTION 21 AL: Return Code
DX: FCB WRITE SEQUENTIAL
Offset

Given that the FCB addressed by DX has been activated through
an open or make function (numbers 15 and 22), the Write Sequential
function writes the 128 byte data record at the current DMA address
to the file named by the FCB. The record is placed at position "cr"
of the file, and the "cr" field is automatically incremented to the
next record position. If the "cr" field overflows then the next
logical extent is automatically opened and the "cr" field is reset
to zero in preparation for the next write overation. Write
opverations can take place into an existing file, in which case newly
written records overlay those which already exist in the file. The
"cr" field must be set to zero following an open or make call by the
user if the intent is to write sequentially from the beginning of
the file. Register AL = 00H upon return from a successful write
operation, while a non-zero value indicates an unsuccessful write
due to one of the following conditions:

01 No available directory space - This condition occurs when
the write command attempts to create a new extent that
requires a new directory entry and no available directory
entries exist on the selected disk drive.

02 WNo available data block - This condition is encountered
when the write command attempts to allocate a new data
block to the file and no unallocated data blocks exist on
the selected disk drive.

Entry Return
- -
CL: 1l6H FUNCTION 22 AL: Return Code
DX: FCB MAKE FILE
Offset

The Make File operation is similar to the open file operation
except that the FCB must name a file which does not exist in the
currently referenced disk directory (i.e., the one named explicitly
by a non-zero "dr" code, or the default disk if "dr" is zero). The
BDOS creates the file and initializes both the directory and main
memory value to an empty file. The programmer must ensure that no
duplicate file names occur, and a preceding delete operation is
sufficient if there is any possibility of duplication. Upon return,
register A = 0, 1, 2, or 3 if the operation was successful and OFFH
(255 decimal) if no more directory space is available. The make
function has the side-effect of activating the FCB and thus a
subsequent open is not necessary.

All Information Presented Here is Proprietary to Digital Research

37



CP/M-86 System Guide 4.3 BDOS File Overations

Entry Return
- P
CL: 17H FUNCTION 23 AL: Return Code
DX: FCB RENAME FILE
Offset

The Rename function uses the FCB addressed by DX to change all
dicectory entries of the file specified by the file name in the
first 16 bytes of the FCB to the file name in the second 16 bytes.
It is the user”s responsibility to insure that the file names
specified are valid CP/M unambiquous file names. The drive code
"dr" at position 0 is used to select the drive, while the drive code
for the new file name at position 16 of the FCB is ignored. Upon
return, register AL is set to a value of zero if the rename was
successful, and OFFH (255 decimal) if the first file name could not
be found in the directory scan.

Entry Return
- -
CL: 18H FUNCTION 24 BX: Login Vector
BX: Login RETURN LOGIN
Vector VECTOR

The login vector value returned by CP/M-86 is a 16-bit value in
BX, where the least significant bit corresponds to the first drive
A, and the high order bit corresponds to the sixteenth drive,
labelled P. A "0" bit indicates that the drive is not on-line,
while a "1" bit marks an drive that is actively on-line due to an
explicit disk drive selection, or an implicit drive select caused by
a file operation which specified a non-zero "dr" field.

Entry Return
- o

CL: 194 FUNCTION 25 AL: Current Disk

RETURN CURRENT
DISK

Function 25 returns the currently selected default disk number
in register AL. The disk numbers range from 0 through 15
corresponding to drives A through P,

All Information Presented Here is Proprietary to Digital Research

: 38



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
CL: 1lAH FUNCTION 26
DX: DMA SET DMA

Offset ADDRESS

"DMA" is an acronym for Direct Memory Address, which is often
used in connection with disk controllers which directly access the
memory of the mainframe computer to transfer data to and from the
disk subsystem. Although many computer systems use non-DMA access
(i.e., the data is transfered through programmed I/0O operations),
the DMA address has, in CP/M, come to mean the address at which the
128 byte data record resides before a disk write and after a disk
read. In the CP/M-86 environment, the Set DMA function is used to
specify the offset of the read or write buffer from the current DMA
base. Therefore, to svecify the DMA address, both a function 26
call and a function 51 call are required. Thus, the DMA address
becomes the value specified by DX plus the DMA base value until it
is changed by a subsequent Set DMA or set DMA base function.

Entry Return
. P
CL: 1BH FUNCTION 27 BX: ALLOC Offset
GET ADDR(ALLOC) ES: Segment base

An "allocation vector" is maintained in main memory for each
on-line disk drive. Various system programs use the information
provided by the allocation vector to determine the amount of
remaining storage (see the STAT program). Function 27 returns the
segment base and the offset address of the allocation vector for the
currently selected disk drive. The allocation information may,
however, be invalid if the selected disk has been marked read/only.

Entry Return
P —
CL: 1CH FUNCTION 28

WRITE PROTECT DISK

The disk write protect function provides temporary write
protection for the currently selected disk. Any attempt to write to
the disk, before the next cold start, warm start, disk system reset,
or drive reset operation produces the message:

Bdos Err on d: R/O

All Information Presented Here is Proprietary to Digital Research

39



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
- -
CL: 1lDH FUNCTION 29 BX: R/0 Vector Value

GET READ/ONLY
VECTOR

Function 29 returns a bit vector in register BX which indicates
drives which have the temporary read/onlvy bit set. Similar to
function 24, the least significant bit corresponds to drive A, while
the most significant bit corresponds to drive P. The R/O bit is set
either by an explicit call to function 28, or by the automatic
software mechanisms within CP/M-86 which detect changed disks.

Entry Return
> o
CL: 1lEH FUNCTION 30 AL: Return Code
DX: FCB SET FILE
Offset ATTRIBUTES

The Set File Attributes function allows programmatic
manipulation of permanent indicators attached to files. Tn
particular, the R/0O, System and Archive attributes (tl1°, t2°, and
t3”) can be set or reset. The DX pair addresses a FCB containing a
file name with the appropriate attributes set or reset. It is the
user”“s responsibility to insure that an ambiquous file name is not
specified. Function 30 searches the default Aisk drive directory
area for directory entries that belong to the current user number
and that match the FCB specified name and type fields. All matching
directory entries are updated to contain the selected indicators.
Indicators £1° through £4° are not presently used, but may be useful
for applications programs, since they are not involved in the
matching process during file open and close operations. Indicators
£5° through f8”° are reserved for future system expansion. The
currently assigned attributes are defined as follows:

tl”: The R/O attribute indicates if set that the file
is in read/only status. BDOS will not allow write
commands to be issued to files in R/O status.

t2”°: The System attribute is referenced by the CP/M DIR

utility. 1If set; DIR will not display the file in
a directory display.

All Information Presented Here is Proprietary to Digital Research

40



CP/M-86 System Guide 4.3 BNOS File Operations

t3”: The Archive attribute is reserved but not actually
used by TP/M-86 If set it indicates that the file
has been written to back up storage bv a userc
written archive program. To implement this
facilitv, the archive program sets this attribute
when it copies a file to back up storage; anv
programs updating or creating files reset this
attribute. Further, the archive program backs uo
only those files that have the Archive attribute
reset. Thus, an automatic back up facilitv
restricted to modified files can be easily
implemented.

Function 30 returns with register AL set to OFFH (255 decimal)
if the referenced file cannot be found, otherwise a value of zero is
returned.

Entrvy Return
T,
CL: 1rY4 FUNCTION 31 RX: NPR Nffset
GET ANDR FS: Seqment Rase
(DTSK PARMS)

The offset and the segment base of the BIOS resident disk
varameter block of the currently selected Arive are returned in BX
and ES as a result of this function call. This control block can be
used for either of two vurvoses. First, the disk parameter values
can be extracted for displav and space computation ourposes, ot
transient programs can dvnamically change the values of current disk
parameters when the disk environment changes, if required.
Normally, aoplication oprograms will not require this facility.
Section 6.3 defines the BIONS dAisk parameter block.

Entrv Return
P
CL: 20H FIINCTION 32 AT,: Current Code
or no value
NDL: OFFH(get) SET/GRT
ot TISER CODE
User Code
(set)

An application program can change or interrogate the currently
active user number by calling function 32. 1If register DL = OFFH,
then the value of the current user number is returned in register
AL, where the value is in the range 0 to 15. TIf register DL is not

OFFH, then the current user number is changed to the value of DL
(modulo 16).

Al) Information Presented Here is Proporietarv to Digital Research

41



CP/M-86 System Guide 4.3 BDOS File Operations

Entrv Return
- =
CL: 21H FUNCTION 33 AL: Return Code
DX: FCB READ RANDOM
Offset

The Read Random function is similar to the sequential file read
operation of previous releases, except that the read operation takes
place at a particular record number, selected by the 24-bit value
constructed from the three byte field following the FCB (byte
positions r0 at 33, rl at 34, and r2 at 35). Note that the sequence
of 24 bits is stored with least significant byte first (r0), middle
byte next (rl), and high byte last (r2). CP/M does not reference
byte r2, except in computing the size of a file (function 35). Byte

r2 must be zero, however, since a non-zero value indicates overflow
past the end of file.

Thus, the r0,rl byte pair is treated as a double-byte, or
"word" value, which contains the record to read. This value ranges
from 0 to 65535, providing access to any particular record of any
size file. In order to access a file using the Read Random
function, the base extent (extent 0) must first be opened. Although
the base extent may or may not contain any allocated data, this
ensures that the FCB is properly initialized for subsequent random
access operations. The selected record number is then stored into
the random record field (r0,rl), and the BDOS is called to read the
record. Upon return from the call, register AL either contains an
error code, as listed below, or the value 00 indicating the
operation was successful. In the latter case, the buffer at the
current DMA address contains the randomly accessed record. WNote
that contrary to the sequential read operation, the record number is

not advanced. Thus, subsequent random read operations continue to
read the same record.

Upon each random read operation, the logical extent and current
record values are automatically set. Thus, the file can be
sequentially read or written, starting from the current randomly
accessed position. Note, however, that in this case, the last
randomly read record will be re-read as you switch from random mode
to sequential read, and the last record will be re-written as you
switch to a sequential write operation. You can, of course, simply
advance the random record position following each random read or
write to obtain the effect of a sequential I/0O operation.

All Information Presented Here is Proprietary to Digital Research

42



CP/M-86 System Guide 4.3 BDOS File Operations

Rrror codes returned in register AL following a random read are
listed in Table 4-4, below.

Table 4-4. Punction 33 (Read Random) Error Codes

Code Meaning

01 Reading unwritten data - This error code is returned
when a random read operation accesses a data block which
has not been previously written.

02 (not returned by the Random Read command)

03 Cannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bytes r0,rl of the FCB. This error can be
caused by an overwritten FCB or a read random operation
on an FCB that has not been opened.

04 Seek to unwritten extent - This error code is returned
when a random read operation accesses an extent that has

not been created. This error situation is equivalent to
error 01,

05 (not returned by the Random Read command)

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Normally, non-zero return codes can be treated as missing data, with
zero return codes indicating operation complete.

All Information Presented Here is Proprietary to Digital Research

43

.



Cb/M-BG System Guide 4.3 BDOS File Overations

Entry Return
— g
CL: 22H FUNCTION 34 AL: Return Code
DX: FCB WRITE RANDOM
Offset

The Write Random operation is initiated similar to the Read
Random call, except that data is written to the disk from the
current DMA address. Further, if the disk extent or data block
which is the target of the write has not yet been allocated, the
allocation is performed before the write operation continues. As in
the Read Random operation, the random record number is not changed
as a result of the write. The logical extent number and current
record positions of the file control block are set to correspond to
the random record which is being written. Sequential read or write
operations can commence following a random write, with the note that
the currently addressed record is either read or rewritten again as
the sequential operation begins. You can also simply advance the
random record position following each write to get the effect of a
sequential write operation. 1In particular, reading or writing the
last record of an extent in random mode does not cause an automatic
extent switch as it does in sequential mode.

In order to access a file using the Write Random function, the
base extent (extent 0) must first be opened. As in the Read Random
function, this ensures that the FCB is properly initialized for
subsequent random access operations. If the file is empty, a Make
File function must be issued for the base extent. Although the base
extent may or may not contain any allocated data, this ensures that

the file is properly recorded in the directory, and is visible in
DIR requests. :

Upon return from a Write Random call, register AL either
contains an error code, as listed in Table 4-5 below, or the value
00 indicating the operation was successful.

Table 4-5. PFunction 34 (WRITE RANDOM) Error Codes

Code Meaning

01 (not returned by the Random Write command)

02 No available data block - This condition is encountered
when the Write Random command attempts to allocate a new

data block to the file and no unallocated data blocks
exist on the selected disk drive.

All Information Presented Here is Proprietary to Digital Research

‘ 44



CP/M-86 System Guide 4.3 BDOS File Operations

Table 4-5. (continued)

Code Meaning

03 Cannot close current extent - This error code is
returned when BDOS cannot close the current extent prior
to moving to the new extent containing the record
specified by bytes r0,rl of the FCB. This error can be
caused by an overwritten FCB or a write random operation
on an FCB that has not been opened.

04 (not returned by the Random Write command)

05 No available directory space - This condition occurs
when the write command attempts to create a new extent
that requires a new directory entry and no available
directory entries exist on the selected disk drive.

06 Random record number out of range - This error code is
returned whenever byte r2 of the FCB is non-zero.

Entry Return
. >
CL: 23H FUNCTION 35 Random Record
Field Set
DX: FCB COMPUTE FILE
Offset SIZ®

When computing the size of a file, the DX register addresses an
FCB in random mode format (bytes r0, rl, and r2 are present). The
FCB contains an unambiguous file name which is used in the directory
scan. Upon return, the random record bytes contain the "virtual"
file size which is, in effect, the record address of the record
following the end of the file. If, following a call to function 35,
the high record byte r2 is 01, then the file contains the maximum
record count 65536, Otherwise, bytes r0 and rl constitute a 16-bit

value (r0 is the least significant byte, as before) which is the
file size.

Data can be appended to the end of an existing file by simply
calling function 35 to set the random record position to the end of

file, then performing a sequence of random writes starting at the
preset record address.

The virtual size of a file corresponds to the physical size
when the file is written sequentially. If, instead, the file was
created in random mode and "holes" exist in the allocation, then the
file may in fact contain fewer records than the size indicates. 1f,
for example, a single record with record number 65535 (CP/M“s
maximum record number) is written to a file using the Write Random
function, then the virtual size of the file is 65536 records,
although only one block of data is actually allocated.

All Information Presented Here is Proprietary to Digital Research

45



CP/M-86 System Guide 4.3 BDOS File Operations

Entry Return
— >
CL: 24H FIINCTION 36 Random Record
Field Set
DX: FCB SET RANDOM
Offset RECORD

The Set Random Record function causes the BDOS to automatically
produce the random record position of the next record to be accessed
from a file which has been read or written sequentially to a
particular point. The function can be useful in two ways.

First, it is often necessary to initially read and scan a
sequential file to extract the positions of various "kev" fields.
As each key is encountered, function 36 is called to compute the
random record position for the data corresponding to this key. If
the data unit size is 128 bytes, the resulting record position minus
one is placed into a table with the key for later retrieval. After
scanning the entire file and tabularizing the keys and their record
numbers, you can move instantly to a particular keyed record by
performing a random read using the corresponding random record
number which was saved earlier. The scheme is easily generalized
when variable record lengths are involved since the program need
only store the buffer-relative byte position along with the key and
record number in order to find the exact starting position of the
keyed data at a later time.

A second use of function 36 occurs when switching from a
sequential read or write over to random read or write. A file is
sequentially accessed to a particular point in the file, function 36
is called which sets the record number, and subsequent random read
and write operations continue from the next record in the file.

Entry | Return
— -
CL: 25H FUNCTION 37 AL: 00H
DX: Drive RESET DRIVE
Vector

The Reset Drive function is used to programmatically restore
specified drives to the reset state (a reset drive is not logged-in
and is in read/write status). The passed parameter in register DX
is a 16 bit vector of drives to be reset, where the least
significant bit corresponds to the first drive, A, and the high
order bit corresponds to the sixteenth drive, labelled P. Bit
values of "1" indicate that the specified drive is to be reset.

In order to maintain compatibility with MP/M, CP/M returns a
zero value for this function.

All Information Presented Here is Proprietary to Digital Research

46



CP/M-86 System Guide

Entrv Return
CL: 28H FUNCTION 40 AL: Return Code
DX: FCB WRITE RANDOM

Offset WITH ZERO FILL

The Write Random With Zero Fill function is similar to the
Write Random function (function 34) with the exception that a
previously unallocated data block is initialized to records filled
with zeros before the record is written. If this function has been
used to create a file, records accessed by a read random operation
that contain all zeros identify unwritten random record numbers.
Unwritten random records in allocated data blocks of files created
using the Write Random function contain uninitialized data.

Entrvy Return
—p >
CL: 32H FUNCTION 50
DX: BIOS \ DIRECT BIOS CALL
Descriptor

Function 50 provides a direct BIOS call and transfers control
through the BDOS to the BIOS. The DX register addresses a five-byte
memory area containing the BIOS call parameters:

8-bit 16-bit l6-bit

Func value (CX) value (DX)

where Func is a BIOS function number, (see Table 5-1), and value (CX)
and value(DX) are the 1l6-bit values which would normally be passed
directly in the CX and DX registers with the BIOS call. The CX and

DX values are loaded into the 8086 registers before the BIOS call is
initiated.

All Information Presented Here is Proprietary to Digital Research

47



CP/M-86 System Guide 4,3 BDNS File Ovperations

Entry Return
CL: 33H FUNCTION 51

DX: Base SET DMA BASE

Address

Function 51 sets the base register for subsequent DMA
transfers. The weord parameter in DX is a.paragraph address and is
used with the DMA offset to specify the address of a 128 byte buffer
area to be used in the disk read and write functions. Note that
upon initial program loading, the default DMA base is set to the
address of the user”s data segment (the initial value of DS) and the
DMA offset is set to 0080H, which provides access to the default
buffer in the base page.

Entrv Return
o >
CL: 349 FUNCTION 52 BX: DMA Offset
GET DMA BASE ES: DMA Segment

Function 52 returns the current DMA Base Segment address in ES,
with the current DMA Offset in DX.

4.4 BDOS Memory Management and Load

Memory is allocated in two distinct ways under CP/M-86. The
first is through a static allocation map, located within the BIOS,
that defines the physical memory which is available on the host
system. In this way, it is possible to operate CP/M-86 in a memory
configuration which is a mixture of up to eight non-contiguous areas
of RAM or ROM, along with reserved, missing, or faulty memorv
regions. In a simple RAM-based system with contiguous memory, the
static map defines a single region, usually starting at the end of
the BIOS and extending up to the end of available memorvy.

Once memory is physically mapped in this manner, CP/M-86
performs the second level of dynamic allocation to support transient
program loading and execution. CP/M-86 allows dynamic allocation of
memory into, again, eight regions. A request for allocation takes
place either implicitly, through a program load overation, or
explicitly through the BNOS calls given in this section. Programs
themselves are loaded in two ways: through a command entered at the
CCP level, or through the BDOS Program Load operation (function 59).
Multiple programs can be loaded at the CCP level, as long as each
program executes a System Reset (function 0) and remains in memorv
(DL = 01H). Multiple programs of this type only receive control by
intercepting interrupts, and thus under normal circumstances there

All Information Presented Here is Proprietarvy to Digital Research

48



CP/M-86 System Guide 4.4 BDOS Memory Management and Load

is only one transient program in memory at any given time. 1€,
however, multiple programs are present in memory, then CONTROL-C
characters entered by the operator delete these programs in the
ovposite order in which they were loaded no matter which orogram is
actively reading the console.

Any given program loaded through a CCP command can, itself,
load additional programs and allocate data areas. Suppose four
regions of memory are allocated in the following order: a program
is loaded at the CCP level through an operator command. The CMD
file header is read, and the entire memory image consisting of the
program and its data is loaded into region A, and execution begins.
This program, in turn, calls the BDOS Program Load function (59) to
load another program into region B, and transfers control to the
loaded program. The region B program then allocates an additional

region C, followed by a region D. The order of allocation is shown
in Figure 4-1 below:

Region A

Region B

Region C

Region D

Figure 4-1. Example Memory Allocation

There is a hierarchical ownership of these regions: the program in
A controls all memory from A through D. The program in B also
controls regions B through D. The program in A can release regions
B through D, if desired, and reload yet another program. oDT-86,
for example, operates in this manner by executing the Free Memory
call (function 57) to release the memory used by the current program
before loading another test program. Further, the program in B can

release regions C and D if required by the application. It must be
noted, however, that if either A or B terminates by a System Reset

(BDOS function 0 with DL = 00H) then all four regions A through D
are released.

All Information Presented Here is Proprietary to Digital Research

49



CP/M-86 System Guide 4.4 BDOS Memorv Management and Load

A transient program may release a portion of a region, allowing
the released portion to be assigned on the next allocation request.
The released portion must, however, be at the beginning or end of
the region. Suppose, for example, the program in region B above

receives 800H paragraphs at paragraph location 100H following its
first allocation request as shown in Fiqure 4-2 below.

1000H:

Length =
8000H Region C

Figure 4-2. Example Memory Region

Suppose further that region D is then allocated. The last 200H
paragraphs in region C can be returned without affecting region D by
releasing the 200H paragraphs beginning at paragraoh base 700H,
resulting in the memory arrangement shown in Fiqure 4-3.

1000H:
Length =
6000H Region C
Length = 7000°: | ////7/7777/7
2000H /1777777777

Figure 4-3. Example Memory Regions

The region beginning at paragraph address 700H is now available for
allocation in the next request. Note that a memorv request will
fail if eight memory regions have already been allocated. Normally,

if all program units can reside in a contigquous region, the system
allocates only one region.

All Information Presented Here is Proprietary to Digital Research

50



CP/M=-86 System Guide 4.4 BDOS Memory Management and Load

Memory management functions beginning at 53 reference a Memory
Control Block (MCB), defined in the calling program, which takes the
form:

16-bit 16-bit 8-bit

MCB: M-Base M-Length M-Ext

where M-Base and M-Length are either input or output values
expressed in l6-byte paragraph units, and M-Ext is a returned bhyte
value, as defined specifically with each function code. An error
condition is normally flagged with a OFFH returned value in order to
match the file error conventions of CP/M.

Entry Return
> -
CL: 35H FUNCTION 53 AL: Return Code
DX: Offset GET MAX MEM
of MCB

Function 53 finds the largest available memory region which is
less than or equal to M-Length paragraphs. If successful, M-Base is
set to the base paragraph address of the available area, and M-
Length to the paragraph length. AL has the value 0FFH upon return
if no memory is available, and 00H if the request was successful.
M-Ext is set to 1 if there is additional memory for allocation, and
0 if no additional memory is available.

Entry Return
: o
CL: 36H FUNCTION 54 AL: Return Code
DX: Offset GET ABS MAX
of MCB

Function 54 is used to find the largest possible region at the
absolute paragraph boundary given by M-Base, for a maximum of M-
Length paragraphs. M-Length is set to the actual length if
successful. AL has the value OFFH upon return if no memory is

available at the absolute address, and O00H if the request was
successful.

All Information Presented Here is Proprietary to Digital Research

51



CP/M-86 System Guide 4.4 BDOS Memory Management and Load

Entry Return
e —
CL: 37H FUNCTION 55 AL: Return Code
DX: Offset ALLOC MEM
of MCB

The allocate memorvy function allocates a memory area according
to the MCB addressed by DX. The allocation request size is obtained
from M-Length. Function 55 returns in the user”s MCB the base
paragraph address of the allocated region. Register AL contains a

00H if the request was successful and a OFFH if the memorv could not
be allocated.

Entry Return
- = .
CL: 38H FUNCTION 56 AL: Return Code
DX: Offset ALLOC ABS MEM
of MCB

The allocate absolute memory function allocates a memory area
according to the MCB addressed by NDX. The allocation request size
is obtained from M-Length and the absolute base address from M-Base.
Register AL contains a 00H if the request was successful and a OFFH
if the memory could not be allocated.

Entry Return
- -
CL: 39H FUNCTION 57
DX: Offset FREE MEM
of MCB

Function 57 is used to release memory areas allocated to the
program. The value of the M-Ext field controls the operation of
this function: if M-Ext = OFFH then all memory areas allocated by
the calling program are released. Otherwise, the memory area of
length M-Length at location M-Base given in the MCB addressed by NX
is released (the M-Ext field-should be set to 00H in this case). As
described above, either an entire allocated region must be released,

or the end of a region must be released: the middle section cannot
be returned under CP/M-86.

All Information Presented Here is Proprietary to Digital Research

52



C?/M—BG System Guide 4.4 BDOS Memory Management and Load

Entry Return

Y

-
CL: 3AH FUNCTION 58

FREE ALL MEM

Function 58 is used to release all memory in the CP/M-86
environment (normally used only by the CCP upon initialization).

Entry Return
- -
CL: 3BH FUNCTION 59 AX: Return Code/
Base Page Addr
NX: Offset PROGRAM LOAD BX: Base Page Addr
of FCB

Function 59 loads a CMD file. Upon entry, register NX contains
the DS relative offset of a successfully opened FCB which names the
input CMD file. AX has the value OFFFFH if the program load was
unsuccessful. Otherwise, AX and BX both contain the paragraph
address of the base page belonging to the loaded program. The base
address and segment length of each segment is stored in the base
page. Note that upon program load at the CCP level, the NDMA base
address is initialized to the base page of the loaded program, and
the DMA offset address is initialized to 0080H. However, this is a
function of the CCP, and a function 59 does not establish a default
DMA address. It is the responsibility of the program which executes
function 59 to execute function 51 to set the DMA base and function
26 to set the DMA offset before passing control to the loaded
program.

All Information Presented Here is Proprietary to Digital Research

53



B
Lo . vy
.




Section 5
Basic I/0 System (BIOS) Organization

The distribution version of CP/M-86 is setup for operation with
the Intel SBC 86/12 microcomputer and an Intel 204 diskette
controller. All hardware dependencies are, however, concentrated in
subroutines which are collectively referred to as the Basic 1/0
System, or BIOS. A CP/M-86 svstem implementor can modify these
subroutines, as described below, to tailor CP/M-86 to fit nearly any
8086 or 8088 operating environment. This section describes the
actions of each BIOS entry point, and defines variables and tables
referenced within the BIOS. The discussion of Disk Definition
Tables is, however, treated separately in the next section of this
manual.

5.1 Organization of the BIOS

The BIOS portion of CP/M-86 resides in the toomost oortion of
the operating system (highest addresses), and takes the general form
shown in Figure 5-1, below:

cs, DS, ES, SS:

Console
Command
Processor
and
Basic
Disk
Operating
System

S + 2500H4: BIOS Jump Vector

CS + 253FH:
BIOS Entrv Points

BIOS:
NDisk
Parameter
Tables

Uninitialized
Scratch RaM

Figure 5-1. General CP/M-86 Organization

All Information Presented Here is Proorietary to Digital Research

55



CP/M-86 System Guide 5.1 Organization of the BIOS

As described in the following sections, the CCP and BDOS are
supplied with CP/M-86 in hex file form as CPM.HS86. In order to
implement CP/M-86 on non-standard hardware, you must create a BIOS
which performs the functions listed below and concatenate the
resulting hex file to the end of the CPM.H86 file. The GENCMD
utility is then used to produce the CPM.SYS file for subsequent load
by the cold start loader. The cold start loader that loads the
CPM.SYS file into memory contains a simplified form of the BIOS,
called the LDBIOS (Loader BIOS). It loads CPM.SYS into memory at
the location defined in the CPM.SYS header (usually 0400H). The
procedure to follow in construction and execution of the cold start
loader and the CP/M-86 Loader is given in a later section.

Appendix D contains a listing of the standard CP/M-86 BIOS for
the Intel SBC 86/12 system using the Intel 204 Controller Board.
Appendix E shows a sample "skeletal" BIOS called CBIOS that contains
the essential elements with the device drivers removed. You mav

wish to review these listings in order to determine the overall
structure of the BIOS.

5.2 The BIOS Jump Vector

Entry to the BIOS is through a "jump vector" located at offset
2500H from the base of the operating system. The jump vector is a
sequence of 21 three-byte jump instructions which transfer program
control to the individual BIOS entry points. Although some non-
essential BIOS subroutines may contain a single return (RET)
instruction, the corresponding jump vector element must be present
in the order shown below in Table 5-1. An example of a BIOS -Fump

vector may be found in Appendix D, in the standard CP/M-86 BIOS
listing.

Parameters for the individual subroutines in the BIOS are
passed in the CX and DX registers, when required. CX receives the
first parameter; DX is used for a second argument. Return values
are passed in the registers acco ding to type: Byte values are
returned in AL. Word values (16 bits) are returned in BX. Specific
parameters and returned values are described with each subroutine.

All Information Presented Here is Proprietarv to Digital Research

56



Cé/M-SG System Guide 5.2 The BIONS Jump Vector

Table 5-1. BIOS Jump Vector

Offset from Suggested BIOS

Beginning Instruction |F# Description

of BIOS
2500H JMP INIT 0 Arrive Here from Cold Boot
2503H JMP WBOOT 1 Arrive Here for Warm Start
2506H JMP CONST 2 Check for Console Char Ready
25094 JMP CONIN 3 Read Console Character In
250CH JMP CONOUT 4 Write Console Character Out
250FH JMP LIST 5 Write Listing Character Out
25124 JMP PUNCH 6 Write Char to Punch Device
25154 JMP READER 7 Read Reader Device
2518H JMP HOME 8 Move to Track 00
251BH JMP SELDSK 9 Select NDisk Drive
251EH JMP SETTRK 10 Set Track Number
25214 JMP SETSEC 11 Set Sector Number
25244 JMP SETDMA 12 Set DMA Offset Address
2527H JMP READ 13 Read Selected Sector
252AH JIJMP WRITE 14 Write Selected Sector
252DH JMP LISTST 15 Return List Status
2530H JMP SECTRAN 16 Sector Translate
2533H JMP SETDMAB 17 Set DMA Segment Address
2536H JMP GETSEGB 18 Get MEM DESC Table Offset
2539H JMP RETIOR 19 Get I/0 Mapping Byte
253CH JMP SETIOB 20 Set I/0 Mapping Byte

There are three major divisions in the BIOS jump table: system
(re)initialization subroutines, simple character 1/0 subroutines,
and disk I/0 subroutines.

5.3 Simple Peripheral Devices

All simple character I/0 operations are assumed to be performed
in ASCII, upper and lower case, with high order (parity bit) set to
Zzero. An end-of-file condition for an input device is given by an
ASCII control-z (lAH). Peripheral devices are seen by CP/M-86 as
"logical" devices, and are assigned to physical devices within the
BIOS. Device characteristics are defined in Table 5-2,.

All Information Presented Here is Proprietary to Digital Research

, 57




CP/M-86 System Guide 5.3 Simple Peripheral DNevices

Table 5-2. CP/M-86 Logical Device Characteristics

Device Name Characteristics

CONSOLE The principal interactive console which

communicates with the overator, accessed through
CONST, CONIN, and CONOUT. Typically, the CONSOLE
is a device such as a CRT or Teletype.

LIST The principal listing device, if it exists on your

system, which is usually a hard-copv device, such
as a printer or Teletvpe.

PUNCH The principal tape punching device, if it exists,

which is normally a high-sveed paper tave ounch or
Teletype.

READER The principal tape reading device, such as a
simple optical reader or teletyoe.

Note that a single perioheral can be assigned as the LIST,
PUNCH, and READER device simultaneously. If no perioheral device is
assigned as the TLIST, PUNCH, or READER device, your CBIOS should
give an aoprooriate error message so that the svstem does not "hang"
if the device is accessed by PIP or some other transient program.
Alternately, the PIUNCH and LIST subroutines can just simplv return,
and the READER subroutine can return with a 1AH (ctl-%) in teqg A to
indicate immediate end-of-file.

For added flexibility, vou can optionally implement the
"IOBYTE" function which allows reassignment of ohvsical and logical
devices. The IOBYTE function creates a maooing of logical to
physical devices which can be altered during ©P/M-86 nrocessing (see
the STAT command). The definition of the IOBYTE function
corresponds to the Intel standard as follows: a single location in
the BIOS is maintained, called IOBYTFE, which defines the logical to
physical device mapping which is in effect at a particular time.
The mapping is performed by splitting the IOBYTE into four distinct

fields of two bhits each, called the CONSOLE, READER, PIINCH, and LIST
fields, as shown below:

most significant least significant

IOBYTE LIST PUNCH READER CONSOLE

bits 6,7 bits 4,5 bits 2,3 bhits 0,1

All Information Presented Here is Proprietary to Digital Research

58



CP/M-86 System Guide 5.3 Simple Peripheral Devices

The value in each field can be in the range 0-3, defining the
assigned source or destination of each logical device. The values
which can be assigned to each field are given in Table 5-3, below.

Table 5-3. TIOBYTE Field Definitions

CONSOLE field (bits 0,1)

0 - console is assigned to the console printer (TTY:)

1 - console is assigned to the CRT device (CRT:)

2 - batch mode: use the READER as the CONSOLE input,
and the LIST device as the CONSOLE output (BAT:)

3 - user defined console device (UCl:)

READER field (bits 2,3)

- READER is the Teletype device (TTY:)

~ READER is the high-speed reader device (RDR:)
- user defined reader # 1 (URl:)

- user defined reader # 2 (UR2:)

w i~ O

PUNCH field (bits 4,5)
0 - PUNCH is the Teletype device (TTY:)
1 - PUNCH is the high speed punch device (PUN:)
2 - user defined ounch # 1 (UPl:)
3 = user defined ounch # 2 (UP2:)

LIST field (bits 6,7)

0 - LIST is the Teletype device (TTY:)

1 -~ LIST is the CRT device (CRT:)

2 = LIST is the line printer device (LPT:)
3 - user defined list device (ULl:)

Note again that the implementation of the IOBYTE is optional,
and affects only the organization of your BIOS. No CP/M-86
utilities use the IOBYTE except for PIP which allows access to the
physical devices, and STAT which allows logical-physical assignments
to be made and displayed. 1In any case, you should omit the IOBYTE
implementation until vyour basic CBIOS is fully implemented and
tested, then add the IOBYTE to increase vyour facilities.

All Information Presented Here is Proprietary to Digital Research

59



CP/M-86 System Guide 5.4 BIOS Subroutine FEntry Points

5.4 BIOS Subroutine Entry Points

The actions which must take vplace upon entrv to each BIOS
subroutine are given below. It should be noted that disk I/0 is
always performed through a sequence of calls on the various Adisk
access subroutines. These setup the disk number to access, the
track and sector on a particular disk, and the direct memory access
(DMA) offset and seqment addresses involved in the I/0 operation.
After all these parameters have been setup, a call is made to the
READ or WRITE function to perform the actual I/0 operation. MNote
that there is often a single call to SELDSK to select a disk drive,
followed by a number of read or write omerations to the selected
disk before selecting another drive for subsequent overations.
Similarly, there may be a call to set the NDMA seagment base and a
call to set the DMA offset followed by several calls which read or
write from the selected DMA address before the DMA address 1is
changed. The track and sector subroutines are always called before
the READ or WRITE operations are performed.

The READ and WRITE subroutines should perform several retries
(10 is standard) before reporting the error condition to the RBDNS,.
The HOME subroutine mav or may not actually perform the track 00
seek, depending upon your controller characteristics; the important
point is that track 00 has been selected for the next owmeration, and
is often treated in exactly the same manner as SETTRK with a
parameter of 00.

Table 5-4. BIOS Subroutine Summary

Subroutine Nescription

INIT This subroutine is called directly by the CP/M-86
loader after the CPM.SYS file has been read into
memory. The procedure is respvonsible for anv
hardware initialization not verformed by the
bootstrap loader, setting initial values for 3IO0S
variables (including IOBYTE), printing a sign-on
message, and initializing the interruot vector to
point to the BNDOS offset (0811lH) and base. When
this routine completes, it jumps to the CCP
offset (0H). All segment registers should be
initialized at this time to contain the base of
the operating system.

WBOOT This subroutine is called whenever a wprogram
terminates by performing a BDOS function #0 call.
Some re-initialization of the hardware or
software may occur here. When this routine

completes, it jumps directly to the warm start
entry point of the CCP (06H).

CONST Sample the status of the currently assigned
console device and return OFFH in register AL if
a character is ready to read, and 00H in register
AL if no console characters are ready.

All Information Presented Here is Proprietary to Digital Research

60



CP/M-86 System Guide 5.4 BINS Subroutine Entry Points

Table 5-4. (continued)

Subroutine Description

CONIN Read the next console character into register AL,
and set the parity bit (high order bit) to zero.
If no console character is ready, wait until a
character is tvped before returning.

coNouT Send the character from register CL to the
console output device. The character 1is in
ASCII, with high order parity bit set to zero.
You may want to include a time-out on a line feed
or carriage return, if your console device
requires some time interval at the end of the
line (such as a ™I Silent 700 terminal). You
can, if you wish, filter out control characters
which have undesirable effects on the console
device.

LIST Send the character from register CL to the
currently assigned listing device. The character
is in ASCII with zero parity.

PUNCH Send the character from register CL to the
currently assigned punch device. The character
is in ASCII with zero parity.

READER Read the next character from the currently
assigned reader device into register AL with zero
parity (high order bit must be zero). An end of
file condition is reported bv returning an ASCII
CONTROL~-Z (1lAH).

HOME Return the disk head of the currently selected
disk to the track 00 position. If your
controller does not have a special feature for
finding track 00, you can translate the call into
a call to SETTRK with a parameter of 0.

All Information Presented Here is Proprietary to Digital Research

61



CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. (continued)

Subroutine

NDescription

SELDSK

SETTRK

SETSEC

Select the disk drive given bv register CL for
further operations, where register L contains 0
for drive A, 1 for drive B, and so on uo to 15
for drive P (the standard cP/M-86 distribution
version supports two drives). On each disk
select, SELDSK must return in BX the base address
of the selected drive’s Nisk Parameter Header.
For standard floopy disk drives, the content of
the header and associated tables does not change.
The sample BIOS included with CP/M-86 calleAd
CBIOS contains an example program segment that
performs the SELDSK function. If there is an
attempt to select a non-existent drive, SELDSK
returns BX=0000H as an error indicator. Although
SELDSK must return the header address on each
call, it is advisable to postpone the actual
physical disk select overation until an 1I/9
function (seek, read or write) 1is oerformed.
This 1is due to the fact that disk select
operations may take oplace without a subsequent
disk overation and thus disk access mav be
substantially slower using some disk controllers.
On entry to SELDSK it is possible to determine
whether it is the first time the svecified disk
has been selected. Register M., bit 0 (least
significant bit) is a zero if the drive has not
been previously selected. This information is of
interest in systems which read configuration
information from the disk in order to set uvp a
dynamic disk definition table.

Register CX contains the track number for
subsequent disk accesses on the currently
selected drive. You can choose to seek the
selected track at this time, or delay the seek
until the next read or write actually occurs.
Register CX can take on values in the range 0-76
corresponding to valid track numbers for standard
floopy disk drives, and 0-65535 for non-standard
disk subsystems.

Register CX contains the translated sector number
for subsequent disk accesses on the currently
selected drive (see SECTRAN, below). You can
choose to send this information to the controller
at this point, or instead delay sector selection
until a read or write operation occurs.

All Information Presented Here is Proprietary to NDigital Research

62



CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4. {(continued)

Subroutine ' Description

SETDMA Register CX contains the DMA (disk memory access)
offset for subsequent read or write overations.
For example, if CX = 80H when SETDMA is called,
then all subsequent read operations read their
data into 80H through OFFH offset from the
current DMA segment base, and all subsequent
write operations get their data from that
address, until the next calls to SETDMA and
SETDMAB occur. Note that the controller need not
actually support direct memory access. If, for
example, all data is received and sent through
I1/0 ports, the CBIOS which you construct will use
the 128 byte area starting at the selected DMA
offset and base for the memory buffer during the
following read or write operations.

READ Assuming the drive has been selected, the track
has been set, the sector has been set, and the
DMA of fset and segment base have been specified,
the READ subroutine attempts to read one sector
based upon these parameters, and returns the
following error codes in register AL:

0 no errors occurred
1 non-recoverable error condition occurred

Currently, CP/M-86 responds only to a zero or
non-zero value as the return code. That is, if
the value in register AL is O then CP/M=-86
assumes that the disk operation completed
properly. If an error occurs, however, the CBIOS
should attempt at least 10 retries to see if the
error is recoverable. When an error is reported
the BDOS will print the message "BDOS ERR ON x:
BAD SECTOR". The operator then has the option of

typing RETURN to ignore the error, or CONTROL-C
to abort.

WRITE Write the data from the currently selected DMA
buffer to the currently selected drive, track,
and sector. The data should be marked as "non-
deleted data" to maintain compatibility with
other CP/M systems. The error codes given in the
READ command are returned in register AL, with
error recovery attempts as described above.

LISTST Return the ready status of the list device. The
value 00 is returned in AL if the list device is
not ready to acceot a character, and OFFH if a
character can be sent to the printer.

All Information Presented Here is Proprietary to Digital Research

63



CP/M-86 System Guide 5.4 BIOS Subroutine Entry Points

Table 5-4, (continued)

Subroutine Description

SECTRAN Performs logical to physical sector translation
to improve the overall response of CP/M-86.
Standard CP/M-86 systems are shipped with a "skew
factor" of 6, where five physical sectors are
skipped between sequential read or w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>