
m-_ _ L. « t\/\ n 1 J IXUL UU1IUÙ X • * I
I

8086 Implementor's Guide I

June 1984

Copyright 1984

Software 2000, Inc.
1127 Hetrick Avenue

Arroyo Grande, CA 93420
Ü.S.A.

All rights reserved.

TurboDOSR is a registered trademark of Software 2000, Inc

TurboDOS 1.4 8086
Implementor's Guide

NOTICES

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Copyright Notice Copyright 1984 by Software 2000, Inc. All
rights reserved. No part of this publication
may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated
into any language or computer language, in
any form or by any means, electronic, mecha­
nical, magnetic, optical, chemical, manual or
otherwise, without the prior written permis­
sion of Software 2000, Inc., 1127 Hetrick
Avenue, Arroyo Grande, California 93420,
U.S.A.

Trademark Notice TurboDOS is a registered trademark of Soft­
ware 2000, Inc., and has been registered in
the United States and in most major countries
of the free world.
IBM is a trademark of International Business
Machines Corporation. CP/M, Concurrent CP/M
and MP/M are trademarks of Digital Research.

Disclaimer Software 2000, Inc., makes no representations
or warranties with respect to the contents of
this publication, and specifically disclaims
any implied warranties of merchantability or
fitness for any particular purpose. Software
2000, Inc., shall under no circumstances be
liable for consequential damages or related
expenses, even if it has been notified of the
possibility of such damages.

Software 2000, Inc., reserves the right to
revise this publication from time to time
without obligation to notify any person of
such revision.

i
First Edition: June 1984

TurboDOS 1.4 8086
Implementor's Guide

ABOUT THIS GUIDE

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ABOUT THIS GUIDE
Purpose We’ve designed this M M Implements's Guide

to provide the information you need to know
in order to generate various TurboDOS config­
urations for 8086-family microcomputers/ and
to write the driver modules for various peri­
pheral devices. This document describes the
modular architecture and internal programming
conventions of TurboDOS, and explains the
procedures for system generation, serializa­
tion, and distribution. It also provides
detailed interface specifications for hard-
ware-dependent driver modules, and includes
assembler source listings of sample drivers.

Assumptions In writing this guide, we've assumed that you
are an OEM, dealer, or sophisticated TurboDOS
user, knowledgable in 8086-family microcompu­
ter hardware and assembly-language program­
ming. We've also assumed you have read both
the Usex-'s fiiuM and the M M . gx-QpxammexJs,
Guide, and are therefore familiar with the
commands, external features, and internal
functions of 8086 TurboDOS.

Organization This guide starts with a section that de­
scribes the architecture of TurboDOS. It
explains the function of each internal module
of the operating system, and how these
modules may be combined to create the various
configurations of TurboDOS.

The next section explains the system genera­
tion procedure in detail, and describes each
TurboDOS parameter which can be modified
during system generation.
The third section of this guide explains the
TurboDOS distribution procedure, including
licensing, serialization, and support.

TurboDOS 1.4 8086
Implementor's Guide

ABOUT THIS GUIDE
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Organization The fourth section is devoted to an in-depth
(Continued) discussion of internal programming conven­

tions, aimed at the programmer writing
drivers or resident processes for TurboDOS.

The fifth section presents formal interface
specifications for implementing hardware-
dependent driver modules.

This guide concludes with a large appendix
containing assembler source listings of
actual driver modules. The sample drivers
cover a wide range of peripheral devices, and
provide an excellent starting point for
programmers involved in driver development.

Related Documents In addition to this guide, you might be
interested in four other related documents:

• JjuJkfiP-QS 1*1 USSllS. iaüiàê• TuxfroDQS 1*1 MM- GuLâe.
• JEud2fi£Q£ 1*1 I M . EiJ>jgxAmmeiLÏ£. JEttEbflBQfi 1*1 Û&M

You should read the first two volumes before
start into this document. The User's Guide
introduces the external features and facili­
ties of TurboDOS, and describes each TurboDOS
command. The MM MagxâiBJûÊXJLB G Jx A â e ex­
plains the internal workings of TurboDOS, and
describes each operating system function in
detail.

You'll need the Z80 guides if you are pro­
gramming or configuring a TurboDOS system
that uses Z8Û microprocessors.

TurboDOS 1.4 8086
Implementor's Guide

TABLE OP CONTENTS

Copyright 1984 by Software 2000 , Inc.
All rights reserved.

ARCHITECTURE Module Hierarchy 1-1
Process Level 1-1
Kernel Level 1-2
Driver Level 1-2
TurboDOS Loader 1-2
Module Flow Diagram................. 1-3

Process Modules 1-4
Kernel M o d u l e s 1-5
Driver Modules 1-8
Standard Packages 1-8

Package Contents Table 1-9
Supplementary Modules 1-10

Memory Required 1-11
Other Languages.......................... 1-12

SYSTEM GENERATION Introduction 2-1
TLINK Command..........................2-2
Patch P o i n t s2-7
Network Operation 2-21

Network Model 2-21
Network Tables 2-21
Message Forwarding 2-24

A Complex Example 2-25
Sysgen Procedure 2-27

DISTRIBUTION TurboDOS Licensing 3-1
Legal P r o t e c t i o n 3-1
User Obligations................... 3-2
Dealer Obligations 3-2
Distributor Obligations 3-3
Serialization 3-4
Technical Support 3-5

SERIAL Command 3-6
PACKAGE Command........................3-8
Distribution Procedure 3-10

TurboDOS 1.4 8086
Implementor's Guide

TABLE OF CONTENTS
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

CODING CONVENTIONS Undefined External References 4-1
Memory Allocation..................... 4-2
List Processing 4-3
Task Dispatching................. . . 4-4
Interrupt Service 4-6
Poll Routines 4—7
Mutual Exclusion 4-8
Sample Driver Using Interrupts 4-9
Sample Driver Using Polling 4-10
Inter-Process Messages 4-11
Console Routines 4-12
Sign—On Message 4—12
Resident Process 4—13
User-Defined Function 4-14

DRIVER INTERFACE General Notes 5-1
Initialization 5-2
Memory Table 5-2
Console Driver 5-3
Printer Driver 5-5
Disk Driver............................ 5-6
Network D r i v e r 5-9
Comm Driver 5-13
Clock D r i v e r 5-14
Bootstrap.................................5-16

APPENDICES OTOASM Command A-l
Sample Driver Source Listings B-l

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ARCHITECTURE This section introduces you to the internal
architecture of the TurboDOS operating sys­
tem. TurboDOS is highly modular, consisting
of more than forty separate functional
modules distributed in relocatable form.
These modules are "building blocks" that you
can combine in various ways to produce a
family of compatible operating systems. This
section describes the modules in detail, and
describes how to combine them in various
configurations.

Possible TurboDOS configurations include:

. single-user without spooling

. single-user with spooling

. network master

. simple network slave (no local disks)

. complex network slave (with local disks)

Numerous subtle variations are possible in
each of these categories.

Module Hierarchy The diagram on page 1-3 illustrates how the
functional modules of TurboDOS interact. As
the diagram shows, the architecture of Turbo­
DOS can be viewed as a three-level hierarchy.

Process Level The highest level of the hierarchy is the
process level. TurboDOS can support many
concurrent processes at this level. There is
one active process that supports the local
user who is executing commands and programs
in the local TPA. There are also processes
to support users running on other computers
and making requests of the local computer
over the network. There are processes to
handle background printing (de-spooling) on
local printers. Finally, there is a process
that periodically causes disk buffers to be
written out to disk.

1-1

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE
Nodule Hierarchy

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Level The intermediate level of the hierarchy is
the kernel level. The kernel supports the
various C-functions and T-functions, and
controls the sharing of computer resources
such as processor time, memory, peripheral
devices, and disk files. Processes make
requests of the kernel through the entrypoint
module OSNTRY, which decodes each C-function
and T-function by number and invokes the
appropriate kernel module.

Driver Level The lowest level of the hierarchy is the
driver level, and contains all the device-
dependent drivers necessary to interface
TurboDOS to the particular hardware being
used. Drivers must be provided for all peri­
pherals, including console, printers, disks,
communications channels, and network inter­
face. A driver is also required for the
real-time clock (or other periodic interrupt
source).
TurboDOS is designed to interface with almost
any kind of peripheral hardware. It operates
most efficiently with interrupt-driven, DMA-
type interfaces, but can also work fine using
polled and programmed-I/O devices.

TurboDOS Loader The TurboDOS loader OSLOAD.CMD is a program
containing an abbreviated version of the
kernel and drivers. Its purpose is to load
the full TurboDOS operating system from a
disk file (OSMASTER.SYS) into memory at each
system cold-start.

1-2

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE
Nodule Hierarchy

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

PespffQj. r 1 TT — —JjUJ. U_öi Net SvC
DSPOOL LCLUSR NETSVC FLUSHR

1 LCLMSG NETTBL 1
Process Level 1 LCLTBL NETFWD i

1 CMDINT 1
1 AUTLOD 1 1

Lo£jäer_ 1 SGLUSR 1 1
OSLOAD 1 AUTLOG 1 1
LDRMSG 1 BIOS 1 I

1 1 SUBMIT 1 1
!___ ----1--- ____

Deoojde^
Kernel Level OSNTRY

1
Memory

1
Dther

1
- H i e __

1 1
Net,üea _£loet-.

1
Support

MEMMGR NONFIL FILMGR NETMGR RTCMGR DSPCHR
1 CPMSUP FILSUP NETREQ 1 DSPSGL
1 MPMSUP FILCQM MSGFMT COMSUB
1 QUEMGR FILLOK NETTBL i
1 1 FFOMGR NETLOD 1
1
11

1
1

DRVLOK
1I

1
11

1
11

1 1 1
1 Commit Printer

1
CORëPlê

1
1

ReoeriL.

1
1
1

1
1
1 Initial

1 COMMGR LSTMGR CONMGR BUFMGR 1 1 SYSNIT
1 1 LSTTBL CONTBL DSKMGR 1 1 1
1 1 SPOOLR DOMGR DSKTBL 1 1 1
1 1
1 1

SPLMSG
1

INPLN
1

1
1

1
1

1
1

1
1

Driver Level1 1 11 11 11 11 11 111 1 1
1 ComnLCh Printer

1
Console.

1
_ Disk, _

1
Network

1
JSlQfiJS..

1
Initial

1 COMDRV LSTDRA CONDRA DSKDRA CKTDRA RTCDRV HDWNIT
Memory LSTDRB or DSKDRB CKTDRB or
MEMTBL etc. CONREM etc. etc. RTCNUL

1-3

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE
Process Nodules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Process Nodules Module 1

LCLUSR

LCLMSG

LCLTBL

CMDINT

AUTLOD

SGLUSR

AUTLOG

BIOS

SUBMIT

NETSVC

NETTBL

NETFWD

DSPOOL

FLUSHR

Responsible for supporting local I
user's TPA activities. I

Contains all O/S error messages. I

Local user option table. I

Command interpreter, processes I
commands from local user. I

Autoload routine which processes I
COLDSTRT.AUT and WARMSTRT.AUT. I

Flushes disk buffers at each I
console input. Use for single- I
user systems instead of FLUSHR. I

Automatic log-on routine. Used I
when full log-on security is not I
desired. See AUTUSR patch point. I

Direct BIOS Call (C-fcn 50). I

Routine to emulate CP/M proces- I
sing of $$$.SUB files. I

Services network requests from I
other processors on the network. I

Tables to define local network I
topology, used by NETSVC+NETREQ. I

Manages network message forward- I
ing. Requires NETREQ+NETSVC• I

Processes background printing. I

Periodically flushes disk buf- I
fers. Use for network master 1
configuration instead of SGLUSR. I

1-4

TurboDOS 1.4 8086 ARCHITECTURE
Implementor1s Guide

Kernel Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules 1 Module 1i _Fun crfi-on ~ \
i
i OSNTRY
1
1
I 1

Kernel entrypoint module which i
decodes each C-function and 1
T-function by number and invokes 1
the appropriate kernel module. 111

i FILMGR
1 1

1
File manager responsible for 1
requests involving local files. 111

1 FILSUP
1i

File support routines used by 1
FILMGR. 1i1

1 FILCOM
1
1i

i
Processes common file-oriented 1
requests that are never sent 1
over the network. 1i1

1 FILLOK
1 1

i
File- and record-level interlock 1
routines called by FILMGR. 111

1 FFOMGR
1i

1
FIFO management routines called 1
by FILLOK. 1ji

1 DRVLOKi Drive interlock routines. 1il
1 BUFMGR
1
1 1

Buffer manager called by FILMGR. 1
Maintains pool of disk buffers 1
used to speed local file access. 1l1

1 DSKMGR
1
1 1

Disk manager responsible for 1
physical access to local disks, 1
called by BUFMGR. 11

1 DSKTBL
1l

Table defining drives A-P as 1
local or remote disk drives. 1

I
1 NONFIL
1i

1
Responsible for functions that 1
are not file-oriented. 1iI

1 CPMSUP
1
1

Processes C-functions 7, 8, 24, 1
28, 29, 31, 37 and 107 which are 1
rarely used. May be omitted. 1

1-5

TurboDOS 1.4 8086 ARCHITECTURE
Implementor's Guide

Kernel Modules
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules I Module 1_____________ function______ _______ I
(Continued) I I

1 MPMSUP
1 1

Processes C-functions 141-143, 1
153, 160, 161 (optional). 1

1
1 QUEMGR
1
1 1

1
Emulates MP/M queues, supports 1
C-functions 134-140 (optional). 1
Requires MPMSUP. 11

1 CONMGR 1 Responsible for console I/O. 11I
1 CONTBLi

1
Links CONMGR to console driver. 1il

1 DOMGR1
i

Responsible for do-files. 1l1
1 INPLN
1 |

Console input line editor used 1
by CMDINT and C-function 10. 11

1 LSTMGR 1
1

Responsible for printer output. 111
1 LSTTBL
1 1

1
Table defining printers A-P and 1
queues A-P as local or remote. 1

1
I SPOOLR
1
1
1
1 1

1
Print spooler which diverts 1
print output to a spool file 1
when spooling is activated. 1
Also handles direct printing to 1
remote printers. 1i1

1 COMMGR
1 i

Responsible for communications 1
channel functions. 1

l
1 NETREQ
1
1 1

i
Responsible for issuing network 1
request messages for all func- 1
tions not processed locally. 1I1

1 MSGFMT
1 1

1
Network message format table 1
used by NETREQ. 1

1 NETMGR
1

I
Network message routing routine 1
used by NETSVC and NETREQ. 1

1-6

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE
Kernel Modules

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules 1 Module
(Continued) 1

i NEÏLÛD 1

m o t i o n . -,
Loads programs over the network, i1i

1 RTCMGR
!1

1
Real-time clock manager keeps 1
system date and time. 1

i
1 DSPCHR
1
1 1

Multi-task dispatcher which con- 1
trois sharing of the local pro- 1
cessor among multiple processes. 11

1 DSPSGL
1
1
11

1
Null dispatcher used as alterna- 1
tive to DSPCHR when only one 1
process is required (OSLOAD.CMD I
and single-user w/o spooling). 111

1 MEMMGR
1
1
1

1
Memory manager responsible for 1
dynamic allocation of memory, 1
and for supporting TPA alloca- 1
tion C-functions (53-58). 11l

1 COMSUBi1I
Common subroutines used in all 1
configurations. !11

1 SYSNIT
1

1
System initialization routine 1
executed at system cold-start. 1l1

1 RTCNUL
1
1
1 1

Null real-time clock driver, 1
used in configurations where 1
there is no periodic interrupt 1
source. 111

1 CONREM
1
1 1

1
Remote console driver for net- 1
work master to support MASTER 1
command. 1

i1
1 PATCH
1

1
128 bytes of zeroes, may be in- 1
eluded to provide patch area. 1

1-7

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE
Driver Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Driver Modules I Module, I

I CONDR_
I
I LSTDR_
I
I DSKDIL.
I
I CKTDIL.
I
I COMDRV
I
I RTCDRV
I
I MEMTBL
I
I
I HDWNIT

_____________Eimfitisn_________ __
Console I/O driver.

Printer output driver(s).

Disk driver(s).

Network circuit driver(s).

Communications channel driver.

Real-time clock driver.

Table defining the size and
structure of main memory (RAM).

Cold-start initialization for
all hardware-dependent drivers.

Standard Packages To simplify the system generation process,
the most commonly-used combinations of Turbo­
DOS modules are pre-packaged into the follow­
ing standard configurations:

STDLOADR
STDSINGL
STDSPOOL
STDMASTR
STDSLAVE
STDSLAVX

cold-start loader
single-user without spooling
single-user with spooling
network master
simple slave w/o local disks
complex slave with local disks

The contents of each standard package is
detailed in the matrix on the next page.
Most TurboDOS requirements can be satisfied
by linking the appropriate standard package
together with a few additional modules plus
the requisite driver modules.

1-8

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Standard Packages
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

£ __1- LOADR I. SINGL J. SPOOL. J. MASTR I..SLAVE. J- SLAÿX_
AUTLOD .2 - AUTLOD AUTLOD AUTLOD AUTLOD AUTLOD
ÄÜTLOG . 0 - ÄÜTLOG ÄÜTLOG » ftiriT a />rtU XMjWVj n TTirrr a a ATTITVr AAnu xjji/vj
BIOS .3 - BIOS BIOS BIOS BIOS BIOS
BUFMGR 1.2 BUFMGR BUFMGR BUFMGR BUFMGR - BUFMGR
CMDINT 1.7 - CMDINT CMDINT CMDINT CMDINT CMDINT
COMMGR .1 - COMMGR COMMGR COMMGR COMMGR COMMGR
COMSUB .2 COMSUB COMSUB COMSUB COMSUB COMSUB COMSUB
CONMGR .4 CONMGR CONMGR CONMGR CONMGR CONMGR CONMGR
CONREM .5 - - - + - -
CONTBL .0 CONTBL CONTBL CONTBL CONTBL CONTBL CONTBL
CPMSUP .3 - + + + + +
DOMGR .4 - DOMGR DOMGR DOMGR DOMGR DOMGR
DRVLOK .1 - - - DRVLOK - -
DSKMGR .6 DSKMGR DSKMGR DSKMGR DSKMGR - DSKMGR
DSKTBL .0 DSKTBL DSKTBL DSKTBL DSKTBL DSKTBL DSKTBL
DSPCHR .7 - - DSPCHR DSPCHR DSPCHR DSPCHR
DSPOOL 1.0 - - DSPOOL DSPOOL - DSPOOL
DSPSGL .2 DSPSGL DSPSGL - - - -
FFOMGR 1.1 - - - FFOMGR - -
FILCOM .4 FILCOM FILCOM FILCOM FILCOM FILCOM FILCOM
FILLOK 2.0 - - - FILLOK - -
FILMGR 2.5 FILMGR FILMGR FILMGR FILMGR - FILMGR
FILSUP 2.9 FILSUP FILSUP FILSUP FILSUP - FILSUP
FLUSHR .2 - - - FLUSHR - -
INPLN .2 - INPLN INPLN INPLN INPLN INPLN
LCLMSG .4 - LCLMSG LCLMSG LCLMSG LCLMSG LCLMSG
LCLTBL .0 - LCLTBL LCLTBL LCLTBL LCLTBL LCLTBL
LCLUSR 1.1 - LCLUSR LCLUSR LCLUSR LCLUSR LCLUSR
LDRMSG .1 LDRMSG - - - - -
LSTMGR .3 - LSTMGR LSTMGR LSTMGR LSTMGR LSTMGR
LSTTBL .1 - LSTTBL LSTTBL LSTTBL LSTTBL LSTTBL
MEMMGR 1.2 - MEMMGR MEMMGR MEMMGR MEMMGR MEMMGR
MPMSÜP .1 - + + + + +
MSGFMT .1 - - - + MSGFMT MSGFMT
NETFWD .3 - - - + + +
NETLOD .3 - - - + NETLOD NETLOD
NETMGR .9 - - - NETMGR NETMGR NETMGR
NETREQ 1.6 - - - + NETREQ NETREQ
NETSVC 1.8 - - - NETSVC + +
NETTBL .0 - - - NETTBL NETTBL NETTBL
NONFIL .2 NONFIL NONFIL NONFIL NONFIL NONFIL NONFIL

-ÆSLÛÔDL- .ßSLQATL - - - - -

1-9

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE
Standard Packages

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Module _L . K 1 T.OADR 1 SINGT. 1 SPOOL 1.MASTR l_ SLAVE_ ,l_SLAVX ,
OSNTRY .5 OSNTRY OSNTRY OSNTRY OSNTRY OSNTRY OSNTRY
PATCH .1 + + + + + +
PGMLOD 1 . 0 — PGMLOD PGMLOD PGMLOD PGMLOD PGMLOD
QUEMGR 1.3 - - - + + +
RTCMGR .1 - RTCMGR RTCMGR RTCMGR - RTCMGR
RTCNUL .1 + + + + + +
SGLUSR .1 - SGLUSR SGLUSR - - SGLUSR
SPLMSG .1 - - SPLMSG SPLMSG SPLMSG SPLMSG
SPOOLR .6 - - SPOOLR SPOOLR SPOOLR SPOOLR
SUBMIT .2 - + + + + +

Optional Modules To supplement the standard packages, certain
optional modules (marked by "+" in the matrix
above) may have to be added. The following
table explains where these optional modules
are required:

I -Module, J____________________WJaexe, Regiilied___________ _________I

I CONREM Network masters with no console (instead of CONDR^.) . I
I CPMSUP To support C-fcns 7, 8, 24, 28, 29, 31, 37 and 107. I
I MPMSUP To support C-fcns 134-143, 153, 160 and 161. I
I MSGFMT Network masters that make requests over the network. I
I NETFWD To support forwarding of network messages. I
1 NETLOD Network masters that load programs over the network. I
I NETREQ Network masters that make requests over the network. I
I PATCH Wherever a supplementary patch area is required. I
I QUEMGR To support MP/M queue emulation (C-fcns 134-140.) I
I RTCNUL Wherever no RTC driver is available. I
I SUBMIT To emulate CP/M processing of $$$.SUB. I

1-10

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE
Memory Required

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Memory Required To estimate the memory required by a particu­
lar TurboDOS configuration, you need to take
into account the combined size of all func=
tional modules, driver modules, disk buffers,
and other dynamic storage.

Drivers typically require IK to 4K, and can
be even larger if the hardware is especially
complex. Disk buffer space should be as
large as possible for optimum performance,
especially in a network master. About 4K of
disk buffer space is reasonable for a single-
user system, although less can be used in a
pinch. Other dynamic storage doesn't usually
exceed IK in single-user systems, 2K in net­
work masters.

The following table gives typical memory
requirements for standard TurboDOS configura­
tions:

II
o / s 10K 17K 19K 25K 13K 22K
Drivers 2K 2K 2K 3K IK 2K
Buffers 4K 4K 4K 16K - 4K
Dynamic IK IK IK 3K 2K 2K

Total 17K 24K 26K 47K 16K 3 OK

1-11

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE
Other Languages

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Other Languages To facilitate translation into languages
other than English, TurboDOS has been
implemented with all textual messages
segregated into separate modules. All such
message modules are available in source form
to TurboDOS OEM licensees upon request.

The following modules contain all TurboDOS
operating system messages:

______________Osmtsiiis_____________ I
I I
I LCLMSG Most operating system messages. I
I SPLMSG Spooler error messages. I
I LDRMSG Loader messages for OSLOAD.CMD. I

In addition, a separate message module is
available for each TurboDOS command.

1-12

TurböDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SYSTEM GENERATION This section explains the TurboDOS systema 4- A Anj. U U X V 1JI r\r AAA/in v rv ¿/L C î n 1 1X ii u u x JU T ̂ /̂a e Ar Î Ka cX W U ^ 0 WX x v ^ t f
how to use TLINK to link a desired set of
TurboDOS modules together, and details the
numerous system patch points which may be
modified during system generation. Step-by-
step procedures and examples are provided.

Introduction The functional modules of TurboDOS are dis­
tributed in relocatable object form (.0
files). Hardware-dependent driver modules
are furnished in the same fashion. The
TurboDOS TLINK command is a specialized
linker used to bind the desired combination
of modules together into an executable
version of TurboDOS. TLINK also includes a
symbolic patch facility used to modify a
variety of operating system parameters.

To generate a complete TurboDOS system, you
typically must use TLINK several times. At
minimum, you have to generate both a loader
0SL0AD.CMD and a master operating system
OS MAS TER. SYS. For a networking system you
also have to generate a slave operating
system OSSLAVE.SYS. Complex networks may
require generation of several different slave
or master configurations. Finally, you may
have to use TLINK to generate a cold-start
bootstrap routine for the start-up PROM or
boot track.

At cold-start, the bootstrap routine loads
the loader program OSLOAD.CMD into the TPA of
the master computer and executes it. OSLOAD
loads the master operating system from the
file OS MAS TER. SYS into memory. The master
operating system then down-loads the slave
operating system from the file OSSLAVE.SYS
over the network into each slave computer.

2-1

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

TLINK Command

Syntax

Explanation

TLINK Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

The TLINK command is a specialized linker
used for 8086 TurboDOS system generation, and
may also be used as a general-purpose linker
for object modules produced by the TurboDOS
assembler TASM.

I TLINK inputfn (outputfn) {-options}

The TLINK command links a specified collec­
tion of relocatable object modules together
into a single executable file. The "inputfn"
argument identifies the two input files used
by TLINK: a configuration file "inputfn.GEN"
and a parameter file "inputfn.PAR". The
"outputfn" argument specifies the name of the
executable output file to be created (normal­
ly type .CMD or .SYS). If "outputfn" is
omitted from the command, then "inputfn" is
also used as the name of the executable out­
put file, and should include an explicit file
type (.CMD or .SYS).
If the .GEN file is found, it must contain
the list of object modules (.0 files) to be
linked together. If the configuration file
is not found, then TLINK operates in an
interactive mode. You are prompted by an
asterisk * to enter a series of directives
from the console. The syntax of each direc­
tive (or each line of the .GEN file) is:

I objfile {,objfile)... {;comment) I

The object files are assumed to have type .0
unless a type is given explicitly. A null
directive (or the end of the .GEN file) ter­
minates the prompting sequence and causes
processing to proceed.

2-2

TurboDOS 1.4
Implementor1

Explanation
(Continued)

Options

8086 SYSTEM GENERATION
s Guide

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

After obtaining the list of modules from the
file or console, TLINK links all of the
modules together, a two-pass process that
displays the name of each module as it is
encountered. When the linking phase is com­
plete, TLINK looks for a parameter file
"inputfn.PAR" and processes it if present
(described below). Finally, the executable
file (.CMD or .SYS) is written out to disk.

NOTE: Each module of the TurboDOS operating
system is magnetically serialized with a
unique serial number. The serial number
consists of two components: an "origin
number" which identifies the issuing TurboDOS
licensee, and a "unit number" which uniquely
identifies each copy of TurboDOS issued by
that licensee. When used for TurboDOS
operating system generation, TLINK verifies
that all modules to be linked are serialized
consistently, and serializes the executable
file accordingly.

Options are always preceded by a "-" prefix,
and may appear before, between, or after the
file names. Several options may be concate­
nated after a single "-" prefix.

Option Explanation

-8 Force 8080 model (single group)
-B No 128-byte base page
-C List to console, not to printer
-D Force data group G-Max to 64K
-H No .CMD header (implies -8, -B)
-L Listing only, no output file
-M List link map
-R List inter-module references
-S List sorted symbol table
-Ü List unsorted symbol table
-X Diagnose undefined references

2-3

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION
TLINK Command

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Parameter File TLINK includes a symbolic patch facility that
may be used during TurboDOS system generation
to override various operating system para­
meters and to effect necessary software cor­
rections. Patches must be stored in a .PAR
file. The syntax of each .PAR file entry is:

I location » value {,value}... {jcommentî I

where the "value" arguments are to be stored
in consecutive memory locations starting with
the address specified by "location".

The "location" argument may be the name of a
public symbol, an integer constant, or an
expression composed of names and integer
constants connected by + or - operators.
Integer constants must begin with a digit to
distinguish them from names. Constants of
the form "Oxdddd" are taken to be hexadeci­
mal. Constants of the form "Odddddd" are
taken to be octal. Constants that start with
a nonzero digit are taken to be decimal. The
"location" expression must be followed by an
equal-sign = character.

The "value" arguments may be expressions (as
defined above) or quoted ASCII strings, and
must be separated by commas. A "value" ex­
pression is stored as a 16-bit word if its
value exceeds 255 or if it is enclosed in
parentheses (...) or brackets [...]? other­
wise, it is stored as an 8-bit byte. An
expression enclosed in brackets is treated as
IP-relative (for example, the target address
of a CALL or JMP instruction). A quoted
ASCII string must be enclosed by quotes
"...", and is stored as a sequence of 8-bit
bytes. Within a quoted string, ASCII control
characters may be specified by using TASM
backslant escape sequences.

2-4

TurboDCS i.4
Implementor1

Example

8086 SYSTEM GENERATION
s Guide

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

In the following example, TLINK is used to
link a single-user TurboDOS system for an IBM
Personal Computer, using the modules listed
in OSMASTER.GEN and patches in OSMASTER.PAR,
creating the executable file OSMASTER.SYS.

0A)TLINK OSMASTER. SYS,~M
Copyright 1984, Software 2000, Inc.
* ; Single-user without spooling for
* IBM Personal Computer with 256K RAM

STDSINGL
CPMSUP
CONIPC
LSTACA
NITIPC
DSKIPC
MSTIPC
RTCIPC

standard single-user pkg.
seldom-used CP/M functions
IBM PC console driver
IBM PC serial list driver
IBM PC initialization
IBM PC floppy disk driver
IBM PC 256K mem spec table
IBM PC real-time clock drvr

Pass 1
LCLUSR LCLTBL CMDINT AUTLOD SGLUSR etc.

Pass 2
LCLUSR LCLTBL CMDINT AUTLOD SGLUSR etc.

Processing parameter file:
; Patches for single-user w/o spooling
OSMLEN - 1024 ;dynamic memory area (16K)

0x1000 ;but limit to first 64KOSMTOP
AUTUSR
NMBUFS
EOPCHR
SRHDRV
PRTMOD

0x80
8
OxlA
1
0

logon to user 0 privileg.
number of disk buffers
end-of-print character
search drive A
direct printing mode

Writing output file A:OSMASTER.SYS
0A>

2-5

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION
TLINK Command

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Error Messages
Serial number violation
Not enough memory
No object files specified
Can't open object file
Non-privileged user
Unexpected EOF in object file
Bad token in object file: <type>
Can't create output file
Can't write output file
Load address out-of-bounds
Duplicate transfer address
Duplicate def: <name>
Undefined name: <name>
Too many externals in module
Name table overflow

2-6

TurboBOS i.4
Implementor1

Patch Points

8086 SYSTEM GENERATION
s Guide

Patch Points

Copyright 1984 by Software 2000, Inc.
All rights reserved.

The following table describes various public
symbols in TurboDOS which you may wish to
modify using the symbolic patch facility of
TLINK. (Other patch points may exist in
hardware-dependent drivers, but they are
beyond the scope of this document.)

Symbol, J__ _______________________ i
ABTCHR = 0x03 ;CTRL-C CONTBL I

Abort character (after attention). I

ATNBEL = 0x07 ? CTRL-G CONTBL

Attention-received warning character.

ATNCHR * 0x13 ?CTRL-S CONTBL
Attention character. May be patched to
another character if the default value of
CTRL-S is needed by application programs.
A common choice is zero (NUL), which al­
lows the console BREAK key to be used as
an attention key.

AUTUSR = OxFF AUTLOG

Automatic log-on user number. Default
value of OxFF requires that user log-on
via LOGON command. If automatic log-on
desired at cold-start, patch AUTUSR to
the desired user number (0-31), and set
the sign-bit if a privileged log-on is
desired. Generally patched to 0x80 in
single-user systems to cause automatic
privileged log-on to user zero.

2-7

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

.Delimits IfelJüÆ.
BFLDLY = (300)

JLüfiilülÊ.
FLUSHR

Buffer flush delay determines how often
disk buffers are written to disk, stated
in system "ticks". Default value (300
decimal) causes buffers to be flushed
about every five seconds (assuming 60
ticks per second).

BUFBAS = (0000) BUFMGR

Base paragraph address of external disk
buffer area (see BUFLEN).

BUFLEN = (0000) BUFMGR

Length (in paragraphs) of external disk
buffer area starting at BUFLEN. Default
value (0000) indicates that buffers are
to be allocated from the regular dynamic
memory pool (see OSMLEN, OSMTOP).

BUFSIZ = 3 BUFMGR

Default disk buffer size (0=128, 1=256,
2=512, 3=1K,••., 7=16K). Default value
specifies IK disk buffers.

2-8

TurbcDOS 1.4
Implementor1

Patch Points
(Continued)

8086 SYSTEM GENERATION
Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

L Sym bol-J_________ P-gfa-Ul-fc-yaliig__________ LMpA iL el, I
i •
I CKTAST = (0x0000),(CKTDRA), NETTBL I
I (0x0100),(CKTDRB), I
I (0x0200),(CKTDRC), I
I (0x0300),(CKTDRD) 1
I Circuit assignment table defines network I
I topology. Contains NMBCKT two-word en- I
I tries, one for each network circuit to I
I which this processor is attached. The I
I first word of each entry specifies the I
I network address by which this processor I
I is known on a particular circuit, and the I
I second word specifies the entrypoint ad- I
I dress of the circuit driver responsible I
I for that circuit. (Possibly several cir- I
I cuits may be handled by the same driver.) I

CLBLEN = 157 CMDINT

Command line buffer length defines long­
est permissible command line. The de­
fault value permits two 80-char lines.

CLPCHR = CMDINT

Command line prompt character.

CLSCHR = "W* CMDINT

Command line separator character.

COLDFN = 0,"COLDSTRT","AUT" AUTLOD

File name and drive for cold-start auto­
load processing (in FCB format).

2-9

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

I—Symbol_I__
COMPAT = 0 FILCOM
Default compatibility flags which define
rules to be used for file-sharing. Patch
to 0xF8 to relax most MP/M restrictions.

CONAST « 0,(CONDRA) CONTBL

Console assignment table defines how con­
sole I/O is handled. First byte passed
to console driver, and commonly defines
the channel number (e.g., serial port) to
be used for the console. Following word
specifies the entrypoint address of the
console driver to be used.

CPMVER = 0x31 NONFIL

CP/M BDOS version number returned by
C-function 12 in BL-register.

DEFDID - (0) NETTBL

Default network destination ID, used for
routing all network requests that are not
related to a particular disk drive, queue
or printer. In a slave, DEFDID should be
set to the network address of the master.

2-10

TurboDOS 1.4
Implementor1

Patch Points
(Continued}

8086 S7STBN GENERATION
Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

L .Symbol. J _________ _______________________________ L ^ d u l e . Ii ii i
I DSKAST = 0,(DSKDRA),1,(DSKDRB), DSKTBL i
I OxFF,(0),OxFF,(0),... I

I Disk assignment table, an array of 16 I
I three-byte entries (one for each drive I
i letter A-P) that defines which drives are !
I local, remote, and invalid. I

I For a local drive, the first byte must I
I not have the sign-bit set. That byte is I
I passed to the disk driver, and is common- I
I ly used to differentiate between multiple I
I drives connected to a single controller. I
I The following word specifies the entry- I
I point address of the disk driver to be I
I used. I

I For a remote drive, the first byte must I
I have the sign-bit set. The low-order I
I bits of that byte specify the drive let- I
i ter to be accessed on the remote proces- i
I sor. The following word specifies the I
I network address of the remote processor. I

I For an invalid drive, the first byte must I
I be OxFF, and the following word should be I
I (0). I

I NOTE: In slave configurations STDSLAVE I
I and STDSLAVX, the default values are: I

I DSKAST = 0x80,(0),0x81,(0), I
I 0x82,(0),0x83,(0), I
I ...,0x8E,(0),0x8F,(0) i

2-11

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

L-Sy.mh.pJ_I______ D e f a u l t - ! ______ JLJtodule-..
I DSPPAT = 1,1,1,...,1 LSTTBL

I De-spool printer assignment table, an ar-
I ray of 16 bytes (one for each printer
I letter A-P) that defines the initial
I queue to which each printer is assigned.
I Values 1 through 16 correspond to queues
I A-P, and 0 means that the printer is off-
Tline. The default value assigns all
I printers to queue A.

ECOCHR = 0x10 ;CTRL-P CONTBL

Echo-print character (after attention).

EOPCHR = 0 LSTTBL
End-of-print character. May be patched
to any non-null character, in which case
the presence of that character in the
print output stream will automatically
signal an end-of-print-job condition.
The value zero disables this feature.

(O x t fF F /) , NETTBL
(y k F F JF F) ,g&F/F

Network forwarding table, an array of
two-byte entries that define any explicit
message forwarding routes to be used by
this processor. The first byte of each
entry specifies a "foreign" circuit num­
ber N, and the second byte a "domestic"
circuit number C. Any messages destined
for circuit N will be routed via circuit
C. This table is variable-length, termi­
nated by OxFF, and defaults to empty.

2-12

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor1s Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

. J , Module. I

LDCOLD = OxFF AUTLOD

Cold-start autoload enable flag. Patch
to zero if you want to disable the cold-
start autoload feature (COLDSTRT.AUT).

LDWARM = OxFF AUTLOD

Warm-start autoload enable flag. Patch
to zero if you want to disable the warm-
start autoload feature (WARMSTRT.AUT).

LOADFN = 0,"OSMASTER","SYS" OSLOAD

Default file name and drive (in FCB for­
mat) loaded by OSLOAD.COM. Drive field
(FCB byte U) may be patched to an expli­
cit drive value to inhibit scanning.

LOGUSR = 31 FILCOM

User number for logged-off state.

MAXMBS = 0 NETMGR

Maximum number of message buffers that
will ever be allocated. Default value of
0 means number of message buffers is
limited only to size of available memory.

(^*»ovo) -, b o n h b k fi./> /

- ÖY ooH o) • 0StTP/l
7*f <FAch - ßuf *** - 6«f *

2-13

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

I -.Symbol I______ Default- Value_______LMpitolfi.
I MAXRPS = 0 NETMGR

I Maximum number of reply packets that will
I ever be allocated. Default value of 0
! means number of reply packets is limited
I only to the size of available memory.

NMBCKT = 1 NETTBL

Number of network circuits to which this
processor is connected.

NMBMBS = 0 NETMGR

Number of message buffers pre-allocated
at cold-start. Message buffers are allo­
cated dynamically as needed, but this may
cause fragmentation which prevents you
from changing the size of the disk buffer
pool with the BUFFERS command. If this is
important, patching NMBMBS to a suitable
positive value will eliminate the problem
(twice the number of network nodes is a
good starting value to try).

NMBRPS = 0 NETMGR

Number of reply packets pre-allocated at
cold-start. Reply packets are allocated
dynamically as needed, but this may cause
fragmentation which prevents you from
changing the size of the disk buffer pool
with the BUFFERS command. If this is
important, patching NMBRPS to a suitable
positive value will eliminate the problem
(the number of network nodes is a good
starting value to try).

2-14

TurhoDOS 1.4 3086 SYSTEM GENERATION
Implementor's Guide

F&tch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

1- .Symbol-J_____ P^£ajfllt,.yalue_______ LUodalfL, I
i !
I NMBSVC = 2 NETSVC I

I Number of network server processes to be I
I activated. (The number of network nodes I
I is a good starting value to try.) I

NMBUFS = 4 BUFMGR

Default number of disk buffers allocated
at cold-start. Must be at least 2. For
optimum performance, allocate as many
buffers as possible (consistent with TPA
and other memory requirements).

t>£>

OSMLEN = (128) ;2K bytes MEMMGR

Length (in paragraphs) of the memory area
to be allocated immediately above the
TurboDOS operating system resident for
dynamic working storage. This area must
accomodate disk buffers if no external
disk buffer area is defined (BUFLEN is
zero). The default value (128 paragraphs
or 2K bytes) is appropriate for a simple
slave with no disk buffers. For other
configurations, patch OSMLEN to a value
large enough to accomodate dynamic memory
needs. Divide required length in bytes
by 16 to give the value of OSMLEN in
paragraphs. (See OSMTOP.)

2-15

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

I —Symbol. J ______ EafâJuJLt-JialiiÊ___- __ LBôâulê.
I OSMTOP = (0000) MEMMGR

t>o K

Absolute upper bound (paragraph address)
for dynamic working storage area. The
actual upper bound is either OSMTOP or
the top of TurboDOS plus OSMLEN, which­
ever is smaller. The default value of
zero indicates no specified upper bound.

PRTCHR = OxOC ? CTRL-L CONTBL

End-print character (after attention).
This is a console attention-response, not
to be confused with EOPCHR.

PRTMOD * 1 LCLTBL

Initial print mode for local user. The
default value of 1 specifies spooling.
Patch to 0 for direct, or 2 for console.

2-16

TurboDOS 1.4
Implementor1

Patch Points
IVU11I.X1IUCU#

8086 SYSTEM GENERATION
s Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

1_ Symbol, J______1{ j
I PTRAST = 0,(LSTDRA),0xFF,(0), LSTTBL
I OxFF,(0),OxFF, (0) .

I Printer assignment table, an array of 16
I three-byte entries (one for each printer
I letter A-P) that defines which printers
I are local, remote, and invalid.

I For a local printer, the first byte must
I not have the sign-bit set. That byte is
I passed to the disk printerr, and is com-
I monly defines the channel number (e.g.,
I serial port) to be used for the printer.
I The following word specifies the entry-
I point address of the printer driver.

I For a remote printer, the first byte must
I have the sign-bit set. The low-order
I bits of that byte specify the printer
I letter to be accessed on the remote pro-
I cessor. The following word specifies the
I network address of the remote processor.

I For an invalid printer, the first byte
I must be OxFF, and the following word
I should be (0).

I NOTE: In slave configurations STDSLAVE
I and STDSLAVX, the default values are:

I PTRAST = 0x80,(0),0x81,(0),
I 0x82,(0),0x83,(0),
! •..,0x8E,(0),0x8F,(0)

2-17

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

I— SymbfiJ__I______ - e m i t - __________L Module, I
I QUEAST = 0,(0),0xFF,(0), LSTTBL I
I OxFF,(0),OxFF,(0),••• I
I I
I Queue assignment table, an array of 16 I
I three-byte entries (one for each queue I
I letter A-P) that defines which queues are I
I local, remote, and invalid. I
I I
T Foralocal queue, all three bytes must I
I be set to zero. I
I I
I For a remote queue, the first byte must I
I have the sign-bit set. The low-order I
I bits of that byte specify the queue let- I
I ter to be accessed on the remote proces- I
I sor. The following word specifies the I
I network address of the remote processor. I
I I
I For an invalid queue, the first byte must I
I be OxFF, and the following word should be I
I (0) . I
I I
I NOTE: In slave configurations STDSLAVE I
1 and STDSLAVX, the default values are: I
I I
! QUEAST = 0x80,(0),0x81,(0), I
I 0x82,(0),0x83,(0), I
I ...,0x8E,(0),0x8F,(0) !

QUEDLY = (0000) QUEMGR

Polling delay used in unconditional Read
Queue (when queue is empty) and Write
Queue (when queue is full), stated in
system "ticks". If RTC driver is avail­
able, patch to largest delay that yields
reasonable queue performance.

2-18

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued) l -£ymkPl_J____ D e f a u l t - ______LUfidale.ii

I QUEDRV = OxFF QUEMGR

I Drive used for FIFOs that emulate MP/M
I queues. Default value OxFF means use the
I system disk (disk from which TurboDOS was
I loaded at cold-start). Patch to 0 - 15
I to specify a particular drive A-P.

QUEPTR = 1 LCLTBL

Initial queue or printer assignment. If
PRTMOD = 1 (spooling), QUEPTR specifies a
queue assignment. If PRTMOD = 0 (direct)
QUEPTR specifies a printer assignment.
In both cases, values 1 through 16 corre­
spond to letters A-P, and zero means do
not queue or print off-line.

RCNMSK = OxFF MPMSUP

Mask used in deriving a console number
from a network node in C-function 153.

RCNOFF = 0 MPMSUP

Offset used in deriving a console number
from a network node in C-function 153.

RESCHR = 0x11 ;CTRL-Q CONTBL

Resume character (after attention).

2-19

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor1s Guide

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

JiâJLüÊ J.ltoäulg.
SCANDN = 0 OSLOAD
Scan direction flag for OSLOAD. Patch to
OxFF to scan P-to-A (instead of A-to-P).

SLVFN = "OSSLAVE ","SYS" NETSVC

Name and type of file (in FCB format) to
be down-loaded into slave processors.

SPLDRV = OxFF LCLTBL

Initial spool drive. Default value OxFF
indicates spool to system disk (disk from
which TurboDOS was loaded at cold-start).
Patch to 0 - 15 to specify drive A-P.

SRHDRV = 0 CMDINT

Search drive for command files. Patch to
value 1 through 16 to search drive A-P
if command is not found on current
(default) drive. Patch to OxFF to search
system disk (disk from which TurboDOS was
loaded at cold-start)• Default value 0
disables this feature altogether.

SUBFN = 0,"$$$ ","SUB" SUBMIT

FCB for emulating CP/M submit files.

WARMFN = 0,"WARMSTRT","AUT" AUTLOD

File name and drive for warm-start auto­
load processing (in FCB format).

2-20

TurboDOS 1*4 8086
Implementor1s Guide

SYSTEM GENERATION

Network Operation

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Operation TurboDOS accomodates a wide variety of net­
work topologies, ranging from the simplest
point-to-point master/slave networks to the
most complex star, ring, and hierarchical
structures.

Network Model A TurboDOS network is defined to consist of
up to 255 circuits, with up to 255 itoAes
(processors) on each circuit. Each node has
a unique 16-bit network address consisting of
an 8-bit circuit number plus an 8-bit node
number (on that circuit).

Any processor may be connected to several
circuits, if desired. A processor connected
to multiple circuits has multiple network
addresses, one for each circuit. Such a
processor even may be set up to perform mes­
sage forwarding from one circuit to another,
permitting dialogue between network nodes
that do not share a common circuit between
them (more on this later).

Network Tables The actual network topology is defined by a
series of tables in each processor. The
tables are set up during system generation,
and define the network as "seen" from the
viewpoint of each processor. The tables are:

Symbol J__________________________________
NMBCKT A byte value that defines the

number of network circuits to
which this processor is connec­
ted.

2-21

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION
Network Operation

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Tables
(Continued)

Symbol 1 Description

CKTAST The circuit assignment table
containing NMBCKT entries defin­
ing the network address by which
this processor is known on each
circuit, and specifying the net­
work circuit driver responsible
for each handling each circuit.

DSKAST The disk assignmenttable that
specifies for all drive letters
A-P which are local, remote, and
invalid. This table specifies
a network address for each re­
mote drive, and a disk driver
for each local drive.

PTRAST The printer assignment table
that specifies for all printer
letters A-P which are local, re­
mote, and invalid. This table
specifies a network address for
each remote printer, and a prin­
ter driver for each local prin­
ter.

QUEAST The queue assignment table that
specifies for all queue letters
A-P which are local, remote, and
invalid. This table specifies a
network address for each remote
queue.

DEFDID The default network destination
ID, used for routing all network
requests that are not related to
a specific disk drive, printer,
or queue.

2-22

TurbcDOS 1.4 8086
Implementor's Guide

¡SYSTEM g e n e r a t i o n

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Tables
(Continued)

Symbol J_.. Desuxiptlon _____
FWDTBL The message forwarding table

that specifies any additional
circuits (not directly connected
to this processor) which may be
accessed via explicit message
forwarding, and how messages
destined for such circuits are
to be routed.

These tables are pre-defined with default
values to make set-up of simple master/slave
networks very easy. For complex multi­
circuit networks, the set-up is somewhat more
complicated (as might be expected).

Refer to the preceding B a X s h P̂ J.ii± jS sub­
section for details of the organization and
defaults for these network tables.

2-23

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION
Network Operation

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Message Forwarding The TurboDOS module NETFWD supports both
"implicit" and "explicit" forwarding of net­
work messages. To understand the distinc­
tion, consider the case of a network with
three processors (PI, P2, and P3) connected
by two circuits (Cl and C2) as follows:

I I I I I II pi | -----------c i ----------- | P2 | ------------C2--------- I P3 I
I____ I I_____I I_____I

A program running in PI makes an access to
drive D. Suppose the disk assignment tables
in the three processors are set up in the
following fashion:

. Pi's DSKAST defines its drive D as a
remote reference to P2's drive B.

. P2's DSKAST defines its drive B as a
remote reference to P3's drive A.

. P3's DSKAST defines its drive A as a
local device attached directly to P3.

In this case, Pi's access to its drive D
actually winds up implicitly accessing P3's
drive A. This is implicit forwarding.

Alternatively, suppose Pi's DSKAST defines
its drive D as a remote reference to P3's
drive A, and that Pi's FWDTBL provides that
messages destined for circuit C2 may be
routed via Cl. In this case, PI sends a
request to P3 on circuit Cl. P2 receives the
request, recognizes that it should be forwar­
ded, and retransmits the request to P3 via
circuit C2. Thus, PI accesses P3's drive A
with the assistance of P2, but this time PI
is not aware of P2's role in the transaction.
This is explicit forwarding.

2-24

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

A Comples Esample

Copyright 1984 by Software 2000, Inc.
All rights reserved.

A Complex Example Let's take a reasonably complex network situ­
ation and see how to construct the required
.GEN and .PAR files.

Our hardware is a board-and-bus microcomputer
system consisting of an 80286 CPU running in
unmapped (8086) mode, 128K of RAM, hard disk
and floppy disk subsystems (all these make up
the master processor), and several single­
board slave computers with 80186 CPUs and
256K of RAM each. The master processor is
interfaced to two printers via RS232 serial
ports: a daisywheel printer on port 0 using
XON/XOFF protocol and a matrix printer on
port 1 using clear-to-send handshaking. In
addition, the master has a high-speed RS422
interface connecting it to another board-and-
bus system of similar configuration some
distance away.

We want to configure a TurboDOS system for
this hardware that permits all of the users
of each system to access the hard disk,
floppy disks, and printers attached to both
the local and remote system. We might create
the following OSMASTER.GEN file:

? OSMASTER,
STDMASTR
NETREQ
MSGFMT
CONREM
LSTXON
LSTCTS
DSKHDC
DSKFDC
CKTSLV
CKT422
RTCDRV
NITDRV
MEMTBL

GEN for complex example
standard master package
to make requests of other sys
needed by NETREQ
no console on the master
XON/XOFF for daisy (LSTDRA)
CTS for matrix (LSTDRB)
hard disk controller (DSKDRA)
floppy disk control. (DSKDRB)
circuit driver for slaves (CO)
circuit driver for RS422 (Cl)
real-time clock driver
hardware initialization driver
memory specification table

2-25

TurboDOS 1*4 8086
Implementor's Guide

SYSTEM GENERATION
A Complex Example

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

A Complex Example Our system generation task is completed by
(Continued) creating the companion OS MASTER. PAR file:

; OSMASTER.PAR for complex example
NMBCKT
CKTAST

DSKAST

PTRAST

QUEAST

DEFDID
DSPPAT
OSMLEN
COMPAT
NMBSVC
NMBUFS

2 ; 2 network circuits:
(0x0000),(CKTDRA) ; CO = bus
(0x0100),(CKTDRB) ? Cl = RS422
0x00,(DSKDRA)
0x00,(DSKDRB)
0x01,(DSKDRB)
0x80,(0x0101)
0x81,(0x0101)
0x82,(0x0101)
0x00,(LSTDRA)
0x01,(LSTDRB)
0x80,(0x0101)
0x81,(0x0101)
0x00,(0x0000)
0x00,(0x0000)
0x80,(0x0101)
0x81,(0x0101)
(0x0101)
1,2,3,4
(0x0600)
0xB8
5
20

drv A=local HD
drv B=local FD0
drv C=local FD1
drv D=remote HD
drv E=remote FD0
drv F=remote FD1
ptr A=lcl daisy
ptr B=lcl matrix
ptr C=rmt daisy
ptr D=rmt matrix
queue A=local
queue B=local

; queue C=remote A
; queue D=remote B

default=other master
assgn ptrs to queues
24K dynamic memory
compatibility flags
5 server processes
20 IK disk buffers

The generation of the second master operating
system could be identical, except that all
occurrences of network addresses (0x0100) and
(0x0101) in the OSMASTER.PAR file would be
reversed. Generation of the slave operating
system would be very straightforward, and
identical for both systems.

If you study this example thoroughly until
you understand the reason for every .GEN and
.PAR file entry, you should have little
trouble setting up your own "sysgens".

2-26

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Sysgen Procedure

Copyright 1984 by Software 2000, Inc,
All rights reserved.

Sysgen Procedure To conclude this section, here is a suggested
step-by-step procedure for generating a new
version of TurboDOS:

1. Bring up a previous version of 8086
TurboDOS. If this is your first attempt
to generate an 8086 TurboDOS system, you
may bring up CP/M-86 instead. However, if
you are using CP/M, all disks will have to
be in a format compatible with both CP/M
and TurboDOS (e.g., eight-inch one-sided
single-density with 128-byte sectors).

2. Make a working copy of your TurboDOS dis­
tribution disk. Do not use the original
disk (in case something goes wrong).
Insert the working diskette in a conven­
ient disk drive.

3. Using your favorite text editor, create or
revise the file OSMASTER.GEN containing
the names of the relocatable modules to be
linked together. Generally, this will
consist of the appropriate STDxxxxx stan­
dard package plus selected additional
modules and all required device drivers.

4. Using your editor once again, create or
revise the file OSMASTER.PAR containing
any required patches. This may be omitted
if no patches are desired.

5. Using the command TL INK O S MASTER, SYi?,
generate an executable master operating
system in accordance with the .GEN and
.PAR files.

6. In a similar fashion, construct a new
loader by creating or revising the files
OSLOAD.GEN and OSLOAD.PAR, then using the
command TLINK. OSLOAD.CMD to generate the
executable loader.

2-27

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Sysgen Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sysgen Procedure 7. For a master/slave network system, con­
struct a slave operating system in the
same manner. Create or revise the files
OSSLAVE.GEN and OSSLAVE.PAR, then use the
command to generate the
down-loadable slave operating system.

8. To test the newly-generated system, eject
all disks other than your working disk
(again, in case something goes wrong).
Enter the command OSLO AD. The new system
should cold-start. If it fails to come up
or to function properly, you will have to
start over at step 1 and check your work
carefully — there is most likely an error
in one of your .GEN or .PAR files, or a
"bug" in one of your drivers.

2-28

TurboDOS 1.4 8086 DISTRIBUTION
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

DISTRIBUTION This section explains the TurboDOS distribu­
tion procedure in detail. It covers TurboDOS
licensing requirements, and the obligations
of licensed distributors, dealers, and end-
users. It describes how to make up and
serialize TurboDOS distribution disks.

Although this section is of concern primarily
to licensed TurboDOS distributors, we've
included it here so that dealers and end-
users can gain a better perspective on the
overall distribution process.

TurboDOS Licensing TurboDOS is a proprietary software product of
Software 2000, Inc. As such, it is protected
by law against unauthorized use and reproduc­
tion. Authorization to use and/or reproduce
TurboDOS is granted only by written license
agreement.

Legal Protection TurboDOS programs and documentation are copy­
righted, which means it is against the law to
make copies without express written authori­
zation from Software 2000 to do so.

The word "TurboDOS" is a trademark owned by
Software 2000 and registered in Class 9 (com­
puter software) and Class 16 (documentation)
with the trademark offices of the United
States and most of the developed countries of
the free world. This means it is against the
law to make use of the TurboDOS trademark
without express written authorization from
Software 2000.

Software 2000 has licensed certain companies
to distribute TurboDOS. Such distributors
are authorized to use the TurboDOS trademark,
and to reproduce, distribute, and sub-license
TurboDOS programs and documentation to deal­
ers and end-users.

3-1

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

User Obligations TurboDOS may be used only after the user has
paid the required license fee, signed a copy
of the TurboDOS end-user license agreement,
and returned the signed agreement to the
issuing TurboDOS distributor. Then, TurboDOS
may be used only in strict conformance with
the terms of the license.

Each end-user license allows TurboDOS to be
used on one specific computer system identi-
fied by make, model, and serial number. The
end-user license may not be transferred from
one computer system to another, and expressly
forbids copying programs and documentation
except as required for backup purposes only.

A separate license fee must be paid and a
separate license signed for each computer
system on which TurboDOS is used. Network
slave computers that cannot operate stand­
alone do not have to be licensed separately
from the network master. (This would be the
case, for example, if the slave computers
have no local disk storage, or if TurboDOS is
furnished in a form that cannot be run stand­
alone on the slave computers.) However,
networked computers that are also capable of
stand-alone operation under TurboDOS must
each be licensed separately.

Dealer Obligations A dealer must sign a TurboDOS dealer agree­
ment and return the signed agreement to the
issuing distributor. Then, the dealer is
permitted to purchase pre-serialized copies
of TurboDOS programs and documentation from
the distributor, and to resell them to end-
users. Dealers may not reproduce TurboDOS
programs or documentation for any purpose.
Before delivering each copy of TurboDOS, the
dealer must see to it that the end-user signs
the TurboDOS end-user license agreement and
returns it to the issuing distributor.

3-2

TurboDOS 1.4
Implementor'

Distributor
Obligations

8086 DISTRIBUTION
s Guide

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Each licensed TurboDOS distributor is provi­
ded a master copy of TurboDOS relocatable
modules and command programs on diskette. A
distributor is allowed to reproduce and
distribute copies of TurboDOS to dealers and
end-users, but only in connection with
certain specifically authorized hardware
(usually manufactured or sold by the distri­
butor). The distributor is required to
serialize each copy of TurboDOS with a unique
sequential magnetic serial number, and to
register each serial number promptly with
Software 2000. (Serialization is described
in more detail below.)
Each distributor is also provided with a
master copy of TurboDOS documentation, either
in camera-ready hardcopy or in ASCII files on
disk. The distributor is responsible for
reproducing the documentation and furnishing
it with each copy of TurboDOS it issues.

A distributor must require each dealer to
sign and return a TurboDOS dealer agreement
before issuing copies of TurboDOS to the
dealer for resale. A distributor must
require each end-user to sign and return a
TurboDOS end-user license agreement before
issuing a copy of TurboDOS directly to the
end-user.

3-3

TurboDOS 1.4 8086
Implementor1s Guide

DISTRIBUTION

Serialization

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Each copy of TurboDOS is magnetically serial­
ized with a unique serial number. Such
serialization helps ensure that reproduction
and distribution of TurboDOS is done in
strict accordance with the required licensing
and registration procedures, and facilitates
tracing of unlicensed copies of the software.

Each relocatable module of TurboDOS distribu­
ted to a dealer or end-user has a magnetic
serial number composed of two parts:

. an origin number that identifies the
issuing distributor, and

. a sequential unit number that uniquely
identifies each copy of TurboDOS issued
by that distributor.

During system generation, the TLINK command
verifies that all modules making up a Turbo­
DOS configuration are serialized consistent­
ly, and magnetically serializes the resulting
executable version of TurboDOS accordingly.

The relocatable modules on the master disk
furnished to each licensed TurboDOS distribu­
tor are partially serialized with an origin
number only. Each distributor is provided a
serialization program (SERIAL.CMD) that must
be used to add a unique sequential unit num­
ber to each copy of TurboDOS issued by the
distributor. The TLINK command will not
accept partially-serialized modules that have
not been serialized with a unit number. Con­
versely, the SERIAL command will not re­
serialize modules that have already been
fully serialized.

3-4

TurboDOS 1.4 3086
Implementor's Guide

DISTRIBUTION

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Technical Support Software 2000 maintains telephone and telex
"hot-lines” to provide TurboDOS technical
assistance to its distributors. These are
unlisted numbers providing direct access to
the authors of the TurboDOS operating system,
and are furnished only to licensed TurboDOS
distributors. We encourage distributors to
take advantage of this service whenever tech­
nical questions or problems arise in using or
configuring TurboDOS.

It is the responsibility of each licensed
distributor to provide technical support to
its dealers and end-user customers. Software
2000 cannot assist dealers or end-users
directly. Where exceptional circumstances
seem to require direct contact between Soft­
ware 2000 technical personnel and a dealer or
end-user, this must be handled strictly by
prior arrangement between Software 2000 and
the distributor.

3-5

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION
SERIAL Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SERIAL Command The SERIAL command enables TurboDOS distribu­
tors to magnetically serialize relocatable
modules of TurboDOS for distribution.

Syntax 1 1
1 SERIAL srcefile destfile ?Unnn {options} 1
1 SERIAL ;Unnn {options} 1
1____ 1

Explanation The SERIAL command works exactly like the
COPY command, and accepts exactly the Same
arguments and options. However, SERIAL has
the additional function of magnetically
serializing relocatable modules as they are
copied. SERIAL serializes files of type .REL
(Z80 modules) and type .0 (8086 modules).
Other files are copied without any change.

The unit number must be specified on the
command line as ;Unnn, where "nnn" represents
a decimal unit number in the range 0-65535.
Unit numbers must be assigned sequentially,
starting with 1. Unit number 0 is reserved
by convention for in-house use by the distri­
butor.

SERIAL produces fully-serialized modules that
are encoded with the distributor's origin
number and the specified unit number. TLINK
does not accept TurboDOS modules unless they
have been fully serialized in this fashion.

Options LOpjJ-mJ____________________________________ 1
1 1
1 SERIAL accepts all COPY options, plus: 1
1 1
1 ?Unnn Relocatable modules (type .REL 1
1 or .0) are magnetically serial- 1
1 ized with unit number nnn, which 1
1 must be a decimal integer in the 1
1 range 0 to 65535. This "option" 1
1 is mandatory for SERIAL. 1

3-6

TurboBOS 1.4 8086
Implementor's Guide

DISTRIBUTION
SERIAL Command

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example
ÛÂ1SERIAL *.Û B: 5Ü289N
0A:AUTLOD .0 copied to OB:AUTLOD .0
0A:AUTLOG .0 copied to OB:AUTLOG .0
OAsSYSNIT
0A>

•
.0 copied to 0B:SYSNIT .0

Error Messages
SERIAL incorporates all COPY error mes­
sages, plus:

Unit number not specified
Origin number violation
File is already serialized
Unexpected EOF in .0 or .REL file

3-7

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION
PACKAGE Command

Copyright 1984 by Software 2000, Inc,
All rights reserved.

PACKAGE Command

Syntax

The PACKAGE command lets you combine any
collection of relocatable object modules into
a single concatenated .0 file.

I PACKAGE srcefile {destfile}
I
!

Explanation PACKAGE may be used to construct custom
packages of TurboDOS modules, make additions
or changesto the supplied STDxxxxx packages,
pre-package collections of driver modules,
and so forth.

The "srcefile" argument specifies the name of
an input file "srcefile.PKG" that lists the
modules to be packaged. The "destfile" argu­
ment specifies the name of the concatenated
.0 file to be created. If "destfile" is
omitted, then the "srcefile" argument is also
used as the name of the output .0 file.

If the .PKG file is found, it must contain
the list of relocatable object modules (.0
files) to be linked together. If the .PKG
file is not found, then the PACKAGE command
operates in an interactive mode. You are
prompted by an asterisk * to enter a series
of directives from the console. The syntax
of each directive is:

I objectfn {,objectfn>... {;comment}

A null directive terminates the prompting
sequence and causes processing to proceed.

After obtaining the list of modules from the
file or console, PACKAGE concatenates all of
the modules together (displaying the name of
each module as it is encountered) and writes
the result to the output file.

3-8

TurboDOS 1.4 8086 DISTRIBUTX0N
Implementor1s Guide

PACKAGE Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example 1
UAlPACKAGE STDLOADR i
* ? STDLOADR.PKG standard loader package 1
* OSLOAD,LDRMSG,OSNTRY,FILMGR,FILSUP i
* FILCOM,BUFMGR,DSKMGR,DSKTBL,NONFIL 1
* CONMGR,CONTBL,DSPSGL,COMSUB 1
OSLOAD LDRMSG OSNTRY FILMGR FILSUP etc. 1
0A> i

_ _ . . 1

Error Messages 1
File name missing from command 1
Invalid input file name I
Non-privileged user l
Unexpected EOF in input file 1
Disk is full 1
Can't make output file 1
Can't open input file 1
No input files 1

3-9

TurboDOS 1.4
Implementor1

Distribution
Procedure

8086 DISTRIBUTION
; Guide

Distrib. Procedure

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Here is the procedure to be followed by dis­
tributors when creating each copy of TurboDOS
to be issued to a dealer or end-user:

1. Assign a unique sequential unit number for
this copy of TurboDOS, and register it
immediately by filling out a serial number
registration card (or agreed-to substi­
tute) and mailing to Software 2000, Inc.

2. Format a new disk, and label it with the
following information clearly legible:

. trademark TurboDOSR

. version number (1.4x)

. origin and unit numbers (oo/uuuu)

. statutory copyright notice:
Copyright 198x by Software 2000, Inc.
All rights reserved.

3. Use the SERIAL command to copy and serial­
ize the appropriate files from your dis­
tribution master disk to the new disk.
Use the tables on the following page to
guide you in determining what files to put
on the new disk.

IMPORTANT NOTE: Be absolutely certain
that the new disk does not contain any
unserialized modules or SERIAL.CMD!

4. Using the new serialized disk, use the
TLINK command to generate an executable
loader and operating system. Follow the
system generation procedure described in
the previous section.

5. In addition to the serialized disk, you
should issue copies of TurboDOS documenta­
tion and a start-up PROM (if applicable).

3-10

TurboDOS 1.4
Implementor1

Distribution
Procedure
(Continued)

8086 DISTRIBUTION
Guide

Distrib. Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

The following table may be used for guidance
in preparing TurboDOS disks for distribution.
In addition to the files shown, you need to
include hardware-dependent driver modules and
utility programs as appropriate.

single-user I single-user I multi-user
Jt lQ - -spooler, J _ with, spooler. J _ DstypjlLim

STDLOADR.O
STDSINGL.O

CPMSUP .0
MPMSUP .0
RTCNUL .0
PATCH .0
SUBMIT .0
OSBOOT .0

AUTOLOAD.CMD
BACKUP .CMD

BOOT .CMD
BUFFERS .CMD

COPY .CMD
DATE .CMD
DELETE .CMD
DIR .CMD
DO .CMD
DRIVE .CMD
DUMP .CMD

STDLOADR.O
STDSINGL.O
STDSPOOL.0

CPMSUP .0
MPMSUP .0
RTCNUL .0
PATCH .0
SUBMIT .0
OSBOOT .0

AUTOLOAD.CMD
BACKUP .CMD

BOOT .CMD
BUFFERS .CMD

COPY .CMD
DATE .CMD
DELETE .CMD
DIR .CMD
DO .CMD
DRIVE .CMD
DUMP .CMD

STDLOADR .0
STDSINGL .0
STDSPOOL .0
STDMASTR.0
STDSLAVE .0
STDSLAVX .0

CPMSUP .0
MPMSUP .0
RTCNUL .0
PATCH .0
SUBMIT .0
OSBOOT .0
NBTREQ .0
NETFWD .0
QUEMGR .0
MSGFMT .0
NETSVC .0
CONREM .0

AUTOLOAD .CMD
BACKUP .CMD
BATCH .CMD
BOOT .CMD
BUFFERS .CMD
CHANGE .CMD
COPY .CMD
DATE .CMD
DELETE .CMD
DIR .CMD
DO .CMD
DRIVE .CMD
DUMP .CMD

3-11

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION
Distrib. Procedure

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distribution
Procedure
(Continued)

single-user I single-user I multi-user

ERASEDIR.CMD

FIXDIR .CMD
FIXMAP .CMD
FORMAT .CMD
LABEL .CMD

OTOASM .CMD
PRINT .CMD

READPC .CMD

RENAME .CMD

SET .CMD
SHOW .CMD
TASM .CMD
TBUG .CMD
TLINK .CMD
TPC .CMD
TYPE .CMD
VERIFY .CMD

ERASEDIR.CMD

FIXDIR .CMD
FIXMAP .CMD
FORMAT .CMD
LABEL .CMD

OTOASM .CMD
PRINT .CMD
PRINTER .CMD
QUEUE .CMD
READPC .CMD

RENAME .CMD

SET .CMD
SHOW .CMD
TASM .CMD
TBUG .CMD
TLINK .CMD
TPC .CMD
TYPE .CMD
VERIFY .CMD

ERASEDIP:.CMD
FIFO .CMD
FIXDIR .CMD
FIXMAP .CMD
FORMAT .CMD
LABEL .CMD
LOGOFF .CMD
LOGON .CMD
MASTER .CMD
OTOASM .CMD
PRINT .CMD
PRINTER .CMD
QUEUE .CMD
READPC .CMD
RECEIVE .CMD
RENAME .CMD
SEND .CMD
SET .CMD
SHOW .CMD
TASM .CMD
TBUG .CMD
TLINK .CMD
TPC .CMD
TYPE .CMD
VERIFY .CMD

3-12

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Copyright 1984 by Software 2000, Inc.
All rights reserved.

CODING CONVENTIONS This section is devoted to in-depth discus­
sion of TurboDOS internal coding conventions,
aimed at the systems programmer writing hard-
ware-dependent drivers or resident processes.
All coding examples and driver listings in
this document make use of the TurboDOS 8086
assembler TASM.

Undefined External To allow various TurboDOS modules to be in-
References eluded or omitted at will/ TLINK auto­

matically resolves all undefined external
references to the default names "UndCode”
(for code references) and "UndData" (for data
references). The common subroutine module
COMSUB contains the followings

1 LOC Data# ;data segment 1
1 UndData:: ;undefined data 1
11 WORD 0,0 111
1 LOC Code# ;code segment

1
1

1 UndCode:: ;undefined code 1
1 XOR AL/AL ;zero AL & flags 1
1
1.

RET ;return 1
1

Thus, it is always safe to load or call an
external name. whether or not it is present
at TLINK time. It is bad form to store into
an undefined external name, however!

4-1

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS
Memory Allocation

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Memory Allocation A common memory management module MEMMGR
provides dynamic allocation and deallocation
of memory space required for disk and message
buffers, print queues, file and record locks,
do-file nesting, and so forth. TurboDOS
reserves a region of memory for such dynamic
workspace, located immediately above the
TurboDOS resident. The length of this area
(in paragraphs) is determined by the patch-
able parameter OSMLEN. Memory segments are
a l l o c a t e d d o w n w a r d f r o m t h e t o p of the
reserved region. Deallocated segments are
concatenated with any neighbors and threaded
on a free-memory list. A best-fit algorithm
is used to reduce memory fragmentation.

Allocation and deallocation requests are
coded in this manner :

;code to allocate a memory segment
MOV BX,=36 ;BX=segment size
CALL ALLOC# ;allocate segment
TEST AL, AL yalloc successful?
JNZ ERROR ;NZ -> not enuf mem
PUSH• BX ;else, BX=&segment•
* deallocate a memory segment
POP BX ;BX=&segment
CALL DEALOC# j deallocate segment

ALLOC# prefixes each allocated segment with a
word containing the segment length, so that
DEALOC# can tell how much memory is to be
deallocated. ALLOC# does not zero the newly-
allocated segment.

4-2

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS
List Processing

Copyright 1984 by Software 2000, Inc.
All rights reserved.

List Processing TurboDOS maintains its dynamic structures as
threaded lists with bidirectional linkages.
This technique permits a node to be added or
deleted anywhere in a list without searching.
The list head and each list node have a two-
word linkage (forward and backward pointers).

List manipulation is coded in this manner :

LOC Data# ;data segment
;list head (linkage initialized empty)
LSTHED : WORD LSTHED ;forward pointer

WORD LSTHED ybackward pointer

;list node (linkage not initialized)
LSTNOD : WORD 0 ?forward pointer

WORD 0 ;backward pointer
RES 128 ycontents of node

LOC Code# ?program segment
;code to add node to end of list

MOV BX,&LSTHED ;BX=&head !
MOV DX,&LSTNOD ?DX=&node
CALL LNKEND# ;link to list end

;code to unlink node from list
MOV BX,&LSTNOD ;BX=&node
CALL UNLINK# ?uniink node

;code to add node to beginning of list
MOV BX,&LSTHED ;BX=&head
MOV DX,&LSTNOD ;DX=&node
CALL LNKBEG# ?link to list beg,

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS
Task Dispatching

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Task Dispatching TurboDOS incorporates a flexible, efficient
mechanism for dispatching the 8086-family CPU
among various competing processes. In coding
drivers for TurboDOS, you must take extreme
care to use the dispatcher correctly in order
to attain maximum system performance.

The dispatcher allows one process to wait for
some event (for example, data-available or
seek-complete) while allowing other processes
to use the processor. For each such event,
you must define a three-word structure called
a "semaphore".

A semaphore consists of a count-word followed
by a two-word list head. The count-word is
used by the dispatcher to keep track of the
status of the event. (At present, only the
LSB of the count word is used, supporting
counts in the range -128 to +127.) The list
head anchors a threaded list of processes
waiting for the event to occur.

Two primitive operations operate on a sema­
phore: waiting for the event to occur
(WAIT#), and signalling that the event has
occurred (SIGNAL#). They are coded in this
following manner:

;this semaphore represents some event
EVENT: WORD 0 ;semaphore count

WORD EVENT+2 ;semaphore f-ptr
WORD EVENT+2 ;semaphore b-ptr

;wait for the event to occur
MOV BX,&EVENT ;BX=&semaphore
CALL WAIT# ;wait for event

;signal that event has occurred
MOV BX,&EVENT ;BX=&sempahore
CALL SIGNAL# ?signal event

4-4

TurboDOS 1=4 8086
Implementor's Guide

CODING CONVENTIONS

Task Dispatching
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Task Dispatching Whenever a process waits on a semaphore,
(Continued) WAIT# decrements the semaphore's count-word.

Thus, a negative count -N signifies that
there are N processes waiting for the event
to occur. Whenever an event is signalled,
SIGNAL# increments the semaphore count-word
and awakens the process that has been waiting
longest.

If an event is signalled but no process is
waiting for it, then SIGNAL# increments the
count-word to a positive value. Thus, a
positive count N signifies that there have
been N occurrences of the event for which no
process was waiting. In this case, the next
N calls to WAIT# on that semaphore will
return immediately without waiting.

Sometimes it is necessary for a process to
wait for a specific time interval (for exam­
ple, a motor-start delay or carriage-return
delay) rather than for a specific event.
TurboDOS provides a delay facility (DELAY#)
that permits other processes to use the CPU
while one process is waiting for such a timed
delay. Delay intervals are specified as some
number of "ticks". A tick is an implementa­
tion-defined interval, usually 1/50 or 1/60
of a second. Delays are coded thus:

;delay for one-tenth of a second
MOV BX,=6 ;BX=delay in ticks
CALL DELAY# ;delay process

Accuracy of delays is usually plus-or-minus
one tick. A delay of zero ticks may be
specified to relinquish the processor to
other processes on a "courtesy" basis.
All driver delays should be accomplished via
WAIT# or DELAY#, never by spinning in a loop.

4-5

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS
Interrupt Service

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Interrupt Service Dispatching is especially efficient when used
with interrupt-driven devices. Usually, the
interrupt service routine just calls SIGNAL#
to signal the interrupt-associated event.

Most interrupt service routines should exit
via the usual IRET instruction. However,
some periodic interrupt (usually a 50 or 60
hertz clock interrupt) should have an inter­
rupt service routine that exits by jumping to
thedispatcher entrypointISRXIT#to provide
periodic time-slicing of processes. To avoid
excessive dispatcher overhead, don't use
ISRXIT# more than about 60 times per second.

Before calling any TurboDOS support routine
(such as SIGNAL#) or referencing any DS-
relative data, an interrupt service routine
must call the subroutine GETSDS# to set up
register DS.
A simple interrupt service routine might be
coded like this:

1 DEVISR: PUSH AX save registers
PUSH BX n n

PUSH CX N N

PUSH DX n n

PUSH DS H II

CALL GETSDS# get system DS
MOV BX,&EVENT ;BX=&semaphore
CALL SIGNAL# signal event
MOV DX,&EOIR DX=&end-of-int
MOV AX,ssINTN AX=interrupt#
OUT DX, AX reset interrupt
POP DS restore registers
POP DX n it

POP CX M N

POP BX n ii

POP AX n n

IRET return from int.

4-6

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS
Poll Routines

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Poll Routines Devices incapable of interrupting the CPU
have to be polled by the driver. The dis­
patcher maintains a threaded list of poll
routines, and executes them every dispatch.
The function of each poll routine is to check
the status of its device, and to signal the
occurrence of some event (for example, data-
available) when it occurs. The routine
LNKPOL# links a poll routine onto the poll
list, and UNLINK# removes it.

A poll routine must be coded so that it will
not signal the occurrence of a particular
event more than once. The best way to assure
this is for the poll routine to unlink itself
from the poll list as soon as it has signal­
led the event. An example:

EVENT: WORD 0 ;semaphore
WORD EVENT+2
WORD EVENT+2

ydriver waits for event
MOV DX,&POLNOD ;DX=&poll node
CALL LNKPOL# ;activate poll rtn
CALL POLRTN ;optional pretest
MOV BX,&EVENT ;BX=&semaphore
CALL WAIT# ;wait for event

ypoll routine signals event when detected
poll rtn linkagePOLNOD: WORD

WORD
POLRTN: IN AL,=STAT ;AL=device status

TEST AL,=MASK ;did event occur?
JZ __X ;if not, exit
MOV BX,&EVENT ;BX=&semaphore
CALL SIGNAL# ;signal event
MOV BX,&POLNOD ;BX=&poll node
CALL UNLINK# yunlink poll rtn

__X: RET ;all done

4-7

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS
Mutual Exclusion

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Mutual Exclusion TurboDOS is fully re-entrant at the process
and kernel levels. However, most driver
modules are not coded re-entrantly (since
most peripheral devices can only do one thing
at a time). Consequently, most drivers must
make use of a mutual-exclusion interlock to
prevent TurboDOS from invoking them re-ent-
rantly.
This is very easy to accomplish using the
basic semaphore mechanism of the dispatcher.
It is only necessary to define a semaphore
with its count-word initialized to 1 (instead
of 0). Mutual exclusion may then be accom­
plished by calling WAIT# upon entry and
SIGNAL# upon exit. An example:

;mutual-exclusion semaphore
MXSPH: WORD 1 ;count-word=lI

WORD MXSPH+2
WORD MXSPH+2 •

DRIVER: MOV BX,&MXSPH ;BX=&semaphore
CALL••

WAIT# ;wait if in-use

•m
MOV BX,&MXSPH ;BX=&semaphore
CALL SIGNAL# ;unlock mut-excl
RET /done

4-8

boDQS ^
Implementor's Guide

CODING CONVENTIONS
Sample Driver

Using Interrupts

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sample Driver Here is a simple device driver for an inter-
Using Interrupts rupt-ariven serial input device. It illus­

trates coding techniques discussed so far:

MXSPH: WORD 1 ;MX semaphore
WORD MXSPH+2
WORD MXSPH+2 1I

RDASPH: WORD 0 ;RDA semaphore
WORD RDASPH+2
WORD RDASPH+2

CHRSAV: BYTE 0 Jsaved input char

;device driver main code
INPDRV::MOV BX,&MXSPH ;BX= fcMXsemaphor e

CALL WAIT# jlock MX
STI «1need ints enabled
MOV BX,&RDASPH ?BX=&semaphore
CALL WAIT# wait data avail
PUSH CHRSAV ;stack input char
MOV BX,&MXSPH ;BX=&MXsemaphore
CALL SIGNAL# ;unlock MX
POP AX ; return AL=char
RET 4idone

; interrupt service routine
INPISR; : PUSH AX save registers

PUSH BX it n
PUSH CX n n
PUSH DX it n
PUSH DS n h
CALL GETSDS# get system DS
IN AL,=INPUT ;get input char
MOV CHRSAV,AL ;save for driver
MOV BX,&RDASPH ;BX=&semaphore
CALL SIGNAL# signal data avail
POP DS restore registers
POP DX it n
POP CX n n
POP BX n n
POP AX ■ n
IRET return from int.

4-9

TurboDOS 1.4 8086 CODING CONVENTIONS
Implementor's Guide

Sample Driver
Using Polling

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sample Driver
Using Polling

Here is a simple device driver for non-inter­
rupting serial input device. It illustrates
how polling is used:

1
1 MXSPH: WORD 1 ;MX semaphore
1 WORD MXSPH+2
1 WORD MXSPH+2
1 RDASPH: WORD 0 ;RDA semaphore
1 WORD RDASPH+2

WORD RDASPH+2
1i CHRSAV: BYTE 0 ; saved input char
1
1 ;device driver main code
1 INPDRV::MOV BX,&MXSPH ?BX=&MXsemaphore
1 CALL WAIT# ;lock MX
1 MOV DX,&POLNOD ;DX=&pollnode
1 CALL LNKPOL# ;activate poll rtn
1 CALL POLRTN ;optional pretest
1 MOV BX,&RDASPH ;BX=&semaphore
1 CALL WAIT# ;wait data avail
1 PUSH CHRSAV ;stack input char
1 MOV BX,&MXSPH ;BX=&MXsemaph
1 CALL SIGNAL# ;unlock MX
1 POP AX ?return AL=char
1i RET ?done
i
1 ;device poll routine with linkage
1 POLNOD: WORD 0 ;poll rtn linkage
1 WORD 0
1 POLRTN: IN AL,=STAT ;get device status
1 TEST AL,=MASK ;data available?
1 JZ _ X ;if not, exit
1 IN AL,=DATA ;get input char
1 MOV CHRSAV,AL ?save for driver
1 MOV BX,&RDASPH ;BX=&semaphore
1 CALL SIGNAL# ; signal data avail
1 MOV BX,&POLNOD ;BX=&pollnode
1 CALL UNLINK# ;unlink poll rtn
1 __X: RET ;done

4-10

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Inter-Process
Messages

Inter-Process
Messages

Copyright 1984 by Software 2000, Inc.
All rights reserved.

To pass messages from one process to another,
a five-word structure called a nmessage node"
is used. A message node consists of a three-
word semaphore followed by a two-word message
list head. Routines are provided for sending
messages to a message node (SNDMSG#), and
receiving messages from a message node
(RCVMSG#). Typically, the sending process
allocates a memory segment in which to build
the message, and the receiving process deal­
locates the segment after reading the mes­
sage. The first two words of each message
must be reserved for a list-processing link­
age. Coding is done in this manner:

;message node
MSG NOD: WORD 0 ;semaphore part

WORD MSGNOD+2 , r n
t

WORD MSGNOD+2 . m n/
WORD MSGNOD+6 ;message list head
WORD MSGNOD+6 . m h n

r

;one process allocates/builds/sends msg
MOV BX,=12+4 ;BX=message size+4
CALL ALLOC# ;allocate segment
PUSH BX ;save &segment

•• ;build msg in seg
POP DX ;DX=&segment
MOV BX,&MSGNOD ;BX=&msgnode
CALL SNDMSG# ;send message

;other process reads/deallocates message
MOV BX,&MSGNOD ;BX=&msgnode
CALL RCVMSG# ;receive message
PUSH BX ;save &segment

•• ;process message
POP BX ;BX=&segment
CALL DEALOC# ?deallocate seg

4-11

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Console Routines

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Routines TurboDOS includes several handy console I/O
subroutines which may be called from within
driver modules as illustrated:

;raw console I/O routines
CALL CONST# ;get status in AL
TEST AL,AL ;input char avail?
JZ _ X ;if not, exit
CALL CONIN# ;get input in AL
CALL UPRCAS# ;make upper-case
MOV CL, AL ;char to CL
CALL CONOUT# ;output char in CL

;messages output routines
;message must be null- terminated

CALL DMS# ;output following
MSG: BYTE "This is a test message\0"

MOV BX,&MSG ;BX=&message
CALL DMSBX# ;output msg *BX

?binary-■to-decimal output routine
MOV BX,=31416 ;BX=word value
CALL DECOUT# jdisplays decimal

Sign-On Message You may add your own custom sign-on message
to TurboDOS. Your message will be displayed
at cold-start immediately following the nor­
mal TurboDOS sign-on and copyright notice.

Your sign-on message must be coded as an
ASCII character string terminated with a $
delimiter, and labelled with the public entry
symbol USRSOM. An example:

USRSOM::BYTE
BYTE
BYTE
BYTE

OxOD, OxOA
"Implementation by "
"Trigon Computer Corp."n cn

4-12

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS
Resident Process

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Resident Process You can code a resident process that runs in
the background concurrent with other system
activities, and link it into TurboDOS. The
create-process subroutine CRPROC# may be
called to create such a process at cold-start
as shown:

HDWNIT::MOV BX,=128 ;BX=workspace size
CALL ALLOC# ;alloc workspace

;BX=&workspace
MOV DX,&MYPROC ;DX=&entrypoint
CALL•• CRPROC# ; create process

MYPROC: INC COUNT[DI] ; increment count
MOV DX,=60*60 ;ticks/minute
MOV CL,=2 ;T-function 2
CALL OTNTRY# ?delay 1 minute
JMP MYPROC ;loop forever

CRPROC# automatically allocates a TurboDOS
process area (address appears in register SI)
and a stack area (address appears in SP). If
the process requires a re-entrant workspace,
it should be allocated with ALLOC# and passed
to CRPROC# in BX (as shown above), and will
appear to the new process in register DI.
The resident process must make all operating
system requests by calling OCNTRY# or OTNTRY#
with a C-function or T-function number in
register CL. It must not execute INT OxEO or
INT OxDF, nor make direct calls on kernel
routines such as WAIT#, SIGNAL#, DELAY#,
SNDMSG#, RCVMSG#, ALLOC#, and DEALOC#.

4-13

TurboDOS 1.4 8086 CODING CONVENTIONS
Implementor's Guide

Resident Process
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Resident Process
(Continued)

A resident process is not attached to a con­
sole, so any console I/O requests will be
ignored.

You can do file processing within a resident
process, using the normal C-functions open,
close, read, write, and so forth, called via
OCNTRY#. First, however, you must remember
to warm-start with C-function 0 (OCNTRY#),
and then log-on with T-function 14 (OTNTRY#)•

A resident process must always be coded to
preserve the contents of index register SI,
which Turbodos relies upon as a pointer to
its process area. The process may use all
other registers as desired.

User-Defined
Function

The User-Defined Function (T-function 41)
provides a means of adding your own special
functions to the normal TurboDOS repertoire
of C-functions and T-functions. To do this,
you simply create a function processor sub­
routine with the public entrypoint symbol
USRFCN.

Whenever a program invokes T-function 41,
TurboDOS transfers control to your USRFCN
routine. On entry, ES:CX contains the
address of the 128-byte record area passed
from the caller's current DMA address, and
registers BX and DX contain whatever values
the caller loaded into them. Your USRFCN
routine may return data to the caller in the
128-byte record area (address in CX at entry)
and in any of the registers AL-BX-CX-DX.

Architecturally, your USRFCN routine is in­
side the TurboDOS kernel. Consequently, it
may call kernel subroutines directly. Any
calls to C-functions and T-functions must
therefore be made by means of two special
recursive entrypoints: XCNTRY# and XTNTRY#.

4-14

TarboDOS 1.4 8086 DRIVER INTERFACE
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

DRIVER INTERFACE This section explains how to code hardware-
dependent device driver modules/ and presents
formal interface specifications for each
category of driver required by TurboDOS.

Following this section is a large appendix
that contains assembler source listings of
actual driver modules. The sample drivers
cover a wide range of peripheral devices, and
provide an excellent starting point for your
driver development work.

General Notes Drivers modules are coded with standard pub­
lic entrypoint names, and linked to TurboDOS
using the TLINK command. You may package
your drivers into as many or few separate
modules as you like. In general, it is
easier to reconfigure TurboDOS for a variety
of devices if the driver for each device is
packaged as a separate module.

TurboDOS is designed to accomodate multiple
disk, console, printer, and network drivers.
For disk drivers, for instance, the DSKAST is
normally set up to refer to disk driver
entrypoints DSKDRA#, DSKDRB#, DSKDRC#, and so
forth. Each disk driver should be coded with
the public entrypoint DSKDR_. TLINK automa­
tically maps successive definitions of such
names by replacing the trailing _ by A, B, C,
etc. The same technique may be used for
console, printer, and network driver entry-
points.

You must code driver routines to preserve CS,
DS, SS, SP, SI and DI registers, but you may
use other registers as desired.

5-1

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE
Initialization

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Initialization Hardware initialization and interrupt vector
set-up should be performed in an initializa­
tion routine labelled with the public entry
symbol HDWNIT::. TurboDOS calls this routine
during cold-start with interrupts disabled.

Your HDWNIT:: routine must not enable inter­
rupts or make calls to WAIT# or DELAY#. In
most cases, HDWNIT:: will contain a series of
calls to individual driver initialization
subroutines contained in other modules.

Memory Table All 8086 TurboDOS systems must include a
table that specifies the size and layout of
main memory. The table must be labelled with
the public symbol MEMTBL. It must begin with
a byte value that specifies the number of
discontiguous regions of main memory (up to
eight), followed by two words for each region
which specify the base address and length of
the segment (both in paragraphs). The first
segment in the table must be large enough to
contain the resident portion of 8086 TurboDOS
plus the dynamic workspace (given by OSMLEN).

The following example illustrates the simple
case of a system with 256K of contiguous
memory starting at zero:

MODULE "MEMTBL"
LOC Data#

MEMTBL: ••
BYTE 1
WORD 0x40

» WORD
END

0x4000-

?module ident
;data segment
?memory spec table
;just one region
;base (paragraph)

0x40 ;length (para)

Note that the first 0x40 paragraphs (IK
bytes) are reserved for 8086 interrupt
vectors and must not be included in MEMTBL.

5-2

DRIVER INTERFACE
Implementor's Guide

Console Driver

Copyright 1984 by Software 2000/ Inc,
All rights reserved.

Console Driver A console driver should be labelled with the
public entry symbol CuNDIL.. A console number
^from CONAST) is passed in register CH. The
driver must perform a console I/O operation
according to the operation code passed in
register DL:

1_J-. ___________-----------------. ---
I 0 Return status in ALf char in CL
I 1 Return input character in AL
I 2 Output character passed in CL
I 8 Enter error-message mode
I 9 Exit error-message mode
I 10 Conditional output char in CL

If DL=0, the driver determines if a console
input character is available. If no char­
acter is available, the driver returns AL=0.
If an input character is available, the
driver returns AL=-1 and the input character
in CL, h u t m u u t n u t " c o n s u m e " t h u u h u JL a u tu x .*
TurboDOS depends upon this look-ahead capa­
bility to detect attention requests. The
driver must not dispatch (via WAIT# or
DELAY#) when processing a DL=0 call.

If DL=1, the driver returns an input char­
acter in AL (waiting if necessary).

If DL=2, the driver displays the output char­
acter passed in CL (waiting if necessary).

If DL=8, the driver prepares to display a
TurboDOS error message; if DL=9, it reverts
to normal. TurboDOS always precedes each
error message with an DL=8 call and follows
it with an DL=9 call. This gives the driver
an opportunity to take special action (25th
line, reverse video, etc.) for error
messages. For simple consoles, the driver
should output CR-LF in response to DL=8 or 9.

5-3

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE
Console Driver

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Driver If DL=10, the driver determines whether or
(Continued) not it can accept a console output character

without dispatching (via WAIT# or DELAY#).
If so, it outputs the character passed in CL,
and returns AL=-1 to indicate that the char­
acter was accepted. However, if the driver
cannot accept a console output character
without dispatching, it returns AL=0 to
indicate that the character was not accepted;
TurboDOS will then make an DL=2 call to
output the same character. This special
conditional output call is used by TurboDOS
to optimize console output speed by avoiding
certain dispatch-related overhead whenever
possible.

You should make a special effort to code the
console driver to execute the minimum number
of instructions possible, especially func­
tions 0, 2, and 10. Excessive use of subrou­
tine calls, stack operations, and other time-
consuming coding techniques can make the
difference between running the console device
at full rated speed or something less. Study
the sample driver listings in the appendix
with this in mind.

5-4

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE
Printer Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Printer Driver A printer driver should be labelled with the
public entry symbol LSTDIL_. A printer number
(from PTRAST) is passed in register CH. The
driver must perform a printer output opera­
tion according to the operation code passed
in register DLs

J - J!y p p j:i.p JP______ .____ _

2 Print character passed in CL
7 Perform end-of-print-job action

If DL=2, the driver prints the output charac­
ter passed in CL (waiting if necessary).

If DL=7, the driver takes any appropriate
end-of-print-job action. This is quite
hardware-dependent, and may include slewing
to top-of-form, homing the print head,
dropping the ribbon, and so forth.

5-5

TurboDOS 1.4
Implementor'

Disk Driver

8086 DRIVER INTERFACE
s Guide

Disk Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

A disk driver should be labelled with the
public entry symbol DSKDIL,. The driver per­
forms the physical disk operation specified
by the Physical Disk Request (PDR) packet
whose address is passed by TurboDOS in index
register SI. The structure of the PDR packet
is:

Offset. J__________ Contents.

physical disk request (PDR) packet
;operation code
;drive (base 0)

OtSIJ BYTE OPCODE
ItSI] BYTE DRIVE
2 [SU WORD TRACK
4 [SI] WORD SECTOR
6 [SI] WORD SECCNT
8 [SI] WORD BYTCNT

10[SI] WORD DMAOFF
12[SI] WORD DMABAS
14[SI] WORD DSTADR

16[SI] BYTE BLKSIZ
17[SI] WORD NMBLKS
19[SI] BYTE NMBDIR
20[SI] BYTE SECSIZ
21[SI] WORD SECTRK
23[SI] WORD TRKDSK
25[SI] WORD RESTRK

;track (base 0)
; sector (base 0)
;#sectors to rd/wr
;tbytes to rd/wr
;DMA offs to rd/wr
;DMA base to rd/wr
;DST address

(DST)
;block size (3-7)
;#blocks on disk
;#directory blocks
/sector size (0-7)
/sectors per track
;tracks on disk
/reserved tracks

/copy of disk specification table

The operation to be performed by the driver
is specified in the first byte of the PDR
packet (OPCODE) as follows:

J2ECDJIL -L..,.. ^
0 Read sectors from disk
1 Write sectors to disk
2 Determine disk type, return DST
3 Determine if drive is ready
4 Format track on disk

5-6

TurboDOS 1*4
Implementor1

Disk Driver
(Continued}

8086 DRIVER INTERFACE
s Guide

Disk Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

If OPCODE=0, the driver reads SECCNT physical
sectors (or equivalently* BYTCNT bvtes) into
DMAOFF/DMABAS, starting at TRACK and SECTOR
on DRIVE. The driver returns AL=0 if the
operation is successful, or AL = -1 if an
unrecoverable error occurs. TurboDOS may
request multiple consecutive sectors to be
read, but will never request an operation
that extends past the end of the track.

If OPCODE=l, the driver writes SECCNT physi­
cal sectors (or BYTCNT bytes) from
DMAOFF/DMABAS, starting at TRACK and SECTOR
on DRIVE. The driver returns AL=0 if the
operation is successful, or AL=-1 if an
unrecoverable error occurs. TurboDOS may
request multiple consecutive sectors to be
written, but will never request an operation
that extends past the end of the track.

If OPCODE=2, the driver must determine the
type of disk mounted in DRIVE, and must
return, in the DSTADR field of the PDR
packet, the address of an 11-byte disk speci­
fication table (DST) structured as follows:

D1 1 3 1 ___________— __________________ _
0 block size (3=1K,4=2K,...,7=16K)
1-2 total number of blocks on disk
3 number of directory blocks
4 sector size (0=128,...,7=16K)
5-6 number of sectors per track
7-8 number of tracks on the disk
9-10 number of reserved (boot) tracks

The first byte of the DST (BLKSIZ) specifies
the allocation block size in bits 2-0. In
addition, bit 7 is set if the disk is fixed
(non-removable), and bit 6 is set if file
extents are limited to 16K (EXM=0).

5-7

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE
Disk Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Disk Driver
(Continued)

The driver returns AL=-1 if the operation is
successful, or AL=0 if the drive is not ready
or the disk type is unrecognizable. On suc­
cessful return, TurboDOS moves a copy of the
DST into 16[SI] through 26ESI], where it is
available for subsequent operations.

If OPCODE=3, the driver determines whether
DRIVE is ready, and returns AL=-1 if it is
ready or AL=0 if not.

If OPCODE=4, the driver formats (initializes)
TRACK on DRIVE, using hardware-dependent
formatting information at DMAOFF/DMABAS (put
there by the FORMAT command). The driver
returns AL=0 if successful, or AL=-1 if an
unrecoverable error occurs.

5-8

Implementor's Guide
PRIVER INTERFACE

Network Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver A network circuit driver should be labelled
with the public entry symbol CKTDR_. A mes­
sage buffer address is passed in register DX.
The driver must either send or receive a
network message, according to the operation
code passed in register CL:

0 Receive message into buffer at DX
1 Send message from buffer at DX

If CL=0, the driver receives a network mes­
sage into the message buffer whose address is
passed in DX (waiting if necessary). If a
message is received successfully, the driver
returns AL=0. If an unrecoverable malfunc­
tion of any remote processor is detected, the
driver returns AL=-1 with the network address
of the crashed processor in DX.

If CL=1, the driver sends a network message
from the message buffer whose address is
passed in DX. If the message is sent suc­
cessfully, the driver returns AL=0. If the
message could not be sent because of an unre­
coverable malfunction of the destination
processor, the driver returns AL=-1 with the
network address of the crashed processor in
DX.

The structure of a network message buffer is
shown on the next page. The first two words
of the buffer are reserved for a linkage used
by TurboDOS, and should be ignored by the
driver. The 11-byte message header and
variable-length message body should be sent
or received over the circuit. The driver
needs to look at only the first two header
fields (MSGLEN and MSGDID) and possibly the
last field (MSGFCD)•

5-9

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE
Network Driver

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver
(Continued) ; message buffer format

WORD • ;linkage (ignored)
WORD ? # n n i

11-byte message header
BYTE MSGLEN ?msg length
WORD MSGDID destination addr
BYTE MSGPID ;process id
WORD MSGSID ;source addr
WORD MSGOID ;originator addr
BYTE MSGOPR jorig'r process id
BYTE MSGLVL ?forwarding level
BYTE MSGFCD ;msg format code

variable-length body
RES 7 ;registers
RES 1 ;user # and flags
RES 37 ?optional FCB data
RES 128 7 optional record

The message format code field MSGFCD contains
bit-encoded flags that define the format and
context of each network message. This field
may be ignored by most simple drivers, but
its contents may be useful in complex network
environments. Encoding of MSGFCD is:

BJJL J_

0 first message of session
1 last message of session
2 continuation message follows
3 request includes FCB data
4 request includes record data
5 reply includes FCB data
6 reply includes record data
7 this is a reply message

5-10

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE
Network Driver

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver
(Continued)

The length field MSGLEN represents the number
of bytes in the e e n m î n/i 4-KiJ.UVJL UU h o a / in r XiWiUuC ju
and body (but excluding the linkage). On a
receive request (CL=0), TurboDOS presets
MSGLEN to the maximum allowable message
length, and expects MSGLEN to contain the
actual message length on return. On a send
request (CL=1), TurboDOS presets MSGLEN to
the actual length of the message to be sent.

In a master/slave network, it is often desir­
able for the circuit driver in the master to
periodically "poll" the slave processors on
the circuit to detect any slave malfunctions
quickly and to effect recovery. If the
driver reports that a slave has crashed (by
returning AL=-1 and DX=network-address), then
the circuit driver must not accept any fur­
ther messages from that slave until TurboDOS
has completed its recovery process.
TurboDOS signals the driver that such recov­
ery is complete by sending a dummy message
destined for the slave in question with a
length of zero. The driver should not actu­
ally send such a message to the slave, but
could initiate whatever action is appropriate
to reset the slave and download a new copy of
the slave operating system.

A slave must request an operating system
download by sending a special download re­
quest message to the master (usually done by
a bootstrap routine). The download request
message consists of a standard 11-byte header
(with MSGPID, MSGOID and MSGFCD zeroed) fol­
lowed by a 1-byte body containing a "download
suffix" character. The master processor
addressed by MSGDID will return a reply mes­
sage whose 128-byte body is the first record
of the download file OSSLAVEx.SYS (where "x"
is the specified download suffix).

5-11

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE
Network Driver

(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver The slave continues to send download request
(Continued) messages and to receive successive download

records until it receives a short reply mes­
sage (1-byte body) signifying end-of-file.
The single byte passed as the body of the
final short message identifies the system
disk, and should be passed to the system in
register AL.
The entire failure detection, failure recov-
ery, and slave downloading procedure is very
hardware-dependent. Study the driver listing
in the appendix for guidance.

5-12

TurboDOS 1.4
Implementor1

Comm Driver

8086 DRIVER INTERFACE
s Guide

Comm Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

The comm driver supports the TurboDOS commu­
nications extensions (T—functions 34-40), and
may be omitted if these functions are not
used. The driver should be labelled with the
public entry symbol COMDRV. A comm channel
number is passed in register CH. The driver
must perform an I/O operation according to
the operation code passed in register DL;

Hkf— J. ,
0 Return input status in AL
1 Return input character in AL
2 Output character passed in CL
3 Set channel baud rate from CL
4 Return channel baud rate in AL
5 Set modem controls from CL
6 Return modem status in AL

If DL=0, the driver determines if an input
character is available. If one is available,
the driver returns AL=-1, otherwise AL=0.

If DL=1, the driver returns an input char­
acter in AL (waiting if necessary).

If DL=2, the driver outputs the character
passed in CL.

If DL=3, the driver sets the channel baud
rate according to the baud-rate code passed
in CL. If DL=4, the driver returns the
channel baud-rate code in AL. See T-func-
tions 37 and 38 in the £MfL Pjreĵ jemmej:1 s
Guide for baud-rate code definitions.

If DL=5, the driver sets the modem controls
according to the bit-vector passed in CL. If
DL=6, the driver returns the modem status
vector in AL. See T-functions 39 and 40 in
the M M Guide for bit-vector
definitions.

5-13

TurboDOS 1.4
Implementor1

Clock Driver

8086 DRIVER INTERFACE
Guide

Clock Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

The real-time clock driver does not take the
form of a subroutine called by TurboDOS, as
do the other drivers described in this sec­
tion. Rather, the clock driver generally
consists of an interrupt service routine
which responds to interrupts from a periodic
interrupt source (preferably 50 to 60 times a
second). The interrupt service routine
should call DLYTIC# once per system tick (to
synchronize DELAY# requests). It should also
cal 1 RTCSEC# once per second (that is, every
50 to 60 ticks) to update the system time and
date. Finally, it should exit by jumping to
ISRXIT# to provide a periodic dispatcher
time-slice. Excluding initialization code, a
typical clock driver might be coded thus:

RTCCNT: BYTE 60 divide-by-60 cntr
RTCISR: PUSH AX save registers

PUSH BX n ■
PUSH CX n n
PUSH DX n n
PUSH DS it n
CALL GETSDS# get system DS
CALL DLYTIC# signal one tick
DEC RTCCNT decrement counter
JNZ _ X not 60 ticks yet
MOV RTCCNT,=60 ;reset counter
CALL RTCSEC# signal one second

X: MOV DX,&EOIR DX=&end-of-int
MOV AX,=INTN AX=interrupt#
OUT DX, AX reset interrupt
POP DS restore registers
POP DX U It
POP CX n it
POP BX n it
POP AX it it
JMP ISRXIT# go to dispatcher

5-14

TurboDOS 1,4 8086 DRIVER INTERFACE
Implementor's Guide

Clock Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Clock Driver
Ë 4* 41 \\WUUA1IUCUI

If the hardware is capable of determining the^ ^ 4, A ^ ̂ ^ 4. ; ^ ^ «h 4» ^ «Mr 4>
uauc auui uiiuc” u i-u a j au tv iu -oua iu ^KttVk/jr u i c a u o
of a battery-powered clock, for example), the
clock driver may initialize the following
public symbols in the RTCMGR module:

SECS:: BYTE 0 /seconds 0-59
MINS:: BYTE 0 /minutes 0-59
HOURS : : BYTE 0 /hours 0-24
JDATE: : WORD 0x8001 /Julian date

/base 31-Dec-47

5-15

TurboDOS 1.4
Implementor1

Bootstrap

8086 DRIVER INTERFACE
s Guide

Bootstrap

Copyright 1984 by Software 2000, Inc.
All rights reserved.

The bootstrap is usually contained in a ROM
or on a boot track. Its function is to
search all disk drives for the TurboDOS
loader program OSLOAD.CMD, and to load and
execute it if found. To generate a boot­
strap, use TLINK to combine the standard
bootstrap module OSBOOT.O with your own
hardware-dependent driver. Your driver must
define the following public names: INIT,
SELECT, READ, XFER, CODE, and DATA.

INIT:: is called once to perform any required
hardware initialization. It returns with
register AX set to the paragraph address of
the load base (where the file OSLOAD.CMD
should be loaded into memory by the boot­
strap). This address should be chosen so
that OSLOAD will not overlay the bootstrap or
the operating system to be loaded.

SELECT:: is called to select the disk drive
passed in AL (0-15). If the selected drive
is not ready or non-existent, it returns
AL=0. Otherwise, it returns AL=-1 and the
address of an 11-byte disk specification
table (DST) in register SI (see page 5-7).

READ:: is called to read one physical sector
from the last-selected drive. The track is
passed in CX, the sector in DX, the DMA
offset in BX, and the DMA base in ES. It
must return AL=0 if successful, or AL=-1 if
an unrecoverable error occurred.

XFER:: is transferred to at the end of the
bootstrap process. In most cases, this
routine must set register DS to the base
paragraph address of the loader (normally the
load base returned by INIT:: plus 8 to allow
for the .CMD header), set location DS:0080 to
zero (to simulate a null command tail), and
jump to the loader (using a JMPF to set CS=DS
and IP=0xl00).

5-16

TurboDOS 1.4
Implementor1

Bootstrap
(Continued)

8086 DRIVER INTERFACE
s Guide

Bootstrap
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

CODE:: defines the base paragraph (CS value)
under which the bootstrap itself is to be
executed. OSBOOT loads this value into
register CS before calling INIT::, SELECT::,
READ:: or XFER i u

DATA:: defines the base paragraph (DS value)
of a 128-byte RAM area that OSBOOT may use
for working storage. (It should not be
located where OSLOAD.CMD will be loaded!)
OSBOOT loads this value into register DS
before calling INIT::, SELECT::, READ:: or
XFER::.

5-17

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Copyright 1984 by Software 2000, Inc.
All rights reserved.

(Intentionally left blank.)

5-18

TurboDOS 1*4 8080 OTOASM CouDsnd
Implementor's Guide

Copyright 1984 by Software 2 0 0 0 , Inc,
All rights reserved.

OTOASM Command Some TurboDOS implementations require that a
Z80 master processor download 8086-family
slave processors. In writing the network
circuit driver for the Z80 master processor,
it is often necessary to embed a download
bootstrap routine written in 8086 code. The
utility program OTOASM.CMD is designed to
simplify this process.
OTOASM converts an 8086 object file (type .0)
produced by TASM into a Z80 source file (type
.ASM) acceptable to either the PASM or M80
assemblers. The output file contains a
sequence of data definition statements (.BYTE
and .WORD, or DB and DW) representing 8086
machine-language.

Syntax 1 1
1 OTOASM filename (-M) 1
1__1

Explanation The "filename" argument must not have an
explicit type, and specifies the name of both
the input file "filename.0" and the output
file "filename.ASM" to be used. The "-M"
option causes the output to be formatted for
the M80 assembler rather than the PASM assem­
bler.

The input file (type .0) must not contain any
relocatable tokens. Consequently, the 8086
source module (type .A) must define only
absolute location counter values (LOC) and
must make no external references (# suffix).
Public symbols may be defined as long as they
do not have relocatable values.

A-l

TurboDOS 1.4 8086 OTOASM Command
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

(Intentionally left blank.)

TurboDOS 1.4 8086
Implementor's Guide

SAMPLE DRIVER
SOURCE LISTINGS

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SAMPLE DRIVER The remainder of this document consists of
SOURCE LISTINGS assembler source listings of actual drivers.

The listings comprise the drivers for a
working TurboDOS system for the IBM Personal
Computer with 256K of RAM.

The listings appear in the following order:

Module _______ Deiscxipti GIL.
DREQUATE common symbolicequates
MPBIPC IBM PC bootstrap driver
NITIPC IBM PC driver initialization
CONIPC IBM PC TTY-mode console driver
LSTPPA IBM PC parallel printer driver
LSTACA IBM PC serial printer driver
RTCIPC IBM PC real-time clock driver
DSKIPC IBM PC floppy disk driver
MSTIPC IBM PC memory spec table (256K)

Network circuit drivers will be furnished in
the next edition of this document. In the
meantime, refer to the Z 8 0 Impiemen t o r J s
Guide for circuit driver examples.

B-l

Note:

TurboDOS 1.4 8086
Implementor's Guide

Copyright 1984 by Software 2000,
All rights reserved.

Sample source listings are available upon request.

(Intentionally left blank.

SAMPLE DRIVER
SOURCE LISTINGS

Inc.

B-2

	TOP
	TABLE OP CONTENTS
	ARCHITECTURE
	ARCHITECTURE
	Module Hierarchy
	Process Level
	Kernel Level
	Driver Level
	TurboDOS Loader
	Nodule Hierarchy
	Memory Required
	Other Languages

	SYSTEM GENERATION
	SYSTEM GENERATION
	Introduction
	TLINK Command
	Explanation

	Patch Points
	Network Operation
	A Complex Example

	DISTRIBUTION
	DISTRIBUTION
	TurboDOS Licensing
	Legal Protection TurboDOS
	User Obligations
	Dealer Obligations
	Distributor Obligations
	Serialization
	Technical Support
	SERIAL Command
	PACKAGE Command
	Distribution Procedure

	CODING CONVENTIONS
	CODING CONVENTIONS
	Memory Allocation
	List Processing
	Task Dispatching
	Interrupt Service
	Poll Routines
	Mutual Exclusion
	Sample Driver Using Interrupts
	Sample Driver Using Polling
	Inter-Process Messages
	Console Routines
	Sign-On Message
	Resident Process
	User-Defined Function

	DRIVER INTERFACE
	DRIVER INTERFACE
	General Notes
	Initialization
	Memory Table
	Console Driver
	Printer Driver
	Disk Driver
	Network Driver
	Comm Driver
	Clock Driver
	Bootstrap

	APPENDICES
	OTOASM Command
	Sample Driver Source Listings is missing

