
THE MANUAL

RICHARD CONN

NEW YORK ZOETROPE

ZCPR3 The Manual

Copyright 1985, New York Zoetrope, Inc.
All rights reserved.

Reproduction by any means, electronic, photographic, or
otherwise, is str ictly fo rb idden under U.S. and
In ternational copyright laws without the express wri t ten
consent of the publisher.

Library of Congress Cataloging in Publication Number:
84-061790

ISBN 0-918432-59-6

New York Zoetrope
80 East 11th Street
New York, NY 10003

ZCPR3 The Manual was set in H-P Times Roman. The
book was pr in ted and bound by Maple-Vail Book
Manufac tur ing Group at their York, PA. plant.

Production: Mitch Knauffs , Chris Terry, Richard White.

Printed in the United States of America
First Printing: June, 1985
5 4 3 2 1

FOREWORD
This book has been great ly needed since the release of ZCPR3 about six months

ago. It took about eight months to write ZCPR3 and its online documentat ion.
Surprisingly, it took six months to produce this book; to say the least, this book took
much more ef fo r t and time than anticipated. But I feel it was worth it, and I thank the
community of users who have patiently waited for the book to be completed.

I thank Chris Terry for his monumental e f fo r t in performing the technical
editing for this book. I also thank Frank Gaude of Echelon for his support. Final ly, I
thank my parents and my second family for the support and encouragement they gave
me throughout the trial of creat ing the book. I believe that the end result is worth it.

DEDICATED
to my parents and my second family

Richard Conn
December 17, 1984

TABLE OF CONTENTS

Section 1 Using ZCPR3 and Command Definit ions

1 ZCPR3 and CP/M 3

2 Basic ZCPR3 Concepts 7

3 TOOLSET of ZCPR3 21
ALIAS (Version 1.1) 21
CD (Version 3.0) 23
CLEANDIR (Version 1.0) 24
CMD (Version 1.0) 25
CMDRUN 26
COMMENT (Version 2.0) 26
CP (SYSRCP) 27
CPSEL (Version 1.0) 28
CRC (Version 2.0) 29
DEV (Version 1.0) 30
DEVICE (Version 1.0) 31
DIFF (Version 2.0) 31
DIR (Version 1.0) 33
DIR (CP-Resident) 34
DIR (RCP-Resident, provided in SYS.RCP) 34
DPROG (Version 1.0) 35
D U /D IR Forms 42
DU3 (Version 1.0) 43
ECHO (Version 1.0) 44
ECHO (CP-Resident or RCP-Resident) 45
ELSE (from SYSFCP Version 1.0) 45
ERA (CP-Resident) 46
ERA (RCP-Resident) 46
ERASE (Version 5.0) 47
ERROR1 (Version 1.0) 48
ERROR2 (Version 1.0) 48
ERROR3 (Version 1.0) 49
ERROR4 (Version 1.0) 49
ERRORX (Version 1.0) 49
FI (from SYSFCP 1.0) 50
FINDF (Version 2.0) 50
GET (CP-Resident) 51
GO (CP-Resident or RCP-Resident) 52
GOTO (Version 1.0) 52
HELP (Version 5.0) 54
HELPCK (Version 1.0) 55
HELPPR (Version 1.0) 56

IF (Version 1.1) 56
IF (FCP-Resident) 58
IFSTAT (Version 1.0) 59
JUMP (CP-Resident) 59
LDR (Version 1.0) 60
LIST (CP-Resident) 61
LIST (RCP-Resident) 61
MCOPY (Version 1.4) 62
MENU (Version 3.2) 64
MKDIR (Version 3.0) 65
MU (RCP-Resident) 65
MU3 (Version 1.0) 66
NOTE 69
P (RCP-Resident) 69
PAGE (Version 2.0) 70
PATH (Version 3.0) 71
POKE (RCP-Resident) 72
PRINT (Version 2.0) 73
PROT (RCP-Resident) 74
PROTECT (Version 2.0) 75
PWD (Version 1.0) 76
QUIET (Version 1.0) 77
RECORD (Version 3.0) 77
REG (Version 1.0) 79
REG (RCP-Resident) 79
REN (CP-Resident) 80
REN (RCP-Resident) 80
RENAME (Version 3.0) 80
SAK (Version 2.0) 81
SAVE (CP-Resident) 82
SETFILE (Version 1.0) 83
SH (Version 1.0) 84
SHCTRL (Version 1.0) 84
SHDEFINE (Version 1.0) 85
SHFILE (Version 1.0) 85
SHOW (Version 1.0) 86
SHSET (Version 1.0) 86
SHVAR (Version 1.0) 88
SUB (Version 3.0) 88
TCCHECK (Version 1.0) 91
TCMAKE (Version 1.0) 91
TCSELECT 97
TYPE (CP-Resident) 101
TYPE (RCP-Resident) 101
UNERASE (Version 1.0) 101
VFILER (Version 1.0) 103
VMENU (Version 1.0) 103

WHEEL (Version 3.0) 104
WHL (RCP-Resident) 105
XD (Version 1.2) 105
XDIR (Version 2.0) 107
XIF (Version 1.0) 111
Z3INS (Version 1.0) 112
Z3LOC (Version 1.0) 113
ZEX (Version 3.0) 113

4 On-Line HELP Subsystem 121

5 Menu Subsystem 133
(V)MENU Programming Command Summary 144
(V)MENU Error Messages 147
VMENUCK (Version 1.0) 147
MENUCK (Version 1.0) 147

6 Shell Subsystem 149

7 VFILER and File Maintenance 153
VFILER Command Summary 154
User Functions 155

8 DU3 Disk Uti l i ty 161

Section 2 Inside ZCPR3

9 Inside the ZCPR3 Command Processor 183

10 Inside the ZCPR3 System Segments 211

11 Inside the ZCPR3 Message Buffers 219

12 Inside ZEX 223

13 Inside the ZCPR3 Shells 225

14 Inside the ZCPR3 Error Handlers 227

15 Inside the ZCPR3 Tools 229

Section 3 Instal lat ion

16 Overview of ZCPR3 Instal lat ion 233

17 Step 1: Selcting the Features 243

18 Step 2: Planning the ZCPR3 247

19 Instal lation Steps 3 - 6 253
Step 3: Modifying the BIOS Cold Boot Routine 253
Step 4: Edit ing Z3HDR.LIB 269
Step 5: Overlaying the old BIOS and the CCP 280
Step 6: Implanting the Operat ing System Image 280
Sample Session 280

20 Step 7: System Segment Instal lation 291

21 Step 8: Ut i l i ty Instal lat ion 305

22 TCAP Facil i ty 309

Appendices

A Glossary of Terms 329

B Documentat ion 333

C References 335
ZCPR3 and SYSLIB2 Publicat ions and Documentation

ZCPR3 Manuals
SYSLIB2 Manuals
Software Upgrades to SYSLIB2 and ZCPR2
Sources
CP/M Books

ZCPR3 Sources
Selected Computer Clubs

ACGNJ and SIG/M
New York Amateur Computer Club

Echelon, Inc.
New York Zoetrope, Inc.

Magazine Articles on ZCPR3
ZCPR3 Newsletters
ZCPR3 Configurat ion Management
ZCPR3 Electronic Bulletin Board

D Obtaining Free Software 339

Index 347

S e c t i o n 1

Using ZCPR3 and Command Definitions

"As long as th ere were no m achines, p rog ram m ing was n o t a p rob lem a t all; w hen we h a d a few weak
com puters, p ro g ram m ing becam e a m ild p rob lem an d now th a t we have g igan tic co m puters , p rog ram m ing has
become an equally g igan tic p rob lem . In th is sense th e e lectron ic in d u stry has n o t solved a single prob lem , it has only
c rea ted th em —it has c rea ted th e p rob lem of using its p ro d u c t."

E .W . D ijk s tra , A CM T u rin g A w ard L ectu re , 1972

"In th e developm ent of o u r u n d e rs tan d in g of com plex phenom ena, th e m ost pow erful too l availab le to the
hum an in te llect is a b s trac tio n . A b s trac tio n arises from a recogn ition of sim ilarities be tw een c e rta in ob jec ts,
s ituations, o r processes in th e real w orld, and th e decision to c o n cen tra te on these sim ilarities , and to ignore for th e
tim e being th e differences."

C .A .R . H oare, N otes on D a ta S tru c tu rin g .

This book is divided into three sections. Section 1 deals with learning and using
the system. In Chapters 1-2, the philosophy of ZCPR3 is presented, ZCPR3 and CP/M
2.2 are compared, and the basic concepts of ZCPR3 are outlined. Chapter 3 presents
the ZCPR3 Toolset in detail; all of the commands are listed in alphabetic order, with
their syntax, their applicat ion, and examples of how to use them. Afte r reading these
chapters, a person should be ready to use the ZCPR3 System. Chapters 4 through 8
discuss the online Help, Menu, and Shell subsystems, together with two of the major
tools (YFILER and DU3) in somewhat more detail than could be given in Chapter 3.

Section 2 discusses the internal s tructure and workings of some parts of ZCPR3;
this section, comprising Chapters 9 through 15, is aimed at the systems programmer
who will be using, installing, and adapting to his own needs a ZCPR system.

Section 3 contains detai led instructions for installing a ZCPR3 system. Chapter
16 presents an overview of the installation process, which is complex and requires
famil iar ity with assembly language programming and the interface requirements of
CP/M. Chapter 17 offers guidance on how to select the many features available if you
don’t have enough memory or disk space to accommodate all of them. Chapters 18
through 22 describe in detail the instal lation procedures and the ZCPR3 tools that
make life easier for the installer.

Do not be put off by the complexities of Section 3. If you merely want to use
ZCPR3 with all its f lexibil i ty and added power, you can obtain a self-installing
version, called Z3-DOT-COM from Echelon, Inc. This version pokes and pries into
your own system unti l it has all the required information, and then begins the
installation process automatical ly, report ing on your console as it completes
installation of each feature and utility. Two very simple commands entered from the
keyboard do all the work for you.

But i f you are installing ZCPR3 from the source files, or i f you want to adapt the
system to meet special needs of your own, then you will need to study Section 3 very

l

2 U sing Z C PR 3 and C om m and D efin itions Sec. 1

closely.
Throughout this book a working knowledge of CP/M 2.2 is assumed. Further ,

since ZCPR3 is not compatible with CP/M versions earlier than 2.2, the reader should
assume that all references to "CP/M" mean "CP/M version 2.2."

Using Z C PR 3 and C om m and D efin itions Sec. 1 3

1 ZCPR3 AND CP/M

This chapter explains the ideas and motivat ion behind ZCPR3. It describes, in
some detail, what ZCPR3 offers to the user and what the user needs to unders tand in
order to make effect ive use of ZCPR3.

A First Look at ZCPR3
To see how ZCPR3 meshes with CP/M, let us f irs t take a look at the memory map

of f igure 1-1, which shows the components of a s tandard CP/M system alongside those
of a ZCPR3-based system.

Address CP/M System ZCPR3 System

High Memory ->
BDOS+OEOOH ->
CCP +0800H ->
CCP Base ->

100H ->
OH ->

1 Extended Features |
BIOS	1 Modified BIOS
CP/M 2.2 BDOS	1 CP/M 2.2 BDOS
CP/M 2.2 CCP	T 1 ZCPR3
Scratch Area	

r

A* 1 Scratch Area |
| CP/M Buffers et al| 1 ZCPR3 Buffers et al|

*TPA = Trans ient Program Area, which covers the Scratch Area and the CCP or
ZCPR3

Figure 1-1. Components of s tandard CP/M and ZCPR3 systems

A ZCPR3-based system is s tructured in almost the same way as a CP/M-based
system. For all intents and purposes, ZCPR3 looks like CP/M to a program designed to
run under CP/M. The differences are in the way ZCPR3 looks to a program designed
to run under ZCPR3 and the way ZCPR3 looks to the user. A program designed to run
under ZCPR3 can extract much more information about the user’s system from ZCPR3
than it could from CP/M, and it can automatical ly configure itself to use the resources
of the user’s system in ways which it could not do under CP/M.

CP/M As an Operat ing System
CP/M is an Operating System : that is, a computer program whose function is to

manage the resources of the computer and to provide services in response to

4 U sing Z C PR 3 and C om m and D efin itions Sec. 1

standardized requests from application programs (which manipulate data in ways that
serve the user’s specific needs). All computers have four basic resources to be managed
by the operat ing system:

o Memory
o Processors and Processes (a Process is a running Program)
o Devices
o Informat ion
Memory Management. CP/M does very little in the way of Memory Management. It

merely defines the basic memory structure as shown in f igure 1-1; it does not allocate
sections of the memory to applicat ion programs or do any of the part i t ioning usually
associated with the memory management function.

Process Management. CP/M does no Process Management. There is only one
processor, so no processor management is needed. Only one process at a time can run,
so CP/M simply starts the process and then relinquishes all control. The process then
has complete control over the entire microcomputer , and CP/M does nothing to stop it
from doing any th ing it wishes to do. Co-routines or t ime-sharing between users on the
basis of a clock in ter rupt are sometimes found, but in such cases the al locat ion of time
slices to users is a funct ion of a separate process control program, not of CP/M.

Device Management. The beauty of CP/M is the way it does device and
information management. Device Management'll performed by the Basic Input-Output
System (BIOS) of CP/M. The BIOS provides a s tandardized, hardware- independent
interface to the devices at tached to the microcomputer. The routines control ling these
devices may be accessed by way of a table of jump instructions located at the
beginning of the BIOS. The parameters passed to these routines, the parameters
returned by these routines, and the functions performed by these routines are
precisely defined. The applicat ions programmer does not need to know how the
routines perform their functions, but only what they do and how to communicate with
them. This is a process box , or black box concept, i l lustrated in f igure 1-2.

Input Parameters |
are precisely known |

V

| Function is
| Precisely Known

Output Parameters |
are precisely known |

V

The Process Box is
a "Black Box," and
it is not necessary

<— to know what is in
the box in order
to use it

Figure 1-2. Process Box

For example, the four th entry in the BIOS Jump Table accesses the Console Input
Routine. To obtain a character from the user’s console, regardless of what type of

C hap. 1 Z C PR 3 AND C P /M 5

device the console may be (such as a CRT or print ing terminal), an applicat ion
program has only to make a subroutine call to address BIOS + 9 (each Jump Table
Entry is three bytes long); the BIOS will then re tu rn the next character from the
console in the A register. To output a character to the console, the software need only
place that character into the C register and make a call to BIOS + 12. The jump table,
which is in a constant location relative to the start of CP/M, ensures tha t the correct
driver routine will be accessed, regardless of where CP/M is located in the memory
(minimum memory size is 22K, maximum is 4K).

The BIOS performs all of the functions necessary for CP/M (and the programs
which run under CP/M) to control and communicate with the disk subsystem and most
commonly used peripherals such as printers, modems, and so on. Surprisingly, only
seventeen general-purpose functions are required to provide the hardware interfaces
necessary to perform all character and disk I /O under CP/M. They are:

1. Ini t ial izat ion Functions
o Cold boot ini t ial izat ion (when the system is f i rs t turned on)
o Warm boot ini t ial izat ion (performed periodical ly af te r the system is turned on)

2. Character Inpu t /O u tpu t Functions
o Console status (check for availabil ity of a character at the console)
o Console input
o Console output
o List status (check to see if List Device is ready to output the next character)
o List (printer) output
o Auxil iary output
o Auxil iary input

3. Disk Inpu t /O u tpu t Functions
o Home drive (move head to Track 0)
o Select drive (which drive to use)
o Select track
o Select sector
o Select memory address to read into or write from
o Read block (at selected track and sector) into memory

(at selected memory address)
o Write block (to selected track and sector) from memory

(at selected memory address)
o Logical-to-physical sector t ranslat ion (for eff iciency of disk use)
The BIOS, then, creates a virtual machine : that is, a hypothetical computer on

which all CP/M software runs (including CP/M itself). This hypothetical computer
always behaves in the same manner and has the same logical interface to applicat ion
programs, regardless of the actual hardware used to implement it. It makes no
difference whether 5.25" f loppy disks storing 100K per disk, 8" f loppy disks storing
600K per disk, or 8" Winchester hard disks storing 5M per disk are used. The software
talks to all of these devices in the same way, and this makes such software
transportable at the binary level between any two microcomputers running CP/M. The
only proviso is that the applicat ion program must use the standard CP/M function
calls when requesting service; direct calls to the BIOS via the jump table may result in
loss of portabil i ty to some systems.

6 U sing ZCi: R3 an d C om m and D efin itions Sec. 1

Information Management. Informat ion management, in the CP/M context,
consists of the coatrol of files on disk. CP/M shines here too, extending the vir tual
machine concept to the management of files on disk. The Basic Disk Operating System
(BDOS) port ion of CP/M creates this f ile-oriented vir tual machine. To i l lustrate this
point, some (but by no means a l l) of the functions provided by the BDOS are:

o Reset disk system
o Select disk
o Create file (actually, create a directory entry for a file)
o Open file (make a file ready for reading or writing)
o Close file (terminate the read /wr i te process)
o Delete file
o Rename file
o Set memory address to read into or write from
o Read next block from file
o Write next block into file
Note the similari ty between these BDOS functions and the BIOS disk functions.

These BDOS functions are accessed in a d if fe ren t way from the BIOS, but the process
box concept is maintained. All one needs to know are the input parameters, the output
parameters, and what the function performed is. Once more, t ranspor tabil i ty is
real ized at the binary level , but this time it is with respect to the information
manipulated by the computer—a more general concept than merely performing disk
and character I/O. It is at this more abstract level tha t the vir tual machine makes
possible the exchange and sale of software. In effect , the creat ion of CP/M spawned
an indus try based on a feature found only in computer systems running the UNIX
operat ing system: the exchange of software regardless, by and large, of the actual
computer hardware involved and independent of any one computer hardware
manufacturer . CP/M and UNIX d i f fe r in that CP/M restricts the microprocessor used
in the computer , while UNIX makes no restriction. It was only this feature, combined
with the open architecture and inexpensive hardware of the machines, tha t allowed so
many th ird-par ty software vendors to develop programs tha t f i red the imagination
and made the industry viable.

Where ZCPR3 Fits In
As we can see from Figure 1-1, the vir tual machine of CP/M is left more-or-less

intact in the ZCPR3 environment. The BDOS is unchanged, and though the BIOS is
modified, the changes are minor and the interfaces are left unaffected. Hence, under
ZCPR3, we are dealing with the same vir tual machine, so tha t software which ran
under CP/M 2.2 will also run under ZCPR3, except in a few rare cases in which the
software calls on the CCP to perform some functions (in which cases ZCPR3 may or
may not work).

C hap. 2 ZC PR 3 AND C P /M 7

2 Basic ZCPR3 Concepts

ZCPR3 provides a more convenient and significantly more powerful human
interface than the standard CCP (command processor) of CP/M. The facilities
provided by ZCPR3 are described below. In this discussion it is assumed that all the
available features have been installed; however, the user can choose to install only
those features tha t will be useful to him.

Directories
Like CP/M, ZCPR3 is able to address up to sixteen logical disks, each containing

up to thirty-two user areas. A directory under ZCPR3 defines a user area on a disk,
and is identif ied by one of two methods. The f irs t method is the combination of the
disk letter and the the user area number (e.g., A10 for disk A, user area 10); this will be
referred to as the "DU (disk/user) form." The second method is to use a mnemonic
(such as JEFF, which could be assigned to disk B, user area 5). The naming of a
directory will here inaf te r be refer red to as the "DIR form." By convention, the name
ROOT is assigned to Disk A/Use r 15.

The directory is a logical concept. In a multi-user system it serves to separate the
files of the various users; in a single-user system, it is valuable for grouping together
the files related to a specific project and separat ing them from those of other projects.
It is important to note that, because ZCPR3 uses the file management faci lit ies of the
CP/M BDOS, there is only one physical directory on each logical disk. This physical
directory contains the entries for all files in all user areas on the disk; a user number is
a part of each directory entry and associates the file with the user area in which that
file logically resides. Physically, there is no distinction between user areas, because
when a program requests file space the CP/M file management system allocates the
first free block (i.e., the one with the lowest block number). The free block may have
been released by erasure of a file, and may therefore be sandwiched between blocks
belonging to a file of a d i f fe ren t user.

General Usage. The ZCPR3 resident commands and ZCPR3-specif ic utilit ies may
use ei ther the DU form or the DIR form to identi fy a directory whenever the simpler
D: form would be used under CP/M; the D part of the DU form is optional if the
desired directory is on the current ly logged-in disk, and the U part is optional if it is
the same as that of the current directory. For instance, i f the user is logged into disk B,
user 5, the DU reference "A:" refers to disk A, user 5, and the DU reference "10:" refers
to disk B, user 10. References such as "C31:" completely specify a part icular disk and
user area, (in this case, disk C, user area 31). The DIR form may be used instead of the
DU form provided tha t a name has previously been def ined for the target directory.
For example, if the name ROOT is assigned to refer to disk A, user 15, then the ZCPR3
commands like "TYPE ROOT:MYFILE.TXT" and "DIR ROOT:" reference files on disk
A, user area 15.

The user can be logged into any directory on any disk and readily work with files
in any other directory on any disk. Just as the CP/M user can pref ix a COM file with a
disk letter in order to temporari ly log into another disk and extract tha t f ile from it, so
the ZCPR3 user can prefix a COM file with a DU or a DIR form.

In summary, the DU and DIR forms of directory reference can be employed in
three basic ways:

8 U sing Z C P P 3 an d C om m and D efin itions Sec. 1

1. To reference a directory location for a file, as in commands like "TYPE
A 15:MYFILE.TXT" or "DIR ROOT:"

2. To reference a directory location from which to extract a COM file, as in
commands like "ROOT:MYPROG PARAMS"

3. To log into a directory, as in commands like "B7:", "12:", "C:", and "ROOT:"
Advantages of the DIR Form . The DIR form offers several addi t ional features.

Chief among these is that each named directory may also have a password associated
with it. I f a password is specified, any reference to such a directory by the user results
in the user being prompted for the password. Should the user enter an invalid
password, access is denied and the directory reference is changed to his current
directory. If no password is specified, access is unrestr icted.

The DIR form is more easily remembered than the DU form. A directory named
"ASM" is much more easily identif ied as containing assembly language source code
files than "B7."

Finally, the DIR form provides a mechanism which to some degree supports
t ranspor tabil i ty of software between systems. Programs can now look for directories
by the name in which their overlays and other working files may be stored. To
il lustrate, the HELP command of ZCPR3 searches for a file named in its parameter list
("HELP ZCPR3" searches for the file ZCPR3.HLP). When the HELP command is
issued, it searches along the command search path (discussed below) for the specif ied
HLP file, and, i f this search fails, it looks for the file in a directory named "HELP."
One system may keep the directory named "HELP" on disk A, user area 16, whereas
another system may keep "HELP" on disk B, user area 31. Regardless, the HELP uti lity
will f ind the correct directory.

ZCPR3 Prompt
The ZCPR3 prompt usually tells the user what directory he is logged into. ZCPR3

can be configured to present any one of four prompt formats to the user:

1. The prompt may be displayed as ">", in which case no indicat ion is given as to
which directory the user is logged into.

2. The prompt may be displayed as "d>" or "du>", in which case just the disk or disk
and user area are presented to the user. "C>" and "B7>" are examples of such a
prompt.

3. The prompt may be displayed as "dir>", in which case only the directory name is
presented to the user. The user need never concern himself with the DU form and
can th ink of all of his directories mnemonically. "ROOT>" is an example of this
prompt. If the curren t directory does not have a name, this prompt appears
simply as ">".

4. The prompt may be displayed as "du:dir>", in which case all informat ion is
presented. "A15:ROOT>" is an example.
Some of the new ZCPR3 utilit ies are specifical ly designed to manipulate named

directories. Among these are:

■ CD Log Into a Named Directory (like the DU: or DIR: commands, but fa r more is
done)

Chap. 2 Basic Z C PR 3 C oncepts 9

■ PWD Print Working Directory; this command lists the names of the directories
accessible to the user

■ MKDIR Make a Directory; create a new set of named directories or modify an
existing set
All of the ZCPR3 resident commands and utilit ies respond to the ZCPR3 DU and

DIR forms, but conventional CP/M programs do not. If a DU or DIR form is presented
in the command line of a conventional CP/M program, the form is usually interpreted
as the disk referenced by the form. For example, i f the "ROOT" directory is disk A,
user area 15, then "WS ROOT:MYFILE.TXT" will be read by the WordStar program to
mean "WS A:MYFILE.TXT". Some programs, such as PIP, will not respond favorably to
the DU and DIR forms. As a general rule, only the D form should be used in
conjunction with non-ZCPR3 utilities.

Command Search Path
A path is a sequence of directories tha t are to be searched for a part icular file in

the order specif ied by the sequence. The directories in the path may be specif ied by
absolute DU forms, by symbolic DU forms, by DIR forms, or by a mixture of all three.
The sequence always starts with the directory into which the user is current ly logged,
and ends with a special directory (by convention called "ROOT"). The ROOT
directory contains COM f i l es -such as directory display utilit ies, telecommunication
packages, editors, and copy ut i li t ies—that are f requent ly used throughout the system
and are sometimes called by applicat ion programs.

Although the terms "root" and "path" are taken from U NIX and have some
functional resemblance to their UNIX equivalents, it is important to note tha t ZCPR3
directories are not hierarchical in the sense that U NIX directories are. In UNIX, a
directory is a f ile containing fi lenames and other informat ion about the f iles—and
these names may belong to text files, binary executable files, or command scripts; but
they may also belong to files which are themselves subordinate directory files, so that
a "tree" of directories and subdirectories is possible. The BDOS treats directories in a
dif ferent way from files; thus, under CP/M and ZCPR3 all directories arc on the same
level and search paths are a rb i t ra ry—there is no physical tree structure. If any tree
structures are to be established, they will have to be done in a "logical" fashion. By
making directories visible or not visible (which is possible when only the DIR form is
used), logical trees can be created. Logging into a directory via CD, for instance, may
run an ST.COM file which loads a new set of directory names, suddenly establishing
visibility to these directories (establishing a node of the tree). See the descript ion of
the CD command for more details.

The PATEI command is used to define the search path desired by the user. The
following examples all define exactly the same path, but use the d i f fe ren t forms. At
the start of the path, the user is logged into Disk B, User 5.

Absolute DU: B5 BO A5 A15
Symbolic DU: $$ $0 A$ A15
DIR forms: LETTERS WP SPELL ROOT

A dollar sign used in symbolic DU forms specifies "Current Disk" if it appears in the
first position, or "Current User Number" if it appears in the second position. Use of

10 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

the DIR forms assumes tha t all the names have previously been assigned to specific
directories.

Command Search Processing
Command processing under CP/M is really quite simple:

1. Input and parse command line from user or file.
2. Determine if it is a CCP-resident command; i f so, run the command.
3. Determine if the curren t disk and user area contains a COM file with a name that

matches the command; i f so, load it and run it.
4. Print error message if 2 and 3 fail.

ZCPR3 offers a much more sophisticated and f lexible command processing
faci lity. The ZCPR3 command search hierarchy can be expressed as follows (the
command processors to which reference is made will be fully described later):

1. Input and parse the command line from the user, a running SUBMIT file
($$$.SUB), or a ZEX or ZEX-like input source (ZEX is a memory-based command
file processor which can be thought of as a memory-based SUBMIT).

2. Check the curren t Flow Command Package (FCP) to see if it recognizes the
command; i f so, run the command through the FCP.

3. Check the curren t Flow State to see if it is TRUE; if so, continue; i f not, f lush the
command and advance to the next one (step 1).

4. Check the curren t Resident Command Package (RCP) to see if it recognizes the
command; i f so, run the command through the RCP.

5. Check the ZCPR3-resident command table for the command; i f found, run it
with in the ZCPR3 command processor.

6. Search along the command search path for a COM file which matches the verb in
the command line, logging into the disks and user areas indicated in the path unti l
ei ther the bottom of the path is reached or the desired COM file is found; load and
run the program, if found.

7. If an Extended Command Processor has been specified (at installat ion time), load
it and pass the command line to it for execution

8. If steps 2-7 fail , invoke an Error Handler program if one has been installed; if no
Error Handler has been installed, prin t an error message.

The ZCPR3 command processor follows these steps when it at tempts to resolve a
command line presented to it. Because steps 1-5 use memory-resident facilities, this
procedure is quite fast, and the ZCPR3 user realizes a very reasonable response time
f rom the system.

Command Sources
In a full ZCPR3 System, there are four places where commands can be found:

1. Within the ZCPR3 command processor itself
2. Within memory-based resident command packages
3. Within memory-based flow command packages

Chap. 2 Basic Z C PR 3 C oncepts 11

4. In the form of COM files on disk

Table 2-1: Comparison of ZCPR3 and CP/M CCP Resident Commands

Function ZCPR3 Command CCP Command

Display $DIR File Names DIR DUiafn DIR Diafn
Display $SYS File Names DIR DUiafn S No Equivalent
Display All File Names DIR DUiafn A No Equivalent

Erase Specified Files ERA DUiafn ERA Diafn
Erase with Ver ify ERA DUiafn V No Equivalent

Rename File REN DUiuf n=ufn2 REN DU:ufn=ufn2
Rename Over Exist ing File REN DU:ufn=ufn2 No Equivalent

Print File on Console TYPE DUiufn P TYPE Diufn
Without Paging
Print File on Console TYPE DUiufn No Equivalent
With Paging
Print File on Prin ter LIST DUiufn No Equivalent
Save Memory into File No Equivalent SAVE n Diufn
Without Overwrite Warning

Save Memory into File SAVE n DUiufn No Equivalent
With Overwrite Warning
Save Memory into File SAVE nH DUiufn No Equivalent
and Specify Size in Hex

Save Memory into File
and Specify Number of
Blocks

SAVE n DUiufn S
or

SAVE nH DUiufn S

No Equivalent

Load File Anywhere into GET adr DUiufn No Equivalent
Memory

Reexecute Last Transient GO params No Equivalent
Without Reloading It

Call Subroutine Anywhere in JUMP adr No Equivalent
Memory

Change Disk D: D:

Change User U: USER u
Change Disk and User at
Same Time

DU:
or DIR:

No Equivalent

Prefix Commands Di, Ui, DU:, DIR: D:

12 U sing Z C PR 3 and C om m and D efin itions Sec. 1

These four areas are briefly described below; more detai led discussions of the
commands themselves and how the command processors work are contained in a later
chapter.

ZCPR3 Command Processor. Like the CP/M CCP, ZCPR3 contains some buil t- in
commands. It can contain all of the CCP commands (except USER, which is not
needed) and a few more, but all of the ZCPR3 resident commands are d i f fe ren t
because they have logical extensions that of fer features not found in the CP/M
resident commands. Table 2-1 compares the various resident command forms under
the CP/M CCP and ZCPR3.

The Extended Command Processor (ECP) is a program that is run by the ZCPR3
Command Processor. The entire command line is passed to the ECP, so the ECP can see
the line as it was intended to be executed. It can perform its own addit ional parsing
and evaluation and then ei ther resolve the command or pass a new command line back
to ZCPR3 for another round of interpretat ion.

If the ECP is not found, the conventional error message is given, f lagging the
original command as being in error. If the ECP (usually named CMDRUN.COM) is
found, then the entire command line is passed to it as though it had been run as a
command in its own right. For instance, if the original command line was:

MASM MYPROG
and the f ile MASM.COM was not found but the Extended Command Processor
CMDRUN was, then this would be equivalent to issuing the command:

CMDRUN MASM MYPROG'
The uti l i ty of this fea ture can be seen immediately. Imagine tha t the SUBMIT

program were renamed to CMDRUN. Then the fai lure of a command would cause
SUBMIT to run and a t tempt to run a command file.

With this fea ture in mind, two ZCPR3 transients are provided for use as Extended
Command Processors. They are SUB and ZEX. SUB and ZEX are command file
processors. SUB is like an enhanced SUBMIT, and ZEX is also like an enhanced
SUBMIT but it places its executable text into memory and runs much faster.

Resident Command Packages. Commands may also reside wi thin a Resident
Command Package (RCP). An RCP is a file which contains one or more commands and
is loaded into memory by the LDR uti lity of ZCPR3 for direct execution by the
ZCPR3 command processor. Each command within an RCP looks and acts like a COM
file, but instead of having to be loaded from disk each time it is executed, the
command executes immediately from within its memory-based RCP. Several s tandard
RCPs are provided in the ZCPR3 distr ibution files, and Table 2-2 lists some of these
commands and their functions.

Resident command packages offer several advantages to the ZCPR3 user:
1. Disk space can be saved, because a number of small commands can be grouped

together in one file and loaded as a group for execution.
2. Time can be saved, because RCP-based commands are memory-resident once their

RCP has been loaded; therefore, no disk act ivi ty is involved in locating and
loading them.

Chap. 2 Basic ZC PR 3 C oncepts 13

3. Some commands, such as those buil t into the CP/M CCP, which are normally
included in the ZCPR3 command processor, can al ternat ively be placed into an
RCP, thereby freeing up the command processor for more system-oriented
functions.

4. There is usually more space available in an RCP than wi thin the ZCPR3
command processor, so RCP-based commands can be larger and more powerful
than their ZCPR3-based counterparts.

5. Commands residing within an RCP generally do not occupy any space in the
Transient Program Area; thus, i f debugging faci lit ies are made RCP-resident ,
they can examine the TPA afte r a t ransient program has been executed in an
undisturbed state.

Table 2-2. Commands Available in Resident Command Packages

Command Function

CP

ECHO

ERA

LIST

MU

P

Copy a file

Echo the command line tail to the console or printer; this
is useful in message display and device programming

Erase files, but an inspect option is available which
displays each file and allows the user to approve

Print a group of files on the printer

Memory ut i l i ty—this is a screen-oriented memory editor which
allows the user to change any byte anywhere in memory and
examine locations in memory with ease; the TPA is not af fec ted by
running MU, so the last t ransient program run can be examined

Peek into memory, producing a dump of memory;
the TPA is not affected

POKE Poke into memory, changing byte values at will

PROT Set protection at tr ibutes for files

TYPE Type a group of files on the console

Flow Command Packages. A Flow Command Package (FCP) is very similar in nature to
an RCP—it is a package of commands that is loaded by LDR for execution directly
from memory. Commands tha t control the Flow State of the system are typically stored
here. Nine f low states may exist at any one time in a ZCPR3 system: the empty state
(which is TRUE) and IF Levels 1 to 8. The ZCPR3 command processor is constantly

14 U sing Z C PR 3 and C om m and D efin itions Sec. 1

aware of the curren t f low state of the system, and if this state is TRUE, the ZCPR3
command processor will allow any command to execute if at all possible. If the flow
state is FALSE, however, only commands which reside with in an FCP may be
executed. The IF command is usually used to raise the user to the next f low state level
and set its value to T R U E or FALSE as the result of testing some condition. Table 2-3
shows the commands that are usually placed within an FCP.

Table 2-3. Common FCP Commands

Command Syntax Function Examples

IF IF cond Test the indicated condition
and raise to the next level,
setting the Flow State to
T R U E if the condit ion is
TRU E and FALSE otherwise

IF EXIST FILE
IF EMPTY FILE
IF NULL $1
IF - N U L L $2

FI FI emt Terminate the current Flow
State and drop down to the
previous level (same meaning
as ENDIF in conventional
terms)

FI end inner IF

ELSE ELSE emt Toggle the current Flow
State

ELSE do other

XIF XIF emt Exit all IF Levels, dropping
to the empty f low state
(which is TRUE), i f the
current Flow State is TRUE;
else do nothing

XIF done

Command (COM) Files on Disk. The four th type of command recognized by ZCPR3 is
the standard COM file. This is an executable binary image which runs at location
100H. Programs such as WordStar (WS.COM) and dBASE II (DBASE.COM) are
implemented as COM files. ZCPR3 handles COM files in much the same way as CP/M
does. The di f ference is tha t ZCPR3 actively searches for a COM file in all directories
on the current search path, whereas CP/M searches only a specific disk and user area
and then gives up. The ZCPR3 user can shorten the search by explicit ly stat ing where
the file resides, but with the command search path he does not have to.

The ZCPR3 command processor loads the buffers in low memory in a manner
quite similar to the CP/M CCP, so a COM file loaded by ZCPR3 sees these buffers and
parameters in the same way it would see them under CP/M. ZCPR3 also loads some
special buffers with addit ional information (such as the user areas referenced for the
f irs t two file names in the command line) that is meaningful only to ZCPR3-specific
utilities. However, a normal CP/M COM file will not notice these buffers or be
af fec ted by them.

Chap. 2 B asic Z C PR 3 C oncepts 15

Multiple-Command Lines
The multiple-command line feature adds much f lexibil i ty and versat i li ty to the

ZCPR3 System. Unlike CP/M, ZCPR3 allows the user to specify, on one line, a
sequence of commands separated by a semicolon. For example:

A>B:;DIR A7: * . TXT;DIR C22: . COM A;C7:;ERA *.COM;DIR
is a val id command line to ZCPR3. This fea ture buys the ZCPR3 user two important
advantages:

1. A sequence of time-consuming commands can be issued at one time, and the user
can leave the system and do something else unti l the sequence completes. A
ZCPR3 uti l i ty (SAK), designed with this in mind, rings the console bell to alert
the user when the command sequence completes or reaches a crit ical point.

2. One program can invoke another program by placing a command line into the
multiple-command line buf fer , setting a pointer to the f irs t character of the
command line, and returning to the operat ing system. ZCPR3 will then resume
command line execution at the pointer location and run the command for the
previous program. This fea ture makes aliases and shells (among other things)
possible.

Shells
The command search hierarchy described above is fundamenta l to the ZCPR3

command processor itself, but ZCPR3 also supports the concept of a shell. A shell is a
program that acts as an interface between the user and the ZCPR3 command processor.
Shells can completely change the user’s mode of interact ion with a ZCPR3 system;
their function is to l i f t the user to a higher level of abstraction which is fu r ther away
from the details of the machine he is using and closer to the problem he wants to solve.

Several shells are provided with ZCPR3, each with a programming language and
environment of its own. MENU and VMENU are two such shells; they present menu
displays to the user, allow him to select an item from a menu display with a single
keystroke, and then build command lines based on this selection, passing these
command lines to the ZCPR3 command processor for execution. When all commands
in a sequence have been executed, the ZCPR3 command processor automatical ly
reinvokes the shell, and the user f inds himself back at his menu. All shells are
documented in the chapter of this book which describes the commands.

The user never needs to know what commands are buil t and executed—all he
needs to know is how to interpret the menu and strike a single character to select the
function he desires. The shell hides from him all the details of implementat ion. Thus,
an applicat ion coded in the command language associated with one of these shells can
be run by a person with no technical knowledge except the little required to turn the
machine on and select major functions.

Scripts
A script is a sequence of commands that may be stored in a disk file and executed

as if they were a single command, merely by invoking the name of the file. A SUB file
executed by the SUBMIT command of CP/M is an example of a command file of this
type. However, because the ZCPR3 command processor is more powerful and flexible
than the corresponding CP/M facilities, much more complex operat ions can be

16 U sing Z C PR 3 and C om m and D efin itions Sec. 1

performed much more conveniently than could be done under CP/M.
There are many situations in which a user could f ind himself issuing the same

sequence of commands, perhaps with minor variations, over and over again. Entering
a complex command many times from the keyboard is not only boring, but leads to
mistakes. These, in turn, can lead to wholly undesirable results tha t may not even be
discovered unti l the last command terminates. At best, time is wasted edit ing the
command line when a mistake is found before the RE T U R N key is hit. I f each
command is entered on a separate line of a script, mistakes are less likely and, bet ter
still, only a few keystrokes (the name of the script) are needed to invoke the sequence.

As a typical example the user may want to assemble a program (with the M80
assembler) and, i f the assembler found no errors, link it (using the L80 linker) to create
a COM file. To do this, the user might create the following script, in which $1
represents the program to be assembled and linked.

M80 =$1
< if this succeeds >
L80 $1,$1/N,A:SYSLIB/S,/U,/E
ERA *.REL

Since this set of commands could well be in a file ASM80.SUB to be executed by
the CP/M command "A>SUBMIT ASM80", you might well ask "Why call it a script
instead of a submit file, and why make a fuss about it?" The point is that this is not the
only form of script, and that ZCPR3 offers the user another convenience to assist him
in cases like this—the alias. An alias is a script tha t can be invoked as if it were a
program in a s tandard COM file, merely by giving its name as a command. In the
above example, the following alias could be created:

ASM80:
M80 =$1;
IF INPUT;

L80 $1,$1/N,A:SYSLIB/S,/U,/E;
ERA $1.REL;

FI
The IF statement checks to see whether the M80 assembler actual ly generated a
relocatable object file; the FI s tatement terminates the group of statements to be
executed if that condit ion is true. Now, by issuing the command "ASM80 MYPROG",
the script commands are run, with the following results:

1. The program MYPROG.MAC is assembled.

2. The sequence pauses to allow the user to see the results of the assembly; if it is
successful, he may str ike the RE T U R N key and allow commands 3 and 4 to
execute; if it is not successful, the N option aborts commands 3 and 4.

3-4. If the user responded in the af f irmative at step 2, the L80 linker is run and
MYPROG.REL is erased.

Chap. 2 Basic Z C PR 3 C oncepts 17

5. The IF is terminated and the alias returns control to ZCPR3.
The great advantage of using an alias is that, since it is itself a command, the

ZCPR3 command processors search for the alias name in all directories included in the
current path; thus, there is no restr iction as to where it resides, as there is with CP/M
submit files.

Alias Applications. Aliases are employed in a ZCPR3 System in a variety of ways:
1. An alias is usually run on cold boot to execute a series of programs that ini tialize

the system and establish an ini t ial operat ing environment. By convention, this
alias is called STARTUP and is stored in the multiple-command line bu f fe r by
the cold boot routine, for execution as soon as the system comes up. Using
STARTUP, the environment descriptor, init ial RCP and FCP, named directory
file, and terminal descript ion can be loaded automatical ly, and a MENU can then
be invoked to allow the user to select what he wants to do from that point
forward.

2. Another alias, by convention named ST, is used by the CD command. The
command "CD DIR:" will invoke CD to log the user into the indicated directory,
and, if the user has permission to enter this directory, CD looks there for the
command ST.COM. If this command is found, CD runs it. ST can be an alias that
initializes the user’s environment for him by, for example, loading a new named
directory file or bringing up a menu.

3. Commonly used command sequences can be stored in aliases, and those aliases can
be stored in the ROOT directory (at the end of the command search path) for
execution from any directory on the system.
ZEX Command File Processor
The ZEX command file processor is a special part of the ZCPR3 System. ZEX,

which stands for Z80 Executive, is an integral part of the ZCPR3 System, and it
provides a memory-based command file faci li ty which is similar to SUBMIT but stores
the commands in a memory buf fe r and executes them directly from this buffer .
Unlike SUBMIT, ZEX is integrated with ZCPR3, and uti lit ies can communicate
directly with ZEX, looking at the commands it is about to issue and changing the
command flow within ZEX.

ZEX provides informat ion to the system through the Environment Descriptor,
and a utility can read this information and f ind out where the next character ZEX is
going to input comes from, where the f irs t character of the command file is, and how
to turn ZEX’s command monitor on and of f to control its operation. A program can
then change these pointers and take control of the execution of commands via ZEX.
The potentials unlocked by this capabili ty are yet to be completely explored, but
facilities like shells and the GOTO command are aided by this interact ion with ZEX.

Environment Descriptor
Under CP/M, a few simple features of the design made it possible to t ransport

binary files between d i f fe ren t CP/M systems. This capabili ty opened the door for the
development of the CP/M world. Software engineers and programmers could write
code that would run on any CP/M system, regardless of the hardware configurat ion or
other capabilities of the user’s system. A market was thereby created.

18 Using ZC PH 3 and C om m and D efin itions Sec. 1

To remain compatible with CP/M, these simple features were retained in their
ent irety in the design of ZCPR3, with few changes. ZCPR3, however, offers the
environment descriptor as an addit ional fea ture that opens many doors to the software
developers. The environment descriptor specifies the characterist ics of the user’s CRT
and printer, as well as the features available under a par t icular ZCPR3 system. This
information makes it possible to t ransport programs such as screen-oriented editors
from one ZCPR3 system to another at the binary level; the only special requirement is
that a pointer to the target system’s environment descriptor has to be installed in the
program. The ut i l i ty Z3INS performs this instal lation in a minimum amount of time.

Redirectable I /O
Redirectable Input/Output refers to the abil ity of the user to switch to d if fe ren t

Inpu t /O u tpu t devices dur ing the course of a session. Optionally implemented through
the I /O Byte, I /O under CP/M supports four logical devices, namely:

Console (CON:)input (keyboard) and output (display)
Printer (LST:) output-only
Reader (RDR:)input-only
Punch (PUN:)output-only

Each of these four logical devices may have any one of four physical devices assigned
to it, al lowing the user to work with as many as sixteen physical devices. Refer to the
C P /M 2.2 Alteration Guide by Digital Research Inc. for informat ion on device driver
and parameter-passing requirements.

Device Assignment under CP/M. Under CP/M, the I /O Byte (at memory location 3)
specifics the assignment of these devices. It is divided into four 2-bit fields, each field
associated with a logical device; within a given field, each of the four possible values
(00, 01, 10, 11) is associated with a par t icular physical device. Assignment of a
physical device to a logical device can be done by STAT commands (e.g., "STAT
CON:=CRT:"). Table 2-4 summarizes the logical and physical device assignments and
mnemonics available through the I /O Byte. Table 2-5 lists the standard meanings of
the physical device mnemonics.

Table 2-4. I /O Byte Assignments

Logical Device —> LST: PUN: RDR: CON:
Bit Position —> 7 6 5 4 3 2 1 0
Physical Assignment — — — —

0 00 Binary TTY: TTY: TTY: TTY:Physical
1 01 Binary CRT: PTP: PTR: CRT:Device
2 10 Binary LPT: UP1: UR1: BAT:Mnemomics
3 11 Binary UL1: UP2: UR2: UC1:

To make use of this s tructure, each logical device driver must, every time it is
called, examine the value present in the I /O Byte f ield associated with tha t logical
device, and use the value as an offset into a table to obtain the address of driver
routine for the physical device specif ied in the I /O Byte. This process adds a good deal
of code to the BIOS, and many systems do not implement it. Nevertheless, if you have,
say, a dot matrix printer and a daisywheel printer, you can use ei ther one as the list

Chap. 2 Basic Z C PR 3 C oncepts 19

device by issuing the appropriate STAT command; wi thout this feature, it would be
necessary to change the physical cable connections to the output port.

Table 2-5. I /O Byte Devices

Physical Device
TTY:
CRT:
BAT:
UC1:
PTR:

UR 1:, UR2:
PTP:

UP 1:, UP2:
LPT:
UL1:

Typical Meaning
Teletype
Cathode Ray Tube Terminal
Batch Processor (RDR=in, LST=out)
User-Defined Console
Paper Tape Reader
User-Defined Reader Devices
Paper Tape Punch
User-Defined Punch Devices
Line Printer
User-Defined List Device

Device Assignment under ZCPR3. Under ZCPR3, a slightly d i f fe ren t scheme for
redirectable I /O has been implemented. The implementer , however, has the choice of
continuing to use the CP/M scheme or switching to this new one.

When a ZCPR3 system cold boots, the BIOS loaded from the system tracks of the
disk contains only a few primit ive I /O drivers. Only the CRT as a console is enabled,
and the reader, punch, and list devices are assigned to the CRT. No redirect ion is
permitted at this time.

The BIOS is s tructured so tha t all the I /O entries in its jump table branch to a
second jump table that is ini t ialized by the Cold Boot Routine. This second jump table
is placed on a page boundary at the beginning of a scratch area. It is in this scratch
area that the physical device drivers reside. It is recommended tha t the size of this
scratch area be approximately 2K bytes to allow space for all the drivers tha t might be
required at any one time. Packages of I /O routines can then be loaded into it via the
LDR utility, the jump table at the beginning of the scratch area being modified to
point to the drivers that have been loaded.

This scheme for dynamically changing I /O device assignments has several
advantages over the CP/M scheme. First, it requires less memory, not only because it
eliminates the code and tables required by CP/M for sampling the I /O Byte and
dispatching the I /O call to the appropriate driver , but also because only those I /O
drivers currently in use need to be resident in memory—under CP/M, all dr ivers must
be memory-resident, whether or not they are in use. Second, the assignment
capabilities are more flexible. Under the CP/M scheme, the total number of devices is
limited to sixteen, and of these no more than four can be dynamically assigned to any
one logical device; under the ZCPR3 scheme you can have as many devices as you want
in any mix, merely by loading the appropriate I /O driver packages from disk. Third,
the ZCPR3 command processing faci lit ies make it possible for applicat ion programs to
call for a change of I /O device assignments, which is not easy under the CP/M scheme.
Fourth, assignment of devices with in an I /O package can still be made in a manner
similar to the CP/M I/O byte, but ZCPR3 provides a mechanism to refer to devices by
descriptive names (see the DEVICE and DEV commands).

20 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Toolset
We have now examined the more impor tant ideas tha t went into the design of

ZCPR3, and have incidentally seen some examples of how they can make life easier
for the user. But there are many components in ZCPR3—so many that it is easy to
become confused by the complexity of their interact ion. What thread can we f ind
l inking these components that will help us to understand and use ZCPR3 effect ively?

Perhaps the most f ru i t fu l approach is to view the ZCPR3 System as a toolset from
which the user can create his working environment, and change this environment to
suit his changing needs. There are several classes of tools within the ZCPR3 System:

1. Utilities — tools tha t perform basic functions such as erasing files and displaying
directories.

2. Documentation — tools tha t provide online help to the user.

3. Programmer Aids — tools that assist the user in debugging his programs.
4. Shells - tools that act as front-ends to the ZCPR3 command processor and provide

a d i f fe ren t type of interface between the user and the ZCPR3 System.

5. Command File Processors — tools tha t support the processing of files containing
commands.

The following chapters describe the programs of the ZCPR3 Toolset. Chapter 3
contains brief descript ions of all the tools, in alphabetic order by program name.
Chapters 4 through 7 describe some of the more complex tools in greater detail.

Chap. 3 Basic ZC PR 3 C oncepts 21

3 TOOLSET OF ZCPR3

This chapter describes in detail how to use the tools provided as part of the
ZCPR3 system. The tools are described in alphabetic order of their names, for easy
reference. Some of the more complex tools are very briefly described, with references
to the later chapters in which they are more ful ly covered.

ALIAS (Version 1.1)
Syntax:

ALIAS <— Define New Command
or

ALIAS dir :ufn <-- Redef ine Old Command
Function:

The ALIAS faci l i ty is the script expansion uti l ity of ZCPR3. An Alias is a COM
file, created by the ALIAS program, which contains one or more commands
(separated by semicolons) to be placed in the command line buffer . When the Alias
is invoked, parameters from the command line are implanted into the script
contained within the Alias, and the result ing new command line is placed into the
command line bu f fe r and executed.

Options:
None.

Comments:
ZCPR3 MUST be implemented with an External Command Line Buffer in order
for ALIAS to work.
The script of the internal command line supports parameter passing in a manner
similar to ZEX and SUB. The variables $n (where 0 <= n <= 9) may be placed into
the script, and the corresponding parameters will be subst i tuted for the indicated
variables. The variable $0 is the name of the Alias itself. The variable $* is the tail
of the alias command line.
The current disk and user may be referenced by using the variables $D and $U. $D
expands into the letter of the disk which was logged in at the time the Alias was
expanded (the home disk), and $U expands into a number (in ASCII chars)
representing the user area which was logged in at the time the Alias was expanded
(the home user).
The ZCPR3 System file names are available to the Alias as the variables $Fn and
$Nn, where 1 <= n <= 4. $F1 refers to FILENAME.TYP of System File 1, $N1 refers
to FILENAME of System File 1, etc. Note tha t the SETFILE command is used to
define the contents of the System file names.

22 U sing ZCPK.3 and C om m and D efin itions Sec. 1

’$$’ expands into a single
Selected Error Messages:

"OvfT means that the expanded command line, combined with the remainder of
the contents of the command line buf fer , is too long to f i t in the command line
buffer .

Examples of Use:

ALIAS — define an Alias
ALIAS alias — display script of "alias.COM" and edit

Summary of Alias Variables:
The following table summarizes the variables which may be referenced with in the
body of an Alias.

$0 Name of Alias
$n Parameter from Command Line (1 <= n <= 9)
$* Tail of Command Line (everything af te r the verb)
$D Home Disk
$U Home User
$Fn FILENAME.TYP of System File n (1 <= n <= 4)
$Nn FILENAME of System File n
$$ The character $

Examples of Aliases
Case 1: The user is constantly issuing the following commands in the order
indicated:

ASM myfile.BBZ
LOAD myfile

He can generalize it with the following Alias script:

ASM $1.BBZ;LOAD $1
If this Alias is named MYASM.COM, then typing "MYASM test" will be equivalent
to "ASM test.BBZ;LOAD test".
Case 2: The user has two printers on his system. He is using redirectable I /O as
implemented under ZCPR3, and he has two versions of Word Star (t rademark,
Micropro)—one for each printer . He can create an Alias containing the following
script:

Script
IF NEC=$2

DEV L NEC
WSN $1

Meaning
Check to see if 2nd param is NEC
If so, assign LST to NEC

and run NEC version of WS
If not ...ELSE

Chap. 3 T O O L SE T O F Z C PR 3 23

DEV L TTY
WST $1

assign LST to TTY
and run TTY version of WS

FI
If the Alias was named WSTAR, then "WSTAR myfile.txt" would be equivalent to
"DEV L TTY;WST myfile.txt" and "WSTAR myfile. txt NEC" would be equivalent to
"DEV L NEC;WSN myfile.txt".

CD (version 3.0)
Syntax:

CD dir:
or

CD du:
Function:

CD (Change Directory) is used to move from one directory to another by using the
names or literal DU forms associated with the directories. CD first logs into the
referenced directory, and, i f there is a file named ST.COM in it, CD will log the
user into the referenced directory and invoke ST.COM. If there is no f ile named
ST.COM in the directory, CD will simply log the user in.

Under ZCPR3, there are two basic ways to log into a directory. One way is by
using the DU: or DIR: prefix (e.g., B1:ASM>TEXT: or B1:ASM>C7:). The other way
is by using CD (e.g., B1:ASM>CD TEXT: or B1:ASM>CD Cl:).
The tr adeoff is in user efficiency. If a directory is always used for a part icular
function, such as cataloging disks, CD may be preferred because it will not only log
the user in but will also run ST.COM, which can set up his environment by running
MENU or some other program or group of programs.

ST.COM is an Alias. The only purpose of ST is to load the mult iple command line
buffer with a command line when it is executed without any options. This
command line may contain a reasonable number of commands which perform any
desired set of functions.
In the ZCPR3 environment, good candidates for execution by runn ing ST via CD
include the following commands:

LDR file.NDR <— Set up a new directory environ
PATH path-exp <— Set up a new Command Search Path
MENU <— Invoke the MENU Preprocessor

Options:
None.

Comments:

24 U sing Z C PR 3 and C om m and D efin itions Sec. 1

ECHO m e s s a g e < — P r i n t a M e s s a g e t o t h e U s e r

Using CD to log into a new directory can drastical ly change the user’s
environment. The names of the directories he can access can change (LDR changes
the Memory-Based names), the command search path he uses can change, and he
can even f ind himself in a MENU environment or other front-end instead of a
ZCPR3 command environment.

Selected Error Messages:
"Command Line Overflow" means that there was not enough room in the command
line to insert the command to invoke ST.COM.

Examples of Use:

CD TEXT: — l o g i n t o d i r e c t o r y TEXT

CLEAN D IR (version 1.0)
Syntax:

CLEANDIR dir: o
or

CLEANDIR o
Function:

CLEANDIR "cleans" a physical disk directory. It loads the directory of the target
disk into memory, sorts it a lphabetically within each user area (ascending order by
default), and writes it out to disk f il ling unused directory entries with E5.
A DIR: prefix is allowed, but only the disk reference is meaningful , so if
"CLEANDIR ROOT:" is issued where ROOT: is A15:, then disk A is cleaned.

Options:
D sort user areas and files in descending order

Comments:
CLEAN D IR’s sort on the disk directory has several advantages:

1. Util ities such as XDIR, which sort the disk directory af te r loading it, run faster
since the directory is already sorted.

2. The possibility of recovering files by the UNERASE command is increased if
CLEANDIR has been run on the directory recently before the files were erased.
Note tha t any erased files absolutely cannot be recovered by UNERASE if
CLEANDIR was run between the time they were erased and UNERASE was
executed.

3. Use of DU3 to look at the directory is faci l i tated if the directory is already sorted
by CLEANDIR.

C hap. 3 T O O L S E T O F Z C PR 3 25

Selected Error Messages:
Self-explanatory.

Examples of Use:

CLEANDIR
CLEANDIR D
CLEANDIR A: D
CLEANDIR TEXT:

clean current disk in ascending order
clean current disk in descending order
clean disk A in descending order
clean the disk on which the directory
named TEXT is defined, in ascending order

CM D (version 1.0)
Syntax:

CMD cmdl;cmd2;...
or

CMD or CMD;cmd2;...
Function:

If CMD has an argument, it builds a new command line which begins with this
argument and proceeds with the rest of the command line. For example, the f irst
form "CMD cmdl;cmd2;..." is t ranslated into "cmdl;cmd2;...". This allows sources
such as MENU, VMENU, and VFILER to enter the "cmdl" variable from the user
selection manually.

If CMD has no argument, the user is prompted for input , and this input is inserted
into the command stream at the point of the CMD command. This is useful, for
instance, when SHSET is used to define a shell sequence, and this sequence is to be
exited at some time. For example, i f the user typed in "myemd" in response to the
prompt, the second form "CMD;cmd2;„." is t ranslated into "mycmd;cmd2;...".
CMD sets the error message whenever it runs. ERRO R is turned on if no line was
input to CMD.

Options:
None.

Comments:
CMD was buil t for use specif ical ly with the SHSET command, al though it may
f ind other applications. The problem that CMD addresses is the case where the
main program in the shell sequence knows nothing about shells, and it is desired to
leave the sequence sometime. CMD provides this out. For instance, if MU3 is to be
used as the main shell, then "SHSET MU3;CMD" will run MU3, allow the user to do
what he wants, and then reenter MU3. If the user entered the command "SHCTRL
POP" the shell stack would be popped and the "MU3;CMD" loop would be broken.

26 Using ZC PR 3 and C om m and D efin itions Sec. 1

Addit ionally, CMD sets the ERRO R message of ZCPR3, so tha t programs on down
the line can determine whether input was made when CMD was run. If the user
simply strikes a R E T U R N in response to the CMD prompt, an error is indicated.
Tests can later be made, like IF ERROR, to check this and make the command flow
change depending on the outcome.

Selected Error Messages:
Self-explanatory.

CM DRUN
Syntax:

CMDRUN text (this command is usually executed by ZCPR3 itself, not by the user)
Function:

CMDRUN is a sample Extended Command Processor. It is invoked automatical ly
by ZCPR3 when the user command is not found via the command search path and
no error handler is engaged.
The text which follows the verb is the text of the original command line.

Options:
None.

Comments:
CMDRUN is only a simple sample. It shows that the original command line is now
available in the command tail buf fe r (at 80H). The formal CMDRUN which the
user programs for his ZCPR3 System can extract the original command line from
this bu f fe r and manipulate it as desired.

Selected Error Messages:
None.

Examples of Use:
None.

CO M M EN T (version 2.0)
Syntax:

COMMENT
Function:

COMMENT allows the user to type as many lines as he wishes without them being
processed by ZCPR3. It has no arguments.
If the user strikes a AP, all subsequent lines he types will be printed on the printer.

Chap. 3 T O O L SE T OF ZC PR 3 27

Options:
None.

Comments:
COMMENT has two main applicat ions in the ZCPR3 environment:

1. When the console displays are being recorded, COMMENT allows the user to type
notes to a fu tu re reader without having to begin lines with a semicolon (;); all of
these lines are clearly shown to be comments since they begin with the prompt
"Comment»".

2. When console I /O is redirected to two d if fe ren t users, such as CRT and MODEM
I/O in parallel, then COMMENT may be used to provide a simple mechanism for
them to communicate; both users can type to each other without having any effect
on the system (such as command processing).

COMMENT is aborted by str iking a AC as the f irs t character of a line. Backspace and
Delete both echo as Backspace, space, backspace, and AX and AU both erase the current
line. AP toggles print ing.

If COMMENT is to be used to chat between two users, it is recommended that an
over/out protocol be employed (as recommended for the UNIX* WRITE program).
The f irst user types, and, when finished, terminates with the letter "o" for over. The
second user types and signals completion the same way. Completion of the
conversation may be signalled by "o+o" for over and out.
* [UNIX is a t rademark of Bell Labs]
Selected Error Messages:

COMMENT generates no error messages.
Examples of Use:

Comment» Hi, Charlie, how’s it going? o
Comment» Hi, Rick, f ine ... and you? o
Comment» Fine, Charlie
Comment» Here is how I use XDIR — let me do the typing
Comment» from now on; just watch, and I’ll reenter COMMENT
Comment» when done ... here goes o+o

CP (SY SR C P)
Syntax:

CP di r :ufnl=di r :u fn2
Transient Counterpart:

MCOPY

28 U sing ZCPI13 and C om m and D efin itions Sec. 1

Function:
CP copies one file from one directory to another or into the same directory under a
d if fe ren t name.

Options:
None.

Comments:
This is a simple form of MCOPY. One major dist inct ion is tha t CP can duplicate a
file under a d i f fe ren t name in the same directory; MCOPY cannot do this.

Selected Error Messages:
None.

Examples of Use:

CP f 1 . t x t = f 2 . t x t
CP a l 5 : = f 1 . t x t
CP a ! 5 : f 2 . t x t = c 5 : f 1 . t x t

C P S EL (version 1.0)
Syntax:

CPSEL cmdl,cmd2,...
Function:

CPSEL (CRT/Pr in te r SELect) is a ZCPR3 uti li ty tha t permits the user to select
ei ther CRT 0 or CRT 1, and Printer 0, 1, 2, or 3 from the curren t ZCPR3
Environment Descriptor. This dynamically changes the characterist ics of the
printer and CRT which are used by other ZCPR3 utilities, such as PRINT.

Options:
None.

Comments:
The commands may be any of the following:

Cc, c=0 or 1 Select CRT 0 or CRT 1
Pp, p=0-3 Select Printer 0-3
Dd, d=A (All), C (CRT), P (Printer) Display Selection Values

The values af fec ted by these selections include number of lines and columns on the
CRT and number of lines and columns on the printer . The abil ity of the printer to
form feed is also included.

Selected Error Messages:
None.

Chap. 3 T O O L SE T O F Z C PR 3 29

Examples of Use:

CPSEL DA — display all devices
CPSEL Cl,P3, DA — Select CRT 1 and Printer 3;

display all devices when done

CRC (version 2.0)
Syntax:

CRC d i r : a fn l ,d i r :a fn2 , .. . o . . .
Function:

The CRC Check ut i l i ty distr ibuted with ZCPR3 uses the same CRC computation
algori thm employed by Keith Petersen in his CRCK program, and the values come
out the same.
The CRC Check ut i l i ty computes the CRC values of a selected set of files and
prints out the file names, their sizes (in Kb and number of records), and their CRC
values in hexadecimal. A count of the number of lines of code (assuming text files)
and a comment associated with each file can be optionally included. A list of
ambiguous files names may be provided to CRC.

Options:
C Comment Output; add comments to output listing on disk or printer
D Disk Output; send output to the disk file CRC.CRC
I Inspect Files and Approve Each File to be reported on before output is produced
L Count Lines of Text and include in output (assume all files are text files)
P Printer Output; send output to the printer

Comments:
CRC is useful when transfer r ing files from one site to another. The CRC values of
the files can be computed and listed at one site, t ransferred, and compared at the
other site.

The L option adds the uti l ity of t racking code size (in lines of code).
Selected Error Messages:

Self-explanatory.
Examples of Use:

CRC *.MAC L — Compute CRCs of all *.MAC files in the
current directory; include lines-of-code
count in display

CRC *.* DLC — Compute CRCs of all files, include count of
lines of text and comments on each file, and

30 U sing Z C PR 3 and C om m and D efin itions Sec. 1

write output to disk in file named CRC.CRC

DEV (version 1.0)
Syntax:

DEV command,command,...
Function:

DEV is a uti lity which manipulates the ZCPR3 redirectable I /O device drivers. It
allows the user to display the names of the current devices and select them.
Unlike its counterpart DEVICE, DEV accepts all input from the command line and
is not interact ive.

Options:
None.

Comments:
Any DEV command may take the following forms. Only the f irs t letters are
s ignif icant in these commands:

DISPLAY ALL <—
DISPLAY CON <—
DISPLAY LST <—
DISPLAY PUN <—
DISPLAY RDR <—

Display names of
(D A is the same
Display consoles
Display printers
Display punches
Display readers

all devices
as DISPLAY ALL.)

The full physical device name must be given in the following commands. Only the
f irs t character and the ’=’ are significant in the rest of the command.

CON:=name LST:=name PUN:=name RDR:=name
C=name is the same as CON:=name.

Selected Error Messages:
"DEV NOT Init ial ized with I /O Base" means that this ZCPR3 System does not
support Redirectable I/O.
"Redirection Not Supported" means that the loaded drivers in the I /O Package do
not support redirection.

Examples of Use:

DEV C=CRT,L=TTY — assign CRT to CON: and TTY to LST:

Chap. 3 T O O L SE T OF Z C PR 3 31

D EVICE (version 1.0)
Syntax:

DEVICE <— Enter Interactive Command Mode
Function:

DEVICE allows the user to interact ively display the names of the available
physical devices (actually, device drivers) which may be assigned to the logical
devices. The user may also assign a physical device to a logical device by name.

Options:
None.

Comments:
DEVICE runs only in an interact ive mode. It responds to single-character
commands, completing the command names on the screen and prompting the user
for fu r ther input.

The following commands are recognized by DEVICE:

D Display Device Names
C Select Console Device (CON:)
L Select List Device (LST:)
P Select Punch Device (PUN:)
R Select Reader Device (RDR:)
X Exit to ZCPR3 wi thout prompting for confirmation

The Display Device Names command (D) asks the user for the devices to display.
The possible responses are: A - All, C - Consoles, L - Lists, P - Punches, or R -
Readers.
The C, L, P, and R commands assign devices immediately. The user types the name
of the device to be assigned. If he strikes a return in response to the device name
prompt, the command is aborted.

Selected Error Messages:
Self-explanatory.

Examples of Use:

DEVICE — i n v o k e u t i l i t y

DIFF (version 2.0)
Syntax:

DIFF dir:ufn o...
or

DIFF dir :u fnl ,d ir :ufn2 o...

32 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Function:
DIFF compares two files. It can simply state i f the two files are d if fe ren t
(stopping immediately af te r the f irs t difference is located) or it can list all of the
differences between two files on a byte-for-byte basis. The form "DIFF dir:ufn
o..." compares the f ile in the indicated directory with the file by the same name in
the curren t directory. The form "DIFF d ir :u fnl ,d ir :ufn2 o..." compares the two
files indicated.

Options:

C Compare Files Only and Stop at First Difference
M Multiple Runs; when a comparison is complete, prompt the user

for new disks, allow him to change disks, and then run the
comparison again unti l the user says to stop

Comments:
If used to prin t out differences. D if f presents the following informat ion to the
user:

o Relat ive Offset from the beginning of the file
o Byte values in the two files:

- in Decimal
- in Hexadecimal
- in ASCII

Selected Error Messages:
"AFN Not Allowed" means that the user specif ied an ambiguous f ile name (one
containing wild cards). Both file names must be unambiguous.

Examples of Use:

DIFF text: myfile.txt -- prints differences between
MYFILE.TXT in TEXT: and MYFILE.TXT
in current directory

DIFF myfile.txt — compares MYFILE.TXT against itself
DIFF backup:myfile.txt me

— compares MYFILE.TXT in BACKUP: with MYFILE.TXT
in the current directory; stops as soon as
a difference is found; when done, prompts
the user to change disks (BACKUP could be a
floppy, and this command is checking to see
that all copies of MYFILE.TXT on several
disks are the same)

Chap. 3 T O O L SE T O F Z C PR 3 33

DIR (version 1.0)
Syntax:

DIR dir .afn o...

Function:
DIR displays a formatted, alphabetized listing of the files in a disk directory.

Options:
A Display both non-system and system files
S Display only system files
T Display files sorted by file type and name (sort by name and type is default)

Comments:
The syntax of DIR is not the same as that of XDIR and XD. DIR is designed to be
small (only 2K) and fast, while providing more ut i li ty than the ZCPR3-resident or
RCP-resident counterparts .
If the user wishes to use an option, the AFN must be fil led with *.* — otherwise, the
option will be interpreted as a file specification.

A slash used as a del imiter (DIR /A, for instance) automatical ly causes the built-in
documentat ion to be displayed.

Selected Error Messages:
"Ovfl" means tha t there was not enough buf fe r space in the TPA to contain the disk
directory.

Examples of Use:

DIR — displays all non-system files in the
current directory in the following fashion:

1. Horizontal display
2. Sorted by file name and type

DIR *.* A — like above, but both non-system and
system files are selected

DIR (CP-Resident)
Syntax:

DIR dirrafn o...
Transient Counterpart:

DIR, XD, XDIR

34 Using ZCPit.3 and C om m and D efin itions Sec. 1

Function:
Display a disk directory to the user.

Options:
A Select non-system and system files
S Select system files only

Comments:
The DIR command is used to display the names of the files in the current directory
without any bells or whistles (such as sorted output and file size information). It
has three basic forms:

DIR DU:afn — Display $DIR File Names
DIR DU:afn S — Display $SYS File Names
DIR DU:afn A — Display All File Names

Selected Error Messages:
None.

Examples of Use:
(Assume the user is on disk B)

DIR
DIR *.* A
DIR 4:
DIR A4 : .HLP A
DIR *.* S

displays non-system files in
current directory
displays both non-system and
system files in current directory
shows all non-system files on B4
shows all files of type HLP on A4
shows all system files on B1

DIR (RCP-Resident, provided in S Y S .R C P)
Syntax:

DIR d in a fn o...

Transient Counterpart:
DIR, XD, XDIR

F unction:
Display a sorted disk directory to the user. The CP-Resident DIR does not sort the
directory.

Options:
A Select both non-system and system files

Chap. 3 T O O L SE T OF Z C PR 3 35

S Select only system files

Comments:
This command is bet ter than the DIR in ZCPR3 in that it sorts the file listing.
Horizontal display format is used.

Selected Error Messages:
None.

Examples of Use:

DIR — displays all non-system files in the current
directory in a sorted fashion (by file name and type)

DIR *.* A — displays both non-system and system files in
current directory

DIR ROOT:*.* A — displays both non-system and system files
in ROOT directory

DPROG (version 1.0)
Syntax:

DPROG <—program from STD.DPG
DPROG fi lename <— program from fi lename.DPG
DPROG filename.typ <— program from filename.typ

Function:
DPROG can be used to send any set of byte values in any desired sequence to the
physical device assigned to the console, list, or punch logical device (e.g., a control
string to change the font used by a dot matrix printer). DPROG reads the
indicated or implied file af te r a path search, and transmits the byte sequence
contained in the file to the selected device.

Options:
None.

Comments:
The file used to program the device is a conventional ASCII text file which
contains four basic types of lines:

1. comment l ines -l ines in which the firs t non-blank character is a semicolon (;).

2. word def ini t ion l ines- l ines that begin with a dash (-) in column one followed
immediately by a word.

36 U sing ZCPii.3 and C om m and D efin itions Sec. 1

3. DPROG command lines—lines beginning with a special DPROG command
character (> or =).

4. output lines—any other line which does not conform to one of the three categories
above; these lines generate the output sent to the device.

Selected Error Messages:
Self-explanatory.

Examples of Use:

DPROG — program from STD.DPG
DPROG ASM — program from ASM.DPG

DPROG Programming:

DPROG is a 3K interprete r for a device programming language. This language allows
the defin i t ion of words (symbols up to 16 characters long) that contain any
combination of output format control instructions, text strings, and references to
other words. Once a word has been defined, it can be named in an output line, and its
def ini t ion (including embedded format controls) will be translated and sent to the
console, printer, or punch device. Word references can be nested up to 128 levels deep.
For example:

Define Basic Words
-esc (%c) " \ E " ; the escape character
-ctrly ii A y i i ; the character control-Y
-test (Char: %c %x %d\n) ; character test format
-normal form (o\

° o ; normal output format

; Use Words
7
"This is a test\n" test "ABC" normal_form "\nEnd of Test"

Execution of the output line will cause the device to d isplay/pr in t the following:

This is a test
Char: A 41 65
Char: B 42 66
Char: C 43 67
End of Test

Chap. 3 T O O L SE T O F Z C PR 3 37

The following 2-character escape sequences are output l i teral ly when used in format
definitions, but are t ranslated according to the current format defini t ion when they
appear in quoted strings.

Ac Define control character
\b Backspace char
\d Delete char (DEL)
\e Escape char (ESC)
\1 New Line char (CRLF pair)
\n Line Feed char (LF)
\ r Carriage Return char (CR)
\ t Tab char (TAB)
\ # Numeric value (forms are \ d for decimal, \d H for hex, \dq for octal,

\dB for b ina ry : \ l , \245, \33h, \0feH, \ 1 1 lb, \77q, etc)

Additionally, the format expression is of the form (<format text>) where <format
text> can contain any character sequence as well as recognize the following output
directives:

%c Output chars as ASCII characters
%d Output chars as f loat ing decimal ASCII chars
%x Output chars as 2 hex ASCII chars
%2 Output chars as 2 decimal ASCII chars
%3 Output chars as 3 decimal ASCII chars

Any text can surround these output directives, and each directive can be used as many
times as desired in a format expression. Once a format expression is given, it is used
until a new expression is defined. For example:

(%x %d) "\12\10hA" (%c) "\12\10hA"
will output:

OC 12 10 16 41 65 ALAPA
(where AL and AP are the ASCII control-L and control-P).
The user can direct output to the console, printer, or punch at any time (for
programming the physical devices at tached to these logical devices); there are
debugging commands (pause to examine output , dump word def in i t ion table, dump
format expression); and you can set up as many *.DPG files as you want for
programming a variety of functions. DPROG is a t rue ZCPR3 uti l i ty and searches the
current path for the *.DPG files. Thus, if *.DPG files arc placed in the ROOT
directory, they will be found from any directory on the system.

A word def ini t ion under DPROG takes the following form:

-word_symbol text_of_definition
where is the f irs t character in the line.

38 U sing ZCPE 3 and C om m and D efin itions Sec. 1

The following DPROG commands are available for debugging and other purposes:

Output Direction:

>C Direct Output to Console
>L Direct Output to List (Printer)
>P Direct Output to Punch

Data Dump:

= Dump both Word Table (Symbols) and Format
=F Dump current Format Specificat ion
=S Dump current Word Table (Symbol Table)

Output Pause:

< Pause and wait for user to strike key (AC will abort)

DPROG can be used within an alias, ZEX command file, or any other ZCPR3
environment. For instance, the following WordStar alias is reasonable:

IF NEC=$2
DEV L NEC <—
WSN $1 <—

ELSE
DEV L TTY <—
DPROG CORRESP <—
WS $1 <—

FI
Listing 3-1 provides a clear example of how a .DPG file can be used by DPROG to
program a Tclcvideo 950 CRT.

Listing 3-1. Device Programming File ASM.DPG

assign printer
run NEC version of WS
assign printer
program printer for
correspondence

run proper version of WS

Programming Definitions for TVI 950 CRT Terminal

Define Support Words
" \ l b h "
"<ESC>"

-esc
; -esc

(%c)
(%c)

; The ESCAPE Character
; The ESCAPE Character

Chap. 3 T O O L S E T OF Z C PR 3 39

-cr "\r" ; <CR>
-ctrly II A Y » ; AY
-ctrlp II A p l l ; AP
Define Functions

Function Key:
FKEY Fn|FnS
FKEY
Fn or FnS
FKEY_FDX or
FKEY_LOC or
FKEY_HDX
"string"
CTRLY

FKEY_FDX|FKEY_LOC|FKEY_HDX "string"
Prefix
Function Key Number or Number Shifted

(FI or FIS)
Full Duplex - Send to Computer Only
Local - Send to Terminal Only
Half Duplex - Send to Computer and Term
Contents of Function Key
Terminator

-fkey
-fl
-fls
- f2
-f 2s
-f 3
-f3s
- f4
-f4s
-f5
-f5s
-f 6
-f6s
-fl

-fls

-f8
-f8s
-f9
-f9s
-flO
-f 10s
-fll

esc "|"
i i j _ i i

ii ii

" 2 M
i i = ii

" 3 "
ii > ii

" 4 ii
ii 2 ii

" 5 "
1'
" 6 "
"A"
ii 7 ii

ii B"
" 8 "
" C "
ii g ii
"D"
ii . ii

"E"
ii . ii/

CTRLY

40 U sing ZC PR 3 and C om m and D efin itions Sec. 1

-fils " F ' i

-fkey fdx ii 2_ii

-fkey_loc it 2 "

-fkey hdx ii 3 "

; Function Key String
; Use: define MY_KEY, MY_XMIT, and MY_TEXT and then issue
; the word FUNCTION KEY
-my_key
-my_xmit
-my_text
-function_key

fl ;select function key 1
fkey_fdx ;select full duplex
"" ;no text
fkey my_key my_xmit my_text ctrly

Cursor:
C_OFF
C_BB
C_SB
C_BU
C SU

C_OFF|C_BB|C_SB|C_BU|C_SU
No Cursor
Blinking Block
Steady Block
Blinking Underline
Steady Underline

-c off esc " . 0"
-c bb esc " . 1"
-c sb esc " . 2 "
-c bu esc " . 3"
-c su esc " . 4"
f

; User Line: USER "string" CR
USER Prefix

-user esc "f"
; Display User or
; DISPJ3TAT
; DISP USER

Status Line: DISP_USER|DISP_STAT
Display Status Line
Display User Line

-disp_user
-disp_stat

esc "g"
esc "h"

; Keyclick: CLICK_OFF|CLICK ON

Chap. 3 TO O LSET OF ZC PR 3 41

; CLICK_OFF
; CLICK_ON
•/
-click_off
-click_on
/
; Video:
; VIDEO_NORMAL
; VIDEO_REVERSE
•f
-video_normal
-video_reverse
/
; Screen:
; SCREEN_OFF
; SCREEN_ON
•
/

-screen_off
-screen_on
•t
; Clear Screen: CLS
; CLS

Turn Off Keyclick
Turn On Keyclick
esc "<"
esc ">"

VIDEO_NORMAL|VIDEO_REVERSE

SCREEN OFF I SCREEN ON

White on Black
Black on White
esc "d"
esc "b"

Turn Screen Off
Turn Screen On
esc "o"
esc "n"

Clear the Screen
-els ,,AZ"
t
; End of TVI 950 Definitions
; The following commands actually program the user's terminal
t
screen_of f
click_off video_normal disp_user c_bu
,*111111111122222222223 3 3 3333 3 3 3444444444455555555556
;123456789012345678901234567890123456789012345678901234567890
user

"1-Dir 2-Edit 3-VFiler 4-MAC 5-M80 6-LASM "
"9-CLS 10-Scr 11-SLn" CR

-my_key f 1
-my_text "xd\r"

42 U sing Z C P tl3 and C om m and D efin itions Sec. 1

function_key
-my key fls
-my text "xd »
function_key
;fkey fl fkey_fdx "xd\r" ctrly
;fkey fls fkey_fdx "xd " ctrly
fkey f2 fkey_fdx "wm " ctrly
fkey f3 fkey fdx "vfiler\r" ctrly
fkey f3s fkey_fdx "vfiler " ctrly
fkey f4 fkey_fdx "zex mac " ctrly
fkey f4s fkey_fdx "sub mac " ctrly
fkey f5 fkey_fdx "zex m80 " ctrly
fkey f5s fkey fdx "sub m80 " ctrly
fkey f6 fkey fdx "zex lasm " ctrly
fkey f6s fkey_fdx "sub lasm " ctrly
fkey f9 fkey_loc !IA2>I ctrly
fkey flO fkey_loc esc "8" ctrly
fkey flOs fkey loc esc "9" ctrly
fkey fll fkey loc disp_stat ctrly
fkey fils fkey_loc disp_user ctrly

;smooth
;hard

els "TVI 950 Programmed: Assembler Configuration"
screen on

DU/DIR Forms
Use the DU form, standing alone, to log into a d if fe ren t directory. This command has
three basic formats:

Change Disk
Change User
Change both Disk and User

D:
U:
DU:

Chap. 3 T O O LSET O F ZC PR 3 43

The DIR form standing alone may also be used to log into a d i f fe ren t directory. The
format is:

TEXT: (where "TEXT" is the name of the desired directory).

Named directories have passwords associated with them. Any at tempt to access a
named directory tha t has a non-blank password will cause the user to be prompted for
the password. If he supplies an invalid password, access is denied and he remains in
his current directory.
The DU: form may be disabled under ZCPR3, leaving only the DIR: form. This option
allows directory access to be strictly controlled, since only named disk /user areas can
be referenced and password protection is provided.

DU3 (version 1.0)
Syntax:

DU3 <— enter DU3 at command level
or

DU3 command line <— run ini t ial DU3 command line
Function:

DU3 allows the user to manipulate the information on disk as easily as he can
manipulate memory with DDT and MU3. DU3 completely opens up the disk to the
user, so care should be taken when using this command.

Options:
None (command line)

Comments:
Chapter 8 describes how to use DU3.

Selected Error Messages:
Explained in Chapter 8.

Examples of Use:
See Chapter 8.

Invoking DU3:
DU3 is invoked by a command line of the form:

DU3 <text>
where <text> is any valid DU3 command sequence. If the f irs t two characters of
<text> are ’/ ? ’, the buil t- in documentat ion is displayed, af te r which the user is
returned to the operat ing system in accordance with the conventions employed by
the Toolset.
Examples:

44 U sing ZCI- R3 and C om m and D efin itions Sec.]

DU3 /? — Display Built-in Documentation
DU3 lb,g0,e — Execute commands to Log in Drive B,

goto Group 0, and enter editor at
the first Block of Group 0

ECHO (version 1.0)
Syntax:

ECHO text <— send <text> to console
or

ECHO $tcxt <— send <text> to printer
Function:

ECHO echoes the text which follows it to the CON: or LST: devices. If the f irst
non-blank character of this text is a then ECHO sends its output to the LST:
device.

Options:
None.

Comments:
The purpose of ECHO is two-fold:

1. To provide a convenient way to send messages to the console during the execution
of a command file or command line; for example:

ECHO Assembling;ASM myfile.BBZ;ECHO Loading;LOAD myfile as a single
multiple command line will print the informative messages "ASSEMBLING" and
"LINKING" dur ing the respective commands

2. To provide a convenient way to send escape sequences to the CRT or printer;
ECHO uses direct BIOS calls without any character translat ion, so sequences for
programming intell igent devices can be issued by running echo and typing in
those sequences; for example:

ECHO AZ

will clear the CRT screen if AZ is the Clear Screen character for the user’s
terminal , and

ECHO $ AL

will form feed the printer (assuming that the printer responds to the form feed
character).

NOTE:
Since the command input line editor capitalizes the command lines, all alphabetic
characters are automatical ly capital ized when echoed.

Chap. 3 T O O L S E T OF Z C PR 3 45

Selected Error Messages:
ECHO generates no error messages

Examples of Use:

ECHO hello, world — sends text "HELLO, WORLD" to console

ECHO (CP-Resident or RCP-Resident)
Transient Counterpart :

ECHO
Syntax:

ECHO text <— send text to console
or

ECHO Stext <— send text to printer
Function:

CP- or RCP-resident ECHO commands behave in all respects like the transient
counterpart previously described.

E L S E (from S Y S F C P version 1.0)
Syntax:

ELSE anytext
Function:

If the curren t Flow State is TRUE, ELSE toggles it to FALSE.
If the current Flow State is FALSE and the previous IF Level is in a TRU E State,
ELSE toggles the Flow State to TRUE. If the previous IF Level is in a FALSE
State, ELSE does nothing.

Options:
None (any text may follow the verb ELSE).

Comments:
None.

Selected Error Messages:
No error messages are generated.

Examples of Use:

IF NEC=$1
< statements >

46 Using Z C PR 3 and C om m and D efin itions Sec. 1

ELSE
< statements >

FI

ERA (CP-Resident)
Transient Counterpart:

ERASE
Syntax:

ERA afn <— erase files
or

ERA afn V <— erase files with verify
Function:

The ERA command erases the indicated file(s). If the Ver ify option is used, a list
of all matching files is displayed and the user is prompted for confirmation. If the
user confirms that erasure is desired, all files on the list are erased.

Options:

V verify erasure

Comments:
Compare this ERA form to the RCP-Resident ERA form.

Selected Error Messages:
None - self-explanatory.

Examples of Use:

ERA b7:*.bak
ERA text: * .tmp V

ERA (RCP-Resident)
Syntax:

ERA afn <— erase files
or

ERA afn I <— inspect files before erasing
Transient Counterpart:

ERASE

Chap. 3 T O O L SE T OF Z C PR 3 47

Function:
The ERA command erases the indicated file(s). It is not able to erase Read/Only
files, but it can erase System files. The name of each file is printed as it is erased.
If the I (Inspect) option is used, ERA prints each matching file name and prompts
the user for approval to erase; i f approval is given, the file is erased, otherwise
ERA leaves the file intact and proceeds to the next matching file name.

Options:

I Inspect each file and request approval to erase.

Comments:
None.

Selected Error Messages:
None.

Examples of Use:

ERA * . TXT — erase all files matching *. TXT
ERA * . TXT I — display in turn all filenames matching

*. TXT; request approval to erase; if
approved, erase the file, otherwise
display next matching name.

ER A SE (version 5. 0)

Syntax:
ERASE dir: a f n 1, dir: afn2,... o...

Function:
ERASE erases files in the file list. If no option is selected, ERASE does not "sec"
system files, and requests permission to erase read-only files encountered, but
read /wr i te non-system files are uncondit ionally erased.

Options:

S Erase system files encountered in the file list.
R Erase Read /Only files in the list without asking the user for permission.
I Inspect; ERASE displays the name of each file in the list and asks

permission before erasing the file. If the user gives permission but ERASE
discovers tha t the file is R /O with the R option off , it will request a
second conf irmation before performing the erasure.

48 U sing ZC PR 3 and C om m and D efin itions Sec. 1

Comments:
None.

Selected Error Messages:
Self-explanatory.

Examples of Use:

ERASE text: *. txt, asm: *. tmp — erase all. TXT files in the
TEXT: directory and all. TMP
files in the ASM: directory.

ERASE *.* I — display all files in the current directory
and request approval to erase each one.

ERROR1 (version 1. 0)
ERROR2 (version 1. 0)

Syntax:
ERROR1

or
ERROR2

Function:
ERROR1 and ERROR2 are error handlers. If the user runs ei ther program, that
program installs itself as the system error handler . If ZCPR3 cannot f ind the COM
file referenced by a command verb, it invokes the installed Error Handler and
passes the command line to it.

Options:
None.

Comments:
Both ERROR1 and ERROR2 display the error line to the user and provide him
with four options as to how to process this line:

1 Replace the command in error with a new command
2 Skip the command in error and resume execution with the next command
3 Replace the entire command line
4 Throw away the command line and resume user control

Unlike ERROR1, ERROR2 is screen-oriented, using the Z3TCAP for support in
order to provide a much "flashier" display.

Chap. 3 T O O L SE T O F ZC PR 3 49

Selected Error Messages:
Self-explanatory.

Examples of Use:

ERROR1 — install Error Handler Number 1

ERROR3 (version 1. 0)
ERROR4 (version 1. 0)

Syntax:
ERROR3

or
ERROR4

Function:
ERROR3 and ERROR4 are error handlers. If the user runs either program, that
program installs itself as the system error handler . If ZCPR3 cannot f ind the COM
file referenced by a command verb, it invokes the installed Error Handler and
passes the command line to it.

Options:
None.

Comments:
ERROR3 displays the name of the COM file which was not found and then flushes
the command line, returning control to the user.

ERROR4 prints the name of the COM file which was not found and then advances
to the next command in the command line buffer . If there is no next command,
user control is resumed. If there is a next command, command execution resumes
there.

Selected Error Messages:
None.

Examples of Use:

ERROR3 — install ERROR3

ERRO RX (version 1. 0)
Syntax:

ER R O R X

50 Using Z C PR 3 and C om m and D efin itions Sec. 1

Function:
ERRO RX disengages the current error handler , leaving no error handler enabled.
The defau lt error control faci l ity of ZCPR3 is now in effect ; if an error occurs in
the command line, the command line from that point forward is printed (followed
by a ’? ’).

Options:
None.

Comments:
None.

Selected Error Messages:
No error messages are generated by ERRORX.

Examples of Use:
ERRORX — disengage any Error Handler currently enabled

FI (from S Y S F C P 1. 0)
Syntax:

FI anytext
Function:

FI terminates the current IF Level. If there is no current IF level, FI docs nothing.
Options:

None (any text may follow the verb FI).
Comments:

None.

Selected Error Messages:
None.

Examples of Use:

I F E X IST M YFILE. ASM
< statements >

ELSE
< statements >

F I

FINDF (version 2. 0)

Chap. 3 TO O LSET O F ZC PR 3 51

Syntax:
FINDF a f n l , afn2,... o

Function:
FINDF searches through all of the known disks and user areas for files matching
any of the indicated file specifications.

Options:
S Include System Files

Comments:
If the S option is omitted, FINDF will search only for Non-System files. Use of the
S option causes FINDF to search for both System and Non-System files. The search
begins at disk A and extends unti l FINDF encounters the last possible drive or a
drive that is not loaded. All user areas (0 to 31) are examined.
FINDF displays the names of the files found, grouped by drive and user area.

Selected Error Messages:
Self-explanatory.

Examples of Use:

FINDF xdir. com s — search all drives and user areas
(both system and non-system) for XDIR. COM

FINDF xd. com, help. hip, myfile. txt
search all Non-System files for XD.COM,
HELP.HLP, and MYFILE.TXT

G ET (CP-Resident)
Syntax:

GET adr ufn
Function:

GET loads a file into memory starting at the specif ied page address. It requires
two arguments: the number (assumed to be hexadecimal) of the 256-byte page in
memory at which to start the load; and the name of the file.

Note that "adr" is a page number, not an absolute address. Thus, if adr=l , loading
starts at location 100H; if adr=2d loading starts at location 2D00H, and so on.

Options:
N o n e .

52 Using ZC PK 3 and C om m and D efin itions Sec. 1

Comments:
None.

Selected Error Messages:
"TPA Full" means that the file has hit the top of the TPA in its load.

Examples of Use:

GET 40 myfile.bin — load MYFILE.BIN into memory at 4000H

GO (CP-Resident or RCP-Resident)
Syntax:

GO parameters
Function:

The GO command reexecutcs the last program loaded into the TPA without having
to reload it.
The parameters are parsed in the same way as for any transient command, and the
appropriate buffers are loaded by ZCPR3. After ZCPR3 has f inished with the
parsing and b u f fe r loading, it "calls" the program loaded at 100H.

Options:
None.

Comments:
GO must not be used when a shell is active, since the shell comes into memory at
100H and overlays the last program loaded there. If GO is used, the probabil i ty is
that the shell, not the last program, will be reinvoked.

Selected Error Messages:
None.

Examples of Use:

XD
GO ROOT: — rerun XD with ROOT: as a parameter

GOTO (version 1.0)
Syntax:

GOTO label

Chap. 3 T O O L S E T OF Z C PR 3 53

Function:
GOTO is a ZCPR3 uti lity, designed to be run f rom within a ZEX command file
that permits branching. It accepts only one argument, a label, which is defined
within the ZEX file as a special comment of the form:

;=label
Any text which follows the "label" phrase is considered to be comment and is not
processed.

Options:
None

Comments:
GOTO works correct ly only i f executed within a ZEX command file; otherwise
GOTO will issue an error message.

Without the ZCPR3 Flow Control faci lity, GOTO would be of little value. With IF,
however, GOTO is extremely useful in setting up loops and other flow-control
constructs.

Selected Error Messages:
"ZEX Not Running" means that GOTO was executed from outside a ZEX command
file.

"Label xxx Not Found — Aborting ZEX" means that the referenced label was not
found wi thin the command file, so ZEX execution is terminated.

Examples of Use:

ZEX Command File 1:

REG SI 0;note Register 1 = 0
;=start
XIF;note Exit all pending IFs
REG PI;note (Reg 1) = (Reg 1) + 1
ECHO Hello, World
IF ~1 3/note IF Register 1 <> 3

GOTO START
FI

ZEX Command File 2:

M80 =$l;note Assemble File
; Strike AC if Errors Exist - A?
if -nul $3/note IF there are 2 libs ...

L80 $1/N,$1,$2/S,$3/S,SYSLIB/S,/U/E;note link all
goto done

fi

54 U sing Z C FR 3 and C om m and D efin itions Sec. 1

if ~nul $2;note IF there is a 2nd arg ...
L80 $1/N,$1,$2/S,SYSLIB/S,/U/E;note link lib $2

else;note IF there is no 2nd arg .. .
L80 $1/N,$1,SYSLIB/S,/U/E;note link

;=done
fi

ZEX Command File 3:

if NEC=$2
echo Terminal
goto done

fi
if TTY=$2

echo Terminal
goto done

fi
if DIABL0=$2

echo Terminal
else

echo Terminal
fi

is NEC

is TTY

is Diablo
is Undefined

;=done
xif;note Exit all pending IFs
ws $l;note Edit file

H ELP (version 5.0)
Syntax:

HELP <~ display HELP.HLP
or

HELP fi lename.typ <— display HELP file (if ’typ’ omitted, HLP is used)
Function:

HELP displays HELP files in an interact ive way to the user on his console CRT. It
is also able to prin t selected screens or information sections on the printer.

Options:
N o n e .

Chap. 3 TO O L SE T OF ZC PR 3 55

Comments:
See Chapter 4 for an overview of the HELP subsystem and a detai led descript ion of
the structure of HELP files.

Selected Error Messages:
See Overview of Help command, below.

Examples of Use:

HELP — display HELP.HLP
HELP myfile — display myfile.HLP
HELP myfile.txt — display myfile.txt

Summary of User Commands under HELP

Cmd Meaning
A Go to Previous Level

Go to Root Level
M Go to Menu of Current HELP File
S Go to Start of information section
L Go to Previous Frame

CR (Carriage Re turn or Space) Go to Next Frame
AC (Control-C) Return to ZCPR3
P Print Current Screen Display (Frame) or informat ion section

H ELPCK (version 1.0)
Syntax:

HELPCK dir :ufn o <-- defau lt file type is HLP
Function:

HELPCK checks the syntax of a HELP file. It analyzes the file, providing a
variety of statistics and report ing on structural errors. Reports include a listing of
the options if the file is user-indexed; this listing should be manually checked by
the user to see that all options are included and no additional , hidden options exist.

Options:

P Send report to Printer

Comments:
None.

Selected Error Messages:
Messages are self-explanatory.

56 U sing Z C P ri3 and C om m and D efin itions Sec. 1

Examples of Use:

HELPCK myhelp — report on MYHELP.HLP
HELPCK myhelp P — report on MYHELP.HLP on printer

H ELPPR (version 1.0)
Syntax:

HELPPR afnl,afn2, .. . o...
Function:

HELPPR prints out a HELP file. It starts each information section on a new page
and ignores form feeds (used to separate frames), so the data is presented in a
sequential fashion.

Options:
H@hcad@
I
L
Occ
Snn
T

Comments:
HELPPR is specif ical ly designed to take advantage of the internal s tructure of
HELP files to pr int the data in a logical manner. It is therefore preferred over
PRINT when HELP files are to be printed.

Selected Error Messages:
Error messages are self-explanatory.

Examples of Use:

HELPPR myfilel,myfile2 o5 — print myfilel.HLP and
myfile2.HLP offset by 5 spaces
on each line

HELPPR myfile s5 — print myfile.HLP starting at
the 5th page

Heading Text that appears at the top of each page
Inspect Files (select) before print ing
Number each line
Offset each line by cc spaces
Skip to page nn before beginning pr int
(If TIMELIB installed) turn o f f time display

IF (version 1.1)

Chap. 3 T O O L SE T O F ZC PR 3 57

Syntax:
IF cond args
or

IF -cond args
Function:

IF tests the indicated condit ion to see if it is TRU E and, i f so, sets the Flow State to
TRUE (allowing the following commands to execute). If the condition is FALSE,
the Flow State is set to FALSE (allowing only Flow Commands to execute).

Options:
Option
T
F
EMPTY afn,.

ERROR
EXIST afn,...
INPUT

NULL afn

TCAP
WHEEL
rcg value

a fn l= a fn2

Meaning
T R U E (Flow State is Set to TRUE)
FALSE (Flow State is Set to FALSE)
If all files in the indicated list are EMPTY (size is OK), then
Flow State is Set to TRUE
If the ZCPR3 Error Flag is Set, then Flow State is Set to TRUE
If all files in the indicated list exist, then Flow State is Set to TRUE
User input is enabled, and if the user strikes T, Y, <CR>, or
<SP>, the Flow State is Set to TRUE
If there is no ’a f n ’ (field is blank), then the Flow State is Set to
TRUE
If a Z3TCAP is installed, the Flow State is Set to TRU E
If the Wheel Byte is Set, the Flow State is Set to TRU E
If the indicated register (0-9) has the indicated value (0-255),
the Flow State is Set to TRUE
If the two AFNs are identical in name (11 char FILENAME.TYP

are same), the Flow State is Set to TRUE

Comments:
In all cases, if the indicated condit ion is TRUE, the Flow State is Set to TRUE; if
the indica ted condit ion is FALSE, the Flow State is Set to FALSE.

This command is invoked if the current Flow Command Package has the 1F.COM
facil ity enabled. If this is the case, whenever an IF command is issued, the FCP
will load IF.COM from the ROOT directory into memory and execute it. The
command tail is passed to IF.COM, and IF.COM acts as a conventional COM file
from that point forward. All buf fers are loaded correct ly (FCBs at 5CH and 6CH,
TBUFF at 80H, etc).
A leading tilde (~) character before a condit ion negates the effec t of the condition.
If the condition is FALSE, the Flow State is Set to TRUE, and vice-versa. Example:

"IF ~T" is the same as "IF F"
"IF - N U L L arg" is TRU E if ’arg’ is non-blank
"IF -EX IST afn,..." is TRUE if ’afn,...’ do NOT

exist (AFN and AFN ... must each not exist)
For each condit ion given, only the f irs t two characters are signif icant (eg, NU for
NULL).

58 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Selected Error Messages:
"No IF Condit ion Given" means that the condit ion expressed was not one of the
valid conditions.

Examples of Use:

IF NULL $1
if the indicated parameter (from within a SUBMIT
or ZEX command file) is not provided, set the
Flow State to TRUE

IF -EXIST ZEX.ASM,ZEX.ZEX
if any one of these files does not exist, the
Flow State is set to TRUE

IF EXIST ZEX.ASM,ZEX.ZEX
if any one of these files does not exist, the
Flow State is set to FALSE (ie, all files
must exist for a TRUE Flow State)

IF NEC=$1
if the first passed parameter is the same as the
file name "NEC.", then the Flow State is Set to TRUE

IF 5 5
if Register 5 = 5 , the Flow State is Set to TRUE

IF (FCP-Resident)
Syntax:

Same as for t ransient IF.
Function:

Same as for t ransient IF. The IF command described here is resident within
SYSFCP 1.0 when the COMIF equate is set to FALSE.

Options:
Same as for t ransient IF except that the file lists are not permit ted— only one
ambiguous file name.

Chap. 3 T O O L SE T O F ZC PR 3 59

Comments:
This command is invoked if the current Flow Command Package has the IF.COM
facility disabled. If this is the case, whenever an IF command is issued, the FCP
will resolve it internally. The resolution of the IF command within the FCP itself
is noticeably faster (approximately 0.5 to 1.5 seconds) than resolut ion by loading
and executing IF.COM.
Each of the options of the Resident IF may be independently enabled or disabled.
These options are instal lat ion-dependent, and the SHOW command will display the
available options for any installation.

Selected Error Messages:
None.

Examples of Use:
See transient IF.

IF S T A T (version 1.0)
Syntax:

IFSTAT

Function:
IFSTAT displays the current IF level. IFSTAT will report a Level Number from 1
to 8 (IFs may be nested up to 8 levels deep) or will reply "No Active IF".

Options:
None.

Comments:
The Flow State must be TRU E for IFSTAT to run.

Selected Error Messages:
None.

Examples of Use:

IFSTAT — the current IF level is displayed

JUM P (CP-Resident)
Syntax:

JUMP address <— branch to indicated hex address

60 U sing ZCPii.3 and C om m and D efin itions Sec. 1

Function:
JUMP can branch to any location in memory. It takes only one argument, which is
the target address, specif ied as a 16-bit hexadecimal number (leading zeros may be
omitted).

Options:
None.

Comments:
JUMP is useful for entering a PROM- or ROM-based routine, such as a monitor
program.
JUMP 100 is the same as the GO command except tha t f irs t FOB has ’100’ in it as a
f ile name. The text following a "JUMP 100" instruct ion is parsed into the
appropriate buffers as it normally would be.

Selected Error Messages:
None.

Examples of Use:

JUMP 100 — "call" routine at 100H
JUMP F800 — "call" the routine at 0F800H

LDR (version 1.0)
Syntax:

LDR ufnl,ufn2, . . .
Function:

LDR is a general-purpose System Segment loader for ZCPR3. It loads all of the
ZCPR3 System Segments into their appropriate buffers , checking their format and
content before approving and completing each load. Each System Segment is
specif ied unambiguously.

Options:
None.

Comments:
The fol lowing System Segments are loaded into memory buffers by LDR:

*.ENV files
*.FCP files
*.IOP files
*.NDR files
*.RCP files
*.Z3T files

Environment Descriptors
Flow Command Packages
Inpu t /O u tpu t Packages
Named Directory Files
Resident Command Packages
Z3TCAP Entries

Chap. 3 T O O L SE T O F ZC PR 3 61

The contents of each file to be loaded are read into a memory buf fe r and examined
segment by segment. Segment-unique structural checks, based on the file type, are
performed. If the checks are passed, the segment is copied into the correct memory
buf fer as determined by the data contained in the Environment Descriptor. If the
checks are not passed, an error message is issued and the next file in the list is
processed.
Since the Environment Descriptor (currently residing in its own memory buffer)
provides the address at which to load a buffered system segment, it is important
that the Environment Descriptor be the f irs t segment loaded by LDR. An
al ternative to this procedure would be to make the BIOS ini tial ize the Environment
Descriptor on Cold Boot, but this would require a relat ively large BIOS overhead
(over 128 bytes for the ini t ial Environment Descriptor).

When LDR loads an Environment Descriptor, it places it at the address installed in
LDR during the ZCPR3 System installation. All other system Segments are loaded
at locations specif ied by the Environment Descriptor cur rently residing in
memory.

Selected Error Messages:

"filename.typ is not a Valid Type" means that the file type of the indicated file is
not ENV, FCP, IOP, NDR, RCP, or Z3T.

"filename.typ Contains a Format Flaw" means tha t the structure of the indicated
file was not correct.

Examples of Use:

LDR SYS . ENV, MYIO. I O P , MYCMDS. R C P , M Y IF S . FCP
— load SYS.ENV, and, based on the data in this Environment Descriptor, load the
I /O Package MYIO.IOP, the Resident Command Package MYCMDS.RCP, and the
Flow Command Package MYIFS.FCP

LDR TERM1.Z3T
— replace the curren t Z3TCAP entry with TERM1.Z3T

L IS T (CP-Resident)
L IS T (RCP-Resident)

Syntax:
LIST ufn CP-resident and RCP-resident
LIST afn RCP-resident only

Transient Counterpart:
PRINT

62 Using Z C PR 3 and C om m and D efin itions Sec. 1

Function:
LIST displays a file on the printer. No paging or format t ing of any kind is
performed.

Options:
None.

Comments:
The CP-Resident version of LIST accepts only an unambiguous file name. The
RCP-Resident version accepts an ambiguous file name. The matching files are
printed sequential ly without any page breaks between files.

Selected Error Messages:
None.

Examples of Use:

L IS T MYFILE.TXT — print file on printer
L IS T *.txt — print all .TXT files in the

current directory on the printer.

M CO PY (version 1.4)
Syntax:

MCOPY dir:=dir:afnl,afn2,dir:=dir:afn3, .. . o...
Function:

MCOPY is a file copy program designed for use under ZCPR3. It supports many
features related specif ical ly to the ZCPR3 System and is int imately tied into the
ZCPR3 System.
The basic purpose of MCOPY is to copy files from one directory (disk/user area) to
another under ZCPR3.

MCOPY only copies files; it does not rename them. This is a major dif ference
between MCOPY and PIP. An at tempt at renaming (e.g., MCOPY text.T L tx t= f2.txt)
just copies F2.TXT into the TEXT: directory, but it is still named F2.TXT (FI.TXT
is ignored).

Options:
E Test for Existence of File on Destinat ion and User Approves Copy

before Copy is Done
I User Approves Each File before Copy Begins
M Multiple Copy (Repeat) Facility. This allows the user to backup several

files to several disks by copying all the specif ied files, prompting the
user for a new disk, and then copying the files again, continuing unti l

Chap. 3 T O O LSET O F Z C PR 3 63

the user tells MCOPY to stop
Q Quiet Operat ion (No Activi ty Displays)
V Ver ify Copies

The E option (Existence Test) looks in the destinat ion directory to see if the file it
is about to copy is already there. It then tells the user of its f indings and asks him
if he wants to go ahead with the copy. The user may elect to copy or not copy as he
desires.

The I option (Inspect) displays all f ilenames tha t match the indicated source files,
allowing the user to select which of them are to be copied.

The M (Multiple Copy) option pauses before start ing the copy operation. During
the pause, the user may abort the procedure or insert a disk into the source drive,
the destination drive, or both, and then instruct MCOPY to proceed. After copying
all of the indicated files, MCOPY pauses again, al lowing the user to change disks
again. This sequence continues unti l the user aborts the procedure.
The Q (Quiet) option turns off the MCOPY activity display. During "noisy"
operation, MCOPY is constantly telling the user what it is doing. I feel that this is
better than quiet ly having problems without the user knowing what is going on.
MCOPY pays at tention to the QUIET flag of ZCPR3, and the ini tial mode of
MCOPY is set by this flag.

The V (Verify) option checks the copied file to insure that the copy is good. With
this option engaged, MCOPY computes a CRC value of the source file dur ing read
operations; when copying is complete, MCOPY stores the computed CRC. MCOPY
now reads the destination file and computes its CRC value. The two CRC values
are compared; any diffe rence indicates a copying error.

Comments:
MCOPY can also be used for making multiple backups, pausing between successive
copy passes to allow the user to change disks. Once MCOPY has begun operations,
the user need never warm boot the system af te r changing disks; MCOPY docs that
for him automatical ly.
If a destination directory is not specified, MCOPY looks for a directory named
BACKUP: and copies to this directory if found. If there is no directory named
BACKUP:, MCOPY will copy to BO: (this can be changed by reassembling MCOPY
or by modify ing it with DDT and then SAVEing the modified version).
In copying a file from one directory to another, MCOPY performs the following
steps:

1. It logs into the source directory and scans for the files specif ied by the user.
2. It logs into the destination directory, determines if a copy of the file exists on the

destination and, if so, deletes it.

3. MCOPY copies the file in the source directory into the destinat ion directory.
4. MCOPY sets the at tr ibutes of the file in the destinat ion directory to be the same

as those in the source directory.

64 U sing Z C t R3 and C om m and D efin itions Sec. 1

5. MCOPY optionally verifies both files by means of a CRC Check.

Selected Error Messages:
"NO Files — AC to Abort" means that no files matching the indicated file spec were
found.
"TPA Ovfl" means tha t there was not enough room in the Transient Program Area
to support MCOPY.
"Disk Full" means tha t there is no more room on the destinat ion disk for the files.

Examples of Use:
MCOPY FILE1. * , HELP:FILE2.HLP, TEMP:=TEST. TXT, HI. *
Files matching FILEl.* in the current directory are copied to BACKUP:, the file
FILE2.HLP in directory HELP is copied to BACKUP:, the file TEST.TXT in the
curren t directory is copied to TEMP:, and the files matching HE* in the current
directory are copied to TEMP:.
Once a DIR:= is encountered, the defaul t destination is redefined. Encountering a
d i f fe ren t source, however, does not change the defaul t source directory.

MENU (version 3.2)
Syntax:

MENU <-- run MENU.MNU
or

MENU u fn <— run menu contained in file
Function:

MENU is the ZCPR3 menu front-end processor. It is a ZCPR3 Shell which reads a
*.MNU file and processes commands from it.

Options:
None.

Comments:
MENU is a ZCPR3 Shell. See Chapter 5.

Selected Error Messages:
"No Command Line" means that the ZCPR3 System does not support an external
Command Line Buffer . MENU must have this to run.
"No Shell Stack" means tha t the ZCPR3 System docs not support a Shell Stack.
MENU must have this to run.
"Shell Stack Full" means tha t the Shell Stack is ful l and MENU cannot push itself
onto the stack.

Chap. 3 T O O L SE T O F Z C PR 3 65

"Shell Stack Ent ry Size" means tha t the Shell Stack elements arc too short for
MENU to store its parameters.
"TPA Full" means tha t there is not enough room in the TPA to load the *.MNU file.

Examples of Use:
See Chapter 5.

M KDIR (version 3.0)
Syntax:

MKDIR <— enter ut i lity
or

MKDIR dir :ufn <— enter uti l ity and load NDR file
Function:

MKDIR creates Named Directory Files; these are disk files containing the
mnemonic names and the disk/user areas with which they are associated. MKDIR
is an editor. It provides a scratch area in which the user can set up a named
directory, review it, edi t it, and make any changes he wishes. When satisfied, the
user can write it out to disk as a file or abort and throw it away.

Options:
None.

Comments:
See text under "Using MKDIR" in the section on Named Directories.

Selected Error Messages:
Self-explanatory.

Examples of Use:
See text under "Using MKDIR" in the section on Named Directories.

MU (RCP-Resident)
Syntax:

MU <— invoke MU at 100H
or

MU address <— invoke MU at indicated address
Function:

MU is identical to MU3 in function, with the exception that the FI command
(Hexadecimal Calculator) is not supported. The dif ference between MU and MU3
is tha t MU executes as an RCP and MU3 executes as a transient. As an RCP, MU
allows the user to examine the TPA without concern for side effects, so debugging

66 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

t ransients is s implified by this command. It is the only main command in the
DEBUG.RCP provided in the ZCPR3 release.

Options:
None.

Comments:
MU may be invoked as a Shell by the SHSET command. The C command can be
used from with in MU to execute any desired command line, including the
"SHCTRL POP" command which pops MU from the Shell Stack, terminat ing its
operat ion as a Shell.
Comments pertain ing to MU3 are generally applicable to MU as well.

Selected Error Messages:
None.

Examples of Use:

MU <— run MU
MU 0F400 <— run MU but position at 0F400H

MU3 (version 1.0)
Syntax:

MU3 <-- Invoke MU3 pointing to ZCPR3 Env Desc
or

MU3 address <— Invoke MU3 pointing to address (hex)
Function:

MU3 provides a screen-oriented editor which may be used to examine and modify
memory at the user’s discretion. It loads as a t ransient and runs from the TPA,
start ing at 100H. Since MU3 does not overlay the ZCPR3 CP, it allows the user to
examine the operat ing system directly.

Options:
None.

Comments:
MU3 uses the ZCPR3 TCAP for support. WordStar cursor motion conventions
apply, and the user’s arrow keys may be active if they are specif ied in the TCAP
entry.

All numeric input arguments (such as constants and addresses) are assumed to be
hexadecimal by default . However, decimal numbers may be input by prefixing
them with a ’# ’ character . For instance, as an argument to the A (select address)
command, the user may type 7d0 or #2000 to indicate memory location 7D0 hex
(2000 decimal).

Chap. 3 T O O L SE T O F Z C PR 3 67

All commands are simple and self-explanatory. They include:
N Enter Hex Numbers T Enter Text
A Specify Address +/ Next/Las t Block
H Hex Calculator Arrows Movement

AR
C

Refresh Screen
Enter ZCPR3 Command Line

AC Exit MU3

Selected Error Messages:
None.

Examples of Use:

MU3 F000 — invoke MU3 and point to address OFOOOH
The Commands of MU3

MU3 is quite simple to use and recognizes only a few commands. These commands
are presented in a menu to the MU3 user as the program is running.
The MU3 display screen is fo rmat ted as indicated below:

MU3 Memory Editor

Value

Hexadecimal Memory Dump ASCII Dump

— Movement — -------------- Operation ---------------
AE A Enter Address + Next Block

A H Hex Calculator - Last Block

A 1 + 1 V > o N Enter Hex Numbers AR Replot Screen
V T Enter Text AC Exit MU3
AX C Enter Command Line

As the user moves the cursor about on the screen, the value in the upper r ight
corner changes, indicat ing both the hex value and ASCII character representat ion
of the byte being pointed to. Also, a cursor moves in the Hexadecimal Memory
Dump region, indicating where the user is in the current 128-byte block.
Once the cursor is point ing to a desired byte, N or T commands may be used to
change memory start ing at the byte indicated by the cursor.

Movement Commands
The cursor may be moved around the screen using the WordStar cursor movement
convention. If the arrow keys for the user’s terminal are installed via the ZCPR3
TCAP, then they keys may also be used to move the cursor.

68 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Select address At any time, the user may strike the letter A (case makes no
difference) to select a d i f fe ren t region of memory to view. MU3 will display 128
bytes of memory start ing at the address given by the user.
Move One Block Forward (+) or Backward (-) The commands "+" and move the
display fo rward and backward, respectively, by one block (128 bytes). The
movement is instantaneous, and the cursor is reposit ioned to the f irs t byte in the
new block.

Value Entry Commands
The N command is used to enter a group of hexadecimal numbers into memory
start ing at the address indicated by the cursor. The user is prompted for input , and
he may then enter a series of hexadecimal values, separated by spaces. Entry
terminates when the user strikes the R E T U R N key. Case is not significant . Any
number prefixed with ’# ’ is decimal.
For example, the following is a sample sequence of values which may be entered:

0 If f3 ff 2C C3 0 2 3 4 #192 #255
The T command is used to enter text into memory start ing at the address indicated
by the cursor. The user is prompted for input , and he may then enter a string of
characters. All characters input are signif icant. Entry terminates when the user
strikes the R E T U R N key. Case is significant.

If the user wishes to embed a numeric value within a text string, the escape format
<nn> is provided, where ’nn ’ is a hexadecimal value as shown above. The form
<#nn> is also provided, where ’nn ’ in this case is a decimal value. The form ’« ’
inserts a single ’<’ character into memory.
For example, to enter the sequence ’<this is a test>’ followed by carriage return and
line feed characters into memory start ing at the cursor, the use would type:

<<this is a test><0d><#10>
’Od’ is OD hex and ’#10’ is 10 decimal or 0A hex. The leading ’« ’ t ranslates into one

Other MU3 Commands
The C command allows the user to enter a command line for immediate execution
by the ZCPR3 Command Processor. If MU3 is invoked as a shell via the SHSET
command, this command provides an escape mechanism as well as a way to execute
a command line from within MU3. The SHCTRL POP command will terminate the
current shell on the shell stack.
The H command invokes a hexadecimal calculator. The user is asked to enter two
hexadecimal numbers. The second number is added to and subtracted from the
f irs t number, the results being printed immediately. Again, decimal numbers may
be entered by prefix ing them with ’# ’.
The AR command refreshes the screen for the user. This is handy if the screen was
garbled in some way, such as by turning o ff the CRT.

Chap. 3 T O O L SE T OF Z C PR 3 69

The AC command causes MU3 to exit to ZCPR3.

NOTE
Syntax:

NOTE anytext
Function:

NOTE is used to express comments. A line beginning with a semicolon (;) is a
comment, and a command whose verb is NOTE (there may be many commands on
one line, separated by semicolons) is a comment.

Options:
None.

Comments:
NOTE is available as a CP-Resident command, an RCP-Resident command, and as
a transient. It is recommended tha t it be implemented as a CP-Resident command
due to its very low cost and high ut i li ty in command files and aliases.

Selected Error Messages:
None.

Examples of Use:

NOTE this is a comment

P (RCP-Resident)
Syntax:

P <— display next 256 bytes
or

P addr <— display 256 bytes star t ing at addr
or

P add r l addr2 <— display memory range

Transient Counterpart:
MU3

Function:
The P (PEEK) command allows the user to examine an area of memory. If the user
simply types "P" with no address, the next 256 bytes of memory are displayed. If
the user types "P address", 256 bytes of memory start ing at the indicated address
are displayed. If the user types "P a d d r l addr2", memory in the range addr l
through addr2 is displayed.

70 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Options:
None.

Comments:
PEEK does not modify the memory locations it displays.

Selected Error Messages:
None.

Examples of Use:

P 50c0 — peek starting at 50C0H
P 4000 4fff — peek from 4000H to 4FFFH

PAGE (version 2.0)
Syntax:

PAGE dir:afnl,dir:afn2, .. . o...

Function:
The PAGE command lists one or more files to the console, one screen at a time.
Unlike TYPE, PAGE knows the width and depth of the screen; thus, when wide
listings (such as those produced by assemblers) generate wraparound lines, the
wraparound lines are counted by PAGE and do not overflow the screen.

Options:

0-9 Set Character Print Speed Delay
I Inspect files
L Number lines
P Disable pause at end of screen

Sn Skip to page n and then begin

Comments:
While a file is being paged to the user, the user can str ike one of the digits to vary
the speed of the output dynamically. 0 is the fastest, 9 is the slowest. This option
allows the user to scan selected portions of a file by runn ing PAGE with the P
option (so it does not stop when the screen is fil led) and striking a digi t from time
to time to speed up over sections that are of no interest and slow down for sections
he wants to read.

While the output is being directed to the screen, PAGE supports the following
single-character commands to change the output display in various ways:

0 to 9 change speed (0=slowest, 9=fastest)
P or p toggle pause when screen fills (the user can dynamically turn on and

of f the ability to delay when a screen fills)
AX skip to next file

Chap. 3 T O O L SE T O F ZC PR 3 71

AC abort to operat ing system
AS pause output; any key will resume, and all of these commands

(except AS) will work

PAGE constantly looks for user input , so these commands can be issued at any
time, including the intervals when PAGE has paused af te r f il l ing the screen (its
default) or has been halted by a AS. Characters other than the val id command
characters listed above are ignored.

Selected Error Messages:
Self-explanatory.

Examples of Use:

PAGE *.txt p8 — page all *.TXT files; begin with
paging off; set speed to 8.

PAGE myfile.txt s5 — page MYFILE.TXT, starting at page 5.

PATH (version 3.0)
Syntax:

PATH
or

PATH path-expression
Function:

PATH allows the user to display the current path or set a new path. The display
shows the path in three formats: Symbolic, Absolute (DU), and Named Directory
(DIR). The path expression may intermix any of these formats as desired to
express the new path.

Options:
None.

Comments:
PATH determines the address of the path with which it is going to work from the
ZCPR3 Environment Descriptor.
The PATH command deals with path expressions—that is, a sequence of directory
names which can be expressed as "ambiguous" DU forms, absolute DU forms, or
Named Directory forms.

To il lustrate, let’s say that the user is logged into Bl. The path "$0 A$ AO ROOT"
represents the sequence BO to A1 to AO to ROOT.

Selected Error Messages:
"Bad Expression at <text>" indicates there was an error in the path expression at
the indicated point.

72 Using ZCI R3 and C om m and D efin itions Sec. 1

Examples of Use:

PATH $0 A$ A15
PATH A$ ROOT

set path from current disk/user 0
to disk A/current user to disk A/user 15.
set path from disk A/current user to ROOT:

P O K E (RCP-Resident)
Syntax:

POKE address vai l val2 ... vain
or

POKE address "character string

Function:
The POKE command allows the user to change the content of memory. The user
must specify an address to POKE; the values that follow may be numeric
(hexadecimal assumed) or alphabetic (preceded by a double-quote mark). The two
forms may be intermixed with leading values and a trai l ing character string:

POKE address vail val2 ... vain "character string
Note, however, that once text input begins, fu r ther hex values are interpreted as
text characters, so hex input is hal ted for the scope of the command.

Options:
None.

Comments:
There is no restr iction on the memory locations that may be changed by the user.
Use o f this command can be dangerous.

Selected Error Messages:
None.

Examples of Use:

POKE f400 0 1 2
place the values 0, 1, and 2 into memory
starting at 0F400H

POKE f400 "this is a test
place the ASCII values for the indicated
characters into memory starting at 0F400H

POKE f400 1 2 3 "hello, world
intermix hex values and text.

Chap. 3 T O O L SE T O F Z C PR 3 73

PRIN T (version 2.0)
Syntax:

PRINT dir:afnl,dir:afn2, .. . o...
Function:

The PRINT command, like the LIST command, prints a file on the LST: device but
offers many more options. It can prin t a heading, page the file, number the pages,
number the lines, place a da te / t ime stamp on the output , put the file name on the
output, and perform yet other functions.

Options:

E Exact Print (Expand Tabs, Form Feed, No Line or Page
Numbers, No Heading)

F Toggle defaul t of file name display on page header
(default is ON, so F turns off name display)

H<delim>text<delim> Define Heading text to appear at the top of each page
I Inspect Files (allow user to select files before print ing

begins)
L Enable numbering of each line
M Disable Multiple Run Flag (if mult iple run is ON, then no

"Set Top of Form" message appears for each file and
PRINT moves from one file to another unattended);
defaul t is with Multiple Run ON

N Disable numbering of each page
On Offset each line. Move each line in the indicated

number of chars from the left of the page
Sn Start print ing on page n
T Toggle da te/ t ime stamp in the header of each page

(a TIME subroutine must be assembled into PRINT
to enable the da te/ t ime stamp feature)

Comments:
The characterist ics of the printer are def ined by the ZCPR3 Environment
Descriptor. Such characterist ics include the number of physical lines on a page,
the number of lines of text on a page, the number of characters per line, and
whether the printer can form feed or not. The Environment Descriptor contains
options for four printers, and the CPSEL uti li ty can be used to select the desired set
of at tr ibutes.
The da te / t ime stamp fea ture is very machine-dependent, and PRINT has to be
reassembled to support it.
While PRINT is running, the following commands work:

AC Abort and retu rn to operat ing system
AX Skip to top of next page and skip to next file

74 U sing Z C P F 3 and C om m and D efin itions Sec. 1

Selected Error Messages:
Self-explanatory.

Examples of Use:

PRINT text: * .txt, .txt olOn
print all *.TXT files in the TEXT: directory
and in the current directory; offset all
lines by 10 columns, and do not number pages

PRINT myfile.txt s25
print MYFILE.TXT starting at page 25

PRO T (RCP-Resident)
Syntax:

PROT afn <-- set files to R/W and DIR
or

PROT a fn R <— set files to R /O and DIR
or

PROT afn S <— set files to R/W and SYS
or

PROT afn RS <— set files to R /O and SYS
Function:

The PROT command sets the standard C P /M f i l e protection at tr ibutes (i.e., bit 7 of
bytes 1 and 2 of the fi letype) for a group of files. The R /O and System at tributes
may be set with the R and S options, respectively, given in any order as "RS" or
"SR". Omission of one of these options toggles the opposite (i.e., omission of R
makes the files R/W).

Transient Counterpart:
PROTECT

Options:
R Select R /O [Read-Only] (R/W [Read-Write] otherwise)
S Select SYS [System] (DIR [Non-System] otherwise)

Comments:
None.

Selected Error Messages:
None.

Chap. 3 T O O L SE T O F ZC PR 3 75

Examples of Use:

PROT b7:*.com rs — set all *. COM files in B7:
to R/0 and SYS

PROT text:*.txt — set all *.TXT files in TEXT:
to R/W and DIR

P R O T EC T (version 2.0)
Syntax:

PROTECT dir:afnl,dir:afn2, .. . keys o...
Function:

The PROTECT command replaces the at tr ibute set capabili ties of the STAT
transient and adds more flexibil ity. PROTECT allows the user to set /reset not
only the read-only, system, and archive at t r ibute bits (bit 7 of the three f iletype
characters), but also the tag bits (bit 7 of each of the eight characters in the
filename) of a file or set of files. PROTECT always operates on both system and
non-system files.

Options:
The KEYS are the attr ibutes selected. The following keys are allowed:

R, S, A Enable read/only, system, and archive bits
n Set tag bit n (1 <= n <= 8)
I Inspect
C Control

Inspect Mode allows the user to look at each file before it is "protected" and permit
or disallow the function to be performed on a case-by-case basis.
Control Mode allows the user to see the name of each f ile selected and manually set
its at t r ibutes and tag bits. In response to the Control Mode prompt, the user can
type in any combination of the letters A, R, S, and the digits 1-8 (the tag bits).

Comments:
None.

Selected Error Messages:
Self-explanatory.

Examples of Use:

PROTECT A4:*.COM,ROOT:*.COM RSI
Set the Attr ibutes of all COM files in directories A4 and ROOT to Read /Only and
System. Turn off the Archive at tr ibute and all tag bits. Allow the user to inspect

76 U sing Z C PR 3 and C om m and D efin itions Sec. 1

each file before the operat ion is performed.

PROTECT ROOT:*.TXT
Clear all at t r ibutes and all tag bits of all files of type TXT in the directory named
ROOT

PROTECT A: C
Allow the user to manually set all at t r ibutes and tag bits of all files on Disk A in
the current user

PW D (version 1.0)
Syntax:

PWD o
Function:

PWD displays the names of all named directories to the user. If the P (Password)
option is included, then the passwords to the directories will be included in the
display (but only i f the Wheel byte is set).

Options:
P Display Passwords

Comments:
If the Wheel byte is not implemented for a system, then its address is 0, where the
JMP instruct ion to the Warm Boot routine in the BIOS is located. Since JMP is non
zero in value, the Wheel Byte is TRUE, and passwords will be displayed by PWD.

Selected Error Messages:
"Password Request Denied - Not Wheel" means that the P option was given but the
Wheel Byte was not set, so passwords will not be displayed.
"Named Directory Buffer Not Available" means that named directories are not
implemented.

Examples of Use:

PWD - display named directories
PWD P — display named directories and passwords (Since only

P is valid as an option, the command could have been
"PWD PASSWORD", the last 7 characters being ignored).

Chap. 3 T O O L SE T OF Z C PR 3 77

Q U IET (version 1.0)
Syntax:

QUIET o

Function:
QUIET sets, resets, and displays the Quiet flag in the ZCPR3 Environment
Descriptor.

Options:
D Display the Quiet Flag
R Reset (turn OFF) the Quiet Flag
S Set (turn ON) the Quiet Flag

Comments:
Many ZCPR3 utilit ies read the Quiet flag in the ZCPR3 Environment Descriptor
and respond accordingly. If the Quiet f lag is set (ON), then certain informative
messages are suppressed in order to cut down on the "noise" created by the
command. If the Quiet flag is reset (OFF), then all messages are displayed.

Selected Error Messages:
No Error Messages are generated. An invalid command results in the Help screen
being displayed.

Examples of Use:

QUIET R -- turn OFF (reset) the Quiet flag
QUIET DISPLAY — Display the Quiet Flag

RECO RD (version 3.0)
Syntax:

RECORD ON or OFF <— Console Recording
or

RECORD ON or OFF PRINTER < - Printer Recording
Function:

RECORD controls the Disk Output Facili ty of the Redirectable I /O Drivers.
Copies of Console and Printer outputs can be created in disk files by the use of this
faci lity, and it may be extended into a number of other applicat ions as well.

Options:
ON Enable Recording
OFF Disable Recording
P Reference Printer

78 U sing ZC PK 3 an d C om m and D efin itions Sec. 1

Comments:
For RECORD to perform its function, it must be implemented in the redirectable
I /O drivers. This is left as an exercise for the reader. The subroutines executed by
the RECORD functions are implemented as simple R ETurn instructions in the
redirectable I /O drivers supplied with ZCPR3.
Four routines are accessed in the Redirectable I /O Driver package to control the
RECORD function. They are:

COPEN Enable Recording Console Output
LOPEN Enable Recording List Output
CCLOSE Disable Recording Console Output
LCLOSE Disable Recording List Output

RECORD is indirectly tied into DEVICE. Invoking RECORD itself does not
necessarily start the recording process immediately. To begin recording output
onto disk files two functions must be performed:

1. RECORD has to turn the appropriate Driver ON
2. DEVICE has to select the appropriate Driver

Turning RECORD OFF during a recording session, closes the output file and
makes it available for other uses. If RECORD is later turned ON, the output file
may be deleted (if the same file is selected to record into). However, i f a new
device is selected while RECORD is ON (say, DEVICE CON:=CRT is issued), then
recording is SUSPENDED (NOT turned off) unti l the recording device is selected
again. With this capabili ty, if it looks like the recording session is not going well,
recording can be suspended, the problem fixed, and then recording can be resumed.
This combined system of DEVICE and RECORD provides a f lexible output
recording system. In addition, the output recording need not necessarily go to a
disk file. It could be set up to send CON: output to the CRT and, say, a Remote
Computer for processing.

Selected Error Messages:
"I/O Driver Address NOT Defined" means that there is no I /O Package in this
ZCPR3 System.

"Disk Driver Module NOT Loaded" means that the I /O Package does not support
the RECORD faci lity.
"No I /O Driver Module Loaded" means that LDR has not been run to load an *.IOP
file.

Examples of Use:

RECORD ON — turn on recording for the console
RECORD ON P — turn on recording for the printer

Chap. 3 T O O L SE T O F Z C PR 3 79

REG (Transient, version 1.0)
REG (RCP-Resident)

Syntax:
REG Dr or REG r <— Display Register r
REG Mr <— Minus (Set Register r=r-l)
REG Pr <— Plus (Set Register r=r+l)
REG Sr value <— Set (Set Register r=value)

Function:
REG displays, adds 1 to, subtracts 1 from, or loads a value into, the indicated
register. A ZCPR3 Register is a one-byte bu f fe r (values may range from 0 to 255
decimal).

The value used to indicate a register is a character f rom ’0’ to ’9’. The character ’# ’
indicates all registers ("REG S# 0" stores 0 to all ten registers).

Options:
None.

Comments:
Registers arc used for two purposes:

1. to support looping in ZEX command files (do something N times)
2. to pass parameter values from one program to another program which

is executed later

REG has a counterpart command in the System Resident Command Package
provided in the ZCPR3 distribution.

Selected Error Messages:
REG (Transient): "Invld Reg ID: c" means tha t the register indicated was not
symbolized by ’0’ to ’9’ or ’# ’.

REG (RCP-Resident): None.
Examples of Use:

REG SO 4 — reg 0 = 4
REG S5 — reg 5 = 0
REG P — reg 0 = reg 0 + 1
REG P5 — reg 5 = reg 5 + 1
REG M9 — reg 9 = reg 9 - 1
REG D — show 'values
REG — show •values

80 U sing Z C PR 3 and C om m and D efin itions Sec. 1

REN (CP-Resident)
REN (RCP-Resident)

Syntax:
REN d i r :u fn l=ufn2

Function:
REN changes the name of a file. The format is newname=oldname (the standard
CP/M order). The directory prefix on the f irs t unambiguous file name indicates in
which directory the original (and renamed) file resides. REN cannot rename a
read /only file, but can rename a system file. If the new name (u fn l) already exists
in the directory, the user is asked whether the file having that name should be
deleted.

Transient Counterpart:
RENAME

Options:
None.

Comments:
None.

Selected Error Messages:
None.

Examples of Use:

REN newfile.txt=oldfile.txt — rename OLDFILE.TXT to
NEWFILE.TXT in current dir

REN root:sys.rcp=sysl. rep — rename SYS1.RCP to SYS.RCP in ROOT

REN AM E (version 3.0)
Syntax:

RENAME dir:afnl=afnol ,dir :afn2=afno2, . . . o...
Function:

RENAME changes the names of one or more files. Ambiguous file names and
inspection are permitted.

Options:

C Control Mode; manually specify each file name
I inspect and approve each rename
S Include System files

Chap. 3 T O O L SE T OF Z C PR 3 81

Comments:
The RENAME command is a brother to the REN resident command. There are
many major differences, however:

■ RENAME allows ambiguous file names to be used.
■ RENAME supports an Inspect Mode, which presents the user with each name

change and allows him to approve it before the change is made.
■ RENAME supports a Control Mode, which presents the user with each file to be

RENAMEd and allows him to enter the new name or to cancel the renaming.
■ RENAME accepts a list of files.
■ RENAME docs not "see" System files unless told to
■ RENAME can rename Read/Only files
■ RENAME sets the at tr ibutes (R/O and SYS) of the new file names to be the same

as those on the old file names

Selected Error Messages:
Self-explanatory.

Examples of Use:

RENAME *.txt C — rename all *.TXT files to something else;
display the file name to the user and
allow him to enter the new name

RENAME asm:*.mac=*. asm — rename all *.ASM files to *.MAC

SA K (version 2.0)
Syntax:

SAK o...
Function:

SAK (Strike Any Key) provides some simple uti l ity functions, one of which is
associated with the Multiple Command Line feature of ZCPR3. The functions are:

1. Allow the user to program a wait in a multiple command line unti l he instructs the
system to continue.

2. Allow the user to abort a multiple command line.
3. Allow the user to program an interruptible delay in the execution of a multiple

command line.

82 Using Z C PR 3 and C om m and D efin itions Sec. 1

4. Provide a simple alarm for the user.

Options:

A DO NOT allow the user to abort the command line
B Ring the bell at the user’s terminal occasionally
Pn Pause n seconds and continue if no response by tha t time

Comments:
If no options are given, SAK waits for user input , and if the user strikes a AC, then
the multiple command line is aborted and control is re turned to the user.
SAK is part icula rly useful i f the user wishes to interject a delay in a multiple
command line generated by a Menu. One such applicat ion is to display the time to
the user, call his at tention to it (via ECHO), give him a delay (via SAK), and then
invoke dBASE II with an ini t ializing command file.

Selected Error Messages:
Self-explanatory.

Examples of Use:

SAK BP10 — ring the bell occasionally and pause for 10
seconds; if the user does not strike a command
by that time (AC to abort), then resume
command line execution with the next command.

SA V E (CP-Resident)
Syntax:

SAVE n ufn <— save n pages (256 bytes) to file
or

SAVE n ufn S <— save n sectors (128 bytes) to file
Function:

The SAVE command saves the contents of the TPA onto disk as a file. It accepts
two arguments: a number and a file name. The file name may optionally be
followed by the letter "S" to indicate that the number is the number of 128-byte
Sectors (Blocks) to be saved. If this option letter is omitted, the number is assumed
to be the number of 256-byte pages to be saved.
If the number, n, is followed by the suff ix "H", as in "FH" or "2DH", then n is taken
to be a hexadecimal value. If no suff ix is given, n is assumed to be decimal. This
hexadecimal option eliminates the need for conversion from the values supplied by
debuggers such as DDT.

Chap. 3 T O O L SE T O F ZC PR 3 83

If the indicated file already exists, SAVE will ask the user i f he wishes to erase it
with the prompt "Erase ufn?".

Options:
S Select sectors (128 bytes) instead of pages (256 bytes)

Comments:
None.

Selected Error Messages:
None.

Examples of Use:

SAVE 10 MYFILE.BIN — save 10 pages into MYFILE.BIN
SAVE 2FH HISFILE.BIN — save 2F hex pages into HISFILE.BIN

S E T F IL E (version 1.0)
Syntax:

SETFILE n afn
or

SETFILE n
Function:

SETFILE sets the name of ZCPR3 System File n (where n is I to 4) to the indicated
ambiguous file name. If no AFN is given, the current contents of the indicated
System File are displayed. A file number is required.

Options:
None.

Comments:
ZCPR3 System Files are referenced by some of the ZCPR3 utilities, MENU and
ALIAS in particular. SETFILE is a means by which the contents of these file name
buffers are defined.

Selected Error Messages:
"Invalid File Name Number (not 1-4)" means that a val id file number was not given
af te r the SETFILE verb (SETFILE n afn).

Examples of Use:

SETFILE 1 myfile.txt — System File 1 is set to MYFILE.TXT
SETFILE 4 — the name of System File 4 is displayed

84 U sing Z C PR 3 and C om m and D efin itions Sec. 1

SH (version 1.0)
Syntax:

SH
Function:

SH is a Named Variable Shell for ZCPR3. It prompts the user for a command line,
performs an interpretat ion on the command line, and ei ther executes the command
line itself or passes the line on to the ZCPR3 Command Processor.

Options:
None.

Comments:
See Chapter 6, Shell Subsystem.

S H C T R L (version 1.0)
Syntax:

SHCTRL o
Function:

SHCTRL provides some control of the ZCPR3 Shell Stack from the command line.
The contents of the Shell Stack can be displayed and popped one level or cleared
completely.

Options:

C Clear the Shell Stack (no Shell is in effect)
D Display Shell Stack
P Pop the Shell Stack (the current Shell is stopped

and the next Shell on the stack is invoked)

Comments:
Only one option may be used in conjunction with the SHCTRL command. Any
characters following this option are ignored.

SHCTRL is intended for use in situations where a directory change is desired and a
Shell, such as MENU, is in execution. The Shell Stack can be popped, the directory
change performed, and the original Shell explicitly reinvoked.

For addit ional information, see Chapter 6, Shell Subsystem.
Selected Error Messages:

None — Help is printed if invalid option is given.
Examples of Use:

SHCTRL P - pop the Shell Stack one level
SHCTRL D - display the contents of the Shell Stack

Chap. 3 T O O L SE T O F ZC PR 3 85

SH D EFIN E (version 1.0)
Syntax:

SHDEFINE ufn <— define variables within file
or

SHDEFINE <— define variables within SH.YAR
Function:

SHDEFINE allows the user to interact ively display and edit the assignment of
variables in a Shell Variable file. He may add, delete, and redefine Shell Variables
as well as list all curren t defini t ions on the CRT or prin t them on the printer.

Options:
None.

Comments:
Use of SHDEFINE is explained within the program itself. It is menu-driven and
the error and instruct ional messages are intended to be clear.

The most complex command is the E (for Edit) command. Afte r issuing this
command, the user is prompted for a variable name. If he gives the name of a
variable not yet defined, the user is prompted for a defini t ion, and the variable is
so def ined unless the user responded with just a R E T U R N at this point. If the
name of the variable has already been defined, the user is asked if he wishes to
delete (D) or redef ine (R) the variable. Appropriate act ion is taken in response to
the user input.
The user must be a Wheel to run the SHDEFINE command.

Selected Error Messages:
Self-explanatory.

Examples of Use:

SHDEFINE myvars — define variables in MYVARS. VAR

S H FILE (version 1.0)
Syntax:

SHFILE <— display name of Shell Variable File
or

SHFILE ufn <— set name of Shell Variable File

86 U sing ZC PR 3 an d C om m and D efin itions Sec. 1

Function:
SHFILE displays or sets the name of the Shell Variable File to be used by SF1.
SHFILE may be executed while SH is not running, i f desired.

Comments:
SHDEFINE and SHVAR define variables to be placed into Shell Variable Files.
SHFILE defines which Shell Variable File will be used by SH when it executes.

When SH and SHVAR execute, the named variable file they deal with must reside
in the ROOT directory.

Selected Error Messages:
Self-explanatory.

Examples of Use:

SHFILE — display name of Shell Variable File
SHFILE myvars.var — define name of Shell Variable File

SHOW (version 1.0)
Syntax:

SHOW o
Function:

SHOW is the ZCPR3 Environment Display utility. SHOW generates numerous
displays which include: details of the ZCPR3 Environment Descriptor , what
system faci lit ies are available, and the status of these facilities.
SHOW can be invoked as an Error Handler , in which case its Error Handler display
can give the command line status and its other displays, such as memory examine,
may prove useful to analyze the state of the ZCPR3 System.

E Install SHOW as an Error Handler (no SHOW displays are invoked)

Comments:
SHOW provides the following displays to the user:

Options:
None.

Options:

1. Package Data 3. ZCPR3 System
- Environment Descriptor
- Message Buffers
- CRT and Printer Data

System File Definitions

Flow Command Package
Input/Output Package
Resident Command Package

Chap. 3 T O O L S E T O F Z C PR 3 87

2. Environment Data
Error Handler
Memory Display Utility
Named Directory Display
Path Expression
Shell Stack

SHOW is screen-oriented and will not function correct ly wi thout proper Z3TCAP
support. The Envi ronment Descriptor MUST be installed with a val id Z3TCAP entry.

Try it—you’ll like it! SHOW is totally screen-oriented and will not func tion correctly
without proper Z3TCAP support. If the user enters SHOW without proper support, the
X command exits SHOW.
Selected Error Messages:

Self-explanatory.

Examples of Use:

SHOW E — install SHOW as an Error Handler

S H S E T (version 1.0)
Syntax:

SHSET cmdl;cmd2;...
Function:

SHSET defines the commands which follow it as the command sequence to be
placed on the top of the shell stack. It places this sequence there. Consequently,
once SHSET is executed on a sequence of commands, these commands will be
cycled thru time and time again unti l the shell stack is cleared or popped.

Options:
None.

Comments:
SHSET provides a simple mechanism through which the user can make any
command sequence into a shell. Consequently, non-ZCPR3 programs, like
MBASIC, DBASE II, WORD STAR, and others can become shells under ZCPR3.

When using SHSET, care should be taken to provide an exit f rom the shell (e.g., an
exit to ZCPR3 and the system); unless this is done the system, once booted, will
remain permanently in the applicat ion program. The CMD uti l i ty is sometimes
useful for providing such an exit.

88 U sing ZCPR.3 and C om m and D efin itions Sec. 1

Selected Error Messages:
None — self-explanatory.

Examples of Use:

SHSET MBASIC;CMD — d e f i n e t h e s e q u e n c e MBASIC;CMD
t o b e a s h e l l

SHSET WS — d e f i n e W o r d S t a r t o b e a s h e l l

SH VAR (version 1.0)
Syntax:

SHVAR <— list variables
or

SHVAR var <— delete variable
or

SHVAR var text <-- def ine / redef ine variable
Function:

SHVAR can list all Shell Variables in the currently def ined Shell Variable File, or
can edit this file to delete or change one variable at a time. SHVAR is sometimes
more convenient than SHDEFINE, which is intended for edit ing groups of
variables in one sitting.

Options:
None.

Comments:
The user must be a Wheel to run SHVAR. SHVAR may be used whether SH is
runn ing or not. If a Shell Variable File is already def ined to the ZCPR3 System,
SHVAR uses this file. If one is not defined, SHVAR uses SH.VAR (always located
in the ROOT directory).

Selected Error Messages:
Self-explanatory.

Examples of Use:

SHVAR — l i s t s h e l l v a r i a b l e s
SHVAR VAR2 — d e l e t e t h e v a r i a b l e VAR2
SHVAR VARX TH IS I S A TEST — d e f i n e VARX t o "T H IS I S A TEST"

SU B (version 3.0)

Chap. 3 T O O L SE T O F Z C PR 3 89

Syntax:
SUB or SUB / / <— Print Help Message

or
SUB /A Text <-- Abort $$$.SUB File Processing at User ’s Discretion

or
SUB /AB Text <— Same as /A but Ring Bell to Alert User

or
SUB /1 <-- Enter Interact ive Input Mode

or
SUB fi lename params <— As in Standard SUBMIT

Function:
SUB builds a command file on disk (named $$$.SUB). Each time ZCPR3 is ready
for a command line, it looks for such a file and, if it f inds one, extracts the next
command from it.
SUB can be used in any situat ion where the user would normally use the CP/M
SUBMIT command. XSUB will execute in conjunction with SUB if desired. SUB
can also be used to sound alarms to the user.

Options:
A Permit abort
AB Permit Abort and Ring Bell
I Interact ive Input

Comments:
The "SUB /A" and "SUB /AB" forms allow the user to gracefully abort a $$$.SUB
file. As under CP/M, entering AC at the console can be used to abort such
processing, but the /A form allows the luxury of star t ing a command stream and
suspending it at one or more crit ical points. At each pause, the user can inspect
what has happened, and then decide whether to proceed or not.
The "SUB /1" fo rm allows the user to create a .SUB file without having to invoke an
editor. If the user has a command stream he wants to execute immediately and
doesn’t care to do it again, he can use this option. In response, SUB allows him to
enter his command stream (sorry, no parameter passing) a line at a time. When it is
all entered (user enters an empty line), the $$$.SUB file is buil t and executed.

The "SUB filename params" form is identical to the form of the SUBMIT command
supplied with CP/M. The "filename" specifies the name of the .SUB file to be
executed, and the parameters are associated with the substi tution variables $1, $2,
etc. Up to 20 parameters may be specified. The sequence "$$" places a into the
command line, and the character sequence "Ac" places the indicated control
character into the command line (uparrow C places Control-C).
The SUB command may be nested into a $$$.SUB file. If a "SUB filename params"
command is encountered in a $$$.SUB file, SUB runs, realizes that this has
happened, and inserts the indicated command file, with parameter subst itut ion,
into the running command stream at the appropriate place. This may be nested as
many levels deep as desired.

90 U sing ZCir’RS and C om m and D efin itions Sec. 1

U nder ZCPR3, if SUB is executed with the Multiple Command Line Facility
invoked and more commands follow the SUB command, then the rest of the
Multiple Command Line is inserted at the end of the generated $$$.SUB file.
SUB follows the ZCPR3 path when searching for the indicated command file. It is
fully in tegrated into the ZCPR3 System and is able to employ the External Path
and Multiple Command Line B uffer features of ZCPR3.

Examples of Use:

SUB cmdfile pi p2 p3
the file 'cmdfile.SUB' is processed, substituting

'pi' for $1, 'p2' for $2, and 'p3' for $3
SUB /AB

during the execution of a command file, this
command causes the bell to ring at the console
and the user is given a chance to abort execution

SUB Error Messages:
SUB provides a number of in form ative diagnostics to the user. In particu lar, when
an error is encountered during processing of a command file, the user is inform ed
of the line number at which the error occurred. The error messages presented by
SUB are:

"Control Character" means tha t the Ac form was not followed by a letter A-Z
"Directory Full" means tha t there is no directory space for the SSS.SUB file
"Disk Full" means that there is no room to write the SSS.SUB file

"Line too Long" means tha t the curren t line in the command stream exceeds 128
bytes

"Memory Full" means tha t there is not enough memory in which to build the
command stream to be placed into the SSS.SUB file

"Param" means that a param eter was referenced and none was given on the
command line.

"Parameter" means tha t an Invalid Param eter was specified

"SUBMIT File Empty" means that the .SUB file specified in the command line was
found to be empty

"SUBMIT File Not Found" means that the .SUB file specified in the command line
could not be found along the ZCPR3 path

"Too Many Parameters" means that more than 20 param eters were on the command
line

Chap. 3 T O O L SE T O F Z C PR 3 91

T C C H EC K (version 1.0)
Syntax:

TCCHECK u fn <— defau lt file type is TCP
or

TCCHECK < - check Z3TCAP.TCP
Function:

TCCHECK checks a Z3TCAP.TCP file for valid form at and reports any errors and
statistical in form ation on it.

Options:
None.

Comments:
TCCHECK is in tended to run in a non-installed environm ent (such as when the
user f irs t receives ZCPR3), so the Z3TCAP.TCP file being checked must be in the
current directory.

Selected Error Messages:
Self-explanatory.

Examples of Use:
TCCHECK is used to check the Z3TCAP file for consistency. Its sole function is to
ensure the valid ity of the Z3TCAP file and provide some statistics on it. The
commands and responses displayed during a sample run are shown below.

B4:SCR2>tccheck
TCCHECK, Version 1.0 File Z3TCAP .TCP Not Found - Aborting

Note: Z3TCAP.TCP MUST be in the same directory
B4:SCR2>root:
A15:ROOT>tccheck
TCCHECK, Version 1.0
Z3TCAP File Check of Z3TCAP .TCP Version 1.1

File Checks with 44 Terminals Defined

T C M A K E (version 1.0)
Syntax:

TCMAKE ufn <~ defau lt file type is Z3T
Function:

TCMAKE allows the user to interactively define the characteristics of his terminal
and store this in form ation in the file referenced. This file may then be loaded by
the LDR utility.

92 U sing Z C FR 3 and C om m and D efin itions Sec. 1

Options:
None.

Comments:
None.

Selected Error Messages:
Self-explanatory.

Examples of Use:
TCMAKE is used to create a *.Z3T file. Once created, the ZCPR3 u tility LDR can
load it into memory at the proper location (command is "LDR filename.Z3T"). The
commands and responses displayed during a sample run of TCMAKE are shown
below.

B4:SCR2>tcmake //
TCMAKE, Version 1.0
TCMAKE - Create a Z3T File
Syntax:

TCMAKE outfile -or- TCMAKE outfile.typ
where "outfile" is the file to be generated by
the execution of TCMAKE. If no file type is
given, a file type of Z3T is the default.
B4:SCR2>tcmake myterm2
TCMAKE, Version 1.0

** Z3TCAP Main Menu for File MYTERM2 .Z3T **
Define: 1. Clear Screen Sequence

2. Cursor Motion Sequence
3. Clear to End of Line Sequence
4. Standout Mode Sequences
5. Terminal Init/Deinit Sequences
6. Arrow Keys
7. Terminal Name

Status: S. Print Status (Definitions so far)
X. Exit and Write File
Q. Quit and Abort Program without Writing File

Exit:

Chap. 3 T O O L SE T O F Z C PR 3 93

Command? 2
Cursor Motion Definition
1. Timing Delay
Enter Delay Time in Milliseconds: 5
2. Enter R if Row/Column or C for Column/Row: R
3. Enter Equation for Row: %+
4. Enter Equation for Column: %+
5. Enter Prefix Byte Sequence
Char #1 - Type Char, .=Number, or <CR>=Done: Enter Number:
Char #2 - Type Char, .=Number, or <CR>=Done: Char =
Char #3 - Type Char, .=Number, or <CR>=Done:
6. Enter Middle Byte Sequence
Char #1 - Type Char, .=Number, or <CR>=Done:
7. Enter Suffix Byte Sequence
Char #1 - Type Char, .=Number, or <CR>=Done:

** Z3TCAP Main Menu for File MYTERM2 .Z3T **
Define: 1. Clear Screen Sequence

2. Cursor Motion Sequence
3. Clear to End of Line Sequence
4. Standout Mode Sequences
5. Terminal Init/Deinit Sequences
6. Arrow Keys
7. Terminal Name

Status: S.
Exit: X.

Q.

Print Status (Definitions so far)
Exit and Write File
Quit and Abort Program without Writing File

Command? 6
Arrow Key Definition
Your Terminal's Arrow Keys may be defined ONLY
if they generate only one character each. If they
do, type Y to continue. If not, type anything else.

Define Arrow Keys (Y/N)? Y
Strike the Appropriate Arrow Key

lbh

94 U sing Z C PR 3 and C om m and D efin itions Sec. 1

1. Arrow UP? AK
2. Arrow DOWN? AV
3. Arrow RIGHT? AL
4. Arrow LEFT? AH

**

Define: 1.
2 .
3 .
4 .
5.
6 .
7.

Status: S.
Exit: X.

Q.

Command? S
**

Review: 1.
2 .
3 .
4 .
5.
6 .
7.

Exit: X.
Command? 1

Z3TCAP Main Menu for File MYTERM2 .Z3T **
Clear Screen Sequence
Cursor Motion Sequence
Clear to End of Line Sequence
Standout Mode Sequences
Terminal Init/Deinit Sequences
Arrow Keys
Terminal Name
Print Status (Definitions so far)
Exit and Write File
Quit and Abort Program without Writing File

Z3TCAP Status for File MYTERM2 .Z3T **
Clear Screen Definition
Cursor Motion Definition
Clear to End of Line Definition
Standout Mode Definition
Terminal Init/Deinit Definition
Arrow Key Definition
Terminal Name Definition
Exit to Main Menu

Review of Clear Screen Definition
1. Timing Delay = 0 Milliseconds
2. Clear Screen Sequence:
(1) A[1BH (2) * 2AH

Chap. 3 T O O L SE T O F Z C PR 3 95

Strike Any Key to Continue -
** Z3TCAP Status for File MYTERM2 .Z3T **

Review: 1. Clear Screen Definition
2. Cursor Motion Definition
3. Clear to End of Line Definition
4. Standout Mode Definition
5. Terminal Init/Deinit Definition
6. Arrow Key Definition
7. Terminal Name Definition

Exit: X. Exit to Main Menu
Command? 2
Review of Cursor Motion Data
1. Timing Delay = 5 Milliseconds
2. Row or Column First: R
3. Row Equation: — >%+ <—
4. Column Equation: — >%+ <—
5. Prefix Byte Sequence:
(1) A[1BH (2) = 3DH
6. Middle Byte Sequence:
— Empty —
7. Suffix Byte Sequence:
— Empty —

Strike Any Key to Continue -
** Z3TCAP Status for File MYTERM2 .Z3T **

Review: 1. Clear Screen Definition
2. Cursor Motion Definition
3. Clear to End of Line Definition
4. Standout Mode Definition
5. Terminal Init/Deinit Definition
6. Arrow Key Definition
7. Terminal Name Definition

Exit: X. Exit to Main Menu
*

96 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Command? 6
Review of Arrow Key Definitions
1. Arrow UP = AK
2. Arrow DOWN = AV
3. Arrow RIGHT = AL
4. Arrow LEFT = AH

Strike Any Key to Continue -
** Z3TCAP Status for File MYTERM2 .Z3T **

Review 1. Clear Screen Definition
2. Cursor Motion Definition
3. Clear to End of Line Definition
4. Standout Mode Definition
5. Terminal Init/Deinit Definition
6. Arrow Key Definition
7. Terminal Name Definition

Exit: X. Exit to Main Menu
Command? X

**

Define: 1.
2 .
3 .
4 .
5.
6.
7 .

Status: S.
Exit: X.

Q.
Command? X

Selected

Z3TCAP Main Menu for File MYTERM2 .Z3T **
Clear Screen Sequence
Cursor Motion Sequence
Clear to End of Line Sequence
Standout Mode Sequences
Terminal Init/Deinit Sequences
Arrow Keys
Terminal Name
Print Status (Definitions so far)
Exit and Write File
Quit and Abort Program without Writing File
Terminal is: Rick's Terminal — Confirm (Y/N)? Y

Chap. 3 T O O L SE T O F ZC PR 3 97

File MYTERM2 .Z3T Created

T C S E L E C T
Command:

TCSELECT 1.0
Syntax:

TCSELECT ufn <— defau lt file type is Z3T
or

TCSELECT <— selection stored in Env Desc
Function:

TCSELECT allows the user to interactively review the contents of a Z3TCAP.TCP
file and select a term inal from it. If an unambigous file name is specified in the
command line, TCSELECT stores the selection into the indicated file. If no file
name is given, TCSELECT stores the selection directly into the TCAP section of
the memory-based Environm ent Descriptor.

Options:
None.

Comments:
None.

Selected Error Messages:
Self-explanatory.

Examples of Use:
TCSELECT is used to select a term inal from the s tandard Z3TCAP file. The
selected term inal may be loaded directly into memory or a *.Z3T file may be
created. If a *.Z3T file is created, the ZCPR3 u tility LDR can load it into memory
at the proper location (command is "LDR filename.Z3T").

Sample run of TCSELECT:

B4:SCR2>tcselect //
TCSELECT, Version 1.0
TCSELECT - Select Entry from Z3TCAP.TCP
Syntax:

TCSELECT outfile -or- TCSELECT outfile.typ
where "outfile" is the file to be generated by
the execution of TCSELECT. If no file type is
given, a file type of Z3T is the default.

98 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Syntax:
TCSELECT

where this alternate form may be used to store
the Z3TCAP entry for the selected terminal directly
into the Z3 Environment Descriptor.
Example 1: Create MYTERM.TCP

B4:SCR2>tcselect myterm
TCSELECT, Version 1.0
** Terminal Menu 1 for Z3TCAP Version 1.1 **
A. AA Ambassador K. Concept 100
B. ADDS Consul 980 L. Concept 108
C. ADDS Regent 20 M. CT82
D. ADDS Viewpoint N. DEC VT52
E. ADM 2 0. DEC VT100
F. ADM 31 P. Dialogue 80
G. ADM 3 A Q. Direct 800/A
H. ADM 42 R. General Trm 100A
I. Bantam 550 S. Hazeltine 1420
J. CDC 456 T. Hazeltine 1500
Enter Selection, + for Next, or AC to Exit - +
** Terminal Menu 2 for Z3TCAP Version 1.1 **
A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120
C. H19 (ANSI Mode) M. Super Bee
D. H19 (Heath Mode) N. TAB 132
E. HP 2621 0. Teleray 1061
F. IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424
H. Microterm ACT IV R. TVI 912
I. Microterm ACT V S. TVI 920
J. P Elmer 1100 T. TVI 950

Chap. 3 T O O L S E T O F Z C PR 3 99

Enter Selection, - for Last, + for Next, or AC to Exit - +
** Terminal Menu 3 for Z3TCAP Version 1.1 **
A. VC 404
B. VC 415
C. Visual 200
D. WYSE 50
Enter Selection, - for Last, or AC to Exit - -
** Terminal Menu 2 for Z3TCAP Version 1.1 **
A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120
C. H19 (ANSI Mode) M. Super Bee
D. H19 (Heath Mode) N. TAB 132
E. HP 2621 0 . Teleray 1061
F. IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424
H. Microterm ACT IV R. TVI 912
I. Microterm ACT V S. TVI 920
J. P Elmer 1100 T. TVI 950
Enter Selection, - for
Selected Terminal is:

Last, + for Next, or AC to
TVI 950 — Confirm (Y/N)?

** Terminal Menu 2 for Z3TCAP Version 1.1 **
A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120
C. H19 (ANSI Mode) M. Super Bee
D. H19 (Heath Mode) N. TAB 132
E. HP 2621 0 . Teleray 1061
F. IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424
H. Microterm ACT IV R. TVI 912
I. Microterm ACT V S. TVI 920

100 U sing ZC PA 3 and C om m and D efin itions Sec. 1

J. P Elmer 1100 T. TVI 950
Enter Selection, - for Last, + for Next, or AC to Exit - S

Selected Terminal is: TVI 920 — Confirm (Y/N)? Y
File MYTERM .Z3T Created
Example 2: Select terminal and store it in memory

B4:SCR2>tcselect
TCSELECT, Version 1.0
** Terminal Menu 1 for Z3TCAP Version 1.1 **
A. AA Ambassador K. Concept 100
B. ADDS Consul 980 L. Concept 108
C. ADDS Regent 20 M. CT82
D. ADDS Viewpoint N. DEC VT52
E. ADM 2 0 . DEC VT100
F. ADM 31 P. Dialogue 80
G. ADM 3 A Q. Direct 800/A
H. ADM 42 R. General Trm 100A
I. Bantam 550 S. Hazeltine 1420
J. CDC 456 T. Hazeltine 1500
Enter Selection, + for Next, or AC to Exit - +
** Terminal Menu 2 for Z3TCAP Version 1.1 **
A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120
C. H19 (ANSI Mode) M. Super Bee
D. H19 (Heath Mode) N. TAB 132
E. HP 2621 0 . Teleray 1061
F. IBM 3101 P. Teleray 3800
G • Micro Bee Q. TTY 4424
H. Microterm ACT IV R. TVI 912
I. Microterm ACT V S. TVI 920
J. P Elmer 1100 T. TVI 950

Chap. 3 T O O L S E T O F Z C PR 3 101

Enter Selection, - for Last, + for Next, or AC to Exit - T
Selected Terminal is: TVI 950 — Confirm (Y/N)? Y
ZCPR3 Environment Descriptor Loaded

T Y P E (CP-Resident)
T Y P E (RCP-Resident)

Syntax:
TYPE u fn <— type file and page it

or
TYPE u fn P <— type file but do not page

Transient Counterpart:
PAGE

Function:
TYPE displays one or more files on the console. The file is paged (by default) or
scrolled continuously if the P option is enabled. Flow control (X O N /X O FF or
AS /AQ) is in effect.

Options:
P disable paging

Comments:
The CP-Resident version of TYPE accepts only an unambiguous file name. The
RCP-Resident version accepts an ambiguous file name, so several files can be
displayed successively with a single command.

Selected Error Messages:
None.

Examples of Use:

TYPE MYFILE.TXT — print file on console with paging
TYPE MYFILE.TXT P — print file on console without paging

U N ER A SE (version 1.0)

102 U sing ZC FA 3 and C om m and D efin itions Sec. 1

Syntax:
UNERASE afnl,afn2,... o...

Function:
UNERASE recovers files which have been previously erased if it is possible to do
so. As a rule, UNERASE has a much greater chance of success if it is used
immediately a f te r the files were erased. If anything is w ritten to the disk afte r
erasing a file, the directory entry or portions of the erased file may be overwritten.

Options:
L List Erased Files Only (do not attem pt recovery)
P Pause for Disk Change and then try
Z Place Recovered Files in User Area 0 (default is curren t user area)

Comments:
When ZCPR3 (and CP/M) erases a file, the inform ation contained in the file and
the directory reference to that inform ation is not deleted immediately. Instead,
the d irectory entry is simply marked as being deleted. As a result, by changing this
delete mark back to a user number, the file is recovered.
A fter a file has been deleted, the directory entry and the blocks allocated to the
deleted file all become available to the system for reallocation. Thus, a simple
expansion of another file can overwrite one or more blocks previously allocated to
the deleted file. Creation of a new file or expansion of an existing file that
requires a new extent, may overwrite the directory entry of the deleted file. In all
these cases, recovery of the deleted file is a complex process quite beyond the scope
of UNERASE.

UNERASE is not always successful, however. If, for instance, the following events
took place:

1 the files MYFILE.TXT, HISFILE.TXT, and T.TXT were created and then erased
2 a new file T.TXT was created and then erased
3 UNERASE T.TXT was issued—it is possible that both previous T.TXT files would

be recovered, and a "weird" dual file named T.TXT would be in your directory

UNERASE prints the names of the files it is recovering, and, if a name appears two
or more times, then these earlier files of the same name are being recovered. Those
experienced with DU3 can probably iden tify the blocks allocated to the desired
file, reconstruct the proper directory entry, and delete the incorrect directory
entry. Others will simply have a corrupted directory which can only be restored by
erasing T.TXT, thereby losing both files again. Occasional use of the command
CLEANDIR can keep the directory clear to the point where UNERASE will
function correctly most, if not all, of the time.

Selected Error Messages:
Self-explanatory.

Chap. 3 T O O L SE T OF Z C PR 3 103

Examples of Use:

UNERASE myfile.txt,hisfile.txt
— try to recover MYFILE.TXT and HISFILE.TXT

UNERASE myfile.txt Z
— try to recover MYFILE.TXT and place it in User 0

UNERASE myfile.txt L
see if MYFILE.TXT can be recovered (duplicates
may also appear in this way)

V FILER (version 1.0)
Syntax:

VFILER <— install VFILER as a shell
Function:

VFILER is a general-purpose, screen-oriented file m anipulation utility. It allows
the user to display, print, copy, rename, delete, and compute the size of files which
are listed on the screen. The user can move his pointer about the list, using the
WordStar cursor convention or, if the ZCPR3 TCAP for the user’s terminal
supports it, his own arrow keys may work.

Options:
None.

Comments:
For a detailed description, see Chapter 7.

Selected Error Messages:
Self-explanatory.

Examples of Use:
See Chapter 7.

VM ENU (version 1.0)
Syntax:

VMENU <-- run MENU.VMN on all files in dir
or

VMENU afn <— run MENU.VMN on files selected by afn
or

VMENU afn u fn <— run menu (ufn) on selected files

104 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Function:
VMENU is the ZCPR3 menu front-end processor. It is a ZCPR3 Shell which reads
a *.VMN file and processes commands from it.

Options:
None.

Comments:
For a detailed description, refer to Chapter 5, Menu Subsystem.

Selected Error Messages:
See Chapter 5.

Examples of Use:
See Chapter 5.

W H EEL (version 3.0)
Syntax:

WHEEL password S
or

WHEEL password <— Set Wheel Byte
or

WHEEL password R <— Reset Wheel Byte
or

WHEEL /S or /R <— Enter Password w ithout echo
Function:

The WHEEL command enables or disables certain privileged commands and
command features. It does this by setting or resetting the Wheel Byte.

Options:

R Reset Wheel Byte
S Set Wheel Byte

Comments:
The Wheel Password is hard-coded into the WHEEL.COM file. It may be changed
by DDT or reassembly.

WHEEL has an RCP counterpart, WHL, which may also be in effect. WHEEL and
WHL can respond to d if fe re n t passwords.

Selected Error Messages:
"Invalid Password" means that the given password was not correct.

Examples of Use:

WHEEL mypass — set Wheel Byte if MYPASS is the
correct password

Chap. 3 T O O L SE T O F Z C PR 3 105

WHL (RCP-Resident)
Syntax:

WHL <— make user non-privileged
or

WHL password <— make user privileged
or

WHLQ <-- determine status

Transient Counterpart:
WHEEL

Function:
The WHL command is used to tu rn the Wheel Byte o f f (make the user non-
privileged) or on (make the user privileged). The Wheel password is built into the
RCP.
To f ind out the curren t status of the Wheel byte, use the WHLQ command
(described below).

Options:
None.

Comments:
None.

Selected Error Messages:
Self-explanatory.

Examples of Use:

WHL — make user non-privileged
WHL mypass — make user privileged if password is MYPASS
WHLQ — determine status of user (privileged or not)

XD (version 1.2)
Syntax:

XD dir:afn ooo...
or

XD /ooo...

106 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Function:
XD displays a form atted , alphabetized listing of the contents of a disk directory.

Options:

Aa Indicate attr ibu tes of files to be selected.
a=A for All Files (System and Non-System)
a=N for Non-System Files [default]
a=S for System Files

Oo Select O utput Features
o=A to Disable Display of File A ttributes (R, S)
o=F to Form Feed Prin ter when Display Done
o=G to Group Files by Name and Type
o=H to Display Files in Horizontal Format

P Send Display to Prin ter
PF Send Display to Prin ter with Trailing Form Feed

Comments:
It has been found that the more exotic features of X DIR (particularly the file
scanner and disk output facility) are not used often in some environments. Because
these features increase the size of XDIR.COM and reduce its execution speed,
another version of XDIR.COM, called XD.COM, has been created.
XD is completely compatible with XDIR in terms of the options it accepts and how
it operates. However, the file scanner and disk output facilities have been
removed from XD. Hence, the D, F, and I options are not available. All other
options of X D IR are reta ined in XD and perform in the same way. As a result, XD
is smaller than XDIR (4K vs 8K), and therefore has a larger memory b u ffe r in
which to load files. In very large hard-disk systems, X D IR may not have enough
b u ffe r space to perform its functions, but XD almost certainly will.
The defaults of XD can be changed in the same fashion as those of XDIR; for
details, see the "Comments" section of the XDIR command.

Selected Error Messages:
"TPA Error" means tha t there was not enough room in memory to load the disk
directory.

Examples of Use:

XD — Display the non-system files in the current
directory in the following fashion:

1. sorted by file type and name
2. vertical format
3. R/0 and SYS attributes included

XD *. COM AAOA — display both non-system and system files
which match *.COM in the following fashion:

1. sorted by file type and name
2. vertical format

Chap. 3 T O O L S E T O F ZC PR 3

3. no attributes included in display
XD ROOT:*.COM AAOA — same as above, but display only

files in directory named ROOT

XDIR (version 2.0)
Syntax:

XDIR dir:afn ooo...
or

XDIR /ooo...
Function:

XDIR displays a disk directory to the user and acts as a file name scanner.
Options:

Aa Indicate attr ibu tes of files to be selected
a=A for All Files (System and Non-System)
a=N for Non-System Files [default]
a=S for System Files

D Send O utput to Disk File XDIR.DIR
F f Enable a File Scanner Function

f=L to Log File Names to FNAMES.DIR
f=P to Prin t File Names Stored in FNAMES.DIR
f=S to Scan Disk and Compare to FNAMES.DIR

I Inspect Logged Files (use with FL option only)
N Negate Selection of Files
0 0 Select O utput Features

o=A to Disable Display of File A ttributes (R, S)
o=F to Form Feed Prin ter when Display Done
o=G to Group Files by Name and Type
o=H to Display Files in Horizontal Format

P Send Display to Prin ter
PF Send Display to Prin ter w ith Trailing Form Feed
U Select All User Areas

Comments:
X DIR is approxim ately 8K in size. The principal reasons to use XDIR
preference to the other directory display utilities are:
1 X D IR is able to send its output to disk.
2 X D IR provides the File Scanner Function.
3 X D IR can display all user areas of a disk.

108 U sing Z C PR 3 and C om m and D efin itions Sec. 1

If the defau lt a ttr ibu tes of X D IR are not to the user’s liking (e.g., if a listing by file
name and type is preferred), there are three alternatives:
1 X D IR can be reassembled
2 The a t tr ibu tes can be patched via DDT (they start at the 6th byte from the

f ron t of the program)
3 An ALIAS can be created which selects the desired a ttr ibu tes for the user

Selected Error Messages:
"TPA Error" indicates memory overflow; there was not enough memory available
in the TPA to load the disk directory

Examples of Use:

XDIR — displays a listing of the non-system files in
the current directory in the following fashion:

1. Sort is by File Type and Name.
2. Listing is in a Vertical Format.
3. Attributes of Each File (R/O, SYS) shown.
4. File Sizes in K.
5. Total of Sizes of All Files.

XDIR /AA — like the first example, but both non-system
and system files are displayed.

XDIR /OH — like the first example, but listing format
is horizontal.

XDIR /OG — like the first example, but sort is by file
name and type.

XDIR *. COM /NFL — the names of all non-system files
which do not match *. COM are stored on
disk in a file named FNAMES.DIR.

XDIR Summary
XDIR runs in two basic modes:

a d irectory display u tility
as a file scanner u ti lity

As a directory display utility , X D IR displays inform ation about the files on a
particu lar disk in all user areas or a particu lar user area. It provides the following
information:

Name of File
- Sizeof File (in Kb)

A ttributes of File (R ead/O nly or System)
Sum of Sizes of All Files Displayed
Total N umber of Files on Disk
Amount of Space Rem aining on Disk

Chap. 3 T O O L SE T O F Z C PR 3 109

What Disk and What User Area is being displayed
As a file scanner utility , it does the following:

Logs a group of selected files to disk
Prints the contents of such a log file
Scans a log file and compares it w ith the files selected by the user,
telling him w hat files are missing and what files are additional

XDIR is convenient to use, and contains many built-in features that provide
flexibility in meeting the user’s preferences. Some of these include:

Named Directories may be specified.
The file listing is alphabetized by file name and type or file type and
name, depending on user preference.
The file listing is organized vertically or horizontally, depending
on user preference.
O utput may be sent to disk or prin ter as well as to the console.

XDIR Output Control
The O utput Control options of XDIR are:
D Send O utput to Disk
Oo O utput Control

OA - Toggle Display of File A ttributes
OF - Toggle Send of Form Feed with Prin t
OG - Toggle File Grouping (nam e/type or type/nam e)
OH - Toggle Form at (Horizontal or Vertical)

P Send O utput to Printer
PF Same as POF, which sends output to prin ter and does a form feed on

completion

If P is specified, the output goes to the prin ter (LST: device) as well as to the
console. If D is specified, the output goes to the file XDIR.DIR in the current
directory. If XDIR.DIR already exists, it is replaced.
OA allows the user to display or suppress the file attr ibu tes field. This field, which
follows the file size field, contains the letter R or the letter S, indicating,
respectively, that the associated file is R ead /O nly or a System file. If R is not
present, the file is Read/W rite, and if S is not present, the file is D irectory (i.e.,
non-system).

OF allows the user to select an automatic form feed when the directory display is
sent to the printer. If prin ter output is selected (P option) AND the form feed flag
is ON, then the last line of the p rin tou t will be followed by a form feed character.
Many printers respond to this character by advancing to the top of the next page.
Note: the special form PF is provided to act the same as P (for tu rn ing on prin ter
output) and OF (to toggle the form feed function).

OG switches the display order from file name and type to file type and name, and
vice versa. If the display is by file name and type, then files having the same name

110 U sing Z C PR 3 and C om m and D efin itions Sec. 1

are grouped and AA.TX T comes before BB.COM. If the display is by file type and
name, then files of the same type are grouped and BB.COM comes before AA.TXT.
OH allows the user to switch from vertical to horizontal form at and vice versa.
The display is divided into three columns; vertical fo rm at lists files f irs t down
column 1, then down column 2, and finally down column 3. Horizontal form at lists
the files sequentially across columns 1, 2, and 3 in row A, then columns 1, 2, and 3
in row B, and so on.
X DIR provides such a wide variety of output displays tha t the user is advised to
experiment w ith the various XDIR options to see which form at he prefers. The
defau lt settings for the various options can be changed to generate the preferred
fo rm at by intelligent use of DDT or by reassembly of the XDIR.MAC source.

XDIR File Selection
The following options (and the DIR: field) control file selection:

Aa Select attr ibu tes of the files to be displayed
a=S for system files
a=N for directory (non-system) files
a=A for all files (both system and directory))

N Negate selection; select those files which do NOT match the ambiguous
file name

U Select all user areas

The A option selects the attr ibu tes of the files to be displayed. AA displays both
non-system and system files; AS displays only system files; and AN displays only
non-system files.

The N option selects all files which do not match the ambiguous file name. The
scope of the N option is w ith in the attr ibu tes selected, so if the a ttr ibu tes are AS,
only system files are shown.
The U option selects all user areas on the specified or defau lt drive. On the
display, each file name is preceded by the user area in which it resides.

XDIR File Name Scanner
The options of X DIR which deal w ith the file name b u ffe r facility are:

F f Engage file name b u ffe r facility
f=L to log file names to disk
f=P to prin t names logged to disk
f=S to scan disk for file names and compare to log

I Inspect files selected by FL option

The FL option writes the user numbers and file names of the selected files into the
disk file named FNAMES.DIR. If FNAMES.DIR already exists, then it is
rewritten. The FNAMES.DIR files is used by the FP and FS options. Note tha t the
a t tr ibu te selection options may also play a part in selecting the files to be logged.
The FP option prints out the user numbers and names of all the files stored in
FNAMES.DIR. If FNAMES.DIR is not in the curren t directory, FP will search

Chap. 3 T O O L SE T O F Z C PR 3 111

along the ZCPR3 path until it finds it or reaches the end of the path.
The FS option scans FNAMES.DIR and the files selected by the user (or implied if
no specific file selection option is given) and compares them. If a file exists in
FNAMES.DIR but not in the selected files, its name is prin ted as a missing file. If a
file exists on disk but not in the FNAMES.DIR file, then its name is printed as an
additional file.
Note tha t the user should keep in mind what he is scanning for when he uses the
file name b u ffe r facility. For instance, if he selects both non-system and system
files with the FL option and then defaults to Non-System with the FS option, it is
likely tha t several files will be shown missing even though this may not be true.
The I option (for inspect) allows the user to manually approve each file before its
name is placed into FNAMES.DIR.

XIF (version 1.0)
Syntax:

XIF anytext
Function:

If the curren t Flow State is TRUE, XIF exits all pending IFs. It reduces the IF
Level to 0 (no IF in effect).
If the curren t Flow State is FALSE, XIF does nothing.

Options:
None.

Comments:
None.

Selected Error Messages:
None.

Examples of Use:

; =LOOP
X IF

<statements>
I F 1 3

GOTO LOOP
F I

112 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

Z3INS (version 1.0)
Syntax:

Z3INS u fn l ufn2
UFN1 must be an Environm ent Descriptor
UFN2 must be a Z3INS Installation File

Function:
Z3INS is the installa tion program for the ZCPR3 System. All utilities (except
ZEX) provided in the ZCPR3 d is tribution may be installed for a target system by
using Z3INS. Z3INS installs the files named in a Z3INS Installation File with data
from the Environm ent Descriptor specified. All files must be ZCPR3 Utilities.
The defau lt file types are ENV for UFN1 (the Environm ent Descriptor) and INS
for UFN2 (the Installation File).

Options:
None.

Comments:
The Environm ent Descriptor referenced in the command line is a standard ZCPR3
System Environm ent descriptor which is created by assembling a file like
SYSENV.ASM.
A ZCPR3 Installation File is simply a text file containing two types of lines: a
comment line, which begins with a semicolon (;), and a line containing an
unambiguous file name, which is a file to be installed. An example is shown below:

; This is an installation file for my new utilities
utill. com

util2. com
; UTIL3 is really neat
util3. com

Case is not significant. Leading spaces on each line are ignored. Any file name
referenced in a command line must be unambiguous.

Selected Error Messages:
All error messages are very complete and self-explanatory.

Examples of Use:

Z3INS SYS.ENV NEWFILES.INS — Install the files listed
in NEWFILES.INS with the
data contained in SYS.ENV

Z3INS NEWENV DIST — Install the files listed in DIST.INS
with the data contained in NEWENV.ENV

Chap. 3 T O O L S E T O F Z C PR 3 113

Z3LOC (version 1.0)
Syntax:

Z3LOC o
Function:

Z3LOC locates and displays the addresses of the running ZCPR3 Command
Processor Replacement, BDOS, and BIOS. It may also be run under CP/M to locate
and display the addresses of the running CP/M 2.2 Console Command Processor,
BDOS, and BIOS.
Z3LOC is also able to display the addresses of a number of ZCPR3 System
Segments and data areas if the Z option is given. The Z option should not be given
if running Z3LOC under CP/M 2.2.

Options:
Z Display addresses and data on ZCPR3 System segments and data areas

Comments:
If the Z option is given (Z should only be given if running Z3LOC under ZCPR3),
the following additional address inform ation is provided:

o External Path
o In p u t/O u tp u t Package
o Named Directory B uffer
o Shell Stack
o External FCB
o External Stack

o Resident Command Package
o Flow Command Package
o Command Line B uffer
o Environm ent Descriptor
o ZCPR3 Message Buffer
o Wheel Byte

Selected Error Messages:
Z3LOC generates no error messages. An invalid option invokes a help screen.

Examples of Use:

Z3LOC — run Z3LOC for CPR/CCP, BDOS, and BIOS display
(may be used this way under CP/M 2.2)

Z3LOC Z — display ZCPR3 data as well
(may be used this way under ZCPR3 only)

Z EX (version 3.0)
Syntax:

ZEX / / <~ Prin t Help
or

ZEX
or

<— Enter In teractive Mode

114 U sing Z C I R3 an d C om m and D efin itions Sec. 1

ZEX filename params <— Process .ZEX or .SUB file as w ith SUBMIT
Function:

ZEX is a memory-based command file processor. It behaves somewhat like a
combination of SUB and XSUB, and because its input source is memory-resident,
the execution speed of ZEX is significantly greater than that of SUB/XSUB.

Options:
None.

Comments:
The in teractive mode of ZEX executes like the in teractive mode of SUB. The user
enters command lines until he is satisfied and then terminates the process by
entering an empty line (simply hitting RETURN). ZEX then executes the
commands in the sequence entered. No param eter passing is perm itted in this mode
of operation.
The "ZEX filenam e params" form is like the corresponding SUB form. ZEX will
search along the ZCPR3 external path for a command file of the form
filename.ZEX or filename.SUB. If a directory is entered which contains both such
files, the file of type ZEX will be executed.
Once ZEX has begun execution, it places a ZEX Monitor just under ZCPR3 and
builds the command stream under the monitor. Once complete, the BDOS address
in locations 6 and 7 is adjusted so that the ZEX monitor and its command stream
will not be overw ritten by transien t programs, and execution begins. Each time the
BIOS Console Input routine is called, ZEX supplies the input character.
As with SUB, a from the console aborts execution of a ZEX command stream.
Also, as with SUB, if a command follows ZEX in a Multiple Command Line, ZEX
appends this command to the command stream.
Unlike SUB, ZEX does not permit nesting of command files. ZEX will simply
abort if a ZEX command is encountered in the command stream it is processing.

U nlike SUB, ZEX supports many more embedded commands. Combining the
facilities of SUB and XSUB in this case, the embedded commands of ZEX reflect
the XSUB-like capabilities of ZEX as well as some new ideas.
These extended control commands are discussed in ZEX Directives, below.

Selected Error Messages:
None discussed.

Examples of Use:

ZEX — the user now enters a group of commands
ZEX myemds pi p2

processing of the file 'myemds.ZEX', or, if not
found, 'myemds.SUB' is performed; 'pi' is
substituted for $1 and 'p2' for $2

Chap. 3 T O O L S E T O F Z C PR 3 115

ZEX Directives - Control Commands
The ZEX control commands are summarized below. This summary is also
displayed via the built-in ZEX help facility.

Cmd Meaning Cmd Meaning
1 insert <CR> Al insert <CRLF>
A. rerun command stream A toggle p rin t suppress
A# toggle ZEX messages A$ define defau lt params
A ? wait for user input A/ ring bell and A?
A * ring bell AH accept user input
A< display chars only A> stop display
95 ZEX comment $n l<=n<=9 for param
$$ $ $A A

$1 1 Ac control char

The following commands simply insert characters into the ZEX command stream
and will not be discussed in any greater detail.

1 inserts a <CR> Al inserts a <CR> <LF> pair
$$ inserts a single $ $A inserts a single A
$1 inserts a single | Ac inserts a control character

The A* command causes ZEX to ring the bell. It does not insert a BELL character
into the command file, as a AG sequence would. It simply rings the bell and
continues processing.
The ;; command introduces a ZEX comment. It and all characters following it up
to and including the following <LF> are simply treated as a comment in the ZEX
Command File and ignored. Unlike a conventional ZCPR3 comment, the ZEX
comment does not take up space in the command stream and does not appear when
the command stream is executed.
The A< and A> commands are used to bracket characters which are simply echoed
by the ZEX monitor and not passed back to the calling program. This causes the
characters between these commands to be echoed to the user during execution but
not processed by any program. This featu re is very useful for embedding
comments to be prin ted at execution time into the command stream. Unlike the
ZCPR3 comment form, which is a line beginning with a semicolon, comments
enclosed by A< and A> may appear anywhere, such as w ithin an editor session.
The A# command toggles suppression of inform ative messages generated by ZEX.
The A. command causes console output to cease until the next A. is encountered.
Character input from the ZEX Monitor continues, but the user does not see it on
the screen.
The A: command causes the ZEX monitor to restart execution of the loaded
command stream. The entire command stream, as in itia lly processed by ZEX, is
executed again from the beginning.

116 Using Z C FR 3 and C om m and D efin itions Sec. 1

$n, where l<=n<=9, will cause the corresponding specified or defau lt param eter to
be substituted from the command line.
The A$ command defines or redefines the set of input command parameters. The
rest of the line following the A$ is treated as a set of parameters separated by
blanks.
The A? and A/ commands replace the /A and /AB options of SUB. A? causes ZEX
to stop processing and wait for the user to strike either the space bar or the
R E T U R N key before continuing. The user can examine the display at leisure and,
if he does not wish to continue, a AC will abort the command stream. The A/
command is like A?, but it periodically rings the bell at the console, summoning the
user at critical points in the processing.

Finally, the A" command causes ZEX to stop providing input from the command
stream; the user can then enter whatever he wishes until a special character is
output, at which time ZEX will resume providing input. In this case, ZEX can be
intimately linked with ZCPR3, and it is in tended tha t the special character that
ZEX is waiting for be associated w ith the ZCPR3 prompt. In my system, I defined
the ZCPR3 prompt as a ">" character with the most s ignificant bit set. This is
unique and appears only when the prompt comes up on my system.

ZEX Examples:
The following examples illustrate applications employing ZEX. Comments appear
out to the side, p refixed by <—.

Bl>zex
ZEX, Version 1.3
1: A$ this is fun <— Define 3 params
2 : echo $1 $2 $3
3 : A$ hello from happy acres <— Define 4 params
4 :
k •

echo $1 $2 $3 $4
(ZEX Active) <— ZEX is running now
Bl>echo this is fun
THIS IS FUN
Bl>echo hello from happy acres
HELLO FROM HAPPY ACRES
Bl>
(ZEX Completed)
By Your Command >
Bl>ed demo.zex <— Demo Command File
NEW FILE

Chap. 3 T O O L SE T O F Z C PR 3 117

*i
1 ed demo. txt <— Edit DEMO.TXT
2 i <— Insert text while in ED
3 This is a test
4 This is only a test
5 This is a demo of ZEX Control
6 AZ <— AZ is 2 chars, xlated into
7 bOlt <— Ctrl-Z by ZEX
8 11
9 Olt
10 i <— Input More Text
11 A I I <— Allow user to input text
12 type demo.txt <— When ZEX continues, this
13 era demc .txt <— is what it does next
14

*e
Bl>zex demo <— Run the command file
ZEX, Version 1.3
(ZEX Active)
Bl>ed demo.txt
NEW FILE

1
2
3
4
1
1
2
2
2
2
3
4
5
5

*i
This is
This is
This is

<— ZEX is typing this in
a test
only a test
a demo of ZEX Control

*b01t
This is a test
*11
*01t
This is only a test
*i <— Now user input begins
I am now typing this line of my own volition <-
ZEX will allow me to continue doing this until
it sees the ZCPR3 prompt

User

*e
<— User types Ctrl-Z
<— User types "e"

118 U sing ZCF R.3 and C om m and D efin itions Sec. 1

(ZEX Active)
Bl>type demo.txt <— ZEX resumes
This is a test
I am now typing this line of my own volition
ZEX will allow me to continue doing this until
it sees the ZCPR3 prompt
This is only a test
This is a demo of ZEX Control

Bl>era demo.txt
DEMO . TXT
Bl>
(ZEX Completed)
By Your Command >
Bl>ed demo .mac < — Now to use ZEX for

< — program assembly
NEW FILE

*i < — User types program
1 ext print
2
3 call print
4 db 'Hello, World ... It'1s Another Day',0
5 ret
6
7 end
8

*e

Bl>type a:m80.zex <— M80.ZEX command file
; M80.SUB — MACRO-80 Assembler and Linker
M80 =$1
; Please Type $AC if Error(s) Exist - A?
ERA $1.BAK
ERA $1. COM
L80 /P:100,$1,A:SYSLIB/S,$1/N,/U,/E
ERA $1.REL

Chap. 3 T O O L S E T O F Z C PR 3 119

; Assembly Complete
Bl>zex m80 demo <— Run command file on pgm
ZEX, Version 1.3
(ZEX Active)
Bl>; M80.SUB — MACRO-80 Assembler and Linker
B1>M80 =DEMO
No Fatal error(s)
(ZEX Active)
Bl>; Please Type AC if Error(s) Exist - <— User can abort now

<— if he wishes
B1>ERA DEMO.BAK
DEMO .BAK
B1>ERA DEMO.COM
No File

B1>L80 /P:100,DEMO,A:SySLIB/S,DEMO/N,/U,/E
Link-80 3.44 09-Dec-81 Copyright (c) 1981 Microsoft
Data 0100 01C5 < 197>
35936 Bytes Free
Data 0100 01C5 < 197>
35936 Bytes Free
[0000 01C5 1]
(ZEX Active)
B1>ERA DEMO.REL
DEMO .REL
Bl>; Assembly Complete
Bl>
(ZEX Completed)
By Your Command>demo <— Run pgm now

120 U sing ZC PK 3 and C om m and D efin itions Sec. 1

Hello, World ... It's Another Day
Bl>

Using ZC PR 3 and C om m and D efin itions Sec. 1 121

4 On-Line HELP Subsystem

Overview of the HELP Command
The HELP Command provides interactive, online assistance in using ZCPR3 in

general and specific ZCPR3 commands in particular.
HELP pulls in files named <FILENAME>.HLP from disk and displays these to the

user in a paged mode. These files are of two basic types: indexed and non-indexed.
Indexed HELP files, of which HELPSYS.HLP is an example, s tart w ith an index.

When HELP loads an indexed file, it displays this index to the user and allows him to
select as many entries as he desires, in any order, by simply typing the letter(s)
corresponding to his selection. Once the user has made his selection, HELP will look
up the associated body of text and display it to him in a paged mode. When the user
has fin ished reading, HELP returns him to the index menu. Typing a Control-C will
return the user to ZCPR3.

There are two types of indexed HELP files: user-indexed and HELP-indexed. A
user-indexed f ile (of which HELPSYS.HLP is an example) is one in which the w riter of
the file is allowed to create the image of the index on his screen in the form which will
be displayed to the user of the HELP file.

A HELP-indexed HELP file is one which contains a list of the options at the
beginning of it; HELP autom atically creates the menu, assigning sequential letters (A,
B, etc) to the menu options.

Non-indexed files do not s tart with an index. In such cases, HELP will
immediately display the contents of the file to the user and, when the user has finished
looking at it, will re tu rn to ZCPR3.

HELP is m enu-driven, and all the commands available to the user at any given
time are displayed to him.

The version of HELP described in this manual is designed to work w ith the
ZCPR3 system and take advantage of some of its special features.

How to Use the HELP Command
The HELP Command is executed in one of three ways:

1. By just ty p in g ’H ELP’
2. By typing ’HELP FILENAM E’, where FILENAME is the name of a disk file

named FILENAME.HLP
3. By typing ’HELP FILENAME.TYP’, where FILENAME.TYP is the name of a file

created in the form at of a help file
If the user types just ’H ELP’, he will review the file HELP.HLP, which should

contain a b rief summary of how to use the HELP command. For all other forms of the
HELP command, the user will see the specified help file in form ation. Generally
speaking, the name of the help file should be indicative of its subject—i.e., CPM.HLP
should contain help in form ation on CP/M.

HELP File Search H ierarchy
Whenever HELP looks for a specified HELP File (either from the HELP

Command or from an inform ation section which specifies a Node [see later]), HELP
will perform a search for the indicated file. This search goes as follows:

122 U sing Z C P il3 and C om m and D efin itions Sec. 1

1. Under ZCPR3, HELP will fo llow the command-search path, searching the current
directory (disk and user) first.

2. If the HLP f i le is not found in the current directory, HELP will search along the
ZCPR3 path for it.

3. If the HLP f ile is not found along the ZCPR3 path, then HELP will look in the
directory named "HELP" for the indicated file. This is a major d ifference
between HELP and other ZCPR3 utilities.

4. If the HLP f i le is not found, HELP will print an error message.
Moving Around within the HELP Command

Once the user is running HELP, he is given a set o f commands by which he can
display the particular items o f information he is interested in.

A fter issuing the HELP command, the user will come up in one of two modes
(depending on the type o f HELP f ile referenced). In indexed mode, a menu of topics is
displayed to the user and he can select the desired topic by typing the character in
front of the topic title. In non-indexed mode, no menu is displayed; instead, the entire
f ile is v iew ed as one "information section."

An in f o r m a t i o n s e c t io n is a collection of screen displays (one screen fu ll o f text)
called f r a m e s . Typically , an information section should contain a logical grouping of
related data on a particular topic. In indexed mode, each menu topic refers to an
inform ation section. By selecting a topic, the user is placed into the corresponding
inform ation section. In non-indexed mode, the entire HELP f ile is one information
section.

Moving From the Menu
At the menu o f a HELP file , the user has two basic choices: to select a menu topic

for review, or to exit to ZCPR3. If a menu topic is selected, the user is placed into the
corresponding inform ation section.

A third choice is sometimes available at the menu level: to move up to the
previous HELP Level. Some information sections are entire HELP files in their own
right, which can be accessed independently of the HELP f ile the user is currently in.
If the user enters one o f these information sections, the name of the current HELP file
is saved and the new HELP f ile is loaded. When this happens, the user is placed at the
next HELP level.

HELP levels start at 0 and increase each time the user calls a new HELP f ile from
his current level. Thus, he starts at level 0, and the first HELP f ile he calls puts him at
level 1. If he now calls another HELP file , this puts him at level 2. From level 2 he
may have the option o f exiting, either to ZCPR3 (which would return him to help level
0) or to the previous level (1).

The HELP files are organized in a tree data structure. To get to a particular
HELP file , the user starts at the root o f the tree and then climbs up and down the trunk
and branches to various levels, or nodes. From each node, the user may only move up
or down the tree—he can’t cross over to a node at the same level without first moving
down the tree and then back up. To illustrate, consider the following:

Chap. 4 O n-L ine H E L P S ubsystem 123

Node A Node B
\ Node C /

\ Node D Node E

\ Node F / Node G

\ Node H /

Root of Tree — >
\Node J

HELP Level
5

4

3

Node I

/

2

1

0

In the above example, the user must always start at the root of the tree (Node J).
This is analogous to HELP Level 0, which is where the user is placed when he issues the
HELP Command. To get to Node C, for example, the user has to climb the tree from
Node J to Node H to Node F to Node D to Node C. This would be like the user entering
four node-type inform ation sections, in which d ifferent HELP files are successively
loaded.

Now that the user is at Node C, let’s say that he wants to go to Node E. Under the
HELP System, there are two ways to do this:

1. Jump to the ground and then climb back up to Node E. Here, the user would jump
from Node C to Node J and then go to Node H to Node F to Node E. Under HELP,
the user can do this by exiting to ZCPR3 and then reissuing the HELP Command
or by issuing the Root Command (.); once at the root of the tree, he then climbs it
again by entering the appropriate information sections.

2. Climb down the tree and then back up. The user would move from Node C to
Node D to Node F and then back up to Node E. The HELP user can go to the
previous level by issuing the Up Level (A) command. In this example, he would
issue the Up Level command twice and then go back down.

Moving Within an Information Section
Once the user is within a textual information section, he has several capabilities

for moving with in this section or to another inform ation section.
First, to leave an inform ation section, the user can return to the menu (if the

current HELP f i le is indexed) or return to ZCPR3. Additionally , i f the user is not on
the root (HELP Level 0), he can return to the previous HELP Level (Up Level). If the
user is not in an Indexed HELP file , moving forward beyond the End of Information
(EOI) will return him to ZCPR3 i f he is at HELP Level 0, or to the previous HELP
Level i f not.

The data w ithin an inform ation section is arranged sequentially. Consequently,
the user can move forward to the next frame, or backward to the previous frame or to
the beginning o f the information section. The user cannot move backward beyond the

124 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

beginning of the inform ation section; i f he tries to do so, a bell is sounded. Also, i f the
user tries to move forward beyond the End of Information (EOI), he is returned to the
menu, returned to ZCPR3, or returned to the previous HELP Level as described above.

HELP Status and Command Prompts
Whenever the HELP system is in use and an inform ation section is being

displayed, the bottom line o f the screen displays some status inform ation and the
prompts for HELP commands available to the user.

The status indicators appear at the extreme left o f the bottom line; they are
fo llowed by the command prompts. The status indicators may take the fo llow ing
forms:

<Nothing>....command prompts....
__The user is at the menu of Level 0

fff: command prompts....
__Current Frame Number within information section

(the user is at Level 0)
Level 111/ command prompts....

_Current Level Number (The user is at a menu frame)
(this is displayed only if the user is NOT at Level 0)

Level 111/fff: command prompts....
\ __Current Frame Number within information section
_Current Level Number
(this is displayed only if the user is NOT at Level 0)

The command prompts take one of the three forms shown below, depending on the
HELP files in use:

'C=ZCPR3 A=Level .=Root M=Menu S=Start L=Last P=Print -
\ \ \ \ \ \ __Print Info/Frame
\ \ \ \ \ __Goto Last (Previous) Frame
\ \ \ \ __Goto Start of Info Section
\ \ \ __Goto Menu of HELP File
\ \ Root if NOT at Level 0
\ \(this is displayed only if NOT at Level 0)
\ __Goto Previous Level
\(this is displayed only if NOT at Level 0)
\ Return to ZCPR3

Chap. 4 O n-L ine H E L P Subsystem 125

EOI AC=ZCPR3 A=Level .=Root M=Menu S=Start L=Last P=Print -
\ _______________________________________Same
\ as Above
_User is at the End of Information (end of information

section)
Type AC=ZCPR3 A=Level .=Root or Enter Selection -

\ \ \ _Enter letter of desired
\ \ \ information section
\ \ _Goto Root
\ \ (this is displayed only if NOT at Level 0)
\ _Goto Previous Level
\ (this is displayed only if NOT at Level 0)
_Return to ZCPR3

Summary of User Commands

Cmd Meaning
A Go to Previous Level

Go to Root Level
M Go to Menu of Current HELP File
S Go to Start of inform ation section
L Go to Previous Frame

CR (Carriage Return or Space) Go to Next Frame
AC (Control-C) Return to ZCPR3
P Print Current Screen Display (Frame) or inform ation section

Printing HELP Files
The printing o f HELP files can be done in two ways: by using the HELPPR

U tility o f ZCPR3, or by using the Print function contained within the HELP U tility
itself.

The HELPPR U til i ty prints an entire Help File. It acts a lot like the PRINT
command, and it has a variety of options, including the ability to plan for printer
output and to support paging and other "appearance-enhancing" features.

The Print Function within HELP is used for quick printouts. It does not page or
perform anything more exotic than simply printing out what is contained in a part of a
Help File. When the P option is given, the current screen is printed immediately. The
user may also issue a AP command (not displayed on any menu), in which case the
entire current inform ation section is printed.

This Print Function is provided as a convenience to the user. It allows the user to
review the Help File, and, when he sees a particular screen display or information
section which he values enough to want to have around for future reference in
hardcopy form, he can simply tell HELP to print it. This capability is intended to
support the concept of establishing HLP files as a convenient and f lex ib le way to pass
documentation o f programs to the user on disk, while also making it easy for him to
print it out i f it is o f sign ificant interest to him.

126 U sing Z C PR 3 and C om m and D efin itions Sec. 1

For instance, a HLP f i le which refers to a new program may include an
information section or one frame which contains a command summary. The user can
simply print this without having to print the entire HLP file.

As another example, the HELP subsystem may be used by a homemaker to store
her recipes. If these are organized, using the tree structure, into reasonable categories
(such as roasts, desserts, etc), while reviewing the recipes she may f in d one she wishes
to try for the evening’s meal or to pass on to a friend. If the recipe covers only one
screen, a Frame Print is very convenient.

HELP Error Messages
The fo llow ing are the error messages issued by HELP, and their meanings:
File not Found The specified HELP File cannot be found.
AFN Not Allowed The specified HELP File is ambiguous (contains the character

or "?"). This is not allowed.
<BELL> The user issued an invalid command.
EOF on HELP File In searching for an information section, HELP ran into the

end o f the HELP File. The Indexed HELP f ile is improperly structured (more index
entries than inform ation sections).

Node Level Limit The limit of the nesting of the HELP Levels is exceeded. HELP
limits the number of HELP Levels that can be traversed to 10 (default, which can be
changed), and an attempt was made to enter HELP Level 11 (or default + 1).

Mem Full The selected HELP File is too large to load into the available memory in
the user’s computer system. The HELP File should be reduced in size; using HELP
Levels (Node references) in the information sections is a good way to do this.

How to Write HELP Files
Files used by the HELP program are either simple CP/M-standard files of ASCII

text or ASCII f iles generated by the WordStar text editor/formatter. These files are of
two basic types: indexed or non-indexed; both types have the same basic format.

Grouping of Information. Information displayed to the user is grouped by the
index in indexed HELP files and may also be grouped by lines beginning with form
feed (AL) characters. Grouping is an e ffec t iv e way to organize inform ation logically
so that meaning will be more clear to the user and units o f inform ation will not
overrun screen display boundaries.

The inform ation displayed to the user is organized into logical units called
information sections, and screen-sized displays called frames. Using a text editor, the
user can create his own HELP files and organize his inform ation as he desires for
display by the HELP subsystem.

Non-Indexed HELP Files. Non-indexed HELP files are identif ied by having a
colon (:) as the first character of the first line in the file . The f i le consists of ASCII
text lines, each line being terminated by a carriage return (ODH) fo llow ed by a line
feed (OAH). The inform ation section in such a help f ile consists of the text fo llow ing
the leading colon; this text may be terminated either by a new line that starts with a
colon (thus beginning a new information section), or by the end-of-f ile marker
(control-Z, 1AH).

Indexed HELP Files. Indexed HELP files are simple ASCII files which do not
start with a colon (:) as the first character of the file. An indexed HELP f i le may be
HELP-indexed or user-indexed.

Chap. 4 O n-L ine H E L P Subsystem 127

A HELP-indexed HELP f i le is identif ied by the fact that the first character of
the first line is alphanumeric (not a punctuation mark). The index entries are
contained in one or more such ordinary ASCII text lines; HELP labels these lines with
alphabetic identifiers (A, B, C, etc) during the display of the index. The index is
followed by ASCII lines comprising one or more inform ation sections. The first line of
each in f o r m a t i o n s e c t io n in the f i le m u s t have a colon in column 1.

A user-indexed HELP f i le is identif ied by having a semicolon (;) as the first
character in the file; the semicolon m u s t be immediately fo llow ed by a CR/LF
sequence. The text that starts on line 2 is displayed literally to the user as the menu.
Since the displays generated by HELP are screen-oriented, the menu may be longer
than 24 lines provided that there is a properly installed TCAP entry in the
Environment Descriptor. The menu is fo llow ed by one or more inform ation sections.
The start of each inform ation section is denoted by a line starting with a colon (:) and
fo llowed by a series o f characters (spaces are not s ign ificant between them) which are
the index letters. When the user runs HELP on this f i le and types a selection letter,
HELP searches through the f ile , looking for an inform ation section whose first line
contains the character typed by the user. If the character was a letter, it is
automatically capitalized by HELP (in both the user input and the inform ation section
lines).

Note that a colon is not a valid option letter, since this character has a special
meaning to HELP. If a colon is encountered after column 1 in an inform ation section
heading line, the scan for option characters stops and subsequent characters may be
interpreted as another help f i le name to be invoked by option letters already found in
the line.

Tree Structures
The Indexed HELP File is d ivided into inform ation sections, each of which starts

with a colon (:). There are two basic types o f information section:

1. Information sections containing only textual material. This type o f information
section may appear in both HELP-indexed and user-indexed files; it begins with a
single colon and contains reading material which is organized into frames, each
of which is equal to one screen display.

2. Information Sections which reference other HELP files. This type o f information
section appears o n ly in HELP-indexed files; it begins with two colons (::) instead
of one. The two colons are immediately fo llow ed by the name o f the HELP file
(the HELP f i le type may be optionally specified).

In user-indexed HELP files, this type of information section contains the index
characters fo llow ed by a colon (:) and the name of the HELP f i le (the f ile type is
optional).

HELP-indexed File Skeletons
Skeleton outlines of HELP-indexed files of both types are shown below as samples

to follow.
Example 1: Text inform ation sections

INDEX ENTRY
INDEX ENTRY

128 U sing Z C PR 3 and C om m and D efin itions Sec. 1

: Title for Type 1 information section
<text>

: Title for Type 1 information section
<text>

EOF marker
Example 2: Node inform ation sections

INDEX ENTRY
INDEX ENTRY
::HLPFILE <— for HLPFILE.HLP
: [next information section]
::HLPFILE.TYP <— for HLPFILE.TYP
: [next information section]
EOF marker
User-Indexed File Skeleton

[Menu lines]
:x

[Information Displayed for Selection X]
: a

[Information Displayed for Selection A]
:1 b

[Information Displayed for Selections 1 or B]
:f tHELPFILE [HELPFILE.HLP is invoked by Selection F]
: z

[Information Displayed for Selection Z]
EOF marker
Accessing Video Attributes

The displays generated by HELP are screen-oriented. Under ZCPR3 with a
properly installed TCAP entry in the Environment Descriptor, HELP is able to
highlight inform ation on the screen and create "flashy" displays by using the clear
screen command appropriate to the user’s terminal. Use of this feature is automatic;
each frame is preceded by a clear screen.

The writer o f a HELP f i le can turn text highlighting on and o f f anywhere in the
HELP f i le by embedding the fo llow ing commands into the text:

AA (binary 1) — turn highlighting ON
AB (binary 2) — turn highlighting OFF

Chap. 4 O n-L ine H E L P Subsystem 129

It is recommended that i f highlighting is turned on, then it should be turned o f f
in the same line. Example:

AAthis is highlightedAB while this is not
The f i le HELPSYS.HLP is an example of one which extensively uses highlighting.

It is also a user-indexed HELP file.
Tree Structure of HELP

The diagram below illustrates how tree structures can be implemented under
HELP. A new node o f the tree is created whenever an inform ation section references a
HELP f i le instead of merely containing text. Each node becomes the base o f a new
tree, which itse lf may contain references to other HELP files.

From the diagram, we see that SubHelp Level 3 contains two HELP files. These
can be entered from Information Section 2 and Information Section 3 o f SubHelp
Level 2. By simply entering one of these two inform ation sections, the appropriate
HELP f i le is loaded and the user is placed at the next level. From these HELP files, the
user may move within the HELP f i le itself or move up to the previous level (naturally,
the user always has the option to exit to ZCPR3).

Info Sect
Text

Info Sect
Text

Basic HELP File —
1 |Info Sect 2

| HELP File
/ \

SubHelp File 1
1 |Info Sect 2

| HELP File

Info Sect 3 |Info Sect 4 | LO
Text | HELP File |

/ \
— SubHelp File 2 — LI

|Info Sect 1 |Info Sect2|
| Text | Text |

/ \SubSubHelp File
Info Sect 1 |Info Sect 2
Text | HELP File

1 —
|Info Sect 3
I HELP File

L2

/ \ / \— Sub3Help File 1 — — Sub3Help File 2 — L3
|Info Sect | |Info Sect 1 |Info Sect 2|
| Text | | Text | HELP File |

/ \
Sub4Help File — L4

|Info Sect 1 |Info Sect 2 |
| Text | Text |

Sample HELP Files with Trees
The fo llow ing listings show the source to three HELP Files. DEMO.HLP provides

the Root Node to a tree which includes DEM02.HLP and DEM 03.HLP as subnodes.
Additionally , DEM 03.HLP has a subnode which references DEMO.HLP, so we have a
recursive tree structure.

130 U sing Z C PR 3 and C om m and D efin itions Sec. 1

DEMO.HLP

TEST 1 - OK <— Menu
TEST 2 - SIMPLE NEST
TEST 3 - INVOLVED NEST
TEST 4 - OK
:TEST 1 <— First Info Section (Text)
THIS
IS
TEST
1
:: DEMO2
:: DEMO3
: TEST 4
TO BE, OR NOT TO BE,

<— 2nd Info Section (Node)
<— 3rd Info Section (Node)
<— 4th Info Section (Text)

THAT IS THE QUESTION!
TO TAKE ARMS AGAINST A SEA OF TROUBLES AND BY OPPOSING END THEM.
TO DIE, TO SLEEP ...TO SLEEP, PERCHANCE TO DREAM.
AYE, THERE'S THE RUB! FOR IN THAT SLEEP, WHAT DREAMS MAY COME!

DEM02.HLP

:TEST 2 <— No Menu — 1 Info Section
THIS
IS
TEST
2

DEM03.HLP

TEST 3A <— Menu
TEST 3B
TEST 3C
: TEST 3A <— First Info Section (Text)

THIS
IS
TEST
3A
the rain in Spain falls mainly in the plain

Chap. 4 O n-L ine H E L P Subsystem 131

: TEST 3B
THIS IS TEST 3B

<— 2nd Info Section (Text)
:: demo <— 3rd Info Section (Node)

132 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Chap. 5 O n-L ine H E L P Subsystem 133

5 Menu Subsystem

Overview
The menu subsystem provides two menu-oriented command preprocessors, MENU

and VMENU. Each of these draws its menu data from an associated f ile designated
*.MNU (for MENU) or *.VMN (for VMENU). For those users who wish to construct
their own menus, two diagnostic tools are available to check the syntax of a new data
file: M ENUCK validates *.MNU files, and VM ENUCK validates *.VMN files.

The d ifferen ce between the two preprocessors is that M ENU is basically line-
oriented, and can be used whether or not TCAP data is included in the environment
descriptor, whereas VM ENU is screen-oriented, relies heavily on screen characteristics
defined in TCAP, and can generate more elaborate and "flashy" displays. Generally
speaking, anything that can be done with M ENU can also be done with VM ENU, but
the reverse is not true.

Given the similarities between the two preprocessors, this chapter describes the
menu subsystem in terms of the capabilities of VM ENU, pointing out the differences
between M ENU and VM ENU where these are significant. Thus, all references to
VM ENU also apply to M ENU except where otherwise stated. When discussing areas
that are identical for both programs, we shall refer to "(V)MENU" as a shorthand
notation for "VMENU and/or MENU" (or some similarly cumbersome inclusive
expression). VM ENU works with menu files of type *.VMN; M ENU works with files
of type *.MNU. This chapter will refer to all menu files with the VMN file type, and
the reader should be aware that i f he is dealing with MENU, the f ile type is MNU.

Preprocessor Operation
(V)M ENU is a ZCPR3 Menu-Oriented Command Preprocessor. It acts as a front-

end to ZCPR3, providing a menu-oriented user interface to ZCPR3. Its function can
be represented by the fo llow ing diagram:

IV | | Z | |B | |P
User | M | | C | | D | | g
Menu --- >| E |-- >| P |--->| O |--->| m
Command | N | | R | | S | | s

I U| | 3 | | | |

The "User Menu Command" is a single character that the user strikes which
instructs (V)M ENU to perform a function. Once (V)M ENU begins processing this
function, it builds a command line for ZCPR3, optionally asking the user for further
input (such as a f i le name), and then passes the command line to ZCPR3 via the
Command Line Buffer. ZCPR3 then runs the command line and returns to (V)MENU.

(V)M ENU builds command lines based on simple input from the user. The user
need never know what the actual command line is. The command line itse lf is always
of the form:

<command> coptional user input>

134 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

As an example, a command built by (V)MENU to run X D IR with user input for a
f ile name specification , could look like the following:

XDIR <user input>
When (V)M ENU is executed, it looks for the f i le M ENU.VMN in the current

directory. If it f inds one, it loads it and begins processing. If it does not f ind one, it
simply exits. A f ile name may be specified in the (V)MENU command line to select a
f ile other than MENU.VMN.

The M ENU.VMN f ile can contain up to 255 menus to be processed by (V)MENU.
The (V)M ENU will begin processing at the first menu in MENU.VMN.

(V)M ENU itse lf is a COM file , like any other program under ZCPR3. U nlike most
other programs, however, it generates command lines to be executed by ZCPR3 and
stores its return command in the Shell Stack. In this way a loop is set up:

— >— +->- (V)MENU ->- ZCPR3

+-<- Command Line -<
Only (V)M ENU itself or a ZCPR3 tool like SHCTRL can terminate this loop. A

MENU.VMN f ile can be set up to execute any ZCPR3 command or sequence of
commands. The M ENU.VMN f ile can also be set up to not allow the user to leave
(V)MENU, to allow him to leave (V)MENU at will, or to allow him to leave (V)MENU
only if he knows a password.

This chapter is d ivided into two basic parts. The sections on "Using (V)MENU"
and "Summary of (V)MENU Commands" are designed to be read by a person wanting
to use (V)M ENU but not wanting to learn how (V)MENU works or how to program it.
These sections describe how to move from one menu to another, how to issue (V)MENU
commands, and how to leave (V)MENU i f the option is presented to him.

The other sections describe the programming aspects of (V)M ENU and are
intended to be used as a reference for the (V)MENU programmer. The (V)MENU
command programming summary is especially useful because it provides a summary of
the commands which the (V)MENU programmer may issue to (V)M ENU within a
*.VMN file.

Using MENU and VMENU
MENU Invocation. When M ENU is first invoked, one of three things will happen:

1 A menu w ill appear and be paged up to f i l l the screen; a command prompt will
appear at the bottom o f the menu.

2 A menu w ill appear and not be paged up to f i l l the screen; a command prompt
will appear at the bottom of the menu.

3 A command prompt will appear with no menu; this is called the Expert mode.
If at any time a menu display is garbled, or you wish to see the current menu (as

sometimes happens when you are in Expert mode), just strike the Return key. The
Return key refreshes the menu at all times.

- > - +
v
I

Chap. 5 M enu Subsystem 135

There can be up to 255 menus in one M ENU.M NU file; the command prompt
varies to reflect this. For example, i f there were only one menu in the f ile , and the
option to abort to ZCPR3 were not enabled, then the command prompt would take its
simplest form, looking like:

Command (<CR>=Menu) -
At this time the user may strike Return to refresh the display or strike the character
corresponding to a menu selection. Striking any other character causes the bell to
sound.

For instructions on moving from one menu to another, refer to "Using VMENU,"
below. One option available under M ENU but not under VM ENU involves access to a
System Menu, intended to give privileged users access to special commands that other
users are not allowed to run.

Access to a System Menu (if one is available) is gained by typing the command
MENU will respond:

Pass?
The user is given only one chance to type the correct password for entering the system
menu. If he enters an invalid password, the message "Password Error" will be
displayed and he will be returned to the menu he came from. If he entered the correct
password, the system menu will be displayed. This is always the last menu in the f ile
and its command prompt is:

Command (<CR>=Menu, *=lst Menu, <=Previous Menu) -
If the user is at the last menu before the system menu, the ">" command will not allow
the user to enter the system menu, even though, technically, this is the "next menu."
The only way to enter the system menu is via the "$" command and a valid password.

Using VMENU
When VM ENU is first invoked, it w ill be installed as a Shell, and control will

return to the ZCPR3 command processor for the next command in the line. When the
command line is exhausted, ZCPR3 will realize that a shell has been installed and
invoke VM ENU as a shell.

VM ENU will then come up, load the names of the files in the current disk
directory, load the menu f ile , and display up to sixteen files and the first menu in the
menu f i le to the user. The user will then be prompted for a command.

If at any time a Menu Display is garbled, just strike the AR key. AR refreshes the
menu at all times.

The prompt which appears at the bottom of the Menu display has the fo llowing
general form:

Command (<CR>=Menu,AC=Z3,*=lst Menu,<=Prev Menu,>=Next Menu)
There can be up to 255 menus in one VM ENU.VMN file. The VM ENU command

prompt varies to reflect this. For instance, i f only one Menu is present and the option
to exit from VM ENU to ZCPR3 is not available, then the Menu Command prompt
would take its simplest form, looking like this:

136 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

Command (<CR>=Menu) -
Strike AR at this time to refresh the Menu Display or strike the character o f a

Menu Option. These are the only choices, and striking a character which is not the
R E T U R N key or a menu option causes the bell to sound.

If the the option to exit to ZCPR3 is available and there is only one Menu in the
M ENU.VMN file , then the command line will look like this:

Command (<CR>=Menu,AC=Z3) -
The option o f aborting to ZCPR3 by striking Control-C (hold down on the

Control, or CTRL, key and strike the letter C) is now available. This will exit VM ENU
and return to ZCPR3.

On a brief note on option letters before going on. If one of your options is a letter
in the range A-Z, then case is not s ignificant, and you can invoke the option A, for
example, by striking either an upper- or a lower-case A.

If there is more than one menu in the *.VMN file , the command line options
become slightly more complex, but they are still quite easy to follow.

In the fo llow ing examples, assume that the option to exit to ZCPR3 is o f f , so the
"AC=Z3" option will NOT appear.

From the first menu in the f ile , the command line will look like the following:

Command (<CR>=Menu,>=Next Menu) -
To advance to the next menu, strike the ">" or the character. On most

keyboards, ">" is the sh ift o f the so VM ENU permits easy movement without having
to worry about sh ift ing the keyboard all the time.

If the last menu in the f ile is on the screen, the command line will look like the
following:

Command (<CR>=Menu,*=lst Menu,<=Prev Menu) -
This allows the user to strike the character to jump back to the first menu in

his *.VMN file . If "<" or is struck ("<" is usually the sh ift o f the ","), then the user
will back up one menu to the previous menu in the file.

If the user is somewhere in the middle o f the M ENU.VMN file , his command line
will look like this:

Command (<CR>=Menu,*=lst Menu,<=Prev Menu,>=Next Menu) -
Again, will go directly to the first menu, "<" or will go to the previous menu,

and ">" or w ill go to the next menu. Striking the R E T U R N key will refresh the
menu display.

In summary, moving about within VM ENU is quite easy. moves the user to the
first menu, "<" to the previous menu, ">" to the next menu.

Summary of MENU and VMENU Commands
The fu ll menu command line looks like the following:

Command (<CR>=Menu,AC=Z3,*=lst Menu,<=Prev Menu,>=Last Menu)

Chap. 5 M enu Subsystem 137

The available commands are:

Command Function
<CR> Refresh menu display (MENU only)
AR Refresh menu display (R E T U R N Key) (VM ENU only)
AC Exit to ZCPR3 (Control-C)
* Jump to the first menu
< or , Jump to the previous menu
> or . Jump to the next menu
$ Enter system menu (MENU only)
other Menu Option or Invalid Command; letters are

automatically capitalized, so a=A

Programming *.MNU and *.VMN Files
Data files *.MNU (used only with MENU) and *.VMN (used only with VMENU)

have identical structures, but MENU has a number of options not available in
VMENU.

The *.MNU (or .VMN) f i le is simply a text f i le which may be created with any
conventional CP/M editor, including WordStar. (V)M ENU ignores the most
significant bit o f all bytes, so editors such as WordStar, which occasionally set this bit,
can be used.

All *.MNU (or .VMN) files have the same general structure. The first line is
either a global option line or the beginning o f a menu display. If a global option line,
it begins with the character and this character is immediately fo llow ed by global
option characters. The global option line, then looks like this:

-option
After the global option line, i f any, comes the first menu. Each menu is structured as

follows:

#option
<Text of Menu Display>

#
menu commands

The fo llow ing are two sample Menu File structures:

-option
#option

<Text>
#
commands
#option

<Text>
#
commands

#option
<Text>

#
commands
##

138 U sing Z C PR 3 and C om m and D efin itions Sec. 1

##

Options. YM ENU has only one option character—"X"—which tells YM ENU to allow
the user to exit to ZCPR3. In using it, case is not significant. The X option enables the
facility which permits the user to type AC and return to ZCPR3.

M ENU has three additional options, not available to VMENU:

C Display command line to user
D Display menu to user
P Page Out menu display

The C option displays the command line built by M ENU to the user. This option is
primarily intended for debugging purposes; however, it can also be instructive to the user.
The D option displays the menu to the user; i f the display function is not turned on, we are
in the Expert mode and the commands are available without a menu display. The display
can be turned on at any time by striking Return. The P option clears the screen by issuing
24 successive <CR-LF> sequences to scroll the menu up o f f the screen. It is useful for
keeping only the current commands and options on the screen, but annoying to a user
accessing the system via a 300-baud modem; the menu programmer therefore is given a
means of turning o f f this scrolling.

When (V)M ENU first comes up, all options are turned off . The user cannot exit to
ZCPR3. The global options line which, i f present, is the first line of the f ile , turns on the
specified options for the course o f the session in general. That is, i f a global options line
like

-DPx
is used (case is insignificant), then menu display, paging, and exit to ZCPR3 are enabled
for all menus. However, i f some o f the menus in the f ile ought to deny exit to ZCPR3,
then the -x option may be temporarily turned o f f for those menus. This is done by
presenting the X option on the first line of each such menu immediately after the "#"
character. If the X option is NOT included in the global options line, it is turned OFF for
all menus in general. The default selected by using the global options line is overridden on
a per-menu basis by the local menu options.

Example:

No exit to ZCPR3 is permitted
-x
#x
#
commands
#x

No exit to ZCPR3
#
commands
#

The user may exit to ZCPR3.

C hap. 5 M enu S ubsystem 139

#
commands
##

*.MNU and *.VMN Commands
This section describes the technique and options available for creating command

lines in menu files. The inform ation herein is organized into the fo llow ing subject areas:
o Syntax of the command line
o :nn Option
o ! Option
o "text" prompts and input
o Variables ($D, $U, SFn, $Nn, $Tn, $Pp, $$)
o H ighlighting (AA, AB)
Command Structure

The commands in a menu f i le fo llow a simple structure. Each command occupies only
one line, and blank lines in the command group are not permitted. The command line is
structured as follows:

1[o][command]
where:

1 is the single character used to invoke the command;
note that it may be upper- or lower-case,

o is an opening option, which is one of:
:nn — go to Menu nn
! — have (V)MENU wait when the command is f in ished

command is an optional ZCPR3 command; note that i f the option is ":nn",
then a command here makes no sense.

:nn Option
The ":nn" option tells (V)M ENU to move to a d ifferen t menu in the *.VMN file . The

first menu is number 1. Example:

-x
#

#
a: 2
3 : 3
#

#
3 : 3
#x

1st Menu: A - Goto Menu 2 3 - Goto Menu 3

2nd Menu Command: 3 Goto Menu 3

3rd Menu Command: 2 Goto Menu 2

140 U sing Z C PR 3 and C om m and D efin itions Sec. 1

#
2:2
##

In the first menu, the user may strike:
"a" or "A" to goto Menu 2
"3" to goto Menu 3
">" or to goto the next menu (Menu 2)
AC to goto ZCPR3

In the second menu, the user may strike:
"3" to goto Menu 3

or "<" or to goto Menu 1 «>" Qr << i. tQ goto Menu 3
AC to goto ZCPR3

In the third menu, the user may strike:
"2" or ”<" or to goto Menu 2

to goto Menu 1

! Option
The "!" option causes (V)MENU to pause after the command line has been processed

and ask the user to "Strike Any Key" before continuing. In this way, i f a command
generates inform ation to be read by the user before (V)M ENU clears his screen, the "!"
option may be used to give the user all the time he wants to read this display.

" Prompt
Embedded within any command line may be a prompt for user input. This prompt

takes the form of
"prompt to user"

When encountered, (V)MENU will advance to the next line and print the text
contained within the quotes. (V)M ENU will then wait for the user to enter any text he
desires fo llow ed by a R ETU RN . At this point, the text entered by the user is capitalized
and placed into the command line at the point o f the prompt.

If the prompt appears at the end o f a (V)MENU command line, the trailing quote is
not required. As many prompts as desired may appear w ithin a (V)M ENU command line.
Examples:

-x
#

A - Run XDIR without Pause or Input
B - Run XDIR and Pause before Returning to (V)MENU
C - Run XDIR, Allow User Input, and Pause before

Returning to (V)MENU
M - Run MCOPY, Allow User Input of Dest Dir, Allow

User Input of Source Dir and File, and Pause
before returning to (V)MENU

- Run Any ZCPR3 Command and Pause beforeZ

Chap. 5 M enu Subsystem 141

Returning to (V)MENU
#
mlmcopy "Destination Dir? "="Source DIR:AFN? "
z!"Enter Command Line —

axdir
blxdir
clxdir "Enter Ambiguous File Name —
##

Note the space right before the "Prompt form in the C command. This space is
significant to keep the command and user input from running together. This "run
together" is desired for the Z command. Also note the dual prompt for the M command.

With the M command, the fo llow ing prompts will appear (and sample input):

Destination Dir? BACKUP:
Source DIR:AFN? *.TXT

and the fo llow ing command line is built:

MCOPY BACKUP:=*.TXT
The command text specified in the (V)MENU command line can contain embedded

variables which (V)M ENU will expand when the command line is processed. These
variables, which are denoted by a dollar sign ($) fo llow ed by one or two characters, are
defined as follows:

Variable Expands as
$D Current Disk
$U Current User Area
$Fn FILENAME.TYP for ZCPR3 System File n
$Nn FILENAME for ZCPR3 System File n
$Tn TYP for ZCPR3 System File n
$Pp Name of File being Pointed to (VM ENU only)
$$ Place a single $ in command line

These variables can also be used in the menu display itself, and their values will be
substituted when the display is generated. Example:

-x
#

Menu to Run M80 Assembler
Current File: $F1
Directory: DU

F - Define File
E - Edit $F1 P - Page $F1
A - Assemble $F1

142 U sing ZCPR.3 and C om m and D efin itions Sec. 1

#
fsetfile 1 "Filename? "
eedit $fl
azex m80 $nl
ppage $fl
##
Notes:
1. The ZCPR3 utility SETFILE is used to define the name of a ZCPR3 System File.

Four System Files are available, and they can be referenced by $F1 to $F4, $N1 to
$N4, and $T1 to $T4.

2. The A command shows the execution o f ZEX. (V)M ENU is a true ZCPR3 Shell,
and therefore ZEX commands can be issued from it and will run on top of it. The
prompt for the ZEX command lines will be "Menu>".

3. Assuming that "MYFILE.MAC" is assigned to the ZCPR3 System File 1 and the
user is logged into disk B user 1, the fo llow ing screen shows how the display and
the resulting command lines w ill be expanded when execution occurs:

Display

Menu to Run M80 Assembler
Current File: MYFILE.MAC
Directory: B1

Define File
Edit MYFILE.MAC P - Page MYFILE.MAC
Assemble MYFILE.MAC

Command Lines

Menu Command Expansion
fsetfile 1 "Filename? " SETFILE 1 "Filename? "
eedit $fl EDIT MYFILE.MAC
azex m80 $nl ZEX M80 MYFILE
ppage $fl PAGE MYFILE.MAC

Just as the HELP utility can take advantage o f the highlighting facil ity provided
in the Z3TCAP, so can YMENU. For those ZCPR3 Systems with a properly installed
TCAP, VM ENU will use the clear screen command to refresh the user’s screen and
highlighting can be enabled and disabled by embedding AA (to turn on highlighting)
and AB (to turn o f f highlighting) into the *.VMN file.

It is recommended that when highlighting is turned on, it should be turned o f f in
the same line for the sake o f consistency and to improve appearance.

F -
E -
A -

Chap. 5 M enu Subsystem 143

Example:

#
AAThis is highlightedAB and this is not

#

will appear with "This is highlighted" in a highlighted mode.
VMENU Variables

The $Pp variable is also available to the user under VMENU. $Pp returns
information on the f i le currently being pointed to by the user on the screen. This
variable has the fo llow ing forms:

Form Expands Into
$PF FILENAME.TYP of the pointed-to f ile
$PN FILENAME of the pointed-to f ile
$PT TYP of the pointed-to f ile

For instance, i f the f i le currently being pointed to is named MYFILE.TXT, then
the command line:

ECHO FILENAME .TYP=$PF FILENAME=$PN TYP=$PT
will output:

FILENAME.TYP=MYFILE.TXT FILENAME=MYFILE TYP=TXT
Example:

-x
Menu to Run M80 Assembler

Directory:
E - Edit Pointed-to File
P - Page Pointed-to File
A - Assemble Pointed-to File

#
eedit $pf
azex m80 $pn
ppage $pf
##

DU

Notes:

1. The E and P commands build command lines containing the fu ll f i le name and
type o f the f i le being pointed to.

2. The A command shows the execution of ZEX. (V)MENU is a true ZCPR3 Shell,
and, as such, ZEX commands can be issued from it and will run on top of it. The
prompt for the ZEX command lines will be "VMenu>".

144 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

3. Assuming that MYFILE.MAC is being pointed to by the user, the fo llow ing shows
the expansion of the command lines for this example:

M e n u C o m m a n d
eedit $pf
azex m80 $pn
ppage $pf

E x p a n s io n
EDIT MYFILE.MAC
ZEX M80 MYFILE
PAGE MYFILE.MAC

The first entry in any (V)MENU file display is named "No File", and this entry,
when pointed to by the user and expanded into the command line, is translated into a
prompt for the user to input the name o f a file. This feature is provided as a
convenience to the user so that he will have the ability to easily specify new files
which do not yet exist to the (V)MENU commands (such as for an editor command in
which the user wants to create a new file).

If the pointer is at "No File" and the command line uses several references to the
pointer (as in the ECHO command example above), then the user is prompted only once
for the name o f the f ile , and each reference derives its inform ation from this name.

Closing Notes
As many commands as the printable ASCII character set (without lower-case

letters and the (V)M ENU command characters) will allow are permitted by (Y)MENU.
The text, however, for each menu must be able to f i t on a screen with the f i le directory
display at the top and the command prompt at the bottom. This means that the text
cannot exceed 16 lines for VM ENU or 20 lines for MENU.

(V)M ENU fits in nicely to the ZCPR3 System of programs. The section on
"Relationship o f M ENU and VM ENU to the ZCPR3 System" (follow ing) explains how
(V)MENU and the other ZCPR3 programs work together.

The fo llow ing ASCII characters may not be used as commands since they are used
elsewhere:

<SPACE> # % , . < > *
<Any Char Less than Space>

(V)MENU Programming Command Summary
Each (V)M ENU command occupies only one line, and blank lines in the command

group are not permitted. The command line is structured as follows:

1[o][command]
where:

1 is the single character used to invoke the command;
note that it may be upper- or lower-case,

o is an opening option, which is one of:
:nn — go to Menu nn
! — have (V)M ENU wait when the command is fin ished

command is an optional ZCPR3 command; note that i f the option is ":nn",
then a command here makes no sense.

Chap. 5 M enu Subsystem 145

The (V)M ENU commands are:
C o m m a n d F u n c t io n
:nn Goto Menu nn, where the first menu is Menu 1
! Wait after command line is executed before processing the menu
"Prompt" Prompt the user for input and accept it

The (Y)M ENU variables are:

V a r ia b le E x p a n d s to
$D Current Disk
$U Current User
$Fn FILENAME.TYP for System File n
$Nn FILENAME for System File n
$Tn TYP for System File n
$PF FILENAME.TYP for Pointed-to File (VM ENU only)
$PN FILENAME for Pointed-to File (VM ENU only)
$PT TYP for Pointed-to File (VM ENU only)
$$ $

Note: System Files can be defined by the SETFILE command.

The H ighlighting Embedded Characters are:

AA Turn ON Highlighting
AB Turn OFF Highlighting

Note: it is recommended that i f highlighting is turned on, it should be turned o f f
in the same line.

The fo llow ing ASCII characters may NOT be used as commands since they are
used elsewhere:

<SPACE> # % , . < > *
<Any Char Less than Space>

Relationship of MENU and YMENU to the ZCPR3 System
(V)M ENU is installed by Z3INS. Like most of the ZCPR3 utilities, (V)MENU

interacts with the system as a whole and cannot be used with systems other than
ZCPR3. In particular, (V)MENU requires that the ZCPR3 Multiple Command Line
Buffer and Shell Stack facilit ies be available to it and cannot run without them.
(V)MENU invokes command lines via the Command Line Buffer and returns to itself
thru the Shell Stack. VM ENU (but not MENU) also uses the ZCPR3 System Files for
some of its variables and the Z3TCAP facil ity for its screen manipulation
(highlighting).

Also, CD (Change Directory) and STARTUP (or, ST for CD) can come into play
with (V)MENU. When CD logs into a new directory, it looks for the f ile ST.COM and
executes it i f there is one. ST is simply STARTUP renamed, and STARTUP will load
the Multiple Command Line Buffer with a command line and then terminate.

146 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

From the point of view of (V)MENU, the command loaded by ST could be
(V)MENU. The e ffe c t of this is to automatically enter (V)MENU when the user
employs CD to enter a given directory.

Hence, by using CD, a user can enter a directory and suddenly f ind himself in a
menu instead of at the ZCPR3 command level. This is good for applications where a
directory is set aside for a specific purpose and only certain operations are to be
performed in it, such as cataloging disks or handling accounts.

Now that (V)M ENU is running for the directory, a (Y)M ENU command could be
another CD to another directory. Or it could simply be a DU: form. Example:

#
A - Enter ZCPR Directory
B - Enter AO:

#
acd zcpr:
baO:
#

Here, i f A is issued, then CD will move into ZCPR: and execute ST.COM i f there
is one there. If B is issued, the user is logged into AO:. (Y)MENU is the next command
in both cases (invoked as a Shell), so (V)MENU automatically reinvokes and looks for
MENU.VMN. If it finds it, we are in another (V)MENU system, and, i f it doesn’t, we
arc back to ZCPR3 command level.

Under the A option, i f CD finds ST.COM, ST will execute its function and, unless
this function pops the Shell Stack (SHCTRL POP command), (V)M ENU will reinvoke
after it is complete.

Under the B option, we will run (V)MENU next and simply exit i f a MENU.VMN
f ile is not found.

VM ENU (but not M ENU) interacts heavily with the ZCPR3 System Files which
are defined as a part of the ZCPR3 Environment Descriptor. There are four System
Files, and three of them are used by VM ENU for various purposes:

File Purpose
2 Name of Current File
3 Name of Menu File
4 Name (containing wild cards) used to Select Files for VM ENU File Display
System File 2 contains the name o f the current VM ENU file. By changing this

name, a transient can cause the pointer of VM ENU to point to some other f ile when
VM ENU is reinvoked.

System File 3 contains the name of the menu f i le which VM ENU is using to derive
menu displays and command from. By changing this entry, a transient can select
different menu files dynamically.

System File 4 is used to indicate which files (such as *.TXT or *.*) are selected for
display by VM ENU when it is invoked. By changing this entry, the nature of the f ile
display can be changed dynamically.

Chap. 5 M enu Subsystem 147

(Y)MENU Error Messages
In order to make (V)MENU as small as possible, the error messages have been

reduced to a minimum. (Y)MENU provides a minimum indication that something is
wrong and aborts.

The program (V)MENUCK is designed to tell the user more specifically what is
wrong. (V)MENUCK is a *.VMN/*.MNU Syntax Checker, and it looks for all sorts of
error conditions that can occur in a *.VMN/*.MNU file.

(V)M ENU provides the fo llow ing minimal error messages:

Message
No Shell Stack
No Command Line
Shell Stack Full
Shell Stack Size
File x.typ Not Found
TPA Full
<Bell>
Structure Error
Password Error

VMENUCK (version 1.0)
MENUCK (version 1.0)
Syntax:

VM ENUCK d in u fn <— default f i le type is VMN
M ENUCK d in u fn <-- default f i le type is M NU

Function:
(V)M ENUCK checks the syntax o f a *.VMN/*.MNU file for the ZCPR3 Menu
Shell, (V)MENU. (V)M ENU is optimized for size and speed, and, in keeping it
small, built-in diagnostics were reduced to the minimum. (V)M ENUCK analyzes
.VM N/.M NU files and provides inform ative diagnostics on any syntactical
errors w ithin them.

Meaning
Shell stack not available
Command line buffer not available
Shell stack is full
Shell stack entries are too short for (V)M ENU cmd line
Menu f i le not found
Memory is full
User command is in error
*.VMN File structure error
Invalid password given (MENU only)

Options:
None.

Comments:
(V)MENUCK checks to see i f the size of the *.VMN file is too large for the TPA
available to the (V)M ENU command. This is an additional check beyond the
normal syntax check.

(V)M ENUCK identif ies the location of errors by line number. The first line in the
f ile is line number 1.

Selected Error Messages:
Self-explanatory.

Examples of Use:

VMENUCK MYMENU
MENUCK MYMENU

— perform check on MYMENU.VMN
— perform check on MYMENU.MNU

148 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Chap. 6 M enu S ubsystem 149

6 Shell Subsystem

A number o f d ifferen t shells are supplied with ZCPR3, including VFILER and
MENU. The principal shell processor is SH, which permits the user to use Named
Variables. These are expanded in a manner similar to macros in his command lines.
Two programs, SHDEFINE and SHVAR, allow the user to dynam ically create Named
Variables, and the SFIFILE command allows Named Variable defin itions to be
grouped into sets of variables.

A conventional CP/M command line could look something like this:

ED MYFILE.TXT

Using SH, a ZCPR3 command line like

ED %WORKFILE

can be generated, and, as SH substitutes the defin it ion of the variable WORKFILE
when it interprets the command line, "ED %WORKFILE" could be expanded into "ED
MYFILE.TXT" i f WORKFILE=MYFILE.TXT. By changing the value of the variable
WORKFILE, the meaning of the command "ED %WORKFILE" is correspondingly
changed.

Once SH is invoked (by typing the command SH), any command typed by the user
is passed thru SH first, expanded as required, and then, i f the command is not an SH-
resident command, the expanded command line is passed to ZCPR3 for processing.

SH variables may be nested to any depth. Recursion, however, should be avoided,
and it is the responsibility o f the user to ensure that recursion does not occur.

’%%’ is interpreted by SH as a single ’%’. For example, SH variables may be
assigned as follows:

VAR1 = "ED %%VAR2" VAR2 = "MYFILE.TXT"

VAR1 is expanded as "ED %VAR2" which is, in turn, expanded to "ED MYFILE.TXT".
This command is then passed to ZCPR3 for execution.

SH -Based Commands
There are three SH-resident commands:

SHCMT switch SH to run in comment mode; in comment mode, all lines which do
not begin with the character ! are treated as comments and flushed

SHECHO with Echo enabled, all expanded command lines are printed to the user to
show him what the line looked like after expansion

SHEXIT SH is popped from the Shell Stack, enabling the next lower Shell for
execution

Comment Mode. The normal prompt for SH is "DU:NAME>>", as opposed to
"DU:NAME>" for ZCPR3. If the SHCMT (SH Comment) facil ity is enabled, the SH
prompt becomes "DU:NAME;".

150 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Any text issued by the user or from a command f i le (such as ZEX) will be
processed as a comment unless the first character of the line is an exclamation mark (!),
which is an indicator to process the command text that follows.

The command SHCMT switches to comment mode, and ISHCMT switches back.
SHECHO, SHEXIT, and ?. The SHECHO command is also a toggle, enabling and

disabling the echo of command lines after all variables have been resolved.
The SHEXIT command causes the Shell Stack to be popped one level, which in

turn causes the SH Shell to be terminated since it was on the top of the stack.
Both SHECHO and SHEXIT can be executed from SH Comment mode by

prefix ing these commands with an exclamation mark.
The ? command (a line beginning with a quesiton mark) invokes the built-in help

facil ity of SH, which simply reminds the user of what the built-in commands are for
SH.

Other Shells. SH is just the beginning of the possible ZCPR3 shell stack
applications. M ENU and VFILER are both shells also, and they execute like SH. All
three shells can pass command lines to ZCPR3, have ZCPR3 execute these commands
in its normal fashion (complete with the command-search hierarchy), and then return
to the appropriate shells when done. A shell imposes a new initial command line
interpretation on the input command line.

Selected Error Messages. "No Shell Stack" means that a Shell Stack has not been
installed in the ZCPR3 System and SH cannot run.

"Shell Stack Full" means that there is not enough room on the Shell Stack for SH to
push itself and SH cannot run.

"Shell Stack Entry Size" means that the shell stack entries are too short for SH to
define the parameters it needs to control its operation. SH cannot run.

Potential Problems. Only one noted problem exists with SH. Certain ZCPR3-
rcsident and SYSRCP-resident commands should be avoided. These commands
include:

GO because the TPA has been changed since the desired command executed

SAVE same reason

SH tends to be a little slow in its loading. Unfortunately , SH has already been
compressed as much as possible, so it will probably always take more time than simply
invoking the ZCPR3 command processor directly.

Related Commands . The follow ing commands are related to the SH shell and
have an impact on its operation.

SHCTRL This command can take direct control of the Shell Stack o f ZCPR3. It
can display the contents of the stack, pop the top-most shell o f f o f it
(thereby terminating the current shell), or clear the stack entirely
(thereby terminating all shells on the stack).

SHDEFINE This command can be used to interactively define a number of shell
variables at one time. The user can display them and edit them as he
desires.

C hap. 6 Shell Subsystem 151

SHFILE

SHVAR

This command defines the name of the shell variable f ile in the ZCPR3
Environment Descriptor. As many shell variable f iles as desired may be
defined, each containing their own set of variables.

This command can be used to interactively define one shell variable at a
time. It is slightly more convenient than SFIDEFINE in some cases and
can be used in command files and menus.

152 U sing Z C I R3 an d C om m and D efin itions Sec. 1

Chap. 7 Shell S ubsystem 153

7 VFILER and File Maintenance

Overview of the VFILER File Maintenance Tool
VFILER (for Video FILER) version 3.0 gives the ZCPR3 user a specialized f ile

manipulation utility that takes advantage of the special features o f ZCPR3. It
performs the same basic functions as DISK7, CLEANUP, WASH, and SWEEP, but has
additional, ZCPR3-specific, commands and features that make VFILER more
convenient than its predecessors for the ZCPR3 user. VFILER, unlike the tools
mentioned above, is totally screen-oriented, being designed to run on a conventional
CRT that supports cursor address, clear screen, and (optionally) erase to end o f line.

VFILER sign if icantly sim plifies the user interface. An alphabetized listing of
files is presented to the user along with a pointer. The user employs standard cursor
movement commands to move the pointer up, down, right, or left until it is pointing to
a f ile of interest. Once pointing to such a file , the user may then perform a number of
operations on the file.

VFILER is invoked by a command line of the fo llow ing form:

VFILER dir:filename.typ
where all parameters are optional. "DIR" is the directory to be made current; it may be
any valid ZCPR3 directory reference (e.g., a mnemonic such as "ROOT:" or a D U form
such as "B7:" or "12:"). "filename.typ" is an ambiguous f i le name which specifies an
initial selection o f the files to be processed by VFILER.

The reference for the ambiguous f ile name is stored in System File 4, and can
therefore be dynam ically changed by issuing a SETFILE command (e.g. SETFILE 4
afn) during the execution of VFILER. The result is to change the defin it ion o f this
ambiguous f i le reference; the next time VFILER restarts execution, the new
ambiguous f i le reference takes e ffec t , and the files are selected accordingly.

The fo llow ing description applies to VFILER 3.0. VFILER 3.0 will run only
under ZCPR3, unless the Environment Descriptor is made internal to VFILER, in
which case VFILER will be 1 /4K larger but will run under earlier versions of ZCPR.

Installing VFILER
Installation of VFILER is quite simple, as is installation of most utilities under

ZCPR3. Installation consists merely in providing VFILER with a pointer to the
ZCPR3 Environment Descriptor (unless VFILER has been assembled to contain an
Environment Descriptor, in which case the entire Environment Descriptor is
necessary).

Z3INS can be used to install VFILER. To do this, create an INS f i le (call it
VF.INS) containing the name of the VFILER.COM f ile on one line. Assuming that
your system Environment Descriptor f ile is named SYS.ENV, issue the command:

Z3INS SYS.ENV VF.INS
This completes the normal installation of VFILER.

There are some customization equates at the front o f the VFILER.MAC source
file. The user will generally not need to change any of these, but may do so i f he so
desires. One such equate enables or disables the built-in documentation (help) feature.
If this feature is disabled, any help reference will chain to a HLP f ile (VFILER.HLP)

154 U sing ZC PK 3 an d C om m and D efin itions Sec. 1

and YFILER.COM will be about IK shorter. Enabling the built-in documentation
feature provides the user with online help that is more concise but is available much
more rapidly since it is memory-resident while VFILER is running.

VFILER Command Summary

Tagging Commands — -------- File Operations ----------
T - Tag File C - Copy File D - Delete File
U - Untag File F - File Size R - Rename File

G - Group Copy/Delete/FSize/Tag/Untag
— File Print & View — -- User Functions --

Cursor —
AE

A

P - Print V - View 0 1 VO - Execute # - Help
— Movement Commands — _ — — Miscellaneous --

AS <-+-> AD <SP> - File Forward A - Toggle Alpha Sort
V <BS> - File Backward H - Help File
AX + - Screen Forward N - New DIR

- - Screen Backward S - Disk Status
Screen — J - Jump to a File Z - ZCPR3 Command
AA Left
AF Right

Q - Refresh Screen AC - Exit

Movement Commands —
AE - Move Up (Wrap to Bottom)
AX - Move Down (Wrap to Top)
AD - Move Right (Wrap to First File of Next Line)
AS - Move Left (Wrap to Last File of Previous Line)
AF - Move Screen Right (Wrap to First Screen)
AA - Move Screen Left (Wrap to Last Screen)

The user’s Z3TCAP entry may define four other single-character commands to
conform to the arrow keys on his specific terminal. These commands will override the
set described above i f any conflicts exist (that is, i f your down-arrow key generates a
AE, AE will now mean Move Down in all cases).

Screen Left and Right make sense when there are too many files to f i t on one
screen. In this case, the files are broken into screen directories, and Screen Left and
Right are used to move between them.

Chap. 7 V F IL E R and File M ain ten an ce 155

User Functions
The VFILER user may invoke up to ten extra commands that he has previously

defined, by means of a set of user-definable functions. These functions are executed
by striking a digit from 0 to 9. To implement user-defined functions, perform the
following steps:

1. Create a f ile called VFILER.CMD containing your extended command set.

2. Place VFILER.CMD in some directory along your command search path.

3. When in VFILER, i f you strike a digit or a pound sign (#) for help, VFILER
searches along the path for the first VFILER.CMD f ile it f inds and extracts the
information from it.

Since VFILER searches for VFILER.CMD along the path, several VFILER.CMD
files may be available for the user. For instance, i f the path is $$ -> A$ -> A15, then
VFILER will look for VFILER.CMD in the current directory, disk A/current user, and
disk A/user 15. A general-purpose VFILER.CMD f ile may be placed in A15, and
special-purpose VFILER.CMD files (e.g., for assembler language development, C
development, word processing, etc.) may be placed in selected user areas on A. For
instance, A7 might contain WordStar and be used for word processing, while B7 is the
scratch area for text files. With this path, a user editing files in B7 will f ind WS in A7,
VFILER.CMD (for word processing) in A7, and his system commands in A 15.

If any of the extended commands require the selection of options, the user is
prompted to supply them. When values for all of the mandatory options have been
supplied, VFILER chains to the new command via the ZCPR3 Command Line Buffer
feature, executes the command line generated, and returns. VFILER is a true shell
under ZCPR3.

The structure o f VFILER.CMD is quite simple. It can be created by any CP/M
text editor, and consists o f the fo llow ing types of lines:

1. a command line, which begins with a digit (0-9) and contains the text of the
command to be executed should that digit be typed by the user.

2. a help block, which is printed whenever the user types a pound sign (#); this block
is denoted by a line which begins with a pound sign, and it extends to the end of
the file.

3. a comment line, used for embedding explanatory comments, which are for
reference purposes only and are not seen by the VFILER user.

Command Line. A command line consists of a digit, zero or more spaces (which
are ignored), and the text o f the command with embedded prompts for user input.
These prompts are enclosed in single- or double-quotes (’ or "). When VFILER executes
these command lines, it prints the prompt contained within the quotes as they are
encountered, and waits for the user to input a line of text (terminated by a RETURN).
At this point the text is substituted in the command line containing the prompt. If a
prompt extends to the end of a command line, it need not be terminated. For example
the fo llow ing line:

1 copy 'Source File? ' 'Destination Dir? '

156 U sing Z C PR 3 and C om m and D efin itions Sec. 1

defines user function 1. The user is prompted with "Source File?", he enters his text, it
is substituted in the command line, he is prompted for "Destination Dir? ", he again
enters a response, it is substituted, and the resulting command line is executed. In the
above example, i f the user responds with "myfile.txt" and "CO:", respectively, then the
command line

copy myfile.txt CO:
is built. Note that spaces and other characters between the prompts are significant.

If the command line in VFILER.CMD contains the following:

1 mcopy 'Dest Dir? '='Source File? '
then the same responses will generate the command line

mcopy CO:=myfile.txt
Parameter Passing. Three parameters may be passed from VFILER into the

command line being generated. These parameters and their symbols are:
Symbol Parameter

%D Current Disk Letter
%U Current User Number (1 or 2 digits)
%F Current File Name (pointed to by arrow)
%$ DU:FILENAME for Current File
If the user must insert a ’%’ character into the command line he is building, ’%%’

places one ’%’ into the line. For example:

echo Disk is %d, User is %u, File is %f
prints (if the user is in A15 and pointing to MYFILE.TXT):

Disk is A, User is 15, File is MYFILE.TXT
Help Block. The Help Block in the VFILER.CMD file is simply a block of text

which extends from the pound sign (#) in the f i le to the end of the file . This help
information is displayed to the user as one screen, and it is the responsibility of the
person who writes the VFILER.CMD f ile to see that this body o f text (including the
line the pound sign is on) does not exceed 22 lines. Example:

Help for Word Processing
1 - Run WordStar
2 - Run WordMaster
3 - Run ROFF4

Comment Line. A comment line is any line which does not begin with a digit or a
pound sign. The text of that line is the comment. It is not displayed to the VFILER
user and is used only for reference to aid in maintaining the VFILER.CMD file. For

Chap. 7 V F IL E R an d F ile M ain ten an ce 157

example:

! This is a comment
This is also a comment

Running ZEX from VFILER. Like all standard ZCPR3 Shells, VFIHER pupports
the execution of the the ZEX command f ile processor on top of itself. If ZEX is
running, VFILER will simply prompt ZEX for input rather than entering its normal
screen-oriented display mode. In this way, a command executed from the
VFILER.CMD f ile may invoke ZEX, and all o f the ZEX command f ile processing will
be performed before VFILER is reentered.

Sample VFILER.CMD File. To clarify the use o f the user-defined functions, A
sample VFILER.CMD f ile is shown below.

! VFILER Command File for Richard Conn
1 xdir 'XDIR Options? '
2 protect %D%U:%F 'PROTECT Attributes? •
3 wm %$
4 t2a
5 echo Disk=%d User=%u File=%f DU:FILENAME = %$
#VFILER Command File for Richard Conn
The following VFILER Macros are provided —

1 - XDIR with Options
2 - PROTECT Current File
3 - Edit Current File
4 - TERM III
5 - Echo Current File and Text

Tagging Commands

T Tag f i le for inclusion for mass f i le operations (group operations). The f ile
remains tagged until either a disk log-in or ’U ’ is used to untag it. A ’t’
marker is placed by the tagged f ile name as a reminder the f ile is tagged for
mass copy or mass delete.

U Untag a f i le previously tagged for mass f ile operations. ’U ’ can be used to
move cursor ’forward’ for quick untagging o f files. Logging-in drive again
with ’N ’ also untags all files.

G T or U Group (Mass) Tag or Untag. The user is prompted for the operation, and
two o f his options are T and U. If either operation is selected, tagging or
untagging occurs automatically from the cursor position to the end of the
screen on all f iles in this area. If the user then wishes to see the

158 U sing Z C PR 3 and C om m and D efin itions Sec. 1

accumulated sizes o f the tagged files, the G F (Group File Size) command
may be issued.

File Display Commands

P Print text f i le to CP/M list device (printer). Any keypress cancels.

V View text f i le on console, with pagination and single-line turn-up. <CTRL-
C> cancels function. <SPACE> advances to next line, and any other
character advances the screen. Only ASCII characters are processed.
Details on CRT and Printer sizes (number of lines on screen, number of
lines on printer, etc.) are derived from the ZCPR3 Environment Descriptor
and need not be of concern to the user. The command CPSEL can be used to
select the CRT or Printer characteristics from the Environment Descriptor
as desired.

File Operation Commands

C Copy f ile to another DIR area with automatic CRC verification. The
standard ZCPR3 DIR form is allowed, and a colon after the specification is
optional. System reset occurs for disk change. The user is prompted to erase
an already existing f ile on another drive or in other user areas. Before
attempting a copy, check to see that there is enough room on the destination
disk.

D Delete f i le from disk. Reconfirm ation is requested before the deletion is
performed.

F Display f ile size in kilobytes, rounded up to next disk allocation block.

G Invoke Group (Mass) command. The three options o f interest here are C
(Copy all Tagged Files), D (Delete all Tagged Files), and F (File Size of all
Tagged Files).

G C Group copy o f tagged files to another D U area. Auto-erase occurs i f file(s)
already exist(s). Prompts for desired D U area as with ’C’ command. Group
copy function can be repeated without re-tagging files.

G D Group delete of tagged files. Prompts for approval: i f the response is Y,
deletion of all tagged files occurs without further user intervention; i f the
response is V, user is asked to approve each deletion before it is made. If
the response is any other character, the operation aborts.

G F Group f i le size summary. Adds up the f i le sizes of all tagged files and
displays this sum.

Chap. 7 V F IL E R and F ile M ain ten an ce 159

R Rename f i le on current drive. Only CP/M convention names permitted.
Wild cards are not permitted. User is prompted for new f ile name.

Movement Commands

<SP> Advance to next f ile name. Wraparound from last to first may occur. The
WordStar AD character or your right arrow key (if available in the
Z3TCAP) perform the same function.

<BS> Back up to last f i le name. Wraparound from first to last may occur. The
WordStar AS character or your left arrow key (if available in the Z3TCAP)
perform the same function.

J Jump to a file. Used to quickly jump to a specific file. User is prompted for
a f i le name, and wild cards (? and *) may be used. User is positioned at
first f i le which matches wild cards i f found; user is positioned at first f ile
in ring i f not found.

Q Refresh the screen. The current screen will be redisplayed.

+ Jump to Next Screen (if any). If there is more than one screen of files, the
user is advanced to the next screen. If at the last screen, wraparound occurs
to the first. AF also performs this function i f not overridden by arrow keys.

Jump to Last Screen (if any). Similar to + but in the opposite direction.
Wraparound to last screen may occur. AA also performs this function if not
overridden by arrow keys.

Arrows WordStar arrow key movement (if not overriden by arrow keys in Z3TCAP):

AE
A

AS < - + - > AD
V

AX

Miscellaneous VFILER Commands

A Toggle Alpha Sort. This command reverses the sense of the sort of the
current directory, reloads the directory, and refreshes the screen, having
sorted it in the new sense. Sorting is done by f ile name and type or by file
type and name.

H Invokes external HELP Information. VFILER will chain to HELP and
display the information in VFILER.HLP. VFILER checks to see i f HELP
can be found along path (external i f available, internal if external path is
not available) and does not attempt to chain if HELP.COM cannot be found.

160 U sing Z C PR 3 and C om m and D efin itions Sec. 1

N Login new D U area for display and reset system for disk changes. Format
of D U form is same as ’C’ for copy.

S Status o f requested drive, shows remaining disk storage in kilobytes and
number of f iles in current directory.

Z Run any ZCPR3 Command Line. User will be prompted for command line,
and YFILER will be reentered in same D U area as when command was
executed. Command will execute in the original D U area as indicated by
the prompt.

C Exit to Operating System.

/ o r ? Print Command Summary (Short Help Info). VFILER may be assembled to
omit built-in help, creating a YFILER which is about IK shorter than a
VFILER with the built-in help. If the built-in help is omitted, these
commands chain to the VFILER.HLP f i le instead (see Installation, above).

Chap. 8 V F IL E R an d F ile M ain ten an ce 161

8 DU3 Disk Utility

DU3 is intended for use on a ZCPR3 system, and is designed for installation with
a minimum o f trouble. In fact, in almost all cases, no changes to the source f ile should
be necessary to get DU 3 up and running. This is because DU 3 uses the disk parameter
block of CP/M to determine the characteristics of the disk environment.

DU3 is installed by running the ZCPR3 utility Z3INS on it. To perform its
functions, DU 3 needs only a pointer to the ZCPR3 Environment Descriptor. DU3 is
assembled with VLIB, Z3LIB, and SYSLIB3.

The screen displays shown on the fo llow ing pages are very close to the actual
screen displays the user will see on his terminal when he runs DU3. The differences
will be cosmetic in nature.

DU3 Command Summary. A command line may consist of one or more commands
separated by commas; the commands are executed sequentially, in the order in which
they appear. The only exceptions to this rule are the rntext command (which stores the
command line away as a macro) and the *nn command (which repeats the command
line). The commands are listed below in the order in which experience shows that they
are most frequently used.

Editing

E Invoke Editor

Positioning
Tn Position to Track n (dec) Sn Position to Sec n
Gn Position to Group n (hex) G Show position
+n Advance to Next Sector -n Back up to Last Sec

Displaying
An-n ASCII Dump Hn-n Hex Dump
Dn-n ASCII and Hex Dump Vn View n Blocks
M Display Disk Map Mn Display File in Group n

Data Modification

CAn text Enter Text C A n l-n 2ch ar Enter Char over Range
CHn vals Enter Binary Values C H n l-n 2 v a l Enter Value over Range

Disk Read/Write

R Read Current Block W Write Current Block

Exiting DU3

ACX Exit to ZCPR3 Exit to ZCPR3

162 U sing ZCPR.3 an d C om m and D efin itions Sec. 1

n
:Pn
:P@

<B
<G
<Gn

Q
QSf

Ff
Un

Ld

P

@

Exec Macro (0<=n<=9)
Print Macro n
Print Prev Command

Macros
:nt D efin e Macro n w /str t
:PA Print All Macros

Block/Group Queueing

Save Current Block in Temp
Save Current Block on Queue
Save Current Group on Queue
Save Group N on Queue

> Get Saved Block
>B Get Block from Queue
>G Get Current Group
>Gn Get Group N

Queue Control

Print Queue Statistics QZ Zero (Empty) Queue
Save Queue as File f

Data Searching

Find File f =str Search for String
Set User Area for Find

Log in Disk

Toggle Printer

Login/Disk Reset

N New Disk Reset

Printer Output

Command Manipulation

Exec Prev Command *nn Repeat Command Line

#

!

Statistics /H elp

Display Disk Stats ? Display Help Info

Halt/SIeep
Halt and Wait for User Zn Sleep n Seconds

DU3 Commands: Log In, New Disk, Stats
The fo llow ing commands are discussed in this section:

L Log in Disk
N N ew Disk (Reset Disk System)
M Map Disk Directory
U Select User Number
Print Disk and Queue Statistics

Command: L[d]. The simple "L" command re-logs in the current disk. The user may
pull out a disk, put in a new, and "L" just to log it in. The form "Ld" (where d is a valid
drive letter) is used to log in a specific disk and permit the user to work on that

Chap. 8 DU3 D isk U tility 163

particular disk from then on.
Example (actual DU 3 session):

DU3 Bl? 1
DU3 Bl? la
DU3 Al? lb

Command: N. This tells DU3 that the user just put in a new disk. For those BIOS
implementations that need to be told specifica lly (Reset) that a disk change has been
made, use this command every time a disk is changed while DU3 is running. Example:

DU3 Bl? n
Note: There was a sign ificant delay before the prompt returned. A complete disk

system reset took place.
Command: M[n]. Dumps a map of the group allocations for files. Mn shows which file
is allocated to group "n". Example (actual DU 3 session, edited):

DU3 Bl? m
0010-0010 07 STD .MSG 00 •

• 0011-0011 07 TALK .SUM 00
0012-0012 07 Z2CON . WSH 00 •

• 0013-0013 00 LDIR • C 00
0014-0014 00 COMMAND • LBR 01 •

• 0015-0015 00 LDIR .C 00
< Detail Left Out >

004B-004B 08 MASTER .CAT 03 •
• 004C-0050 00 COMMAND • LBR 05

0051-0051 00 COMMAND .LBR 07 •
• 0052-0052 00 UNERA15 .COM 00

0053-0053 08 MENU . CPR 00 •
• 0054-0057 00 COMMAND .LBR 07

Type Any Character to Continue or AC to Abort -
DU3 Bl? m54
0054-0057 00 COMMAND .LBR 07 :
Group = 0000:00, Track = 122, Sector = 1, Physical Sector = 1

The entries are divided as follows:

0010-0010 07 STD .MSG 00 : 0011-0011 07 TALK .SUM 00
A A A A

| | Filename Extent
| User Number
Group Range

Command: Uu Logs user ’u’ for next F (Find File) command.
Example (actual DU3 session):

DU3 Bl? u7
DU3 B7? ul

164 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

Command: #. Prints the disk parameters:

o Current Disk Drive
o Size of Group in Blocks
o Number of Groups on Disk
o Number o f System Tracks

o Number of Tracks on Disk
o Number o f Sectors Per Track
o Number of Directory Entries

Prints the queue statistics:

o Size o f Queue o Space Available

DU3 Commands: Movement
The fo llow ing commands are discussed in this section:

G Position to Group
S Position to Sector
T Position to Track
R Read Block
W Write Block
+ Advance to N ext Logical Sector

Backup to Last Logical Sector

Command: G[nn]. Position to group nn and read block. If the form is simply "G", show
the current position.

Example (actual DU3 session):

DU3 Bl? g0
Group = 0000:00, Track
DU3 Bl? g4
Group = 0004:00, Track
DU3 Bl? gGroup = 0004:00, Track
DU3 Bl? go
Group = 0000:00, Track

122, Sector = 1, Physical Sector = 1

122, Sector = 129, Physical Sector = 12!

122, Sector = 129, Physical Sector = 12!

122, Sector = 1, Physical Sector = 1
Command: Tnn and Snn. "Tnn" does a seek to track nn but does not read a block. "Snn"
positions to sector nn on the current track and reads the block there. Example (actual
DU3 session):

DU3 Bl? tl24
Group = 0015:00, Track = 124, Sector = 1, Physical Sector = 1
DU3 Bl? s24
Group = 0015:17, Track = 124, Sector = 24, Physical Sector = 24

Chap. 8 DU3 D isk U tility 165

Command: R and W. R reads the block currently positioned to into memory. Note R
(Read) is im plicit in the G, +, and - commands, but NOT in the S and T commands.

W writes back the current block (NOTE: may not be used after an F command, as
CP/M was used to f ind the f i le in the directory).

Examples:

DU3 B l ? r
DU3 B l ? W

Command: +[nn] and -[nnj."+" advances 1 sector (if below track 2, this advances to next
numerical sector and i f 2 or more, advances based on the system’s sector skewing
algorithm, i.e. so + will get the next logical sector of the file). backups up 1 sector
in the same sense.

Note that "+" and may take an amount: for example, +15 steps in 15 sectors.
Note also that issued at the first logical sector of the disk will wrap back to the last
and "+" issued at last sector will wrap forward to the first.

Examples (actual DU 3 session):

DU3 B l ? gO
G r o u p = 0 0 0 0 : 0 0 , T r a c k = 1 2 2 , S e c t o r = 1 , P h y s i c a l S e c t o r
DU 3
00

B l ? d
0 7 5 3 5 4 4 4 2 0 2 0 2 0 2 0 2 0 4 D 5 3 4 7 0 0 0 0 0 0 0 2 | .ST D MSG. .

10 1 0 1 • • I
2 0 0 0 4 C 4 4 4 9 5 2 2 0 2 0 2 0 2 0 4 3 2 0 2 0 0 0 0 0 0 0 3 8 | . LDIR C . . . 8 |
30 1 3 0 0 1 5 0 1 • • 1
4 0 0 8 4 3 5 0 4 D 5 5 4 7 2 0 2 0 2 0 4 3 4 1 5 4 0 1 0 0 0 0 4 6 | . CPMUG CAT. . . F |
5 0 1 C 0 0 1 E 0 0 3 8 0 0 3 D 0 0 4 1 0 0 4 3 0 0 4 5 0 0 0 0 0 0 1 • • • • 8 • “■ • *A. C . E . • • 1
60 0 0 4 3 4 F 4 D 4 D 4 1 4 E 4 4 2 0 4 C 4 2 5 2 0 1 0 0 0 0 8 0 | . COMMAND LBR. . • • 1
7 0 1 4 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 1 A 0 0 1 B 0 0 1 D 0 0 1 1

DU3 B l ? + d
G r o u p = 0 0 0 0 : 0 1 , T r a c k = 1 2 2 , S e c t o r = 2 , P h y s i c a l S e c t o r
00 0 7 5 4 4 1 4 C 4 B 2 0 2 0 2 0 2 0 5 3 5 5 4 D 0 0 0 0 0 0 4 9 |.T A L K SUM. . • I |
10 1 1 0 0 2 3 0 0 2 4 0 I • • • I
2 0 0 0 5 5 4 E 4 5 5 2 4 1 3 1 3 5 2 0 4 1 5 3 4 D 0 0 0 0 0 0 6 0 | . UNERA15 ASM. . 1 I
3 0 3 E 0 0 3 F 0 0 4 0 ! > . ? . § . . • • • 1
4 0 0 7 5 A 3 2 4 9 4 E 5 3 2 0 2 0 2 0 5 7 5 3 4 8 0 0 0 0 0 0 2 A | . Z 2IN S WSH. . • * 1
5 0 2 1 0 0 2 5 0 | ! .% • • 1
60 0 7 5 A 3 2 4 3 4 F 4 E 2 0 2 0 2 0 5 7 5 3 4 8 0 0 0 0 0 0 3 F | . Z 2 CON WSH. . . ? |
7 0 1 2 0 0 2 2 0 1 I» • • I

DU3 B l ? + d

166 U sing ZC PK 3 an d C om m and D efin itions Sec. 1

Group = 0000 :02, Track = 122, Sector = 3, Physical Sector
00 07445532 20202020 2042414B 00000057 |.DU3 BAK...W|
10 26002800 29000000 00000000 00000000 l&. (.)....... . . . |
20 04535441 52545550 2 0C3CF4D 0000001E |.STARTUP COM. * * * I
30 27000000 00000000 00000000 00000000 | 1 . . . |
40 00434F4D 4D414E44 204C4252 03000080 |.COMMAND LBR. • • • 1
50 1F002000 30003100 32003300 34003500 |.. .0.1.2.3.4 .5.|
60 00434F4D 4D414E44 2 04C4252 05000080 |.COMMAND LBR. * * * 170
DU 3

36003700
Bl? +2

39004C00 4D004E00 4F005000 |6.7.9.L.M.N.O .P. |

Group = 000C
DU3 Bl? d

:04, Track = 122, Sector = 5, Physical Sector

00 084D4153 54455220 20434154 01000080 |.MASTER CAT. * * * 1
10 2D002F00 3A003B00 3C004200 44004600 QPQ•V••• • ••1 .F. |
20 00464958 54455820 2041534D 0100001E |.FIXTEX ASM. . . . |
30 65006600 69006B00 6C000000 00000000 |e.f.i.k.l.. |
40 00554E45 52413135 20434F4D 00000007 | .UNERA15 COM. . . . |
50 52000000 00000000 00000000 00000000 | R |
60 084D454E 55202020 20C35052 00000008 | .MENU CPR. . . . |
70
DU 3

53000000
Bl? -3d

00000000 00000000 00000000 | S |

Group = 000C :01, Track = 122, Sector = 2, Physical Sector
00 0754414C 4B202020 2 053554D 00000049 | . TALK SUM. . .I|
10 11002300 24000000 00000000 00000000 ! . . # . $ |
20 00554E45 52413135 2041534D 00000060 | . UNERA15 ASM. 1 I
30 3E003F00 40000000 00000000 00000000 | > . ? . @ |
40 075A3249 4E532020 20575348 0000002A | . Z2INS WSH. . . 1 150 21002500 00000000 00000000 00000000 | I . %........................ . . . |
60 075A3243 4F4E2020 20575348 0000003F I.Z2CON WSH. . . ? |
70 12002200
DU3 Commands:

00000000
Searching

00000000 00000000 1 " • • • I

The commands for searching for data on the disk are:
Ffilenam e.typ — f ind all dir entries for f ile
=string — f ind next occurrence of string

Command: Ffilename.typ. Print directory for f i le "filename.typ". This command
presents the directory entries for all extents of the indicated file . See the section on
"Interpreting the DU 3 Directory Display" for in fo on how to interpret the information

C hap. 8 D U 3 D isk U tility 167

presented. Example (actual DU 3 session):

DU3 Bl? fz80.mac
40 015A3830 20202020 204D4143 0000000E |.Z80 MAC---|
50 9A000000 00000000 00000000 00000000 |............... |
Group = 0000:00, Track = 122, Sector = 1, Physical Sector = 1
DU3 Bl? ftest.txt
++ File Not Found ++
Group = 0000:00, Track = 122, Sector = 1, Physical Sector = 1
Command: =string. This command performs a search for the indicated ASCII text,
starting at current sector. <xx> hex may be imbedded, or used alone: To f ind "IN
OFEH": = < d b x fe > . Bit 7 is ignored unless <xx> is used. Note that, due to the parsing
scheme o f D U 3, forms such as "+=string", which positions to the next sector and then
starts the search, are allowed. Forms like "+2=string" are equally permitted. The
search may be aborted by a AC. Example:

DU3 Bl? gO
Group = 0000:00, Track = 122, Sector = 1, Physical Sector = 1
DU3 Bl? =DU3
= at 24
Group = 0000 :OE, Track = 122, Sector = 15, Physical Sector
DU3 Bl? d
00 07533130 30202020 20545854 OOOOOOOC |.S100 TXT • • • • I
10 0C010000 00000000 00000000 00000000 1....... ..••I
20 07445532 20202020 2042414B 00000068 | . DU3 BAK . . .h|
30 2A006100 6D007800 00000000 00000000 ||.a.m.x. • • • •• • • • 1
40 015A3830 20202020 204D4143 0000000E | . Z80 MAC • • • • 1
50 9A000000 00000000 00000000 00000000 1....... |
60 E5444953 4B4F5554 20434F4E 00000020 |eDISKOUT CON...|
70 60000000 00000000 00000000 00000000 | 1 |
DU3 Bl? +=DU3
Group = 0000 :0F, Track = 122, Sector = 16, Physical Sector
= at 64
Group = 0000 :10, Track = 122, Sector = 17, Physical Sector
DU3 Bl? d
00 075A3243 4F4E2020 20575320 05000080 |.Z2CON WS |
10 3D013E01 3 F 0 1 4 0 0 1 4 1 0 1 4 2 0 1 4 3 0 1 4 4 0 1 | =. >. ? . @ .A. B. C. D. |
20 075A 3243 4F4E 2020 2 0 5 7 5 3 2 0 0 6 0 0 0 0 7 7 | . Z 2 CON WS . . . w |

168 U sing ZC I R.3 an d C om m and D efin itions Sec. 1

3 0 4 5 0 1 4 6 0 1 4 7 0 1 4 8 0 1 0 0 0 0 0 0 0 0
4 0 E 5 4 4 4 9 5 3 4 B 4 F 5 5 5 4 2 0 4 3 4 F 4 E
5 0 9 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 0 7 4 4 5 5 3 2 2 0 2 0 2 0 2 0 2 0 4 8 4 C 5 0
7 0 9 8 0 0 9 9 0 0 9 B 0 0 9 C 0 0 9 D 0 0 0 0 0 0

0 0 0 0 0 0 0 0
00000020
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 6
0 0 0 0 0 0 0 0

E . F . G .H . • • • • •
eDISKOUT CON

. DU3 HLP.

DU3 B l ? + = D U 3 ,d
G r o u p = 0 0 0 0 : 1 1 , T r a c k = 1 2 2 , S e c t o r =
= a t 2 4
G r o u p = 0 0 0 0 : 1 1 , T r a c k = 1 2 2 , S e c t o r =
0 0 E 5 4 7 4 5 4 E 4 9 4 E 5 3 2 0 2 0 4 D 4 1 4 3 0 1 0 0 0 0 8 0
1 0 D 7 0 0 E F 0 0 F 0 0 0 F 4 0 0 F 5 0 0 F 6 0 0 F 7 0 0 F 8 0 0
2 0 E 5 4 4 5 5 3 2 2 0 2 0 2 0 2 0 2 0 4 1 5 3 4 D 0 1 0 0 0 0 8 0
3 0 E C 00E D 00 E E 00F A 00 0 7 0 1 0 B 0 1 0 E 0 1 1 3 0 1
4 0 0 4 4 4 5 5 3 2 2 0 2 0 2 0 2 0 20C 3C F4D 0 0 0 0 0 0 4 E
5 0 F 1 0 0 F 2 0 0 F 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 E 5 4 7 4 5 4 E 4 9 4 E 5 3 2 0 2 0 4 D 4 1 4 3 0 2 0 0 0 0 3 9
7 0 F 9 0 0 0 F 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 8 , P h y s i c a l S e c t o r =

1 8 , P h y s i c a l S e c t o r =
eGENINS MAC. . . . |
W . o . p . t . u . v . w . x . |
eDU3 ASM____ |
1 . m . n . z . • • • • • • • • I
. DU3 COM. . . N|
q . r . s . . .
eGENINS MAC. . . 9 |
y

DU3 Commands: Saving, Restoring, Queue
The fo llow ing commands are discussed in this section:

< Save Current Block
> Restore Saved Block
<B Save Current Block at Tail of Queue
>B Load Current Block from Head o f Queue
<G Read and Save Group at Tail o f Queue
>G Copy Group from Head o f Queue and Write
Q Print Queue Statistics
QZ Zero (Clear) Queue
QS Save Queue as a File

Command: < and >. "<" saves current block in an internal save buffer. ">" copies
the internal save buffer into the current block area (but does NOT write it out to disk).

Command: <B and >B. "<B" saves the current block onto the tail o f the DU3
Queue. This Queue, a FIFO (First In-First Out) data structure, can be used to collect a
number o f blocks for later copy to a disk f i le or explicit placement somewhere on the
disk. ">B" extracts the block at the head of the DU3 Queue and places it into the
working buffer area.

Command: <G[nn] and >G[nn]. "<G" reads the current group and saves it on the tail
of the DU3 Queue. The size o f a group is dependent on the format o f the disk, and
DU3 automatically adjusts to the proper group size without the user having to worry
about what it is. ">G" copies the group at the head o f the DU3 Queue onto disk. If nn
is specified (as in "<Gnn" or ">Gnn"), then the indicated group is read from or written
to. If nn is not given, then the group the user is currently positioned to is affected.

Chap. 8 DU3 D isk U tility 169

Command: Q, QZ, and QSfile. Q reports the status of the DU3 Queue, namely how
many blocks are stored in it and how much space remains. QZ zeroes (clears) the DU3
Queue. "QSfilename.typ" saves the DU3 Queue on disk in the current user area as the
indicated file. Examples (actual DU3 session):

DU3 Bl? gO
Group = 0000:00, Track = 122, Sector = 1, Physical Sector
DU 3 Bl? d
00 07535444 20202020 204D5347 00000002 |.STD MSG..
10 10000000 00000000 00000000 00000000 1............. •• 120 004C4449 52202020 20432020 00000038 |.LDIR C .. . 8 |
30 13001500 00000000 00000000 00000000 1............. •• 140 0843504D 55472020 20434154 01000046 | .CPMUG CAT.. . F |
50 1C001E00 38003D00 41004300 45000000 Wd<•IICO•••• • • I
60 00434F4D 4D414E44 204C4252 01000080 |.COMMAND LBR..* * 170 14001600 17001800 19001A00 1B001D00 1............. •• 1
DU 3 Bl? <
DU 3 Bl? chO-■7f e5
DU 3 Bl? d
00 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 |eeeeeeeeeeeeeeee|
10 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 |eeeeeeeeeeeeeeee|
20 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 |eeeeeeeeeeeeeeee|
30 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 |eeeeeeeeeeeeeeee|
40 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 |eeeeeeeeeeeeeeee|
50 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 |eeeeeeeeeeeeeeee|
60 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 |eeeeeeeeeeeeeeee|
70 E5E5E5E5 E5E5E5E5 E5E5E5E5 E5E5E5E5 |eeeeeeeeeeeeeeee|
DU 3 Bl? >,d
00 07535444 20202020 204D5347 00000002 | . STD MSG..
10 10000000 00000000 00000000 00000000 1............. ••120 004C4449 52202020 20432020 00000038 |.LDIR C .. .8 |
30 13001500 00000000 00000000 00000000 1............. •• 140 0843504D 55472020 20434154 01000046 | .CPMUG CAT .. . F |
50 1C001E00 38003D00 41004300 45000000 WU<•IICO•••• * * 160 00434F4D 4D414E44 2 04C4252 01000080 | . COMMAND LBR.. * * 170 14001600 17001800 19 001A00 1B001D00 1............. -. 1

170 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

DU3 Bl? q
** Queue Status Summary **
0 Blocks in Queue
249 Blocks Left in Queue
Address of Head of Queue: 3E00 Hex
Address of Tail of Queue: 3E00 Hex
DU3 Bl? <g
Reading from Group 0000
32 Blocks in Queue
Group = 0000:00, Track = 122, Sector = 1, Physical Sector = 1
DU3 Bl? gl
Group = 0001:00, Track = 122, Sector = 33, Physical Sector = 33
DU3 Bl? <g
Reading from Group 0001
64 Blocks in Queue
Group = 0001:00, Track = 122, Sector = 33, Physical Sector = 33
DU3 Bl? q
** Queue Status Summary **
64 Blocks in Queue
185 Blocks Left in Queue
Address of Head of Queue: 3E00 Hex
Address of Tail of Queue: 5E00 Hex
DU3 Bl? qsdir.sys
Queue Saved in File
DU3 Bl? qz
** Queue Status Summary **
0 Blocks in Queue
249 Blocks Left in Queue
Address of Head of Queue: 3E00 Hex
Address of Tail of Queue: 3E00 Hex
DU3 Bl? go
Group = 0000:00, Track = 122, Sector = 1, Physical Sector = 1

Chap. 8 DU 3 D isk U tility 171

DU3 Bl? <b
1 Blocks in Queue
DU3 Bl? +<b
Group = 0000:01, Track = 122, Sector = 2, Physical Sector = 2
2 Blocks in Queue
DU3 Bl? +<b
Group = 0000:02, Track = 122, Sector = 3, Physical Sector = 3
3 Blocks in Queue
DU3 Bl? +<b
Group = 0000:03, Track = 122, Sector = 4, Physical Sector = 4
4 Blocks in Queue
DU3 Bl? +2<b
Group = 0000:05, Track = 122, Sector = 6, Physical Sector = 6
5 Blocks in Queue

DU3 Commands: Display
The commands in this section are:

A Display ASCII
D Display ASCII and Hex
H Display Hex
V V iew as Text

Command: V[nn], V views the current block as ASCII characters. The form "Vnn"
views the indicated number o f blocks starting at the current one.

Command: A, D, and H. Display a block or portion thereof, using the A command
for ASCII characters only, D for both hexadecimal and ASCII, and H for hexadecimal
numbers only.

D0-#7F is the same as just D
D3-5
A20-#3F

See next section for examples.

DU3 Commands: Changing Data
The commands described in this section are:

CA Change ASCII
CH Change Hex

172 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Examples are also given of the various display commands.
Command: CH and CA Allows the user to change the contents of the current block

by specify ing new values as hexadecimal numbers(CH) or as an ASCII character string
(CA). Format is:

CHaddr val val val... — Change Hex data values in block
CAaddr char string... — Change ASCII data values in block

NOTE that an ASCII string may have hex values embedded in it:

caO OK<dxaxia>
Use W to write changes to disk. Ranges may be specified; for example, <CHaddr-

addr byte or CAaddr-addr byte> changes a range of bytes to the same value.
Examples (actual DU3 session):

DU3 B7? gO
Group = 0000:00, Track = 122, Sector = 1, Physical Sector
DU 3 B7? d
00 07535444 20202020 204D5347 00000002 | .STD MSG. .
10 10000000 00000000 00000000 00000000 1....... •• 120 004C4449 52202020 20432020 00000038 |.LDIR C . ..8 |
30 13001500 00000000 00000000 00000000 1....... ••I40 0843504D 55472020 20434154 01000046 |.CPMUG CAT. .. F |
50 1C001E00 38003D00 41004300 45000000 I • • • • 8 • “ •A.C.E.
60 00434F4D 4D414E44 204C4252 01000080 | . COMMAND LBR. .
70 14001600 17001800 19 001A00 1B001D00 1....... •• 1
DU 3 B7? d0-#f
00 07535444 20202020 204D5347 00000002 | .STD MSG. .••1
DU 3 B7? h0-#f
00 07535444 20202020 204D5347 00000002
DU 3 B7? a0-#f
00 | .STD MSG___|
DU 3 B7? fdu2.hlp
20 07445532 20202020 2 0484C50 01000039 | . DU3 HLP. .•9|30 28009800 99009B00 9C009D00 00000000 1(...... ••IGroup = 0000:00, Track = 122, Sector = 1, Physical Sector

Chap. 8 DU3 D isk U tility 173

DU3 B7? g28
Group = 0028:00, Track = 125, Sector = 273, Physical Sector = 273
DU3 B7? d
00 496E766F 6B696E67 20445533
10 20445533 20496E73 74616C6C
20 6E0D0A44 55332043 6F6D6D61
30 756D6D61 72790D0A 436F6D6D
40 20666F72 204C6F67 67696E67
50 6B732061 6E642045 78616D69
60 20446973 6B205061 72616D65
70 0D0A436F 6D6D616E 64732066

2 0616E64
6174696F
6E642053
616E6473
20446973
6E696E67
74657273
6F722050

Invoking DU3 and
DU3 Installatio
n..DU3 Command S
ummary..Commands
for Logging Dis

ks and Examining
Disk Parameters
.. Commands for P

DU3 B7? v
Invoking DU3 and DU3 Installation
DU3 Command Summary
Commands for Logging Disks and Examining Disk Parameters
Commands for P
Group = 0028:00, Track = 125, Sector = 273, Physical Sector = 273
DU3 B7? V3
Invoking DU3 and DU3 Installation
DU3 Command Summary
Commands for Logging Disks and Examining Disk Parameters
Commands for Positioning and Reading Data
Commands for Searching for Data
Commands for Saving and Restoring Data
Commands for Viewing data
Commands for Altering Data
Commands for Manipulating Macros and the @ Command
Miscellanea
Examples of command use
Interpret
Group = 0028:02, Track = 125, Sector = 275, Physical Sector = 275
DU3 B7? g28
Group = 0028:00, Track = 125, Sector = 273, Physical Sector = 273
DU3 B7? d
00 496E766F 6B696E67 20445533 20616E64 |Invoking DU3 and|

174 U sing Z C PR 3 and C om m and D efin itions Sec. 1

10 20445533 20496E73 74616C6C 6174696F | DU3 Installatio|
20 6E0D0A44 55332043 6F6D6D61 6E642053 |n..DU3 Command S|
30 756D6D61 72790D0A 43 6F6D6D 616E6473 |ummary.. Commands|
40 20666F72 204C6F67 67696E67 20446973 | for Logging Dis|
50 6B732061 6E642045 78616D69 6E696E67 |ks and Examining|
60 20446973 6B205061 72616D65 74657273 | Disk Parameters|
70 0D0A436F 6D6D616E 64732066 6F722050 |..Commands for P|
DU 3 B7? chO -10 0
DU 3 B7? d
00 00000000 00000000 00000000 00000000 1............... 110 00445533 20496E73 74616C6C 6174696F |.DU3 Installatio|
20 6E0D0A44 55332043 6F6D6D61 6E642053 |n..DU3 Command S|
30 756D6D61 72790D0A 43 6F6D6D 616E6473 |ummary.. Commands|
40 20666F72 204C6F67 67 696E67 20446973 | for Logging Dis|
50 6B732061 6E642045 78616D69 6E696E67 |ks and Examining|
60 20446973 6B205061 72616D65 74657273 | Disk Parameters j
70 0D0A436F 6D6D616E 64732066 6F722050 |..Commands for P|
DU 3 B7? call This is a test
DU 3 B7? dO- #lf
00 00000000 00000000 00000000 00000000 1............... 110 00546869 73206973 20612074 6573746F |. This is a testo|

DU3 Commands: Macros
A Macro is a shorthand the user can employ to define a command sequence.

R ather than having to type an involved command over and over again, the DU3 macro
facility allows the user to assign this command sequence to a number (0 to 9) and then
execute it by simply presenting this number as a command. The following commands
are associated w ith this facility.

rntext and n. ":n<text>" defines the text following the digit ’n ’ to be a Macro. As
always, 0 <= n <= 9. The macro defin itions may be created and redefined at will. If a
macro has already been defined for the indicated number, it will be overw ritten by the
execution of this command, "n" (where 0 <= n <= 9) executes the indicated macro.

:Pn and :PA. ":Pn", where 0 <= n <= 9, prints the text of Macro N um ber n. ”:PA"
prints the text of all 10 macros.

@ and :P@. "@" executes the most recent command line tha t d id not contain the
Command. This provides an easy way to repeat the last command line typed. For

example:

go <— go to Group 0

Chap. 8 DU3 D isk U tility 175

ch0-7f e5,<
>,W,+

e
e

<— Initialize the first block and Save
<— Read in the Saved Block, Write it

out to disk, and advance to next
logical block

<— Do the Previous Command Again
<— And Again

":P@" prints the previous command line (without changing it). Examples (edited
DU3 session):

DU3 B7? gO
Group = 0000:00, Track = 122, Sector = 1, Physical Sector = 1
DU3 B7? :1+,d0-#lf
DU3 B7? :pl
Macro Definitions —
1: +,d0-#lf
DU3 B7? 1
Group = 0000:01, Track = 122, Sector = 2, Physical Sector = 2
00 0754414C 4B202020 2053554D 00000049 |.TALK SUM...I|
10 11002300 24000000 00000000 00000000 |..#.$.......... |
DU3 B7? 1
Group = 0000:02, Track = 122, Sector = 3, Physical Sector = 3
00 07444953 4B4F5554 20434F4E 00000000 |.DISKOUT CON___|
10 00000000 00000000 00000000 00000000 I ...I

DU3 B7? 1
Group = 0000:03, Track = 122,
00 04584449 52202020 20C3CF4D
10 2C002E00 48000000 00000000
DU3 B7? g0,d0-#lf
Group = 0000:00, Track = 122,
00 07535444 20202020 204D5347
10 10000000 00000000 00000000

DU3 B7? 1
Group = 0000:01, Track = 122,

Sector = 4, Physical Sector = 4
00000054 |.XDIR COM.,.T|
00000000 | , . . ,H.......... |

Sector = 1, Physical Sector = 1
00000002 | . STD MSG___|
0 0 000000 | ... |

Sector = 2, Physical Sector = 2

176 U sing ZCPiv.3 and C om m and D efin itions Sec. 1

00 0754414C 4B202020 2053554D 00000049
10 11002300 24000000 00000000 00000000
DU3 B7? :pa
Macro Definitions —
0 :

1: +,d0-#lf
2 :

< Detail Left Out >

9 :
DU3 B7? g0,d0-#lf,1,1,1
Group = 0000:00, Track = 122,
00 07535444 20202020 204D5347
10 10000000 00000000 00000000
Group = 0000:01, Track = 122,
00 0754414C 4B202020 2053554D
10 11002300 24000000 00000000
Group = 0000:02, Track = 122,
00 07444953 4B4F5554 20434F4E
10 00000000 00000000 00000000
Group = 0000:03, Track = 122,
00 04584449 52202020 20C3CF4D
10 2C002E00 48000000 00000000

Sector =
00000002
0 0 0 0 0 0 0 0
Sector =
00000049
0 0 0 0 0 0 0 0
Sector =
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Sector =
00000054
0 0 0 0 0 0 0 0

DU3 B7? 0
Command —
g0,d0-#lf,+,d0-#lf,+,d0-#lf,+,d0-#lf
Group = 0000:00, Track = 122, Sector =
00 07535444 20202020 204D5347 00000002
10 10000000 00000000 00000000 00000000
Group = 0000:01, Track = 122, Sector =
00 0754414C 4B202020 2053554D 00000049
10 11002300 24000000 00000000 00000000

|.TALK SUM...1
I • . # • $

1, Physical Sector = 1
| . STD MSG___|
2, Physical Sector = 2
| . TALK SUM.. .11
! . . # • $I
3, Physical Sector = 3
|.DISKOUT CON___|
4, Physical Sector = 4
|. XDIR COM...T|

1, Physical Sector = 1
| .STD MSG___|
2, Physical Sector = 2
|.TALK SUM...I|
! . . # • $I

Group = 0000:02, Track = 122, Sector = 3, Physical Sector = 3

Chap. 8 DU3 D isk U tility 177

00 07444953 4B4F5554 20434F4E 00000000 |.DISKOUT CON |
10 00000000 00000000 00000000 00000000 |...........|
Group = 0000:03, Track = 122, Sector = 4, Physical Sector = 4
00 04584449 52202020 20C3CF4D 00000054 |.XDIR COM...T|
10 2C002E00 48000000 00000000 00000000 | , . . . H|

DU3 Commands: Miscellaneous Command: ?. "?" gives a command summary and tells
the user w hat the curren t values are for Processor Clock Speed and Lines per Page on
CON: as well as the address for the Group Storage B uffer (where the DU3 Queue
begins).

Command: *[nn]. "*nn" repeats the curren t command line (as entered so far) nn
times. This command defaults to "forever" i f nn is not specified, ’n n ’ may be 2 to
65535.

Command: !."!" halts processing of commands, displays a continuation message to
the user, and waits fo r the user to type any key. Typing a Control-C aborts command
processing. This command is useful in stopping loops to give the user as much time as
he wants to review the display.

Command: P. "P" toggles the prin ter switch on and off. It allows the user to turn
on and o ff a recording of your console output.

Command: X. "X" exits back to ZCPR3.
Command: Z[nn]. "Znn" causes the program to sleep, or pause, and may be used to

look at a dump quickly in a looping command line. Z is 1 sec. Znn is nn seconds on an
MHz 8080. The processor speed is specified within the ZCPR3 Environment
Descriptor.

Command: AC. "AC" exits to ZCPR3 and causes a warm boot.
Examples (actual DU3 session):

DU3 B7? g0
Group = 0000:00, Track = 122, Sector = 1, Physical Sector = 1
DU3 B7? d0-#f,+,!,*
00 07535444 20202020 204D5347 00000002 | . STD MSG___|
Group = 0000:01, Track = 122, Sector = 2, Physical Sector = 2
Type Any Character to Continue or AC to Abort -
00 0754414C 4B202020 2053554D 00000049 | . TALK SUM...I|
Group = 0000:02, Track = 122, Sector = 3, Physical Sector = 3
Type Any Character to Continue or AC to Abort -
00 07444953 4B4F5554 20434F4E 00000000 |.DISKOUT CON....|
Group = 0000:03, Track = 122, Sector = 4, Physical Sector = 4
Type Any Character to Continue or AC to Abort -
00 04584449 52202020 20C3CF4D 00000054 |.XDIR COM...T|

178 U sing Z C PR 3 an d C om m and D efin itions Sec. 1

Group = 0000:04, Track = 122, Sector = 5, Physical Sector = 5
Type Any Character to Continue or AC to Abort -
DU3 B7? gl
Group = 0001:00, Track = 122, Sector = 33, Physical Sector =
DU3 B7? d0-#f,+,*3
00 E5482020 20202020 2042414B 00000004
Group = 0001:01, Track = 122, Sector =
00 E5535542 32202020 2042414B 0100007B
Group = 0001:02, Track = 122, Sector =
00 E5434420 20202020 204D4143 00000047
Group = 0001:03, Track = 122, Sector =

| eH BAK___ |
34, Physical Sector =
|eSUB2 BAK...{|
35, Physical Sector =
|eCD MAC...G|
36, Physical Sector =

DU3 B7? AC
B7>

DU3 Command: Editor
DU3 contains a built-in, screen-oriented editor. This editor derives its screen-

oriented functions from the ZCPR3 TCAP, so the DU3 Editor should be invoked only
on ZCPR3 Systems tha t support a valid TCAP for the user’s terminal.

The DU3 Editor is a complete subsystem under DU3 in its own right. It provides a
varie ty of user-friendly editing features for the m anipulation of data w ith in the
curren t sector (block) as well as allowing the user to issue any DU3 command line he
desires, re tu rn ing to the editor when it is completed.

The DU3 Editor presents a screen display to the user which is structured to
include a line showing the contents of the sector at the cursor, several lines of
hex/ASCII (similar to the D command output) which display the entire sector, a menu
of commands, a cursor (which initia lly points to the f irs t byte in a sector), and a
command prompt.

Command: E. The command "E" invokes the editor. If any other commands follow
E on the same line, these commands are flushed.

The user may employ the WordStar cursor movement commands to move the
cursor about in the curren t sector. These commands are:

AE = Cursor UP
A

AS = Cursor LEFT <-+-> AD = Cursor RIGHT
v

AX = Cursor DOWN
AR refreshes the screen display.

Chap. 8 DU 3 D isk U tility 179

The following commands are also available under the DU3 Editor:
A Enter ASCII Text into block s tarting at cursor
H Enter H ex/D ec Numbers into block starting at cursor
+ Advance to Next Logical Sector and Edit

Backup to Last Logical Sector and Edit
AW Write the C urrent Sector to Disk
C Issue Any DU3 Command Line
X Exit to DU3
AC Exit to ZCPR3

All of these commands are self-explanatory except for the A and H commands.
The A command enters ASCII text into the sector starting at the cursor position.

In response to this command, the DU3 Editor will prompt the user fo r input. He may
then type any text he wishes; upon striking the R E T U R N key, this text is entered
literally into the sector. If it overflows the end of the sector, it is truncated. If the
user wishes to embed hexadecimal values (such as OD for Carriage Return), he may use
the form "<hh>". Example:

this is a test<0D><0A>
The H command enters a group of hexadecimal an d /o r decimal values into the

sector starting at the cursor position. Numbers, separated by spaces, are hexadecimal
unless the the form "#nn" is used, in which case decimal values are entered. Example:

1 2 3 3A b7 #25
The Editor is one of the most powerful featues of DU3. It is highly recommended

that the user experiment w ith it and become acquainted with its capabilities.
DU3 Examples
Multiple commands may be separated by
Any valid command string may be placed as an operand of the original DU3

command, e.g.: A>DU3 G O ,D ,G 2 ,= O K < D xA xlA > ,D
Example: the following commands will fill the B disk directory with E5’s:

lb
go
ch0-7f e5
<
>/W,+,/16

log in b drive
position to dir.
fill with e5
save the sector
restore, write, next,
repeat 16

This could be shortened to:

Ib,g0,ch0-7f e5,<
>,w,+,/16

I f we define the following two macros:

180 U sing Z C PR 3 and C om m and D efin itions Sec. 1

Macro 0 —
:0g0,ch0-7f e5,<

Macro 1 —
i1>,w,+,/16

To initia lize the directory firs t on Drive A: and then on Drive B:, we could issue
the following commands:

La, 0 <— Log in A and Initialize first block
1 <— Perform write
Lb, 0 <— Log in B and Initialize first block
1 <— Perform write
n, 0 <— Declare New Disk and Initialize first
1 <— Perform write
Directory Interpretation
The following diagram explains the form at of a CP/M directory entry. Use DU3

with either the F (Find File) command or the D (Dump) command to display the
directory sectors, which are located in groups 0 and 1 on a single density disk. Sample
result of "FSID.COM" command:

First
line

40 00534944 20202020 20434F4D
I I I I I I
|| || A---- file name--------A
| | | | in hex

0000003A | . SID COM.
II II I|| || Afile name
|| || in ASCII

|| || extent-AA ||
|| || file size in sectors-AA
|| AA-oo = file active
|| E5 = file erased
AA-displacement of line in directory sector

Second 50
line

33343536 3738393A 00000000 00000000
I IA---- allocation group numbers-----A

le z9

3456789:

9 Inside the ZCPR3 System Segments

A ZCPR3 System Segment is a package or data file which can be loaded by the
LDR tool into memory for use by the ZCPR3 System. There are several types of
ZCPR3 System Segments:

*.ENV Environm ent Descriptors

S e c t i o n 2

Inside ZCPR3

"It was c lear th a t a m ost pow erful ad d itio n to any p rogram m ing language w ould be th e ab ility to define new
higher level en titie s in te rm s of p rev iously know n ones, an d th en to call th em by nam e. T h is w ould bu ild the
chunking r ig h t in to th e language. In s tead of th ere being a d e te rm in a te rep erto ire o f in s tru c tio n s ou t of which all
program s h ad to be exp lic itly assem bled, th e p rogram m er could co n stru c t his own m odules, each w ith its own nam e,
each usab le anyw here inside th e p ro g ram , ju s t as if it h ad been a b u ilt- in fea tu re of th e language."

— D. R . H o fs tad te r, A n E te rn a l G olden B ra id

Inside ZCPR3
This section presents details of the in ternal operation of various components of

the ZCPR3 System. In particular, the ZCPR3 command processor, ZEX, the system
segments, shells, error handlers, screen-oriented utilities, and elements of the toolset in
general are discussed.

This section is in tended mainly for people who want to program utilities for
ZCPR3. It is assumed tha t the reader is thoroughly fam ilia r with CP/M and has
experience in programming 8080/Z80 assembly language.

181

182 Inside Z C PR 3 Sec. 2

Inside Z C PR 3 Sec. 2 183

9 Inside the ZCPR3 Command Processor

This chapter describes the in ternal operations of the ZCPR3 Command Processor,
the heart of the ZCPR3 System. The ZCPR3 Command Processor runs in place of the
CP/M CCP, and it is located directly under the BDOS. To ensure compatibility with
CP/M, the ZCPR3 Command Processor is 2K bytes in size or smaller and supports some
structura l and functional similarities. In order to pack all of the functions necessary
to support a fu ll ZCPR3 System into the Command Processor, it is m andatory that the
Command Processor run on a Z80 microprocessor. The size reduction a ffo rded by
using jum p-relative and other Z80-specific instructions in the Command Processor is
significant, but, for the sake of those users who do not have Z80s, there is a flag at the
f ron t of the Command Processor which can select 8080 code. The resulting larger code
forces a reduction in features, but very useful ZCPR3 systems can still be created for
the 8080.

Operation of the ZCPR3 CP
Figure 1-1 illustrates the location and s tructure of the ZCPR3 Command

Processor (CP). At various points in this book, the CP may also be re ferred to as a
Command Processor Replacem ent (CPR), and the terms CP and CPR can be used
interchangeably.

The main function of the ZCPR3 Command Processor (CP) can be described in a
few high-level pseudo code instructions. The following is an English-like expression
of the CP’s operation:

initialize-environment
loop forever

input (command_line)
while command_line is not empty

parse (next_command)
resolve (next_command)

end while
end loop
As the reader can see, the overall view of the ZCPR3 CP is quite simple. The

major functions perform ed by the ZCPR3 CP are:

1. In itialize the environm ent
2. Inpu t the command line
3. Parse the next command in the command line
4. Resolve the next command

We shall now discuss each of these functions in more detail.
Initialize_Environment
Environm ent in itia liza tion is discussed with reference to Listing 9-1, Code

Sections 1 through 4.
The in itia liza tion of the the ZCPR3 CP environm ent can be expressed in the

following pseudo-code:

184 Inside Z C PR 3 Sec. 2

e n t r y
s e t _ c u r r e n t _ u s e r _ a r e a
s e t _ c u r r e n t _ d i s k
s e t _ D M A _ a d d r e s s
s e t _ r u n n i n g _ S U B M I T _ i n d i c a t o r

Entry. The ZCPR3 Command Processor supports two entry points (see Code Section 1).
The firs t six bytes of the CP contain two jump instructions. The firs t jump is usually
used for entry on cold boot, and the second jump is usually used on warm boot. In the
original CP/M CCP, the firs t jump allowed a defau lt command stored in the command
line b u ffe r in ternal to the CCP to be executed immediately and the second jump did
not allow this command to be executed. This was useful in allowing CP/M to come up
running a particu la r command line on cold boot (or even warm boot, for tha t matter,
since the entry into the CCP was controlled by the cold boot and warm boot routines in
the BIOS).

If ZCPR3 is implemented with an external Multiple Command Line b u ffe r , these
two entry points have the same meaning—to continue command line processing.
Without an external Multiple Command Line buffe r , the ZCPR3 CP contains a
command line b u f fe r immediately a f te r these two jumps. This b u ffe r is structured as
follows:

ZCPR3_CP: ; b e g i n n i n g o f ZCPR3 CP
JMP RUNCMD ; f i r s t JMP i n s t r u c t i o n i n CP
JMP NOCMD ; s e c o n d JMP i n s t r u c t i o n i n CP

BUFLEN EQU 80 ; r e c o m m e n d e d s i z e o f b u f f e r
B U F SIZ :

DB BUFLEN »•number o f c h a r a c t e r s i n b u f f e r
CHRCNT:

DB 0 ; i n p u t c h a r a c t e r c o u n t p r o v i d e d
; t h r u t h e BDOS READLN r o u t i n e

CMDLIN:
DW BUFLEN ,‘b u f f e r t o c o n t a i n com m and l i n e

NXTCHR:
DW CMDLIN / • p o i n t e r t o c h a r a c t e r a t w h i c h

; t o b e g i n com m and p r o c e s s i n g

An external routine, such as the cold boot or warm boot routine, can store a
command line (term inated by a b inary 0) into this b u f fe r at the symbol CMDLIN. Care
should be taken not to exceed the character count at the symbol BUFSIZ (this count
includes the te rm inating binary 0). Once the command line is stored, the routine may
enter the ZCPR3 CP at the firs t JMP instruction and this command line will be
executed. If the ZCPR3 CP is entered at the firs t JMP instruction, the pointer at
NXTCHR will be set to the firs t byte in CMDLIN, and when the ZCPR3 CP is ready to

Chap. 9 Inside th e Z C PR 3 C om m and P rocessor 185

accept input it will check to see i f this line is empty (the pointer at NXTCHR is
pointing to a b inary zero), f ind such not to be the case, and parse and execute the
command line. I f the ZCPR3 CP is entered at the second JMP instruction, it will zero
the byte at CMDLIN, thereby forcing an empty command line, set the pointer at
NXTCHR to this zeroed byte at CMDLIN, and when the ZCPR3 CP is ready to accept
input it will f ind an empty command line and obtain a new line from the running
SUBMIT file (SSS.SUB) or the user (or ZEX if it is running).

The im plem entation of the ZCPR3 CP to include the In ternal Command Line
buffer is not recommended. Instead, it is recommended tha t an external Multiple
Command Line b u f fe r be used. This bu ffe r , which must be initia lized by the cold boot
routine in the BIOS, has the following structure:

NXTCHR:
DW CMDLIN /pointer to first character of

BUFLEN EQU 200
; command line
/•recommended size of buffer

BUFSIZ:
DB BUFLEN /•number of characters in buffer

CHRCNT:
DB 0 ;input character count provided

CMDLIN:
DW BUFLEN

; thru the BDOS READLN routine
,*buffer to contain command line

If this b u ffe r is implemented, both entries to the ZCPR3 CP have exactly the same
effect. The pointer at N X TCH R will be examined, and command line processing will
resume at the next character in the bu ffe r at CMDLIN. If the character pointed to by
the address in N X T C H R is a b inary 0, then the ZCPR3 CP will either inpu t the next
command line into the bu ffe r at CMDLIN from a running SUBMIT file ($$$.SUB) if
there is one, from the user or from ZEX, if ZEX is running. The pointer at NXTCHR
will be reset to point to the f irs t byte of CMDLIN and processing will resume.

Since the External Multiple Command Line B uffer is located in a "safe" place
which is not a ffec ted by warm boots, this b u ffe r provides the ab ility to support a
command stream which does not change each time the system is warm booted. In the
case of the In ternal Command Line Buffer, each time a warm boot occurs the ZCPR3
CP would be reloaded from disk (a part of the defin ition of the warm boot process),
and the in ternal command line b u f fe r would be replaced by w hat was on disk. The
warm boot routine in the BIOS may then choose to store a command in this bu ffe r and
enter the CP at the firs t JMP, but this is not nearly as e ff ic ien t as simply having a
command line b u ffe r in a location in memory which is not a ffec ted by the warm boot
process.

A fter the in itia l entry is performed through one of the two JMP instructions at
the f ro n t of the ZCPR3 CP and the command line pointer is set (if an internal
command line b u ffe r is used), the in itia liza tion continues.

S e t_ c u r re n t_ u s e r_ a re a and S e t_ c u rre n t_ d isk . The warm boot and cold boot
routines must provide an input param eter to the ZCPR3 CP when they enter it at one

186 Inside Z C PR 3 Sec. 2

of the two entry points. The C register contains the new current user area number in
its upper four bits and the new current disk in its lower four bits. The routines
set_current__user__area and set_current_disk derive their inform ation from the C
register and log the ZCPR3 CP into this directory. This becomes the user’s current, or
working, directory at cold or warm boot time. By the CP/M d efin ition , memory
location 4 (the U D B y t e) in the b u ffer area in low memory contains the current UD
(user area/d isk) o f the user, and the cold boot routine both sets this value in itia lly and
stores this value in the C register for entry into the ZCPR3 CP. The warm boot routine
typ ically reads this value from location 4, stores it into the C register, and enters the
ZCPR3 CP.

Set_D M A _ad d ress. This routine sets the address for the load o f the next block
from disk to 80H. This is done through BDOS calls.

S e t_ru n n in g_S U B M IT _in d ica tor . This routine checks to see i f a f ile named
"$$$.SUB" exists on disk A and sets a flag to indicate the result. The BDOS disk reset
function returns a code in the A register w hich is non-zero i f the current user area on
disk A contains a f ile beginning w ith a "$" character, and this clue is used to determ ine
whether it is necessary to check disk A for a f ile named "SSS.SUB". If this clue is non
zero, the current user area on disk A (w hich is auto-logged by the first byte o f the
SUBFCB b u ffer) is checked for a $$$.SUB file , and the RN G SUB flag is f in a lly set as a
true ind ication that a $$$.SUB f ile exists on disk A, current user area. This flag is later
used when the R E A D BU F routine is used to input the next command line.

Input (C om m and_Line)
Once the in itia liza tion is perform ed, the ZCPR3 CP is ready to input a command

line and process it. Under the recommended ZCPR3 CP configuration , how ever, the
M ultiple Command Line B u ffer is available, so a command line may already be in
existence and processing should continue w ith this line. N ote that Code Section 4 o f
the in itia liza tion code branches to the entry point labelled RSI: after the in itia lization
is complete; this is where the status o f the command line b u ffer is determ ined. L isting
9-2, Code Sections 1-2, extracted from the ZCPR3 CP, shows the input command line
processing routine.

The label RSI: is the entry point for processing the next command in the
command line buffer. This point is reached when a cold or warm boot occurs and
when a routine sim ply issues a RET instruction to return to the ZCPR3 CP after it has
com pleted its function . RSI: is the principal entry point for command processing
w ithin the ZCPR3 CP.

Upon com pletion o f any command under ZCPR3, the ZCPR3 CP perform s two
functions as it resumes control:

1. reset the DMA address
2. reset the current directory

These functions insure that the system is stable and any undesired states le ft by a
process are negated. The process is invoked by a subroutine call ("CALL TPA"
instruction, w hich may be translated into a call to some other location i f the command
is resolved w ith in the ZCPR3 CP itse lf, w ith in an RCP, or w ith in an FCP) toward the
end of the ZCPR3 CP source. If the process returns to the CP via a sim ple RET
instruction, the command after this call is a command w hich restores the DMA address.
If the process returns to the CP by means o f a warm boot or cold boot, code in the front

Chap. 9 Inside th e Z C PR 3 C om m and P rocesso r 187

of the ZCPR3 CP also perform s a restoration o f the DMA address. Just after the label
RSI: is a call to the DLOGIN routine w hich restores the current directory (defined at
memory location 4).

Once this is com plete, the pointer to the next character in the command line
buffer is obtained (the LHLD N X TC H R instruction) and the command line from that
point on is capitalized. This insures CP/M com patib ility (all CP/M command lines are
interpreted as upper case) and protects the system in the advent that the command line
buffer was m odified by the last command and the content was not capitalized in the
process (see the code at CAPBUF: for details).

Now that the command line is secured, processing resumes at label RS2: by
skipping over space characters and testing the last non-space character for (1) end of
line and (2) abort. A d ditionally , i f the M ultiple Command Line B u ffer is available, a
test is made for the command separator character (a sem icolon by recom m endation), in
which case the separator is skipped and RS2: is reentered at the character after the
separator. The routine at RS2: is exited in one o f two directions:

1. to the label RESTRT:, where a new command line is input
2. to the label RS3:, where the next command in the current command line is processed

A new command line is input into the Command Line B u ffer (whether it is
internal to the ZCPR3 CP or external as a M ultiple Command Line B u ffer) at the label
RESTRT: (see Code Section 1).

A sim ple stack reset occurs at the label RESTRT:, and this is fo llow ed by the label
RSO:, w hich is used as an entry point to flush comment lines (lines beginning w ith a
semicolon).

The fo llow in g steps are perform ed at the label RSO:
1. Indicate that the ZCPR3 CP is in normal execution mode. This indication is made

to the input service routines by storing a zero value in byte 3 o f the ZCPR3
Message B uffers. This message is then le ft on unless conditions elsew here w ithin
the ZCPR3 CP change it, and its purpose is to pass inform ation to the process
w hich is next invoked w hich states that it was invoked as a conventional
command. This message may be changed before the process is fin a lly invoked,
and this change w ill be explained as this comm entary proceeds.

2. Indicate to ZEX (if it is running) that the ZCPR3 CP is now prom pting for an
input. This indication is made by storing the number 1 in byte 7 o f the ZCPR3
Message B uffers. On the next call to input, i f ZEX is running it w ill see this
message and exit a hibernating state if it is in one.

3. The pointer to the next character in the command line is set to the first character
position and th is byte is zeroed. The storing o f this zero is most im portant should
the input routine be aborted and no input stored in the b uffer. The zero w ill
mark an end to the input line and a resumption o f control by the ZCPR3 CP.

4. Input the command line via the READ BU F routine. The R E A D BU F routine
accepts a command line from one o f four sources in the order indicated: (1) the
running SUBMIT f ile i f one is in execution, (2) the shell stack if a command line
is stored in it, (3) the ZEX m onitor i f it is running, and (4) the user. If the
command line at the top o f the shell stack is selected, the message at Z3MSG+3

188 Inside ZCPR.3 Sec. 2

(byte 3 o f the ZCPR3 Message B uffers) is set to 1 to so indicate.
5. Once input is received , the ZEX message byte (byte 7 o f the ZCPR3 Message

B u ffers) is cleared to zero. This indicates that the ZCPR3 CP prompt is no longer
being presented.

6. F ina lly , the first character is checked to see i f it is a sem icolon, ind icating a
comm ent line, and RSO: is re-invoked i f such is the case. If not, processing o f the
first comm and in the command line is begun by execution resum ing at RSI:.

The R E A D BU F routine is instrum ental in selecting the source for the next
command line and m erits some further discussion. The source for this routine is shown
in L isting 9-3, Code Sections 1-2.

Submit F ile Processing. The entry to R EA D BU F begins w ith a test o f the
RNGSUB flag (w hich was set at in itia lization) to see i f a $$$.SUB f ile is active. If this
is the case, the fo llow in g code extracts the next command line from it into the
Command Line B u ffer and returns to the caller o f READ BU F. The SUBMIT file
execution prompt is displayed and the command line b u ffer is printed; a test for a user
abort (v ia AC) is also made and the abort is perform ed i f such a command is given.

If the RNGSUB flag indicates that there is no $$$.SUB f ile or i f there is no other
line in the $$$.SUB file , execution resumes at the label RBI:. At RBI:, the SUBKIL
routine is called and any running SUBMIT f ile (as indicated by RNGSUB) is deleted.

Shell Processing. A test is then made to see i f the shell stack (if present) contains
any elem ents. A binary zero in the first shell stack elem ent is used to indicate an
empty shell stack.

Shells are fundam ental to the design o f the ZCPR3 System , and their execution is
perform ed like any other command line by the ZCPR3 CP. The only d ifferen ce is that
the command line stored on the shell stack is executed w henever the ZCPR3 CP
decides to accept a new input line (and $$$.SUB is not running), and the ZCPR3 CP
leaves a d ifferen t value in its Command Status message to indicate that it has executed
a shell. See Code Section 2 for details.

If the shell stack is determ ined not to be empty, then the command line stored in
the top elem ent is copied into the Command Line B uffer. The SHSIZE constant is used
to determ ine how many characters long the shell command line is for this copy. Once
the command line has been copied, the ZCPR3 CP Command Status message at byte 3
(Z3MSG+3) is set to 1 to indicate that a shell has been invoked. This message is used to
com m unicate d irectly w ith the shell to let it know that it had been invoked as a shell as
opposed to a user-specified command. See the technical detail section on shells later in
the book for more detail.

I f the command source is determ ined to not be either a running SUBMIT f ile or a
shell, then the routine at RB2: is entered. The conventional ZCPR3 CP prompt is
printed (CPRMPT is output as opposed to SPRMPT by the SUBMIT f ile processor) and
input is accepted directly into the Command Line B uffer through the BDOS input line
routine.

ZEX Input. If the ZEX m onitor is running (the ZEX command has been issued at
some tim e previously) and the ZEX command f ile stored in memory is not em pty, then
ZEX w ill start supplying input characters through its BIOS intercept routine. If the
ZEX m onitor is not running, normal input w ill be provided from the user.

Chap. 9 Inside th e Z C PR 3 C om m and P rocessor 189

Parse (N ext_C om m and)
The command line is input and residing in the Command Line B u ffer at this time,

and the tim e has come to parse the non-em pty command line after the label RS3:. The
code for th is parse is invoked by the fo llow in g sim ple call:

,* PARSE COMMAND LINE PTED TO BY HL
/

CALL PARSER ; PARSE ENTIRE COMMAND LINE

Command Line. The ZCPR3 Command Line can contain one o f several form s of
commands at any one time:

1. The command line can be empty
2. The command line can be a comment line: ; comment text
3. The command line can contain one command: command
4. The command line can contain a sequence o f commands, separated by

semicolons: com m and__l;com m and__2 ; . . .

The ZCPR3 command consists o f the fo llow ing general structure:
verb d irfilen am e.typ d infilenam e.typ text

Examples o f ZCPR3 commands:

WS M YFILE.TXT
XDIR R O O T :*.T X T
RENAME TEXT: F I L E 1 . T X T = F 1. TXT

The ZCPR3 CP Parser parses each command into bu ffers as per the fo llow ing
extended form o f the CP/M CCP parsing standard:

V e r b : The verb is stored in the F ile Nam e fie ld o f the External FCB i f one exists.
The F ile Type fie ld is set to COM. Any process can determ ine its name by exam ining
the F ile Nam e f ie ld o f the External FCB.

D i r : f i l e n a m e . t y p : The first token after the verb is assumed to be in this general
form at, and it is taken apart as per the CP/M convention and stored in the FCB at
memory location 5CH. If the prefix is DIR: or DU:, the disk reference is placed in the
first byte (disk A = 1) and the user area reference is placed in the 13th byte (FCB+13),
which is the SI fie ld . If the disk is not referenced, then the first byte is set to 0 (at
FCB) to indicate the current disk. If the user area is not referenced, the 13th byte (at
SI) is set to the current user area. The fie ld at FCB+16 (at DO) is set to zero (a side
effec t o f the general algorithm and not o f general utility).

S e c o n d D i r : f i l e n a m e . t y p : The second token after the verb is also assumed to be in
this general form at, and it is parsed in the same manner as described for the first
token. A gain, the disk reference and user area reference are stored in relative
positions 0 (at FCB2) and 13 (at FCB2+13). The fie ld at FCB2+16 (at CR) is zeroed, and
this is sign ifican t since it assures that a subsequent open o f the f ile positions the FCB
to the first block of the file .

Tail: The part o f the command starting w ith the space delim iter im m ediately
fo llow in g the verb is stored into the b u ffer area starting at 81H. A character count is

190 Inside Z C PR 3 Sec. 2

stored at 80H, and the byte im m ediately fo llow in g the last byte o f the ta il is set to a
binary 0 value. This is as per the CP/M convention. This b u ffer is set during the
CALLPROG routine as opposed to the PARSER routine; PARSER sim ply saves the
location o f the first byte o f the tail.

N o te 1: I f either o f the two tokens fo llow in g the verb are om itted in the command,
the f ile name and f ile type fie ld s are f ille d w ith spaces as per the CP/M convention.
The disk and user areas are zero-filled in this case.

N o te 2 : In resolving the Dir: prefix in either o f the two tokens, the PARSER
routine can be made to scan for D U form s before DIR form s or vice-versa. This
provides a means o f resolving con flicts between the two form s, such as when a disk
named C is available and a directory named C is also available. I f the D U form is
resolved first, then a directory named C can never be referenced. If the DIR form is
resolved first, any references to the disk C must include the user area number to
distinguish from the directory named C. A password check is also done when a DIR:
reference is resolved.

Resolve (N ext_C om m and)
The f in a l step in the main ZCPR3 CP functional loop is the resolution o f the

parsed command. The code for this step is shown in L isting 9-4.
During the execution o f the R E A D BU F routine, the message at Z3MSG+3 (the

ZCPR3 Command Status message) was set to a 1 i f the command line associated w ith a
shell was selected. The same message was cleared to a zero before the READ BU F
routine was called.

Shell Command. The first step in resolving a command is to see i f the source of
the command is the shell stack, and, i f so, to proceed to command resolution for CP-
resident, RCP-resident, and transient commands at the label RS4:. This enables the
shell to be invoked regardless o f the Flow Command State; i f the F low Command State
is FALSE, the ZCPR3 Shell must still be invoked so that a command line can be
presented. If this is not allow ed for, i f the F low Command State ever becomes FALSE
during the execution of a shell, the system w ill deadlock. T herefore, this test for a
shell invocation is perform ed im m ediately.

FCP Resolution. If the command is not a shell, the command scanner is run on the
FCP command table. It is important that FCP-based commands are alw ays executed
because they control the Flow Command State. If a command (FCP-based or
otherw ise) ever sets the Flow Command State to FALSE, the only w ay to set it back to
TR UE is to execute an FCP-based command. This is why the test for an FCP-based
command is perform ed before the Flow Command State is checked.

Command Scanner. The Command Scanner in the ZCPR3 CP is used to resolve
FCP-based, RCP-based, and ZCPR3 CP-based commands. Each o f these are
im plem ented as C o m m a n d P a c k a g e s , where a package is a collection o f commands in
one logical grouping. Like a package in the Ada programming language, a Command
Package in ZCPR3 is d iv id ed into two parts—the v i s ib le s e c t io n and the h i d d e n se c t io n .
The v isib le section consists o f a table o f command names and the addresses o f the
routines w hich im plem ent these commands. The hidden section contains the bodies of
the commands, where each command acts as a COM f ile would, extracting the
inform ation it needs, such as its verb, the two FCBs, and the command tail, from the
buffers set up by the PARSER routine. U n like the CP/M CCP, all parsing is done in
one routine, the PARSER, and every command in the ZCPR3 System acts just as a

Chap. 9 Inside th e Z C P R 3 C om m and P rocesso r 191

COM file would.
RCPs and FCPs. RCPs and FCPs are both im plem entations o f Command Packages

and they support a sim ilar structure. This structure is:

COMMAND_ PACKAGE:
DB ' Z3xCP' ; Z3RCP or Z3FCP

COMMAND_ PACKAGE+5:
DB NAME_SIZE ; number of bytes

; in each command
; name

DB 'CMD11 ; command name
? (NAME_SIZE=4 here)

DW CMD1_ADR ; command address
DB 'CMD2'
DW CMD2_ADR
DB

• • •

0 ; 0 terminates table
CMD1_ADR:

CMD2 ADR:
RET
• • •

RET

; body of command
; or JMP 0 to end
; body of command
; or JMP 0 to end

Flow Command State. R eturning to the main train o f thought, the FCP-resident
command table has now been scanned. If a match is found, the ZCPR3 CP executes the
command im m ediately. If not, a test is done to determ ine i f the current Flow State is
TRUE. The bytes at Z3MSG+1 (the current IF level) and Z3MSG+2 (the A ctive IF
indicator) are checked. If the current IF level is 0 (the byte at Z3MSG+1 is zero), then
command execution is allow ed and we proceed. If not, a check has to be done to see
that the current IF level is TRUE. This is done by A N D ing the bytes at Z3MSG+1 and
Z3MSG+2. The current IF level A N D ed w ith the A ctive IF indicator tells the ZCPR3
CP w hether the current F low Command State is TR UE or not. I f not TR U E, the
command is flushed and processing is resumed at RSI. If T R U E , the command
processing resumes at RS4.

At RS4, a check is made to see i f the command was prefixed w ith a directory
reference; that is, the form o f the verb was:

DIR:VERB or DU:VERB
If so, the resident command check is bypassed and the search for a COM f ile begins
im m ediately. This feature allow s the ZCPR3 CP-resident and RCP-resident Command
Packages to be bypassed. If not, a check is first done to see i f the command is in the

192 Inside Z C PR 3 Sec. 2

ZCPR3 CP-resident Command Package and, i f not, i f the command is in the RCP-
resident Command Package. F inally , i f both o f these tests fa il, a search is done for the
command as a COM file .

COM File Processing
No description o f the ZCPR3 Command Processor (CP) would be complete

w ithout a description o f the algorithm used to locate and load COM files. This code is
im plem ented near the end of the CP in Section 51. Listing 9-5, Code Sections 1-3 shows
this code.

The entry point at COMDIR (see Code Section 1 below) is entered i f a prefix is
attached to the verb in the command:

DIR:VERB or DU:VERB
Upon entry at COMDIR, a check is made to see i f the command name (verb) is

blank. If so, then a command to log into a new directory was given:

DIR: or DU:
The directory reference is processed im m ediately. N ote that a check is made of

the selected user area (at FCBDN+13) to ensure that the user area is w ith in range. With
directories under ZCPR3, thirty-tw o user areas (numbered 0-31) can be referenced, but
only sixteen (num bered 0-15) can be logged into. If the user area reference is valid , the
directory is logged into and command processing is resumed at RSI.

The resolution o f a COM file begins at the label COM: (see Code Section 2). The
TPA is selected as the load address, and the MLOAD routine is called to locate the
COM file and load it into memory at the load address (w hich is in HL upon entry to
MLOAD). If MLOAD returns, then the COM f ile has been loaded successfu lly and the
ZCPR3 CP is logged into the current directory. A new line is issued, the command line
tail is stored in the b u ffer at 80H, the DMA address is set to 80H, and the TPA is called.

Invoking Any Command
Once a command has been resolved, regardless i f it is ZCPR3 CP-resident, RCP-

resident, FCP-resident, or transient, the routine CALLPROG (see Code Section 2) is
used to invoke it. RCP-resident and transient commands are invoked at the label
CALLPROG, w hich issues a new line before beginning, and CP-resident and FCP-
resident commands are invoked at the label CALLP, w hich does not issue a new line.
The CALLPRO G/CALLP routine is called w ith the execution address in HL, and the
function o f CALLPROG is as follows:

1. Set the execution address for a subroutine call.

2. Store the command tail into the b u ffer at 80H. The PARSER routine marked the
beginning o f the command tail in the TAILSV b u ffer during the parse.

3. Set the DMA address to 80H.

4. Call the routine. If the routine is a transient, a call is made to the TPA (100H).
O therwise, a call is made to the address returned by CMDSCAN, the ZCPR3 CP
Command Table Scanner.

Chap. 9 Inside th e Z C PR 3 C om m and P rocessor 193

5. Restore the DMA address and resume command line processing at the label RSI.
This point is reached i f the command routine com pleted w ith a sim ple RET
instead o f a JMP 0 (Warm Boot) or other technique.

During the execution o f MLOAD, i f the COM file is not found, then either the
CM DRUN fa c ility w ill be invoked or the ERROR routine w ill be invoked (if
CM DRUN is not available). In the case o f CM DRUN, the entire command is passed as
a command tail to the CM DRUN utility .

Path Analysis
The MLOAD routine in the ZCPR3 CP loads a COM file , and, in so doing, it

fo llow s the Command Search Path in searching for the COM file . If the MINPATH
option is not selected, the MLOAD routine sim ply fo llow s the sym bolic path, resolving
each symbol as it goes. This can lead to wasted e ffo r t i f the same directory is
encountered more than once as the path is resolved. For instance, i f the path is "A$
A15" and the user is logged into A15, then the path resolves into "A15 A15", and the
directory A15 is logged into twice.

The M INPATH option elim inates this potential in e ff ic ien cy by passing over the
sym bolic path once, build ing an absolute path into the b u ffer at MPATH. For each
sym bolic elem ent encountered, M LO AD/M INPATH checks to see i f the absolute path
already contains that directory reference and does not include it i f such is the case.
When com plete, it is this absolute path w hich is scanned during the search for the COM
file .

Error H andling
If the command cannot be satisfactorily resolved, the ERROR routine is executed

to determ ine how to process the current error condition. L isting 9-6, Code Sections 1-2,
shows the code for the ERROR processor.

The ERROR routine first term inates any running SUBMIT f ile since, i f there is
one, the $$$.SUB was the source o f the error. It then issues a new line and checks to see
i f the error was caused by an attem pt to invoke a shell. If Z3MSG+3 (the ZCPR3
Command Status message) is set to 1, then the last command was invoked as a shell by
the ZCPR3 CP. If the error was caused by trying to invoke a shell, the shell stack is
cleared (at ERRSH) and command processing is restarted (at RESTRT).

If a shell was not involved , the Error Handler indicator message at Z3MSG is
checked. If this message is non-zero, then an Error H andler was installed. If zero, then
there is no Error H andler and the command in error is sim ply echoed fo llow ed by a
question mark (the CP/M convention) and the command processing is restarted from
scratch (at RESTRT).

If an Error Handler is available, then the ZCPR3 Command Status message (at
Z3MSG+3) is set to 2 to indicate that an Error Handler is being invoked, the pointer to
the command in error is set at Z3MSG+4 and Z3MSG+5 (the error line address), and the
command line at Z3MSG+10H (the Error Handler command line) is invoked as any
other command would be at RSI. This, naturally, assumes that the Error Handler
itse lf can be resolved. It is best to place all Error Handlers in the ROOT directory (at
the end o f the Command Search path) to ensure that the ZCPR3 CP does not enter an
in fin ite loop in trying to invoke a non-existent Error Handler.

ZCPR3 Command Processor— Wrapup

194 Inside Z C PR 3 Sec. 2

This concludes the technical presentation on the ZCPR3 Command Processor
(CP). As the reader has seen, the ZCPR3 CP perform s a high degree o f in teraction with
the messages o f the ZCPR3 System , and all must be in tune for the system to work
correctly. O f most im portance is that the ZCPR3 messages must be properly in itia lized
at Cold Boot and that all o f the tools must contain a proper pointer to the ZCPR3
Environm ent Descriptor in order to function correctly. From the ZCPR3 Environm ent
Descriptor, the details o f the ZCPR3 System, includ ing the ZCPR3 Message B uffers,
can be determ ined, and the tools can adapt them selves to any ZCPR3 System
configuration in this manner.

The fo llow in g chapters in this section address other key item s in the ZCPR3
System. Emphasis is placed on how various classes o f tools, such as Error H andlers and
Shells, interact w ith the ZCPR3 System.

ORG CPRLOC
ENTRY POINTS INTO ZCPR3

< Comments om itted >

ENTRY:
JMP CPR ;Process potential default command
JMP CPR1 ;Do NOT process potential default command

t

;**** section 1 ****
; BUFFERS ET AL
/
; **** 1. INPUT COMMAND LINE AND DEFAULT COMMAND
9

IF MULTCMD /MULTIPLE COMMANDS ALLOWED?
< Comments om itted >

NXTCHR EQU Z3CL ;NXTCHR STORED EXTERNALLY (2 byte|
BUFSIZ EQU NXTCHR+2 /BUFSIZ STORED EXTERNALLY (1 byte|
CHRCNT EQU BUFSIZ+1 /CHRCNT STORED EXTERNALLY (1 byte]
CMDLIN EQU CHRCNT+1 /CMDLIN STORED EXTERNALLY (long)
BUFLEN EQU Z3CLS /LENGTH OF BUFFER

ELSE
< Comments om itted >

Chap. 9 Inside th e ZCPR.3 C om m and P rocesso r 195

BUFLEN
BUFSIZ:

EQU 80 ;MAXIMUM BUFFER LENGTH

DB BUFLEN ;MAXIMUM BUFFER LENGTH
CHRCNT:

DB 0 ; NUMBER OF VALID CHARS IN COMMAND LINE
CMDLIN:

DB i ' ; DEFAULT (COLD BOOT) COMMAND
DB 0 ; COMMAND STRING TERMINATOR
DS• BUFLEN- ($ -CMDLIN)+1 ; TOTAL IS 'BUFLEN' BYTES/

NXTCHR:
DW CMDLIN ; POINTER TO COMMAND INPUT BUFFER

/
ENDIF•! ;MULTCMD

Listing 9-1. ZCPR3 CP: Initialize Environment, Code Section 1

•/
; * * * * 2 . • FILE TYPE FOR COMMAND
t

COMMSG:
COMTYP• ;USE MACRO FROM Z3HDR.LIB/
IF SUBON ;I F SUBMIT FACILITY ENABLED . . .

; * * * * 3 . SUBMIT FILE CONTROL BLOCK

SUBFCB:
DB 1 ;DISK NAME SET TO DEFAULT TO DRIVE A:
DB '$ $ $ ' /FILE NAME
DB i i
SUBTYP ;USE MACRO FROM Z3HDR.LIB
DB 0 /•EXTENT NUMBER
DB 0 ; s i

SUBFS2:
DS 1 ;S2

SUBFRC:
DS 1 /‘RECORD COUNT
DS 16 ; DISK GROUP MAP

196 Inside Z C PR 3 Sec. 2

SUBFCR:
DS

•

1 ;CURRENT RECORD NUMBER
f

ENDIF
•

7 SUBON
/

; * * * * 4 . COMMAND FILE CONTROL BLOCK
t

IF
•

EXTFCB NE 0 ;MAY BE PLACED EXTERNAL TO ZCP-
t

FCBDN EQU EXTFCB ;DISK NAME
FCBFN EQU FCBDN+1 ;FILE NAME
FCBFT EQU FCBFN+8 ;FILE TYPE
FCBDM EQU FCBFT+7 ;DISK GROUP MAP
FCBCR
/

ELSE
•

EQU FCBDM+16 ;CURRENT RECORD
;OR INTERNAL TO ZCPR3

NUMBER

t

FCBDN:
DS 1 ;DISK NAME

FCBFN:
DS 8 ;FILE NAME

FCBFT:
DS 3 ;FILE TYPE
DS 1 ;EXTENT NUMBER
DS 2 ;S1 AND S2
DS 1 ;RECORD COUNT

FCBDM:
DS 16 ;DISK GROUP MAP

FCBCR:
DS 1 ;CURRENT RECORD NUMBER

Listing 9-1. ZCPR3 CP: Initialize Environment, Code Section 2

/
ENDIF ;EXTFCB

>

**** 5. LINE COUNT BUFFER

Chap. 9 Inside th e Z C PR 3 C om m and P rocesso r 197

IF LTON
PAGCNT:

DB
ENDIF•

NLINES-2 ; LINES LEFT ON PAGE
; LTON

t

; **** 6 . RESIDENT COMMAND TABLE
EACH TABLE ENTRY IS STRUCTURED AS FOLLOWS:

; DB
; DW
•

' NAME' ; NCHARS LONG
ADDRESS ;ADDRESS OF COMMAND

/
CMDTBL:

DB NCHARS; SIZE OF TEXT IN COMMAND TABLE
CTABLE ; DEFINE COMMAND TABLE VIA MACRO IN Z3HDR FILE
DB 0 ;END OF TABLE

t

;**** Section 2 ****
; ZCPR3 STARTING POINTS

; START ZCPR3 AND DON'T PROCESS DEFAULT COMMAND STORED IF
; MULTIPLE COMMANDS ARE NOT ALLOWED
/
CPR1:
•t

IF
•1

NOT MULTCMD ;I F MULTIPLE COMMANDS NOT ALLOWED

XRA

STA

A ;SET END OF COMMAND LINE SO NO
; DEFAULT COMMAND

CMDLIN ; FIRST CHAR OF BUFFER
•
/

ENDIF ;NOT MULTCMD

Listing 9-1. ZCPR3 CP: Initialize Environment, Code Section 3

< Comments Omitted >

CPR:
LX I SP,STACK ;RESET STACK

198 Inside Z C PR 3 Sec. 2

IF NOT MULTCMD ;ONLY ONE COMMAND PERMITTED
LX I H, CMDLIN ;SET PTR TO BEGINNING OF COMMAND LINE
SHLD NXTCHR
ENDIF ;NOT MULTCMD

7
PUSH B
MOV A, C ;C=USER/DISK NUMBER (SEE LOC 4)
RAR ; EXTRACT USER NUMBER
RAR
RAR
RAR
AN I OFH
STA CURUSR ;SET USER
CALL SETUSR ;SET USER NUMBER
CALL RESET ; RESET DISK SYSTEM

7

•

IF SUBON ?IF SUBMIT FACILITY ENABLED
/

•

STA RNGSUB ;SAVE SUBMIT CLUE FROM DRIVE A:
/

ENDIF ; SUBON
7

POP B
MOV A, C ;C=USER/DISK NUMBER (SEE LOC 4)
ANI OFH ;EXTRACT CURRENT DISK DRIVE
STA CURDR ; SET IT
CNZ LOGIN ;LOG IN DEFAULT DISK IF NOT ALREADY LOGGED I
CALL SETUD ; SET USER/DISK FLAG
CALL DEFDMA ;SET DEFAULT DMA ADDRESS

7
IF SUBON ; CHECK FOR $ $ $. SUB IF SUBMIT FACILITY IS ON

7
LXI D,SUBFCB ; CHECK FOR $ $ $. SUB ON CURRENT DISK

RNGSUB EQU $+1 ; POINTER FOR IN-THE-CODE MODIFICATION
MVI A, 0 ;2ND BYTE (IMMEDIATE ARG) IS THE RNGSUB FLAG
ORA A ; SET FLAGS ON CLUE
CNZ SEAR1
STA RNGSUB ; SET FLAG (0=NO $$$.SUB)SET FLAG (0=NO $$$.SUB)

Chap. 9 Inside th e Z C PR 3 C om m and P rocesso r 199

ENDIF ; SUBON

JR R SI ; CHECK COMMAND LINE FOR CONTENT

Listing 9-1. ZCPR3 CP: Initialize Environment, Code Section 4

; PROMPT USER AND INPUT COMMAND LINE FROM HIM
•
f

RESTRT:
LXI SP,STACK ; RESET STACK

/
; READ INPUT LINE FROM USER OR $$$.S U B
I

RSO:

IF Z3MSG NE 0
XRA A ? SET NO OUTPUT MESSAGE
STA Z3MSG+3 ; ZCPR3 COMMAND STATUS
I NR A ;SET ZCPR3 INPUT PROMPT
STA Z3MSG+7 ;ZEX MESSAGE BYTE
ENDIF ; Z3MSG NE 0

LX I H, CMDLIN ;SET POINTER TO FIRST CHAR IN COMMAND LINE
SHLD NXTCHR ; POINTER TO NEXT CHARACTER TO PROCESS
MVI M, 0 ;ZERO OUT COMMAND LINE IN CASE OF WARM BOOT
PUSH H ;SAVE PTR
CALL READBUF ; INPUT COMMAND LINE FROM USER (OR $ $ $. SUB)

IF Z3MSG NE 0
XRA A ;NORMAL PROCESSING RESUMED
STA Z3MSG+7 ;ZEX MESSAGE BYTE
ENDIF

POP H ; GET PTR
MOV A,M ; CHECK FOR COMMENT LINE
CPI COMMENT ; BEGINS WITH COMMENT CHAR?
JRZ RSO ; INPUT ANOTHER LINE IF SO

200 Inside Z C PR 3 Sec. 2

Listing 9-2. ZCPR3 CP: Command Line Input, Code Section 1

PROCESS INPUT LINE; NXTCHR PTS TO FIRST LETTER OF COMMAND

R SI:
LX I SP,STACK ; RESET STACK

9

; RETURN TO CURRENT DIRECTORY AND POINT TO NEXT CHAR IN COMMAND
/

CALL DLOGIN ; RETURN TO CURRENT DIRECTORY
LHLD NXTCHR ;PT TO FIRST CHAR OF NEXT COMMAND
PUSH

•

H ;SAVE PTR
9

; CAPITALIZE COMMAND LINE
9

CAPBUF:
MOV A,M /CAPITALIZE COMMAND CHAR
CALL UCASE
MOV M, A
INX H ;PT TO NEXT CHAR
ORA A ; EOL?
JRNZ CAPBUF
POP H ;GET PTR TO FIRST CHAR IN LINE

9

; SET POINTER FOR MULTIPLE COMMAND LINE PROCESSING TO FIRST CHA1
; OF NEW
•

CMND
9

RS2 :
CALL SKSP /SK IP OVER SPACES
ORA A /END OF LINE?
JRZ RESTRT
CPI CTRLC /ABORT CHAR?
JRZ

•

RESTRT
9

IF MULTCMD /MULTIPLE COMMANDS ALLOWED?
MOV A,M /GET FIRST CHAR OF COMMAND
CPI CMDSEP /I S IT A COMMAND SEPARATOR?
JRNZ RS3
INX H /SK IP IT IF IT IS

Chap. 9 Inside th e Z C PR 3 C om m and P rocessor 201

JR RS2
ENDIF ;MULTCMD

«
t

RS3:
SHLD NXTCHR ?SET PTR TO FIRST CHAR OF NEW COMMAND LINE
SHLD CURCMD ;SAVE PTR TO COMMAND LINE FOR ERROR RETURN

Listing 9-2. ZCPR3 CP: Command Line Input, Code Section 2

; INPUT NEXT COMMAND TO CPR
; T h is r o u t in e d e term in es i f a SUBMIT f i l e i s b e in g p r o c e s se d
; and e x t r a c t s th e command l i n e from i t i f s o o r from th e u s e r ' s c o n s o le

READBUF:

IF SUBON

LDA RNGSUB
ORA A
JRZ RBI
LX I D,SUBFCB
PUSH D
CALL OPEN
POP D
JRZ RBI
LDA SUBFRC
DCR A
STA SUBFCR
CALL READ
JRNZ RBI
LX I D, CHRCNT
LX I H,TBUFF
MVI B/BUFLEN
CALL LDIR
LX I H,SUBFS2
MVI M, 0
INX H
DCR M
LX I D,SUBFCB

; IF SUBMIT FACILITY IS ENABLED, CHECK FOR IT

; SUBMIT FILE CURRENTLY IN EXECUTION?
; 0=NO
;GET LINE FROM CONSOLE IF NOT
;OPEN $ $ $. SUB
»•SAVE DE

?RESTORE DE
; ERASE $ $ $. SUB IF END OF FILE AND GET CMND
;GET VALUE OF LAST RECORD IN FILE
;PT TO NEXT TO LAST RECORD
,-SAVE NEW VALUE OF LAST RECORD IN $$$.SUB
;DE=SUBFCB
;ABORT $ $ $. SUB IF ERROR IN READING LAST REC
; COPY LAST RECORD (NEXT SUBMIT CMND) TO CHRCN1
; FROM TBUFF
;NUMBER OF BYTES

;PT TO S2 OF $ $ $. SUB FCB
;SET S2 TO ZERO
; PT TO RECORD COUNT
/•DECREMENT RECORD COUNT OF $$$.SUB
; CLOSE $ $ $. SUB

202 Inside ZCPR.3 Sec. 2

CALL CLOSE
JRZ RBI ; ABORT $ $ $. SUB IF ERROR
CALL PROMPT ; PRINT PROMPT
MV I A,SPRMPT 7PRINT SUBMIT PROMPT TRAILER
CALL CONOUT
LX I H,CMDLIN 7PRINT COMMAND LINE FROM $$$.S U B
CALL PRIN1
CALL BREAK 7CHECK FOR ABORT (ANY CHAR)
RNZ ;I F NO AC, RETURN TO CALLER AND !
CALL SUBKIL ;KILL :$ $ $. SUB IF ABORT
JMP RESTRT ; RESTART CPR

Listing 9-3. ZCPR3 CP: READBUF, Code Section 1

INPUT COMMAND LINE FROM USER CONSOLE

RBI:
CALL SUBKIL ; ERASE $ $ $. SUB IF PRESENT

7

•

ENDIF ; SUBON
9

9 IF SHELL STACKS ARE IMPLEMENTED, CHECK FOR CONTENT AT THIS
9

•

IF SHSTK NE 0
9

LX I H,SHSTK ; PT TO STACK
MOV A,M ; CHECK FIRST BYTE
CPI ' '+ 1 ;SEE IF ANY ENTRY
JRC RB2 ;GET USER INPUT IF NONE

9

ENDIF ; SHSTK NE 0
9

•

IF (SHSTK NE 0) OR (Z3MSG NE 0)
/

RUNBUF:
LX I D,CMDLIN 7 PT TO FIRST CHAR OF COMMAND LINE
MV I B,SHSIZE 7 COPY SHELL LINE INTO COMMAND LINE
CALL LDIR ; DO COPY
XCHG ;HL PTS TO END OF LINE

Chap. 9 Inside th e Z C PR 3 C om m and P rocesso r 203

MVI A , 1 ;SAY SHELL WAS INVOKED
STA Z3MSG+3 ;Z3 OUTPUT MESSAGE
JR RB3 ; STORE ENDING ZERO AND EXIT

RB2 :
/

ENDIF 7 (SHSTK NE 0) OR (Z3MSG NE 0)

CALL PROMPT
MVI A , CPRMPT
CALL CONOUT
MVI C,OAH
LXI D,BUFSIZ
CALL BDOS

7PRINT PROMPT
7 PRINT PROMPT TRAILER

7READ COMMAND LINE FROM USER
7PT TO BUFFER SIZE BYTE OF COMMAND LINE

STORE ZERO AT END OF COMMAND LINE

LX I H,CHRCNT 7 PT TO CHAR COUNT
MOV A,M 7GET CHAR COUNT
INX H 7 PT TO FIRST CHAR OF COMMAND LINE
CALL ADDAH 7 PT TO AFTER LAST CHAR OF COMMAND LINE
MVI
RET

M, 0 7 STORE ENDING ZERO

Listing 9-3. ZCPR3 CP: READBUF, Code Section 2

IF Z3MSG NE 0
LDA Z3MSG+3 7GET COMMAND STATUS
CPI 1 7 SHELL?
JZ RS4
ENDIF 7 Z3MSG NE 0

‘ IFON AND FCP AVAILABLE, TRY TO RUN FROM FCP

IF IFON AND (FCP NE 0)
LX I H,FCP+5 7 PT TO COMMAND TABLE
CALL CMDSCAN 7SCAN TABLE
JZ CALLP 7RUN IF FOUNDi (NO LEADING CRLF)
ENDIF 7IFON AND (FCP NE 0)

204 Inside Z C PR 3 Sec. 2

; IF IFON,
•

THEN CHECK FOR RUNNING IF AND FLUSH COMMAND LINE IF ENABLED
t

IF IFON
LX I H,Z3MSG+1 ;PT TO IF BYTE
MOV A,M ;GET IT
ORA A ;SEE IF ANY IF
JRZ RS4 .•CONTINUE IF NOT
INX H 7 PT TO IF ACTIVE BYTE
ANA M ,'SEE IF CURRENT IF IS ACTIVE
JRZ RSI 7 SKIP IF NOT
ENDIF ; IFON

RS4 :

; IF DIR: PREFIX, HANDLE AS COM FILE

COLON EQU $+1 ,-FLAG FOR IN-THE-CODE MODIFICATION
MVI A, 0 .•COMMAND OF THE FORM ' D IR : COMMAND' ?
ORA A 7 0=NO
JNZ COMDIR .•PROCESS AS COM FILE IF DIR: FORM

; CHECK FOR RESIDENT COMMAND

CALL CMDSER .-SCAN FOR CPR-RESI DENT COMMAND
JZ CALLP ;RUN CPR-RESIDENT COMMAND WITH NO LEADING 0

CHECK FOR RESIDENT COMMAND PACKAGE

IF
LX I
CALL
JZ
ENDIF

RCP NE 0
H,RCP+5
CMDSCAN
CALLPROG

;PT TO RCP COMMAND TABLE
.•CHECK FOR RCP

PROCESS AS COM FILE

JMP COM .•PROCESS COM FILE

Chap. 9 Inside th e Z C PR 3 C om m and P rocessor 205

Listing 9-4. ZCPR3 CP: Command Resolution

»•Section 51
»•Command: COM file processing
»•Function: To load the specified COM file from disk and execute i1
»•Forms: ccommand line>

< Comments Omitted >

COMDIR:
IF DRVPREFIX

LDA FCBFN ; ANY COMMAND?
CPI i i • i i/ MEANS COMMAND WAS 'D IR :' TO SWITCH
JRNZ COM ;NOT <SP>, SO MUST BE TRANSIENT OR ERROR

ENTRY POINT TO SELECT USER/DISK VIA DIR: PREFIX

IF WDU ;WHEEL FACILITY?
CALL WHLCHK »•CHECK FOR WHEEL BYTE
ENDIF ;WDU

LDA FCBDN+13 ;GET SELECTED USER
CPI 16 »•OUT OF RANGE?
JNC ERROR
LX I D,FCBDN ;PT TO FCB
CALL FCBLOG »•LOG INTO DU
LDA TEMPUSR ;GET TEMPORARY USER
STA CURUSR »•SET CURRENT USER (MAKE PERMANENT)
LDA TEMPDR »•GET SELECTED DISK
ORA A ;I F 0 (DEFAULT), NO CHANGE
JRZ COMDR
DCR A »•ADJUST FOR LOGIN
STA CURDR »•SET CURRENT DRIVE
IR:
CALL SETUD »•SET UD BYTE
JMP RSI »•RESUME COMMAND LINE PROCESSING

; DRVPREFIXENDIF

206 Inside ZCPR.3 Sec. 2

Listing 9-5. ZCPR3 CP: COM File Processing, Code Section 1

; PROCESS COMMAND
/
COM:
9

IF CMDRUN ; COMMAND RUN FACILITY AVAILABLE?
MVI A,OFFH ;USE IT IF AVAILABLE (MLOAD INPUT)
ENDIF ; CMDRUN

SET EXECUTION AND LOAD ADDRESS

LX I H, TPA
PUSH H
CALL MLOAD
POP H

; TRANSIENT PROGRAM AREA
;SAVE TPA ADDRESS FOR EXECUTION
;LOAD MEMORY WITH FILE SPECIFIED IN CMD LI
;GET EXECUTION ADDRESS; FALL THRU TO CALLS

; CALLPROG IS THE ENTRY POINT FOR THE EXECUTION OF THE LOADED
; PROGRAM; ON ENTRY TO THIS ROUTINE, HL MUST CONTAIN THE EXECUTION
; ADDRESS OF THE PROGRAM (SUBROUTINE) TO EXECUTE
9

CALLPROG:
CALL CRLF ; LEADING NEW LINE

CALLP:
SHLD EXECADR ; PERFORM IN-LINE CODE MODIFICATION

COPY COMMAND TAIL INTO TBUFF

TAILSV
LX I
LX I
PUSH
MVI
INX

TAIL:
MOV
CALL

EQU $+1 ; POINTER FOR IN-THE-CODE MODIFICATION
H, 0 ;ADDRESS OF FIRST CHAR OF COMMAND TAIL
D,TBUFF ;PT TO TBUFF
D ;SAVE PTR
B, 0 ; SET COUNTER
D ;PT TO FIRST CHAR

A,M ; GET CHAR
TSTEOL ; CHECK FOR EOL

Chap. 9 Inside th e Z C P R 3 C om m and P rocessor 207

JRZ TAIL1
STAX D ; PUT CHAR
INX H ,'PT TO NEXT
INX D
INR B »'INCREMENT COUNT
JR TAIL

TAIL1:
XRA A »•STORE ENDING ZE:
STAX D
POP H »•GET PTR
MOV M, B »•SAVE COUNT

Listing 9-5. ZCPR3 CP: COM File Processing, Code Section 2

; RUN LOADED TRANSIENT PROGRAM
9

CALL DEFDMA ;SET DMA TO 0080
t

; EXECUTION (CALL) OF PROGRAM (SUBROUTINE) OCCURS HERE

EXECADR
CALL

EQU
TPA

$+1 ; CHANGE ADDRESS FOR IN-LINE CODE MODIFICATIOl
; CALL TRANSIENT

RETURN FROM EXECUTION

CALL
JMP

DEFDMA
RSI

;SET DMA TO 0 0 8 0 , IN CASE PROG CHANGED IT
»•RESTART CPR AND CONTINUE COMMAND PROCESSING

Listing 9-5. ZCPR3 CP: COM File Processing, Code Section 3

; ERROR PROCESSOR
t

ERROR:
t

IF SUBON ;IF SUBMIT FACILITY IS ON

CALL SUBKIL »'TERMINATE ACTIVE $$$.SUB IF ANY
9

208 Inside Z C PR 3 Sec. 2

ENDIF ; SUBON

CALL CRLF ;NEW LINE
7

IF Z3MSG NE 0 ;MESSAGES ENABLED?
7

LDA Z3MSG+3 ;WAS ERROR CAUSED BY NO SHELL?
ANI 1 ;B IT 0 SAYS ZCPR3 TRIED TO RUN A SHELL®
JRNZ ERRSH ; ABORT SHELL
LDA Z3MSG 7GET ERROR HANDLER MESSAGE
MOV B, A 7 . . . IN B
ORA A 7 FLUSH AND RESUME?
JRZ ERRO
MVI A ,2 7 SET ERROR FLAG
STA Z3MSG+3 7 IN SHELL STATUS BUFFER
LHLD CURCMD 7 PT TO BEGINNING OF ERROR
SHLD Z3MSG+4 7 SAVE IN MESSAGE
LXI H,Z3MSG+10H 7 PT TO COMMAND LINE
SHLD NXTCHR 7NEXT CHARACTER TO EXECUTE
JMP RS1 7RUN CONTENTS OF BUFFER

/
7 CLEAR SHELL STACK AND RESTART COMMAND PROCESSING
7
ERRSH:
/

IF SHSTK NE 0 7 IF SHELL STACK AVAILABLE
XRA A 7 CLEAR SHELL STACK
STA SHSTK
ENDIF

•
t

JMP RESTRT 7RESTART PROCESSING

Listing 9-6. ZCPR3 CP: Error Processor, Code Section 1

ERRO:
•

ENDIF
•

; Z3MSG NE 0
/
CURCMD EQU $+1 7 POINTER FOR IN-THE-CODE MODIFICATION

LXI H, 0 7 PT TO BEGINNING OF COMMAND LINE

Chap. 9 Inside th e Z C PR 3 C om m and P rocessor 209

ERRlS
MOV A,M ;GET CHAR
ORA A ;END OF LINE?
JRZ ERR2
CALL CONOUT ; PRINT COMMAND CHAR
INX H ;PT TO NEXT CHAR
JR ERR1 »•CONTINUE

ERR2 :
CALL PRINT ;PRINT '? '
DB ' ? '+80H

ERR3 :
JMP RESTRT /•RESTART CPR

Listing 9-6. ZCPR3 CP: Error Processor, Code Section 2

210 Inside Z C PR 3 Sec. 2

Chap. 10 Inside th e Z C PR 3 C om m and P rocessor 211

10 Inside the ZCPR3 System Segments

A ZCPR3 System Segment is a package or data file which can be loaded by the
LDR tool into memory for use by the ZCPR3 System. There are several types of
ZCPR3 System Segments:

*.ENV Environm ent Descriptors
*.FCP Flow Command Packages
*.RCP Resident Command Packages
*.IOP In p u t/O u tp u t Packages
*.NDR Named Directory Data Files
*.Z3T Term inal (TCAP) Data Files

Environment Descriptor
The main purpose of the Environment Descriptor is to provide inform ation about

the ZCPR3 System environm ent to the ZCPR3 tools in a convenient, transportable
form so tha t the tools can be moved from one ZCPR3 System to another at the binary
level. The only installa tion requirem ent for transportab ili ty is tha t the toolset be
installed via the Z3INS tool; this process takes less than five minutes for the
installation of over 70 tools. The ZCPR3 Environm ent Descriptor, which includes a
Z3TCAP entry for the user’s terminal, provides a significant extension over the
conventional CP/M facilities for porting programs at the b inary level from one
computer system to another.

Flow and Resident Command Packages
Like the package fea tu re of the Ada programming language, a Command Package

is divided into two parts: the visible section, which defines the names and addresses of
the commands in the package, and the hidden section, where the commands are
implemented. Both Flow Command Packages and Resident Command Packages are
written in the same general format:

DB ' Z 3 x C P 1 ; Z3RCP f o r R e s i d e n t Command P a c k a g e
; Z3FCP f o r F lo w Command P a c k a g e

DB NAME_SIZE ; n u m b e r o f c h a r a c t e r s i n com m and nam e
DB ' CMD1' ; n a m e o f com m and (NAME_SIZE c h a r s l o n g)
DW CMD1_ADR ; a d d r e s s o f com m and
• • •

DB 0
CMD1_ADR:

; e n d o f t a b l e

• • • ; c o d e w h i c h i m p l e m e n t s com m and
RET ; s i m p l e RET i n s t r u c t i o n i s a d e q u a t e

; w h e n com m and i s c o m p l e t e d

The routine CMDSCAN in the ZCPR3 CP searches for commands stored in these
packages and selects routines contained therein for execution. The resident commands
inside the ZCPR3 CP are also in the form of a command package, and they are
resolved in the same way.

212 Inside Z C PR 3 Sec. 2

Input/Output Packages
In p u t/O u tp u t Packages (IOPs) execute in conjunction w ith the low-level,

character-oriented in p u t /o u tp u t routines in the BIOS. The BIOS simply directs its
calls for console, list, punch, and reader in p u t /o u tp u t to the routines in the current
IOP for execution.

CP/M Redirectable Input/Output
Redirectable Input/Output refers to the ability of the user to switch between

various In p u t/O u tp u t devices during the course of a session.
CP/M supports four logical I /O devices: a console, a prin ter, a reader, and a

punch. Each of these four logical devices may have any one of four physical devices
assigned to it, giving the user up to sixteen physical devices. The I /O Byte (at memory
location 3) is used to specify the assignment of physical to logical devices. For fu r ther
details, re fer to the discussion of I /O in Chapter 2.

By using the STAT command, the CP/M user may change these assignments from
time to time w ithout actually changing the hardw are configura tion of his system. For
instance, my system comes up w ith the CRT as the principal console device. I f I so
wish, however, I can assign my prin ting term inal as the console by issuing the
command "STAT CON:=TTY:"; I then enter all my commands at the prin ting terminal
keyboard and, when finished, move back to the CRT by issuing the command "STAT
CON:=CRT:".

ZCPR3 Redirectable I/O System
U nder ZCPR3, a slightly d if fe ren t scheme for redirectable I /O has been

implemented. However, the implementer has the choice of continuing to use the CP/M
scheme or of switching to this new one.

When a ZCPR3 system cold boots, the BIOS, as loaded from the system tracks of
the disk, contains only a few prim itive I /O drivers. The CRT physical device is
assigned to the console, reader, punch, and list logical devices; thus all ou tput goes to
the CRT. No redirection is permitted at this time.

The BIOS is s tructured so tha t all the I/O entries in its jump table branch to
corresponding entries in a second jump table (which is in itia lized by the Cold Boot
Routine). This second jump table is placed on a page boundary at the beginning of a
scratch area. It is in this scratch area that the physical device drivers for the system
reside. It is recommended tha t this scratch area be approxim ately 2K in size, to permit
maximum flexibility . Figure 10-1 shows this new BIOS layout in memory.

What the Redirectable I/O System Buys You
As the reader can see, CP/M com patibility is m aintained in that there are still

only the four s tandard logical devices: Console (CON:), P rin ter (LST:), Reader (RDR:),
and Punch (PUN:). What the reader may not see yet is tha t the restric tion of assigning
only four physical devices to each of these logical devices is now gone, as well as the
rather obscure names given by CP/M to the physical devices (such as U RI:, UC1:,
BAT:, etc).

The advantage of this system is tha t it does not restric t the designer to the I/O
Byte s tructure defined by Digital Research. Instead, the designer can structure the
I/O Byte any way he chooses or even select a d if fe re n t structure, such as a 2-byte I/O
Word, to control his redirectable I/O.

Chap. 10 Inside th e Z C PR 3 S ystem Segm ents 213

Base of BIOS — >
(Lower Memory)

End of Jump Table ->

IOBASE ->
(On Page Boundary,
2K Bytes in Size)

IOBASE + 12 — >
IOBASE + 15 — >
IOBASE + 18 — >
IOBASE + 21 — >
IOBASE + 24 — >
IOBASE + 27 — >
IOBASE + 30 — >
IOBASE + 33 — >
End of Jump Table ->

End of BIOS — >

Figure 10-1. BIOS with Redirectable I/O Package

Environments such as the following can be implemented:
No Reader or Punch Devices are available
The LST: Device may be any of the following:

Jump for Cold and Warm Boots
Console Status Jump to IOBASE+12
Console Input Jump to IOBASE+15
Console Output Jump to IOBASE+18
List Output Jump to IOBASE+21
Punch Output Jump to IOBASE+24
Reader Input Jump to IOBASE+27
Jumps for Disk I/O
List Status Jump to IOBASE+30
Jump for Sector Translation
Body of BIOS, Containing:

Cold and Warm Boot Routines
Disk I/O Routines
Sector Translation Routine

Jump to Status Routine
Jump to Device Select Routine
Jump to Device Name Routine
Jump to Package Init Routine
Jump to Console Status
Jump to Console Input
Jump to Console Output
Jump to List Output
Jump to Punch Output
Jump to Reader Input
Jump to List Status
Jump to New I/O Routine
Body of Redirectable I/O Driver
Package Containing the Routines
Jumped to Starting at IOBASE

214 Inside Z C PR 3 Sec. 2

1) Prin ting Term inal
2) CRT
3) Line Prin ter
4) Modem
5) Link to Another Computer
6) Disk File

The CON: Device may be any of the following:
1) Prin ting Term inal (TTY)
2) CRT
3) Modem
4) Link to Another Computer
5) CRT Input and CRT and Modem O utput
6) CRT Input and CRT and Remote Computer Output
7) CRT Input and CRT and Disk File O utput
8) TTY Input and TTY and Modem O utput
9) TTY Input and TTY and Remote Computer Output
10) TTY Inpu t and TTY and Disk File O utput

As the reader can see, this s tructure supports six LST: devices and ten CON:
devices (which is quite a bit more flexible than having only four LST: devices and
four CON: devices). Also, six devices require only 3 bits to represent them (0-5) and
ten devices require only 4 bits to represent them (0-9), so we still require only one I/O
byte for I /O redirection.

The Redirectable I /O Drivers contain three routines (the firs t three in the jump
table starting at IOBASE) which provide the following functions:

1) STATUS Tells the calling program how many physical devices are available for the
CON:, LST:, RDR:, and PUN: logical devices and which physical device is
curren tly assigned to each of the logical devices

2) SELECT Allows a calling program to assign a physical device to a logical device.

3) NAMER Returns to the calling program a pointer to a text string which describes a
physical device. The calling program passes to this routine the logical
device and physical device numbers.

The STATUS routine requires no inputs and returns a pointer to a table in HL.
This table is structured as a series of four byte pairs. The f irs t byte pair is associated
with the CON: device, the second w ith the RDR: device, the th ird with the PUN:
device, and the fou rth with the LST: device. The firs t byte of each pair contains the
number of physical devices tha t may be assigned to the associated logical device; (this
number is in the range 0 to 255). The second byte of each pair contains the device
number of the physical device currently assigned to the logical device (in the range 0
to [number of devices - 1]). Table 10-1, below, shows the s tructure of the 8-byte Status
Routine table and typical assignments in the code.

Chap. 10 Inside th e Z C PR 3 System Segm ents 215

Table 10-1. Status Routine Table S tructure

Count Assignment
Device Byte Number Byte Number
CON:
RDR:
PUN:
LST:

0
2
4
6

1
3
5
7

STABLE:
Code Example:

DB 6,2 6 Devices, Device
Assigned to CON:

DB 0,0 No RDR: Devices
DB 0,0 No PUN: Devices
DB 10,5 10 Devices, Device

Assigned to LST:

(3rd Device)

(6th Device)

The SELECT routine assigns a physical device to a logical device. It is called with
the logical device number (where CON: is 0, RDR: is 1, PUN: is 2, and LST: is 3) in the
B Register and the physical device number in the C register. SELECT returns with the
Zero Flag Set (Z) if an invalid selection was made (such as B > 3 or C > max device
number). Example:

MVI B,0
MVI C, 4
CALL IOBASE+3
JZ DEVERR
MVI B,3
MVI C,2
CALL IOBASE+3
JZ DEVERR

;Select CON:
»•Physical Device 4
/•SELECT Routine
;Error Handler
/•Select LST:
/•Physical Device 2
/•SELECT Routine
;Error Handler

Finally , the NAMER routine returns to the caller a text string (a vector of ASCII
characters term inated by a binary 0) tha t describes the physical device requested. On
input, B contains the logical device number and C contains the physical device number
(as in the SELECT routine). On output, HL points to the string and the Zero Flag is Set
(Z) if an invalid selection was made. This re turned text string contains the mnemonic
name of the device (up to eight characters long) followed by a space and any desired
text which describes the attr ibu tes of the physical device. Example:

MVI B,0 /•Select CON:

216 Inside Z C PR 3 Sec. 2

MVI C,2
CALL IOBASE+6
JZ DEVERR
CALL PSTR

/Physical Device 2
;NAMER Routine
;Error Handler
;Print String pted to by HL

may result in the following text being printed:

MODEM DC Hayes Smartmodem
Note that this conforms to entry 3 (Physical Device 2 is the th ird device) in the table a
couple of pages back.

To put this all together, the tools DEV and DEVICE2 are provided with the
ZCPR3 System. They perform the following functions:

o R eturn the Names of All Physical Devices
o R eturn the Names of only the Physical Devices Associated w ith a

Particu lar Logical Device
o Allow the User to Assign a Physical Device to a Logical Device

Loading Redirectable I/O Drivers
The Cold Boot Routine in the main body of the BIOS initializes the I /O package

starting at IOBASE, providing an initia l jump table and an in itia l set of routines.
Once the Cold Boot Routine has finished, it passes control to ZCPR3. One of the

things it has done before it passes control, however, is to store an in itia l command,
STARTUP, in the Multiple Command Line Buffer. ZCPR3 starts up, sees this
command in its b u ffe r , and executes it. Upon execution, STARTUP loads the Multiple
Command Line B uffer with a series of commands, which include a command to load a
*.IOP file.

Once LDR has completed loading the IOP file, it calls the driver in itia liza tion
routine at IOBASE+9 and returns to ZCPR3 when this routine is finished. The
in itia liza tion routine performs whatever device in itia liza tions are desired.

The source code of the I/O Package named SYSIO.ASM provides a useful example
of a Redirectable IOP.

Named Directory Data Files
The *.NDR files contain defin itions of ZCPR3 Named Directory environments.

These defin itions consist of the assignment of mnemonics and passwords to directory
references. The *.NDR files are created by the MKDIR command or by assembling the
SYSNDR.ASM file. The SYSNDR.ASM file shows the in ternal structure of a Named
Directory Data File, which is:

DB DISK,USER
DB 'NDIRNAME'
DB 'PASSWORD'

disk A = 1
8 characters for a name
8 characters for a password
space-fill if none

DB 0 end of NDR indicated by a zero
in place of a disk number

Chap. 10 Inside th e Z C PR 3 S ystem Segm ents 217

The Environm ent Descriptor contains the starting address of the memory image
for the NDR file and the number of 18-byte entries it contains.

TCAP Data Files
The *.Z3T overlays the second ha lf of the ZCPR3 Environm ent Descriptor with a

data entry extracted from the Z3TCAP.TCP file or w ith an entry created by the
TCMAKE command. The s tructure of this data file is described elsewhere in this
book. The TCAP entry is a part of the ZCPR3 Environm ent Descriptor; for this reason,
the LDR command should load a *.Z3T file after it has loaded the *.ENY file. If the
*.Z3T file is loaded firs t, it will be overlaid by the *.ENV file and its e ffec t will be
lost.

218 Inside Z C PR 3 Sec. 2

Chap. 11 Inside th e Z C PR 3 System Segm ents 219

11 Inside the ZCPR3 Message Buffers

The operation of the ZCPR3 System is dependent upon the ZCPR3 Message
Buffers located at the symbol Z3MSG in the Z3BASE.LIB file. The messages are used
in so many d ifferen t contexts by several d ifferen t types of ZCPR3 tools that the total
picture is somewhat d iff icu lt to see. For this reason, the fo llow ing is presented to
summarize the contents and application of the ZCPR3 Message Buffers. The following
figure summarizes the ZCPR3 Message Buffers:

O f f s e t f r o m Z 3 M S G F u n c t io n
0 Error Flag (Error Handler)
1 IF (Current IF Level)
2 IF Active
3 ZCPR3 Command Status
4-5 Error Address (for Error Handler)
6 Program Error Code
7 ZEX Message Byte
8 ZEX Running Flag
9-10 Address of Next ZEX Char
11-12 Address of First ZEX Char
13 Shell Control Byte
14-15 Shell Scratch
10H-2FH Error Command Line
30H-39H Registers
3AH-3FH Reserved
40H-4FH U ser-D efined

Error Handler Messages
The E r r o r F l a g at Z3MSG+0 is used to indicate i f an Error Handler is enabled. If

this flag is 0, there is no Error Handler; i f this f lag is not zero (OFFH), there is an Error
Handler, and the E r r o r C o m m a n d stored at Z3MSG+10H to Z3MSG+2FH (32 bytes
allowed, including terminating zero) is the command line executed when the ZCPR3
CP executes an Error Handler.

Both the Error Flag and Error Command are set by an Error Handler and read by
the ZCPR3 CP as required.

IF Messages
The I F message at Z3MSG+1 and the I F A c t i v e message at Z3MSG+2 are used to

indicate the number of the current IF level and the Flow Command State at that and
all preceding levels. The IF message has either no bit set (which indicates that no IF is
active) or one bit set (which indicates which IF level is active). Eight levels o f active
IFs are permitted. Bit position 0 indicates IF level 1 and bit position 7 indicates IF
level 8. The IF Active message indicates the Flow Command State of each o f the eight
IF levels, and it tracks on a one-to-one relationship with the IF message.

The IF message assigns an IF level to each bit, and only one bit is set to indicate
which IF level is currently active:

220 Inside Z C PR 3 Sec. 2

| | | | | | | | | IF message (no active IF)

| | | | | | | |1| IF message (IF level 1 is current)

111 | | | | | | | IF message (IF level 8 is current)

The IF A ctive message is used to hold the states of all IF levels up to and
including the current one:

| I I I I 0 I 11 11 11 IF Active (IF levels 1-3 TRUE)

The fo llow ing example illustrates how the two IF message bytes work together:

| | | | |1|0|0|0| IF Message (Current Level is 4)

|0 I 011111 IF Active (IF levels 1-2 TRUE)

Flow Command State
From this example, the reader can see that four IF commands have been issued,

and the third IF enabled a FALSE condition, which automatically made the fourth IF
FALSE. The current Flow Command State is determined by the fo llow ing algorithm:

i f IF__message = 0 then f lo w __command_state = TRUE
else f lo w __command_state = IF__message A N D IF_A ctive__message

The two IF messages are usually set by an FCP routine or a transient and they are
read by the ZCPR3 CP to determine the Flow Command State.

Command Status
The C o m m a n d S t a t u s o f the ZCPR3 CP is stored in Z3MSG+3. This byte can take

on one of three values:

Chap. 11 Inside th e ZCPR.3 M essage B uffers 221

0 the current command is invoked normally
1 the current command is a Shell
2 the current command is an Error Handler

This message is set by the ZCPR3 CP and read by a Shell or an Error Handler
when it is invoked. Each type of tool will either install itse lf or execute its function,
depending on the setting o f this message. In the case o f a Shell, it w ill assume the role
of the ZCPR3 CP for input processing and clear this message in order to allow it to
invoke other Shells under it.

Error Address
If a command is in error, the ZCPR3 CP will set the Command Status message to 2

in order to indicate to the Error Handler that it was invoked as such and it will store
the address o f the first byte o f the command line in the E r r o r A d d r e s s message at
Z3MSG+4 and Z3MSG+5 (low order, high order, resp). The Error Handler may then
use this pointer to examine the command in error.

Program Error Code
A byte is reserved at Z3MSG+6 to contain a P r o g r a m E r r o r C o d e . This byte is set to

0 to mean that no error condition exists or non-zero (any desired value) to indicate that
an error condition exists and what that condition is. The exact defin it ion of these
values depends upon the tool which sets them. The only convention to be observed is
that no error is indicated by a zero value and an error is indicated by a non-zero value.

The IF condition called ERROR examines the Program Error Code and sets the
next Flow Command State according to its value. In essence, a tool can set the Program
Error Code and pass this information on to a tool which is later executed. The ZCPR3
CP itself ignores the Program Error C od e-the code is used only to pass information
from one tool to another.

ZEX Message
The Z E X M e s s a g e byte is used to pass control inform ation to the ZEX Monitor if

it is in operation. This byte can have one o f three values:

0 normal operation
1 a ZCPR3 prompt has appeared
2 suspend ZEX Monitor activity

During normal operation, the ZEX Monitor provides input characters whenever a
BIOS console input call is made. The ZCPR3 prompt message is used to tell ZEX that
command line input is being requested and that the ZEX Monitor can activate to
provide this input. The command to suspend ZEX Monitor activ ity simply tells ZEX
to stop providing input characters and allow input to come from the console. This state
continues until the ZEX Message byte is set to some other value.

The ZEX Message byte is set by the ZCPR3 CP when it prompts for input from the
console and after this input is accepted. The ZEX Message byte should be set by any
ZCPR3 Shell as it would be by the ZCPR3 CP, and it may be set by any other tool.

ZEX Running Flag
The message at Z3MSG+8 is the Z E X R u n n in g F l a g , and it is set by ZEX to a non

zero value to indicate that the ZEX Monitor is in operation. When the ZEX Monitor
terminates, it resets this message to zero.

222 Inside Z C PR 3 Sec. 2

ZEX Control
The message at Z3MSG+9 and Z3MSG+10 is the address of the next character in

the ZEX memory-based f i le image which will be returned by ZEX on the next BIOS
console input call. The message as Z3MSG+11 and Z3MSG+12 is the address of the
first character o f the ZEX memory-based f i le image, where the f ile image is stored in
sequence from high memory to low memory.

These two messages are used to control the execution f low o f commands under
ZEX. The GOTO command, for example, will search the ZEX memory-based file
image for the label referenced in the command starting at the address o f the first
character (in Z3MSG+11 and Z3MSG+12) and, i f found, will set the address o f the next
character for ZEX processing in the message at Z3MSG+9 and Z3MSG+10. The end of
the ZEX memory-based f i le image is f lagged by a byte of value OFFH.

Shell Control Byte
The S h e l l C o n t r o l B y t e is located at Z3MSG+13, and it is set by Shells and other

tools to control the features of the Shell execution. The fo llow ing convention has been
adopted for the usage o f this message:

Bit 0 set Shell to comment mode
Bit 1 have Shell echo the command lines it builds
Bit 7 have Shell wait upon entry before execution

The use o f other bits is open to the discretion of the designer.
Shell Scratch
The S h e l l S c r a t c h messages are at Z3MSG+14 and Z3MSG+15. Their use is

undefined and left open to the Shell designer.
Registers
The R e g i s t e r s are located from Z3MSG+30H to Z3MSG+39H. These are 10 one-

byte registers which may be used to store any values desired. The REG tool can
directly set their values, and the IF tools can test them.

Reserved Messages
The messages from Z3MSG+3AH to Z3MSG+3FH are reserved for the ZCPR3

System designer (Richard Conn) and should not be used by any other person. This will
leave an opening for future expansion o f the ZCPR3 System.

User-Defined Messages
The messages from Z3MSG+40H to Z3MSG+4FH are available for user defin ition

and may be used for any purpose desired by the software designer.

Inside ZC PR 3 Sec. 2 223

12 Inside ZEX

ZEX Command File Processor
The ZEX Command File Processor is an integral part of the ZCPR3 System -m uch

more so than any other tool. It reacts closely with the ZCPR3 Command Processor, and
its execution can be controlled and directed by any ZCPR3 Tool. Refer to the section
on ZEX in Chapter 3 for a user’s viewpoint o f its operation.

When the ZEX Command File Processor executes, it places the ZEX Monitor in
high memory, just under the ZCPR3 CP. Beneath the ZEX Monitor is the text of the
command f i le it is to execute; this text has been preprocessed by the ZEX Command
File Processor for greater ease of use and e ff ic ien cy o f execution by the ZEX Monitor.
After installation o f both the ZEX Monitor and memory-resident command f ile is
complete, the BDOS entry point address is adjusted to protect the monitor and its
command f i le and execution resumes with the ZEX Monitor providing input from the
command file. Figure 12-1 shows the picture of the ZCPR3 System.

High Memory ->

Normal Ptr ->
to BDOS

Pointer to ->
BDOS

Low Memory -> ---------------------------------

Figure 12-1. ZCPR3 System with ZEX Monitor Installed

The command f ile is stored from higher memory down, and its termination is
signalled by a OFFH byte. The ZEX Monitor Front-End consists o f mainly a JMP
BDOS_ENTR Y instruction.

During the execution o f the ZEX Monitor, several messages in the ZCPR3
Message Buffers enable the ZCPR3 CP and the ZCPR3 Tools to interact with the ZEX

Extended Buffers and Packages
BIOS
BDOS
ZCPR3 Command Processor
ZEX Monitor
Command File
ZEX Monitor Front-End
Transient Program Area
(TPA)

I Buffers

224 Inside Z C PR 3 Sec. 2

Monitor. Operations with the ZEX Monitor, such as suspending its operation, enabling
its operation, inform ing it that a command prompt has appeared, and changing its
execution f low within the command f i le are possible by means of these messages. The
messages which a f fe c t the ZEX Monitor are summarized in the fo llow ing table:

ZEX Message
The ZEX Message byte is used to pass control inform ation to the ZEX Monitor i f

it is in operation. This byte can have one of three values:

0 normal operation
1 a ZCPR3 prompt has appeared
2 suspend ZEX Monitor activity

The ZEX Monitor provides input characters whenever a BIOS console input call is
made. The ZCPR3 prompt message is used to tell ZEX that command line input is
being requested. The ZEX Monitor w ill leave a suspended state i f it is in one at this
point and provide input to the command line with whatever special command line
processing is needed to be done. The command to suspend ZEX Monitor activ ity tells
ZEX to stop providing input characters and allow input to come from the console.
This state continues until the ZEX Message byte is set to some other value.

The ZEX Message byte is set by the ZCPR3 CP when it prompts for input from the
console and after this input is accepted. The ZEX Message byte should be set by any
ZCPR3 Shell as it would be by the ZCPR3 CP, and it may be set by any other tool.

ZEX Running Flag
The message at Z3MSG+8 is the ZEX Running Flag, and it is set by ZEX to a non

zero value to indicate that the ZEX Monitor is in operation. When the ZEX Monitor
terminates, it resets this message to zero.

ZEX Control Messages
The message at Z3MSG+9 and Z3MSG+10 is the address o f the next character in

the ZEX memory-based f ile image which will be returned by ZEX on the next BIOS
console input call. The message as Z3MSG+11 and Z3MSG+12 is the address o f the
first character o f the ZEX memory-based f i le image, where the f i le image is stored in
sequence from high memory to low memory.

These two messages are used to control the execution f low o f commands under
ZEX. The GOTO command, for example, will search the ZEX memory-based f ile
image for the label referenced in the command starting at the address o f the first
character (in Z3MSG+11 and Z3MSG+12) and, i f found, will set the address o f the next
character for ZEX processing in the message at Z3MSG+9 and Z3MSG+10. The end of
the ZEX memory-based f i le image is flagged by a byte of value OFFH.

O f f s e t f r o m Z 3 M S G F u n c t io n
ZEX Message Byte
ZEX Running Flag
Address o f N ext ZEX Char
Address of First ZEX Char

7
8

9-10
11-12

Chap. 13 Inside ZEX 225

13 Inside the ZCPR3 Shells

Shell
A S h e l l is a special type o f tool under ZCPR3. It should generally conform to the

rules of a ZCPR3 tool (see the chapter on ZCPR3 Tools). A Shell performs one of two
basic functions when it executes: (1) it installs itself or (2) it performs its shell-
oriented function, accepting commands from the user and generating command lines
for the ZCPR3 CP to execute.

Shell Self-Insta llation
When a Shell installs itself, its primary mission is to push a command line onto the

Shell Stack. The ZCPR3 Environment Descriptor contains a pointer to the Shell Stack;
if there is no Shell Stack available (the value of the pointer is zero), then the Shell
cannot function and should so indicate.

In pushing its command line onto the Shell Stack, a Shell can determine its name
from the External FCB. It should also in itialize any message buffers it wants to use to
communicate with itse lf between invocations. There are several sets o f buffers
available with which to do this.

At location Z3MSG+13 is a Shell Control Byte. It is structured as follows:

Bit 0 Enable Shell Comment
Bit 1 Enable Shell Echo
Bits 2-6 Use as Desired
Bit 7 Enable Shell Entry Wait

It is recommended that implementations of Shells adhere to the indicated usage of
these bits. Their meanings are described below.

Enable Shell Comment. The Shell should run in a comment mode when this bit is
set (if appropriate). All inputs should be flushed as comments rather than handed to
the ZCPR3 CP for processing unless preceded by a command escape character (which
is recommended to be the exclamation mark). Refer to the description o f the Shell
named SH for an example.

Enable Shell Echo. The Shell should print the command line it builds to pass to
the ZCPR3 CP i f this bit is set.

Enable Shell Entry Wait. If this bit is set when the Shell is invoked by the ZCPR3
CP, the Shell should print a prompt to the user and wait for his response before
resuming execution. The purpose of this feature is to give the user time to look at the
results o f the last command executed before the Shell comes into play, possibly wiping
out the previous display (as when the Shell is screen-oriented).

Locations Z3MSG+14 and Z3MSG+15 are reserved for use by Shells. This usage is
undefined, but one intended application is to make a note o f the disk and user area the
user was in at the time the Shell exited to run a command line.

Other useful buffers for Shell-oriented messages are the registers at Z3MSG+30H
to Z3MSG+39H and the System-Wide File Names in the Environment Descriptor.

Some useful Shell-oriented Z3LIB routines are:

GETSH2 determine i f a Shell Stack is available
QSHELL determine i f the process was invoked as a Shell
PUTSHM put values to Shell messages at Z3MSG+13 to Z3MSG+15

226 Inside Z C PR 3 Sec. 2

GETSHM get values to Shell messages at Z3MSG+13 to Z3MSG+15
GETFN1 get pointer to System-Wide File Names
SHPUSH push command line onto Shell Stack
SHPOP pop top element o f f o f Shell Stack

Shell Execution
When a Shell executes, it should have two basic operating modes: (1) as a ZEX

command line-forwarder and (2) as a user command generator.
If the Shell is not command-line oriented (like VFILER), then it should test to see

i f ZEX is running, and, i f so, accept the next command line from ZEX and pass it
through directly to the ZCPR3 CP. A simple way to do this is (1) to set the ZEX
message (at Z3MSG+7) to 1 indicating a prompt, (2) input the line via a BDOS call, (3)
clear the ZEX prompt message to 0, and (4) clear the Command Status message (at
Z3MSG+3) to zero. In this way, i f a ZEX command f ile is in execution from a Shell-
invoked command, then the command f ile can continue to completion. If a Shell is
command-line oriented (like SH), no special attention need to be paid to the input
source other than accepting normal BIOS input and setting the ZEX message byte to
indicate a prompt.

A Shell should act like the ZCPR3 CP i f it inputs a command line from the user.
In particular, it should set the ZEX message byte at Z3MSG+7 to 1 to indicate that a
prompt has appeared before it inputs its line and it should reset this byte back to zero
after the line is accepted. All ZCPR3 Shells should clear the Command Status message
to zero before they return to the ZCPR3 CP to run their commands so that one Shell
can successfully invoke another Shell.

Some useful Z3LIB routines are:

GETSHM get Shell message
PUTSHM put Shell message
PU TZEX put ZEX message byte
PUTCST put ZCPR3 Command Status message
GETCST get ZCPR3 Command Status message
PUTCL store command line in buffer

Chap. 14 Inside th e Z C PR 3 Shells 227

14 Inside the ZCPR3 Error Handlers

An E r r o r H a n d l e r is a special type of a ZCPR3 Tool which is invoked in two
different situations: (1) by the user when he wants to install it and (2) by the ZCPR3
Command Processor when an error occurs. As a ZCPR3 Tool, an Error Handler should
observe the conventions o f a ZCPR3 Tool; see the chapter on the internals of ZCPR3
Tools for details.

Whenever the ZCPR3 CP runs a command, it leaves a Command Status message at
Z3MSG+3 (the third byte from the beginning of the ZCPR3 Message Buffer, where the
first byte in the buffer is numbered 0). If this message has the value o f 0, then the
command was issued by the user. If it has a value o f 1, then the command was issued
by the ZCPR3 CP as a shell invocation. If Z3MSG+3 has a value o f 2, then the
command was issued by the ZCPR3 CP as an error handler. Shortly after an Error
Handler begins running, it should check this message to see how it was invoked. If it
was not invoked as an error handler (i.e., the user issued the command), then its
function is to install itse lf as an error handler or print a help message i f the / / option
is presented. If the Error Handler was invoked as an error handler by the ZCPR3 CP (
(Z3MSG+3) = 2), then it should process the command in error as indicated by the
ZCPR3 CP.

The QERROR routine in Z3LIB is useful for performing a check on Z3MSG+3
and seeing i f an Error Handler was invoked.

Error Handler Self-Installation
An Error Handler installs itself by storing a command line to invoke itse lf in the

Error Command message at Z3MSG+10H to Z3MSG+2FH and setting the error code at
Z3MSG+0 to OFFH (non-zero). It is best to have an Error Handler obtain its name from
the External FCB so that the user can name an error handler whatever he wishes.

The algorithm for self-installation of an Error Handler is:

if external_FCB_exists then
error_handler_name = external_FCB_name

else
error_handler_name = default_name

end if
error_coxnmand_buf fer = error_handler_name
error_code = OFFH
U sefu l Z3LIB routines for these functions are:

GETEFCB determine existence of External FCB and set pointer to it i f it exists
PUTERC store error command line into buffer
PUTER 1 set error code message

Error Handler Execution
When an Error Handler executes, it must determine the location of the command

in error in order to perform any processing on this command. The ZCPR3 CP provides
this inform ation in the form o f an address at Z3MSG+4 and Z3MSG+5 (low order and
high order address, resp). Once this address is known, the Error Handler can examine

228 Inside Z C PR 3 Sec. 2

the command. Note that this command is terminated either by a binary zero (0) or a
semicolon

U sefu l Z3LIB routines are:

E R R A D R get address o f command in error
GETCLn get data on the command line buffer

Chap. 15 Inside th e Z C PR 3 E rro r H andlers 229

IS Inside the ZCPR3 Tools

Every ZCPR3 tool (COM file) for a particular ZCPR3 System installation has the
same basic internal structure. There are two basic types of tools: (1) those with
external Environment Descriptors and (2) those with internal Environment
Descriptors. The ZCPR3 System tools are distributed with external Environment
Descriptors, and this is the recommended configuration.

If a ZCPR3 tool uses an external Environment Descriptor, its internal structure is
as follows:

100H:
JMP START_OF_TOOL •/ JMP to executable code
DB 1Z 3 ENV' •/ Environment Descriptor
DB 1 7 Env Desc is External

Z 3 EADR:
DW Z3ENV 7 Address of Env Desc

START_OF_TOOL:
... ; executable code

The Z3INS (ZCPR3 Installation) tool installs a ZCPR3 tool which uses an external
Environment Descriptor by setting the pointer to the Environment Descriptor at
Z3EADR. Z3INS obtains the address of the external Environment Descriptor from the
SYS.ENV f ile that is specified to it at execution time.

If a ZCPR3 tool uses an internal Environment Descriptor, then its internal
structure is as follows:

100H:
Z3EADR:

JMP START_OF_TOOL
DB ' Z3ENV
DB 0 ; Internal Env Desc

< Environment Descriptor >

START_OF_TOOL:
... ; executable code of tool

The body o f the tool can contain whatever code is necessary to perform the
function desired. In order to fa ll in line with the philosophy of the ZCPR3 System, it
is recommended that all ZCPR3 Tools observe the fo llow ing conventions:

1. The command invocation form of a tool is:
verb argl arg2 ... option

230 Inside Z C PR 3 Sec. 2

If any argument is optional, then the form:

verb argl ... /option

should be recognized to permit options when a command supports a variable
number o f arguments.

2. Built-in documentation on the tool should be invoked by a command o f the form:

verb / /

This built-in documentation should take the format of:

VERB version_number
Syntax:

text_describing_syntax_of_use
other_text_as_desired

3. If it is w ithin reason for a tool to accept a list o f f iles as an argument, then this
list should consist of f i le references separated by commas, like:

verb f i le 1 ,file2,... filea,fileb,...

The above format contains two lists of f iles as arguments.
4. If a directory reference is to be allowed, both the D U and DIR forms should be

permitted.

The library Z3LIB contains a large number of routines which make meeting the
above requirements quite simple. Various parsers and other routines are included
which reduce these requirements to simple subroutine calls.

Section 3

Installation

This section o f the book is devoted to the topic of installing a ZCPR3 System,
which includes the ZCPR3 Command Processor, the System Segments, and the ZCPR3
Toolset. K nowledge of assembly language and the basic programming concepts of
CP/M is required to fo llow this section o f the book.

231

232 In s ta lla tio n Sec. 3

Installation Sec. 3 233

16 Overview of ZCPR3 Installation

Introduction
Installation of ZCPR3 (unless you have the commercial product, Z3-DOT-COM) is

an involved process, and the installer must have a working knowledge of the
following:

1. 8080 and Z80 assembly language programming
2. CP/M 2.2
3. the CP/M SYSGEN procedure

Fortunately, Echelon, Inc. supplies a version of ZCPR3 called Z3-DOT-COM that
is extremely simple to install on your system—a submit f i le does nine-tenths of the
work for you, and while this is running, the installation program reports successful
installation o f all the major command processors, buffers, and utilities. Once the main
installation has completed, a simple command causes the installation program to install
the extended command processor ZEX, using the environment descriptor generated by
the main installation pass. These procedures can be performed even by a person with
minimal knowledge of CP/M and assembly language programming.

Nevertheless, to get fu ll use of Z3-DOT-COM, and to adapt it to your own needs
and preferences, you will require information provided in this section. It is therefore
strongly recommended that, when you have become familiar with the operation and
major features o f Z3-DOT-COM, you carefully read this section so that you will be
able to install new features and change existing tools to suit your preferred working
habits.

Three parts o f the system must be created or initialized during the installation
process:

1. the O p e r a t i n g S y s t e m or S Y S G E N i m a g e , which is present on the system tracks for
most computers and includes a disk boot, the ZCPR3 Command Processor, the
CP/M 2.2 BDOS or ZRDOS, and a m odified BIOS.

2. the ZCPR3 S y s t e m S e g m e n t s , which are independent files that may be loaded
from disk into the appropriate places in memory by the ZCPR3 utility named
LDR.COM

3. the various ZCPR3 u t i l i t i e s , each o f which has to be provided with the address of
the ZCPR3 Environment Descriptor

The ZCPR3 System is tied together by the ZCPR3 Environment Descriptor, which
is a set of buffers that passes information between all elements o f a ZCPR3 System.

The ZCPR3 Environment Descriptor contains inform ation such as the addresses
of the System Segments, the addresses o f several buffers which are sign ificant to
ZCPR3, data on what ZCPR3 resources are available, and information about the
physical attributes of some o f the input/output devices connected to the system (such
as the number of columns and lines on the CRT screen).

Operating System Memory Images
The installer must build a proper SYSGEN Memory Image o f the target ZCPR3

System (the t a r g e t o p e r a t i n g s y s t e m is the system being built, as opposed to the host
o p e r a t in g s y s t e m which is the system used to build the target system). In building the

234 In s ta lla tio n Sec. 3

target system, the ZCPR3 Command Processor must be assembled and a BIOS
containing a m odified Cold Boot routine must be prepared.

System Segments
The installer must select and assemble the various ZCPR3 System Segments to be

used in conjunction with the target ZCPR3 System. A S y s t e m S e g m e n t is a f ile that is
loaded into a f ixed location in memory by the LDR.COM utility. Each System Segment
remains memory-resident until a new System Segment is loaded over it. Depending on
the commands issued, the ZCPR3 Command Processor or a ZCPR3 utility may call
upon a loaded System Segment to perform a function or provide information.

All System Segments must be initialized by the Cold Boot routine in the BIOS of
the target ZCPR3 System. This initialization consists of zeroing out the first N bytes
of each segment’s memory buffer, where N depends upon the segment being
initialized.

The fo llow ing are the System Segments which are supported by ZCPR3. Each
System Segment has a d istinctive f ile type, and LDR.COM recognizes this and loads
each segment d ifferently .

S e g m e n t F i le T y p e
*.ENV
*.Z3T
*.FCP
*.IOP
*.NDR
*.RCP

F u n c t io n o f S y s t e m S e g m e n t
Environment Descriptor, including a TCAP
ZCPR3 TCAP Entry
Flow Command Package
Input/Output Package
Named Directory File
Resident Command Package

A p a c k a g e , as referred to above, is a set o f executable subroutines which is
divided into two parts: the visible section, through which an interface to the routines
is provided, and the hidden section, which contains the code o f the routines. As a
System Segment, a package can be loaded dynam ically any time during a terminal
session by running the LDR.COM utility.

Flow Command Packages. A F lo w C o m m a n d P a c k a g e is a package which
implements the ZCPR3 flow commands. These commands are IF, ELSE, FI (same as
ENDIF), and XIF (exit all IFs), and their function is to control the f low o f command
execution by setting the F lo w S t a t e to TR UE or FALSE. If the Flow State is TRUE, all
commands are allowed to execute; i f the Flow State is FALSE, only Flow Commands
(IF, ELSE, FI, and XIF) are allowed to run.

An example o f a command sequence containing f low commands is:

IF EXIST MYFILE.TXT
TYPE MYFILE.TXT

ELSE
ECHO MYFILE.TXT DOES NOT EXIST

FI
Input/Output Packages. An I n p u t / O u t p u t P a c k a g e is a package which contains a

set o f input/output drivers. An I/O Package provides the low-level device drivers,
referenced by the BIOS, that support console input/output, list output, punch output,
and reader input. Any I/O Package can support many more console, list, punch, and

Chap. 16 O verview of Z C PR 3 In s ta lla tio n 235

reader devices than the standard CP/M I/O byte; further, the package loaded at start
up can be replaced with a d ifferen t package that supports a d ifferen t set of physical
devices, merely by running the LDR.COM utility.

Resident Command Packages. A R e s i d e n t C o m m a n d P a c k a g e is a collection of
memory-resident commands that supplement the commands resident within the
ZCPR3 Command Processor itself (the Z C P R 3 - R e s i d e n t C o m m a n d s) . These commands
replace a number o f COM files by one *.RCP file; because they are memory-resident,
they execute very quickly without any need for additional disk accesses. When the
user issues a command, the current RCP is checked for a match o f the command before
a disk access is performed to search for a matching COM file. For a fu ll description of
the process, refer to the section on "Command Search Hierarchy" in Chapter 2.

Environment Descriptor. The Z C P R 3 E n v ir o n m e n t D e s c r i p t o r is a data f ile that
contains inform ation on several attributes o f the ZCPR3 System. Additionally , the
Environment Descriptor contains a Z C P R 3 T C A P (T e r m i n a l C a p a b i l i t i e s) entry that
describes various attributes of the console CRT, such as the sequence of characters to
cause its screen to clear or to position its cursor.

ZCPR3 Named Directories. The Z C P R 3 N a m e d D i r e c t o r y f i le contains data
relating a mnemonic, such as PASCAL or ROBERT, with a Disk and User Area (a
logical directory). Under ZCPR3, either D isk /U ser (DU) forms or Named Directories
can be used to refer to logical directories:

DIR A15: DIR ROOT:
U tilities
To be used e ffec t iv e ly as a part o f a ZCPR3 System, all ZCPR3 utilities must be

initialized to contain either (1) a pointer to the ZCPR3 Environment Descriptor (if
such a descriptor is available as a System Segment) or (2) the ZCPR3 Environment
Descriptor itself.

The ZCPR3 utility Z3INS.COM performs this initialization. Z3INS.COM will
install a group o f utilities with the required information very quickly and make this
process relatively painless. Z3INS.COM itself does not need to be installed but can be
for the sake o f consistency.

Other Basic Concepts
For a general description o f ZCPR3 basic concepts, refer to Chapter 2. In this

section, we give only technical information required for installation or m odification
of the system.

Command Search Path. The C o m m a n d S e a r c h P a th is a buffer which contains an
expression (in the form of byte pairs) of the sequence o f directories to examine when
the ZCPR3 Command Processor searches for a COM file . It is recommended that this
buffer be placed outside the ZCPR3 Command Processor (be enabled as an E x t e r n a l
P a th) so that the ZCPR3 utilities may readily access and m odify it.

The elements of a Command Search Path are byte pairs. The first byte indicates
the disk, and the second byte indicates the user area, on which to search. The value of
the first byte may be in the range 1-16 to indicate disks ’A ’ to ’P’, or the character to
indicate the current disk. The value o f the second byte may be in the range 0-31 to
indicate user areas 0 to 31, or the character to indicate the current user area.
C u r r e n t D i s k and C u r r e n t U s e r A r e a refer to the disk and user area logged in at the time

236 In s ta lla tio n Sec. 3

the command was executed by the ZCPR3 Command Processor. A value o f 0 in the
first byte o f a byte pair indicates the end o f the Command Search Path.

The fo llow ing is a sample Command Search Path expression:

DB '$',0 •
t Current disk, user area 0

DB 1, '$' •/ Disk A, current user area
DB 1,15 •

t Disk A, User Area 15
DB 0 •

/ End of Path
SYSGEN Memory Images
The SYSGEN memory images o f a conventional CP/M system and a ZCPR3-based

system are presented in Figure 16-1. The actual addresses of the various components
may vary from system to system, and the installer should make a note o f the starting
address o f each component in the target system.

Address CP/M Image ZCPR3 Image

BDOS+OEOOH— >
CCP +080OH— >
BOOT+0080H— >
BASE+XXXXH— >
BASE= 100H— >

BIOS

BDOS
CP/M 2.2 CCP
BOOT
Dead Space/SYSGEN

BIOS with Modified
Cold Boot *

BDOS (No Change)
ZCPR3 *
BOOT
Dead Space/SYSGEN

Figure 16-1. CP/M and ZCPR3-based SYSGEN Memory Images

Installation requires a m odified BIOS image and a ZCPR3 image to be placed over the
original CP/M 2.2 BIOS and CCP images. The rest of the system can stay the same. Those
new images are marked with an asterisk (*) in figure 16-1. Typical address values are
indicated below:

SYSGEN Image SYSGEN Image
Value Conventional CP/M Morrow CP/M
xxxxH 800H ~ 980H
BOOT = BASE + xxxxH 900H 1080H
ZCPR3 = BOOT + 8OH 980H 1100H
BDOS = ZCPR3 + 800H 1180H 1900H
BIOS = BDOS + 0E00H 1F80H 2700H
End of Operating System ????H 2DFFH

Chap. 16 O verview of Z C PR 3 In s ta lla tio n 237

System Segments
Installation o f the ZCPR3 System Segments involves selecting the features of the

segments and then assembling each segment in turn. It is recommended that the MAC
assembler o f Digital Research or ZAS assembler of Echelon be used to perform these
assemblies.

The ZCPR3 Environment Descriptor (*.ENV file) is created by assembling the file
SYSENV.ASM. During this process, the files Z3BASE.LIB and SYSENV.LIB are read in
and used by the assembler. Z3BASE.LIB defines the memory configuration o f the system
and makes up most o f the environment descriptor information. SYSENV.LIB contains
additional details on the system.

The ZCPR3 TCAP files (*.Z3T) are created by running the TCSELECT or TCMAKE
programs. TCSELECT allows the user to select his terminal from a list of predefined
terminals, while TCMAKE allows the user to define the attributes o f his terminal directly.
TCMAKE is for users whose terminal does not appear in the standard Z3TCAP.TCP file.

Flow Command Packages (*.FCP) are created by assembling SYSFCP.ASM. During
this process, the files Z3BASE.LIB and SYSFCP.LIB are read in and used by the assembler.
SYSFCP.LIB defines the features supported by the Flow Command Package being created.

Input/Output Packages (*.10?) are created by assembling SYSIOP.ASM. During this
process, the f i le Z3BASE.LIB is read in and used by the assembler. All features o f the I/O
Package are hard-coded into the source o f the package.

Resident Command Packages (*.RCP) are created by assembling SYSRCP.ASM.
During this process, the files Z3BASE.LIB and SYSRCP.LIB are read in and used by the
assembler. SYSRCP.LIB defines the features supported by the Resident Command
Package being created.

Named Directory Files (*.NDR) are created in one of two ways: (1) by assembling the
file SYSNDR.ASM or (2) by running the MKDIR.COM ZCPR3 utility. MKDIR.COM
allows the user to dynam ically edit and create new named directory structures while
online.

Utilities
The installation o f most o f the ZCPR3 utilities involves setting up a f ile containing

the names of the utilities to be installed and running the Z3INS.COM ZCPR3 utility on an
Environment Descriptor and this file . Z3INS will install each utility named in the f ile
with the inform ation it needs from the Environment Descriptor.

All ZCPR3 utilities may be installed in this way. In an earlier release of ZCPR3,
ZEX 3.0 could not, but version 3.1 of ZEX can, so all ZCPR3 tools are now installed via
Z3INS.

Installation Steps
The installation process for ZCPR3 involves these steps:

1. Selecting the features desired for the target ZCPR3 System
2. Planning the memory structure of the target ZCPR3 System (the f ile

Z3BASE.LIB is created)
3. M odifying the Cold Boot routine in the BIOS of the target ZCPR3 System

to in itialize the selected features which require initialization
4. Enabling the desired features in the ZCPR3 Command Processor (the f ile

Z3HDR.LIB is created)
5. Overlaying the CCP with ZCPR3 and the old BIOS with the new BIOS in the

238 In s ta lla tio n Sec. 3

SYSGEN Image
6. Placing the new SYSGEN Image onto the Operating System tracks of the disk
7. Selecting the options for the desired System Segments and creating the System

Segments
8. Installing the desired ZCPR3 utilities

Required Hardware
Hardware Required for Installation. The hardware requirements for the

installation of ZCPR3 are as follows:
CP/M 2.2 - based system (or ZCPR3 - based system)
8080 or Z80 microprocessor
32K bytes o f memory
110K bytes o f disk space for source, BAK, and HEX files
computer terminal
Hardware Required for Running ZCPR3. The hardware requirements for running

ZCPR3 are:
ZCPR3 - based system
Z80 microprocessor
48K bytes o f memory
110K bytes per disk (recommended minimum)
computer terminal
Components of an Operational ZCPR3 System
Figure 16-2 shows an operational ZCPR3 System. The memory image, system

segments, and utilities are briefly discussed from an installation view point in the
remainder o f this chapter.

Memory Image. The memory image in figure 16-2 shows the memory structure o f a
ZCPR3 System which includes all of the major features.

Notes:

1. All Areas Above E400H are in itia lized by the Cold Boot Routine in the BIOS

2. Those Areas marked with (S) are ZCPR3 System Segments
System Segments

Z3BASE1.LIB
Z3BASE2.LIB
Z3HDR1.LIB
Z3HDR2.LIB

The System Segments used in this system are provided in the
distribution files of ZCPR3. The ZCPR3 System shown here is
defined by the f ile Z3BASE1.LIB, and a much smaller system
which does not include the Resident Command Package,
Input/Output Package, and Flow Command Package features
(only IK o f additional overhead) is defined in Z3BASE2.LIB.
Associated with each o f the two Z3BASEn.LIB files is a
Z3HDRn.LIB f i le which defines the features o f the ZCPR3
Command Processor.

Chap. 16 O verview of Z C PR 3 In s ta lla tio n 239

Figure 16-2. ZCPR3 System Memory Image (Z3BASE1.LIB)

FFFF
F800
F7D0
F700
F600
F5D0
F580
F500
F480
F400
F200
ECOO
E400

D600
C800
C000

100
| CP/M and ZCPR3 Buffers

Address
ROM Area (System Dependent)
ZCPR3 External Stack
ZCPR3 Command Line Buffer
ZCPR3 Memory-Based Named Directory (S)
ZCPR3 External File Control Block
ZCPR3 Message Buffers
ZCPR3 Shell Stack
ZCPR3 | Z3TCAP (S)

Environment -----------
Descriptor (S)

ZCPR3 Flow Command Package (S)
ZCPR3 Input/Output Package (S)
ZCPR3 Resident Command Package (S)
ZCPR3 BIOS with Modified Cold Boot
Routine to Initialize All Elements
of the ZCPR3 System Above
CP/M BDOS
ZCPR3 Command Processor
Transient
Program
Area

2K

\
\
\
\

I
I

IK

I
I

/
/

/

0.5K
1.5K
2K

3.5K

3.5K
2K

-48K

0
| 256 bytes

240 In s ta lla tio n Sec. 3

System Segments

SYSENY.ASM The Environment Descriptor is created by assembling
SYSENY.LIB SYSENV.ASM, which uses Z3BASE1 .LIB (renamed to

Z3BASE.LIB) and SYSENY.LIB during the assembly process.

SYSFCP.ASM Two Flow Command Packages are used in conjunction with this
SYSFCP1.LIB system; they are defined by the files SYSFCP1.LIB and
SYSFCP2.LIB SYSFCP2.LIB. SYSFCP1.LIB defines an FCP which is

self-contained and executes without using any external files.
SYSFCP2.LIB executes the E L SE /FI/X IF commands within itself,
but it executes IF by loading the f ile IF.COM from the ROOT
directory and transferring control to it. This eliminates the
restriction o f capabilities o f the IF command which is imposed
by the small size o f the FCP.

SYSIOP.ASM The Input/Output Package used in conjunction with this system
is contained in the f ile SYSIOP.ASM.

SYSRCP.ASM
SYSRCP1.LIB
SYSRCP2.LIB
SYSRCP3.LIB
SYSRCP4.LIB

Four RCPs are used in conjunction with this system; they are
defined by the four SYSRCPn.LIB files (n is between 1 and 4).
Each RCP contains a d ifferen t set of commands with a
differen t set o f options enabled for the included commands.

Utilities. Over 70 utilities are associated with the ZCPR3 System. Each utility
uses features o f the system, including named directory references, access to the
various system segments, access to the TCAP facil ity , and access to all of the data
elements in the ZCPR3 Environment Descriptor that it needs. The ZCPR3
Environment Descriptor is the single source for all information needed by a ZCPR3
utility about the system in which it is running.

Consequently, all ZCPR3 utilities access the ZCPR3 Environment Descriptor in
one o f two ways: (1) they contain a pointer to the descriptor or (2) they contain the
descriptor itself. The Z3INS.COM utility is used to install the ZCPR3 utilities with the
address o f the Environment Descriptor or the descriptor itself. Class 1 utilities are
those who contain a pointer to an environment descriptor, and Class 2 utilities contain
the descriptor itself.

Supporting the Environment Descriptor in a global memory buffer is the
recommended way to implement a ZCPR3 System. This buys the system two distinct
advantages:

1. Each utility needs only 2 additional bytes o f overhead (the pointer to the
Environment Descriptor) rather than the descriptor itse lf (which occupies 256
bytes).

2. Changes can be made to the system dynam ically without having to m odify
anything other than the Environment Descriptor.

Chap. 16 O verview of Z C PR 3 In s ta lla tio n 241

The ZCPR3 utilities are much smaller and faster than their ZCPR2 ancestors. For
a complete listing o f all ZCPR3 utilities supplied with the distribution, see the
appropriate section.

Software Required for Installation
Commercial Software. ZCPR3 is to be installed on a working CP/M 2.2 system.

The commercial software required to do this installation is:
1. A working CP/M 2.2 System

2. Source to the BIOS o f the target CP/M 2.2 System or an overlay patch for the Cold
Boot Routine

3. The MAC assembler from Digital Research, Inc.

4. A debugger (DDT, SID, or equivalent) for performing the overlay procedures

5. A disk utility (SYSGEN or equivalent) for placing the operating system image
onto the OS tracks on disk.

If the user desires to edit and reassemble the utilities, the Microsoft M80
assembler and L80 linker are also required.

System Segment Software. The fo llow ing software is supplied with ZCPR3 and is
required for installation:

N a m e o f F i le F u n c t io n
ZCPR3.ASM Source to the ZCPR3 Command Processor
Z3HDR.LIB Configuration File read in by ZCPR3.ASM to tailor the ZCPR3

Command Processor

Z3BASE.LIB D efin it ion o f the Memory Map o f the ZCPR3 System to be created

SYSENV.ASM ZCPR3 System Environment Descriptor Header for ZCPR3
SYSENV.LIB System Environment Descriptor

SYSFCP.ASM ZCPR3 Flow Command Package source
SYSFCP.LIB Configuration File read in by SYSFCP.ASM to tailor the ZCPR3

Flow Command Package (this f i le may be derived from one of
the SYSFCPn.LIB files below)

SYSIOP.ASM ZCPR3 Input/Output Package source

SYSNDR.ASM ZCPR3 Named Directory D efin it ion File source Header for
SYSNDR.LIB ZCPR3 Named Directory D efin it ion

SYSRCP.ASM ZCPR3 Resident Command Package source Header for ZCPR3
SYSRCP.LIB Resident Command Package (this f i le may be derived from one of

the SYSRCPn.LIB files below)
Other U sefu l Files

N a m e o f F i le F u n c t io n
Z3LOC.COM U tility to locate a CP/M CCP

242 In sta lla tio n Sec. 3

Z3BASE1.LIB
Z3BASE2.LIB

Sample ZCPR3 BASE files (Z3BASE.LIB)

Z3HDR1.LIB
Z3HDR2.LIB

Sample ZCPR3 HDR files (Z3HDR.LIB)

SYSFCP1.LIB
SYSFCP2.LIB

Sample ZCPR3 Flow Command Package headers

SYSRCP1.LIB
SYSRCP2.LIB
SYSRCP3.LIB
SYSRCP4.LIB

Sample ZCPR3 Resident Command Package headers

Files Required for Installing ZEX. If the ZEX 3.0 Command File Processor is to be
installed for use with the target ZCPR3 system, the fo llow ing f iles are required. ZEX
3.1 and later is installed like the other utilities.

N a m e o f F i le F u n c t io n
ZEX.ASM
ZEX.ZEX

Source o f ZEX
ZEX Command File used to assemble new versions of ZEX once
the first version is running

RELS.UTL SID/ZSID U tility File (not supplied with ZCPR3)

Required Distribution Files. The fo llow ing files are required for the installation of a
complete ZCPR3 System.

N a m e o f F i le N a m e o f F i le N a m e o f F ile
SYSENY.ASM
SYSFCP.ASM
SYSIOP.ASM
SYSNDR.ASM
SYSRCP.ASM
ZCPR3.ASM
SYSENV.LIB

SYSFCP1.LIB Z3BASE.LIB
SYSFCP2.LIB Z3BASE1.LIB
SYSNDR.LIB Z3BASE2.LIB
SYSRCP1.LIB Z3HDR.LIB
SYSRCP2.LIB Z3HDR1.LIB
SYSRCP3.LIB Z3HDR2.LIB
SYSRCP4.LIB ZEX.ASM

Useful Distribution Files. The follow ing files are useful, but not required, for the
installation o f a ZCPR3 System.

N a m e o f F i le N a m e o f F i le N a m e o f F i le
Z3LOC.COM Z3INS.COM ZEX.ZEX

In s ta lla tio n Sec. 3 243

17 Selecting the Features

Features of ZCPR3
The installer must first decide what features the ZCPR3 System is to include, and

his choices are:

1. Standard Overhead — Is the ZCPR3 System to include the standard IK
overhead or not? If not, which parts of the Standard Overhead are to be included?

2. Flow Command Package — Is the System to include Flow Commands or not?
3. Input/Output Package - Is the System to include I/O Packages or not?
4. Resident Command Package — Is the System to include Resident Commands or not?

Beyond these basic decisions, the contents of the fo llow ing configuration files have to
be determined:

1. Z3BASE.LIB — Base Addresses for the System
2. Z3HDR.LIB — Configuration Options for the ZCPR3 Command Processor
3. SYSFCP.LIB — Configuration Options for the Flow Command Packages

(only i f this feature is selected)
4. SYSRCP.LIB — Configuration Options for theResident Command Packages

(only i f this feature is selected)
Standard Overhead
The S t a n d a r d O v e r h e a d of a ZCPR3 System consists of all buffers above 0F400H

in Fig 16-2. These buffers contain:

1. External Stack
2. Command Line Buffer
3. Memory-Based Named Directory
4. External File Control Block
5. Message Buffers
6. Shell Stack
7. Environment Descriptor

The tradeoff analysis o f whether to include these buffers or not follows. As a
general recommendation, the features supported by these buffers are fundamental to
the basic nature o f ZCPR3 and it is recommended that all of the Standard Overhead be
included. The cost of doing this is only IK.

External Stack. The External Stack occupies 48 bytes, and its purpose is two-fold:
1) to free this amount o f space w ith in the ZCPR3 Command Processor for other
purposes; and 2) to provide a common stack which can be easily accessed by the ZCPR3
utilities to restore system integrity when required. The external stack need not be
initialized before use.

Command Line Buffer. The C o m m a n d L in e B u f f e r occupies just over 200 bytes,
and is required by many functions of the ZCPR3 System. Its purpose is to store the
command line entered from the console keyboard, passed by an executing SUBMIT
file, or built by a ZCPR3 utility such as ALIAS or MENU. If this buffer is not
supported externally (as recommended), then space for it will be taken up inside the
ZCPR3 Command Processor. If made external to the ZCPR3 command processor, this
buffer provides a mechanism to implement the fo llow ing capabilities:

244 In s ta lla tio n Sec. 3

1. multiple commands on a single line, e.g., DIR;ERA *.BAK;DIR
2. certain useful front-ends, such as M ENU
3. the ALIAS feature

The Command Line B uffer m u s t be initialized before it is used. The first use is
when the ZCPR3 Command Processor is first executed, so this in itia lization m u s t be
done during (or before, in some rare cases) the cold boot procedure in the BIOS.

Memory-Based Named Directory. The Memory-Based Named Directory contains
the nam e-DU assignments for the named directories known to the system. Each name
occupies 18 bytes, so the recommended allocation of 256 bytes can accommodate 14
names (18*14=252); this could be extended i f more names are desired. This feature,
while it finds immediate application on a hard disk system, is also convenient on a
floppy-based system, and costs little.

The Memory-Based Named Directory buffer m u s t be in itia lized before it is used.
It is generally recommended that the Memory-Based Named Directory buffer be
in itia lized during cold boot, but this is not mandatory. If the ZCPR3 command
processor is set up to give precedence to the D U form over the DIR form, then this
directory buffer may be in itia lized by a STARTUP alias (the command "STARTUP" is
stored in the Command Line B uffer as a cold boot command). STARTUP may then
run LDR, which will load an N D R (Named Directory) file.

External File Control Block. The E x t e r n a l F i le C o n tr o l B lo c k occupies only 36
bytes (48 bytes were reserved for it in figure 16-3) and its purpose is two-fold: 1) to
free space inside the ZCPR3 Command Processor; and 2) to provide a mechanism by
which a utility can determine the name by which it was invoked. The ZCPR3
Command Processor stores the name o f the command it just parsed into this buffer so
that the command can read it and use it. Shells commonly use this feature to determine
the name under which they were invoked so that they can set themselves up to be
reexecuted.

No initia lization is required for the External File Control Block.
Message Buffers. The M e s s a g e B u f f e r s o f ZCPR3 occupy only 80 bytes, and they

are very important as a mechanism through which the fo llow ing operations can be
performed: 1) ZCPR3 can leave messages about its own status, and these can be read by
utilities invoked by ZCPR3; 2) programs can leave messages to give ZCPR3
instructions on how to perform certain operations, such as error handling and shell
execution; and 3) one program can leave a message to be read and interpreted by
another program that is executed later.

It cannot be emphasized enough that the ZCPR3 Message Buffers are v i ta l to the
operation o f the system and should be always be included as a feature.

The Message Buffers m u s t be initialized before they are used, and the ZCPR3
Command Processor begins using the Message Buffers im m ediately after cold boot.

Shell Stack. The S h e l l S t a c k permits the shell feature o f ZCPR3 to be
implemented, costs only 128 bytes, and also permits the shell feature to be extended to
include invocation o f one shell on top of another shell. For example, the M ENU, SH,
and VFILER utilities are invoked as shells under ZCPR3. H aving a shell stack allows
one shell, such as M ENU, to invoke another shell, such as VFILER, causing M ENU to
be suspended. VFILER can run as long as desired; upon exit from VFILER, operation
of M ENU is resumed. Refer to Chapters 2 and 6 for user-oriented explanations of

Chap. 17 Selecting th e F ea tu re s 245

shells, and to Chapter 13 for their internal workings.
The Shell Stack must be in itia lized by the cold boot routine. Reasons are the same

as for the Command Line Buffer.
Environment Descriptor. The E n v ir o n m e n t D e s c r i p t o r (2 5 6 bytes) contains much

detail on the ZCPR3 environment, including inform ation on the features available
and the TCAP entry (if any) for the user’s CRT terminal. If the Environment
Descriptor is not supported externally (as recommended), then each ZCPR3 utility
must be assembled to include a copy o f the ZCPR3 Environment Descriptor within it.
If the Environment Descriptor is supported externally, each ZCPR3 utility contains
only a pointer (2 bytes) to the descriptor. Installation of a utility then amounts merely
to setting this pointer.

The ZCPR3 Environment Descriptor may be in itia lized either by the cold boot
routine in the BIOS or by the execution o f LDR on an ENV f ile as a STARTUP
command.

Flow Command Packages. The F lo w C o m m a n d P a c k a g e o f ZCPR3 implements the
basic f low constructs of the ZCPR3 System. These are the IF, ELSE, FI, and XIF
commands. With this feature installed, command sequences like the fo llow ing are
possible:

IF EXIST MYFILE.TXT
TYPE MYFILE.TXT

ELSE
IF ERROR

ECHO MYFILE.TXT NOT FOUND
FI

F I

The Flow Command Package m u s t be initialized by the cold boot routine. Reasons
are the same as those for the Command Line Buffer.

Input/Output Packages. The I n p u t / O u t p u t P a c k a g e o f ZCPR3 implements a set of
Input/Output drivers which can be loaded dynam ically to configure and extend the
input/output system of the user’s computer.

The Input/Output Package m u s t be initialized by the cold boot routine. Reasons
are the same as those for the Command Line Buffer.

Resident Command Packages. The R e s i d e n t C o m m a n d P a c k a g e o f ZCPR3
implements a set o f commands which remain in memory until the RCP buffer is
explicitly reloaded by the LDR.COM utility. These command packages extend the
command set resident w ithin the ZCPR3 Command Processor, and allow the user to
change the command set from time to time.

The Resident Command Package m u s t be in itia lized by the cold boot routine.
Reasons are the same as those for the Command Line Buffer.

Other Buffers
External Path. The E x t e r n a l P a th (consisting o f a few byte-pairs) is a buffer that

contains the symbolic expression o f the Command Search Path to be fo llow ed by the
ZCPR3 command processor when searching for a COM file.

246 In s ta lla tio n Sec. 3

The External Path m u s t be in itia lized by the cold boot routine.
Wheel Byte. The W h eel B y t e (1 byte) is a f lag read by some ZCPR3 utilities which

defines the user to be privileged or not. If this byte is non-zero, the user is declared to
be privileged, and certain functions are enabled which are not normally available to
him. PWD (Print Working Directories), for example, will also display passwords to
these directories i f the user is priveleged and requests them.

The Wheel Byte should be initialized before invoking any utility that reads it.

Chap. 18 Selecting th e F ea tu re s 247

18 Step 2 : Planning the ZCPR3 Memory Structure

The f i le Z3BASE.LIB defines the memory structure of the ZCPR3 System and
serves as a common source of information about the target ZCPR3 System for all
utilities and ZCPR3 System Segments. A number o f the ZCPR3 system segments have
"include" statements in their source, referencing this f ile , so that when they are
assembled, adequate information on the memory structure o f the system for which
they are being assembled will be available to the assembler program.

Z3BASE.LIB is d ivided into two parts: 1) the comment header, which outlines the
memory structure o f the system in a manner similiar to Fig 16-1; and 2) the body,
which contains a series of equates that define addresses of elements in the system,
together with other inform ation about various attributes of the system.

Z3BASE Header
Figure 18-1 shows the comment header of the example ZCPR3 System

Z3BASE.LIB file . It is recommended that the installer f i l l out the details of the
address range and features supported in the target ZCPR3 System in a Z3BASE.LIB
file before doing any programming, and that he make a copy of Z3BASE.LIB as a
reference for h im self during the installation process.

* *

*

*
Z3BASE .:LIB — Base Addresses for ZCPR3 System by R Conn *

*

* Address Range Size Function *

* 0 - FF 256 b Standard CP/M Buffers except *

* 40 - 4A 11 b for ZCPR3 External Path *

* 4B 1 b Wheel Byte *

* 100 - BFFF ~48 K TPA *

* COOO - C7FF 2 K ZCPR3 Command Processor *

* C800 - D5FF 3.5K BDOSZ *

* D600 - E3FF 3.5K CBIOSZ with Buffers *

* E400 - EBFF 2 K Resident Command Package *

* ECOO - F1FF 1.5K Redirectable I/O Driver Package *

* F200 - F3FF 0.5K Flow Command Package *

* F400 - F4FF 256 b Environment Descriptors *

* Bytes 00H-7FH: Z3 Parameters *

* Bytes 80H-FFH: Z3 Terminal Cap *

* F500 - F57F 128 b ZCPR3 Shell Stack *

* F580 - F5CF 80 b ZCPR3 Message Buffers *

* Byte 0: Error Flag (Z/NZ) *

* Byte 1: IF (8 Levels) *
* Byte 2: IF Active (8 Levels) *

* Byte 3: Z3 Cmd Status *

* 00B - Normal *

248 In s ta lla tio n Sec. 3

* 01B - Shell *
* 10B - Error *
* Bytes 4&5: Error Address if 10B *
* Byte 6: Program Error Code *
* Byte 7: ZEX Message Byte *
* 00B - Normal *
* 01B - Z3 Prompt *
* 10B - Suspend Intercept *
* Byte 8: ZEX Running Flag (0=No) *
* Bytes 9-10: Address of Next *
* Char for ZEX to Return *
* Bytes 11-12: Address of First *

* Char in ZEX Memory- *
* Based File Buffer *
* Byte 13: SH Control Byte *
* Bit 0: Enable SHCMT *

* Bit 1: Enable SHECHO *

* Bit 7: Enable Shell *
* Entry Wait *
* Bytes 14-15: Shell Scratch *
* Bytes 10H-2FH: Error Cmd *
* Bytes 30H-39H: Registers *
* Bytes 3AH-3FH: Reserved *
* Bytes 40H-4FH: User-Defined *
* F5D0 - F5FF 48 b ZCPR3 External FCB *
* F600 - F6FF 256 b Memory-Based Named Directory *
* F700 - F7CF 208 b Multiple Command Line Buffer *
* F7D0 - F7FF 48 b ZCPR3 External Stack *
* F800 - FFFF 2 K ROM *

**

Figure 18-1. Z3BASE.LIB Comment Header

Z3BASE Body
The following paragraphs contain a refo rm atted duplicate of the body of the

Z3BASE.LIB file. They provide additional inform ation on how to set the equates. The
installer may f ind it useful to keep the book open to these pages while editing the
Z3BASE.LIB file.

Version Numbers, Memory Size, and Base. The following three equates define the
version numbers of the ZCPR3 Command Processor and the CBIOSZ. Note tha t MSIZE
explicitly states the size of the TPA, not total system size—the more usual meaning of

Chap. 18 S tep 2 : P la n n in g th e Z C PR 3 M em ory S tru c tu re 249

this label (as, for instance, in Tarbell BIOS listings and those of some other
manufacturers).

Z3REV EQU 30 ; ZCPR3 REV NUMBER
CBREV EQU 41 ; CBIOSZ REV NUMBER
MSIZE EQU 48 ; SIZE OF TPA

These equates are usually referenced by the assembler to fil l in these details in the
Cold Boot signon message. They are not used by any ZCPR3 System Segments other
than the BIOS.

The BASE equate specifies the base address of the user’s CP/M system (normally 0
for the s tandard DRI version). This equate allows easy m odification for non-standard
versions of CP/M(e.g., H89 or Apple).

BASE EQU 0
Processor Selection. The following equate selects the use of the 8080/8085 CPU or the
Z80 CPU for the target ZCPR3. If your processor is an 8080 or 8085, set this equate to
TRUE. If the processor is a Z80, set it to FALSE, since the Z80 code is much smaller
and, by using relative jumps, more features can be packed into the available space.

18080 EQU FALSE
External Path . The following equates define the address of the ZCPR3 External Path
and the number of two-byte elements contained in this path (maximum). If there is no
ZCPR3 External Path, both of these values should be set to 0. ZCPR3 will then reserve
space w ith in itself for the command-search path.

EXPATH EQU 4OH ; EXTERNAL PATH
EXPATHS EQU 5 ; 5 2-byte Path Elements

; (PATH SIZE = EXPATHS*2 + 1)
Wheel Byte. The following equate defines the address of the ZCPR3 Wheel Byte.

Z3WHL EQU 4BH ; WHEEL BYTE ADDRESS
If there is no Wheel Byte, set this equate to 0. The C3H instruction (JMP) at memory
location 0 will then be used as the Wheel Byte and, since this location is non-zero, the
Wheel Byte will always be TRUE. If this equate is set to 0, do not provide the user with
the commands to change this byte, since, by so doing, he will wipe out the warm boot
jump at location 0.

CCP Location. The following equate defines the address of the ZCPR3 Command
Processor. This address must be supplied.

CCP EQU 0C000H ; ZCPR3 COMMAND PROCESSOR
This value can be obtained by calculation or by using the Z3LOC utility.
RCP Location. The following equates define the address of the ZCPR3 Resident

Command Package and its size in 128-byte blocks. I f there is no ZCPR3 Resident
Command Package, both of these values should be 0.

250 In s ta lla tio n Sec. 3

RCP EQU 0 E 400H ; RESIDENT COMMAND PACKAGE
RCPS EQU 1 6 ; 1 6 1 2 8 - b y t e B l o c k s (2K b y t e s)

IOP Location. The fo llow in g equates defin e the address o f the ZCPR3 Input/O utput
Package and its size in 128-byte blocks. If there is no ZCPR3 Input/O utput Package,
both o f these values should be 0.

IOP EQU 0EC 00H ; REDIRECTABLE I /O PACKAGE
IO PS EQU 12 ; 12 1 2 8 - b y t e B l o c k s (1 . 5 K b y t e s)

FCP Location. The fo llow in g equates d efin e the address o f the ZCPR3 Flow Command
Package and its size in 128-byte blocks. If there is no ZCPR3 Flow Command Package,
both o f these values should be 0.

FCP EQU 0 F 2 0 0 H ; FLOW COMMAND PACKAGE
FCPS EQU 4 ; 4 1 2 8 - b y t e B l o c k s (0 . 5 K b y t e s)

ENV Location. The fo llow in g equates d efin e the address o f the ZCPR3 Environm ent
Descriptor and its size in 128-byte blocks. If there is no ZCPR3 Environm ent
Descriptor, both o f these values should be 0.

Z3ENV EQU 0 F 4 0 0 H ; ENVIRONMENT DESCRIPTORS
Z3ENVS EQU 2 ; S IZ E OF DESCRIPTOR IN 1 2 8 -B Y T E BLOCKS

Shell Stack. The fo llow in g equates d efin e the address o f the ZCPR3 Shell Stack, the
number o f entries perm itted in the ZCPR3 Shell Stack, and the size o f each entry in
the Shell Stack in terms o f bytes. If there is no ZCPR3 Shell Stack, all three values
should be 0.

SHSTK EQU 0 F 5 0 0 H ; ZCPR3 SHELL STACK
SHSTKS EQU 4 ; NUMBER OF SH SIZE -B Y TE SHELL STACK ENTRIES
SH SIZE EQU 32 ; S IZ E OF A SHELL STACK ENTRY

(STACK S IZ E = SHSTKS * SH SIZ E)

The total am ount o f space occupied by the shell stack is SHSTKS*SHSIZE. In this
configuration , 128 bytes are used (4*32).

ZCPR3 M essages. The fo llow in g equate defines the address o f the ZCPR3
Message B uffer. This bu ffer is alw ays 80 bytes long. If there is no ZCPR3 Message
B uffer, this address should be 0.

Z3MSG EQU 0 F 5 8 0 H ; ZCPR3 MESSAGE BUFFER

External FCB. The fo llow in g equate defin es the address o f the ZCPR3 External FCB.
This b u ffer is alw ays 36 bytes long. If there is no ZCPR3 External FCB, this address
should be 0.

EXTFCB EQU 0F5D 0H ; ZCPR3 EXTERNAL FCB

Chap. 18 S tep 2 : P la n n in g th e Z C PR 3 M em ory S tru c tu re 251

Named D irectory B uffer. The fo llow ing equates d efin e the address and size (in terms
of 18-byte entries) o f the ZCPR3 Nam ed D irectory B uffer. If there is no such b uffer,
both o f these values should be 0.

Z3NDIR EQU 0F600H ; ZCPR3 NAMED DIRECTORY AREA
Z3NDIRS EQU 14 ; 14 18-byte Named Directory

; Elements permitted.
;(NDIR SIZE=Z3NDIRS*18+1 [for trailing 0])

Command Line B uffer. The fo llow ing equates d efin e the address and size (in
bytes) o f the ZCPR3 Command Line B uffer (form erly called the M ultiple Command
Line B u ffer under ZCPR2). If there is no such bu ffer , both o f these values should be
0.

Z3CL EQU 0F700H ; ZCPR3 COMMAND LINE BUFFER
Z3CLS EQU 200 ; SIZE OF COMMAND LINE BUFFER

External Stack . The fo llow in g equate defines the address o f the ZCPR3 External
Stack. This stack is alw ays 48 bytes in size. I f there is no such stack, this value should
be 0.

EXTSTK EQU 0F7D0H ; ZCPR3 EXTERNAL STACK
User Equates. The fo llow in g equates are available for the im plem enter’s target system.
These are im plem entation-defined.

DJEPROM EQU 0F800H ; EPROM BASE ADDRESS
This is provided m ainly as a convenience to the user. This value is used by my BOOT
and BIOS, w hich also read this f ile for inform ation.

252 In sta lla tio n Sec. 3

Chap. 19 S tep 2 : P la n n in g th e Z C PR 3 M em ory S tru c tu re 253

19 Installation Steps 3—6

Step 3: Modifying the BIOS Cold Boot Routine
The fo llow in g is a reform atted and edited copy o f my BIOS (Basic Input/O utput

System) and the header f ile used to custom ize it. This inform ation is provided as an
example o f how to m odify the Cold Boot routine (labelled ’cboot’ in this example) for a
full installation o f ZCPR3. Only the pertinent inform ation is included.

CBIOSHDR.LIB—BIOS Configuration File
* *
* *

* Control Processor/Microcomputer Basic I/O System *
* CP/ZM CBIOSZ Standard with CON:=CRT: *
* *
* Customized for the ARIES-1 Microcomputer by *
* Richard Conn, 5 Jan 1984 *
* *

**
**
* *

* The following revision number is in reference to the DR *
*2.8 CBIOS&. *
* *

**

revnum equ cbrev ;CBIOSZ revision number
cpmrev equ z3rev ;ZCPR3 revision number

The values ’cbrev’ was provided by the BIOS source, and ’z3rev’ came from
Z3HDR.LIB.

« Detail L eft Out »

cbdisk equ OFOH ;Initial Disk to Log In, 0=A, 1=B
;User 15, Disk A

**
* *

* CP/M system equates. If reconfiguration of CP/M system *
* is being done, the changes can be made to the following *
* equates. *

254 In sta lla tio n Sec. 3

* *

**

bdos equ ccp+800h ;BD0S address
bios equ ccp+1600h ;CBIOS address
wbot equ 0 ;Warm boot jump address
iobyte equ 3 ;IOBYTE location
cdisk equ 4 »•Address of last logged disk
entry equ 5 ;BDOS entry jump address
buff equ 8 Oh /Default buffer address
tpa equ 100h /•Transient memory
retries equ 10 ;Max retries on disk I/O before eri

« D etail L eft Out »

* *

* Under the new redirectable I/O driver system, the I/O *
* byte can be anything you desire. I have set it up as: *
* *

* ------------------------------------- *

* IOBYTE | LST: | PUN: | RDR: | CON: | *
* ---------------------------- *

* bits - > 7 6 5 4 3 2 1 0 *
* *

* The initial IOBYTE is currently defined as: *
* Bits 0-2: CON *
* Bit 3: RDR *
* Bit 4: PUN *
* Bits 5-7: LST *
* *

* CON: = CRT: CRT *
* RDR: = CLOCK: System Clock *
* PUN: = CLOCK: System Clock *
* LST: = TTY: Printer *
* *

intioby equ 000$1$1$001B ; Initial IOBYTE

Chap. 19 In s ta lla tio n S teps 3 —6 255

This I /O Byte could also be initia lized w ithin the in itia liza tion sequence in the
Input/Output Package. Whenever LDR.COM loads an I /O Package, it calls an
initialization routine.

* *
* *

* If there is a command inserted here, it will be given on *
* cold boot. *
* For Example: *
* *

* coldbeg db 'MBASIC MYPROG' *
* coldend db 0 *
* *
* will execute microsoft basic, and mbasic will execute the *
* "MYPROG" basic program. *
* *
* *

acmd macro ;Define as Macro for Code Insertion
coldbeg:

db 'STARTUP1 ;Cold boot command goes here
coldend:

db 0
endm

By ZCPR3 convention, STARTUP is a program created with the ALIAS utility.
An Alias is a program created by the ZCPR3 ALIAS utility w hich generates command
lines and places them into the Command Line B uffer of the ZCPR3 System. These
command lines can be quite involved, including IF /ELSE constructs, and parameters
may be passed into them at strategic points by an elaborate param eter passing
mechanism. See the docum entation (HLP file) on the ALIAS command for more
details. The STARTUP Alias typically does not extract in form ation from the
command line and simply generates a sequence of commands which initia lize the
ZCPR3 System by running LDR on a varie ty of System Segments and perform ing other
such operations. The Environm ent Descriptor is so key to ZCPR3 operation that if the
cold boot routine does not already initia lize the Environm ent Descriptor, it is
recommended tha t the s tartup command line be prefixed with

LDR SYS.ENV
in order to ensure that the Environment Descriptor is properly loaded before

anything else, including an Alias, runs. A valid, safe s tartup command line could be:

LDR SYS.ENV;STARTUP

256 In sta lla tio n Sec. 3

*
* *

* Path to be Set for ZCPR2 on Cold Boot *
* *
* *

idiskl equ • A'- '@1 ;1st: Disk A, Current User
iuserl equ
idisk2 equ •A'- 1@' ;2nd: Disk A, User 15
iuser2 equ 15
idisk3 equ 0 ;No 3rd Entry
iuser3 equ 0
idisk4 equ 0 ;No 4th Entry
iuser4 equ 0

« Detail on I /O Devices L eft Out »
CBIOSZ—Selections from a ZCPR3 BIOS

* SYSTEM SEGMENT: CBIOSZ
* SYSTEM: ARIES-1
* CUSTOMIZED BY: RICHARD CONN
* -- Customize Section --- *
* Customization Performed in CBIOSHDR.LIB
* -- End of Customize Section--- *

* *
* Control Processor/Microcomputer Basic I/O System
* CP/ZM BIOSZ Standard with CON:=CRT:
* CHBIOSZ Body
*

*
*
*
*

* Customized for the ARIES-1 Microcomputer with Hard Disk *
* by Richard Conn, Feb 2, 1984 *
* *

/
Macro Libraries for Customization

Chap. 19 In s ta lla tio n S teps 3 —6 257

MACLIB Z3BASE
MACLIB CBIOSHDR

« Detail Left Out »

*
* *
* The following are internal Chios equates. Most are misc. *
* constants. *
* *
* *

acr equ Odh ;A carriage return
alf equ Oah ;A line feed
XON equ llh ; X-ON
XOFF equ 13h ;X-OFF

*

*

* The jump table below must remain in the same order, the *
* routines may be changed, but the function executed must *
* be the same. *
* *

org bios
jmp cboot

wboote:
jmp wboot

t

jmp const
jmp fconin

cout:
jmp fconout
jmp list
jmp punch
jmp reader

/
jmp home
jmp setdrv

;CBIOS starting address
;Cold boot entry point
;Warm boot entry point
;Console status routine
;Console input
»•Console output
;List device output
»•Punch device output
»•Reader device input
»•Home drive
»•Select disk

258 In sta lla tio n Sec. 3

jmp settrk ;Set track
jmp setsec ;Set sector
jmp setdma ;Set DMA address
jmp read ;Read the disk
jmp write ;Write the disk
jmp listst ;List device status
jmp sectran ;Sector translation
jmp newio /•Redirect I/O Drivers

My JMP table is extended slightly. NEWIO is for a system not described here.

* *

* These are the console I/O routines with buffer flush. *
* *

fconin:
call flush ;Flush Buffer
jmp conin

fconout:
push b ;Save char
call flush ;Flush Buffer
pop b ;Get char
jmp conout

*
* *
* Gocpm is the entry point from cold boots, and warm boots. *
* It initializes some of the locations in page 0, and sets *
* up the initial DMA address (8Oh). *
* *
* *

gocpm:
call
ora

const
a

Check for Input Char
NZ means char there

p. 19 In s ta lla tio n S teps 3 —6

cnz conin ;Flush it if so
lxi h,buff ;Set up initial DMA address
call setdma
mvi a, (jmp) »•Initialize jump to warm boot
sta wbot
sta entry /•Initialize jump to BDOS
lxi h,wboote /•Address in warm boot jump
shld wbot+1
lxi h,bdos+6 ;Address in BDOS jump
shld entry+1
xra a ; A = 0
sta bufsec ;Disk Jockey buffer empty
sta bufwrtn ;Set buffer not dirty flag
Ida cdisk ;Jump to CP/M with currently

/•selected disk in C
mov c, a

This GOCPM section is more or less standard. The following section of GOCPM
deals w ith in itia liz ing the Command Line B uffer on Cold Boot (or Warm Boot).

This code loads an optional command line on COLD BOOT only
Ida cwf lg ;Test for any loaded command
ora a
jnz ccp+3 ;Enter ZCPR3 without command if Warm Boot
lxi d,coldbeg /•Beginning of initial command

cldcmnd:
/

if z3cl ne 0 /•Multiple Commands Allowed?
/
t

lxi h,z3cl+4 /•Multiple Command buffer
else

260 In s ta lla tio n Sec. 3

lxi h,ccp+8 ;Command buffer
endif

cldl:
ldax d ;Get char
mov m, a ;Put char
inx h ;Pt to next
inx d
ora a ;Done?
jrnz cldl
jmp ccp ;Run with Command

cwflg:
db 0 ;Cold/warm boot flag

* *
*
* If there is a command inserted here, it will be given if
* the auto feature is enabled.
* For Example:
*
* coldbeg db 'MBASIC MYPROG'
* coldend db 0
*
* will execute microsoft basic, and mbasic will execute the
* "MYPROG" basic program.
*
* *

*
*
*
*
*
*
*
*

*

*

*

*

*

acmd /Perform Macro from CBIOSHDR.LIB
*
* *
* Signon message output during cold boot. *
* *
* *

prompt
db acr,alf

Chap. 19 In s ta lla tio n S teps 3 —6 261

db 10'+msize/10 ;CP/ZM memory size
db 10'+(msize mod 10)
db 'K TPA ZCPR V ;ZCPR version number
db z3rev/10+'0',1.1/(z 3 rev mod 10) + ' 0'
db ', CBIOSZ V ;CBIOSZ version numb
db cbrev/10+'O','. 1/(cbrev mod lOJ+'O1
if first ;if hard disk is A
db 'H' ;say this is a hard disk version
else
db 'F ' ;say this is a floppy version
endif
db acr,alf
db 0

* *

* Path for ZCPR 3.x initialized during cold boot. *
* *

path:

db idiskl,iuserl ;First Disk and User
db idisk2,iuser2 ;2nd Disk and User
db idisk3,iuser3 ; 3rd Disk and User
db idisk4,iuser4 ; 4 th Disk and User

db 0 ;End of PATH
This path is defined in CBIOSHDR.LIB.

**
* *

* Utility routine to output the message pointed at by H&L,*
* terminated with a null. *
* *
**

message:
mov a,m ;Get a character of the message
inx h ;Bump text pointer

262 In s ta lla tio n Sec. 3

ana a /Test for end
rz /Return if done
push h /Save pointer to text
mov c, a /Output character in C
call cout /Output the character
pop h /Restore the pointer
jr message /Continue until null reached

* *

* Cboot is the cold boot loader. All of CP/M has been loaded*
* when control is passed here. *
* *

cboot:
lxi sp,tpa ;Set up stack

The following code segment copies the defau lt command-search path into the
External Path buffer. Since the ZCPR3 Command Processor uses this b u ffe r the first
time it searches fo r a COM file, it is recommended that this in itia liza tion always be
done in the Cold Boot routine of the BIOS. There are some isolated cases where this is
not required, but they will not be discussed here.

if expath ne 0 /External Paths Supported
lxi d,path /Copy Cold-Boot Path
lxi h , expath /Into System External Path Area
mvi b, 9 /Always 9 bytes
call movlop
endif

The following code segment initializes the Wheel Byte to non-priveleged status.
This in itia liza tion may be done by a program executed by STARTUP if desired.

if z3whl ne 0 /Wheel Byte Supported
xra a /Clear Wheel Byte
sta z3whl
end if

The following code segment initializes the Resident Command Package b u ffe r to
zero. 128 bytes is larger than needed, but ra ther than specify the exact size for each
package, this and the following initia lizations save code space in the BIOS and don’t
waste a s ignificant amount of time. Since the ZCPR3 Command Processor uses the
RCP before any COM files are executed, in itia liza tion of the RCP bu ffe r is required

Chap. 19 In s ta lla tio n S teps 3—6 263

to be performed in the BIOS Cold Boot routine.

if rep ne 0 ;RCPs Supported
lxi h,rcp ;RCP Address (zero fill)
call zerol28 ;128 bytes
endif

The following code segment initializes the I/O Package w ith drivers which are
contained w ith in the BIOS. Later, when STARTUP executes, LDR will probably load
a proper I /O Package over these drivers. Since I /O is used immediately afte r Cold
Boot, this in itia liza tion must be performed in the Cold Boot routine.

if iop ne 0 ; IOPs Supported
lxi d,iodrivers ;Set up I/O Drivers
lxi h, iop »•Location for drivers
call mover ;Copy an arbitrary 128 bytes
else
call lstinit ;Init Simple LST Device
call elkinit ;Init Clock
endif

The following code segment initializes the Flow Command Package. Like the
RCP, the FCP must be initia lized during Cold Boot.

if fcp ne 0 ;FCPs Supported
lxi h, fcp ;FCP Address (zero fill)
call zerol28 ;128 bytes
endif

The following code segment initializes the ZCPR3 Environm ent Descriptor. Since
the firs t u ti lity executed is usually STARTUP (which is an Alias), the Environment
Descriptor must be initia lized during Cold Boot.

if z 3 env ne 0 ;ENVs Supported
lxi h ,z 3 env ;ENV Address (zero fill)
mvi b,128+16 ;128 bytes of environ + 16 bytes
call zerom ;of TCAP
endif

The following code segment clears the Shell Stack. The ZCPR3 Command
Processor queries this b u ffe r almost immediately a f te r Cold Boot, so this initia lization
must be perform ed during Cold Boot.

if shstk ne 0 ;Shell Stack Supported
xra a ;Clear Stack
sta shstk

264 In s ta lla tio n Sec. 3

endif
The following in itia liza tion must also be performed during Cold Boot since the

ZCPR3 Command Processor uses messages extensively if this fea tu re is enabled.

if z3msg ne 0 ;ZCPR3 Messages Supported
lxi h,z3msg ;Clear Message Bytes
mvi O' 00 o ;80 bytes
call zerom
endif

The following in itia liza tion is not required during Cold Boot if the analysis of the
DU form is perform ed before the DIR form by the ZCPR3 Command Processor, but the
installer is taking a risk tha t all will be well until LDR loads the Named Directory
bu ffe r i f he does not perform the following in itia liza tion during Cold Boot.

if z3ndir ne 0 ;Named Directory Based in Memory
lxi h,z3ndir ,‘Named Directory Base
call zerol28 ;128 bytes
endif

The following in itia liza tion of the Command Line bu ffe r is absolutely required
during Cold Boot. Only i f the Command Line b u ffe r is NOT external is this
in itia liza tion unnecessary, but then a significant am ount of the power of the ZCPR3
System is lost by having an in ternal Command Line buffer.

if z3cl ne 0
lxi d,cmdset
lxi h,z3cl
call mover
endif

»•Multiple Commands Allowed
;Set buffers for Multiple Commanc
/•Command Line Base
;Copy an arbitrary 128 bytes

As mentioned previously, the following in itia liza tion is not required and may be
performed by the I /O Package loaded by LDR.

if iop ne 0
mvi a,intioby ;Initialize the I/O Byte
sta iobyte
endif

The following completes the Cold Boot initializations.

lxi h , prompt ;Prep for sending signon message
call message ;Send the prompt
mvi a,cbdisk /•Select basic disk
sta cpmdrv
sta edisk

Chap. 19 In s ta lla tio n S teps 3 —6 265

« Detail Left Out »

jmp gocpm

* *

* Mover moves 128 bytes of data. Source pointer in DE, Dest *
* pointer in HL. *
* *

mover:
mvi b, 128 /Length of transfer

movlop:
ldax d ;Get a byte of source
mov m, a ;Move it
inx d ;Bump pointers
inx h
djnz
ret

movlop /Continue moving until done

zerof1 set (rep ne 0)or(fcp ne 0)or(z3env ne
or(z3msg ne 0)

zerof1 set zerofl or (z3ndir ne 0)
if• zerofl

/
; Zero 128 • bytes of memory pted to by HL
t

zerol28 :
mvi• b, 128 /128 bytes

/
/ Zero memory for B • bytes / memory pted to by HL
9

zerom:
mvi m, 0 /store zero
inx h
djnz
ret
end if

zerom

266 In s ta lla tio n Sec. 3

Selection of LST: Device
If IOP is not supported, provide for one simple LST device;

else, set LST device equal to console for later redefinition by
loading an I/O Package via LDR

if
•

iop ne 0
/
lstout equ dj cout ; same as console for now
punout equ dj cout ; same as console for now
rdrin equ djcin ; same as console for now

else
/

; Initialize MPU Serial I/O Channel Characteristics and Baud Rat
/
lstinit;
« Detail Left Out »

/

endif ;IOP ne 0

* *
* Primitive I/O Drivers which are loaded at Cold Boot time. *
* *

uart equ origin+3F9H ;UART address
rda equ 4 ;UART RDA Bit
iodrivers:
•
/

if iop ne 0
jr ioerror
db 0
jr ioerror
db 0
jr ioerror
db 0

;no Status Routine
;Fill 3 bytes
;no Select Routine
;Fill 3 bytes
;no Namer Routine
;Fill 3 bytes

Chap. 19 In s ta lla tio n S teps 3—6 267

t
endif ;iop ne 0

/
ret
db
jr
db
jmp
jmp

0,0
ustat
0
djcin
dj cout

;Initialize Terminal
;Fill 3 bytes
;Console Input Status
;Fill 3 bytes
»•Console Input Char
/Console Output Char

jmp 1stout ;List Output Char
jmp punout ;Punch Output Char
jmp rdrin /•Reader Input Char

Note:
The above routines are located somewhere within the BIOS. They are very small and simple in nature, and they do not implement the I/O Byte. This is left for the
redirectable I/O package which will be loaded later.
mvi
ora

a, 0 f f h
a

;List Status Ready
;Set Flags

ret ;New I/O Driver Installation Routine
ioerror:

xra a ;No device assignments
ret

* *

* The following equates define the various Redirectable *
* I/O routines in the SYSTEM I/O Area. *
* *

i
if

riobase
iop ne 0
equ iop+9 /•Relative I/O Base (less support)

268 In sta lla tio n Sec. 3

else
riobase

endif
«

equ iodrivers
;iop ne 0

/
tinit equ riobase
const equ riobase+3
conin equ riobase+6
conout equ riobase+9
list equ riobase+12
punch equ riobase+15
reader equ riobase+18
listst equ riobase+21
newio equ riobase+24

»•Simple I/O Drivers

»•Terminal Init
;Console Input Status
»•Console Input
»•Console Output
»•List Output
»•Punch Output
»•Reader Input
»•List Output Status
»•Redirectable I/O Patcher

* *
* *

* Initial Values for the External Command Line Buffers *
* and Named Directory Memory-Based Buffers *
* *
* *

if z3cl ne 0
cmdset:

dw z3cl+4
db z3cls
db 0
db 0
endif

* *

* Wboot loads in all of CP/M except the CBIOS, then *
* initializes system parameters as in cold boot. See the *
* Cold Boot Loader listing for exactly what happens during *
* warm and cold boots. *
* *

»•Beginning of I/O Buffer
»•Size of I/O Buffer
»•Empty Buffer
»•Empty Buffer

wboot

Chap. 19 In s ta lla tio n S teps 3—6 269

« Detail Left Out »
Step 4: Editing Z3HDR.LIB
The following is a reform atted duplicate of the body of the Z3HDR.LIB file. It is

provided here to present additional inform ation on how to set the equates. It may be
useful to the installer to have this installation manual open to these pages while he is
editing the Z3HDR.LIB file.

The following is the Banner for Z3HDR.LIB:

Z3HDR - Maximum Configuration
Offset: 5100H
This offse t is a note to the installer. It indicates the value to add to the R

command of DDT in order to properly read in the HEX file of the ZCPR3 Command
Processor into the Operating System memory image.

Module: Z3HDR
Author: Richard Conn
Module Used By: ZCPR3 Version 3.x

Note:
Z3HDR contains the key customization equates for ZCPR3. These equates allow
the user to select various ZCPR3 options and do an extensive amount of tailoring
of ZCPR3 to the user’s desires.
Basic System D efin itions
The following equates may be used to customize this CPR for the user’s system

and in tegration technique.

REL - TRUE if integration is to be done via MOVCPM
- FALSE if integration is to be done via DDT and SYSGEN

CPRLOC - Base Page Address of CPR; this value can be obtained
by running the CCPLOC program on your system, and if REL
is FALSE, this value is supplied through the Z3BASE.LIB

CCP equate
REL EQU

IF REL
CPRLOC EQU

ELSE
CPRLOC EQU

ENDIF
CCPLOC.COM was an earlier version of Z3LOC.COM, which is now supplied with

the ZCPR3 distribution. You may use either program to determ ine the base page of
the CPR (Command Processor Replacement).

FALSE
0

CCP ;VALUE PROVIDED IN Z3BASE. LIB

270 In sta lla tio n Sec. 3

Integration by MOVCPMis not addressed here.
D efault File Types
The following macros define the file types of the command object files (COM

files under CP/M 2.2) to be loaded when a non-resident ZCPR3 command is given and
of the ind irect command files (SUB files under CP/M 2.2) to be used to extract
commands from when the indirect command facility is invoked.

COMTYP MACRO
DB 'COM'
ENDM

SUBTYP MACRO
DB 'SUB'
ENDM

These equates are provided to allow the installer to select any file type he wishes
for object and indirect command files. The indicated values of ’COM’ and ’SUB’ are
conventional.

SUBMIT File Processing
The following flag enables the ability of ZCPR3 to process SUBMIT files

(command files of the form $$$.SUB). I f SUBON is TRUE, then ZCPR3 will process
such files like CP/M ’s CCP normally does; if SUBON is FALSE, ZCPR3 will not
process such files (ignore them). In such a case, only ind irect command file facilities
like ZEX will work. Much code is saved inside of the ZCPR3 Command Processor if
SUBON is set to FALSE, but this ra ther useful facility is lost.

SUBON EQU TRUE
Command Prefix
The following flag allows ZCPR3 to accept commands of the form "du:command

params" or "dincommand params". If D RV PREFIX is TRU E, this form is accepted; if
FALSE, this form is not accepted.

DRVPREFIX equ TRUE
This option also affects arguments to commands, such as "DIR A5:*.TXT", and DU

or DIR prefixes on these arguments are not processed either if DRVPREVIX is
FALSE.

Command Attributes
The following equate allows the user to select the a ttr ibu tes of the COM files

which are selected for execution. The ZCPR3 Command Processor can be made to
execute only COM files w ith the System a ttr ibu te set, w ith the Directory (non-System)
a t tr ibu te set, or with either a t tr ibu te set. The following values are defined for this
equate:

COMATT Files Selected
0 System
80H Directory
1 Both System and Directory

Chap. 19 In s ta lla tio n S teps 3 —6 271

COMATT e q u 01H

ZCPR3 Resident Command Activation
The fo llow in g equates enable various ZCPR3-resident commands. The user may

invoke these as desired, but should keep in m ind the size o f the resulting ZCPR3 and
make sure it does not exceed the required lim its.

DIRON e q u FALSE ;D IR COMMAND
LTON e q u FALSE ;L I S T , TYPE COMMANDS
GOON e q u TRUE ;GO COMMAND
ERAON e q u FALSE ;ERA COMMAND
SAVEON e q u TRUE ;SAVE COMMAND
RENON e q u FALSE ;REN COMMAND
GETON e q u TRUE ;GET COMMAND
JUMPON e q u FALSE ;JUMP COMMAND
NOTEON e q u FALSE ;NOTE COMMAND

Most o f these commands are available as options in the R esident Command
Packages. If selected for incorporation in the R esident Command Packages instead of
the ZCPR3 Command Processor, space is freed in the ZCPR3 CPR and the
fu n ction a lity o f these commands can be extended easily (eg, ERA in an RCP can have
an Inspect option).

The Wheel equate table enables the WHEEL fa c ility o f ZCPR3. With this fa c ility ,
a WHEEL BYTE, w hich exists somewhere in memory, is exam ined before a set of
installer-selected commands are executed. If this byte is not zero, then the command
proceeds. If it is zero, then the command is not allow ed to proceed and is exited with
an error message.

The fo llow in g set o f equates make each of the indicated commands selectable to
respond to the Wheel Byte or not. For instance, i f W ERA=TRUE, then it responds to
the Whee Byte; i f WERA=FALSE, it does not.

IF Z3WHL NE 0 IF A WHEEL BYTE ADDRESS IS DEFINED
WERA eq u FALSE Make ERA a W heel - O r i e n t e d Command
WREN eq u FALSE " REN " II It II

WLT eq u FALSE " L /T " It tt II (LIST/TYPE)
WGO eq u FALSE " GO " If tt It

WSAVE eq u FALSE " SAVE " It tt It

WGET eq u FALSE i i get " tt tt It

WJUMP eq u FALSE " JUMP " It It It

WDU eq u FALSE " DU: " tt It It (DU/DIR C hange
WHEEL
WHEEL

s e t
s e t
ENDIF

WERA OR WREN OR WLT OR WGO OR WSAVE
WHEEL OR WJUMP OR WDU

; Z3WHL

OR WGET

272 In s ta lla tio n Sec. 3

The commands inside of the Resident Command Package can also be set to
respond to the Wheel Byte.

ZCPR3 Resident Command Table
This table consists of the names of the various ZCPR3-resident commands and

their addresses. The NCHARS equate defines how many characters long each name
may be, and all table entries must be exactly the indicated number of characters
(trailing spaces are used to fill out shorter names).

Each table entry is s tructured as follows:

DB
DB

1CMND1 /Name of Command (NCHARS long)
CMNDADR ;Address of Command within ZCPR3

The installer should only change the names of the commands as desired and
should not, as a rule, touch the address defin ition since this is f ixed w ith in the body of
ZCPR3.

4 ;NUMBER OF CHARS/COMMANDlRS EQU
SLE MACRO
IF DIRON
DB 'DIR '
DW DIR
ENDIF
IF LTON
DB •LIST'
DW LIST
DB 'TYPE'
DW TYPE
ENDIF
IF GOON
DB 'GO '
DW GO
ENDIF
IF ERAON
DB 'ERA '
DW ERA
ENDIF
IF SAVEON

;DIRECTORY DISPLAY COMMAND

;LIST FILE ON PRINTER COMMAND
;TYPE FILE ON CONSOLE COMMAND

/EXECUTE CURRENT TPA COMMAND

/ERASE FILES COMMAND

C hap. 19 In s ta lla tio n S teps 3—6 273

DB ' SAVE'
DW SAVE ;SAVE TPA COMMAND
ENDIF

IF RENON
DB 'REN '
DW REN ; RENAME FILES COMMAND
ENDIF

IF GETON
DB 'GET '
DW GET ; LOAD FILE INTO TPA COMMAND
ENDIF

IF JUMPON
DB ' JUMP'
DW JUMP ; JUMP TO ANY MEMORY LOCATION
ENDIF

IF NOTEON
DB ' NOTE'
DW NOTE ;NOTE - NULL COMMAND (NOP)
ENDIF

ENDM

Controls on ZCPR3 Resident Commands
The following sets of equates provide special controls and param eters on various

ZCPR3-resident commands.
The following equates set the width of the spacing between the file names for the

DIR command and the character used to separate file names from one another on the
same line.

Assuming tha t FENCE is set to the character I f WIDE is TRU E, then the output
will look like:

filenam e.typ___ |___ filename.typ ...
while i f WIDE is FALSE, the output will look like:

filenam e.typ_|_filename.typ ...
(underscore represents a space)

WIDE
FENCE

EQU
EQU

TRUE
' i >

274 In s ta lla tio n Sec. 3

The WIDE equate is in tended to provide for shorter lines for those users with 64-
column displays. For those with 80-column displays, the output lines are much easier
to read.

The following equates define two flags which are used in conjunction with the
DIR command on the command line. SYSFLG is the character used to indicate to DIR
that all files, both System and non-System, are to be displayed. SOFLG is the character
used to indicate to DIR that only the System files are to be displayed. By default, DIR
displays non-System files.

For example, if SYSFLG is set to ’A’ and SOFLG is set to ’S’, then:

DIR * . COM A
displays all COM files w ith both System and non-System attr ibu tes while:

DIR * . COM S
displays only COM files w ith the System attribute. Naturally:

DIR *. COM
displays only COM files w ith the non-System attribute .

SYSFLG EQU 'A'
SOFLG EQU 'S'
The following equate causes ERA to confirm the files to be erased before it goes

ahead and erases them. I f ERA O K is TRUE, then the user will be prompted each time;
if it is FALSE, then the user will not be prompted.

ERAOK equ FALSE
If ERA O K is TRU E, the following equate adds a V erify option to the ERA

command which causes the user to be prompted only if the V erify option letter,
defined by ERDFLG, is given a f te r the file name. If ERAV is TRU E, then the user
will be asked to verify only when ERD FLG is contained in the command line; if
ERAV is FALSE, the user will always be asked to verify.

For example, if ERA O K is TRUE, ERAV is TRUE, and ERD FLG is ’V’, then the
command:

ERA *.* V
will result in the file names being displayed and the user being asked fo r verification.
If the V option were not given, the user would not be asked fo r verification.

ERAV equ FALSE
ERDFLG equ 'V '
The following equates set the paging parameters for the TYPE command.
PGDFLT determines if TYPE pages by default. I f PGDFLT is TRU E, then:

C hap. 19 In s ta lla tio n S teps 3—6 275

TYPE FILE . TXT
will be paged. I f PGDFLT is FALSE, the above command will not be paged.

PGDFLG defines the option character in the TYPE command line which is used to
toggle the defau lt set by PGDFLT. Assuming that PGDFLG is set to ’P’, then:

TYPE FILE. TXT P
will page the file listing if PGDFLT is FALSE and not page it if PGDFLT is TRUE.

PGDFLT EQU TRUE
PGDFLG EQU 'P '
The following equate defines the number of lines on the user’s CRT screen for use

by the TYPE command when it is paging. This value is usually 24.

NLINES EQU 24
The following equate defines the option letter used with the SAVE command to

indicate tha t the associated number is 128-byte sectors as opposed to 256-byte pages.
For example, if SECTFLG is set to ’S’, then:

SAVE 25 FILE. BIN S
save 25 128-byte sectors starting at location 100H into the file named FILE.BIN. If the
S option was not present, SAVE would have saved 25 256-byte blocks starting at
location 100H into the file named FILE.BIN.

SECTFLG EQU 'S'
P a th Definition
The following equate specifies the address of the PATH to be followed for the

PATH command-search if the PATH is to be initia lized by the BIOS and set by the user
via a PATH.COM program. The value of PATH should be the address of the PATH
data area in memory. If the in ternal PATH provided by ZCPR3 is to be used, then
PATHBASE should be equated to 0, which selects the PATH located just a f te r the
MEMLOAD routine. If the external PATH is to be used, then PATHBASE should be set
to the address of the external path.

A PATH is a series of byte-pairs, term inated by a b inary 0. The firs t byte of each
pair is the disk number (1-16 fo r disks A-P), and the second byte of each pair is the user
number (0-31). The special character ’S’ indicates the curren t user or curren t disk. For
example, the path from curren t d isk /cu rren t user to curren t d isk /user 0 to disk A /user
0 is selected by the following sequence:

DB /•current disk/user
DB '$',0 /current disk/user 0
DB 1,0 ;disk A/user 0
DB 0 ;end of path
EXPATH NE 0 /•External Path SelectedIF

276 In s ta lla tio n Sec. 3

This equate defines the base address of the external path

PATH equ EXPATH »•External ZCPR3 PATH
ELSE ;Internal Path Selected

The following macro defines the n- element in ternal path

I PATH
db
db
db
ENDM

MACRO
' A ' - ' @ , $ 1
'A '-'@ ' ,0
0

»•Disk A, Current
»•Disk A, User 0
»•End of Path —

User
MUST be here

ENDIF
The following flag enables ZCPR3 to perform an optimized path search when it is

searching along a path for a file. If this equate is TRUE, ZCPR3 will build a path in
memory of absolute entries (A l, B7, etc) from the symbolic path (one containing ’$’)
which is the path it would otherwise use. This new path would contain no duplicate
path elements, where a symbolic path analysis may. For example, if the path is:

db ;disk A, current user
db 'A*-1@',15 ;disk A, user 15
db 0

then if the user is logged into A15, setting the below equate to TR U E would allow
ZCPR3 to build the path:

db 'A'-'@',15 ;only one entry
db 0

in the analysis of this symbolic path, while w ith this equate FALSE, ZCPR3 may log
into A15 as many as three times (once for the defau lt and twice more for the symbolic
path) in looking for a file which is not found before it gives up. Using this minimum
path facility costs some code in ZCPR3, but it speeds up processing noticeably in some
cases.

Enable this equate if MINIMUM PATH SEARCH is to be employed.

MINPATH EQU TRUE
In searching for a file along a path, ZCPR3 can be commanded to always look in

the curren t logged-in directory before beginning the path search. This equate controls
this feature. If SCANCUR is set to TRUE, the curren t d irectory need never be
referenced in a symbolic path expression (DB ’$’,’$’) since SCANCUR insures that the
current directory is scanned.

Chap. 19 In s ta lla tio n S teps 3 —6 277

Enable this equate if the curren t DU is always to be scanned.

SCANCUR EQU TRUE
DU and DIR Controls
The following equate enables the appearance of the curren t disk/user in the

ZCPR3 prompt. I f set to FALSE, the prompt appears as ’>’ (assuming > is the current
value of CPRMPT). If set to TRU E, the prompt appears as ’d>’ or ’dn>’ (see INCLNDR
below).

INCLDU equ TRUE
The following equate allows ZCPR3 to accept the DU: prefix or login form for

input. Set this to TR U E if DU: prefix is to be allowed.
Setting this equate to TRU E allows the following forms:

A>B1:
A>TYPE B4:FILE.TXT
A>B:
A>1:

ACCPTDU EQU TRUE
This equate enables ZCPR3 to process DIR: forms in ternally through the memory-

based named directory buffer. This equate and the NDBASE address should be TRUE
(non-zero) in order to enable ZCPR3 to process named directories.

If NDINCP is TRUE, the following forms are allowed:

A>ROOT:
A>TYPE TEXT:FILE.TXT

if the other associated equates (below) are set correctly.

NDINCP EQU TRUE
The following equate will cause the name of the curren t directory to be displayed

as part of the prompt along with the DU form if enabled (see INCLDU above).
For example, if INCLNDR is TRUE, the prompt would look like:

B7:TEXT> — if INCLDU is also TRUE
TEXT> — if INCLDU is FALSE

INCLNDR EQU TRUE
The following equate allows ZCPR3 to accept the DIR: prefix or login form for

input. Set this to TR U E if DIR: prefix is to be allowed.
Setting this equate to TR U E allows the following forms:

278 In s ta lla tio n Sec. 3

A>ROOT:
A>TYPE TEXT:FILE.TXT

ACCPTND EQU TRUE
The following equate determines the h ierarchy of DU:/DIR: evaluation. Set this to

TRU E if DU: is to be tested for before DIR: or set this to FALSE if DIR: is to be tested
for before DU:. I f this is FALSE, named directories like C: (standing for C work
area—NOT disk C) are permitted.

Assuming tha t a d irectory for C programs, named ’C \ and a root directory, named
’RO OT’, exist, then if DUFIRST is set to FALSE:

A>C: — logs the user into the directory named 'C
A>ROOT: — logs the user into the directory named 'ROOT

while if DUFIRST is set to TRUE:
A>C: — logs the user into disk C:

(dir C can't: be accessed)
A>ROOT: — logs the user into the directory named 'ROOT
DUFIRST EQU FALSE
Enable password check on named directory references. If a named directory is

referenced and has a password associated with it, ZCPR3 will ask the user for this
password and approve the reference only if he gives a valid response. One and only one
try is permitted. Setting this equate to TRU E will enable the password check facility.

PWCHECK EQU TRUE
Command Line B uffer Control
The MULTCMD equate enables the fea tu re of having more than one command on

the same line, separated by a separation char which is defined by the CMDSEP equate.
If this fea tu re is enabled, the command line b u ffe r and b u ffe r pointers are moved
outside of ZCPR3 at the indicated address of Z3CL.

MULTCMD indicates i f the ability to have more than one command on a line is to
be enabled, and CMDSEP is the character used to separate these commands. For
example, if CMDSEP is ’;’ and MULTCMD is TRUE, then commands like this are
possible:

ERA * .BAK;DIR
IF Z3CL NE 0

MULTCMD equ TRUE
ELSE
equMULTCMD FALSE

Chap. 19 In s ta lla tio n S teps 3 —6 279

ENDIF
CMDSEP equ ' ; '
CMDRUN—Extended Command Processing
This equate enables the ZCPR3 CMDRUN facility. If CMDRUN is TRUE, then

another stage of command processing is invoked should ZCPR3 fa il to f ind a COM file
when the user gives a command. This stage involves invoking the COM file specified by
CMDFCB and giving it the curren t command line as an argument. In this way, if, say,
M80 PROG2 fails as a command, a new command like LR U N Z M80 PROG2, SUB M80
PROG2, or ZEX M80 PROG2 may be processed. If the new command fails, an
appropriate error message is given.

The ROOTONLY option causes ZCPR3 to only look at the Root (bottom of path)
for the Extended Command Processor if it is set to TRUE. If it is set to FALSE, the path
is searched fo r the Extended Command Processor. The trad eo ff here is that
ROOTONLY = T R U E is less flexible but somewhat faster than ROOTONLY = FALSE.

CMDRUN equ FALSE •
9 Enable the Facility

if CMDRUN
ROOTONLY equ TRUE •

9 TRUE if look at Root Only
•
9 Extended Command Processor
•
9 FALSE if look along path

CMDFCB MACRO
db 0
db 'CMDRUN' ;Name of Program
db •COM' ;File Type
ENDM
endif ;CMDRUN

Flow Command Facility
This equate enables ZCPR3 to respond to IF processing. ZCPR3 simply flushes

commands i f a FALSE IF is curren tly engaged. FCPs must be enabled for IFON to
work correctly.

IFON EQU TRUE

Miscellaneous Equates

MAXUSR EQU 31 ; MAXIMUM USER NUMBER ACCESSIBLE
MAXDISK EQU 4 ; MAXIMUM NUMBER OF DISKS ACCESSIBLE

The DU form will only be allowed to reference disks and user areas up to the
indicated maximum values. These limits, however, do not apply to named directories.
For instance, if MAXUSR was 20 and the name SPECIAL was equated to B31, then
’SPECIAL:’ would be resolved correctly but ’B31:’ would cause an error. Named
directories can have password protection associated with them, so B31 can be a
directory which is accessed only if the user knows the password fo r it.

280 In s ta lla tio n Sec. 3

SUPRES EQU TRUE /SU PPRESSES USER # REPORT FOR USER (

If you are logged into BO:, then the prompt would look something like:

B> i f SUPRES i s TRUE
B0> i f SUPRES i s FALSE

SPRMPT EQU ;CPR PROMPT INDICATING SUBMIT COMMAND
CPRMPTEQU • > ' ; CPR PROMPT INDICATING USER COMMAND

With these values:

B l>
B l$

a p p e a r s
a p p e a r s

f o r c o m m an d s t y p e d b y t h e u s e r
f o r c o m m an d s i n p u t f r o m a s u b m i t f i l e

NUMBASE EQU •H ' ;CHAR USED TO SWITCH FROM DEFAULT
/NUMBER BASE

This option applies to the SAVE command only. It permits forms like:

SAVE 17 m y f i l e . b i n 17 i s d e c i m a l
SAVE 11H m y f i l e . b i n 11H i s h e x a d e c i m a l

This fea tu re is handy in that values output by tools like DDT do not need to be
converted to hexadecimal before the SAVE command can be used.

CURIND EQU ' $ ' ; SYMBOL FOR CURRENT DISK OR USER

COMMENT EQU ' / ' ; LINES BEGINNING WITH T H IS CHAR
; ARE COMMENTS

Step 5: Overlaying the old BIOS and the CCP
The procedure for overlaying the old BIOS is the same as w ith conventional

CP/M. The relative offset for the ZCPR3 Command Processor Replacement will be the
same as tha t used for the BIOS. R efer to the manual published by Digital Research for
more detail.

An example of this procedure is provided in the sample session which follows.
Step 6: Implanting the Operating System Image
Once everything is overlayed in the memory image of the system, SYSGEN is

usually used to im plant the operating system image on the system tracks of the disk.
R efer to the m anual published by Digital Research for more detail.

An example of this procedure is provided in the sample session which follows.
Sample Session
The following directory display shows the files we will be working with. Note

that Z3BASE.LIB and Z3HDR.LIB are instrum ental to the installa tion of almost all of
the System Segments—Z3BASE.LIB and Z3HDR.LIB are read in by the MAC assembler

Chap. 19 In s ta lla tio n S teps 3—6 281

during the assembly process.

Bll>xd /oa
XD III Version 1.2
Filename.Typ Size K Filename.Typ Size K Filename.Typ Size K
CBIOSZ .ASM 56 SYSRCP • ASM 44 SYSNDR .LIB 4
SYSENV .ASM 4 ZCPR3 • ASM 68 SYSRCP .LIB 12
SYSFCP .ASM 20 CBIOSHDR .LIB 12 Z3BASE .LIB 12
SYSIOP .ASM 32 SYSENV .LIB 4 Z3HDR .LIB 20
SYSNDR .ASM 4 SYSFCP .LIB 8

B 11: — 14 Files Using 300K (2328K Left)
Assembling SYSENV
The following illustrates the assembly of SYSENV to produce the SYS.ENV file.

This file will be the ZCPR3 System Environm ent Descriptor.

Bll>zex mac sysenv
ZEX, Version 3.0
Bll> ZEX: ;
Bll> ZEX: ; MAC — CP/M Standard MACRO Assembler and Loader
Bll> ZEX: ;
Bll> ZEX: ; Suppress FALSE IF Printout
Bll> ZEX: ;
Bll> ZEX: IF NUL SYSENV
Bll> ZEX: MAC SYSENV $-S PZ
CP/M MACRO ASSEM 2.0
0200
01AH USE FACTOR
END OF ASSEMBLY
Bll> ZEX: IF INPUT Abort if Errors Exist
IF True?
Bll> ZEX: ERA SYSENV.BAK ;NOTE Cleanup
No Files
Bll> ZEX: ERA SYSENV.COM
No Files
Bll> ZEX: MLOAD SYSENV ?NOTE Load Hex File
MLOAD ver. 1.4 Copyright (C) 1983 Ronald G. Fowler
Loaded 172 bytes (00ACH - 2 records) to file B:SYSENV.COM
Start address: 0100H Ending address: 01ADH Bias: 0000H

282 In s ta lla tio n Sec. 3

Bll> ZEX:
Bll> ZEX:
SYSENV

Bll> ZEX:
Bll> ZEX:
Bll> ZEX:
Bll> ZEX:
Bll> ZEX:

F I
ERA SYSENV.HEX
HEX
F I

; Assembly Complete
/
Done>

Bll>ren sys.env=sysenv.com
Assembling SYSNDR

Bll>zex mac sysndr
ZEX, Version 3.0
Bll> ZEX: ;
Bll> ZEX: ; MAC — CP/M Standard MACRO Assembler and Loader
Bll> ZEX: ;
Bll> ZEX: ; Suppress FALSE IF Printout
Bll> ZEX: ;
Bll> ZEX: IF NUL SYSNDR
Bll> ZEX: MAC SYSNDR $-S PZ
CP/M MACRO ASSEM 2.0
01EB
005H USE FACTOR
END OF ASSEMBLY
Bll> ZEX: IF INPUT Abort if Errors Exist
IF True?
Bll> ZEX: ERA SYSNDR.BAK ;NOTE Cleanup
No Files
Bll> ZEX: ERA SYSNDR.COM
No Files
Bll> ZEX: MLOAD SYSNDR ;NOTE Load Hex File
MLOAD ver. 1.4 Copyright (C) 1983 Ronald G. Fowler
Loaded 235 bytes (OOEBH - 2 records) to file B:SYSNDR.COM
Start address: 0100H Ending address: 01EAH Bias: 0000H
Bll> ZEX: FI
Bll> ZEX: ERA SYSNDR.HEX

Chap. 19 In s ta lla tio n S teps 3—6 283

SYSNDR
Bll> ZEX
Bll> ZEX
Bll> ZEX
Bll> ZEX
Bll> ZEX

HEX
FI•
/

; Assembly Complete
/
Done>

Bll>ren sys.ndr=sysndr.com
Assembling SYSIOP

Bll>zex mac sysiop
ZEX, Version 3.0
Bll> ZEX: ;
Bll> ZEX: ; MAC — CP/M Standard MACRO Assembler and Loader
Bll> ZEX: ;
Bll> ZEX: ; Suppress FALSE IF Printout
Bll> ZEX: ;
Bll> ZEX: IF NUL SYSIOP
Bll> ZEX: MAC SYSIOP $-S PZ
CP/M MACRO ASSEM 2.0
FOAA
016H USE FACTOR
END OF ASSEMBLY
Bll> ZEX: IF INPUT Abort if Errors Exist
IF True?
Bll> ZEX: ERA SYSIOP.BAK ;NOTE Cleanup
No Files
Bll> ZEX: ERA SYSIOP.COM
No Files
Bll> ZEX: MLOAD SYSIOP ;NOTE Load Hex File
MLOAD ver. 1.4 Copyright (C) 1983 Ronald G. Fowler
Loaded 1192 bytes (04A8H - 10 records) to file B:SYSIOP.COM
Start address: ECOOH Ending address: F0A7H Bias: 0000H
++ Warning: program origin NOT at 100H ++
Bll> ZEX: FI
Bll> ZEX: ERA SYSIOP.HEX
SYSIOP .HEX

284 In s ta lla tio n Sec. 3

Bll> ZEX:
Bll> ZEX:
Bll> ZEX:
Bll> ZEX:
Bll> ZEX:

FI
/
; Assembly Complete
/
Done>

Bll>ren sys.iop=sysiop.com
Assembling SYSRCP

Bll>zex mac sysrcp
ZEX, Version 3.0
Bll> ZEX: ;
Bll> ZEX: ; MAC — CP/M Standard MACRO Assembler and Loader
Bll> ZEX: ;
Bll> ZEX: ; Suppress FALSE IF Printout
Bll> ZEX: ;
Bll> ZEX: IF NUL SYSRCP
Bll> ZEX: MAC SYSRCP $-S PZ
CP/M MACRO ASSEM 2.0
EBF1
017H USE FACTOR
END OF ASSEMBLY
Bll> ZEX: IF INPUT Abort if Errors Exist
IF True?
Bll> ZEX: ERA SYSRCP.BAK ;NOTE Cleanup
No Files
Bll> ZEX: ERA SYSRCP.COM
No Files
Bll> ZEX: MLOAD SYSRCP ;NOTE Load Hex File
MLOAD ver. 1.4 Copyright (C) 1983 Ronald G. Fowler
Loaded 2027 bytes (07EBH - 16 records) to file B:SYSRCP.COM
Start address: E400H Ending address: EBEEH Bias: OOOOH
++ Warning: program origin NOT at 100H ++
Bll> ZEX: FI
Bll> ZEX: ERA SYSRCP.HEX
SYSRCP .HEX

Bll> ZEX: FI

Chap. 19 In s ta lla tio n S teps 3—6 285

Bll> ZEX:
Bll> ZEX:
Bll> ZEX:
Bll> ZEX:

; Assembly Complete
t

Done>
Bll>ren sys.rcp=sysrcp.com

Assembling SYSFCP

Bll>zex mac sysfcp
ZEX, Version 3.0
Bll> ZEX: ;
Bll> ZEX: ; MAC — CP/M Standard MACRO Assembler and Loader
Bll> ZEX: ;
Bll> ZEX: ; Suppress FALSE IF Printout
Bll> ZEX: ;
Bll> ZEX: IF NUL SYSFCP
Bll> ZEX: MAC SYSFCP $-S PZ
CP/M MACRO ASSEM 2.0
F3F3
00CH USE FACTOR
END OF ASSEMBLY
Bll> ZEX: IF INPUT Abort if Errors Exist
IF True?
Bll> ZEX: ERA SYSFCP.BAK ;NOTE Cleanup
No Files
Bll> ZEX: ERA SYSFCP.COM
No Files
Bll> ZEX: MLOAD SYSFCP ;NOTE Load Hex File
MLOAD ver. 1.4 Copyright (C) 1983 Ronald G. Fowler
Loaded 499 bytes (01F3H - 4 records) to file B:SYSFCP.COM
Start address: F200H Ending address: F3F2H Bias: 0000H
++ Warning: program origin NOT at 100H ++
Bll> ZEX: FI
Bll> ZEX: ERA SYSFCP.HEX
SYSFCP .HEX
Bll> ZEX: FI
Bll> ZEX: ;

286 In s ta lla tio n Sec. 3

Bll> ZEX: ; Assembly Complete
Bll> ZEX: ;
Bll> ZEX: Done>
Bll>ren sys.fcp=sysfcp.com

Creating MYTERM.Z3T via TCSELECT

Bll>tcselect myterm
TCSELECT, Version 1.0
** Terminal Menu 1 for Z3TCAP Version 1.1 **
A. AA Ambassador K. Concept 100
B. ADDS Consul 980 L. Concept 108
C. ADDS Regent 20 M. CT82
D. ADDS Viewpoint N. DEC VT52
E. ADM 2 0 . DEC VT100
F. ADM 31 P. Dialogue 80
G. ADM 3 A Q. Direct 800/A
H. ADM 42 R. General Trm 100A
I. Bantam 550 S. Hazeltine 1420
J. CDC 456 T. Hazeltine 1500
Enter Selection, + for Next, or AC to Exit - +
** Terminal Menu 2 for Z3TCAP Version 1.1 **
A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120
C. H19 (ANSI Mode) M. Super Bee
D. H19 (Heath Mode) N. TAB 132
E. HP 2621 0 . Teleray 1061
F. IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424
H. Microterm ACT IV R. TVI 912
I. Microterm ACT V S. TVI 920
J. P Elmer 1100 T. TVI 950
Enter Selection, - for Last, + for Next, or AC to Exit - T

Selected Terminal is: TVI 950 — Confirm (Y/N)? Y

Chap. 19 In s ta lla tio n S teps 3 —6 287

File MYTERM .Z3T Created
Recap

To recap, the main System Segments which will be loaded by the LDR utility have
now been created. These System Segments are:

Bll>xd sys.* oa
XD III Version 1.2
Filename.Typ Size K Filename.Typ Size K Filename.Typ Size K
SYS .ENV 4 SYS .IOP 4 SYS .RCP 4
SYS .FCP 4 SYS .NDR 4

B 11: — 5 Files Using 2 OK (2304K Left)
Bll>xd myterm.z3t oa
XD III Version 1.2
Filename.Typ Size K Filename.Typ Size K Filename.Typ Size K
MYTERM . Z3T 4

B 11: - 1 Files Using 4K (2304K Left)
Assembling the CBIOS
The following illustrates the assembly of the Customized Basic Inpu t/O u tpu t

System (CBIOS). CBIOS has already been customized so tha t its Cold Boot routine
performs the proper in itia liza tions of buffers required by the ZCPR3 System.

Bll>mac cbiosz $-s pz
CP/M MACRO ASSEM 2.0
E3CE
01FH USE FACTOR
END OF ASSEMBLY
Assembling the ZCPR3 CPR
The following illustrates the assembly of the ZCPR3 Command Processor

Replacement. All customization has been done in the files Z3BASE.LIB and
Z3HDR.LIB.

Bll>mac zcpr3 $-s pz
CP/M MACRO ASSEM 2.0
C7E9
01EH USE FACTOR
END OF ASSEMBLY

288 In s ta lla tio n Sec. 3

Obtaining the Operating System Image
The following SYSGEN pulls the Operating System Image o ff of the System

Tracks. If you are installing a ZCPR3 System from scratch, you should be running a
CP/M system which has been moved down to allow space for the ZCPR3 buffers in
high memory. MOYCPM can usually be used to do this (MOVCPM is provided with
your system as a CP/M utility).

In this example, the size of the CP/M system which this version of ZCPR3 was
built on is the same as the size of the ZCPR3 which is being built. Both have the same
size of T ransien t Program Area (TPA).

The following command pulls the Operating System Image o ff of the System
Tracks:

Bll>sysgen
SYSGEN VER 2.2
SOURCE DRIVE NAME (OR RETURN TO SKIP)a
SOURCE ON A, THEN TYPE RETURN
FUNCTION COMPLETE
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)
Bll>save 45 cpm.bin
We now have a file named CPM.BIN on disk. This is the Operating System Image.

Note that the "45" above is a number unique to my system and it may be d if fe re n t for
the insta lle r’s system.

Patching the CP/M System Image
The following illustrates the technique of patching the CP/M Operating System

Image. The CCP is replaced by ZCPR3 (ZCPR3.HEX) and the BIOS is replaced by
CBIOS (CBIOS.HEX).

In this example, the CP/M Operating System Image begins at 1100H. This may be
d if fe re n t on the system being installed.

Bll>ddt cpm.bin
DDT VERS 2.0
NEXT PC
2E00 0100
The following command displays the CCP area. Your display will probably not be

the same as this (I was running ZCPR3 at the time this display was created), but the
installer should recognize the two opening JMP instructions as a key to being sure that
the CCP is indeed at this location.

-dllOO lllf
1100 C3 3E CO C3 3E CO 43 4F 4D 01 24 24 24 20 20 20 .>..>. COM.$$$
1110 20 20 53 55 42 00 00 00 00 00 00 00 00 00 00 00 SUB......

Chap. 19 Installation Steps 3—6 289

The following zeroes out the CCP area (I prefer to do this-just in case).

-fllOO 18ff 0
Now the ZCPR3 Command Processor Replacement is read in on top of the CCP

area. The offset here is 5100, and it may be different for the system being installed.
After the read-in, a dump is done to make sure the image was loaded properly.

-izcpr3.hex
-r5100
NEXT PC
2EOO 0000
-dllOO lllf
1100 C3 3E CO C3 3E CO 43 4F 4D 01 24 24 24 20 20 20 COM.$$$
1110 20 20 53 55 42 00 00 00 00 00 00 00 00 00 00 00 SUB.......

The following command displays the BIOS area. Your display will probably not
be the same as this, but the installer should recognize the two opening JMP instructions
as a key to being sure that the BIOS is indeed at this location.

-d2700 270f
2700 C3 CC D6 C3 70 D7 C3 OC EC C3 39 D6 C3 3F D6 C3 ___p....9..?

The following zeroes out the BIOS area (I prefer to do this-just in case).

-f2700 2dff 0
Now the CBIOS is read in on top of the BIOS area. The offset here is 5100, and it

may be different for the system being installed. After the read-in, a dump is done to
make sure the image was loaded properly.

-icbiosz.hex
-r5100
NEXT PC
2E00 0000
-d2700 274f
2700 C3 CC D6 C3 70 D7 C3 OC EC C3 39 D6 C3 3F D6 C3 ___p...
2710 15 EC C3 18 EC C3 IB EC C3 C3 D7 C3 04 D8 C3 C5
2720 D7 C3 B7 D7 C3 BD D7 C3 F6 D8 C3 EF D8 C3 IE EC
2730 C3 CA D7 C3 IB FC C3 21 EC CD 64 D9 C3 OF EC C5 !1. .d__
2740 CD 64 D9 Cl C3 12 EC CD OC EC B7 C4 OF EC 21 80 .d.... i
-AC

The following SAVE places the new ZCPR3 Operating System Image on disk.

Bll>save 46 zcpr3.bin

290 In s ta lla tio n Sec. 3

Just to double-check, the image is reloaded and the end of the CBIOS is displayed
to make sure the image is complete.

Bll>ddt zcpr3.bin
DDT VERS 2.0
NEXT PC
2E00 0100
-d2dc0 2dff
2DC0 00 00 00 00 00 00 F8 E0 00 00 03 E3 B8 E2 00 00
2DD0 00 00 00 00 00 00 F8 E0 00 00 8E E3 43 E3 45 6E C.En
2 DEO 64 20 6F 66 20 43 42 49 4F 53 5A 00 00 00 00 00 d Of CBIOSZ...
2DF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
- A C

Placing the Operating System Image
The following now places the Operating System Image onto the system tracks of

the desired disks. Note tha t this image is memory-resident from the previous
execution of DDT. Write out the image on as many test disks as desired.

Bll>sysgen
SYSGEN VER 2.2
SOURCE DRIVE NAME (OR RETURN TO SKIP)
DESTINATION DRIVE NAME (OR RETURN TO REBOOT)B...

Chap. 20 In s ta lla tio n S teps 3 —6 291

20 Step 7 : System Segment Installation

The selection of the configuration options for the various System Segments of
ZCPR3 is described here in some detail.

Resident Command Packages
The following is a refo rm atted duplicate of the body of a SYSRCP.LIB file. It is

provided here to present additional inform ation on how to set the equates. It may be
useful to the installer to have this installation manual open to these pages while he is
editing this file.

Each entry for the resident commands mentions their transien t program
counterparts. These utilities usually provide capabilities which exceed those of the
programs in the Resident Command Package, but the trad eo ff is tha t each utility
program is a separate file on disk which usually occupies more disk space than an
entire RCP. In essence, the RCP commands provide quick, convenient capabilities to
the user, and the transient utilities provide much greater f lex ib ility and u tility to the
user. In most reasonable ZCPR3 Systems, both facilities are available.

SYSTEM SEGMENT: SYS1.RCP
SYSTEM: ZCPR3
WRITTEN BY: RICHARD CONN

PROGRAM HEADER: SYSRCP.LIB
AUTHOR: RICHARD CONN

This program header selects the commands to be incorporated into SYS.RCP. It
also allows selection of some options for these commands.

IDENTIFICATION
The following ID is a single character, displayed as a part of the RCP ID, which

distinguishes this RCP from others made from the same base file (SYSRCP.ASM).

RCPID EQU 'A'
With the potential of several RCPs being generated from this one file, RCPID is

useful in iden tify ing which RCP is curren tly loaded to the user. The H command,
built into every RCP, prints out the version number of the RCP, including the RCPID
character, as well as the names of the commands contained within the RCP.
CP Command

TRANSIENT COUNTERPART: MCOPY

The following equate determines if the CP command is made available. Setting
this equate to T R U E enables the CP command.
The CP command copies one file from one DU to another or into the same DU
under a d if fe re n t name.

CPON EQU TRUE

292 In s ta lla tio n Sec. 3

DIR Command
TRANSIENT COUNTERPART: DIR, XD, XDIR
The following equate determines if the DIR command is made available. Setting
this equate to TR U E enables the DIR command.
The DIR command displays the directory of files in alphabetical order across the
lines to the user.

DIRON EQU FALSE

The DIR command allows two options. One is a flag to tell it to look at both System
and Non-System files, and the other is a flag to tell it to look only at System files.
By defau lt, DIR looks a t Non-System files.

SYSFLG defines the character used to instruct DIR to look at both System and
Non-System files. The recommended value is ’A ’ for All.

SOFLG defines the character used to instruct DIR to look at only System files. The
recommended value is ’S’ fo r System.

SYSFLG EQU 'A '
SOFLG EQU • S '

The following equate determines if the directory displays are sorted by filename
and file type or by file type and filename. Set SORTNT to TR U E to sort by name
and type, FALSE to sort by type and name.

SORTNT EQU TRUE

The following equates define some features of the directory display. If WIDE is
TRU E, the file names are spaced fa r the r abort; if WIDE is FALSE, they are closer
together (for a 64-column display). FENCE defines the character used to separate
the file name entries in the display.

WIDE EQU TRUE
FENCE EQU ' | '

ERA Command
TRANSIENT COUNTERPART: ERASE

The following equate determines if the ERA command is made available. Setting
this equate to T R U E enables the ERA command. The ERA command erases files.

ERAON EQU TRUE

C hap. 20 S tep 7 : S ystem Segm ent In s ta lla tio n 293

LIST and TYPE Commands
TRANSIENT COUNTERPART: PRINT and PAGE
The following equate determines if the LIST and TYPE commands are made
available. Setting this equate to TR U E enables these commands.
The LISTON equate can disable the LIST command w ithout a ffec ting the TYPE
command.

The TYPE command displays a group of files on the CRT while the LIST command
prints a group of files on the Printer.

LTON EQU TRUE
LISTON EQU TRUE

TYPE can be made to page or not page by default. If PGDFLT is TRUE, TYPE
pages by defau lt and does not page if the PGFLG character (recommended to be
’P’) is used. I f PGDFLT is FALSE, TYPE pages only when the PGDFLG character
is seen in the command line.

PGDFLT EQU TRUE
PGDFLG EQU ' P '

NLINES defines the number of lines on the user’s CRT screen. This is usually 24.

NLINES EQU 24

PEEK and POKE Commands
TRANSIENT COUNTERPART: None (Subset of DDT)

The following equates determine if the PEEK and POKE commands are made
available. Setting these equates to TRU E enables these commands.
The PEEK command allows the user to examine a chunk of memory.

PEEKON EQU TRUE
POKEON EQU TRUE

PROT Command
TRANSIENT COUNTERPART: PROTECT

The following equate determines if the PROT command is made available. Setting
this equate to TR U E enables the PROT command.
The PROT command sets the file protection attributes for a group of files.

PROTON EQU TRUE

294 In s ta lla tio n Sec. 3

REN Command
TRANSIENT COUNTERPART: RENAME
The following equate determines if the REN command is made available. Setting
this equate to TR U E enables the REN command. The REN command changes the
name of one file to another.

RENON EQU TRUE

REG Command
TRANSIENT COUNTERPART: REG

The following equate determines if the REG command is made available. Setting
this equate to T R U E enables the REG command.

REGON EQU FALSE

WHL Command
TRA N SIENT COUNTERPART: WHEEL
The following equate determines if the WHL command is made available. Setting
this equate to TR U E enables the WHL command.
The WHL command is used to tu rn o ff the Wheel Byte (make the user non-
priveleged) or to tu rn on the Wheel Byte (make the user priveleged).
Also, this equate enables the WHLQ command, which displays the state of the
Wheel Byte.

WHLON EQU FALSE
The following equate defines the password to be used by the WHL command. It
must always be 8 bytes long (trailing spaces allowed) and must be upper-case.

WPASS MACRO
DB 'SYSTEM ' ;8 characters
ENDM

The Wheel equate table enables the WHEEL facility of ZCPR3. With this facility, a
WHEEL BYTE, which exists somewhere in memory, is examined before a set of
installer-selected commands are executed. If this byte is not zero, then the
command proceeds. If it is zero, then the command is not allowed to proceed and is
exited w ith an error message.

The following set of equates make each of the indicated commands selectable to
respond to the Wheel Byte or not. For instance, i f WERA=TRUE, then it responds
to the Wheel Byte; if WERA=FALSE, it does not.

Chap. 20 S tep 7 : S ystem Segm ent In s ta lla tio n 295

These options will be effective only if a Wheel Byte is D efined (Z3WHL NE 0)

WCP equ FALSE Make CP a Wheel-Oriented Command
WDIR equ FALSE IV DIR " " " "
WERA equ FALSE II ERA " " " "
WLIST equ FALSE II LIST " " " "
WPEEK equ FALSE II PEEK " " " "
WPOKE equ FALSE II POKE " " " "
WPROT equ FALSE IV PROT " " " "
WREG equ FALSE II REG " " " »
WREN equ FALSE II REN " " " "
WTYPE equ FALSE II TYPE n 11 11 11
WHEEL set WCP OR WDIR OR WERA OR WLIST OR WPEEK OR WPOKE
WHEEL set WHEEL OR WPROT OR WREG OR WREN OR WTYPE

NOTE Command
TRANSIENT COUNTERPART: NOTE

NOTE is simply a NOP (do nothing) command which can be used to place
comments into multiple command lines. Setting the following equate to TRUE
enables the NOTE Command.

NOTEON EQU TRUE
The NOTE command is very convenient in the creation of commented displays and
command files. It is generally recommended to implement this command as a
resident command w ith in the ZCPR3 Command Processor itself ra ther than within
an RCP since the ZCPR3 Command Processors tend to have more room to spare
than RCPs and it is frequently desirable to save as much space w ith in an RCP as
possible.

ECHO Command
TRANSIENT COUNTERPART: ECHO
The following equate enables the ECHO command.
ECHO is useful in issuing both messages (to the user, say within a command file
during execution) and escape sequences. ECHO can send its output to the console
(by defau lt) or to the prin ter (if the firs t non-blank character is a dollar sign). It
uses BIOS calls, so all control characters are passed exactly. Hence, console-level
programming of such devices (CRTs and Printers) is possible.

The ECHOLST equate determines if ECHO is allowed to direct its output to the
prin ter. If ECHOLST is TRU E, ECHO may direct its output to the p rin ter via the
$ p refix character in the text.

296 In s ta lla tio n Sec. 3

ECHOON EQU TRUE
ECHOLST EQU TRUE

The ECHO transien t is not very large, and it is frequently more convenient to have
ECHO implemented in an RCP. However, since space w ith in RCPs is frequently at
a premium, it may be necessary to employ the ECHO transient.

Flow Command Packages
The following is a reform atted duplicate of the body of a SYSFCP.LIB file. It is

provided here to present additional inform ation on how to set the equates. It may be
useful to the installer to have this installa tion manual open to these pages while he is
editing this file.

A key decision to be made in the creation of FCPs is w hether to implement the IF
command as a COM file or w ith in the FCP itself. The following tradeo ff should be
considered:

1. As a COM file, the IF command offers many more options and f lex ib ility for
condition processing than an FCP-resident IF.

2. As a COM file, the IF command adds overhead by having to be located and
loaded from disk and then executed.

In the following text, we also show the equates that set options for an FCP-
resident IF command. IF.COM contains all of these options and more. R efer to the
associated HLP file for more detail.

SYSTEM SEGMENT: SYS1.FCP
SYSTEM: ZCPR3
CUSTOMIZED BY: RICHARD CONN
PROGRAM HEADER: SYSFCP.LIB
AUTHOR: RICHARD CONN
This program header defines the IF Conditions to be placed into the target

SYS.FCP file (generated by assembling SYSFCP.ASM).
IF Negation
The following equate determines if leading negation is to be allowed. If this

equate is TRU E, then forms like the following are permitted:

IF -EXIST filename.typ
These forms complement the meaning of the test (the above returns TR U E if

filename.typ does NOT exist).

IFONEG EQU TRUE
Assuming IFONEG to be TRUE, the following equate defines the character to be

placed in f ron t of the IF option to indicate that negation is to be performed. In the
above example, this character was tilde (~).

NEGCHAR EQU i ~ i

Chap. 20 S tep 7 : S ystem Segm ent In s ta lla tio n 297

IF: T (True) or F (False)
Setting the following equate to TRU E enables the simple T and F options to IF.

The form at of this option is:
IF T or IF F

and it always returns TRU E or FALSE, resp.

IFOTRUE EQU FALSE
IF: EM (Empty)
Setting the following equate to TR U E enables IF to test to check whether or not

the indicated file is empty. The test returns TRU E if the indicated file does not exist
or is empty.

IFOEMPTY EQU FALSE
IF: ER (Error)
Setting the following equate to TRU E enables IF to test the error code byte

(program error code byte). If this byte is 0 (no error), it re turns TRU E, else it returns
FALSE.

IFOERROR EQU TRUE
IF: EX (Exist)
Setting the following equate to TR U E enables IF to test for the existence of a file.

The test re turns TR U E if the indicated file exists.

IFOEXIST EQU TRUE
IF: IN (Input)
Setting the following equate to TR U E enables user input of the character T (or

any other character for FALSE). ZEX processing is suspended for this single-character
input.

IFOINPUT EQU TRUE
IF: NU (Null)
Setting the following equate to TRU E enables IF to test to see if the second

argument which follows is NULL (not specified) or not. This test is particu larly useful
in command file processing to see if, for example, argument $2 exists and to include it
if it does.

IFONULL EQU TRUE
IF: n (Register Value)
Setting the following equate to TRU E enables IF to test to see if the indicated

register contains the indicated value. If this is preceded by the NEGCHAR and
IFONEG is TRUE, then the test checks to see that the indicated register does not
contain the indicated value.

298 In sta lla tio n Sec. 3

IFOREG EQU TRUE

IF: WH (W heel)
Setting the following equate to TR U E enables IF to check w hether the Wheel Byte

is set or not. If the Wheel Byte is set, the statement IF WHEEL returns TRUE.

IFOWHEEL EQU FALSE

IF: TC (TCAP)
Setting the following equate to TRU E enables IF to test to see if the ZCPR3 TCAP

contains a term inal defin ition or not. This test is particu larly useful in command file
or alias processing to check w hether a Z3TCAP entry is defined, and to invoke screen-
oriented routines if it is.

IFOTCAP EQU FALSE

IF: fcbl=fcb2
Setting this equate to TR U E will enable IF to check whether the two FCBs contain

the same values. I f so, the IF returns TRUE; if not, the IF returns FALSE. Enabling
this equate eliminates the need for the NULL test, since a test for null can be
performed by using the syntax: IF fcb l =

IFOEQ EQU TRUE

COMIF - Run IF.COM
Setting this equate to TR U E will cause an IF statement executed during an IF

TRU E or NO IF state to look in the ROOT directory for the file IF.COM, and, if found,
load IF.COM and transfe r control to it. If IF.COM is not found, then IF F is raised.
Using IF.COM provides much more power and flexibility but also requires IF.COM to
be present and takes up disk space.

COMIF EQU FALSE

NOISE—Have FCP Print IF Status
Setting this equate to TR U E will cause any change in the IF status to be displayed

to the user. This is useful for debugging purposes, but in normal runs, particularly
where ALIASes are concerned, it is usually desirable to reduce the "noise" by setting
this equate to FALSE.

NOISE EQU FALSE

Input/Output Packages
In p u t/O u tp u t Packages are very machine-specific but, like all packages, they

provide a machine-independent in terface to the ZCPR3 System in their visible sections.
The hidden part performs the actual implementation of the routines. Like the structure
of the BIOS, the visible section of an I /O Package consists of a JMP table.

The installer who is interested in incorporating In p u t/O u tp u t Packages into the
system he is installing is re ferred to the source code file SYSIOP.ASM. This file can be
used as a template through which to create other I /O Packages. It is filled with

C hap. 20 S tep 7 : S ystem Segm ent In s ta lla tio n 299

comments outlining the functions being performed, and I feel tha t this should be
adequate.

Named Directory Files
The following is a reform atted duplicate of the body of a SYSNDR.LIB file. It is

provided here to present additional inform ation on how to set the equates. It may be
useful to the installer to keep the book open to these pages while he is editing this file.

DATA FILE: SYSNDR.LIB
AUTHOR: Richard Conn
VERSION: 1.0
DATE: 24 Feb 84
SYSNDR.LIB defines the structure of the memory-based named directory. It also

defines a few elements for it and is suitable for enclosure in an NDR file. The general
structure is:

DB Disk,User A=1
DB 'NDIRNAME' 8 chars
DB •PASSWORD' 8 chars• • • other entries
DB 0 End of NDR
macro ?disk,?user
db ?disk-'§' ; Convert Disk
db
endm

?user ; User is OK

The entire file is implemented as one macro (which follows). The SYSNDR.ASM
file simply refers to this macro and expands it.

The named directories shown below are recommended standards. In time, there
will be utilities which base a part of the ir operations on these names.

sysndr macro
The BASE directory is a working scratch area on the f irs t disk.

defdu 'A',0
db 'BASE '
db ' '

The ROOT directory is the last directory referenced in the Command Search Path.
This is where all the general purpose COM files are located.

I

defdu
db
db

•A’,15
'Root I

300 In s ta lla tio n Sec. 3

The HELP directory is where the online docum entation files are stored.

defdu 'A1,16
db 'HELP' '
db ' '

The BACKUP directory is where files are copied to (by default) for backup purposes.

defdu 1C1,O
db 'BACKUP '
db ' •
db 0 ;End of List
endm

TCAP Files
The programs TSELECT and TCMAKE are used to create the *.Z3T files which

are loaded by the LDR.COM utility. The loaded file establishes the characteristics of
the user’s CRT terminal, and this inform ation is used by screen-oriented utilities, such
as SHOW, to perform their functions.

Environment Descriptor
The following is a reform atted duplicate of the body of a SYSENV.LIB file. It is

provided here to present additional in form ation on how to set the equates. It may be
useful to the installer to have this installa tion manual open to these pages while he is
editing this file.

The entire file is one macro which is referenced by SYSENV.ASM. SYSENY
inserts a JMP 0 instruction in f ron t of this macro to complete the s tructure of the
SYS.ENV file.

LIBRARY: SYSENV.LIB
AUTHOR: Richard Conn
Version: 1.0
Date: 18 May 84
Previous Versions: None
SYSENV is the defin ition fo r my ZCPR3 environment.

sysenv macro
t
; Environment Descriptor
; If inline, there is a leading JMP just before this
t
envorgl:

db 'Z3ENV' ; Environment ID
db 1 ; class 1 environment (external)

Chap. 20 S tep 7 : System Segm ent In s ta lla tio n 301

A Class 1 environm ent is external to the u tility using it. This type of
Environment Descriptor is located at a b u f fe r somewhere in memory, and the ZCPR3
utilities simply contain a 2-byte pointer to its address. A Class 2 environment is
internal to the u tility using it. This type of Environm ent Descriptor is located within
the u tility itself, taking up 256 bytes. It is recommended tha t the ZCPR3 System be
configured using an external Environment Descriptor.

The following addresses and values are extracted from Z3BASE.LIB.

dw expath •
r external path address

db expaths •/ number of 2-byte elements in path
dw rep •

9 RCP address
db reps •

9 number of 128-byte blocks in RCP
dw iop •

9 IOP address
db iops •

9 number of 128-byte blocks in IOP
dw fcp •/ FCP address
db fcps •

9 number of 128-byte blocks in FCP
dw z3ndir •

9 NDR address
db z3ndirs •

9 number of 18-byte entries in NDR
dw z3cl •

9 ZCPR3 Command Line
db z3cls •

9 number of bytes in Command[Line
dw z3env •

9 ZCPR3 Environment Descriptor
db z 3 envs •

9 number of 128-byte blocks
dw shstk •

/ Shell Stack address
db shstks •

9 number of shsize-byte entires
db shsize •

9 size of a Shell Stack entry
dw z3msg •

9 ZCPR3 Message buffer
dw extfeb •

9 ZCPR3 External FCB
dw extstk •

9 ZCPR3 External Stack
The following flag is used by some ZCPR3 System utilities to determine how

verbose they are in providing messages and inform ation to the user. The QUIET.COM
utility can be used to change this flag dynamically.

302 In s ta lla tio n Sec. 3

db 0 quiet flag (l=quiet, 0=not quiet)
dw z3whl ; address of Wheel Byte

This data value is used by the timing routines.

db 4 ; Processor Speed in MHz
The following values should correspond to those selected in the Z3HDR.LIB file.

db 1D 1-'©' ; maximum disk
db 31 ; maximum user

The following value is used to instruct the utilities as to w hether they should
accept the DU form or not. If disabled (set to 0), the only way to reference a directory
is w ith the DIR (named) form, and password protection is directly provided by this.

db 1 ; l=OK to accept DU, 0=not OK
Some ZCPR3 utilities, such as PRINT and PAGE, draw inform ation from these

buffers to determ ine several key attr ibu tes of the devices they are dealing with. The
CPSEL utility can be used to dynamically change the CRT and P rin te r selections.

db 0 7 CRT selection (0=CRT 0, 1=CRT 1)
db 0 7 Printer selection (n=Printer n)
db 80 •t width of CRT 0
db 24 •/ number of lines on CRT 0
db 22 7 number of lines of text on CRT 0
db 132 7 width of CRT 1
db 24 7 number of lines on CRT 1
db 22 •/ number of lines of text on CRT 1
db 80 7 width of Printer 0
db 66 •t number of lines on Printer 0
db 58 •t number of lines of text on Printer 0
db 1 •/ form feed flag (0=(san't formfeed, l=can)
db 102 •/ width of Printer 1
db 66 •/ number of lines on Printer 1
db 58 •/ number of lines of text on Printer 1
db 1 •/ form feed flag (0=.zan't formfeed, l=can)

C hap. 20 S tep 7 : S ystem Segm ent In s ta lla tio n 303

db 80 •
9 width of Printer 2

db 66 •/ number of lines on Printer 2
db 58 •

9 number of lines of text on Printer 2
db 0 7 form feed flag (0=can't formfeed, 1=
db 102 •/ width of Printer 3
db 66 •/ number of lines on Printer 3
db 58 •

/ number of lines of text on Printer 3
db 0 •/ form feed flag (0=can,t formfeed, 1=

The ZCPR3 shell named SH can deal with symbols (variables) which are assigned
text strings as values. This b u ffe r defines the name of the file which programs like SH
refer to in order to resolve variable references. As many shell variable files as desired
may be available in this fashion.

db 'SH i •
9 shell variable filename

db 'VA R' •
9 shell variable filetype

These buffe rs are available to store file names and other data which are passed
from one u tility to another which is executed later. In general, entries 3 and 4 are
available to the ZCPR3 u tility programmer as general-purpose buffers. Entries 1 and
2 are used by some ZCPR3 System utilities at this time.

db 1 1 •
9 filename 1

db 1 1 •
9 filetype 1

db 1 1 •
9 filename 2

db 1 1
9 filetype 2

db 1 1 •
9 filename 3

db 1 1 •/ filetype 3
db 1 1 •

9 filename 4
db 1 1 •

9 filetype 4
ds 8OH-($-envorgl+3) ; make exactly 8OH bytes long

(+3 compensates for leading JMP)
The following is the TCAP entry for the TVI 950. I f LDR.COM loads a *.Z3T file,

this b u f fe r will be overlaid (if the Environm ent Descriptor is External).

Terminal Capabilities Data

304 In s ta lla tio n Sec. 3

envorg2
DB 'TVI 950 ;Name of Terminal
DB 1 K ' - 1 @ 1 ;Cursor UP
DB /Cursor DOWN
DB * L ' — ' @ ' /Cursor RIGHT
DB ' H ' - 1 @ 1 /Cursor LEFT
DB 00 /CL Delay
DB 00 /CM Delay
DB 00 /CE Delay
DB lbh,'*',0 /CL String
DB lbh,'=%+ %+ ',0 /CM String
DB lbh,'t',0 /CE String
DB lbh,')',0 /SO String
DB lbh,'(',0 /SE String
DB 0 /TI String
DB 0 /TE String
ds 8OH-($-envorg2) / make exactly 8OH

End of Environment Descriptor
endm

Chap. 21 S tep 7 : System Segm ent In s ta lla tio n 305

21 Step 8 : U tility Installa tion

The Z3INS U tility
The Z3INS utility is designed to make the ZCPR3 u tility installation process

simple. All files to be installed must be in the curren t directory when Z3INS is
executed. A *.ENV file for the target system and an installa tion file (*.INS)
containing the names of the programs to be installed must also be in the current
directory.

Z3INS reads in an Environm ent Descriptor file (*.ENV) and an Installation File
(*.INS). It then looks for lines in the file containing file names (one name per line) and
loads the indicated files, trying to install them with the Environm ent Descriptor
inform ation. Z3INS is invoked by a command line of the following form:

Z3INS mysys.ENV myinstal.INS
A ZCPR3 installa tion file is a text file containing two types of lines: a comment

line, which begins with a semicolon (;), and a line containing an unambiguous file
name (leading spaces are not significant), which is a file to be installed. For example:

; This is an installation file for my new utilities
; UTIL1.COM and UTIL2.COM are going to be installed —
utill. com

util2. com
; UTIL3 is really neat
util3. com

Case is not significant. Leading spaces on each line are ignored. Any file name
must be unambiguous. Listing 21-1, which follows, shows a sample session in which
Z3INS installs a system, using a previously prepared *.INS file. Listing lines tha t begin
with a semicolon are explanatory comments and are not displayed on the console.

Sample Session

Bl:ASM>z3ins sys.env zcpr3.ins
Z3INS Version 1.0
7
; Installation Begins —

« Detail Left Out »

Set 1
** Installing File ALIAS
** Installing File CD
** Installing File CMDRUN

.COM

.COM

.COM

306 In s ta lla tio n Sec. 3

** Installing File COMMENT .COM
** Installing File CPSEL .COM
** Installing File CRC .COM** Installing File DEV .COM
** Installing File DEVICE .COM
** Installing File DIFF .COM
** Installing File DIR .COM
** Installing File ECHO .COM** Installing File ERASE .COM
f

.
9 Set 2: Error Handlers
9** Installing File ERROR1 .COM
** Installing File ERROR2 .COM** Installing File ERROR3 .COM
** Installing File ERROR4 .COM
** Installing File ERRORX .COM
** Installing File SHOW .COM

« Detail Left Out »

; NOTE does not install because it is so small and really does
; not need to know about ZCPR3•
/

;note. com
9

; Set 9: Z3INS
.'
** Installing File Z3INS .COM
/
; End of ZCPR3 Installation
7
** Installation Complete **

Listing 21-1. Sample Run of Z3INS

Assembling Distribution Files
The following files require their specialized command files in order to be

assembled. If the installer is installing the system for the firs t time and wishes to
assemble these utilities, he may have to follow the steps outlined in the command files
in order to perform the assemblies.

Chap. 21 S tep 8 : U tility In s ta lla tio n 307

Utility Command File Required
ALIAS.COM ALIAS.ZEX
ZEX.COM ZEX.ZEX

The following files in the Phase I d is tribution are assembled by the command
lines (assuming tha t Z3LIB.REL and SYSLIB.REL are in the curren t directory and
that $1 is the file):

M80 =$1
L80 /P:100,$1,Z3LIB/S,SYSLIB/S,$1/N,/U,/E

Files:

CD CMDRUN COMMENT CPSEL
CRC DEV DEVICE DIFF
DIR ECHO ERASE ERR0R1
ERR0R3 ERR0R4 ERRORX FINDF
GOTO HELPCK IF IFSTAT
LDR MCOPY MENUCK MKDIR
NOTE PAGE PATH PROTECT
PWD QUIET RECORD REG
RENAME SAK SETFILE SH
SHCTRL SHDEFINE SHFILE SHVAR
SUB TCCHECK TCMAKE TCSELECT
UNERASE
Z3INS

WHEEL
Z3L0C

XD XDIR

The following files in the Phase I d is tribution are assembled by the command
lines (assuming tha t VLIB.REL, Z3LIB.REL, and SYSLIB.REL are in the current
directory):

M80 =$1
L80 /P:100,$l,VLIB/S,Z3LIB/S,SYSLIB/S,$1/N,/U,/E

Files:

ERR0R2 HELP MENU SHOW
The following files in the Phase I d is tribution are assembled by the command

lines (assuming tha t Z3LIB.REL and SYSLIB.REL are in the curren t directory) if the
TIME option is enabled:

M80 =$1
L80 /P:100,$1,TIMELIB/S,Z3LIB/S,SYSLIB/S,$1/N,/U,/E

Files:

308 In sta lla tio n Sec. 3

HELPPR PRINT

Files d istribu ted in Phase II will be provided with associated docum entation on
their assembly procedures.

C hap. 22 S tep 8 : U tility In s ta lla tio n 309

22 TCAP Facility

ZCPR3 Terminal Capabilities (TCAP)
The ZCPR3 Term inal Capabilities (TCAP) Facility is an integral part of the

ZCPR3 System. By means of the TCAP Facility, the user’s term inal is defined to
ZCPR3 in such a way tha t programs in the ZCPR3 System can perform a variety of
screen-oriented functions with the user’s terminal. The TCAP Facility is fundamental
to ZCPR3, and it is a part of the ZCPR3 Environment Descriptor.

The TCAP entries contain the following inform ation on their respective
terminals:

o in itia liza tion /de in itia liza tion sequences
o characters generated by the arrow keys
o sequence for clearing the screen
o sequence for positioning the cursor
o sequence for erasing to end of line
o h ighlight/non-h ighlight sequences

With this inform ation, programs such as VFILER, YMENU, and HELP can
perform their functions with a much higher degree of "flash" and user-friendliness
than they would otherwise. By simply loading the TCAP entry for another terminal
into the environm ent descriptor, all ZCPR3 programs are autom atically reconfigured
for the new term inal and can continue to function without modification.

Two utilities are provided to assist the user in the creation of Z3T files for his
terminals. TCSELECT allows the user to select a predefined term inal from the
Z3TCAP file, and TCMAKE allows the user to define a term inal which is not covered
by the Z3TCAP file.

Most of the inform ation in this chapter provides details on the s tructure of the
Z3T files and gives the TCMAKE user enough detail to define his terminal. Providing
this in form ation is the main purpose of this chapter.

The file Z3TCAP contains inform ation on over 40 terminals. The TCSELECT
program prints a number of menus containing the names of the terminals in this file
and allows the user to select one, storing its inform ation either directly into the
memory-resident Environm ent Descriptor or into a file of type Z3T which may later
be loaded by the LDR utility.

If the user’s term inal is not already defined in the Z3TCAP file, the TCMAKE
program is used to define his terminal. TCMAKE allows the user to in teractively
define each of the key attr ibu tes of his term inal and create a file of type Z3T when
done. This file may later be loaded by the LDR utility.

Internal Structure of a Z3T File
A Z3T File defines the characteristics of a particu lar terminal. Each Z3T file

contains the following information:
o the name of the terminal
o the codes generated by the arrow keys
o the byte sequences required:

to clear the screen
to position the cursor
to clear to end of line

310 In s ta lla tio n Sec. 3

to highlight chars
to initia lize and deinitialize the term inal

The following is the exact s tructure of a Z3T file:

name:
DS 16

arrows:
DS 4

delays:
DS 3

cl: DS Nl+1
cm: DS N2+1
ce: DS N3 + 1
so: DS N4+1
se: DS N5+1
ti: DS N6+1
to: DS N7+1

; Name of Terminal
; Bytes generated by arrow keys
; Delays for Screen Clear, Cursor Motion, and
; Clear to End-of-Line
; Sequence used for Screen Clear
; Sequence used for Cursor Motion (gotoxy)
; Sequence used for Clear to End-of-Line
; Sequence used to begin highlighting
; Sequence used to end highlighting
; Sequence used to initialize terminal
; Sequence used to deinitialize terminal

The following defines the TCAP records, which are:
1. the name of the term inal
2. the defin it ion of the arrow keys
3. the delay constants for screen clear, cursor motion, and clear to end-of-line
4. the defin it ion of the screen clear char sequence
5. the defn of the cursor motion char seq
6. the defn of the clear to EOL char seq
7. the defn of the h ighlight/end-h ighlight char seq
8. the defn of the in i t /d e in i t term inal char seq

Each of these record defin itions is similar: the s tructure of the record (in
assembly language terminology), comments on how the record is defined and what
values are valid for it. Examples of valid record structures are provided for each
record defin ition.

Terminal Name
Structure:

DS 16 ; Name of Terminal (Space Fill on Right)
Comment:
The name of the term inal is always 16 bytes long. If the name takes less than 16

bytes, space fill occurs righ t of the last character.
Examples:

DB 'ADDS Consul 980 '

C hap. 22 T C A P F ac ility 311

DB 'ADM 2 '
Arrow Keys
Structure:

DS 1 •
9 Byte Generated by Cursor UP

DS 1 •
9 Byte Generated by Cursor DOWN

DS 1 •
I Byte Generated by Cursor RIGHT

DS 1 •
9 Byte Generated by Cursor LEFT

Comment:
If your term inal has arrow keys on it which generate only one byte when depressed,

then these keys may be defined in the Z3T file. When a program calls for the use of
arrow keys, it will use the values stored here.

I f your term inal does not have arrow keys or has arrow keys which generate more
than one byte when depressed, these keys may not be defined in the Z3T file. Zero (0)
is stored in all fou r bytes of the "arrow key" record. In this case, the program will
respond to the WordStar (tradem ark, Micropro) arrow key convention (AE is UP, AX is
DOWN, AD is RIGHT, and AS is LEFT):

Examples:
DB 'K '-'@' ADM 31 AK for Cursor UP
DB ij i_ i@i AJ for Cursor DOWN
DB ' L ' - ' @ ' AL for Cursor RIGHT
DB ' H ' - ' @ ' AH for Cursor LEFT
DB 0,0,0,0 None for H19 because of 2-char

; Word Star Convention will be used
Function Delays
Structure:

DS 1 ; Delay (in mS) after sending clear screen
DS 1 ; Delay (in mS) after sending gotoxy
DS 1 ; Delay (in mS) after sending clear to EOL
Comment:
Each of these bytes defines the number of milliseconds a program will delay afte r

sending a particu la r sequence to the user’s terminal. Some term inals require this type
of delay. If a sequence requires no delay, the value of zero (0) should be placed in the
corresponding byte.

Examples:

DB BANTAM 550 - 20mS for Clear Screen, 0
for Cursor Motion and Clear to EOL

2 0 , 0 , 0

312 In s ta lla tio n Sec. 3

DB 0,0,0 ; TVI 950 - No Delays
Clear Screen Sequence
Structure:

DS N1 ; Bytes in clear screen sequence
DB 0
Comment:
This sequence of bytes, up to but not including the term inating 0, is sent to the

user’s term inal in order to clear his screen. I f it is necessary to include a b inary zero in
this sequence, the two bytes

DB '* ,0
will transm it as one binary 0 and

DB '\V
will transm it as one backslash.

In general, a backslash (\) is the quote character, and any byte which follows it is
transm itted literally to the user’s terminal.

If a term inal requires tha t trailing nulls follow the last character of the sequence
for the purpose of screen settling (rather than using the delay byte), nulls can be
appended into the sequence by using the quote character.

Examples:

DB lBH,';'^ ; Clear Screen for ADM2
DB * L ' —1 © 1,0 ; Clear Screen for ADDS Viewpoint
DB 1BH, , 1BH,'E '-'@ ,0

; Clear Screen for Concept 108
Cursor Motion (GOTOXY) Sequence
Structure:

DS N2 ; Bytes in gotoxy sequence
DB 0
Comments:
This sequence of bytes is sent to the user’s term inal in order to position the cursor

on his screen. The quote character (\) can be used, as in the Cursor Motion sequence, to
allow quote characters and nulls to be sent.

U nlike the other sequences in the TCAP records, the Cursor Motion sequences
vary depending upon the position on the screen. For instance, to place the cursor at
row 4, column 4 (home is row 0, col 0) on a TVI 950, the sequence

DB 1BH,'=$$',0

C hap. 22 T C A P F ac ility 313

is used, but to position at row 6, column 6, the sequence

DB 1BH,'=&&',0
is used.

In order to express such variable-value sequences, the ZCPR3 TCAP provides for
equations w hich define how to compute the byte to be output. The TCAP sequence:

DB 1BH,'=%+ %+ ',0
defines how to compute the values to be output in order to move the cursor for the TVI
950. The TCAP Cursor Motion sequence

DB 1BH,'=%+ %+ ',0
is broken down as follows:

Element Meaning
1BH O utput IB hex (the ESCAPE char)
’=’ O utput the character ’=’
’%+ ’ Add ’ ’ (20H) to the row value and output
’%+ ’ Add ’ ’ (20H) to the column value and output

Cursor Motion In terpre ter Commands
The percent character (%) instructs the cursor motion sequence in terprete r to look

for a command, and it processes the following characters as such. If it is desired to
output ’%’ itself, the sequence ’\% ’ is used.

The commands recognized by the cursor motion command in terpreter will now be
discussed in detail. These commands are the following (case is not significant):

%R Reverse order from row/col to col/row
%I Home position is (1,1) ra ther than (0,0)
%. P rin t curren t value (row or col) in binary
%2 P rin t curren t value as 2 ASCII decimal digits
%3 Prin t curren t value as 3 ASCII decimal digits
%d Prin t curren t value as N ASCII decimal digits (no leading zeroes)
%+n Add n to curren t value and output in binary
%>xy Add y to curren t value if it is greater than x

%R Command
The cursor motion sequence in terpreter assumes that the value of the row will be

output before the value of the column. If the column is to be first, the command
’%r’ or ’%R’
instructs the cursor motion sequence in terpreter to output the column and then the

row. The ’%R’ command must be present in the sequence before the firs t value is
output, and ’%R’ acts solely to command the in terpreter (no bytes are output by ’%R’).

314 In s ta lla tio n Sec. 3

%I Command
The cursor m otion sequence interpreter also assumes that the value o f the home

position is row 0, colum n 0. If it is convenient to set this position to row 1, column 1,
the command

’%i’ or ’%r
is used. Like ’%R’, ’%I’ must be used before the first value is output.
The TYI 950 can be d efined in two ways:

DB 1BH,'=%+ %+ ',0
or

DB 1BH,1%i=%+',1FH,1%+',1FH,0

Output Commands

The rest of the cursor m otion sequence interpreter commands deal w ith the format
of the output. They allow the fo llow in g types o f outputs:

%. binary value (AA is output as 1)
%2 2 ASCII D ecim al D igits (AA is output as ’01’)
%3 3 ASCII D ecim al D ig its (AA is output as ’OOT)
%d As many ASCII D ecim al D igits as needed (AA as ’T)
%+n Add o ffse t (’%+ ’ outputs AA as 1+’ ’ or ’!’)
%>xy Add o ffse t i f lim it reached (’%> 1 outputs AA as 1 and !’as")"

Examples:

DB 1BH,'Y%+ %+ 1,0 ; ADDS Viewpoint
1BH = output 1BH (ESCAPE char)
' Y' = output char 'Y'
'%+ ' = output row + ' ' (2OH) in binary
'%+ ' = output col + ' 1 (2OH) in binary

DB 1BH,1[%d;%dH',0 ; H19 (ANSI Mode)
1BH = output 1BH (ESCAPE char)
'[' = output char '[1
' %d' = output row as ASCII decimal digits
';' = output char ';'
'%d' = output col as ASCII decimal digits
'H' = output char 'H'

Clear to End of Line

C hap. 22 T C A P F ac ility 315

Structure:

DS N3 ; Bytes in clear to end of line sequence
DB 0
Comments:
The Clear to End o f Line sequence is used to clear the line starting at the cursor

position to the end o f the screen. Only this part o f the current line is cleared. The rules
for sp ecify in g this sequence are the same as those for Screen Clear.

Example:

DB 1BH,'T',0 ; ADM 2
Begin and End Highlighting
Sequences:

DS N4 ; Bytes in sequence to begin highlighting
DB 0
DS N5 ; Bytes in sequence to end highlighting
DB 0
Comments:
The "begin highlighting" sequence is used to begin h igh light mode on the user’s

term inal. This may be reverse video, dim , or some other non-standard method for
displaying characters on the screen. In order for a term inal to support this feature, the
fo llow in g must be true:

1. Issuing this sequence must NOT change the position o f the cursor on the screen.

2. Characters h ighlighted must be output in exactly the same w ay non-highlighted
characters are (eg, setting the MSB of the highlighted chars is not allow ed).

These sequences are always used as follows:

1. the BEGIN HIGHLIGHT sequence is output

2. a set o f characters to h ighlight is output
3. the END HIGHLIGHT sequence is output

The rules for sp ecify in g these sequences are the same as those for Screen Clear.
Example:

DB 1N '-'@',0 ;ADDS Viewpoint
Terminal Init and Deinit
Sequences:

DS N6 ; Bytes in sequence to init terminal
DB 0

316 In sta lla tio n Sec. 3

DS N7 ; Bytes in sequence to deinit terminal
DB 0
Comments:
Before any video routines are executed, the term inal in itia liza tion sequence is

sent to the term inal. A fter the use o f the term inal is com pleted by a program, the
dein itia lization sequence is sent. The rules for specify in g these sequence are the same
as those for Screen Clear.

Term inal Control Sequences 1 (G eneral)
The structure of most TCAP control sequences is:

DS N ; Bytes in sequence
DB 0

This sequence o f bytes, up to but not includ ing the term inating 0, is sent to the user’s
term inal in order to perform some function . If it is necessary to include a binary zero
in this sequence, the two bytes

DB '\ ,0
w ill transm it as one binary 0 and

DB ' W
w ill transm it as one backslash.

A backslash (\) is the quote character, and any byte w hich fo llow s it is
transm itted litera lly to the user’s term inal.

If a term inal requires that trailing nulls fo llow the last character o f the sequence
for the purpose o f screen settling (rather than using the delay byte), nulls can be
appended to the sequence by using the quote character.

Cursor M otion sequences fo llow these rules w ith the addition that the character
"%" prefixes a cursor m otion interpreter command. If it is desired to sim ply output this
character in a cursor m otion sequence, the quote character can be used:

DB '\%'
Term inal Control Sequences 2 (Cursor Motion)
Cursor M otion sequences are d ifferen t from the other sequences d efined in the

TCAP, in that cursor m otion sequences contain em bedded commands for the cursor
m otion interpreter. A ll Cursor M otion sequences are o f the fo llow in g general format:

<prefix sequence> <commands> < in fix seq> <cmd> <postfix seq>
For exam ple, the DEC VT100 term inal uses the fo llow in g sequence for cursor

motion:

DB 1BH,1[%i%d;%dH1,0
where:

C hap. 22 T C A P F ac ility 317

1BH,'['
%i
%d
i . i

/

%d
'H'

prefix chars 1BH (ESCAPE) and '['
command: home is 1,1
command: output row as ASCII dec chars
infix char ';'
command: output col as ASCII dec chars
suffix char 'H'

The p refix , in fix , and postfix sequences are optional, and only the commands to
output the row and column are required in any cursor m otion sequence definition.

Cursor M otion is the only required entry in a TCAP for a term inal. All other
sequences may be empty (null), and the lack o f these other sequences will be
compensated for. Cursor m otion, how ever, cannot easily be sim ulated, and is therefore
mandatory.

The fo llow in g table sum marizes all o f the Cursor M otion interpreter commands.
Command
%.
%2
%3
%d
%+n
%>xy

Output Format
Binary Value
2 ASCII Decim al D ig it Chars (’23’)
3 ASCII Decim al D ig it Chars (T 23’)
As m any ASCII D ecim al D igit Chars as needed
Add the value o f the byte fo llow in g the ’+’ and output in binary
If value > x, output value+y in binary; else output value in binary

Command Cursor Motion Interpreter Action
%i Set Home to 1,1 (defau lt is 0,0)
%r Output Col, then Row (defau lt is Row, then Col)

Examples:

DB 1BH,'Y%+ %+ ',0 ? ADDS Viewpoint
1BH = output 1BH (ESCAPE char)
'Y' = output char 'Y'
'%+ ' = output row + ' ' (2OH) in binary
1%+ ' = output col + 1 1 (2OH) in binary

DB 1BH,1[%d? %dH',0 ; H19 (ANSI Mode)
1BH = output 1BH (ESCAPE char)
'[' = output char '['
'%d' = output row as ASCII decimal digits
1;1 = output char •;•
'%d' = output col as ASCII decimal digits
1H' = output char 'H'

318 In sta lla tio n Sec. 3

Overview o f VLIB
VLIB (V ideo LIBrary) is the ZCPR3 library that provides the ZCPR3 programmer

w ith a series o f low -level routines for Z3TCAP access. VLIB is described in much more
detail in the VLIB.HLP f ile , and this overview serves only to sum marize its
capabilities.

The VLIB routine Z3VINIT in itia lizes VLIB for use w ith a ZCPR3 system. The
address o f the ZCPR3 environm ent descriptor is passed to the Z3V INIT routine in HL,
and from that tim e onward all VLIB routines know the address o f the Z3TCAP entry.

Some low -level functions provided by VLIB are:
R o u t in e
TINIT
DINIT

F u n c t io n
In itia lize term inal
D ein itia lize term inal

CLS Clear screen

EREOL Erase to End of Line

GOTOXY Position Cursor

STNDO UT
STNDEND

Begin highlighting
End highlighting

Standard ZCPR3 TCAP File
The f ile Z3TCAP contains inform ation on over 40 term inals. It is provided as a

part o f the ZCPR3 System, and it is used by TCSELECT. TCSELECT can display the
names o f the term inals contained in Z3TCAP and allow the user to select one,
generating a *.Z3T f ile or storing the selection directly into memory for im m ediate use
by the ZCPR3 System utilities.

TCAP Check Program
TCCHECK is used to check the Z3TCAP f ile for consistency. Its sole function is

to ensure the va lid ity o f the Z3TCAP f ile and provide some statistics on it. A sample
run o f TCCHECK is shown below.

B4:SCR2>tccheck //
TCCHECK, Version 1.0TCCHECK - Select Entry from Z3TCAP.Z3T
Syntax:

TCCHECK infile -or- TCCHECK infile.typ
where "infile" is the file to be checked by
the execution of TCCHECK. If no file type is
given, a file type of Z3T is the default.
Syntax:

TCCHECK
where this alternate form may be used to check

C hap. 22 T C A P F ac ility 319

the Z3TCAP.TCP file.
B4:SCR2>tccheck
TCCHECK, Version 1.0 File Z3TCAP .TCP Not Found - Aborting

Note: Z3TCAP.TCP MUST be in the same directory
B4:SCR2>tccheck root:z3tcap.tcp
TCCHECK, Version 1.0 File Z3TCAP .TCP Not Found - Aborting

Note: TCCHECK does not recognize named dirs
B4:SCR2>root:
A15:ROOT>tccheck
TCCHECK, Version 1.0
Z3TCAP File Check of Z3TCAP .TCP Version 1.1

File Checks with 44 Terminals Defined
TCAP Entry Definition Program
TCMAKE is used to create a *.Z3T file . Once created, the ZCPR3 u tility LDR can

load it into memory at the proper location (command is "LDR filenam e.Z 3T ”). A
sample run o f TCM AKE is shown below.

B4:SCR2>tcmake //
TCMAKE, Version 1.0
TCMAKE - Create a Z3T File
Syntax:

TCMAKE outfile -or- TCMAKE outfile.typ
where "outfile" is the file to be generated by
the execution of TCMAKE. If no file type is
given, a file type of Z3T is the default.
B4:SCR2>tcmake myterm2
TCMAKE, Version 1.0

** Z3TCAP Main Menu for File MYTERM2 .Z3T **
Define: 1. Clear Screen Sequence

2. Cursor Motion Sequence
3. Clear to End of Line Sequence
4. Standout Mode Sequences

320 In s ta lla tio n Sec. 3

5. Terminal Init/Deinit Sequences
6. Arrow Keys
7. Terminal Name

Status: S.
Exit: X.

Q.

Print Status (Definitions so far)
Exit and Write File
Quit and Abort Program without Writing File

Command? 2
Cursor Motion Definition
1. Timing Delay
Enter Delay Time in Milliseconds: 5
2. Enter R if Row/Column or C for Column/Row: R
3. Enter Equation for Row: %+
4. Enter Equation for Column: %+
5. Enter Prefix Byte Sequence
Char #1 - Type Char, .=Number, or <CR>=Done: Enter Number: ll
Char #2 - Type Char, .=Number, or <CR>=Done: Char =
Char #3 - Type Char, .=Number, or <CR>=Done:
6. Enter Middle Byte Sequence
Char #1 - Type Char, .=Number, or <CR>=Done:
7. Enter Suffix Byte Sequence
Char #1 - Type Char, .=Number, or <CR>=Done:

** Z3TCAP Main Menu for File MYTERM2 .Z3T **
Define: 1. Clear Screen Sequence

2. Cursor Motion Sequence
3. Clear to End of Line Sequence
4. Standout Mode Sequences
5. Terminal Init/Deinit Sequences
6. Arrow Keys
7. Terminal Name

Status: S. Print Status (Definitions so far)
Exit: X. Exit and Write File

Q. Quit and Abort Program without Writing File

C hap. 22 T C A P F ac ility 321

Command? 6
Arrow Key Definition
Your Terminal's Arrow Keys may be defined ONLY
if they generate only one character each. If they
do, type Y to continue. If not, type anything else.

Define Arrow Keys (Y/N)? Y
Strike the Appropriate Arrow Key
1. Arrow UP? AK
2. Arrow DOWN? AV
3. Arrow RIGHT? AL
4. Arrow LEFT? AH

** Z3TCAP Main Menu for File MYTERM2 .Z3T **
Define: 1. Clear Screen Sequence

2. Cursor Motion Sequence
3. Clear to End of Line Sequence
4. Standout Mode Sequences
5. Terminal Init/Deinit Sequences
6. Arrow Keys
7. Terminal Name

Status: S. Print Status (Definitions so far)
Exit: X. Exit and Write File

Q. Quit and Abort Program without Writing File
Command? S

** Z3TCAP Status for File MYTERM2 .Z3T **
Review: 1. Clear Screen Definition

2. Cursor Motion Definition
3. Clear to End of Line Definition
4. Standout Mode Definition
5. Terminal Init/Deinit Definition
6. Arrow Key Definition
7. Terminal Name Definition

322 In s ta lla tio n Sec. 3

Exit: X. Exit to Main Menu
Command? 1
Review of Clear Screen Definition
1. Timing Delay = 0 Milliseconds
2. Clear Screen Sequence:
(1) A[1BH (2) * 2AH

Strike Any Key to Continue -
** Z3TCAP Status for File MYTERM2

Review: 1. Clear Screen Definition
2. Cursor Motion Definition
3. Clear to End of Line Definition
4. Standout Mode Definition
5. Terminal Init/Deinit Definition
6. Arrow Key Definition
7. Terminal Name Definition

Exit: X. Exit to Main Menu
Command? 2
Review of Cursor Motion Data
1. Timing Delay = 5 Milliseconds
2. Row or Column First: R
3. Row Equation: — >%+ <—
4. Column Equation: — >%+ <—
5. Prefix Byte Sequence:
(1) A[1BH (2) = 3DH

6. Middle Byte Sequence:
— Empty —

7. Suffix Byte Sequence:
— Empty —

Strike Any Key to Continue -
** Z3TCAP status for File MYTERM2

.Z3T **

Z3T **
Review: l. Clear Screen Definition

C hap. 22 T C A P F a c ility 323

2. Cursor Motion Definition
3. Clear to End of Line Definition
4. Standout Mode Definition
5. Terminal Init/Deinit Definition
6. Arrow Key Definition
7. Terminal Name Definition

Exit: X. Exit to Main Menu
Command? 6
Review of Arrow Key Definitions
1. Arrow UP = AK
2. Arrow DOWN = AV
3. Arrow RIGHT = AL
4. Arrow LEFT = AH

Strike Any Key to Continue -
** Z3TCAP Status for File MYTERM2 .Z3T **

Review: 1. Clear Screen Definition
2. Cursor Motion Definition
3. Clear to End of Line Definition
4. Standout Mode Definition
5. Terminal Init/Deinit Definition
6. Arrow Key Definition
7. Terminal Name Definition

Exit: X. Exit to Main Menu
Command? X

** Z3TCAP Main Menu for File MYTERM2 .Z3T **
Define: 1. Clear Screen Sequence

2. Cursor Motion Sequence
3. Clear to End of Line Sequence
4. Standout Mode Sequences
5. Terminal Init/Deinit Sequences
6. Arrow Keys

324 In s ta lla tio n Sec. 3

7. Terminal Name
Status: S. Print Status (Definitions so far)
Exit: X. Exit and Write File

Q. Quit and Abort Program without Writing File
Command? X

Selected Terminal is: Rick's Terminal — Confirm (Y/N)? Y
File MYTERM2 .Z3T Created

TCAP Entry Selection Program
TCSELECT selects a term inal from the standard Z3TCAP file . The selected

term inal may be loaded directly into memory or a *.Z3T f ile may be created. If a
*.Z3T f ile is created, the ZCPR3 u tility LDR can load it into memory at the proper
location (command is "LDR filename.Z3T"). A sample run o f TCSELECT follow s.

B4:SCR2>tcselect //
TCSELECT, Version 1.0
TCSELECT - Select Entry from Z3TCAP.TCP

TCSELECT outfile -or- TCSELECT outfile.typ
where "outfile” is the file to be generated by
the execution of TCSELECT. If no file type is
given, a file type of Z3T is the default.
Syntax:

TCSELECT
where this alternate form may be used to store
the Z3TCAP entry for the selected terminal directly
into the Z3 Environment Descriptor.
Example 1: Create MYTERM.TCP
B4:SCR2>tcselect myterm
TCSELECT, Version 1.0
** Terminal Menu 1 for Z3TCAP Version 1.1 **

C hap. 22 T C A P F ac ility 325

A. AA Ambassador K. Concept 100
B. ADDS Consul 980 L. Concept 108
C. ADDS Regent 20 M. CT82
D. ADDS Viewpoint N. DEC VT52
E. ADM 2 0 . DEC VT100
F. ADM 31 P. Dialogue 80
G. ADM 3 A Q. Direct 800/A
H. ADM 42 R. General Trm 100A
I. Bantam 550 S. Hazeltine 1420
J. CDC 456 T. Hazeltine 1500
Enter Selection, + for Next, or AC to Exit - +
** Terminal Menu 2 for Z3TCAP Version 1.1 **
A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120
C. H19 (ANSI Mode) M. Super Bee
D. H19 (Heath Mode) N. TAB 132
E. HP 2621 0 . Teleray 1061
F. IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424
H. Microterm ACT IV R. TVI 912
I. Microterm ACT V S. TVI 920
J. P Elmer 1100 T. TVI 950
Enter Selection, - for Last / + for Next, or AC to
** Terminal Menu 3 for Z3TCAP Version 1.1 **
A. VC 404
B. VC 415
C. Visual 200
D. WYSE 50
Enter Selection, - for Last , or AC to Exit - -
** Terminal Menu 2 for Z3TCAP Version 1.1 **
A. Hazeltine 1510 K. P Elmer 1200

326 In s ta lla tio n Sec. 3

B. Hazeltine 1520 L. SOROC 120
C. H19 (ANSI Mode) M. Super Bee
D. H19 (Heath Mode) N. TAB 132
E. HP 2621 0. Teleray 1061
F. IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424
H. Microterm ACT IV R. TVI 912
I. Microterm ACT V S. TVI 920
J. P Elmer 1100 T. TVI 950
Enter Selection, - for Last / + for Next, or

Selected Terminal is: TVI 950
** Terminal Menu 2 for Z3TCAP Version 1.1 *
A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120
C. H19 (ANSI Mode) M. Super Bee
D. H19 (Heath Mode) N. TAB 132
E. HP 2621 0. Teleray 1061
F. IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424
H. Microterm ACT IV R. TVI 912
I. Microterm ACT V S. TVI 920
J. P Elmer 1100 T. TVI 950
Enter Selection, - for Last , + for Next, or

C to Exit
- Confirm

C to Exit

- T
(Y/N)? N

S
Selected Terminal is: TVI 920 — Confirm (Y/N)? }

File MYTERM .Z3T Created
— Example 2: Select terminal and store it in memory

B4:SCR2>tcselect
TCSELECT, Version 1.0
** Terminal Menu 1 for Z3TCAP Version 1.1 **
A. AA Ambassador K. Concept 100

C hap . 22 T C A P F ac ility 327

B. ADDS Consul 980 L. Concept 108
C. ADDS Regent 20 M. CT82
D. ADDS Viewpoint N. DEC VT52
E. ADM 2 0 . DEC VT100
F. ADM 31 P. Dialogue 80
G. ADM 3 A Q. Direct 800/A
H. ADM 42 R. General Trm 100A
I. Bantam 550 S. Hazeltine 1420
J. CDC 456 T. Hazeltine 1500
Enter Selection, + for Next, or AC to Exit - +
** Terminal Menu 2 for Z3TCAP Version 1.1 **
A. Hazeltine 1510 K. P Elmer 1200
B. Hazeltine 1520 L. SOROC 120
C. H19 (ANSI Mode) M. Super Bee
D. H19 (Heath Mode) N. TAB 132
E. HP 2621 0 . Teleray 1061
F. IBM 3101 P. Teleray 3800
G. Micro Bee Q. TTY 4424
H. Microterm ACT IV R. TVI 912
I. Microterm ACT V S. TVI 920
J. P Elmer 1100 T. TVI 950
Enter Selection, - for Last, + for Next,

Selected Terminal is: TVI 950
or AC to Exit - T
-- Confirm (Y/N)? Y

ZCPR3 Environment Descriptor Loaded

A ppendix A

Glossary of Terms
Absolute Path

A path w hich is expressed in exact terms w ith no relative disk or user area
references. A path like "Al A15" is an absolute path. See RELATIVE PATH.

Ada
The standard programming language for Embedded Computer Systems in the US
D epartm ent o f D efense. Pascal is Ada’s primary ancestor, but Ada has many
extensions over conventional Pascal.

Alias
A program w hich expands into a sequence o f commands w ith parameter
substitution from the original command line. Such a program is created by the
ALIAS Tool.

BDOS
The Basic D isk Operating System part o f CP/M or ZCPR3. This is the part o f the
operating system w hich manages the file s and provides some higher-level
input/ou tpu t functions.

BIOS
The Basic Input/O utput System part o f CP/M or ZCPR3. This is the part o f the
operating system w hich manages the devices and provides a low -level, m achine-
independent in terface to the disks and character-oriented input/ou tpu t devices.

Boot, Cold
The process o f in itia liz in g the operating system when the computer is first turned
on. The BIOS contains a cold boot routine w hich is used to in itia lize many features
o f the system , includ ing several o f the ZCPR3 buffers.

Boot, Warm
The process o f re in itia liz in g the operating system at some tim e after it has begun
execution. The BIOS contains a warm boot routine, but this routine does not
usually have any e ffe c t on the ZCPR3 environm ent except for reloading the
ZCPR3 Command Processor from disk.

CBIOS
Custom ized Basic Input/O utput System. This is a term used to represent the BIOS
w hich has been adapted for a particular m icrocom puter. See BIOS.

COM File
An executable binary im age which executes at memory location 100H and is loaded
from disk by the ZCPR3 Command Processor. Once loaded, a COM file is called by
the ZCPR3 Command Processor like a subroutine.

Command
A statem ent issued by the user or a program w hich results in a program to be
executed. A command consists o f a verb fo llow ed by zero or more arguments. The
verb uniquely id en tifies the name o f the program to execute.

329

330 A p p en d ix A G lossary of T erm s

Command Package
A collection o f routines w hich are stored in one logical binary entity. Each routine
acts like a COM file , and a table at the beginning of the package id en tifie s the
name o f each routine and its starting address.

Command Search H ierarchy
See HIERARCHY.

Device M anagement
The control o f the physical devices associated w ith a computer system. D evice
m anagem ent concerns itse lf w ith the control o f disk drives and input/ou tput
devices (such as computer term inals).

Directory
A logical en tity in w hich file s are stored. A directory is id en tified by a disk letter
and a user area number. A physical directory is som etim es also reference, and this
is the location on disk where inform ation about the f ile s on that disk is stored.

DIR Form
A m nem onic used to refer to a disk and user area. ROOT: is a DIR form.

DU Form
A reference to a directory in terms o f a disk and user area number com bination.
A15: is a D U form.

Error H andler
A program w hich is invoked by the ZCPR3 Command Processor when an error is
encountered in the current command. A pointer to the current command is
provided for the Error H andler to use.

Flow Command Package
A collection o f routines w hich im plem ent commands that a ffe c t the IF state o f the
ZCPR3 environm ent. The Flow Command State is set to TR U E, FALSE, or null (no
active IF) by these commands. Commands such as IF and ELSE are im plem ented in
Flow Command Packages. See COMMAND PACKAGE.

Flow Command State
See FLOW STATE.

Flow State
The state o f command execution under ZCPR3. If the F low State is TR U E, any
command can execute. If the Flow State is FALSE, only Shells and Flow Command
Package routines can execute.

H ierarchy
A structured sequence o f objects. This term is usually applied to the Command
Search H ierarchy, w hich is the sequence o f steps taken in order to process a
command under the ZCPR3 System.

Inform ation M anagement
The control o f the resources o f a computer w hich deal w ith the data contained in
the system. S p ecifica lly , in form ation m anagement deals w ith the control o f files
and directories.

A p p en d ix A G lossary of T erm s 331

Input/O utput Package
A logical grouping o f routines w hich control a set o f logical devices that are
im plem ented as com binations o f one or more physical devices. An I/O Package is
called by the BIOS to provide access to character-oriented devices, such as
term inals.

Memory Image
A representation o f a program as it resides in the memory o f the computer. This is
as opposed to a SYSGEN image, w hich is the form the operating system takes as it
resides on disk, or the disk-based image, w hich is the form a program takes as it
resides on disk.

Memory M anagement
The control o f the allocation o f memory inside a com puter system. The CP/M and
ZCPR3 system s perform very little in the way o f memory m anagem ent aside from
outlin ing a recom m ended partition ing o f the memory.

Message
A unit o f inform ation w hich is stored in one or more byte in a pre-defined location
in memory. Programs can pass inform ation between each other and the ZCPR3
Command Processor by means o f messages under the ZCPR3 System.

M ultiple Command Line
A sequence o f one or more commands, where each command is separated from
another by a sem icolon. "XDIR;DIR" is a m ultiple command line.

Named Directory
A disk and user area (directory) that has a m nem onic associated w ith it. ROOT is
the DIR form w hich is associated w ith the named directory at disk A, user area 15
by convention.

Operating System
A program w hich manages the four basic resources o f a computer system: devices,
in form ation , memory, and processes and processors. CP/M and U N IX are
operating systems.

Package
A logical collection o f data and routines that is d iv id ed into two parts: a visib le
section and a hidden section. The in terface to the package routines is d efined in
the visib le section and the routines them selves are in the hidden section. The
concept o f a package was taken from the programming language Ada.

Parsing
The process o f breaking up a command into its representative tokens and storing
these tokens into the appropriate buffers. A command consists o f a verb, up to two
f ile references, and a series o f options in most cases. Each o f these item s is a token
that is extracted by the parser in the ZCPR3 Command Processor.

Path
A sequence o f directory references w hich is exam ined when searching for a COM
f ile in for certain other file s in various situations. See ABSOLUTE PATH and
RELATIVE PATH.

332 A pp en d ix A G lossary of T erm s

Process
A program in execution. A program is a passive entity , w hich is sim ply an
expression o f a sequence o f commands. A process is an active entity w hich can
cause physical activ ity to occur, such as devices engage. See PROGRAM.

Process M anagement
The control o f the processes inside a computer system. The CP/M and ZCPR3
operating system s do very little in the way o f process m anagem ent aside from
loading a program and causing it to execute. See PROCESS.

Program
An expression o f a sequence of commands that may be translated into a form that
can be executed on a computer. See PROCESS.

Relative Path
A sequence o f directory references that includes at least one entry whose disk or
user area reference is represented by a "$" character, w hich refers to the disk or
user area w hich is currently logged into. The resolution o f a relative path depends
upon the location o f the user when he issues a command, and the absolute
expression o f this path is based upon the location o f the current directory.

Resident Command Package
A collection o f routines which are located in memory and may be invoked by the
ZCPR3 Command Processor as needed. See PACKAGE and FLOW COMMAND
PACKAGE.

Script
A textual expression that is translated into a series o f one or more commands. An
A lias generates a script.

Shell
A front end program w hich accepts commands from the user and preprocesses
these commands before passing them on to the ZCPR3 Command Processor for
resolution and execution. YFILER and SH are two d ifferen t Shells under the
ZCPR3 System.

Sym bolic Path
See RELATIVE PATH.

Tool
A program w hich is used to perform a usefu l function in a general-purpose sense.
A ll o f the ZCPR3 programs are tools, as opposed to games.

Tool Set
A collection o f tools, where the tools are usually related in fu n ction a lity or
operation to each other.

Virtual M achine
A m achine w hich exists at a higher level o f abstraction than the actual physical
m achine w hich is supporting it. The virtual m achine concept is used to raise the
details o f in terfacing w ith a m achine to a higher level o f abstraction so that the
intim ate details o f a m achine need not be o f concern.

Appendix C

References

The fo llow in g sections outline other sources o f in form ation on ZCPR2, ZCPR3,
SYSLIB2, and SYSLIB3 that may be usefu l to the installers and users o f ZCPR3.

ZCPR2 and SYSLIB2 Publications and Documentation

ZCPR2 Manuals
Conn, Richard. ’Concepts M anual for ZCPR2 — Z80 Command Processor

R eplacem ent, Version 2,’ Manual Revision 0 , 3 February 1983, 21 pages.
Conn, Richard. ’Installation Instructions for ZCPR2 — Z80 Command Processor

R eplacem ent, Version 2,’ Manual Revision 0, 2 February 1983, 48 pages.
Conn, Richard. ’R ationale M anual for ZCPR2 — Z80 Command Processor

R eplacem ent, Version 2,’ Manual Revision 0 , 26 February 1983, 65 pages.
Conn, Richard. ’U ser’s G uide for ZCPR2 — Z80 Command Processor

R eplacem ent, Version 2,’ Manual Revision 0 , 4 February 1983, 138 pages.

SYSLIB2 Manuals
Conn, Richard. SYSLIB User and Reference Manual for SYSLIB Version 2.4, 4

February 1983, 112 pages.
Conn, Richard. U ser’s Guide to SYSLIB 2.3, R evision B, 14 Decem ber 1982, 56

pages.

Software Upgrades to SYSLIB2 and ZCPR2
Four upgrades to SYSLIB2 and ZCPR2 were issued. There were all w ritten by

Richard Conn, and their dates are:
4 March 1983
30 March 1983
30 April 1983
22 June 1983

Sources
Contact the fo llow in g sources for copies (on disk or hard copy, depending on the

source) o f the above-m entioned docum entation.
SIG/M (disks)
N ew York Amateur Computer Club (hardcopy)
SIMTEL20 (D D N access)

335

336 A p p en d ix C R eferences

CP/M Books
The following books on CP/M are recommended.

Hogan, Thom. Osborne C P / M User Guide, Osborne/M cGraw-Hill, 1981,283 pages.
Johnson-Laird, Andy. The Programmer’s C P / M Handbook, Osborne/M cGraw-Hill,

1983, 501 pages.

ZCPR3 Sources

The following are the addresses of sources for inform ation on ZCPR2, ZCPR3,
SYSLIB2, and SYSLIB3.

Selected Computer Clubs

SIG/M provides a lib rary of software on a number of form ats of floppy disk.
They are a source for the ZCPR2, SYSLIB2, ZCPR3, and SYSLIB3 software.

The New York Am ateur Computer Club has published hardcopy of the ZCPR2
and SYSLIB2 documentation.

ACGNJ and SIG/M
SIG/M -Amateur Computer Group of New Jersey
PO Box 97
Iselin, NJ 08830

New York Am ateur Computer Club
New York Am ateur Computer Club, Inc
PO Box 106
New York, NY 10008

Echelon, Inc.
Echelon, Inc
101 First Street
Los Altos, CA 94022
(415)948-5321

Echelon, Inc has been selected as exclusive agent for licensing commercial uses of
ZCPR3. Companies who wish to incorporate ZCPR3 into their products should contact
Echelon for licensing arrangements.

Echelon also distributes ZCPR3 (including SYSLIB3) for non-commercial use.
Individual users may obtain copies of the programs fo r essentially cost of disks plus
handling and mailing expenses.

Echelon will soon provide a computerized bulletin board service in support of
ZCPR3. Inform ation on how to acquire a copy of the system, upgrades and changes to

A p p en d ix C R eferences 337

the system, and general user/creator feedback and communication will be supported
by this bulletin board.

At irregular intervals Echelon distributes a ZCPR3 Newsletter to customers who
have purchased ZCPR3 or SYSLIB. It provides news of updates, bugs and their fixes,
and hints and tips from users.

New York Zoetrope, Inc.

New York Zoetrope, Inc.
Suite 516
80 East 11th St.
New York, NY 10003
(212)420-0590

Cable: NYZOETROPE, N.Y.
Source: TCN 121

New York Zoetrope, Inc, is the publisher of the hardcopy docum entation on
ZCPR3 and SYSLIB3. Contact New York Zoetrope for details.

Magazine Articles on ZCPR3
If you are interested in f ind ing out more about ZCPR3, the following references

are cited. This list is not complete, but does provide some pointers to reviews and other
inform ation.

Blum, Robert. ’CP/M Exchange,’ Dr. Dobb’s Journal, Number 81, July 83. Robert
is doing a continuing series on SYSLIB3 and other libraries associated with ZCPR3.

Bove, Tony and Rhodes, Cheryl. ’What is ZCPR3?,’ User’s Guide magazine, Issue
11/12, Vol 2.5/2.6, Dec 84.

Conn, Richard. ’The Evolution o f ZCPR, Part 1,’ Computer Language magazine, Vol
1, N umber 2, Oct 84.

Conn, Richard. ’The Evolution of ZCPR, Part 2,’ Computer Language magazine,
Vol 1, N umber 3, Nov 84.

Gerrold, David. ’Up and Running ,’ Profiles magazine, Nov 84. David is doing a
continuing series on ZCPR3.

Haigwood, Jerry. ’The Ampro Bookshelf Computer,’ User’s Guide magazine, Issue
9, Vol 2.3, July 84.

Wright, Dennis. ’ZCPR3,’ Computer Language magazine, Vol 1, N umber 3, Nov 84.

ZCPR3 Newsletters

A very nice source of inform ation is the ZCPR3 Newsletters of Echelon. They
come out every 2 weeks (more or less), and they are released to the public. Many
R C P/M systems carry them, and Echelon provides them to customers in hardcopy
form.

338 A p p en d ix C R eferences

ZCPR3 Configuration Management
ZCPR3 is being placed under configura tion management, and the CM system is

about ready. Reports on latest versions of all the software, CRCs, etc, will be
generated by this. Contact Echelon fo r details.

ZCPR3 Electronic Bulletin Board
The number for the ZCPR3 bulletin board associated w ith Echelon is:

415-489-9005

There are a growing number of ZCPR3 bulletin boards sprouting up. Watch for
them and their screen-oriented displays.

Listed here are a few of the bulletin boards devoted to ZCPR3.
You’ll f in d useful in form ation and help here.

Jay Sage
Jud Newell
R ichard Rodeheaver
Robert Tate
R ichard Petersen
A1 Hawley
R ichard Mead
D avid McCord
Tim Linehan

Pasadena, CA
Fremont, CA
Olympia, WA

Boston, MA
Toronto, CANADA
Reynoldsburg, OH
Orlando, FL
El Paso, TX
Los Angeles, CA

617/965-7259
416/232-0442
614/864-2673
305/831-6049
915/755-3342
213/670-9465
818/799-1632
415/489-9005
206/357-7400

Appendix D

Obtaining Free Software

MAINFRAME PROGRAMS FOR TRANSFERRING FILES BETWEEN
MAINFRAMES AND MICROS

Christensen Protocol:
For a micro to reliably exchange files with a m ainfram e, cooperating file transfer

programs w ith autom atic error detection and retransmission of fau lty blocks must be
running on both computers. One such fam ily of programs uses a popular protocol
created by Ward Christensen and enhanced by others. Two popular programs, UC and
the older UMODEM (both w ritten in C), implement this protocol on U N IX machines.

On ITS machines, file transfer using the Christensen protocol can be done using
MMODEM (type rMMODEM for instructions), or LMODEM. D ocumentation for
LMODEM is in file which types an ASCII file stored in ITS binary format; TYPESQ,
which types an ITS binary fo rm at "squeezed" file (see the firs t paragraph under FILE
TYPES); USQ, which creates an unsqueezed version of a squeezed file; HEXIFY,
which creates an Intel hex fo rm at file from an ITS binary fo rm at COM file; COMIFY
which creates a COM file from an Intel hex file; and CRC, which computes the Cyclic
R edundancy Check value for a file, using the same algorithm tha t is used by the CP/M
program CRCK. Brief instructions for any of these utilities except LMODEM can be
obtained by typing fu t i l i ty_name" (for example, :CRC).

Several other u tilities for transferr ing and m anipulating files are commonly
available for TOPS-20 and VAX/VMS systems. Your local system support people
should be able to tell you about the available programs.

Kermit:
Another excellent program for transferr ing files is called KERMIT. This

program has the advantage of being available for an impressively large number of
m ainfram es and micros. It is, for example, available for the IBM-PC, and it DOES
NOT require CP/M.

MICROCOMPUTER PROGRAMS FOR TRANSFERRING FILES BETWEEN ’
MAINFRAMES AND MICROS

Christensen Protocol:
An excellent program for transferr ing files between micros, or between micros

and m ainfram es is called MODM7xx, where the "xx" is replaced with two digits to give
the curren t version number. This program, often referred to as MODEM7 (the name of
its easier to pronounce ancestor), uses the popular Christensen protocol to transfer
files w ith autom atic error detection and retransmission of erroneous blocks.

339

340 A pp en d ix D O b ta in in g Free Softw are

And then, there is MEX. MEX stands for "modern executive", and it is just what
the name implies, a communications and f i le-transfer program w ith a built-in mini
operating system tha t runs under CP/M. This program can do file transfers using
either the Christensen or CompuServe protocol, and it has an enormous potential for
highly autom ated operations because it can read and execute command-scripts pre
stored in disk files. These scripts can include sending commands to a remote computer,
as if they had been sent manually from the microcomputer in terminal-mode. Users of
this relatively new program are still exploring its possibilities.

Kermit:
As stated earlier, KERM IT is also an excellent program for transferr ing files

between computers. It, too, does automatic error detection and retransmission, and it
works between m ainfram es and micros, between micros, and between mainframes. See
the earlier "Kermit" paragraph for details.

Getting Started:

In order to get MODM7xx, MEX or KERM IT running on your micro, you must
f irs t transfer the necessary files from m ainfram e to micro. If you already have a
receive-to-disk communications program of some sort, you can use it to move the
needed files. It is VERY CONVENIENT to be able to transfe r 8-bit binary files,
although in most cases it is not absolutely necessary. Some of the files are quite large.
For example, MODM7xx.COM is over 18K bytes, and the HEX file (which you will
need if you can’t transfer 8-bit files) is over 45K. Moving large files to your micro
w ithout using an error detecting protocol can result in fru s tra ting errors, but it can be
done by receiving multiple copies and using m anual or machine-assisted comparisons
to locate and repair bad parts of the code.

MAGAZINE ARTICLES

The following magazine articles are highly recommended for those who have
never used an R C P/M system before to download or upload files.

Tony Bove, Cheryl Rhodes, and Kelly Smith. ’Calling Bulletin Boards for Free
Softw are’, User’s Guide magazine, Issues 11/12, Vol 2.5/2.6, December 1984.

Tony Bove, Cheryl Rhodes, and Kelly Smith. ’Using Modem7 (MDM720)’, User’s
Guide magazine, Issues 11/12, Vol 2.5/2.6, December 1984.

Benjamin Cohen. ’Free Software, The Newest Modem 7 (MDM740)’, User’s Guide
magazine, Issues 11/12, Vol 2.5/2.6, December 1984.

Kim Levitt. ’Phone List of R CP/M Bulletin Board Systems, Revision 50’, User’s
Guide magazine, Issues 11/12, Vol 2.5/2.6, December 1984.

’Free Software: G etting I t ’, User’s Guide magazine, Issues 11/12, Vol 2.5/2.6,
December 1984.

A pp en d ix D O b ta in in g F ree Softw are 341

Downloading the Easy Way

by D avid L. Mix

In your m anual look for the way to establish a connection between your computer and
the RCP/M , and the section on "XMODEM" or "MODEM" Protocol. This protocol gives
you autom atic high-level error-checking to assure tha t you get files that are not
a ffec ted by telephone line noise. Almost all boards work with 300 baud, and many
now work with 1200 baud. I f you a ren ’t sure, try 300 baud, or just use the default.
Usually the other defaults work with Bulletin Boards, so fo r now skip the other
technical matters. Expect to supply your Name, Address, and a password you can
remember. From page 338 of this book, get the phone numbers of some local boards. In
my tra in ing sessions with beginners, we have a saying, "Read the Fine Screen" or,
"RFS". I f you get stuck, the inform ation is usually on the screen. This is important,
since d if fe re n t boards o ffe r a rich varie ty of ways to do the same thing. Once you get
started, it adds to your learning. Most boards have some kind of HELP. You can see
many of the commands you will need by using DIR on the A drive. Files for you to
transfe r are on the B or higher drives.

Most boards need you to h it the R ET U R N key twice either before or a f te r they
iden tify themselves. I f you are asked "How many nulls do you need?", answer with the
number zero. A Welcome Message will tell you things you need to know to get to CP/M.
A fter you get to CP/M on the board, build your confidence by changing to the B drive
with ’B:’. Look over tha t User Area with DIR, or DIR $AD *.* for everything on all
drives. Files tha t end in .OBJ have been renamed from .COM. You will not be able to
use all commands like the command to erase, ERA, for obvious security reasons. You
will be able to TYPE a screenfull or two of files ending in .DOC or Documentation
Files for in form ation about using related programs. To actually get a program, pick a
short file, and issue this command to the Board: XMODEM S FILENAME. When the
board is ready it will reply w ith a message giving you the file size and transfer time.
If you are using MODEM7 software, use CTRL E, then R FILENAME, automatically
changing to Xmodem Protocol on your end. With some software, you will have to
switch to Xmodem Protocol on your end. You get o ff the board by typing BYE or G.

Congratulations, you just transferred you firs t file!

A p p en d ix D O b ta in in g F ree Softw are 343

Z-SYSTEM OPERATING SYSTEM MODULES
AVAILABLE FROM NEW YORK ZOETROPE

Developed by Echelon Inc.
ITEM

1 ZCPR3 Core Starter Kit. Contains source to permit manual
insta lla tion of ZCPR3 console command processor and its buffers using
MOVCPM, DDT, MAC and SYSGEN. Loose-leaf 173-page Installation
G uide included, w ith 20 u tility programs in b inary form

2 ZCPR3 U tilities Package consists of 70 programs in both binary
and source code form. Combined with Item #1 forms complete
processing sub-system. Online (over 400K-byte) help system included

3 Z3-Dot-Com is the auto-install version of ZCPR3. Package contains
all b inary u tility programs released to date, complete system. Secure
versions available. Installs in four minutes or less; fu ll online help
files, 52-page loose-leaf tutorial

4 Z3-Dot-Com on one disk for those who already have Item #2
and wish to add auto-install to their collection

5 Z-Com Same as Item #3 but with Item #9 added

6 Z-Com Same as Item #4 but w ith Item #9 added

7 Z-Com2 Same as Item #3 but w ith Item #10 added

8 Z-Com2 Same as Item #4 but w ith Item #10 added

9 ZRDOS Improved BDOS in binary, with six support utilities:
copy file, backup and archiving, set and display file attributes; file
compare, dump, and bi-directional viewing. U pw ard compatible with
CP/M-80. 66K-bytes of online help for both functions and utilities,
plus 35-page loose-leaf m anual for programming system functions

10 ZRDOS2 Same as Item #9 but with single level re-entrance, function 10
fu ll command line editing and b u ffe r recall, get DMA address, and
512-megabyte maximum file and disk sizes, 45-page loose-leaf manual

PRICE

$39.00

$89.00

$149.00

$49.95
$199.00

$99.00
$219.95
$119.95

$49.50

$74.99

A p p en d ix D O b ta in in g F ree Softw are 345

1. Name Date

S t r e e t___________________________ T elephone___________

C i t y ___________________________ S ta te ______________ Zip

2. Z80 CP/M based computer (yes/no) Computer type /b rand

3. Disk format: 8 inch SSSD IBM 3740 standard (yes/no)
or

5 1/4 inch, 40 tracks, soft-sectored, single-sided double-density: (yes/no)

Computer format:
(check one)

_ Kaypro _ Osborne 1 1 Epson QX-10
J Ampro [J Morrow [J Apple CP/M L

H ea th /Z en ith 89/90/100
N orthstar CP/M (hard)

Any Special instructions?

4. Ordering:
Item N umber & Name Q uantity U n it Price Extension

Subtotal $

NY State residents please add 8 1/4% sales tax

Total enclosed
Send orders to:
NEW Y O RK ZOETROPE
Suite 516/80 East 11th Street
New York, NY 10003

Please allow 6 weeks for delivery. Thank you.
Credit card purchases: call (212) 420-0590

Section 1

Index

A
A First Look at ZCPR3 3
Accessing Video A ttributes 128
ALIAS (Version 1.1) 21
Assembling D istribu tion Files 306

B
BACKUP 300
BASE 299
Basic ZCPR3 Concepts 7

c
CBIOS

Assembling 287
CBIOS.HEX

Creating 287
CD (Version 3.0) 23
CLEANDIR (Version 1.0) 24
Closing Notes 144
CMD (Version 1.0) 25
CM DRUN 26
Command Line B uffer 243
Command Processor 183
Command Processor Replacement 183
Command Search Path 9
Command Search Processing 10
Command Sources 10
Command Status 220
Command Structure 139
COMMENT (Version 2.0) 26
Components of an O perational

ZCPR3 System 238
CP 183
CP (SYSRCP) 27
CP/M

Patching System Image 288
CP/M As an O perating System 3
CP/M Redirectable In p u t/O u tp u t 212
CPR 183
CPSEL (Version 1.0) 28

CRC (Version 2.0) 29

D
DEV (Version 1.0) 30
DEVICE (Version 1.0) 31
DIFF (Version 2.0) 31
DIR (CP-Resident) 34
DIR (RCP-Resident) 34

provided in SYS.RCP) 34
DIR (Version 1.0) 33
DIR Form 7,8
Directories 7
Directory

BACKUP 300
BASE 299
DIR Form 7,8
DU Form 7
HELP 300
Logical 7
Physical 7
ROOT 299

Documentation B-l
DPROG (Version 1.0) 35
DU Form 7
D U /D IR Forms 42
DU3 (Version 1.0) 43
DU3 Disk U til ity 161

E
ECHO (CP-Resident

or RCP-Resident) 45
ECHO (Version 1.0) 44
ELSE (from SYSFCP Version 1.0) 45
Entry Points 184
Environment

Descriptor 17,211,245,300
Environm ent In itia lization 183
ERA (CP-Resident) 46
ERA (RCP-Resident) 46
ERASE (Version 5.0) 47

347

348 In d ex Sec. 1

Error Address 221
Error H andler Execution 227
Error H andler Messages 219
Error H andler Self-Installation 227
Error Handling 193
ERROR1 (Version 1.0) 48
ERROR2 (Version 1.0) 48
ERROR3 (Version 1.0) 49
ERRO R4 (Version 1.0) 49
E R R O R X (Version 1.0) 49
External File Control Block 244
External Path 245
External Stack 243

F
Features of ZCPR3 243
FI (fromSYSFCP 1.0) 50
FIND F (Version 2.0) 50
Flow and Resident Command Packages211
Flow Command Package 245
Flow Command Packages 296
Flow Command State 220

G
GET (CP-Resident) 51
Glossary of Terms A-l
GO (CP-Resident or RCP-Resident) 52
GOTO (Version 1.0) 52

H
HELP 300
HELP (Version 5.0) 54
HELP Error Messages 126
HELP File Search H ierarchy 121
HELP Status

and Command Prompts 124
HELP-indexed File Skeletons 127
HELPCK (Version 1.0) 55
HELPPR (Version 1.0) 56
How to Use the HELP Command 121
How to Write HELP Files 126

I
IF (Version 1.1) 56
IF (FCP-Resident) 58

IF Messages 219
IFSTAT (Version 1.0) 59
Initia lization

ZCPR3 Environm ent 183
Inpu t/O u tp u t Package 245
Inpu t/O u tpu t Packages 212,298
Inside the ZCPR3 Command

Processor 183
Inside the ZCPR3 Error Handlers 227
Inside the ZCPR3 Message Buffers 219
Inside the ZCPR3 Shells 225
Inside the ZCPR3 System Segments 211
Inside the ZCPR3 Tools 229
Inside ZEX 223
Installation Steps 237
Installation Steps 3 - 6 253
Installing VFILER 153
Internal Structure of

a Z3T File 309
Introduction 233
Invoking Any Command 192

J
JUMP (CP-Resident) 59

L
LDR (Version 1.0) 60
LIST (CP-Resident) 61
LIST (RCP-Resident) 61
Loading Redirectable I /O Drivers 216

M
Magazine Articles on ZCPR3 C-6
MCOPY (Version 1.4) 62
Memory-Based Named Directory 244
MENU (Version 3.2) 64
Menu Subsystem 133

*.MNU and *.VMN Commands 139
MENUCK (Version 1.0) 147
Message Buffers 244
M KDIR (Version 3.0) 65
Moving Around w ithin the

HELP Command 122
Moving From the Menu 122
Moving Within An Inform ation

Section 123

In d ex Sec. 1 349

MU (RCP-Resident) 65 Prin ting HELP Files 125
MU3 (Version 1.0) 66 Program Error Code 221
M ultiple-Command Lines 15 Programming *.MNU
MYTERM.Z3T and *.VMN Files 137

Creating 286 PROT (RCP-Resident) 74
PROTECT (Version 2.0) 75

N PWD (Version 1.0) 76
Named Directory 299

Memory-Based 244 Q
Named D irectory Data Files 214 QUIET (Version 1.0) 77
Named Directory Files 299
NOTE 69 R

RECORD (Version 3.0) 770 Redirectable I/O 18
O btaining Free Software D-l References c-1
On-Line HELP Subsystem 121 Registers 222
Operating System Relationship of MENU and

O btaining Image from VMENU to the ZCPR3 System 145
System Tracks 288 REG (RCP-Resident) 79
Placing Image on System Tracks 290 REG (Version 1.0) 79

Operating System Memory Images 233 REN (CP-Resident) 80
Operation of the ZCPR3 CP 183 REN (RCP-Resident) 80
Other Basic Concepts 235 RENAME (Version 3.0) 80
Other Buffers 245 R equired H ardw are 236
O ther U seful Files 241 Reserved Messages 222
Overview 133 Resident Command Package 245
Overview of the HELP Command 121 Resident Command Packages 291
Overview of the VFILER File Root 9, 299

M aintenance Tool 153
Overview of VLIB 318 s
Overview of ZCPR3 Installation 233 SAK (Version 2.0) 81

Sample HELP FILES with Trees 129P Sample Session 280,305
P (RCP-Resident) 69 SAVE (CP-Resident) 82
Package Scripts 15

Flow Command 245, 296 Selecting the Features 243
In p u t/O u tp u t 245,298 SETFILE (Version 1.0) 83
Resident Command 245, 291 SH (Version 1.0) 84

PAGE (Version 2.0) 70 SH-Based Commands 149
Path 9 SHCTRL (Version 1.0) 84

External 245 SHDEFINE (Version 1.0) 85
PATH (Version 3.0) 71 Shell 225
Path Analysis 193 Shell Control Byte 222
POKE (RCP-Resident) 72 Shell Execution 226
Preprocessor Operation 133 Shell Scratch 222
PRINT (Version 2.0) 73 Shell Self-Installation 225

350 In d ex Sec. 1

Shell Stack 244
Shell Subsystem 149
Shells 15
SHFILE (Version 1.0) 85
SHOW (Version 1.0) 86
SHSET (Version 1.0) 86
SHVAR (Version 1.0) 88
Software Required for Installation 241
Standard Overhead 243
Standard ZCPR3 TCAP File 318
Step 1: Selecting the Features 243
Step 2: P lanning the ZCPR3

Memory Structure 247
Step 3: M odifying the BIOS

Cold Boot Routine 253
Step 4: Editing Z3HDR.LIB 269
Step 5: Overlaying the old BIOS

and the CCP 280
Step 6: Im planting the Operating

System Image 280
Step 7: System Segment Installation 291
Step 8: U til ity Installation 305
SUB (Version 3.0) 88
SUBMIT File Processing 185
Summary of MENU and VMENU

Commands 136
Summary of User Commands 125
SYS.ENV

Creating 281
SYS.FCP

Creating 285
SYS.IOP

Creating 283
SYS.NDR

Creating- 282
SYS.RCP

Creating 284
SYSENV

Assembling 281
SYSFCP

Assembling 285
SYSGEN Memory Images 236
SYSIOP

Assembling 283
SYSNDR

Assembling 282
SYSRCP

Assembling 284
System Segments 234,237,238

T
TCAP 300
TCAP Check Program 318
TCAP Data Files 217
TCAP Entry D efin ition Program 319
TCAP Entry Selection Program 324
TCAP Facility 309
TCAP Files 300
TCCHECK (Version 1.0) 91
TCMAKE (Version 1.0) 91
TCSELECT 97

R unning 286
Term inal Control Sequences 1

(General) 316
Term inal Control Sequences 2

(Cursor Motion) 316
The Z3INS U tility 305
Toolset 20
TOOLSET of ZCPR3 21
Tree Structures of HELP 129
Tree Structures 127
Trees 9
TYPE (CP-Resident) 101
TYPE (RCP-Resident) 101

u
UNERASE (Version 1.0) 101
User Functions 155
U ser-Defined Messages 222
User-Indexed File Skeleton 128
Using MENU and VMENU 134
Using VMENU 135
Utilities 235,237

V
VFILER (Version 1.0) 103
VFILER and File M aintenance 153
VFILER Command Summary 154
VMENU (Version 1.0) 103
(V)MENU Error Messages 147
(V)MENU Programming

Command Summary 144
VMENU Variables 143

In d ex Sec. 1 351

VMENUCK (Version 1.0) 147

w
What the Redirectable I/O

System Buys You 212
WHEEL (Version 3.0) 104
Wheel Byte 246
Where ZCPR3 Fits in 6
WHL (RCP-Resident) 105

X
XD (Version 1.2) 105
X D IR (Version 2.0) 107
XIF (Version 1.0) 111

z
Z3BASE Body 248
Z3BASE Header 247
Z3INS (Version 1.0) 112
Z3LOC (Version 1.0) 113
ZCPR3 and SYSLIB2 Publications

and Documentation C-l
ZCPR3

Assembling 287
COM File Processing 192
Command Invocation 192
Command Line Input 186
Command Parsing 189
Command Scanner 190
Entry Points 184
Error H andling 193
FCP Resolution 190
FCPs 191
Flow Command 191
Initia lization 183
Path Analysis 193
RCPs 191
Shell Command 190
Shell Processing 188
SUBMIT File Processing 185, 188
ZEX Input 188

ZCPR3 and CP/M 3
ZCPR3 Command Processor

Wrapup 193
ZCPR3 Configuration Management C
ZCPR3 CP 183

ZCPR3 Electronic Bulletin Board C
ZCPR3 Newsletters C
ZCPR3 Prompt 8
ZCPR3 Redirectable I/O System 212
ZCPR3 Sources C
ZCPR3 Term inal Capabilities

(TCAP) 309
ZCPR3.HEX

Creating 287
ZEX (Version 3.0) 113
ZEX and ZCPR3 188
ZEX Command File Processor 17,223
ZEX Control 222
ZEX Control Messages 224
ZEX Message 221,224
ZEX R unning Flag 221,224

	top
	FOREWORD
	TABLE OF CONTENTS
	Section 1 Using ZCPR3 and Command Definitions
	1 ZCPR3 and CP/M
	2 Basic ZCPR3 Concepts
	3 TOOLSET of ZCPR3
	ALIAS
	CD
	CLEANDIR
	CMD
	CMDRUN
	COMMENT
	CP (SYSRCP)
	CPSEL
	CRC
	DEV
	DEVICE
	DIR
	DIR (RCP-Resident, provided in SYS.RCP)
	DPROG
	DU/DIR Forms
	DU3
	ECHO
	ECHO (CP-Resident or RCP-Resident)
	ELSE (from SYSFCP version 1.0)
	ERA (CP-Resident)
	ERASE (version 5.0)
	ERROR1, ERROR2
	ERROR3, ERROR4
	ERRORX
	FI
	FINDF
	GET
	GO
	GOTO
	HELP
	HELPCK
	HELPPR
	IF (version 1.1)
	IF (FCP-Resident)
	IFSTAT
	JUMP (CP-Resident)
	LDR
	LIST
	MCOPY
	MENU
	MKDIR
	MU
	MU3
	NOTE
	P (RCP-Resident)
	PAGE
	PATH
	POKE
	PRINT
	PROT (RCP-Resident)
	PROTECT
	PWD
	QUIET
	RECORD
	REG
	REN
	REN AM E
	SAK
	SAVE
	SETFILE
	SH
	SHCTRL
	SHDEFINE
	SHFILE
	SHOW
	SHSET
	SHVAR
	SUB
	TCCHECK
	TCMAKE
	TCSELECT
	TYPE
	VFILER
	VMENU
	WHEEL
	WHL (RCP-Resident)
	XD
	XDIR
	XIF
	Z3INS
	Z3LOC
	ZEX

	4 On-Line HELP Subsystem
	5 Menu Subsystem
	6 Shell Subsystem
	7 VFILER and File Maintenance
	8 DU3 Disk Utility

	Section 2 Inside ZCPR3
	9 Inside the ZCPR3 Command Processor
	10 Inside the ZCPR3 System Segments
	11 Inside the ZCPR3 Message Buffers
	12 Inside ZEX
	13 Inside the ZCPR3 Shells
	14 Inside the ZCPR3 Error Handlers
	15 Inside the ZCPR3 Tools

	Section 3 Installation
	16 Overview of ZCPR3 Installation
	17 Step 1: Selecting the Features
	18 Step 2: Planning the ZCPR3
	19 Installation Steps 3 - 6
	20 Step 7: System Segment Installation
	21 Step 8: Utility Installation
	22 TCAP Facility

	Appendices
	A Glossary of Terms
	B Documentation (page 333/334 are missing)
	C References
	D Obtaining Free Software

	Index

