Copyright © 1987 by Borland International, INC.

Jede Vervielfiltigung dieses Handbuches sowie des Turbo Modula-2 Softwareprogrammes
wird strafrechtlich verfolgt. Die Rechte an der Dokumentation und die Rechte an dem Soft-
wareprogramm Turbo Modula-2 liegen bei Borland International.

Der rechtméBige Erwerb der Programmdisketten und des Handbuches erlaubt die Nut-
zung der Programme analog der Benutzung eines Buches. Entsprechend der Un-
moglichkeit, daB ein Buch zugleich an verschiedenen Orten von mehreren Personen
gelesen wird, darf das Softwareprogramm Turbo Modula-2 nicht gleichzeitig von
verschiedenen Personen an verschiedenen Orten und auf verschiedenen Geréten benutzt
werden. Diskettenkopien diirfen lediglich zum Zweck der Datensicherung angefertigt
werden.

Sie (der Lizenznehmer von Turbo Modula-2) diirfen eigene Programme, die Sie mit dem
Turbo Modula-2 Sprachcompiler geschrieben und compiliert haben, ohne Einschrankung
oder Verpflichtung zu zusitzlichen Lizenzgebiihren verwenden, weitergeben oder
verkaufen. Sie sind ebenfalls nicht verpflichtet anzugeben, daf IThre Programme mit dem
Turbo Modula-2 Compiler entwickelt wurden, oder da8 Sie Quellcode aus Toolboxen der
Borland Sprachprodukte enthalten.

Die Beispielprogramme von Turbo Modula-2, die auf den Originaldisketten mitgeliefert
werden, demonstrieren die verschiedenen Eigenschaften von Turbo Modula-2. Sie diirfen
diese Beispielprogramme editieren oder fiir den eigenen Gebrauch modifizieren. Sie
diirfen diese Programme jedoch nicht als Ganzes oder in Teilen in compilierter Form oder
als Quelltext weitergeben oder verkaufen. Sie diirfen die Routinen aus den Beispielpro-
grammen in eigenen Anwenderprogrammen verwenden, solange die resultierenden Pro-
gramme nicht einem Beispielprogramm oder einem Teil eines Beispielprogrammes in
Erscheinung oder Funktion gleichen.

Einschrankung der Gewahrleistung

Es wird keine Garantie fiir die Richtigkeit des Inhaltes dieses Handbuches iibernommen.
Da sich Fehler, trotz aller Bemithungen, nie vollstindig vermeiden lassen, sind wir fir
Hinweise jederzeit dankbar.

Herausgeber:

Heimsoeth Software GmbH & Co. Produktions- und Vertriebs-KG
Fraunhoferstr. 13, Postfach 14 02 80 :

8000 Miinchen 5 Telefon: 089/2 60 94 67, Telex: 52 12 637 mcm d
1. Auflage August 1987

MODULA-2
TABLE OF CONTENTS

Introduction 17
Structure of This Manual 17

Typography 18
Acknowledgements 19

Chapter 1. Getting Started 21
Before Use 21

Files on Disk 21

Preparing a Work Disk 23

Running Turbo Modula-2 26

Chapter 2. A Brief Tour of Turbo Modula-2 29
The Menu System 29

Chapter 3. Language Elements 37
Character Set 37

Vocabulary 38

Numbers 38

Whole Numbers 38

Real Numbers 40

Strings and Characters 40
Strings 40

Characters 41

~~limiters and Comments 41
welimiters 41

Comments 42

Operators 42

Reserved Words 43
Identifiers 44

Standard Identifiers 44
User-Defined Identifiers 45
Library Identifiers 45

4 ' MODULA

Chapter 4. Expressions 49
Properties of an Expression 49
Operands 50

Operators 50

Operator Precedence 51

Chapter 5. Data Structure 53
Data Objects 53

Elementary Data Types 54
Declarations 56

Constant Declarations 57

Type Declarations 58

Variable Declarations 58
. User-Defined Unstructured Types 59
Enumeration Types 59

Subrange Types 60

Pointer Types 61

Structured Types 62

Array Types 62

Record Types 64

Variant Records 66

Set Types 67

Procedure Types 68

Chapter 6. Statements 71
Assignment Statements 72
WITH Statements 73
Conditional Statements 75
IF Statements 75

CASE Statements 76
Repetitive Statements 77
FOR Statements 77
WHILE Statements 79
REPEAT Statements 79
LOOP Statements 80
EXIT Statements 80 4
Procedural Statements 81
Procedure Calls 82
Procedure Declarations 82
Parameters 84

Open Array Parameters 86
Function Procedures &9

RETURN Statements 90
Nested Procedures 91
Scope of Visibility 92
FORWARD Statements 93
Standard Procedures 94

Chapter 7. Modules 97

The Main Module 97

Library Modules 100

{(nition and Implementation Modules 101
Compiled Modules 104

Opaque Export 105

Local Modules 106

Scope and Local Modules 107

Chapter 8. Low-Level Facilities 111
Type-Transfer Functions 113

Type Transfer and Type Conversion 114
Low-Level Types and the Pseudomodule System 115
Untyped Parameters 116
Absolute Addresses 117
Coroutines and Interrupts 118
Coroutines 118

Interrupts 119

Chapter 9. Turbo Modula-2 Extensions 121
Input and Output Extensions 121

String Extensions 122

’” 'tidimensional Open Arrays 122

L..or-Handling Extensions 122

Syntax and Semantics of Exception Handling 123
Declaration of Exceptions 124

Raising Exceptions 124

Exception Handlers 125

Exception Propagation 127

6 MODULA

Chapter 10. System Operations 131
File Management Utilities 132

Options 135

Avoiding the Menus 137

The Turbo Editor 138

Operating the Editor 139

Editing Commands 139

Cursor Movement Commands 141
Extended Movement Commands 143
Insert and Delete Commands 144

Block Commands 145

Find and Replace Commands 147
Miscellaneous Editing Con:mands 149
The Librarian 151

Searching Libraries 151

The Compiler 152

Operating the Compiler 153

The Listing 154

Error Correction 157

Running Out of Memory 159 .
Vhen the Compiler Runs Out of Memory 159
When Your Program Runs Out of Memory 160
Symbol Files 162

Compiler Options and Switches 163

The Linker 167

Linking with Overlays 169

Linking the Linker 173

Version Control 174

Utilities 175

Linking Microsoft Relocatable Files 175
Profile 178 ’

Chapter 11. The Standard Library 181
Overview of Input and Output Modules 182
Overview of Utility Modules 183

Overview of System and Low-Level Modules 183
Details of the Module Library 184

Input and Output 184

Streams 186

Logical Devices 187

The Texts Module 188
Standard Text Streams 188
Stopping the Program During Input and Output 192
Opening, Creating, and Closing a Text 193
Renaming, Deleting, and Other File Operations 195
Reading and Writing 195
READ and WRITE Statements 201
User-Defined 1/0 Drivers 205
The InOut Module 207
The Files Module 210
Errors During File Handling 210
(" erations on Entire File 214
. ..e Processing 216
Files with Elements of Mixed Types 222
The Terminal Module 224
The ComLine Module 229
Redirection of Input and Output 229
Utility Modules 233
The MathLib and LongMath Modules 233
The Strings Modules 237
The Convert Module 241
The Doubles Module 242
System-Dependent Modules 243
The Processes Module 243
The Pseudomodule SYSTEM 248
Low-Level Access to Data 248
Array of Word 248 ’
Coroutines and Interrupts 251
Z80-Specific Procedures 253
Interface 1o CP/M 253
Assembler Interface 254
*fodules in Memory Management 258
(.1e STORAGE Module 260
Standard Procedures Dependent on Storage 260
Heap Pointer 260

Dynamic Variable Errors 263
The Loader Module 264

Chapter 12. Turbo Modula-2 Reference Directory 271
ABS 273

ADDRESS 273

ADR 275

MODULA

ALLOCATE 276
AND 277
Append 278
Arctan 279
ArgumentError 280
ARRAY 281
available 284
Awaited 285
BADOVERLAY 286
BDOS 287
BEGIN 288
BIOS 288
BITSET 290
BOOLEAN 291
BusyRead 292
BYTE 294

Call 295

CAP 296

CAPS 296
CARD 297
CARDINAL 298
CardToStr 299
CASE 300
CHAR 303

CHR 304
clearEol 305
ClearScreen 306
ClearToEOL 307
Close 308
Closelnput 309
CloseOutput 310
CloseText 311
CODE 312

Col 313

ComLine 314
commandLine 317
ConnectDriver 318
console 319
CONST 320
Convert 321

Copy 322

Cos 323

Create 324

CreateText 325

DeadLock 326

DEALLOCATE 327

DEC 328

DEFINITION 330

Delete Files 332

Delete Strings 333

DeleteLine 334

(viceError 335

DiskFull 336

DISPOSE 337

DIV 339

Done InOut 339

Done Texts 340

DOUBLE 341

Doubles 342

DoubleToStr 343

END 343

EndError 344

Entier 345

EOF 346

EOL 347

EOLN 348

EOT 349

EXCEPTION 350

EXCL 351

EXIT 352 °
‘tScreen 353

xp 353

EXPORT 354

FALSE 356

FILE 356

Files 357

FileSize 359

FILL 360

firstDrive 360

FLOAT 361

10 . MODULA

Flush 362

FOR 363
FORWARD 364
FREEMEM 365
GetName 366
GotoXY 367
HALT 368
haltOnControlC 368
HIGH 370
Highlight 371
highlightNormal 372
HLRESULT 373
IF 374
IMPLEMENTATION 375
IMPORT 378

INC 379

INCL 382

Init 382

InitScreen 383
inName 384

InOut 385
IORESULT 386
INP 387

input 388

insert 389
InsertDelete 389
InsertLine 391
INT 392
INTEGER 393
IntToStr 394
IOTRANSFER 395
legal 396

Length 397
LoadError 397
LongMath 398
LONGREAL 399
Ln 401

Loader 402
LONG 403
LONGINT 404

(

1

LongMath 405

LongToStr 406

LOOP 407

MARK 408

MathLib 409

MAX 410

MIN 411

MOD 412

MODULE 413

NEW 414

NEWPROCESS 416
2xtPos 417

NIL 419

Normal 419

NoTrailer 420

numCols 421

numRows 422

ODD 423

Open 423

Openlnput 425

OpenOutput 426

OpenText 427

OpSet 428

OR 429

ORD 430

OUT 431

outName 432

OUTOFMEMORY 433

output 434

OVERFLOW 435

"OINTER 436

ros 438

PROC 439

PROCEDURE declaration 440

PROCEDURE type 441

PROCESS 443

Processes 445

progName 446

PromptFor 446

QUALIFIED 448

12

MODULA

RAISE 449

Random 450
Randomize 451

READ 452

ReadAgain (Terminal) 453
ReadAgain (Texts) 454
ReadByte 455
ReadBytes 456
ReadCard 458
ReadChar (Terminal) 459
ReadChar (Texts) 459
ReadDouble 460
ReadInt 461

ReadLine (Texts) 462
ReadLine (Terminal) 463
READLN 464
ReadLong 465
ReadReal 466

ReadRec 466
ReadString 468
ReadWord 468

REAL 470
REALOVERFLOW 472
RealToStr 473
RECORD 475
RedirectInput 479
RedirectOutput 480
RELEASE 481
Rename 482

REPEAT 484

ResetSys 484
RETURN 485

SEND 486

SET 487

SetCol 489

SetPos 490

SIGNAL 491

Sin 492

SIZE 493

SpecialOps 494

13

Sqgrt 495
StartProcess 496
StatusError 497
STORAGE 498
String 499
StringError 500
Strings 501
StrToCard 502
StrToDouble 503
StrTolnt 504
StrToLong 505

(ToReal 506
SYSTEM 506
termCH 508
TEXT 510
TextDriver 511
TextFile 512
TextNotOpen 513
Texts 514
TooLarge 516
TooManyTexts 517
TRANSFER 518
TRUE 519
TRUNC 520
TSIZE 521
TYPE 522
UseError 523
VAL 524
VAR 525
WAIT 526

(HILE 527
wITH 528
WORD 529
WRITE 531
WriteByte 532
WriteBytes 533
WriteCard 533
WriteChar (Terminal) 534
WriteChar (Texts) 535
WriteDouble 536

14 MODULA

WriteHex 537

WriteInt 538
WRITELN 538
WriteLn (Terminal) 540
WriteLn (Texts) 541
WriteLn (InOut) 541
WriteLong 542
WriteOct 543
WriteReal 544
WriteRec 545
WriteString (Terminal) 545
WriteString (Texts) 546
WriteWord 547

Appendices

Appendix A. Turbo Modula-2 and Turbo Pascal 549
What’s the Difference 550
Vocabulary 551

Identifier Names 551
Characters 551

Numbers 551

Strings 552

Set Constants 553
Comments 553
Declarations 554

Constant Declarations 554

Type Declarations 555
Arrays 555

Records 556

Procedure Types 557
Variable declarations 559
Procedure Declarations 559
Open Array Parameters 559
Untyped Parameters 560
Function Procedures 560
Expressions 561

Set Operators 562

Statements 564

Procedure Calls 564

Looping Statements 564

CASE Statements 565

WITH Statements 566

RETURN Statements 566

Standard Procedures in Turbo Modula-2 566

Appendix B. Instzllation Procedures 571
Installing M2 571

Screen Installation 572

Manual Installation 573

Using the Turbo Pascal TINST.DIA File 574

" ‘ering Terminal Codes 574

wcrminal Properties 575

Installation of Editing Commands 577

Compiler Installation (Miscellaneous) 581

Appendix C. Summary of Compiler Directives 583

Appendix D. Error Diagnosis 585
Format of a Runtime Error Message 585
Errors Detected by the Interpreter 586
Errors Detected by Support Modules 589
Exceptions Issued by Module Files 589
Exceptions Issued by Module Loader 589
The Calling Chain 590

Finding Runtime Errors 592

Compiler Error Messages 592

Appendix E. BNF Syntax for Turbo Modula-2 597

Introduction - ' 17

Introduction

This book is a reference manual for the Turbo Modula-2 system, implemented for
the CP/M-80 operating system running on Z80 computers. Although there are
many examples throughout the book, this is not a tutorial for Modula-2 program-
ming; a basic knowledge of Modula-2 or Pascal is assumed.

The Modula-2 language was designed in 1980 by Niklaus Wirth, who also
10red Pascal. While Modula-2 provides the powerful data and statement struc-
tures of Pascal, it also incorporates a modular structure as well as basic facilities
for multiprogramming applications. Turbo Modula-2 is Borland’s practical im-
plementation of Modula-2. It follows closely the definition of standard Modula-2
as defined by N. Wirth in his book, Programming in Modula-2 (3rd Ed. New
York: Springer Verlag, 1984). However, it differs from Modula-2 in two main
areas: It has an easy-to-use I/0 library and optional extensions.

Because of the wide range of possible external devices, and in order to make
the language truly machine-independent, the strict definition of Modula-2 does
not include any input/output or low-level facilities. Turbo Modula-2, however,
provides an extensive and flexible library of these facilities, which for the most
part follow Wirth’s suggestions.

Turbo Modula-2 also includes several constructs not mentioned in the original
definition; for example, general-purpose READ and WRITE statements, string
comparison and assignment, multidimensional open arrays and exception handl-

ing.
(
Structure of This Manual

This manual is divided into four main areas: an introduction, the module library,
a look-up section, and appendices.

Chapter 1 will get you started using the Turbo Modula-2 system, walking you
through such operations as copying your distribution disk and running your first
program.

18 MODULA

Chapters 2 through 7 provide a thorough description of Turbo Modula-2 pro-
gramming, with a general discussion of the Modula-2 language elements and a
more detailed explanation of data, statement, and program structures, as well as
local and library modules. Chapters 5 and 6 serve as your guide to writing simple
Modula-2 programs.

Chapters 8 and 9 cover the more advanced topics in Turbo Modula-2, including
system-specific functions and extensions and low-level facilities.

Chapter 10 covers system operations, including discussion of the editor, the
compiler, the linker, the librarian, and other operational features.

Chapter 11 contains the library modules, which consist of 14 modules contain-
ing over 100 procedures. You may want to read the short description of each
library module now, and go back to study the specifics when you need to use a
particular module.

Chapter 12 comprises Turbo Modula-2’s extensive alphabetical look-up section,
which contains entries of reserved words standard identifiers, and library iden-
tifiers.

The five appendices provide information on the operation of Modula-2, while
also presenting some comparisons between Turbo Pascal and Turbo Modula-2.
Appendix A provides the language comparisons. Appendix B details the instruc-
tions for installing Turbo Modula-2 on your system. Appendix C summarizes the
compiler directives discussed in Chapter 9. Appendix D lists error messages and
their definitions/diagnoses. Appendix E provides the BNF syntax diagrams of
Terbo Modula-2.

Typography

The body of this manual is printed in a normal typeface. Special typefaces are us-
ed for the following purposes:

Alternate Alternate characters are used to illustrate program examples and
screen displays.

ltalics Italics are used to emphasize certain concepts and first-mentioned
terms.

Introduction S 19

Boldface Boldface is used to mark reserved words in text as well as in pro-
gramming examples.
Acknowledgements

Several programs, languages, and operating systems are referenced in this manual;
the following lists them and their respective companies.

0 Turbo Pascal is a registered trademark of Borland International.
(WordStar is a registered trademark of MicroPro Interr;ational.

O CP/M is a registered trademark of Digital Research Inc.
0O

Microsoft is a registered trademark of Microsoft Corp.

Getting Started - 21

Chapter 1
Getting Started

Before Use

When you receive your Turbo Modula-2 disk, complete and mail in the license
asreement at the front of this manual. This agreement allows you to make as many
(.es as you need for your personal use and backup purposes only.

For your own protection, make a backup copy of the distribution disk with your
file-copy or disk-copy program before you start using Turbo Modula-2. Make cer-
tain all files have transferred successfully, then store the original disk in a safe

place. If anything happens to the backup copy, you can make a new backup copy
from the original.

Files on Disk

‘The files you have just copied from the distribution disk to your backup disk are
described here.

System Files
M2.COM | The Turbo Modula-2 system file contains the M-code inter-
preter, the Overlay Manager, and the runtime system. Enter-

. ing the command M2 on your terminal will load this file and

(. get Turbo Modula-2 up and running.

M2.0VR Overlay file for M2.COM.

SHELL.MCD The Turbo Modula-2 menu shell.

COMPILE.MCD The Turbo Modula-2 M-code compiler.

GENZ80.MCD The Turbo Modula-2 compiler’s optional second-pass used
for generating native Z80 code.

22

MODULA

ERRMSGS.OVR

LIBRARY.MCD
SYSLIB.LIB
LINK.MCD
Installation Files

INSTM2.COM

INSTM2.0VR

INSTM2.DTA

Example Files
*MOD
Other Files

READ.ME

Utility Files

REL.MCD

Text file containing error messages.

A library manager that combines several compiled modules
into a single .LIB file.

The standard modules supplied with the Turbo Modula-2
system.

The Turbo Modula-2 static overlay linker that is used to pro-
duce stand-alone (.COM) files.

This installation program allows you to install the Turbo
Modula-2 compiler (M2.COM), as well as other .COM pro-
grams produced by the linker.

Installation program overlay file.
Installation data file compatible with Turbo Pascal’s

TINST.DTA file (see Appendix B, »Installation Pro-
cedures«, for more details).

Sample Modula-2 programs.

If present, this file contains the latest corrections or sugges-
tions on the use of the system.

A Turbo Modula-2 utility that converts Microsoft REL
(relocatable) object files into the .MCD format used by Tur-
bo Modula-2.

Getting Started - 23

PROFILE.MCD A Turbo Modula-2 utility that counts instructions in the
various procedures of ar M-code program. This utility can
help you improve the efficiency of your Turbo Modula-2
programs.

Preparing a Work Disk

The most effective way to use Turbo Modula-2 is to have the system files on your
boot disk, allowing you to use other drives for programs and data. To make your
working disk, follow these steps:

1. Prepare a system boot disk, which will become your work disk; also include
a file-copy program such as PIP. For more information on this step, consult
your operating system’s user manual.

2. Now boot your system using the work disk, and place the Turbo Modula-2
backup disk (the one you made after reading the first paragraph of this
chapter) into a free disk drive.

3. Copy the following files from your Turbo Modula-2 backup disk to the work
disk:

M2.0OVR
M2.COM
SHELL.MCD
INSTM2.COM
INSTM2.MSG
INSTM2.DTA

" Now run the instaliation program by typing INSTM2 and pressing (Rer]at
the system prompt. This message will appear:

Install program ([RETURN] for M2.COM):

Press again and the following screen will appear:

24 - MODULA

Modula-M2 system installation menu.
Choose installation item from the following:

[S]creen installation | [Clommand installation
[M]iscellaneous | [QJuit

Enter S, C, M, or Q:

5. Press [(s] for Screen installation and pick the appropriate terminal type. For
more details on installing your system, see Appendix B.

Note: For Turbo Pascal owners with custom terminals, you may substitute
your Turbo Pascal terminal data file for INSTM2.DTA by copying the Pascal
data file to your work disk and renaming it from TINST.DTA to
INSTM2.DTA.

6. Now press (M] for Miscellaneous. Tell the system which drives to search in
for library and work files (generally, all your drives will be included).

Note: Do not try to install the keyboard commands until you become more
familiar with the editor.

7. Now select (@} for Quit and delete the installation files from your work disk
(INSTM2 *). Then delete the file-copy program we had you install in Step 1.
Your bootable work disk should contain an installed copy of M2.COM,

— M2.OVR, and SHELL.MCD.

8. With your work disk in drive A and your backup disk in drive B, type M2
at the system prompt. The Turbo Modula-2 main menu will appear.

Selected drive: A

Work file:

Edit Compile Run eXecute

Link Options Quit liBrarian

Dir Filecopy Kill reName Type

>

§t: Do not attempt to execute any menu items (except Filecopy) until all
F#ssary files have been copied to the work disk.

nish preparing your work disk, you must copy some files using Turbo
dula-2. To begin, press [F_) for Filecopy at the main menu. Then at the
py from:“ prompt, type in the name of the file you want to copy; for ex-
ple:
py from: B:¥ . MCD [RET]

ress to get the “Copy to:“ prompt:

opy to: A: [RET]

Or do it in one step, like so:

Copy from: B:ERRMSGS.OVR A: [RET]

or

Copy from: B:SYSLIB.LIB A: [RET]

Copy the following files using any of the preceding procedures:

COMPILE.MCD
SYSLIB.LIB
ERRMSGS.OVR

And optionally, if there is room left on your disk, copy these files as well:

GENZ80.MCD
LIBRARY.MCD
LINK.MCD
REL.MCD
PROFILE.MCD

(The files M2.COM, M2.0VR, and SHELL.MCD should already be on your
work disk.)

26 N~ MODULA

At this point, it would be wise to make a backup of your work disk to avoid having
to reinstall the system. Now you’re ready to try out the Turbo Modula-2 compiler.

Running Turbo Modula-2

Now that you’ve prepared a work disk and logged onto the drive containing it,
you are ready to load Turbo Modula-2 into memory. After the system prompt,
type M2, press (ReT], and the following message will appear (but your terminal
will be listed):

Turbo Modula-2 System Version 1.00
Cp/M-80, Z80

Copyright(C) 1984, 1985,1986 Borland International

Terminal: No Terminal Selected
This will be followed by the main menu:
Selected drive: A
Work file:
Edit Compile Run eXecute
Link Options Quit liBrarian
Dir Filecopy Kill reName Type
>
To run a program, place the backup disk containing the sample programs

(*MOD) in the B drive. At the main menu, press (¢ J]. You will see this
message:

Getting Started — 2]

Workfile name:

Type Hello and press (Rer]. Turbo Modula-2 will now compile the sample
program. The compilation terminates with the following message:

Compiled bytes: 32
M-code file AOO:HELLO.MCD produced.

Now press (R_) and then (ReT] to run the program. The screen will look like
this:

(> Run MCD-file: A0OO:HELLO
Hello World!
>

After the prompt (>) appears in the main menu, quit Turbo Modula-2 by press-
ing (@]; this will return you to the operating system.

A Brief Tour of Turbo _.odula-2 29

Chapter 2

A Brief Tour of Turbo Modula-2

For those of you who want to learn Turbo Modula-2 quickly, or are already ac-
quainted with some aspects of it, this chapter gets you into the thick of things in
a hurry. Only a minimum of explanation is given here; to use Turbo Modula-2
to its full potential, you should refer to Chapter 10. This chapter will take you
lhr(*h the menu system and briefly explain how to use each feature.

The Menu System

To start, place your work disk in the logged drive (to make a work disk, refer to
Chapter 1), then type M2 and press (ReT] to bring up the following screen:

Turbo Modula-2 System Version 1.00
CP/M-80, Z80

Copyright(C) 1984,1985, 1986 Borland International

Terminal: No terminal selected

This screen will be quickly followed by the main menu:
Selected drive: A

(. .tk file:
Edit Compile Run eXecute
Link Options Quit liBrarian
Dir Filecopy Kill reName Type

30 ~ MODULA

The main menu contains all of the major functions performed by Turbo
Modula-2. The following section describes each element of the main menu and
displays a sample screen where appropriate. (Note: The italicized items in the ex-
ample indicate that you must type in your own data.) To select each item, you
press the letter highlighted on your screen.

Selected drive. Use this to change the default drive; press (s] and type the
letter of the drive that is to become the new default drive. You can also use this
function to reset the system or to log the disk; this is handy when you need to
insert a new disk to copy files to.
>S
New drive: a: ___
Work file. Sets a default file name for other menu commands to use, such as Edit,
Compile, Link, and so on. You can override this default by pressing the space bar
before selecting the desired menu item (see the section -Avoiding the Menus« in
Chapter 10).
>W
Workfile name: Myfile
Edit. Invokes the Turbo Editor, a WordStar-like editor. This editor is similar to
the Turbo Pascal editor; however, it is a »one-pass« virtual editor that limits file
sizes to the disk space available rather than internal memory.
>E
Edit file: COO:MYFILE.MOD
Compile. Turbo Modula-2 is an incremental compiler, which means it saves its
state when a compile-time error is found. You can then enter the editor, correct
the error and exit, at which point compilation continues at the closest block to
where the error was corrected.

>C

Compile file: COO:MYFILE.MOD

A Brief Tour of Turbe_ iodula-2 31

Run. Runs compiled code without going through the linking step. The Run com-
mand does dynamic linking while it is reading in the support modules to run a
program.
>R
Run MCD-file: COO:MYFILE

eXecute. Provides a way to run most external programs, such as STAT or even
the Turbo Modula-2 installation program.

’(cute COM-file: INSTM2.COM
Link. This command serves two purposes: It links separately compiled modules
into a stand-alone .COM file and links specified modules so that they will load
quickly when linked dynamically during the Run command. In addition, the
linker provides the facility to generate overlays.

>L

Link main module: COO:MYFILE

Options. This command invokes the following Options menu:

compiler options:

List (OFF) Native (OFF) eXtensions (ON)
Test (OFF) Overflow (OFF) Upper=lower (OFF)

Path to search: SYSLIB
» uid run-time error
Save current selection Quit

>

The compiler options are global; that is, they influence the-entire compilation
unless overridden with internal switches. You can toggle the compiler options by
pressing the key for the capital (highlighted) letter in each option (for example,
L for List). The following describes the function of each compiler option:

32

~ MODULA

List determines if source output is displayed on the monitor during compila-
tion.

[J Native determines which type of code is produced, M-code or Native.

O eXtensions tells the compiler to issue warning messages if a program is using

any of the Turbo Modula-2 extensions.

Test determines if the compiler generates test code for array bounds and
subrange checking.

Overflow determines if the compiler generates code to check for integer
overflow.

O Upper=lower tells the compiler whether or not to be case-sensitive.

0 Path to search tells the system which library files to search when looking for

O

external modules.
>p
New search path: SYSLIB MYLIB
Find run-time error helps you find the runtime error position.
>F
Module name: COO:MYFILE.MOD
Enter PC: 23

Save current selection allows you to save the options and search path- yoy find
most comfortable..

O Quit returns you to the main menu.

Now we’ll get back to describing the main menu options.

Quit. Returns you to the operating system.

A Brief Tour of Turv. Modula-2 33

liBrarian. This command prompts you for a library name and then displays the
librarian menu, as shown in the following:

>B

“
Select library: SYSLIB >
Selected library: A00:SYSLIB.LIB

Dir Include Copy

(1 Ompress Quit

The library keeps many precompiled library modules in one file. The compiled
versions of the definition module and the implementation module are contained
in the library as .SYM files and .MCD files, respectively.

Notice that the librarian menu has a different prompt, distinguishing the follow-
ing library management utilities from the main menu’s file- management routines.
Again, initiate each option by pressing the capital (or highlighted) letter of its
name.

O Selected library prompts for a name prior to displaying the librarian menu.
Press (s] to change the selected library without returning to the main menu.

*S
Select library:
(Dir lists the .SYM and .MCD files, that are stored in the selected library. In

addition, it lists the size of each file and the cumulative size of all the files.
*D

34 ~ MODULA

Directory of library: C00.SYSLIB

1: COMLINE .MCD 0.5K .SYM 0.5K
2: CONVERT .MCD 2.0K .SYM 1.0K
3: DOUBLES .MCD 3.5K .SYM 1.0K
4: FILES .MCD 3.0K .SYM 1.5K
5: INOUT .MCD 1.0K .SYM 1.0K
6: LOADER .MCD 2.5K .SYM 1.0K
7: LONGMATH .MCD 2.0K .SYM 0.5K
8: MATHLIB .MCD 1.5K .SYM 0.5K
9: PROCESSE .MCD 0.5K .SYM 0.5K
10: STRINGS .MCD 0.5K .SYM 1.0K
11: TERMINAL .MCD 1.0K .SYM 1.0K
12: TEXTS .MCD 2.0K .SYM 2.0K

Total size: 39.5K Unused: 8.0K

O Include takes external files (either .SYM files or .MCD) and places them in
the library.

*1.
Include file:

O Copy copies files from the selected library to either another library or to a
stand-alone .SYM or .MCD file.

*C
Copy module:
O Kill erases a specified library module.
*K i
Kill module:
[0 cOmpress eliminates unnecessary space in the library files. Since this com-

mand can take some time, we recommend using it only on stable (debugged)
library files.

A Brief Tour of Turb. Modula-2 35

*0

Compressing library, please wait.

*

[J Quit returns you to the main menu.

The remainder of the main menu options described here are file-management
commands.

Dir. The directory command allows you to display a full or partial directory
of any disk. It accepts drive name, user areas, and wildcard file names (such
as *MOD or **) to build the directory listing. When a directory listing is
displayed, it is shown with a number before each file name. These numbers

may be used in subsequent file-management commands, such as Filecopy and
Kill.

>D

Directory mask:

1: COMPILE .MCD 4: LIBRARY .MCD 7: M2 .OVR 10: SHELL .MCD
2: ERRMSGS .OVR 5: LINK .MCD 8: MYFILE .BAK 11: SYSLIB .LIB
3: GENZ80 .MCD 6: M2 .COM 9: MYFILE .MOD

Bytes Remaining on A: 96K

O Filecopy. This command will accept a drive name, a user number, and a
wildcard file name as the source file. In addition, the source file may be a
list or range of numbers that reference the last directory command.

N>F
Copy from : 1 3-5
Copy to HE K

O Kill. This command allows you to delete disk files without leaving the shell.
It also accepts drive names, user numbers, and wildcard file names, as well
as a list or range of numbers referencing the last directory command.

36

- MODULA

>K
Kill file: *.bak
Deleting DOO:MYFILE.BAK

reName. This command accepts one new file name (with optional drive and
user area) for the old name and one file specification for the new name.

>N

Rename from : myfile.mod
Rename to : myfile.def

Type This command displays the specified file on the screen. You can pause
output by pressing (o]((s_] and terminate output by pressing (o)(c J.

>T
Type file: myfile.def
DEFINITIONMODULE MyFile;

PROCEDUREMyProc;
ENDMyFile.

Language Elemens’ 37

Chapter 3
Language Elements

Language elements are the building blocks that form a program and are the fun-
damental units recognized by the compiler. Each element is used to build a dif-
ferent level of abstraction. For example, a digit is an element that can be combined
with other digits to form a number that is an element at a different level of abstrac-
tion. Thus, we can continue abstracting until a level is reached where an entire
program is represented by one word, such as MyProgram.

This chapter describes the elements used to aésemble meaningful program
statements in Turbo Modula-2. In the following section, we will look at the first
level of abstraction used by Turbo Modula-2; namely, the characters that comprise
symbols.

Character Set

The Turbo Modula-2 character set includes all characters that are legal in
Modula-2 declarations, expressions, and statements. This set is made up of
alphabetic, numeric, and special characters.

Alphabetic (uppercase and lowercase)

AtoZandato z
Numeric

0123456789
Special Characters

T+ - = A < > ()YL1() ., & # %

Not all characters are available on all terminals; thus Turbo Modula-2 recognizes
the following synonyms:

38 ' - MODULA

(. for [Left parentheses and period for left index bracket
2 for] Period and right parentheses for right index bracket
(: for [Left parentheses and colon for left brace

:) for] Colon and right parentheses for right brace

! for | Exclamation mark for vertical bar

Using these available symbols, it is possible to create a great number of
Modula-2 programs.

Vocabulary

The Modula-2 compiler recognizes certain groups of characters as symbols
themselves, including numbers, characters, strings, delimiters, operators, and
reserved words and identifiers. These symbols (or characters) comprise the se-
cond level of abstraction, providing you with the means to form sentences and thus
programs in Modula-2.

The Turbo Modula-2 vocabulary can be divided into five classes: numbers,
strings and characters, delimiters and comments, operators, and reserved words
and identifiers (user-defined, standard, and library).

Numbers

There are two types of numbers defined in Modula-2: whole numbers and real
numbers. Turbo Modula-2 recognizes three subtypes of whole numbers and two
subtypes of real numbers.

Whole Numbers

Turbo’s three types of ‘vhole numbers may be further defined as two signed
numbers and one unsigned number. The two signed whole numbers are single
precision and double precision, which are INTEGER and LONGINT, respective-
ly. The unsigned whole number is single precision and is called a CARDINAL.

Language Elemeni>- 39

Following are the raages for whole numbers:
Type Range

INTEGER (single-precision, . -32,768 to 32,767
signed whole number)

LONGINT (double-precision, -2,147,483,648 to 2,147,483,647
signed whole numbers)

CARDINAL (single-precision, 0 to 65,535
unsigned whole numbers)

Single-precision integers can be formed in any of these three bases: decimal,
octal, or hexadecimal (hex). Decimal numbers consist of the digits 0 to 9. Octal
numbers comprise the digits O to 7, followed by the letter B. Hex numbers consist
of the digits 0 to 9 and the letters A to F. The first character in a hexadecimal
number must be a digit and the hexadecimal number must end with the letter H.
The following are examples of legal and illegal single-precision whole numbers:

Legal (base)
Single Precision Illegal Single Precision

1986 " (Decimal) 12.34 Decimal point illegal.

-10 (Decimal) FH First character must be a digit.
10B (Octal) 08B 8 is not a legal octal digit.
OFFFFH (Hex) OF Requires H for hexadecimal.

1AH (Hex) OGH G is not a legal hexadecimal digit.

62345 (Decimal) -60000 Too small for single-precision integer.

Double-precision integers, or long integ2rs, can only be formed in decimal
notation, followed by the letter L. Following are legal and illegal long integers:

Legal Double Precision Illegal Double Precision
123L 123 This is a normal integer.

456L 456 This is a real number.
120392237L OFFFFFFFH Only decimal base allowed.

40 MODULA

Real Numbers

Single-precision and double-precision numbers are the two types of real numbers
recognized by Turbo Modula-2. They are called REAL and LONGREAL, respec-
tively.

Single-precision real numbers can be accurate up to 6 decimal points, while
double-precision reals can be accurate up to 14 decimal points. The ranges of
REAL and LONGREAL are as follows:

Type Range

REAL -6.80565E+38 to 6.80565E+38
LONGREAL -3.5953862697246D+308 to 3.5953862697246D-308

As shown in the previous ranges, a real number contains a sequence of numeric
characters, containing a decimal point with an optional scale factor. The scale fac-
tor is specified by the letter E or D (E for single precision and D for double preci-
sion) and an integer, beginning with an optional plus (+) or minus (-) sign. The
following are samples of legal and illegal real numbers:

Legal Real Numbers Illegal Real Numbers
12.34 Single precision 1453 Blank space illegal
0.1E3 Equals 1000 12 Needs decimal point
3.6E-5 Equals 0.000036 3.6E-99 Exponent too large
. 12.34D0 Double precision 1,4230 Comma is illegal
0.1D3 Equals 100.0 12d-10 D and E must be uppercase

3.6D-5 Equals 0.000036 12.0D-999 Exponent too small

Strings and Characters

Strings

A string is a portion of text that can be handled as a single unit, such as a message
to be written on the screen. Strings provide a means of manipulating text within
a program. Constant strings are formed by enclosing a sequence of printable
characters in either single or double quotation marks. The opening and closing
quotation marks must be of the same kind, and that kind cannot occur within the
string. Here are some examples of legal and illegal constant strings:

Language Elemen. .- 41

Legal Constant Strings Illegal Constant Strings

"My name is:’ “Hello’ Quotes must match

"He said, “What is the time?“’ “She said, “The Opening quote type

“12 34 time is 4 p.m.““ cannot occur within
the string

Characters

A character is a single, printable ASCII symbol enclosed in matching quotes
(single or double), or an octal integer (up to 377) followed by the letter C. In
~ theory, characters occupy 1 byte of storage, and thus may take on any value bet-

veen 0 and 255 decimal (or 377 octal). In practice, characters may occupy an en-
tire word (2 bytes) in memory. The only time a character actually takes 1 byte
is when it is declared as part of an array (arrays pack characters together). Any
other declaration involving a character always results in the character occupying
2 bytes. Following are legal and illegal characters:

Legal Characters Illegal Characters

“A* The letter A “AB“ Only one character allowed

* Asterisk “Q Must have matching quotes

15C Carriage return 8C 8 is not an octal digit

377C Largest character ~ 777C Octal number too large for
character

When a string contaias only one character enclosed in quotes, the string is con-
sidered a special case and is compatible with 1 character. This only applies to con-
stant strings like “A“ or ’*, not character variables.

Delimiters and Comments

Delimiters

A delimiter is one or more characters that separate other syntactic entities. For
example:
"Blanks separate identifiers and reserved words.

The vertical bar separates CASE, exception, and variant
record statements.

42 - MODULA

, The comma separates items in parameter lists and declara-
tions.

; The semicolon separates program statements and declara-
tions.

¥ 4, -/ The mathematical symbols (or operators) also serve as
delimiters between operands.

Comments A comment may appear anywhere one of the preceding
delimiters is allowed. In addition, a comment may serve as
a substitute for a blank space between symbols.

Comments

Comments contain descriptive or explanatory text about a program. Since, for the
most part, they are ignored by the compiler (except for compiler switches, see
Chapter 10), they can contain any characters enclosed by a set of parentheses and
asterisks.

Unlike Pascal, which allows either the symbol sets (* and *) or { and } to delimit
comments, Modula-2 uses only (* and *) to delimit comments and uses { and }
exclusively to delimit sets. Comments may be nested to any depth (limited only
by memory space). They may occur anywhere a delimiter is allowed, and are
treated as blanks. The following is a sample of legal and illegal comments:

Legal Comments Illegal Comments

(% This is a comment *) {This isn't a comment] Braces not
allowed

(*Comments can be nested (* Hi (% there ¥) Missing second

(* 1like this ¥) %) closing comment

Operators

Operators in Modula-2 are made up of either special symbols or reserved
words. In the case of reserved words, they are always printed in uppercase letters
(see “Compiler Switches,” in Chapter 10) and cannot be used as identifiers. The
following lists the special symbol and function of each operator:

Language Elements - 43

Addition and set union
Subtraction and set difference
Multiplication and set intersection
Division and symmetric set difference
Logical AND
Logical NOT
Dereferencing
Assignment
Equality
<> Inequality
Less than
Greater than
Less than or equal
Greater than or equal
Parentheses
Index brackets
Set braces
A Punctuation

+

>Ig°*l

VAVA%HRI
]

ke M o B
— ~
—

Y
o g e 9 oo

In addition to these special symbols, the following reserved words are also
operators:

AND - _ Logical AND
OR Logical OR
NOT Logical NOT
IN Set membership
DIV Integer division
MOD Integer modulus

Operators are closely related to the operands they work on. In most cases, an

“ perator will only work with certain kinds of operands; for example, to divide real

* numbers you must use the real division operator: 2.8/2.9. In addition, the result

of an operation could be of a different type from the original operands; for exam-

ple, comparing two integers results in a Boolean value: 1 = 2. (Chapter 4
discusses operators and operands in more depth.)

Reserved Words

Reserved words in Modula-2 are symbols with a predefined and static meaning;

44 - MODULA

they cannot be used for any other purpose. They are always written in uppercase
letters. .

AND ELSIF LooP REPEAT
ARRAY END MOD RETURN
BEGIN EXIT MODULE SET

BY EXPORT NOT THEN
CASE - . FOR OF TO
CONST FROM OR TYPE
DEFINITION IF POINTER UNTIL
DIV IMPLEMENTATION PROCEDURE VAR

DO IMPORT QUALIFIED WHILE
ELSE IN RECORD WITH

The following Turbo Modula-2 reserved words provide useful extensions to the
Modula-2 standard:

EXCEPTION FORWARD RAISE

In this manual (and other Borland manuals), all reserved words are in boldface
type; however, they will not appear on your screen this way.

The preceding symbols and reserved words will be discussed in the next few
chapters. For an immediate discussion of reserved words, refer to Chapter 12,
“Turbo Modula-2 Reference Directory.”

Identifiers

Identifiers are unique hames given to constants, types, variables, procedures, and
modules. Identifiers are sequences of alphabetic and numeric characters; the first
character must always be a letter. Note that Turbo Modula-2 distinguishes bet-
ween uppercase and lowercase letters; thus, unlike in Pascal, in Turbo Modula-2
Varl and VARI are considered two unique identifiers.

Standard Identifiers

Turbo Modula-2 has a number of predefined identifiers for special purposes.
Standard identifiers are “visible* and available in all modules without explicitly
importing them. The standard identifiers can be redefined, but doing so will cost
you the function offered by the predefined identifier. Also, a redefined standard

Language Elements —~ 45

identifier only affects the module where it is redefined, not other imported
modules. (Again, note that the use of uppercase and lowercase is significant.)

ABS DISPOSE INT 0DD
BITSET DOUBLE INTEGER ORD
BOOLEAN EXCL LONG PROC
CAP FALSE LONGINT REAL
CARD FLOAT LONGREAL SIZE
CARDINAL HALT MAX TRUE
CHAR HIGH MIN TRUNC
SHR INC NEW VAL
DEC INCL NIL

The following standard procedures provide extensions to the Modula-2 stan-
dard:

READ READLN WRITE WRITELN

User-Defined Identifiers

Users may declare their own identifiers; however, there are two rules to follow:
Identifiers must begin with an alphabetic character and may consist only of
alphabetic and numeric characters; spaces, underscores, and other special
characters are not allowed. The following is a sampling of legal and illegal user-
defined identifiers:

Legal Identifiers Illegal Identifiers
MyName My Name
Blank space illegal
Tr612 Public-Transit -~ Hyphen illegal
hello Ist First character must be a letter
Modula2 LAST__PRIME Underscore illegal

Library Identifiers

Turbo Modula-2 contains an extensive library (in SYSLIB.LIB) with a number of
predefined modules. The modules and their identifiers can be redefined, but doing

46 MODULA

so will cause you to lose the function offered by them, or at least make using them
more awkward.

In one sense, library identifiers are no different than user-defined identifiers
since you can create libraries with new identifiers, thus adding to the list of
available library identifiers. However, there are two differences.

One is that Turbo Modula-2 provides a set of standard identifiers that are
necessary for programming in Modula-2. We presume that some of these standard
identifiers are in every implementation of Modula-2, while we have added others
for machine-specific reasons. The second difference is that Turbo Modula-2
“comprehends“ the functions of system-dependent library modules, such as
SYSTEM and STORAGE. Thus, when an item is used from the machine-dependent
SYSTEM module, the compiler already knows about it and has no need to look
at additional symbol files to determine usage. Table 3-1 is a list of library iden-
tifiers.

Table 3-1

ADDRESS EndError Open SpecialOps
ADR Entier Openlnput Sqrt
ALLOCATE EOF OpenOutput StartProcess
Append EOL OpenText StatusError
Arctan EOLN OpSet STORAGE
Argument Error EOT ouT String
available ExitScreen outName StringError
Awaited Exp OUTOFMEMORY Strings
BDOS FILE output "~ StrToCard
BIOS Files OVERFLOW StrToDouble
BusyRead FileSize Pos StrToInt
BYTE FILL PROCESS StrToLong
Call firstDrive Processes StrToReal
CAPS Flush progName SYSTEM
CardToStr FREEMEM PromptFor termCH
clearEol GetName Random Terminal
ClearScreen GotoXY Randomize TEXT
ClearToEOL haltOnControlC READ TextDriver
Close Highlight ReadAgain TextFile
CloselInput highlightNormal ReadByte TextNotOpen
CloseOutput HI RESYJLT ReadBytes Texts
CloseText Init ReadCard TooLarge
CODE InitScreen ReadChar TooManyTexts

Language Elements~

47

Col

ComLine
commandLine
ConnectDriver
console
Convert

Copy

Cos

Create
CreateText
DeadLock
DEALLOCATE
Delete
DeleteLine
DeviceError
DiskFull
DISPOSE
Done

Doubles
DoubleToStr

inName
InOut

INP

Insert
insertDelete
InsertLine
IntToStr
IGRESULT
IOTRANSFER
legal

Length

Ln

Loader
LoadError
LongMath .
LongToStr
MARK
MathLib
NEW
NEWPROCESS
NextPos
Normal
NoTrailer
numCols
numRows

ReadDouble
ReadInt
ReadLine
ReadLn
READLN
ReadLong
REALOVERFLOW
ReadReal
ReadRec
ReadString
ReadWord
Real ToStr
RedirectInput
RedirectOutput
RELEASE
Rename
ResetSys
SEND
SetCol
SetPos
SIGNAL

Sin

SIZE

TRANSFER
TSIZE
UseError
WAIT
WORD
Write
WRITEBYTE
WRITEBYTES
WriteCard
WriteChar
WriteDouble
WriteHex
Writelnt
WriteLn
WRITELN
WriteLong
WriteOct
WriteReal
WriteRec
WriteString
WriteWord

For more detailed information regarding library modules, refer to Chapter 11,
“The Standard Library.“ For information regarding the preceding library iden-
tifiers, refer to Chapter 12, “Turbo Modula-2 Reference Directory.

Expressions - 49

Chapter 4
Expressions

An expression is a sequence of language elements that combine to form a tem-
porary data object with a possibly different value and type than either original ele-
ment. An expression consists of operators and operands that perform certain
operations when an expression is “evaluated.” '

(

In the previous chapter, we looked at the character set and vocabulary used to
build Modula-2 programs. Here we’ll take the next step by showing you how to.
form expressions with language elements, while also providing the foundation for
our discussion of abstract data types in the next chapter.

Properties of an Expression

To explain expressions, let’s look at a simple example from mathematics:

1+2

1. The expression consists of operands and an operator: The two operands are
1 and 2, and the operator is +.

2. Expressions have a result value that can be assigned or used in further expres-
sion evaluation. The preceding example has a result value of 3.

3(addition, the expression is considered to have a type that is determined by
the result. In this example, the result type is CARDINAL.

Expressions are evaluated by applying each operator to its operands. In general,
expressions are evaluated from left to right. Operators that take precedence over
others are executed first, despite the position of the operator within the expression
(see the later section, “Operator Precedence®).

50 - MODULA

Operands

In Turbo Modula-2, the operands of an expression can be any elementary type
(such as INTEGER or REAL), including function procedures that return an
elementary type (such as stancard function procedures ABS, CHR, or SIZE).
However, operands within a particular expression must be of the same type; for
instance, in the previous example both operands are integers. The following shows
an illegal expression, one that mixes integers and reals:

3.4 + 30

The purpose of this type-checking is to make explicit the types of operands in-
‘volved in the expression. Unlike Pascal and some other languages, Modula-2 in
general has no implicit type conversions; however, there are ways to override this
strict type-checking. The explicit conversion in the following example makes the
preceding example legal:

3.4 + FLOAT(30)

The result of this expression is 33.4 and is of type REAL. Note that it is possible
for the result type to be different from its operands. Consider the following:

1=2

Here is an expression containing integer operands and one operator. When the
operator is applied to the operands, the resulting value is FALSE and the result’s
type is BOOLEAN.

Operators

The most distinguishing feature of an operator is the type (or types) it works on.
There are four classes of operator:

Arithmetic Performas normal mathematical operations. Operations are
performed on numbers, such as INTEGER and REAL.

Relational Does a comparison of like items to obtain a BOOLEAN
result of TRUE or FALSE. The items compared can be of
any elementary type; for example, INTEGER, POINTER.
string, ard so on.

Expressions o 51

Logical Performs the combination and the negation of BOOLEAN
- expressions. For example, the expression, NOT Raining
AND (Today=Friday) combines the negation of Raining and

the truth of (Today=Friday}.

Set Performs bit operations on operands of type BITSET or
logical set operations on user-defined SET types; for exam-
ple, you may wish to mask the high bit of bytes in a WordStar
document file, or you may want to include the enumerated
value Red in a user-defined set of colors.:

S(. the selection of operators is dependent on the type they’re operating on,
we'll defer further description of each operator until its type is introduced in
Chapter 3.

Operator Precedence

When more than one operator appears in an expression, its meaning or result is
dependent on the order of evaluation. Operations of highest precedence are
resolved first; operations of equal precedence proceed from left to right. Opera-
tions within parentheses are of the highest priority, and thus are evaluated first.
Operator precedence is defined as follows:

Ist (Highest) priority: NUI‘ -

2nd priority: * /, DIV, MOD AND &

3rd priority: +, -, OR

4th (Lowest) priority: = #, <, >, >= >=, <>, IN

As an example, let’s look at a simple mathematical expression:
{

1.0+ 2.0 % 3.0

Evaluation begins on the left with 1.0 + 2.0; howcver, this subexpression is not
fully evaluated until the priority level of the next operator is determined. The
previous table, indicates that multiplication has a higher priority than addition;
thus the subexpression 2.0 * 3.0 is evaluated first, with its product added to 1.0
for a result of 7.0 (type REAL).

52 ' - MODU

Parentheses can alter the interpretation of operator precedence. Whene
parantheses are found in an expression, the contents within the parantheses :
evaluated before being combined with any other item in the expression.

If the prior example is changed to include parantheses, as shown in the follc
ing:

(1.0 +2.0) ¥ 3.0

then evaluation will start with the contents of the parantheses, and the sum v
be multiplied by 3.0. This time the result will be 9.0 (type REAL).

Boolean expresssions are evaluated almost the same as other expressio
However, in Boolean expressions, it is not always necessary to evaluate the en
expression in order to determine that expression’s result. This is called she
circuit evaluation. For sxample, consider the following Boolean expression:

(2+4=4) AND (3+4=7)

To begin evaluation, we would first resolve the contents of the first parenthe
(2+4=4), its result is FALSE, which is saved. The AND operator is next, .
because both operands to an AND must be TRUE for the entire expression tc
TRUE, we need only evaluate the contents of the second set of parentheses if
first operand is TRUE. In this case, the first operand of the AND is FALSE
the second operand to AND is not evaluated (the expression is short-circuite

* This order of evaluation is useful for certain algorithms that need to access
- element of an arra; onlv if the index is not a number that would cause an a
bounds error. Thus, assuming you understand arrays, the following expres:
would not cause a bounds error if I is O and the array a is undefined when
equal to O:

(I#0) AND (a[I]=100)

Other Boolean operators, such as OR, are evaluated in a similar manner. T
if the first operand of an OR expression is TRUE, the second operand is
evaluated.

SN

or
re

il

1S.
ire
rt-

ray
ion
[1is

{us,
not

Data Structure ~ 53

Chapter 5
Data Structure

Modula-2 is often described as a language that encourages structured programm-
ing. It permits a large program to be broken down into smaller, more manageable
sections that can be separately compiled into object code. Within a program, ob-
jects are structured into logical units that make them easier to manipulate.

Modula-2 has, as you might expect, many components that join to form a
modern block-structured language. As Wirth has pointed out, programs are a
combination of algorithmic structures and data structures. Modula-2 has well-
defined constructs for expressing both structures. In this chapter, we will look at
object manipulation in programs and the data structures used to describe these ob-
jects.

Data Objects

Data objects are the information a program processes. This information can be
numbers, characters, or anything the program problem requires. Every data object
in your Modula-2 program has the following properties: :

Identifier A unique name distinguishing one data item from another. An iden-
tifier is given to most variables, any defined types, many constants,
and program parts. Identifiers (except for standard identifiers) must
be defined in a declaration.

Value Each data item has a value. This value may be constant and un-
changeable throughout the program or the data item may take on dif-
ferent values at different times during the course of the program.

Type Each data item has a type that determines its use. The fype of a data
item dictates the values it can be assigned and the operations that can
be performed on it.

54 - MODULA

As an example, suppose your program includes the variable Count, which can take
any whole number as a value. The variable Count has the following properties:

O Count is the identifier, or unique name, of this data item.

O The value of the variable Count is detecrmined at runtime by an assignment
and may be changed at any point.

(O The type of Count is INTEGER, which means that it may receive only the
values in the range -32K to 32K and that only integer math operations may
be performed on it.

There are two categories of types: unstructured and structured. First, we will
look at the elementary data types in Modula-2, which are predefined unstructured
types. Then we will see how declarations define a data item’s type, identifier, and
value. Next, we will discuss user- defined unstructured types. And lastly, for more
complicated objects, we will examine the building blocks Modula-2 provides tc
define larger structures--structured types.

Elementary Data Types

In the previous chapter, we described some of the objects that might b
manipulated in a program (numbers, strings, and so on). In addition, we showe
that an object, such as a number, may have different representations called types
For simple items, Modula-2 has predefined names that represent these types; fc
example, INTEGER, LONGINT, REAL, and so forth. These are called elemer
tary data types.

The following eight types are predefined in Modula-2. They are considere
basic types and are always available. Generally, variables are declared as one
these types; however, you can also build new types from these basic types.

CHAR type: Range [0C to 377C]. Takes a single character as a value. A CHA
constant is denoted by enclosing a printable ASCII character in single or doub
quotation marks, or by specifying the octal value of the ASCII character follow:
by a C (as in the range given here). Sample CHAR values include the followin

HAII l2' "#" tnot 1C 37’70

Data Structure . 55

BOOLEAN type: Range [FALSE to TRUE]. Assumes one of two logical truth
states denoted by the standard identifiers TRUE and FALSE. Use BOOLEAN-
type variables when you expect a yes/no- or on/off-type answer. For example, “Is
it raining?“ has a yes/no answer that could be represented as

Raining = TRUE
or
Raining = FALSE

CARDINAL type: Range [0 to 65535]. Use CARDINAL-type variables anytime
values are limited to positive whole numbers or zero, such as for a person’s age
or address, or lengths and distances. The type CARDINAL is used more frequent-
ly than the type INTEGER, and a CARDINAL's range is also double that of an
INTEGER in the positive direction. Sample CARDINAL values:

8088 2132 0 64000

INTEGER type: Range [-32768 to 32767]. Use the INTEGER type when values
are expected to drop below zero (for instance, in temperature ranges). In practice,
this type is not used often since most values in programs are non-negative. Ex-
amples of INTEGER values:

8088 -2132 0

BITSET type: Range [0..15] (bit-wise). BITSET is a predefined set type (see -
“Set Types“ later in this chapter), whose primary use is in performing bit-wise
operations (such as masking) on word-length variables. BITSETs (and sets in
general) has several predefined operations. Operators provided are union(+), in-
tersection(-), difference(*), and symmetrical difference(/). In addition, there are
standard procedures (INCL and EXCL) that are used to include and exclude any
element from a set variable, and a reserved word (IN) to test whether a particular
element is a member of a set element. ’

Sets are designated by enclosing the members in curly brackets, like this:
(3,4,6). You can visualize the type BITSET by comparing the set notation to its
binary representation:

56 - MODULA

: {} = 0000000000000000
{4,5,6,7,12,13,14,15] = 1111000011110000
{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] = 1111111111111111

In the first example, all the bits are clear which means there are no members
in the set. In the second example, bits 4 through 7 and bits 12 through 15 are set
(the right-most bit is bit 0). In the last example, all bits are set.

REAL type: Range [-6.80565E+38 to 6.80565E+38]. Use REAL numbers to
represent objects with a fractional part or to represent numbers that are very large
or very small, including money, the distance to the sun (93,000,000 miles), or
measurements of temperature and time. Real numbers have 6 digits of precision;
for example:

3.0E+8 98.6 0.0 2.3E-11

Turbo Modula-2 supports two types of double-precision numbers, LONGINT
and LONGREAL. Double precision means the number is stored in twice the
storage space as its single-precision counterpart, resulting in greater accuracy
since the number is represented with more bits. Compare the ranges and number
of significant digits in the single- and double-precision numbers.

LONGINT type: Range [-2147483648 to 2147483647]. Double-precision in-
tegers are used when a whole number greater than 65535 or less than -32768 is
needed. For example, the size of a file may be expressed with a LONGINT as
100000L bytes. Other examples of long integers include the following:

OL 1234567889L -20000000L

LONGREAL type: Range [-3.5953862697246D+308 to
3.5953862697246D+308]. These are double-precision reals. Variables of this
type have a precision of 14 digits; for example, multiplication is accurate to 14
decimal points. Use LONGREALs when numbers must be very large or require
great accuracy. :

Declarations

In general, Modula-2 programs have a declaration part and a program part. The
declaration part must contain all constant, type, and data declarations necessary

Data Structure - 57

to describe the data objects used in the program part. Data items must be defined
before they are used.

Constant Declarations

Constants benefit programs in two ways: (1) They place a descriptive name where
otherwise obscure numbers may be. (2) They simplify future modifications by
limiting certain changes to those constant definitions that have a global effect.

A constant declaration associates an identifier with a value and a type. Constant
declarations start with the reserved word CONST and are followed by any number
of declarations terminated by semicolons. Each declaration statement contains an
identifier followed by an equal sign, followed by a constant expression. A constant
expression is an expression containing only constants.

In the following declaration, the identifier Code represents the value A and Rate
represents the value 1.20:

CONST
Code = "A";
Rate = 1.20;

Amount = 350.0 ¥ Rate;

These values determine the type of the constant, which for Code is CHAR and
for Rate is REAL. In the third expression, the identifier Amount represents the
value obtained when the constant expression is evaluated. Notice that the iden-
tifier Rate must be a constant that has already been defined. '

In some cases, the constant’s type is not obvious; for example:

CONST
N = 100;

Is the constant N of type INTEGER or of type CARDINAL? In this case, the
answer is both. However, if N had been declared as

CONST
N = 60000;

58 MODULA

then its type would be only CARDINAL, since the value is out of the range for
integers.

Type Declarations

Each data item has a type defining the possible values it can assume and the opera-
tions that can be performed on it. In addition, a item type implies its structure
and how much storage the data item occupies. The type can be one of the predefin-
ed types (such as REAL or CARDINAL) or can be a user-defined type.

A type declaration begins with the reserved word TYPE and is followed by any
number of declarations terminated by semicolons. Each declaration contains an
identifier, followed by an equal sign, followed by a type identifier or statement.
For example:

TYPE

Ages = CARDINAL;
Time = INTEGER;

Here two new types are introduced into the program. These types can now be
used to declare data items with descriptive type names. This method has the same
advantage as that of naming constants: By using a descriptive name for a defined
type that is to be used several times in the variable declaration, the declaration
becomes more readable and easier to modify. For instance, in the previous exam-
ple, you can change all variables declared as type Time from INTEGER to REAL
by simply changing the word INTEGER to REAL.

Variable Declarations

Two things are required to describe a variable: a unique identifier and a type. The
value of the variable is left undefined so it may assume different values at runtime.
Modula-2 has no provision for initialization of variables at load time; all variables
must be initialized at runtime.

The variable declaration defines the variable’s type and identifier and optional-
ly the location in memory where the variable will exist. The declaration begins
with the reserved word VAR and is followed by any number of variable declara-
tions terminated by semicolons. Each declaration starts with an identifier list, op-

tionally followed by an absolute location, then by a colon, and lastly by the type

Data Structure R ‘ 59

of the variable. The absolute location is specified by a left square bracket ([),
followed by an address, and a right square bracket (]). For example:

VAR

Count: CARDINAL;

SwitchOn: BOOLEAN;
Screen[0CO00H] : ScreenType;

This example defines three variables: a CARDINAL called Count, a
BOOLEAN called SwitchOn, and an absolute variable called Screen residing at
memory location 0COOOH (the location must be a constant). This latter variable

(of type ScreenType. These three variables are completely defined and ready to
use in a program (assuming the type ScreenType has been defined previously).

User-Defined Unstructured Types

We have already seen some predefined unstructured types; however, there are also
user-defined unstructured types, which can be used to define variables that can
hold one value at a time.

Users can define three unstructured types: enumeration, subrange, and pointer.
In general, user-defined types may be declared directly in the variable declara-
tion, or they may be defined as types in the type definition section.

Enumeration Types

Often, predefined types such as INTEGER or REAL are not sufficiently descrip-

tive for certain applications. For instance, suppose you are trying to describe the

four points of a compass. One solution is to decide that North is equal to 1, East
+ '~ 2, and so on. However, when you are reading and writing the code, you must
always remember which number stands for the compass point you need. Also, the
variables you are working with are declared as CARDINAL or INTEGER, which
tells you nothing about how the variables should be used. Enumeration types (with
a user- defined range) provide an elegant solution to this problem. First, you
define a new type: ‘

CompassPoints = (North, East, South, West);

60 - MODULA

Then, you may declare variables of this type, like so:

VAR
Direction: CompassPoints;

When you use the variable, you simply assign or test for the values you have
defined for that type:

Direction := North; (¥ Assign the variable the value North ¥)
Direction >= East; (* Compare the variable to the value East %)

Enumeration types can also be declared directly in the variable section. Once
an enumeration type is defined, the names of its values are also declared and can-
not be used in another enumeration type. Here the type Weather can assume the
values Clear, Rain, Wind, or Snow. For example,

VAR

Weather :(Clear,Rain,Wind,Snow);
Water : (Clear,Murky,Opaque);

Color : (Violet,Orange,Green,Black);

The use of the value Clear in defining Water would produce a compiler error
because the value Clear has already been defined as a value assigned to Weather.
If the second Clear were changed to Transparent, then the compiler would accept
the declaration.

Enumeration types have an implied order by the way they are declared. In the
first example, Clear is the first value of the type Weather, with an ordinal value
of 0. The value Snow is greater than Clear, Rain, or Wind. Variables of enumera-
tion types can be compared to find their relative rank. Thus a statement like
Clear < Snow is TRUE and Rain>Wind is FALSE.

Subrange Types

The subrange type includes certain variables that can be included in one of the
previously mentioned types but which never takes values outside of a restricted
range. For example, todz:’s cate is of the type INTEGER, but is always in the
range of 1 to 31. We can state this by declaring it a subrange of the CARDINAL
type. You may define subranges of INTEGER, CARDINAL, or enumeration
types. Sample subrange types include the following:

Data Structure o 61

TYPE
Today = [1..31]; (* CARDINAL type with range 1 to 31 ¥)
Unusual = [Rain..Snow]; (* Subrange of Weather

To specify a subrange of positive integers, you may prefix the subrange with the
word INTEGER.

VAR
Cents: INTEGER[O0..100];

However, in general, the compiler will know which typeis specified. If the
{ ange contains a negative bound, then it assumes INTEGER; otherwise, it
assumes CARDINAL.

Pointer Types

Pointers point to another variable that can be of any type, including another
pointer. Pointer operations include comparison and assignment, plus a special
dereferencing operator that allows you to access the object pointed to by the
pointer. Pointers are used mainly for pointing to other structured data types such
as records or arrays (see “Structured Types“ later in this chapter). These pointers
are used to build dynamic structures such as linked lists or trees. Sample pointer
types include the following:

TYPE

CharPtr = POINTER TO CHAR;

IntPtr = POINTER TO INTEGER;

CardPtr = POINTER TO CARDINAL;

RealPtr = POINTER TO REAL;

SetPtr = POINTER TO BITSET;
1gPtr - = POINTER TO LONGINT;

poolPtr = POINTER TO BOOLEAN;

LRealPtr- = POINTER TO LONGREAL;

PtrPtr = POINTER TO POINTER TO CHAR;

Person = POINTER TO PERSONRECORD

The value of a pointer is an address in memory. Thus, you may assign a pointer
value a 16-bit address. Assuming the following variable declarations:

62 > MODULA

VAR
cpl,cp2: CharPtr;

you may make the following assignments:

ADDRESS(39283); (* Assign an absolute address to cpl ¥)
cpl; (* Make cp2 point to where cpl points ¥)

cpl :
cpR

]

Notice that the ADDRESS operator converts the CARDINAL number to a
generic pointer type, which can be assigned to any pointer. (See ADDRESS in
Chapter 12, “Turbo Modula-2 Reference Directory,” or in the module SYSTEM.)

Dereferencing is used to access the item pointed to by a pointer. The operator
used is the caret (A). To dereference a pointer, you simply append the caret to
the end of the pointer’s identifier. For example, to assign a character to the loca-
tion pointed to by the previous declaration, you would use the following statement:

cplA = AT

Structured Types

A structured type is a composite of more than one data object. A structured type
is analogous to a group of compartments, where each compartment may hold
another structured or unstructured type.

There are two types of structures in Modula-2: arrays and records. Arrays are
structured types that contain a predefined number of variables of the same type.
In contrast, a record contains a fixed number of different types.

Both structured types can be accessed as a whole, or the parts of the structure
can be accessed individually.

Array Types

Arrays have a fixed number of elements of an identical type. The type of each in-
dividual element is called the base type of the array. Each element of the array
is accessed via an index. Arrays are declared as follows:

VAR
IntegerList: ARRAY[1..5] OF INTEGER;

Data Structure 63

IntegerList is an array of five integers. TL.: integer elements can be accessed
as IntegerList[1], IntegerList[2], and so forth, where the number in the square
bracket is the index.

Arrays can be very descriptive when used in combination with enumeration and
subrange types. For example, we could use arrays to record the hours of sunshine
in each day of the week by using th¢ following declarations:

TYPE

Hours = [1..24];

Nays = (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday);

DaysOfTheWeek = [Sunday..Saturday];

WeeklySunshine = ARRAY DaysOfTheWeek OF Hours;

VAR
Sunshine: WeeklySunshine;

Then to store the fact that Monday was gloomy and Friday was sunny, we would
- use the following:

Sunshine[Monday] :
Sunshine[Friday] :

1;
12;

Notice that each element can be accessed by an identifying index. The second
item in the Sunshine array is accessed with the value Monday.

It is also possible to treat the array as a unit:

AR
(rhisWeek,LastWeek: WeeklySunshine;

With this declaration, and assuming the array LastWeek already has some
values, we can make this assignment:

ThisWeek := LastWeek; (* More of the same weather *)
Multidimensional arrays (such as matrixes) are also possible. Given our

previous definition of Weather, we can build a structure that will store the weather
conditions for each hour of every day for a week. The declaration is as follows:

64 MODUL.

VAR
WeeksWeather: ARRAY Days OF ARRAY Hours OF Weather;

An alternative and identical declaration is

VAR
WeeksWeather: ARRAY Days,Hours OF Weather;

We can access the elements in several ways, two of which are shown here:

WeeksWeather[Sunday], [12] := Clear;

assigns Clear weather to the 12th hour on Sunday; and
WeeksWeather[Monday] := WeeksWeather[Sunday];

assigns Sunday’s weather to Monday.

Record Types

While an array must consist of elements of identical type, a record may cons
of elements or fields of different types. Each field can be accessed by a uniq
name. Records are used to group different types of information into a single dz
type. Use record vari¢ble< to handle such information as the attributes of a perso
for example, his or her name, age, address, phone number, or favorite color. Tt
is easily done with the following record declaration:

TYPE
People = RECORD
' Name : ARRAY[1..30] OF CHAR;
Age : CARDINAL;
Address: ARRAY[1..40] OF CHAR;
Phone : ARRAY[1..14] OF CHAR;
PreferredColor: Color;
END;

This is a record containing five fields: Name, Age, Address, Phone and Prej
redColor. Each is a different type: three different arrays (Name, Address, ¢
Phone), a CARDINAL, and the user-defined type Color. Each field in the rec
can be accessed with the name of the variable, followed by a period and the na

Data Structure 65

of the field to be accessed. For example, if the variable Friend is defined as type
People, like so:

VAR
Friend : People;

then we can access each field as follows:

Friend.Name = 'Jon';

Friend.Age 1= 23;

Friend.Address = '234 Anywhere Drive';
Friend.Phone 1= 1333-3456";
Friend.PreferredColor := Blue;

We can also nest records two different ways We can include the nested record
directly in the record definition.

TYPE
People = RECORD
Name : RECORD
First,
Middle,
Last: ARRAY[1..15] OF CHAR;
END:
Age : CARDINAL;
END;

Or we can declare the type separately and nest it using the new type’s name:

TYPE :
Names = RECORD
First,
Middle,
Last: ARRAY[1..15] OF CHAR,
END; '

People = RECORD
Name : Names;
Age : CARDINAL;
.END; '

66 | MODULA

VAR
Person: People;

BEGIN
Person.Name.First[1]
Person.Name.Middle[1]
Person.Name.Last[1]

END

'L'; (% first initial %)
1J'; (% middle initial *)
'G'; (% last initial %)

Notice that we can now access the initials of a name by selecting the Name field
with each of the nested fields (First, Middle, Last), and then index into the first
character of each array.

Variant Records

A record type can also have one or more dynamic variant parts. The variant is
selected by the value of a tag field.

Employee = RECORD
Name: ARRAY[1..20] OFCHAR;
Age: CARDINAL;
CASE OwnHome : BOOLEAN OF
TRUE: Payment : CARDINAL;
OwnedSince : Date
|
FALSE:Rent: CARDINAL
END
END;

In the preceding record, there are two fixed fields, Name and Age, and a varian
part consisting of one or two fields, depending on the value of the tag fiel
OwnHome. If OwnHome is TRUE, then the fields Payment and OwnedSince ar
presumed to exist and the Rent field should not be accessed. If OwnHome i
FALSE, then only the Rent field should be accessed.

Note: It is possible to access any of the fields regardless of the value of the tz
field; it is up to the programmer to ensure that variant fields are only access¢

when the tag field has the correct value.

Sometimes you may not want to specify a tag field. In this case, the tag fie

Data Structure 67

can be omitted, producing a record with fields that overlap one another. The colon
and type must be present to indicate that no tag field was chosen.

TYPE
HiLo = RECORD
CASE : BOOLEAN OF
TRUE: byte: ARRAY[O..1] OFCHAR;
|
FALSE: All: CARDINAL;
FND
END;
VAR

MyWord : HiLo;

The variable MyWord of type HiLo can be accessed as follows:

MyWord.byte[1]:
MyWord.All

A'; (* Assign character 'A' to the low byte %)
65; (% Assign the CARDINAL 65 to the entire word ¥)

Set Types

A set type defines a collection of related members. The members may be of any
scalar type. Within a particular set, all members are of the same type and must
have an ordinal value between O and 15. For example,

TYPE

Color = (Red, Green, Blue);
Digits = SET OF [0..9];
Colors = SET OF Color;

The set Digits has members that are a subrange of type CARDINAL. The
members of Digits have ordinal values ranging from 0 to 9. Colors is a set con-
sisting of members of an enumerated type. The members have ordinal values rang-
ing from O to 2.

The value of a set variable is the collection of members that it contains at any
point in time. Operations on sets include assignment and comparison, as well as
some special set operations. If we define set variables like this:

68 ' MODULA

VAR
ColSetl,ColSet2: Colors;

we can make the following statements:

Colors{Red,Bluej;
Colors{Red,Green};

ColSetl :
ColSet2 :

Thus, a variable of type Colors may take as a value any combination of the three
members; for example, {Red,Blue}, {Blue}, {Green,Blue}, and {], which is the
empty set.

Notice that the type of the set must prefix the constant set. If no prefix is pre-
sent, the type of the set is assumed to be BITSET. The same operations applicable
to BITSET are valid for user-defined sets (see BITSET in Chapter 12). Thus, we
have the following:

ColSetl + ColSet2 = Colors{Red,Green,Blue}
ColSetl - ColSet2 = Colors{Blue}

ColSetl ¥ ColSet2 = Colors{Red}

ColSetl / ColSet2 = Colors{Green,Blue}

ColSetl - ColSetl
ColSetl / Colors{Green} = Colors

Colors{]
{Red,Green, Blue}

Procedure Types

Procedure types are an advanced language feature included here for completeness.
Thus, you may wish first to read more about procedures and parameters (ir
Chapter 6), and then come back to procedure types.

Procedures can be assigned to a variable in order to be passed as arguments tc
other procedures. A procedure-type declaration specifies the number and type o
its parameters and an optional function result. The following is a sample pro
cedure type:

TYPE
Procl = PROCEDURE (CARDINAL, VAR INTEGER);

~This is a procedure type with two arguments. The first argument is a valu

Data Structure 69

parameter of type CARDINAL and the second is a variable parameter of type IN-
TEGER. For example, suppose P is a procedure variable of type Procl; declared
as

VAR
P: Procl;

The procedure variable P can take two arguments: one a CARDINAL, the other
an INTEGER variable, and only in that order. The varlable P could then be pass-
ed as an argument to another procedure.

A procedure varia'e may only take on the value of a globally defined procedure
(see “Procedure Declarations* in Chapter 6) with an identical parameter list. For
example, the variable P may take the valuz of procedures declared as follows:

PROCEDURE Test(:CARDINAL; VAR i:INTEGER);
BEGIN
END Test;

or

PROCEDURE Fees(accountNo:CARDINAL; VAR Balance:INTEGER);
BEGIN
END Fees;

The assignment operation is the only operation allowed on procedure variables.

P := Test;
P := Fees;

Assuming that Fees is assigned to P and that CurrentBalance is declared as an
INTEGER variable, the procedure Fees can be called as follows:

P(121,CurrentBalance);

The most useful aspect of procedure variables is passing them as parameters
to algorithms accessing complicated data structures (such as tree traversal pro-
cedures). The benefit is that many different operations can be performed on each
element of the data structure, but only one data- access routine need be written
to do so.

Statements gt

Chapter 6
Statements

In the previous chapter we discussed how to define data with constant, variable,
and type declarations. Now we’ll provide you with the remammg item you’ll need
to write your progran:. the statement.

Statements provide a means to handle data and define the flow of control.
Modula-2 program statements can be divided into four classes: assignment, con-
ditional, repetitive, and procedural (which includes procedure calls and a special
flow of control statements). Each statement type will be examined in detail, but
first we'll talk about programs in general in Modula-2.

In Modula-2, programs are called modules. Every main program begins with
the reserved word MODULE, followed by the name of the program and a
semicolon. The module statement is followed by a series of declaration statements
that include the data declarations discussed in the last chapter (namely constant,
type, and variable declarations), and possibly external and procedure declarations
(discussed in the following chapter and at the end of this chapter, respectively).

The following sampi¢ program outlines the general form.of a Modula-2 pro-
gram:

MODULE Skeleton;
(* External Declarations (Next Chapter) ¥)

JONST

(* Constant Declarations (Last Chapter) *)
TYPE

(¥ Type Declarations (Last Chapter) %)
VAR

(* Variable Declarations (Last Chapter) *)

(* Procedure Declarations (This Chapter) *)

72

MODULA

BEGIN

(¥ Program statements (This Chapter) ¥)

END Skeleton.

The program body follows the declaration section, and contains statements
separated by semicolons. The statements are within a block enclosed by the
reserved words BEGIN and END, followed by the name of the program and a
period. Modula-2 statements can be divided into the following classes:

Assignment

Conditional

Repetitive

Procedural

Assignments are made to variables, resulting in a change in the
value that the variable holds. The source of the assignment may
be any expression that has the same resulting type as the destina-
tion. A simple assignment may look like this: X := 4.

" This class groups statements together so that they are executed

only if a specified condition is TRUE; for example, »If it’s rain-
ing, then....« This group includes the IF and CASE statements.

Looping statements group one or more statements that are to be
executed a number of times. For example, a loop may »Switch
a light on and off ten times.« This group includes the FOR,
WHILE, REPEAT, and LOOP statements.

These statements call and control subroutines. They include
procedure calls and the RETURN statement, which affects the
flow of control in procedures.

Assignment Statements

A simple assignment statement replaces the current value of a variable with the
result of an expression. The expression may be as simple as a constant or another
variable, or it may be a complicated mathematical expression containing con-
stants, variables, and func:ons. For example:

MODULE Assignment;

CONST

Pi = 3.14159;

Statements X 73

VAR

X,Y: CARDINAL;

CircleArea,Raiius,Z : REAL; .
BEGIN

(* simple ¥)

X 1= 2;

Y :=X+1;

Z = 3.23;

(* complex ¥)

CircleArea := 2.0 ¥ Pi ¥ Radius;

Z := (CircleArea*(45.2/29.3)+Z%(Z+2.0)) /Pi;
END Assignment;

The result of the expression on the right must be assignment compatible with
the variable on the left. In the first two examples, the expressions result in type
CARDINAL; thus X and Y must be of type CARDINAL. The second set of ex-
pressions have REAL results; thus CircleArea and Z are of type REAL.

Note that := is the assignment operator and should be read as »becomes« (or
gets), as in / becomes I+1, or I gets [+2.

WITH Statements

The WITH statement is used to alter the scope of identifiers, and is often used
with assignment statements (though it is not itself an assignment statement).
WITH is used with record variables, eliminating the need to name the record
identifier for each field accessed within the WITH block. The WITH statement
takes the following form:

WITH record identifier DO
Statement sequence
END

This statement improves code readability when you are assigning values to
fields of record variables, because the code reflects the immediate action of
assignment to individual fields without the clutter of additional identifiers. For ex-
ample:

74 MODULA

MODULE WithStatement;
TYPE '
Months = (Jan,Feb,Mar,Apr,May,Jun,July,Aug,Sep,0ct,Nov,Dec);
Date = RECORD
Day:[1..31];
Month:Months;
Year:CARDINAL

END;
Person= RECORD
Name : ARRAY[0..30] OFCHAR;
Age : CARDINAL;
Height : REAL;
BirthDay : Date;
END;

VAR
Friend: ARRAY [1..2] OF Person;

BEGIN
Friend[1].Name := 'Rodney’;
Friend[1].Age := 28;
Friend[1].Height := 5.5;
Friend[1].BirthDay.Day:= 3;
Friend[1].BirthDay.Month:= Dec;
Friend[1].BirthDay.Year:= 1958;
WITHFriend[2] DO
Name := 'Judith’;
Age := 32;
Height := 5.4;
WITH BirthDay DO

Day:= 27;
Month:= Oct;
Year:= 1954;
END
END
ENDWithStatement.

The first record, Friend [1], receives values by simple assignment. Note that
for every field accessed the name of the record is present. The second record is
accessed using the WITH statement. Notice that the structure of the code reflects
the structure of the data. The change in scope is accentuated by the indentation
used to code the WITH statement. .

Statements - 75

Conditional Statements

IF Statements

The IF statement executes a different statement sequence depending on the result
of a Boolean expression. The IF statement has the form

IF BOOLEAN expression THEN
Statement sequence

{ELSIF BOOLEAN expression THEN
Statement sequence]

[ELSE
Statement sequence]

END

The ELSIF (else if) and ELSE parts are optional. If the Boolean expression
following the IF is TRUE, the first statement sequence is executed and control
. continues with the first statement after the END. If the first expression is FALSE
and the ELSIF part is present, then its Boolean expression is evaluated. If it is
TRUE, then its statement sequence is executed; otherwise, the next ELSIF is
evaluated. There may be any number of ELSIF parts after the IF THEN, in-
cluding none. If all expressions are FALSE, then the ELSE part, if present, is
executed. For example:

MODULE IfThenElsifElse;

VAR
SwitchOn,PowerOn: BOOLEAN;
Status : (OK, Danger, Emergency);

BEGIN
(* Statements that set Boolean flags ¥)
IF SwitchOn AND PowerOn THEN
Status := 0K
ELSIF NOT SwitchOn THEN
Status := Danger
ELSE
Status := Emergency
END;
(* Other statements *)
END IfThenElsifElse.

76 MODUL-

After the Boolean flags have been set, the expression following the IF i
evaluated. If it is TRUE, then Status gets OK and execution continues after the
END:; otherwise, the ELSIF expression is evaluated. If it is TRUE, then Statu.
gets Danger. However, if the ELSIF expression is FALSE, the ELSE is execute:
and Status is set to Emergency. After either the IF part, the ELSIF part, or th
ELSE part is executed, control continues with the first statement after the END

CASE Statements

The CASE statement executes a different statement sequence according to th
value of an expression. The result of the expression is compared against value
in a constant list (a list of constants separated by commas) until a match is foun
or there are no constants left. A CASE statement may have several constant list
each associated with a statement sequence and separated by vertical bars.

The elements of the constant lists must be of the same type as the expressio
following the CASE. The CASE statement takes the form

CASE expression OF
Constant List : statement sequence

|
Constant List : statement sequence

ELSE
statement sequence
END

where a particular statement sequence is executed if the expression results

a value contained in the constant list. The optional ELSE part is executed if nos
of the constants match the expression. If none of the constants match the expre
sion and there is no ELSE part, the behavior of the code is dependent on the s¢
ting of the TEST switch when the source was compiled (see »Compiler Optio
and Switches,« in Chapter 10). If TEST is ON, then the exception CaseSelectE
ror is generated. If TEST is OFF, then execution continues with the instructic
after the END that corresponds to the CASE. For example:

Statements ' 77

MODULE Cases;
VAR
Temp : (Freezing, Cold, Cool, Perfect, Warm, Hot, Searing);
HeaterOn,
AirConditionerON : BOOLEAN;
BEGIN
(* Statements which set Temp ¥)
CASE Temp OF
Freezing..Cool : HeaterOn := TRUE
|
Perfect, Warm, Hot : HeaterOn := FALSE
ELSE(* must be Searing ¥)
HeaterOn := FALSE;
AirConditionerON := TRUE;
END
END Cases.

This example executes one of three statement sequences depending on the value
of Temp. If Temp has a value between Freezing and Cool, then the heater is turned
on. If the value is between Perfect and Hot, then the heater is turned off. However,
Temp may take on a value that is in neither constant list. In that case, the ELSE
part of the CASE statement is executed and the heater is turned off and the air
conditioner is turned on.

Note: The CASE statement is for situations where the lists of constants have
adjacent ordinal values. When conditional execution is dependent on nonadjacent
values, the IF THEN ELSIF statement should be used; otherwise, nonadjacent
values used in CASE statements will generate a relatively large amount of code.

Repetitive Statements

FOR Statements

The FOR statement encloses a sequence of statements that is repeated a fixed
number of times. The FOR statement takes the form

FORVar:= First TO Last BY Step DO
statement sequence
END

78 - MODU

where Var is a variable called the control variable, First is the initial value of |
Last is the final value of Var, and Step is the increment added to Var for each it
tion. First, Last, and Var can be any ordinal type, but they must all be of the sz

type.

The statement sequence is repeatedly executed and the control variable
cremented until the control variable equals or exceeds the value of Last. For ex:
ple:

MODULE ForLoop;

CONST
Increment = 0.1;

VAR
I:CARDINAL;
Result:REAL;

BEGIN
FOR I:= 0 TO 10 BY 2 DO

Result:= Result + Increment

END

END ForLoop.

This example repeats the statement sequence six times, with / equal to
values 0, 2, 4, 6, 8, and 10. If the optional step value is omitted, then it is assur
to be 1. The step can also be negative; for example:

MODULE ForLoopCountDown
VAR
Time,Add: INTEGER;
BEGIN
FORTime:= 3 TO -3 BY -1 DO
Add:= 2 ¥ Time
END
END ForLoopCountDown.

Note that the control variable can take part in the statement sequence but car
be altered by it.

he
ed

not

Statements i 79

WHILE Statements

The WHILE statement repeats a statement sequence until a Boolean expression
yields a FALSE result. The WHILE statement takes the form

WHILE Boolean expression DO

statement sequence
END

where the statement sequence is repeatedly executed when the Boolean expres-
sion is TRUE. For example:

MODULE WhileLoop;

VAR
Control:CARDINAL;
BEGIN
Control:= 4;

WHILE Control>0 DO
Control:= Control - 1
END
END WhileLoop.

This example repeats the statement sequence until Control is equal to 0.

Note that the Boolean expression is evaluated before the statement sequence;
therefore, it is possible that the statement sequence will not be executed. In the
preceding example, this would be true if Control was set to O instead of 4. Also
note that the values that make up the control expression must be affected by some

- part of the loop, otherwise the loop will never end.

REPEAT Statements

The REPEAT statement replicates a statement sequence until a Boolean expres-
sion yields TRUE. The REPEAT statement differs from the WHILE statement
in that the expression is evaluated after the statement sequence; therefore, the

statement sequence is always executed at least once. The REPEAT statement has
the form

80) MODULA

REPEAT
statement sequence
UNTIL Boolean expression

where the statement sequence is repeatedly executed until the expression is
TRUE. For example:

MODULE RepeatLoop;
VAR
N: REAL;
BEGIN
N :=1.0;
REPEAT
N :=2.0 ¥ N;
UNTILN > 100.0;
END RepeatLoop.

This loop repeats until the value of N is greater than 100.

LOOP Statements

The LOOP statement repeats a statement sequence until terminated by an EXIT
statement. The LOOP statement has the form

LOOP
statement sequence
END

This statement is generally used when the termination condition can only be
determined in the middle of the loop. Since Modula-2 has no GOTO statement,
the EXIT statement is used to terminate the loop and continue control at the state-
ment after the END.

EXIT Statements

The EXIT statement specifies termination of a LOOP statement. A common ex-
ample of this occurs in sequential processing, where a data object is obtained and
then processed. In this instance, a problem can occur if the program can only test
if the object was obtained successfully after the statement to obtain it. Thus, there
must be a test directly after the Obtain statement to see if it was successful. If

Statements - 81

it was not, no further processing can be done and control must be passed around
the processing statements and go to the statement after the loop. The following
example simulates this situation with arrays:

MODULE LoopLoop;
TYPE
DataObject = RECORD
Name : ARRAY[O..30] OFCHAR;
Age : CARDINAL
END;
VAR
Record: ARRAY([1..10] OFDataObject;
WorkRecord : DataObject; ’
BEGIN
I:=0;
Record[10] .Name := 'LastRecord’;
LOOP
I:=1+1;
WorkRecord := Record[I];
IFWorkRecord.Name = 'LastRecord' THEN EXIT END;
(* statements to process the record *)
END
END LoopLoop.

This example presents a more common problem with sequential file processing:
The flag in the Name field represents the end-of-file condition; thus, the records
are continually read and processed until the end-of-file condition is TRUE. At this
point the EXIT statement is executed and control continued after the loop’s END.

More than one EXIT can be present in a loop. However, if there are too many
XIT statements, it is difficult to understand the meaning of the loop and to deter-
mine when and where it will terminate.

Procedural Statements
Procedures are named subroutines and subroutines are pieces of code declared

elsewhere and invoked by name. In the following, we will look at how a procedure
is called and how it is defined.

82 MODUL/

Procedure Calls

A procedure call is an identifier, optionally followed by a parameter list. Th
identifier represents a sequence of statements defined elsewhere. When a pro
cedure call is encountered in a statement sequence, the flow of control is transfer
red to the statements that that identifier represents. A procedure call may hav
parameters specified by listing variables or constants, which are separated b
commas and enclosed in parentheses. These are called actual parameters. Th
following example shows three procedure calls in the body of the module:

MODULE ProcedureCall;
(* Statements that define the procedure Read *)

VAR
Number,
Count : CARDINAL;
First : INTEGER;
BEGIN

Read(Number); Read(Count); INC(First);
END ProcedureCall.

The first Read statement has one actual parameter, Number. This parameter cal
be different each time the procedure is invoked, as with the second procedure cal
of Read, where Count is the actual parameter.

Note that there must be a declaration statement defining Read. However, thi
is not so with the third procedure call in the example, (INC(First);). This i
because it is a standard procedure, predefined in Modula-2 and callable fron
anywhere without explicit declarations. (There is a list of standard procedures a
the end of this chapter.)

Procedure Declarations

Procedure declarations allow the programmer to define a statement sequence onci
and use it many times. Procedures allow a series of actions to be abstracted int
a single meaningful name. For example, it could take hundreds of lines of cod
to implement the following procedure calls:

ReadChar;
AccessFile;
WriteScreen;

Statements) , 83

However, these three statements abstract the lines of code into names that
describe the action the code performs. (This lends itself to the concept of informa-
tion hiding: The details of each procedure are not relevant to the immediate code;
they are hidden in the declarations of each procedure.)

As mentioned at the beginning of this chapter, the declaration section of a
module may contain procedure declarations. Each procedure declaration starts
with the reserved word PROCEDURE and is followed by the procedure’s iden-
tifier name, an optional parameter list, an optional function result type, and a
semicolon. Next is a declaration section that contains constant, type, variable, and
possibly additional procedure declarations. The following example shows a
skeleton procedure declaration:

PROCEDURE Skeleton((* parameter declarations ¥));
CONST
(* Constant Declarations *)
TYPE
(* Type Declarations *)
VAR
(* Variable Declarations *)

(¥ Procedure Declarations %)

BEGIN
(¥ Program Statements *)
END Skeleton;

Notice the similarities between this procedure skeleton and the module skeleton
at the beginning of this chapter. Both have a declaration section and a body, which
is convenient when you need to convert a stand- alone program to a subroutine.
The following example shows how procedures are declared and how they can be
called repeatedly:

MODULE ProcedureDeclaration;
VAR
x: CARDINAL;

PROCEDURE ExampleProcedure;
BEGIN
Xi=x+1;

84 MODULA

END ExampleProcedure;

BEGIN
x := 0;
ExampleProcedure;
ExampleProcedure;
ExampleProcedure;

END ProcedureDeclaration.

The module ProcedureDeclaration has defined one procedure called Ex-
ampleProcedure. The body of the module calls it three times, incrementing x by
1 each time the procedure is invoked.

Parameters

Procedure declarations may have parameters that are passed to the procedure in
a procedure call. The parameters are specified in the procedure statement after
the procedure identifier, and enclosed in parentheses. This is called a parameter
declaration.

The parameter declaration defines the names and types of each parameter,
which are its formal parameters. For example:

PROCEDURE foo(a,b,c: INTEGER; d: CARDINAL; e: REAL);

Notice that parameters of the same type may be grouped together, as in variable
declarations. Each group of parameters is separated by semicolons. In addition
to name and type, the declaration determines the kind of parameter that is being
passed.

There are two kinds of parameters: variable parameters and value parameters.
Variable parameters link actual and formal identifiers, and are identified by
prefixing a group of parameters with the reserved word VAR. Value parameters
pass a value as an initial condition to a formal identifier. Since VAR does not ap-
pear in the preceding declaration, all of the parameters are value parameters.

To explain the difference between variable and value parameters, let’s look at
the procedure call. When a procedure call passes a parameter to a subroutine, the
program may or may not want the variable it passes to be changed. If it does not,
the formal parameter should be declared as a value parameter. But if the call is

Statements o 85

expecting the procedure to do some work on the variable and return the new value,
then the formal parameter should be a variable parameter.

When a value parameter is passed, a copy of the value is made. Any reference
to that parameter will affect only the copy and not the original; thus, constants
as well as variables may be passed as value parameters. For example:

MODULE ValParameters;

PROCEDURE Power(VAR A:REAL;I:CARDINAL);
VAR
Temp: REAL;
BEGIN
Temp:= 1.0;
WHILEI>O0 DO
Temp:= Temp * A;
I:=1I-1
END;
A := Temp;
END Power;

VAR
X : REAL;
e : CARDINAL;
BEGIN
x := 10.0; e := 2;
Power(x,e); (* Raise 10 to the 2nd power *)
(* Now x = 100.0 %)
Power(x,3); (* Raise 100 to the 3rd power %)
(* Now x = 1000000.0 ¥)
END ValParameters.

(The reserved word VAR in the procedure heading declares 4 to be a varlable
parameter; the cardinal / is a value parameter.)

In the first call, the value parameter is the variable e set to the value 2. Notice
that the value of I is changed. This will not be reflected in the value of e; it will
remain the same. In the second call, the constant 3 is passed as a value parameter.
A copy of this value is made within the procedure, thus it may be treated as a
variable within the procedure.

86 MODULA

When a variable parameter is passed, the address of the variable is passed.
Thus, any reference to that parameter is to the original copy. For this reason, con-
stants cannot be passed as variable parameters.

The following example shows the use of variable parameters:
MODULE VarParameters;

PROCEDURE Swap(VAR I,J: INTEGER);
VAR
Temp: INTEGER;
BEGIN
Temp:= I;
I:=J;
J:= Temp;
END Swap;

VAR

a,b,c: INTEGER;

BEGIN

a:=1;b:=-1; ¢ :=0;

Swap(a,b); (* Nowa =-1land b
Swap(c,a); (* Nowe = -1and a
END VarParameters.

1%)
0 %)

1l
"

The integers I and J are formal parameters. The formal parameters are used in-
side a procedure in place of the external actual parameters (a, b, ¢) in the example.

In the first call to Swap, a and b are aliases for I and J, respectively, which
allows the procedure to change the values that @ and b contain. The procedure in-
terchanges the values of 7 and J, as well as the values of the external variables
a and b. The second call then interchanges ¢ and a, whereby ¢ ends up with b’
original value, a gets the value of ¢, and & holds the original value of a.

Open Array Parameters

Modula-2 has a special feature that allows an array of unspecified size to be passec
as a parameter to procedures. These are called open array parameters. They are
specified in the parameter declaration list in the following form:

Statements 8

ARRAY OF T

where T is the type of the item in the array. The lower bound of the array is
always 0, and the upper bound is determined by a call to the standard procedure
HIGH. HIGH returns the highest legal index value based on the declaration of the
array that was passed, but which has been adjusted so that the lower bound is zero.
For example, consider this module:

MODULE OpenArrays;

TYPE

Employee = RECORD
Name : ARRAY[O..20] OF CHAR;
Age : CARDINAL;

Wage : REAL;
END;
VAR
AllEmployees : ARRAY[1..20] OF Employee;

CurrentEmployees : ARRAY[0..9] OF Employee;

PROCEDURE PrintEmployeeRecords(VAR e: ARRAY OF Employee);
VAR
I: CARDINAL;

BEGIN
FOR I := 0 TO HIGH(e) DO
WITH e[I] DO
WRITELN(Name, Age:10,Wage:5:2);
END
END

END PrintEmployeeRecords;

VAR
I: CARDINAL;
BEGIN
FOR I :=1 TO 20 DO
WITH AllEmployees([1] DO
Name := 'Hilary';

Age := 11;
Wage := 3.35;
END

END;

88 MODULA

FOR I := 0 TO 9 DO
WITH CurrentEmployees[I] DO

Name := 'Nate';
Age := 2;
Wage := 3.35;
END
END;

PrintEmployeeRecords(Al1Employees);
PrintEmployeeRecords(CurrentEmployees);
END OpenArrays.

The procedure PrintEmployeeRecords will accept and correctly print the two
Employee arrays even though they have different bounds. Note that the function
HIGH gives the highest legally accessible item in the array.

Although HIGH provides the largest index, you may still need another way to
determine how full the array is. For instance, it is often useful to define procedures
that have open arrays of characters, because you need to pass strings of differing
length to the same algorithm. However, the character arrays may not be complete-
ly filled when passed to the open array; thus, HIGH points to the end of the array
rather than the end of the string. Modula-2 appends a null character (0C) if a con-
stant string is passed to a procedure with an open array. Thus, the procedure can
determine the actual length by scanning for the null character.

With open arrays of other types that may not be completely filled, you must pro-
vide some mechanism for the procedure to determine the last valid item in the
array. This may be a flag record or an additional parameter that gives the count.

There is an even more powerful version of an open array that allows you to pass
any type to a procedure; for more details, refer to Chapter 8. Turbo Modula-2
allows multidimensional open-array parameters, specified as

M:ARRAY OF ARRAY OF T
The high bound of the first dimension is HIGH(M) and the high bound of the

second dimension is HIGH(M[0]). Thus you may find the high bound of the nth
dimension by passing HIGH the array with n-/ subscripts.

Statements 89

Function Procedures

As mentioned earlier, a procedure may return a result. This is called a function
procedure. A call to a function procedure is either an expression or part of an ex-
pression. The types of values they return must be defined in the procedure state-
ment, as follows: '

PROCEDURE Foo(): INTEGER;

This procedure heading defines a function that returns a value of type IN-
TFER. Note that even though there are no parameters, the empty parameter list
nl be present. This is true for both formal and actual parameter lists. For exam-
ple, if the preceding function is used to assign a value to an integer variable, then
it will look like this:

IntVar := Foo();

With the empty parameter list, it is clear whether an identifier occurring in an
expression is a variable or a function procedure. This is not a problem with nor-
mal parameterless procedures, because they cannot occur in expressions.

As an example, we will change the Power procedure we used earlier to a func-
tion:

MODULE FunctionProcedure;

PROCEDURE Power(A:REAL;I:CARDINAL) :REAL;
VAR
Temp: REAL;
BEGIN
(ap:=1.0;
WHILE I>0 DO
Temp:= Temp ¥ A;
I:=1-1;
END;
RETURN Temp;
END Power;

90 MODUL

VAR
x: REAL;
e: CARDINAL;

BEGIN)
x :=10.0; e := 2;

x := Power(x,e); (% Raise 10 to the 2nd power %) .
(* Now x = 100.0 ¥)
x := Power(x,3); (* Raise 100 to the 3rd power ¥)
(* Now x = 1000000.0 ¥)

END FunctionProcedure.

The FunctionProcedure example has the same outcome as the procedure Pow
example, but the methods are different. The parameter declaration for A has be:
changed from a variable parameter to a value parameter. Thus, the actu
parameter is not changed by the body of the function, but by the assignment stat
ment in the body of the module. Another difference is that the function Power h
an explicit RETURN statement to define the result and terminate the procedur

In general, it is a good practice to have only value parameters in a function pr
cedure. When a function’s variable parameter or global variable is changed with
the course of the function call, it is called a side effect.

RETURN Statements
The value returned by a function procedure is explicitly named by a RETUR
statement. This statement takes the form

RETURN value;

where value is an expression with the same resulting type as the function p1
cedure. Thus, in an earlier example, the statement

RETURN Temp;

specifies the result of the function. The RETURN statement may also be us
in normal procedures with no statement after RETURN. In a normal procedu
the RETURN statement has the same effect as if the procedure had come to t
final END statement. This permits procedures to be exited at any point. As w

— = 3

e
1€

Statements 91

the EXIT statement previously described, too many RETURN statements in a
procedure make it difficult to understand.

Examples of RETURN statements:

RETURN ; (* normal procedure ¥)
RETURN 26; (¥ function procedure returning an Integer ¥)
Nested Procedures

As shown in the skeleton procedure, the declaration section can also include addi-
tional procedure declarations called nested procedures, or local procedures. (The
procedures described earlier are global procedures.) The following is an example
of a nested procedure:

MODULE NestedProcedures;

PROCEDURE LevelOne;

PROCEDURE LevelTwo;
PROCEDURE LevelThree;
BEGIN

LevelThree;

BEGIN (* LevelTwo procedure body *)
END LevelTwo;

PROCEDURE AnotherLevelTlwo;
BEGIN
END AnotherLevelTwo;

BEGIN (* LevelOne procedure body *)
END LevelOne;

BEGIN (* Module body ¥)
END NestedProcedures.

This example defines four procedures: one is global (procedure LevelOne), and
the remaining three are nested. Two are considered local to the procedure

92 - MOD

LevelOne; they are LevelTwo and AnotherLevelTwo. The procedure LevelTwc
a local procedure called LevelThree. At certain points in this program, only
tain procedure identifiers are available to be called. This is because proced
restrict the visibility of identifiers declared within them. This is referred to a:
scope of an identifier.

Scope of Visibility

Here we present the rules for the scope of visibility of an identifier for a
cedure. The rules for modules are slightly different and are presented in the
chapter.

The procedure in which an identifier is declared defines the scope of visit
for that identifier. For procedures, the rules are as follows:

O An identifier exists while the declaring procedure is active.

[An identifier is visible within the declaring procedure after the identifi
declared and it is also visible within nested procedures unless redeclare
a nested procedure. The new identifier exists until the redeclaring proce
is inactive, then the identifier reverts to the original declaration condit

O All identifiers that are visible outside of the procedure are also visible i1
the procedure, unless redeclared in that procedure.

For example consider the following module:
MODULE ProcedureScope;

PROCEDURE A;
VAR
i,j: CARDINAL;

PROCEDURE B;
VAR
j: REAL;
BEGIN (¥ 1 and j (the REAL) are visible here ¥)
END B;

)ro-
1ext

lity

T is
| by
lure
ns.

side

Statements - 93

PROCEDURE C; .
BEGIN (* 1 and j (the CARDINAL) are visible here %)
END C;

BEGIN (* 1 and j (the CARDINAL) are visible here ¥)
END A;

BEGIN
END ProcedureScope.

An identifier declared in A is visible in A, B, C, and all the procedures nested
within B and C. On the other hand, an identifier declared in procedure B is visible
only in B and any of B’s nested procedures, but not in 4 or C.

Notice that the identifier j is declared in both A and B. The A version of j (the
CARDINAL) is visible throughout A, C, and the procedures nested in C. In pro-
cedure B, the A version is invisible, being replaced by the B version of j (the
REAL). The B version is therefore visible in B and all the procedures nested in B.

FORWARD Statements

The original definition of Modula-2 specified that identifiers declared at the same
level have the same scope. Thus a procedure declared textually at the top of a pro-
gram could call a procedure that was declared later in the text. This was possible
because the first Modula-2 compilers were multipass compilers (in most cases
four passes) that could resolve an undeclared reference on a subsequent pass.

Turbo Modula-2 and Wirth’s latest compilers are one-pass, recursive-decent
compilers, which means there must be additional syntax to allow a single pass.
This is done with the FORWARD statement. Its syntax and usage is similar to
that of Pascal’s. To use the FORWARD statement, simply copy the entire pro-
cedure heading, including the parameter list and the optional function result, to
the location where it is needed. Then append the FORWARD statement and a
semicolon. You need not change the procedure at all. The syntax is as follows:

PROCEDURE indentifier (parameter list) :result type ; FORWARD ;

This statement is required for algorithms involving mutual recursion, where one
procedure calls another, which then calls the first. For example:

94 MODUI

MODULE MutualRecursion;

PROCEDURE One; FORWARD ;
PROCEDURE Two;
BEGIN
WRITELN('Procedure Two'); READLN;
One;
END Two;

BEGIN
WRITELN('Procedure Two'); READLN;
One;

END Two;

PROCEDURE One;

BEGIN
WRITELN('Procedure One'); READLN;
Two;

END One;

BEGIN
One;
END MutualRecursion.

Thus, the FORWARD statement is a way of extending the scope of a pr
cedure’s identifier, making it available over a larger program area.

Standard Procedures

Modula-2 includes several predefined procedures that are visible anywhere with
a program,; in other words, the identifiers do not require importing into a modu.
(To see examples of these procedures, turn to the respective entries in Chapter L
The following is a list of all standard procedures in Modula-2:

ABS(X) Absolute value of variable X
CAP(Ch) Uppercase of letters Ch

CARD(X) Conversion of X to CARDINAL

CHR(X) The character with ordinal number X
DEC(X) Replace X by its predecessor

w

Statements

95

DEC(X,N)
EXCL(S,I)
FLOAT(X)
HALT
HIGH(A)
INC(X)
INC(X,N)
INCL(S,I)
FLOAT(X)
HALT
HIGH(A)
INC(X)
INC(X,N)
INCL(S,I)
INT(X)
LONG(X)
MAX(T)
MIN(T)
0DD(X)
ORD(X)
SIZE(X)
SIZE(T)
TRUNC(X)
VAL(T,X)

Replace X by its Nth predecessor
Exclude element I from cet S
Conversion of X to REAL

Halt program execution

Upper index of array A

Replace X by its successor (X := X + 1)
Replace X by its Nth successor (X := X + N)
Include element I in set S

Conversion of X to REAL

Halt program execution

Upper index of array A

Replace X by its successor (X := X + 1)
Replace X by its Nth successor (X := X + N)
Include element I in set S

Conversion to INTEGER

Conversion to LONGINT

Largest element of type T

Smallest element of type T

Returns Boolean TRUE if X is odd
Ordinal number of X in its type

Returns the size in bytes of variable X
Returns the size in bytes of type T
Truncate real X to CARDINAL

Value with ordinal number X and type T

98 e MODUL

Figure 7-1: Hierarchy of Modula-2 Program

Application programm

l

I [|
Input/Output Mathematical String User-Defined

Library Library Library Library
I [
SYSTEM STORAGE
Library Library
T
Operating
System

The application program is the main module, requiring the services of the Ir
put/Output, Mathematical, String, and User-defined Library modules. Thes
modules in turn may require the services of the so-called, »low- level« module

(SYSTEM and STORAGE Libraries), which in turn require the services of tt
underlying operating system.

Each library module is a self-contained unit that is compiled separately. Use
can build their own library modules and use them as if they were provided by tl
Modula-2 system. When a main module uses library procedures, the facilities
that library are linked to the main program. In general, this process is the san
for both predefined and user-defined modules.

As in any hierarchy, the application program may bypass the intermedi:
modules to use the services of the low-level modules.

When a module requires the services of a library module, it must explicitly st:
this as the first item in its declaration section. This is done with the IMPOl

declaration, which can take the following forms:

FROM <module name> IMPORT < identifier list> ;

or
IMPORT < identifier list>;

The first form names a library module after the reserved word FROM, tl
names the identifiers it requires from that module after the reserved word 1
PORT. The identifier list is terminated with a semicolon.

Modules - 97

Chapter 7
Modules

In Modula-2, the module is a syntactical construct that serves to encapsulate cer-
tain parts of a program, letting the outside world see only identifiers that are ex-
plicitly made visible. Up till now, all the sample modules we have seen have been
stand-alone programs, or main modules (which are analogous to entire Pascal pro-
'ms). Typically, though, Modula-2 programs are made up of many modules,
where each support module contains a small amount of code to do its part.

In the Turbo Modula-2 system, the smallest modules have less than 100 lines,
the most complex ones nearly 1,500. (The upper limit also mirrors the memory
limitations of the computer we’re working on [Z80].) How large should a module
be? There is no general rule. The task is to break the problem into natural pieces
and to have little interconnection between the parts. The amount of interconnec-
tion is mirrored by the size of import and export lists; the smaller the lists, the
better.

In this chapter, we’ll examine the types of modules that can be used in
Modula-2.

The Main Module

The main module defines a program. When a main module is running, it usually
requires the services of library modules and the underlying operating system.
<" ~e these may be viewed as disjoint units (only minimal connection), we may
ﬁ\,ul(at a Modula-2 program as hierarchically structured, as shown in Figure 7-1.

W o v v

w

Modules . 99

The second form imports all identifiers made available by the module specified
after the reserved word IMPORT and followed by a semicolon. However, unlike
the first form, use of imported identifiers requires qualification. This means that
any identifiers used from this module must be prefixed with the module name,
as follows:

ModuleName.IdentiferName

Typically, this form is used when identifiers imported from different modules
have the same name. Thus, the module name specifies which identifier is intend-
ed. The following example shows the use of the two forms of the IMPORT state-
ment:

MODULE ImportLists;
FROM Terminal IMPORT WriteChar, WriteString, WriteLn, ReadChar;
IMPORT Texts;

VAR
ch: CHAR;
num: INTEGER;

BEGIN

WriteString('Enter a character: ');
ReadChar(ch); Writeln;

WriteString('The character you entered was " ');
WriteChar(ch);

WriteString(' " . '); WritelLn;

Texts.WriteLn(Texts.output);
Texts.WriteString(Texts.output, 'Enter an integer and')
Texts.WriteString(Texts.output, 'press return: ');
Texts.ReadInt(Texts.input,num);
Texts.WriteString(Texts.output, 'The number you entered was ');
Texts.WriteInt(Texts.output,num, 2) ;
Texts.WriteLn(Texts.output);

END ImportLists.

The facilities of the two library modules Terminal and Texts are used in the pro-
gram ImportLists. Individual identifiers are imported from the module Terminal:
WriteString, WriteChar, ReadChar, and WriteLn. All facilities from the module

100 MODULA

Texts are made available, though they must be qualified. The identifiers used from
Texts are output, input, WriteLn, WriteString, ReadlInt, and Writelnt. Notice that
some procedures are available in both modules, which is why the module Texts
was imported as a whole and then its identifiers qualified. (For more details on
the operations of Texts and Terminal, refer to Chapter 11, »The Standard Library,«
or the specific procedures in Chapter 12.)

Library Modules

Library modules have two advantages over stand-alone modules: information
hiding and module decoupling.

In Modula-2, library modules hide the operation and details from the module
user; information needed to use the library facilities is separate from the im-
plementation details.

In the preceding example, we needed to know the types and number of
parameters of the WriteString procedure in order to use it in the module Terminal.
The declaration

PROCEDURE WriteString(s: ARRAY OF CHAR);
(* Write String to Screen ¥)

tells us that the procedure WriteString takes an array of characters and prints
them to the screen. This information is contained in a definition module (explain-
ed in the next section). Thus by looking at the definition module, we can deter-
mine how to use its facilities.

In addition to information hiding, library modules allow the details of opera-
tions to be changed without affecting modules that depend on its definition. This
is called module decoupling. This feature of Modula-2 aids in the development
of large programs by minimizing recompilation after code changes. Thus, if a
library module is made more efficient, users (or »clients«) of that module will on-
ly notice the increase in efficiency and will not need to recompile (unless produc-
ing a .COM file) or change their source code. A client need only recompile or
change source code when the actual definition (and therefore meaning) of a
module changes.

Modules 101

Definition and Implementation Modules

Modula-2 formalizes the separation of a module’s definition and its implementa-
tion with these two modules: the definition module and the implementation
module. Every library module consists of one definition module and one im-
plementation module. -

The definition module contains all the declarations of the library module that
are to be made public, which may include constants, types, variables, and pro-
cedures. These declarations do not contain code, but instead contain the interface
needed to use the procedures they export, along with comments that describe how

1e exported identifiers should be used. Definition modules take the following
form, beginning with the reserved words DEFINITION MODULE:

DEFINITION MODULE <module name> ;

< Import Sections >
< Export Sections >

END <module name> .

where Import Sections declare any external identifiers needed to define ex-
ported objects and procedures. The Export Sections include the constant, type,
variable, and procedure declarations that define identifiers exported by this library
module.

Note: Definition modules may not contain an EXPORT list (see »Local
Modules, « later in this chapter). All identifiers appearing in the definition module
are automatically exported.

(The following definition module is an example of a library module that provides
random-number facilities:

DEFINITION MODULE RandomNumbers;
(* This module provides a reproducible set of random numbers. %)

PROCEDURE Randomize(NewSeed: Cardinal);

(* Randomize sets the internal seed to the specified value, thus
allowing a random sequence to be reproduced when the same value is
passed to Randomize.

102 - MODULA

*)

PROCEDURE Random(): REAL;
(* The Random function returns a random real between 0 and 1 ¥)

END RandomNumbers.

This module provides information about the use of the random-number
facilities its implementation provides. By reading this Modula-2 text, clients may
incorporate random numbers into their programs without writing their own
random-number generator or understanding how it works. The corresponding im-
plementation module hides all the details from the client.

The implementation module holds the code that performs the actions stated in
the definition module. Objects declared in the definition module are visible in the
implementation module. Thus, constants, types, and variables should not be
redeclared in the implementation module; doing so will cause a duplicate defini-
tion error during compilation. Also, the procedure heading declared in the defini-
tion module must be identical to the procedure heading in the implementation
module or the compiler will flag the implementation’s procedure in error as »Two
different declarations of same procedure.«

Implementation modules must define all procedures mentioned in the definition
module or the compiler will flag unresolved identifiers.

Implementation modules can be considered identical to main modules with two
exceptions. The first is the form of declaration, as shown in the following:

IMPLEMENTATION MODULE <module name> ;
(* Import Declarations ¥)

(* Data Declarations ¥)

(* Procedure and Module Declarations ¥)

BEGIN
(* Initialization Code *)
end <module name> .

Note that the module name must be the same one used in the definition module.

Modules - 103

The second exception is the optional initialization code, which follows the
reserved word BEGIN. This code is used primarily to set up variables before any
procedure is called or any variable is accessed. Thus, you are guaranteed that this
initialization code will be executed before the client modules use any function pro-
vided by the library module.

If the initialization code is not present, then the reserved word BEGIN is op-
tional. Of course, the reserved word END, followed by the module name and a
period, must be present.

The following module implements the previously deﬁned module Random-
Numbers:

TMPLEMENTATION MODULE RandomNumbars;
CONST

multiplier = 100;

modulus = 257;
VAR

Seed: CARDINAL;

PROCEDURE Randomize(NewSeed: CARDINAL);
BEGIN

Seed := NewSeed MOD modulus;
END Randomize;

PROCEDURE RANDOM(): REAL;
BEGIN
Seed := (Seed * multiplier) MOD modulus;
RETURN FLOAT(Seed) / FLOAT(modulus);
END Random;
BEGIN
Randomize(1986)
END RandomNumbers.

To complete the examples presented in this section, we can define a main
module that imports the facilities of RandomNumbers:

MODULE PrintRandomNumbers;
FROM RandomNumbers IMPORT Randomize,Random;
FROM Texts IMPORT output, WriteReal, Writeln;

104 - MODULA

VAR
Count: CARDINAL;

BEGIN
FOR Count := 1 TO 10 DO
WriteReal(output,Random(),5,3); WriteLn(output);
END
END PrintRandomNumbers.

As mentioned earlier, most Modula-2 programs are made up of several
modules. The preceding module depends on two library modules, each made ug
of two modules (a definition and an implementation module). We have defined the
two modules required for random numbers, and thus have the source to both.
However, the module 7exts is a standard library module provided by Turbc
Modula-2. This means the source code is not available, though the definitior
module is listed in the next chapter. So how does the program know the interface
and code? This information is stored in compiled form; there is one file for the
definition module and one for the implementation module.

Compiled Modules

When a definition module is compiled, the result is stored in a symbol file witt
the extension .SYM. This file is basically a symbol table containing the name:
and types of exported identifiers. When the compiler is resolving the import lis
of a module, it looks in this file to obtain information about the imported iden
tifiers. This information is then inserted into the working symbol table of the
module being compiled.

Thus, the compiler can tell if an externally declared identifier is being used cor
rectly, at least in a syntactic sense. This concept is referred to as type-checking
across compilation units. To compile a module that imports identifiers, the com
piler must have access to the identifier’s corresponding .SYM file. For example
if there is an import from a module named 7exts, then there must be a file name
Texts.SYM.

When an implementation module is compiled, its result is stored in a specia
code file with the extension .MCD. This file contains the code that is linked i
when a program is either loaded or linked.

For convenience, Turbo Modula-2 provides a library manager that groups th

Modules - 105

.SYM and .MCD files of various library modules into one file with the extension
.LIB. For example, all of the standard library modules provided with Turbo
Modula-2 are in the library file called SYSLIB.LIB. (For more information on the
library manager, refer to Chapter 10, »System Operations.«).

Opaque Export

Sometimes library modules must ensure that variables of an exported type are on-
ly manipulated by procedures of the library module itself.

Consider a module that exports a file type. One approach is to export the whole
structure of this record, making all fields accessible to user programs. If,
however, a program updates such descriptor records, chaos may ensue (in the file
example, valuable information on disk may be destroyed). In such cases, we would
like to hide the fields of the record.

To avoid such problems, Modula-2 offers opaque export. This means a name
of a type is exported without giving its structure (the actual structure is given in
the corresponding implementation module). Thus, user programs may declare
variables of that type, but the only operations applied to them will be the provided
library procedures. The following example may help clarify this:

DEFINITION MODULE Files;

TYPE
FILE;

PROCEDURE Open(VAR f: FILE; filename: ARRAY OF CHAR);
(* Other declarations *)

END Files.

MODULE OpaqueExport;
FROM Files IMPORT FILE, Open;

106 - MODULA

VAR

f : FILE;
BEGIN

Open(f, "A:TESTDATA.DAT")
END OpaqueExport.

Since the definition module Files does not provide information about the type
FILE the user program cannot apply any operations to it, except for those explicit-
ly provided by Files (which in this case is Open).

When compiling the example OpaqueExport, the compiler must know the space
requirements of the variables of opaque types, which in this case is FILE.
However, it can only inspect the definition module. Therefore, to be able to find
out the space needs of opaque-type variables, a restriction must be imposed on
opaque export: Only pointer types can be exported in opaque mode.

Local Modules

The remaining module type in Modula-2 is a local module, one that is nested
within either a main module or an implementation module. Local modules serve
to hide details of some task or object from the surrounding environment. Since
they are nested, they cannot be separately compiled. Additionally, they have
special scope rules.

Local modules may be declared anywhere a procedure declaration is permitted.
Thus, local modules may appear in the declaration section of either a module
(main, implementation, or local) or a procedure. In general, modules and their
contents are static, meaning they exist throughout the duration of the program that
surrounds them. There is one exception: When a module is declared local to a
procedure, then the module exists only while the enclosing procedure is active.

A local module declaration is similar to a main module and takes the following
form: ' '

MODULE <module name> ;

(* Import Declarations ¥)

(* Export Declaraticns %)

(* Data Declarations *)

(* Procedure and Module Declarations *)

Modules 107

BEGIN
(* Initialization Code *)
END <module name> ;

Its export declaration is what makes it different from other modules. These
declarations cause the listed identifiers to become visible in the surrounding en-
vironment. Both irpport and export declarations cause the scope of identifiers to
be altered in both the external and internal environment of the local module.

Scope and Local Modules

Unlike procedure walls, local module walls are not only opaque from the outside
but also from the inside. Identifiers that are to be used within a local module must
be imported (via an import declaration), and identifiers declared inside a local
module that must be visible outside must be exported (via an export declaration).
The rules for importing and exporting are completely symmetrical:

[0 An identifier exists while the declaring module is active. The declaring
module is active while its surrounding environment is active.

(J An identifier is only visible in a local module if declared by the module or
imported from the surrounding scope.

O An identifier declared in a local module is only visible within the module,
unless explicity exported.

The form of import declaration for local modules is identical to that for other
kinds of modules. The major difference is that any identifier in the surrounding
scope may be imported; thus, you may find import lists grouping many different
identifiers from many different sources within the same list.

The export declaration that makes identifiers visible outside the local module
has the following form:

EXPORT < identifier list> ;
where the identifier list may contain constants, types, variables, and pro-

cedures. The identifier list is prefixed with the reserved word EXPORT and ter-
minated with a semicolon.

108 3 MODULA

An export declaration introduces an identifier to the next highest scope. For ex-
ample, an export declaration in a local module would introduce an identifier to
the surrounding environment. And an import declaration would introduce an
identifier into the local module from the next highest scope.

This modular separation hides many details from the programmer and protects
the abstraction of the data structure, which is defined in the local module.

The following stack example demonstrates this:

MODULE LocalModules;
FROM Terminal IMPORT WriteString, WriteLn;
TYPE

StackElement = CARDINAL;

MODULE AbstractStack;
IMPORT StackElement, WriteString, erteLn,
EXPORT Push, Pop;

CONST

StackSize = 100;

VAR
P : [0..StackSize]; (¥ The stack pointer %)
Stack : ARRAY [0..StackSize-1] OF StackElement;

PROCEDURE Push(item : StackElement);
BEGIN

IF SP < StackSize THEN

Stack[SP] ;= item;

INC(SP);
ELSE .
WriteString('ERROR: Stack overflow.'); WriteLn; HALT;
END
END Push;

PROCEDURE Pop(VAR item: StackElement);
BEGIN
IF SP > 0 THEN
DEC(SP) ;
item := Stack[SP]

Modules . 109

KISE

WriteString('ERROR: Stack underflow'); WriteLn; HALT;
END
END Pop;

BEGIN (* initialization ¥)
SP := 0;
END AbstractStack;

VAR
i: CARDINAL;
YIN (¥ main program for LocalModules *)
rush(2);
Pop(1);
IF i = 2 THEN WriteString('The stack worked!') END
END LocalModules.

Since the stack pointer variable SP is not exported, it is not visible outside the
module. Note that all objects declared outside of the module must be imported
if they are used. The only exception to this rule are standard identifiers, such as
INTEGER, BOOLEAN, ORD, and so forth. Notice the use of the standard pro-
cedure HALT to stop execution when a stack error occurs.

There is a further facility to restrict the number of visible identifiers: qualified
export. If we had written

MODULE AbstractStack;
EXPORT QUALIFIED Push, Pop;

" »n the procedures Push and pop would have to be denoted by Abstract-
S(.A.;K.Push and AbstractStack.Pop, respectively, in the surrounding scope.

Since it is sometimes difficult to avoid name clashes of different modules’ iden-
tifiers, qualified export allows you to clarify ambiguous names. Note that iden-
tifiers exported from library modules are always exported in a qualified mode, but
the qualification is usually overridden with the FROM statement.

Local modules may also overrride the qualified statement by importing with the
FROM clause. This allows local modules to share data without cluttering the next

110

MODULA

highest scope with unnecessary identifier names.

demonstrates QUALIFIED exports:
MODULE t;

MODULE one;
EXPORT QUALIFIED a;

MODULE two;
EXPORT QUALIFIED a;
VAR

a: CARDINAL;
BEGIN

a :=4;
END two;

MODULE three;

FROM two IMPORT a; .
BEGIN

a:=5;

END three;

BEGIN
WRITELN('one',two.a);
END one;

BEGIN
WRITELN(one.a);
END t.

The following example

Note: In the main body of module one, the identifier a must be qualified;
however, it is not qualified in the body of module three.

Low-Level Facilities -~ 11

Chapter 8
Low-Level Facilities

Modula-2 is a strongly typed language, an aspect that greatly contributes to its
programming safety, yet one that is often too restrictive for system programming.
Low-level facilities are the avenue to system programming in Modula-2. They in-
clude type-transfer functions, special types of the pseudomodule SYSTEM, ab-

(‘ute addresses, and coroutines and interrupts. It is helpful to restrict their use
to small sections of code grouped into one module, so that when the program is
moved to another system only the one module need be changed.

Before we begin discussing low-level facilities, though, we should consider
some of the decisions that were made in implementing Turbo Modula-2. These
decisions have a direct impact on certain low-level facilities, such as type-transfer
functions and SYSTEM types. The general philosophy at Borland is small and
fast; thus we have restrictions like word alignment of variables and benefits such
as register variables.

Register variables are used whenever possible. Programmers can hand-optimize
procedures by declaring important variables in the first four words of local
storage. Only simple variables of unstructured types are chosen as register
variables. If there are not four words of storage declared in a procedure, then the
procedure’s parameters are placed in registers. Consider the following procedure:

PROCEDURE RegVars(x,y: CARDINAL);
VAR

i,Jj,amount: CARDINAL;

£GIN
END RegVars;

In this procedure, three words of local storage (i,j,amount) and one word of
parameters (x) would be allocated to the registers as follows:

X sits in BC
amount sits in DE
J sits in BC’

i sits in DE’

12 . MODULA

A consequence of using register variables is that while a variable sits in a
register that variable will have no address. We impose the following restriction:
Simple variables of unstructured type are not accepted by ADR.

Of course, these variables do not have to be kept in registers during the entire
procedure. For example, they may be placed in memory if a procedure is called.
However, if a procedure has no procedure calls, then the register variables will
not be moved to memory, and the procedure can be very efficient and fast.

Word alignment provides both advantages and disadvantages. Word alignment
means placing all variables on word boundaries, and the variables that require less
than a word of storage are allocated a full word anyway. Thus, a character that
needs only 1 byte of storage is allocated one word.

The reason for allocating variables in a word-aligned fashion is that it makes
M-code and the M-code interpreter highly efficient and small. Since the M-code
interpreter is part of the runtime system (always present), it makes sense to use
M-code for non-time-critical operations. This is because M-code takes up approx-
imately one-third the space of native (machine) code, allowing more code to be
fit into Z80 memory space. Turbo Modula-2 allows a single program to be made
up of both M-code and native code modules so that very large and efficient pro-
grams can be written.

The choice to use an efficient M-code interpreter, however, does impose certain
restrictions on accessing memory. To keep the interpreter efficient, it may only
access entire words at a time. Thus variables are word aligned, which leads to
the following restrictions:

[0 Byte-sized array elements cannot be substituted for VAR parameters.

O Byte-sized array elements cannot be arguments for INC or DEC.

Notice these restrictions are only for byte-sized array elements. This is because
byte-sized array elements arc not word aligned, they are packed. This is apparent
when contrasting arrays and records. A record variable that contains two character
fields will always occupy two words of storage. An array that is declared to contain
two character elements is always packed into 2 bytes (one word).

When considering certain low-level facilities, keep in mind that variables are
usually word aligned. Word alignment impacts transfer functions that involve
characters and bytes and the SYSTEM type BYTE.

Low-Level Facilities =~ 113

Type-Transfer Functions

Modula-2 offers facilities to relax strict type--hecking, forsaking some portability
for the ability to perform system programming.

For this purpose, type identifiers are used as function names. The type- transfer
function allows programs to explicitly override the type-checking of the compiler.
Type-transfer functions are not meant to perform any computation or manipula-
tion. They merely change the interpretation of the bit pattern contained in their
argument.

(.ince the machine representations of types are entirely implementation depen-
. dent, so are the correspondences between representations. Modula-2 does not, for
example, define which bit pattern corresponds to the integer value 15. Therefore,
the use of type-transfer functions makes a program nonportable.

Type-transfer functions can only be applied to simple types. Moreover, type
transfers are only allowed between types that occupy the same amount of storage.
Since different systems may have types of different sizes, the applicability of type-
transfer functions depends upon the implementation.

In Turbo Modula-2 implementation on Z80 computers, simple types have three
sizes: REAL and LONGINT occupy 4 bytes, LONGREAL occupies 8 bytes, and
the rest (including pointers, set, characters, and subranges) occupy 2 bytes.
Because of the nature of the M-code interpreter, all data objects in Turbo
Modula-2 are word aligned. This means that a single character declaration
allocates one word, not 1 byte. Further, a record structure consisting of two
characters occupies 4 bytes. Only arrays are packed so that characters are in an
adjacent byte. Thus, an ARRAY(0..1] OF CHAR occupies only one word.

('pe-transfer functions are illustrated in the following module:

MODULE TypeTransfer;

VAR

ch : CHAR;

¢ : CARDINAL;
i : INTEGER;
b : BOOLEAN;
s : BITSET;

114 - MODULA

r : REAL;
1 : LONGINT;

BEGIN
ch:= CHAR(c);
s := BITSET(1)*BITSET(b); (* bitwise AND operator ¥)
r := REAL(1);

END TypeTransfer.

This module shows the use of type-transfer functions. The first line in the body
allows the CARDINAL c to be assigned to the CHAR ch. The second line
transfers two different types into type BITSET, performs a set operation, and then
assigns the resulting set to the variable s. The last line transfers the LONGINT
1 to a REAL. No physical conversion takes place in any transfer; the bits of the
variables remain the same, but are viewed in a different way.

Type Transfer and Type Conversion

There is a difference to note between type-transfer functions and type conversions.
While conversions try to preserve meaning, changing the bit patterns if necessary,
type-transfer functions leave the bit pattern unchanged but interpret it differently.
For example, in the type conversion call

LONG(1.0) = 1L

the real value is truncated and converted to type LONGINT. But in the type-
transfer call

LONGINT(1.0) = 1065353216

the bit pattern standing for the real value 1.0 is interpreted as a LONGINT
number.

In addition, type-transfer functions perform no checking. The statement

b := BOOLEAN(3)

where b is declared as a BOOLEAN, will compile and execute without any er-
ror messages. Execution may, of course, lead to somewhat strange results.

In some cases it may appear as if there is no difference between a type- transfer

Low-Level Facilities ~ 15

function and a type-conversion function. Consider the following code:

PROCEDURE TransferAndConversion(i: INTEGER);
VAR

¢ : CARDINAL;

BEGIN

¢ := CARDINAL(1i); (* Type transfer ¥)

¢ := CARD(1); (* Type conversion %)

END TransferAndConversion;

. Aslong as the value of i is positive, the two statements will have the same mean-
. 2 and effect. However, if the value of i is -1, the first statement will execute fine,
but the value that ¢ receives may not be what you think (65535). And if i is -1,
the second statement will cause a runtime error because the conversion is impossi-
ble using CARD--you cannot convert a negative number to a CARDINAL value.

If you intend to look at the same bits in a different way, then you need the low-
level facilities of type-transfer functions.

Low-Level Types and the Pseudomodule System

Besides type-transfer functions, there are the special types BYTE, WORD, and AD-
DRESS exported by the pseudomodule SYSTEM (so-called because it does not
really reside in a library module).

Type WORD is compatible with all types that occupy one machine word of
storage. Since objects of type WORD are considered to have no specific interpreta-
tion, no operations (except assignment) may be applied to them. Type-transfer
functions must be used to indicate the desired interpretation.

There is also the type BYTE, which is compatible with 8-bit types such as
CHAR. Like WORD, the assignment operation is the only one that may be applied
to variables of type BYTE. Note that whether a variable of type BYTE takes only
1 byte or 2 bytes of memory is dependent on the declaration used (see the beginn-
ing of this chapter).

The type ADDRESS is compatible with all pointer types and has the declaration

116 . MODUL:

TYPE
ADDRESS = POINTER TO WORD

In contrast to type WORD, arithmetic operators may be applied to operand
of type ADDRESS; such operands will behave like CARDINAL operands. Thi
feature is especially useful for storage management algorithms (also called pointe
arithmetic). The resulting type from pointer arithmetic is ADDRESS.

All knowledge about the pseudomodule SYSTEM is built into the compiler
Although there is no actual implementation module that corresponds to the defini
tion module of SYSTEM, you may use SYSTEM as if it were defined as the defini
tion module presented in Chapter 11, »The Standard Library.«

Untyped Parameters

Modula-2 allows a procedure to declare a parameter that will accept any typ
passed to it. This is called an untyped parameter. Untyped parameters have the
following type declaration form:

PROCEDURE Foo(chunk: ARRAY OF WORD) ;

Notice that the untyped parameter declaration is similar to an open arra
parameter declaration. The difference is that it uses the low-level type WORD ex
ported from the pseudomodule SYSTEM.

Untyped parameters are functionally different from open array parameters il
that they accept any type of variable as an actual parameter, not just arrays of on
type. You may pass either a single character or a large record structure to a pro
cedure with an untyped parameter. For example:

MODULE UntypedParameters;
FROM SYSTEM IMPORT WORD;

PROCEDURE HowBigIs(chunk: ARRAY OF WORD);
BEGIN

WRITELN('Size is ',SIZE(chunk):3,' High is ',HIGH(chunk):3);
END HowBigls; :

Low-Level Facilities 117

VAR
: CARDINAL;
: REAL;
: ARRAY [0..20]OF CHAR;
: RECORD

a,b,c,d: LONGREAL;
END ;
BEGIN
WRITE('CARDINAL : '); HowBigIs(e);
WRITE('REAL : '); HowBigIs(r);
WRITE('String literal : '); HowBigIs('This is a string');
s := 'This is a string';
WRITE('String variable : '); HowBigIs(s);
WRITE('Record variable : '); HowBigIs(t);
END UntypedParameters.

ct B0

The following are the results of this program:

CARDINAL : Size is 2 Highis 0
REAL : Size is 4 Highis 1
String literal : Size is 16 High is 7

String variable: Size is 22 High is 10
Record variable: Size is 32 High is 15

The standard function SIZE gives you the number of bytes that were passed,
and the standard function HIGH tells you the index of the last valid word in the
open array. '

Absolute Addresses

Modula-2 has a facility to explicitly specify the address of a variable and thus

zrride the space allocation scheme used by the Modula-2 system. This is
especially useful for memory-mapped I/O devices. In the example that follows,
a memory-mapped video screen is declared to reside at address 0COOOH:

VAR
screen[0COOOH] : ARRAY [0..31],[0..127] OF CHAR;

The desired address is specified in brackets after the variable identifier; in every
other respect, this is a normal variable declaration. The programmer must ensure

118 - MODUL

correct and consistent use of such variables. Declaring the previous screc
variable on a computer with a different screen would lead to chaos.

A useful application of this facility is to define an array that stretches acro:
all memory. Using the low-level types WORD and BYTE, we can define an arr:
from the start to finish of memory, like so:

VAR
Mem [1]:RECORD
CASE : BOOLEAN OF
TRUE: b : ARRAY [1..65535] OF BYTE |
FALSE: w: ARRAY [1..32767] OF WORD |
END
END ;

Memory locations can be accessed like this:

Mem.b[10] := OC;
Mem.w[CARDINAL(ADR(SomeDataRecordOrArray)) +SomeOffset] := 39201;

Note that you cannot define an absolute variable at location 0. However, the s
cond byte of a word defined at location OFFFF resides at location 0.

Coroutines and Interrupts

The pseudomodule SYSTEM provides certain mechanisms to implement co.
outines and interrupt handlers, in a high-level manner. These facilities ai
machine-specific but are presumed to be in all implementations of Modula-2. Tt
actual synchronization and scheduling of processes must be done by suppo
modules. As an example, the standard library module Processes offers one poss
ble implementation of coroutines; there are many other ways.

Coroutines

Coroutines can be created by calling the procedure NEWPROCESS exported t
SYSTEM. Switching between coroutines must be done explicitly by calling th
procedure TRANSFER. Both the source and destination coroutines have to t
identified in the TRANSFER statement.

Low-Level Facilities~ 119

Programs using coroutines can be thought of as consisting of several programs,
each with their own program counters. Each program corresponds to a coroutine:
One is always active, the others are sleeping or frozen. TRANSFER freezes the
currently active coroutine and activates another one. Unlike procedures, when a
coroutine is reactivated it will always continue processing from the point where
it was frozen. In contrast, when a procedure is activated, processing always starts
at the beginning.

Note that more than one coroutine may use the same procedure. However, each
coroutine must have its own PROCESS variable and its own work space. This
allows several processes to share the same code. '

Interrupts

Usually, an interrupt is an unscheduled jump to some special code triggered by
a hardware condition, although, software may also trigger interrupts. The code
that receives control affer an interrupt is called an interrupt handler. It services
the interrupt and then returns control to the interrupted program.

In Modula-2, interrupts are considered coroutine transfers and interrupt
handlers are coroutines. When an interrupt occurs, the currently executing code
is suspended, and an unscheduled transfer to the coroutine waiting to service that
interrupt takes place. When the interrupt handler is finished, control is returned
to the suspended code by using a special transfer statement, JOTRANSFER, ex-
ported from the pseudomodule SYSTEM. This procedure not only acts as a cor-
outine transfer but also initializes (or re-initializes) the interrupt vector for the
next interrupt.

Of course, the coroutine waiting for an interrupt must somehow notify the
system which interrupt it wants. For this purpose, interrupt vectors are used. (The
780 CPU uses this scheme when it is in interrupt mode 2.) Note that it is up to

:¢ programmer to ensure that the processor is in the correct interrupt mode and
that the interrupt jump table is in the correct location.

Note that the CP/M operating system is not reentrant, making it difficult to use
interrupts. To guarantee proper functioning, be certain the operating system is not
active when user interrupts are possible. ‘

Turbo Modula-2 Ex..asions ‘ 121

Chapter 9
Turbo Modula-2 Extensions

Turbo Modula-2 offers several extensions to Wirth’s definition that are not covered
by standard Modula-2, such as general-purpose READ and WRITE statements,
string comparison and assignment, multidimensional open arrays, and exception
handling. These extensions can be suppressed with the embedded compiler option
* —=X- %), or from the Options menu. If this option is turned off, the compiler
will flag all extensions with a warning message.

Input and Output Extensions

Although the various input/output modules provide procedures for reading and
writing data to external devices, Turbo Modula-2 defines four new statements that

allow a simplified approach to input/output: READ, WRITE, READLN, and
WRITELN.

The four statements provide you with a quick way to do output. The following
program shows some of the many possible uses for these extensions.

MODULE READWRITE;
VAR aNumber: CARDINAL;
aCharacter: CHAR;

BEGIN
{RITELN('The READ and WRITE statements',' take any number ',
'of arguments');

WRITE('Enter a number and a character: ');
READ(aNumber,aCharacter);

WRITE('You may even mix types. The number is ',aNumber);
WRITELN(' The character is ',aCharacter);

WRITELN('Number may be formatted, as in Pascal ');
WRITELN('The number 3 in a field of length of 4: " ' ,3:4, ' v 1);
WRITELN('A real number ',34.556:10:2);
END READWRITE.

122 s MODUI

READ and WRITE extensions have essentially the same function as the
Pascal equivalents: They eliminate the need to use Modula-2’s precise library pr
cedures.

During compilation, the READ and WRITE statements are translated into ca
to the appropriate input/output procedures from the library module Zexts. Usil
these statements replaces the need to import the specific procedure from the 7e
module.

For a more thorough discussion of these statements, refer to the module 7&
in Chapter 11, »The Standard Library.«

String Extensions

Standard Modula-2 allows the assignment of arrays only if both sides are of t
same type, and it completely forbids comparisons of arrays. In Turbo Modula-
assignments and comparisons of strings are allowed. A string is any variat
whose type is an array with elements of type CHAR. The starting and endi
bounds do not matter; strings are assigned and compared as if both strings invol
ed start at the same lower bound.

The end of a string is denoted either by the end of the array (if the array is cor
pletely filled) or by the null character OC. Any two strings can be assigned to ea
other, even if they are defined as different lengths or start at different bound

Additionally, any two strings can be compared using the relational operators -
< >, #,<,>,<=,0r >=.

Multidimensional Open Arrays

Turbo Modula-2 allows open array parameters to be of any dimension. This exte
sion is invaluable for programs that use matrixes. The standard procedure HIC
will return the highest bound for each dimension. The next higher bound is fou
by passing HIGH the variable with »[0]« appended (see Chapter 6, »Open Arr
Parameters«).

Error-Handling Extensions

Program errors can be divided into the following three types:

U @ .

—~— e

Turbo Modula-2 ._..ensions o 123
Compiler-time Syntax errors discovered by the compiler (for example,
€rTors a missing semicolon or a misspelling)

1/0O errors Problems occurring during input/output operations (for

example, file not on disk or file not open)

Runtime errors Errors occurring while executing a program (for exam-
ple, division by zero or integer type passing out of range)

Compiler errors are corrected before the program can be run. However, I/O and
runtime errors are only apparent while executing a program.

Should an error occur while running a program, the computer has two options:
(1) to write an error message on the screen and halt the program, or (2) to send
an error signal to the program.

The first option is fine for simple programs, but could have disastrous results
in real-time applications. The second method requires that the running program
test some kind of flag after each operation capable of producing an error. This
can clutter up the program’s logic and reduce efficiency, particularly if the tested
condition occurs only in rare circumstances.

As an example, consider a disk-write operation. Testing for a full disk after each

~ disk write is clearly inconvenient. On the other hand, halting the program uncon-

ditionally prevents the running program from reacting to this error.

Pascal solves this problem by using a compiler option that determines the pro-
gram’s reaction to I/O errors. However, this is not possible in Modula-2 since disk
writes are performed in a library module not within the control of the compiler.
It is evident that a system consisting of several largely independent modules needs
‘ome way to signal error conditions.

Exceptions serve this purpose well. We do suggest, however, that you use excep-
tions only if there is no other appropriate way to handle errors. In general, their
use should be confined to the signaling of errors across module boundaries.
(There are a number of predefined exceptions in Appendix D.)

Syntax and Semantics of Exception Handling

An exception consists of three parts: the exception declaration, which defines the

124 . MODL

exception identifier and uses the reserved word EXCEPTION; the excepi
handler, which is the programmed response to the error condition; and the RA
statement, which calls the exception.

An advantage of exception handling is that handlers are present statically in
program text, near the location they are needed. In comparison to other er
handling methods, exception handlers are much clearer. They also follow
nested structure of the Modula-2 language itself.

Declaration of Exceptions

" An exception declaration contains the reserved word EXCEPTION, followed

a list of identifiers. Exception declarations have the following form:
EXCEPTION < identifier 1list> ;

And the following example is taken from the module Files:

EXCEPTION
EndError, StatusError, UseError, DeviceError, DiskFull;

All of the usual scope rules of Modula-2 apply here. Exception identifiers «
be exported and imported like normal Modula-2 identifiers.

Raising Exceptions

Exceptions are raised when the program detects an error condition; for examj
when the module Files has detected that the disk is full. Raising an exception \
transfer control to an exception handler that is provided by either the user or
system.

A program may raise an exception with the reserved word RAISE, followed
the exception identifier and optionally by a string. The RAISE statement ta
the form

RATISE <exception identifier> , <string> ;

This next example is taken from the standard module MathLib.

on
SE

he
-
he

by

Turbo Modula-2 _xtensions 125

IF x < 0.0 THEN
RAISE ArgumentError, 'Negative argument for Sqrt';
END ;

When an exception is raised, the system looks in the current procedure for a
matching exception handler. If none is found, the calling procedure is examined,
then the caller of that procedure, and so on, until a matching exception handler
is found. This handler is then executed, and the procedure containing the handler
is exited. If no hardler is found, the system prints the exception identifier’s name
and the optional message string.

There is an alternate form of the RAISE statement that is only allowed within
exception handlers. It is the reserved word RAISE by itself, as shown in the
following:

RAISE ;

This has the effect of passing an exception through one handler and on to the
next in the calling chain.

Exception Handlers

Exception handlers are written at the end of procedures and modules to handle
exceptions issued oy a RAISE statement. The syntax is similar to the familiar
CASE statement. Exception handlers have the following form:

EXCEPTION
<vertical bar>
<exception identifier list> : <statement sequence>
<vertical bar>
<exception identifier 1list> : <statement sequence>

ELSE
<statement sequence>
END <procedure identifier> ;

Exception handlers consist of the reserved word EXCEPTION, followed by any
number of exception cases. Each exception case is separated by a vertical bar, and
each consists of a list of exception identifiers followed by a colon and a statement

126

MODU

sequence. In addition, an ELSE part is executed if the raised exception is not

any of the exception identifier lists.

In the following example, pretend you are running a program-controlled la:
experiment and want to guarantee that the experiment turns off in all cases.

MODULE LaserExperiment;
IMPORT MathLib;

MODULE GuardedMath;
FROM MathLib IMPORT Exp;
EXPORT ExpG, UndefinedExp;

EXCEPTION UndefinedExp; (* Exception Declaration ¥)

PROCEDURE ExpG(X,Y:REAL) :REAL;

BEGIN
IF (1.E-10<X> AND (X<1.E10) THEN RETURN Y/X
ELSE RAISE UndefinedExp (* Signal an error)
END

END ExpG;

END GuardedMath;
(* Procedure Declarations *)

- BEGIN
SetUpExperiment;
PerformExperiment;
(* Normal termination *)
TurnOfflaser;
ShutDownLab;
PrintOutResults;

EXCEPTION (* Exception Handler ¥)
Undefined Exp: WRITELN("WARNING: Bad Math");
TurnOfflaser;
ShutDownLab;
DumpProgramVars;

[

Turbo Modula-2 vxtensions 127
ELSE
TurnOfflaser;
ShutDownLab;

END LaserExperiment.

There is one explicit exception raised in a special exponentiation routine. The
exception handler in the main body of code has two clauses: one to catch the ex-
ception explicitly raised in ExpG, the other to catch all other possibilities.

If no exception handler is present for a given exception condition, the RAISE
statement writes the exception identifier and an optional message to the screen,
and halts the program. For example:

RAISE ZeroDivision;
would react to an error by printing the following message:

ZeroDivision in module Division
Press "C" for calling chain >

If a more comprehensive error message is desired, an additional string can be
included in the RAISE statement. The string can be a literal or any variable
whose type is an array with elements of type CHAR. The string will be printed
below the exception name, like so:

DiskFull in module MYPROG
While processing file OUTDATA
Press "C" for calling chain >

A program can respond to an exception by appending a handler to the end of
the program unit where an exception may be raised. Such a program unit can be
a procedure or the main program. When an exception is raised, normal execution
is suspended and the corresponding exception handler is invoked; that is, the
handler is executed instead of the rest of the program unit.

Exception Propagation

A scheme requiring an exception handler in the program unit where the exception
is raised is really not very useful. After all, you need exceptions to signal your

128 - MODULA

program that an error has occurred in a called library module. There must be
some way to propagate exceptions. If the procedure that raises an exception does
not contain a handler for it, the procedure is aborted completely and its caller is
searched for a handler. '

If the calling procedure also does not contain a handler, the search is continued
in the procedure that called the caller, and so on. This continues until a handler
for the raised exception is found, or until the main program (or a coroutine) is
reached. Note that the order in which procedures are searched for exception
handlers duplicates the order in which they are displayed in the calling chain.

If a handler for a raised exception is found in the calling chain, it is invoked
and thus replaces the rest of the procedure containing the handler. If all statements
in the handler are executed, the procedure returns. Note that a program cannot
be restarted at the point where the exception is raised. This restriction makes the
exception-handling mechanism relatively safe. The restriction is not severe, sincc
an exception can easily be converted into a flag that indicates an unsuccessful
operation.

A handler for an exception can of course raise an exception itself. In this case.
the exception is always propagated to the next procedure in the calling sequence
thus preventing an infinite loop where every time an exception is handled, anothe:
is raised. To propagate the handler exception to higher-level procedures, a handle:
can raise the handled exception again by using the short form of the RAISE state
ment. If the following statement is found in some exception handler, the handle«
exception is propagated to the calling procedure (or module):

EXCEPTION
EndError,DeviceError: Close(infile); RAISE
END ReadFile;

If a library module should signal an exception, it must first be declared wit
an exception declaration. An exception declaration can be given anywhere in
program where constant, variable, or type declarations would be legal. And lik
other identifiers, exceptions can be exported and imported.

Many of the library modules export exception identifiers that can be incor
porated into programming error handlers. For example, the following prograr
reads data input from the keyboard and writes it to disk. The exception DiskFu

Turbo Modula-2 Extensions : 129

is declared in the module Files and raised when the disk is full (Zexts is im-
plemented with Files).

MODULE DataWrite;
FROM Files IMPORT DiskFull;
FROM Texts IMPORT TEXT,OpenText,CloseText;
FROM Comline IMPORT PromptFor;
VAR Value: CARDINAL;
DataFile: TEXT;
Str: ARRAY [0..30] OF CHAR;
BEGIN
Str:= "Input value (99 to stop): ";
(* Request filename and open file %)
PromptFor("Data file name: ",DataName);
OpenText(DataFile,DataName) ;
(* Request data from keyboard and write to file ¥)
WRITELN(Str);
READ(Value);
WHILE Value # 99 DO
WRITE(DataFile,Value);
WRITELN(Str);
READ(Value2);
END ;
(¥ Close completed file ¥)
CloseText(DataFile);
(¥If disk full, die ¥)
EXCEPTION
DiskFull: WRITELN("DISKFULL - YOU JUST LOST ALL YOUR INPUT");
END DataWrite.

System Operations ~ 131

Chapter 10
System Operations

Turbo Modula-2 is a menu-driven package similar to Turbo Pascal. However, Tur-
bo Modula-2 is a more complex system, containing more menu options and
operating differently than Turbo Pascal.

In this chapter, we’ll take a look at the basic system operations of Turbo
Modula-2. As shown in Chapter 2, the Turbo Modula-2 main menu looks like
this: ’

Selected drive: A

Work file:

Edit Compile Run eXecute

Link Options Quit liBrarian

Dir Filecopy Kill reName Type >

The first two items on the main menu (Selected drive and Work file) are default
values used by the other menu items.

Selected drive

Allows you to log a drive as the default disk drive. This command has the side
»ffect of resetting the drive that is specified, so the BDOS read- only error is
avoided. (This command is the same as Turbo Pascal’s L command.)

Work file

Work file is a file name or partial file name that can be prompted with certain
menu commands, such as Compile, Link, Run, Edit, and Find runtime error. It
is essentially a default user response in which the user can either specify a whole
file name (like A:MYMOD) or a partial string (like B:). These default responses
can be overridden; see the section in this chapter, »Avoiding the Menus.«

132 MODULA

The Run and eXecute commands are used to execute runnable files from within
the shell. The remaining menu items are used for file management. (Note: Each
item is initiated by pressing the item’s capital letter.)

File-Management Utilities

The following five file-management commands provide most of the file
facilities you will need when writing Modula-2 programs. Whenever these com-
mands accept a drive specifier, you may also specify a user area. It takes the form

DU:filename.ext

where D stands for the drive letter (4 through P) and U stands for a user area
(0 through 32). Hard disk users will find this facility invaluable for isolating dif-
ferent projects in different user areas.

Dir

Lets you display a directory. You can mask certain file names by specifying an
ambiguous file name at the mask prompt. In addition, the Dir command lists the
remaining space on the disk from which the directory is read.

You can use question marks (?) and asterisks (*) as »wild cards« in the mask.
A question mark represents an arbitrary letter (including none) and an asterisk
represents an arbitrary string. Here are some examples of allowed directory
masks:

A: Lists the names of all files on disk drive A:

B:*SYM Lists the names of all files having extension .SYM on
drive B:
A:TEXTS* Lists the names of all files with the file name TEXTS,

regardless of extension

T7?772* Lists the names of all files on the logged drive whose file
name begins with a T and has five letters or less

AlQ:** Lists the names of all files on drive A: in user area 10

System Operations ™ 133

If you enter nothing after the prompt and press then the names of all
files on the currently logged disk drive are displayed.

The files are listed by number, which you can use to refer to individual files
or groups of files in the Filecopy and Kill commands. Groups of files are
specified as a range, for example, 4-9 or 1-20. If there are more file names than
will fit on the screen, you will receive the following prompt:

"C" to continue >

r Press to continue the directory listings; pressing any‘ other key will stop it.

Filecopy

Allows you to copy a file to another file. The source can be specified either as
a complete or ambiguous file name, or as file numbers; the two methods cannot
be mixed. The files can be referred to by number only if a Dir command has been
performed. As an example, if copying files by numbers:

>D

' Directory mask: a:

1: PIPES .DEF 4: PIPES .SYM 7: PIPETEST .MOD 10:T2 .MOD
2: PIPES MCD 5: PIPETEST .BAK 8: T .MOD 11:T3 .MOD
3: PIPES . .MOD 6: PIPETEST .MCD 9: T1 .MOD 12:TYPETRAN .MOD

Bytes Remaining on A: 145K

>F

Copy from: 12 8-11

Copy to : c:

Copying AOO:PIPES .DEF
Copying AOO:PIPES .MCD

(pying AQO:T .MOD

vopying A0O:T1 .MOD
Copying A00:T2 .MOD
Copying A0O:T3 .MOD
>
Kill

Allows you to delete a file. The files may be referred to by their number if a Dir
command has been performed. When Killing by number, you are prompted for

134 - MODUL.

each deletion. If you specify only a mask (ambiguous file name), then you ar
not prompted at all. For instance, look at this example of Killing by numbers

>D

Directory mask: B:

1: SAMPLE .DEF

2: SAMPLE .MCD

3: SAMPLE .MOD

4: SAMPLE .SYM

Bytes Remaining on B: 75K

>K

Kill file: 2 4
Delete BOO:SAMPLE.MCD (Y/N)? Y
Delete BOO:SAMPLE.SYM (Y/N)? N

Note that since CP/M allows numbers as file names, the Kill commar
distinguishes between names and file numbers by insisting that a space be place
before file names that consist of numbers (this also applies to Filecopy).

reName _
Allows you to change the name of a file. You may only change one name at a tim
A warning is given if you overwrite another file. For example:

>N

Rename from: sample.mod
Rename to : sample.mud

Type

Allows you to display the contents of a file on the screen without leaving Tur
Modula-2 or using its editor. (This works the same as CP/M’s TYPE uullty) Pre

(cmi) ((s7] to pause and (ca) (] to stop. For example:

System Operations 135

>T
Type file: sample.mod

MODULE sample;

END sample.

Options

Provides you with a collection of infrequently used but occasionally useful op-
tions. If you press (0} (for Options), the following submenu will appear:

compiler options:
i List (ON) Native (OFF) eXtensions (ON)
Test (OFF) Overflow (OFF) Upper=lower (OFF)
Path to search:-SYSLIB
Find run-time error
Save current szlection Quit
>
The first six items on the option menu are compiler switches, which affect the
way source code is compiled. These switches are global in that they affect the
whole file; however, they are overridden if the source being compiled has
embedded switches.
s Each of the six switches has an embedded counterpart. A brief description of

each is given here. (For a complete description of the following compiler switches
and how to use embedded compiler switches, refer to the section in this chapter,

136 . : MODULA

»Compiler Options and Switches.« A brief description is also given in Appendix
C)

O List toggles compiler listing on and off.

a

Native toggles native code generation on and off.

O

eXtensions allows or disallows Turbo Modula-2 extensions.

a

Test toggles bounds-checking by assignment-compatible assignments
assignments (for more information see »Compiler Options and Switches,«
later in this chapter).

O Overflow toggles INTEGER overflow-checking.

00 Upper=lower toggles case sensitivity on and off in identifiers.

Path to search

This entry holds the names of the libraries files that will be searched to find
separately compiled imported modules. Library files are created with the librarian
(see the section, »The Librarian,« later in this chapter). This option contains the
entry SYSLIB, which refers to the file SYSLIB.LIB that contains the standard
library modules.

~

Find runtime error

This utility helps you find bugs that occur at runtime. By accepting a module
name and a PC number, it can determine where a program has stopped. The
module name and PC number are obtained from the calling chain that is displayed
when the error occurs. (For details on the calling chain, refer to the section Ap-
pendix E, »The Calling Chain.«)

Save current selection

This option selects the current switch settings and library path as the new default
setting. The current selections are made permanent by writing them to the
M2.COM file; thus, this file must always be available.

System Operation. ... 137

Quit
This selection returns you to the main menu.
Avoiding the Menus
A menu-driven shell makes life a lot easier for beginners, but for experienced
users it can sometimes be tiresome. Therefore, we have included a way to circum-
vent the menu scheme. If you answer the menu prompt with the space bar, you
are allowed to enter the full selection sequence, optionally followed by additional
arguments on the same line. After the selected command is executed, you are
again placed in the menu where the blank was entered. The following examples
demonstrate this:

> C B:MYPROG

Compiles the file B-MYPROG.MOD at once. It is equivalent to this dialogue:

>W

Work File: B:MYPROG

>C

Compile file: B:MYPROG

This next example shows how prompts are avoided:

> D B:

lists the directory of drive B, as the following dialogue would

>D

Directory mask: B:

This method only works on the main menu; you cannot, for example, toggle
the native code gencration option with the string > ON.

138 MODUL

The Turbo Editor

The built-in editor is a screen editor specifically designed for creating progra
text. If you are familiar with Turbo Pascal or WordStar, you’ll need little instru
tion in the use of the editor. The Turbo editor includes some extensions, plus yc
can install your own commands on top of the WordStar commands (described
Appendix B, »Installation Procedures«) and the WordStar commands will rema
usable.

Using the Turbo editor is simple: After you have defined a work file and presse
((E] (for Edit), the menu will disappear and the editor is activated.
the work file exists on the logged drive, it is loaded and the first page of text
displayed. If it is a new file, the screen is blank, apart from the status line at tl
top.

To terminate a line, press the ["d] key. When you have filled the screen wi
text, the top line will scroll off the screen, out of view. You may page back ar
forth in your text with the editing commands described later in this section.

First, let’s take a look at the information the status line provndcs at the top
the screen.

X:FILENAME.TYP. Shows the drive, user area, and name of the file beir
edited.

Line n. Shows the line number that contains the cursor, counting from the sta
of the file,

Col n. Shows the column number that contains the cursor, counting from the l¢
side of the screen.

Char n. Shows the character number that contains the cursor, counting from tl
beginning of the file.

Insert. Indicates that characters entered on the keyboard are inserted at the curs
position. Existing text in front of the cursor is pushed to the right. The inse
mode on/off command, (] (V] , switches this message to Overwrite, whi
means text entered on the keyboard overwrites characters under the cursor, inste:
of being inserted. :

v Vi M ==

U

w

e oD =S

—

System Operatic...... 139

Indent. Indicates that auto-indentation is active. It may be switched off with the
auto-indent on/off command, (o] (@] (T] , in which case this space on the
status line is blank.

Operating The Editor

This editor is a full-screen editor, which means you can move the cursor anywhere
on the screen and begin writing. This is done by using a special group of control
characters: pressing the (o] key while simultaneously pressing any of the keys,

(). 0.). 8.). (B, O s or ()

The characters are arranged on the keyboard in a manner that logically indicates
their use. For example, in the following display:

E
S D
X

pressing (o] (CE_] will move the cursor up, (o] (X] moves it down,
(o) (Cs) moves it to the left, and (o] (o] moves it to the right. If your
keyboard has repeating key capability, you may hold down the (o] key and
one of these four keys to move the cursor rapidly across the screen.

Editing Commands

The editor accepts and uses many editing commands that move the cursor, page
through the text, find and replace text strings, and so on. These commands can
be grouped into the following categories:

O Cursor movement commands
(O Extended movement commands
(O Insert and delete commands

O Block commarls

O Find and replace commands

O Miscellaneous commands

Each group contains logically related commands that are described in the
following sections. (A summary of the commands is provided in Table 10-1.) The
following descriptions consist of a command definition, followed by the default
keystrokes used to activate the command. If you would like to redefine the com-
mands, refer to »Installation of Editing Commands« in Appendix B.

140 MODULA

Table 10-1 Summary of Turbo Editor Commands

Cursor Movement Commands

Character left (s
Character right (o]

Word left (]

Word right ()

Line up (o] (]

Line down [x]
Scroll up (w])
Scroll down (z])

Page up (r)

Page down]
Extended Movement Commands

Left on line (o] (5]
Right on line (] (@] (o)
Top of window (o) (@] (Ce]
Bottom of window (o]
To top of file (an]) (@] (R]
To end of file (a]
To beginning of block (o] (@]
To end of block (o] (k]
To last cursor position (o] (P]
Insert and Delete Commands

Insert mode on/off Cr
Delete left character

Delete character under cursor ()
Delete right word

Insert line (n]
Delete line
Delete to end of line (] (o)
Delete line up to cursor position (o) (o] (CH])

System Operations 141

Cursor Movement Commands

Block Commands

Mark block begin (ad) (k)
Mark block end K] (k]
Hide block (o) (k] (H])
Copy block (o) (]
Move block (o] (k
Delete block (en] (k] (Y
Read block from disk LK R

_ (“te block to disk (an] (K w

Find and Replace Commands

Find
Find and replace
Repeat last find

TF
> l'n

Miscellaneous Editing Commands

ey [
e
-]

Delete file on disk

Save file, exit K] [D

Save, edit (k]

Quit, no save cr) (k] (@)

Tab (ar] (1

Auto-indent on/off (o] Ca) (1)

Control character prefix - cml (P

Abort operation car) (u)

(' sor Movement Commands
- Character left »)

Moves the cursor one character to the left nondestructively (without affecting any
characters). When at the start of the line, the cursor will move to the end of the
previous line.

Character right v (o]

Moves the cursor one character to the right nondestructively (without affecting

142 MODULA

any characters). When the last character on the line is reached, the cursor will
move to the first character on the next line.

Word left Ca)
Moves the cursor to the beginning of the word to the left.

Word right 2
Moves the cursor to the beginning of the word to the right.

Line up e

Moves the cursor to the preceding line. If there is no character in the current col
umn, the cursor is moved to the end of the line.

Line down : C

Moves the cursor to the proceeding line. If there is no character in the curren
column, the cursor is moved to the end of the line.

Scroll up : : (w”

Scrolls the file up one line toward the beginning of the file (the entire scree;
scrolls down).

Scroll down , (=

Scrolls the file down one line toward the end of the file (the entire screen scroll
up).

Page up ' (N
Moves the cursor one page up.
Page down (em) (¢

Moves the cursor one page down.

System Operatior.. 143

Extended Movement Commands

The editor provides commands to quickly move to either end of a line, to the
beginning and end of the text, and to the previous cursor position. These com-
mands require two control characters to be entered simultaneously: press
((@] and then one of the control characters, (s], (o], (], (x]
(R], or (c] . Their keyboard arrangement repeats the pattern previously
shown.

E R
S D
X C
Left on line])

Moves the cursor to the far left of the screen (column 1).

Right on line : “lemg (o) (Co])

Moves the cursor to the far right (the end) of the current line.

Top of window e (o] (e

Moves the cursor to the top of the screen.

Bottom of window ')]

Moves the cursor to the bottom of the screen.

Top of file (o] (&)

Moves to the first character in the file unless the top of the file has been paged
out, in which case the cursor is moved to the first character in the buffer. To move
to the start of a file that has had the beginning paged out, you must use
(k] ([Cs], which also saves any changes the were made. If you don’t want
to save your changes, you must quit ((K] (@]) and restart the editor.

End of file : o] ()

Moves to the last character in the file.

144 - MODUL.

Beginning of block o] (&
Moves the cursor to the block-begin marker set with G 8.
End of block o] x

Moves the cursor to the block-en<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>