
T C F J G E N I E " I B

Preliminary User Guide

Advance Technology.
8A Hornsey Street.
London N7 8HR.
U.K.

(No pictures are available in preliminary doc)

Copyright

Copyright (C) 1984 by Advance Technology (UK) Ltd. All rights
reserved. No part of this documentation may be reproduced,
transmitted, stored in a retrieval system, or translated into any
language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise without the prior written permission of Advance
Technology (UK) Ltd., 8A Hornsey Street, London, N7 8HR, U.K.

Notice

Information in this manual is subject to change without notice and
does not represent a commitment on the part of Advance Technology
(UK) Ltd.

Limited warranty

Advance Technology (UK) Ltd shall have no liability or
responsiblity to purchaser or any other person or entity with
respect to any liability, loss or damage caused directly or
indirectly by this product, including but not limited to any
interruption of service, loss of business or anticipatory profits
or consequential damages resulting from the use of this product.

The above is a limited warranty and the only warranty made by
Advance Technology (UK) Ltd. Any and all warranties for
merchantability and/or fitness for a particular purpose are
expressly excluded.

To report errors in this documentation or suggestions for
improvement, please complete and return the reader comment form
at the back of this manual. Thank you for your help.

Advance 86, is a trademark of Advance Technology (UK) Ltd.

MSDOS, XENIX, GW-BASIC are trademarks of Microsoft Corporation.

Perfect Writer, Perfect Speller,
Perfect Calc, Perfect Filer are trademarks of Perfect Software Inc.

Supercalc, Supercalc 3,
Superwriter, Super Spellguard are trademarks of Sorcim Corporation.

IBM, IBM PC
are trademarks of International Business Machines Corporation.

Document no. UG86-0RAFT.

Introduction

Thank you for purchasing the Advance. We hope you will derive
much pleasure in learning about and using your powerful new
computer.

This is the Guide to Operations, which is intended to enable you
to get the machine up and running, and to be happy with its basic
workings. Hence it takes nothing for granted, and assumes that
you are an absolute beginner. Those with some familiarity with
microcomputers will need only the brief reference sections. There
is enough in this guide to allow the beginner to read and use the
wide literature on learning to program, on Basic and other
languages, and to employ software packages. Full information on
programming the Advance 86 is available in two companion manuals
"Advance 86 Programmers Reference Manual" and "Advance Basic".

Page

2.1 The System Unit 2-1

2.2 The Keyboard 2-2

2.3 Connections and Cables 2-3

2.4 Converting the 86a to the 86b 2-4

2.5 Connections on the 86b 2-4

2.6 Additional Requirements 2-4

2.1 The 86b unit and the Disk Drives 2-5

2.8 Diskettes 2-6

2.9 Inserting and removing Diskettes 2-7

the hardware

2.1 The System Unit

The Advance 86 consists of the basic system unit, which with the
keyboard is supplied as the 86a, and an expansion package which
clips into the top of the 85a, turning it into the 86b. .The
Advance system unit is the centre piece of your system. Inside
there is the 8086 16 bit microprocessor, RAM (random access
memory) and ROM (read only memory), and the necessary
electronics to allow the Advance to communicate with you. This
can be via a television or monitor display, a keyboard, or
loudspeaker. Other connectors allow cassette recorder, parallel
printer, joysticks, light pen, and extension cards to be plugged
in.

This manual introduces both versions of the 86. It follows that
there will be some sections more relevant to a particular
version, which can be skipped by someone working with the other.

These will be indicated clearly.

The 86a

The 86b

Place the machine on a table or desk, front first, as shown
above. For familiarisation, and so you can easily connect the
necessary cables, have it at the front of the desk, so that you
have easy access to the back as well.

2.2 The Keyboard

Press down gently on the front of the smoked perspex cover, and
open it. Inside is the keyboard, with its connecting cable. Take
it out, and put it on the desk to one side of the machine. Close
the cover. The keyboard is how you communicate with your Advance.
It is like a typewriter, but with additional functions. Like some
typewriter keys, its keys have more than one function - they do
more than one thing when used together with another key.

The keyboard is connected to the system unit by a coiled cable
and a 5-pin Din plug. It connects, as shown above, to the socket
at the right-hand-side bottom of the system unit, just below the
red on-off switch. (If you are not used to DIN plugs, they are
located by aligning the large raised ridge in the plug with the
large hole at the bottom of the socket, and then easing the oins
in.)

Place the connected keyboard alongside the computer. At the back
of the keyboard are two short legs, which are released by a
button on each side, allowing the keyboard to be tilted when
standing on a desk. When you get going, you can use the keyboard
on your knee, on a separate table, or wherever you prefer.

If you are replacing the keyboard in the space in the systems
unit, disconnect the cable, and make sure the legs are put back
into the storage position, that is, flat. Put the keyboard in
front first, with the back and the cable going in last.

2.3 Connections and Cables

The rear of the system unit looks like this.

From left to right:

Mains Out provides power for a peripheral device, eo for a
television or monitor. It uses an integral 3-pin plug.

Mains hi supplies power for the system from the mains. The power
cable is supplied, and should be correctly connected to a mains
plug, with a 3-amp fuse. (Brown to live, blue to neutral, green
and yellow to earth.)

T.V. provides a signal to an ordinary domestic television, colour
or black and white. This should be carried by a cable with a
phono plug at the computer end, and a coaxial (aerial) socket at
the other for your T.V. The Advance will work with any TV and
cannot damage it during normal use.

Comp.Sync, provides on outlet for a signal to a Composite
Monitor, colour or black and white.

RGB provides an outlet for a signal to an RGB (red-green-bl ue)
moni tor.

Printer is a Centronics standard output for a parallel printer.
It takes a DB25 plug.

Joystick allows the connection of two joysticks. It requires a
[)615 connector.

Cassette is a 5-pin DIN socket which allows the connection of an
ordinary cassette recorder for the storage of programs and other
information on tape.

In the case of all these connections, you will require
appropriate leads and plugs. Your Advance supplier or other
computer or electronic shop, will be able to help you.

2.4 Convertinq the 86a to the 86b

This is a straightforward task, and the instructions are included
with the 86b system expansion unit.

2.5 Connections on ti^ 8 ^

86b users have a set of slots and connectors on the back of their
machine, lookinq like this:

The DB25 socket provides an RS232 port which can be used to
interface to a serial printer or a Modem. The expansion slots can
be used in a multitude of ways, e.g. for further memory ,
additional serial or parallel ports or a real-time clock. Some of
tne potential uses are listed in the Options and Possibilities
section below.

2.6 Additional Requirements

In addition to the package, you will need a domestic television
or monitor (composite or RGB) and an appropriate cable to connect
it to the Advance. The display (TV or monitor) is where the
computer usually indicates to you what is going on. It registers
what you have typed in ,allows you to change it, takes it away
and works on it (in ways it has been told to, earlier, by you or
other people) and brings it back to the screen for your
inspection.

86a owners will also need a cassette recorder (an ordinary
domestic one is fine, as is one of the similar machines marketed
specifically for computer use). 86b owners can, of course, also
use a cassette recorder for storage, or as a source of programs,
in addition to diskettes.

Any printer that uses a standard Centronics output can be
connected to the parallel printer port. Follow the manufacturer's
instructions for the printer, connecting it through a 0B25
connector. (See appendix.)

2.7 The 86b uni t and the Pi sc Dri ves.

(86a owners can skip this section.)

86b users should remove any packing material and cardboard
protectors from the disc units. These are two slots in the front
of the computer, each protected by a latch which rotates from
quarter-past to half past the hour. This latch only operates
when there is a disk in the machine, and is otherwise locked in
the open position. Don't try to force it closed if there is no
disk in the uni t.

The latch stops inadvertent removal of disks during use, and
raises and lowers the reading head of the disk read-write
machinery. This is the equivalent of the recording head on a tape
recorder. When the machine is switched off it does no harm to
operate the lever with a disk inserted in the machine. With power
on, the red warning light (just above the disk slot, on the
right) indicates when the disk is in use. When the red light is
on, you should not operate the lever or attempt to remove or
insert a disk. If the machine is reading from or writing to the
disks, the red light will go on and off, switching from disk to
disk. Don't try and change disks while this is going on. It's
o.k. to operate the lever and change disks at any other time.
Unlike the stylus on a record player you don't have to park the
head yourself and you needn't worry about its position.

If you are going to leave disks unused in the machine overnight,
it is best to move the latch to the upright position, but
there's no need to panic if you forget.

2.8 DISKETTES

Witn your Advance 86b, you get a DOS System diskette, together
with a package of additional diskettes containing applications
software. Blank diskettes are available from your Advance
supplier and other computer or electronic shops. They are
standard 5-1/4" floppy diskettes (called "disks" or "floppies"
for short). For the Advance 86 you should buy 5 1/4", double­
sided double density, 40 track soft sectored disks.

A diskette is a flexible clastic disk coated with a magnetic
recording medium like tnat on a cassette recorder. This disK is
protected by a black plastic cover wnich is internally coated
with lubricant to keep tne disk soinning freelv. The surface of
the disk is exposed in three places, at the centre, to its right
hand-side, and in the long head slot, to allow recording and
playback ("writing" and "reading"). Like a tape, the diskette
can be used any number of times. Writing to it erases the
existing information and replaces it by the new.

The information stored on diskettes is very dense, and it is most
important to keep it in perfect condition. Don't touch the
recording surface. Keep your diskettes in the outer envelope in
which they are supplied, and store them vertically in boxes or
purpose-made storage units. Keep them away from heat sources.
Their medium is magnetic, so that it can be disrupted by other
magnetic sources in their neighbourhood.

Diskettes have a permanent label attached, normally with the name
something like "Dual head, double side, soft sector, double
density". In the pack of diskettes you will find further labels
of your own to attach. If you are going to write on either label,
when it is attached to the disk, do not use ball-pen or pencil or
anything requiring any degree of pressure. Use a felt-tip pen.

or, best, only write on a label before you attach it.

On the right-hand side of a diskette, there can be a small cut­
out square. On other diskettes, this is covered by a tab. When it
is so covered, the diskette is wri te-protected. The computer
will not record on it, and consequently what is recorded cannot
be destroyed by being recorded over. If you are sure you want to
write over the contents, you can remove the tab.

Packs of diskettes you purchase will have small foil stickers to
be placed over the notch, so that you can write-protect your own
disks.

As a matter of interest only, information on diskettes is written
on to the tracks on the diskette, which are arranged in
concentric circles. They are 4U in number, numbered from the
outside inwards. Each track is divided into sectors. The head
moves over the tracks, looking for specified sectors, or empty
ones to write to. The unit of measurement is usually the "byte",
which is the space to hold a single character. On the Advance,
each sector holds S12 of these; the normal double-sided diskette
holds 348,640. The disk drives cannot immediately put information
on to wholly blank disks. They have to be organised into the
sector arrangement for the machine, a process called
"formatting", which you will learn how to do in the DOS
section,Ch.5.

2.9 Inserting and removing Diskettes.

Using a blank diskette, practice inserting and removing disks
from the disk units. They are inserted into the slot with the
label upwards, and towards you. (See diagram above.) The end with
the head slot (the oval cutout) goes in first. If you have your
right thumb over the manufacturer's label, that's right. Gently
push the disk in, until you feel resistance. The whole disk will
be inside the slot and the lever will close witn ease. Removing
the disk is similarly straightforward.

]■

u

CHAPTER THREE POWERING UP

- Page

3.1 Powering up and system tests 3-1

3.2 Using a cassette recorder with the Advance 86 3-2

3.3 Files 3-4

3.4 Tapes 3-4

3.5 Saving to Cassette 3-4

r
i'

> I

3.1 Powering up and System tests,

Check that:

1. The mains lead from the Advance to the mains power supply is
correctly wired and runs to the MAINS IN socket.

2. A television, or video monitor is connected to the correct
socket on the Advance.

3. (86b owners) There is no diskette in either disk drive.

4. 86a owners (and 86b owners who wish to use cassette storage).
The cassette recorder is connected to the mains, and to the
cassette socket on the Advance.

Switch on by pressing the red switch on the right hand side of
the system unit. Switch on your TV or monitor.

The Advance will perform a self-test which takes a few seconds
(On the 86b the disc drives will whirr, and the red light on the
front of the drive will come on). After a pause, there will
should be a single beep from the loudspeaker, indicating
everything is OK and the computer has passed its power-up tests.
If nothing appears on your TV or monitor screen, turn up the
brightness and contrast controls until you get the initial
message. If you start with them turned right up, you can adjust
downward later.

If your screen displays an error message on tne top line, or you
hear a sequence of multiple beeps from the loudspeaker there is a
hardware fault. Contact your Advance supplier for help. (There is
further information on such messaoes in Appendix E)

After the power up your screen should display a message like
this:

ADVANCE TECHNOLOGY BASIC VER. 1.0
(C) Copyright Microsoft 1982

xxxxx Bytes free
Ok

1982

ILIST 2RUN< 3L0AD" 4SAVE" 5C0NT<

The machine is now using the BASIC interpreter built into the
memory (ROM). You can continue with this BASIC if you wish, and
it is the one normally used with the 85a and cassette storage.

The is a representation of a single flashing line on the
screen, the CURSOR. This indicates where the next character you
type will appear - and it is under your control. It moves as your
text moves, as you enter and change information, or you can make
it move yourself. Try a "space". On the numeric keypad to the
right of the keyboard, there are four keys with arrows pointing
in different directions. Try these. If you hold them down, the
cursor moves further in the indicated direction.

86b owners will probably now prefer to familiarise themselves
with the Disc Operating System. Chapter 5 shows you how to load
and begin using the Advance Disk Operating system.

3.2 Using a cassette recorder with the the Advance 86.

Cassette Recorders differ in the facilities they offer. The
Advance provides a motor control signal via the 5-pin DIN
cassette plug. Motor control is when the computer starts and
stops the motor on the cassette recorder, and uses the facility
provided on most recorders for control via the switch on an
external microphone. If your recorder has this facility, you will
need, for example, a lead with a 5-pin DIN socket, and a 3-pin +
jack plug at the other. (Pin connections shown in Appendix F.)
Motor control is not necessary to load and save programs with
your Advance. You simply start and stop the cassette recorder at
the appropriate time yourself.

In what follows, I will say "start", "stop"
recorder as if you have no motor control
and "stop" will happen automatically.

and "rewind" the
If you have, "start"

Your screen should be as above, with the BASIC prompt. Ok ,which
tells you BASIC is ready to go (see Ch.5 if you are puzzled)
and the cursor. Cassette control is done with the Basic language,
so you now have to learn some simple BASIC commands.

The command LOAD, when you type it into the computer, and press
ENTER, either of the keys labelled " " loads a program from
cassette into computer memory. (The ENTER key is like the
carriage return on a typewriter, with the extra function of
passing what is on the screen to the computer itself. It is thus
essential that after each instruction to the computer you ENTER
it. We needn't keep repeating this. To make it go, press ENTER.)

Place the WELCOME cassette in your recorder. Make sure it is
rewound to the beginning of Side 1. Adjust the volume control to
about three quarters maximum .Type LOAD "WELCOME,R (The key on
the left, F3, types LOAD" automatically, and all you do is type
WELCOME,R if you prefer to do it this way.) Press the ENTER key.
Press "play" on the recorder, and let the tape run. After a short
while (not more than 45 secs.) there should be some sound, and

the screen should display the message

Cassette control o.k.

Volume control correctly set.

If you are not working with motor control, stop the tape
recorder. As you will have worked out, the information to display
this message and make the noise was stored on the tape. In fact,
it was repeated six times, to help you find it.

If the tape played on for more than a minute, with nothing
happening, press the keys marked CTRL and Break (the last is in
the top right hand corner) and stop the recorder. CTRL and
Break stops the program in the middle (it tells you where, but
you don't need this information at the moment), and gets you
back to BASIC Ok and cursor. Rewind the tape, increase the volume
control, and try again. Once you find a working setting on the
recorder, leave it there.

Rewind the tape, and load the program again, without the ,R at
the end. This bit of the instruction tells the computer to run
the program when it is loaded. If you leave it off, the program
will load but not run. Instead, you will get the message

WELCOME .B Found.

Don't do anything for a moment, because the machine tells you
this when it has found the program, but not loaded it. When it is
loaded, it will come back with Ok and the cursor. Then, if you
type Run the same simple message will appear.

As remarked, the first WELCOME program is recorded six times on
the tape. There are other programs on the tape, each recorded
twice. These are simply demonstration programs, and the list is
shown with the second WELCOME program.

To load one of these, simply repeat the steps above, changing the
filename. Remember to include the inverted commas. Go back to the
beginning of the tape, and let it run. When it comes to the
WELCOME program, the machine will flash the name at you, and tell
you that it is skipping that one, since it wasn't requested. The
message will be like "WELCOME.B skipped."It will load when it
gets to the reguested filename.

If you want to know what is on a tape, type a filename that you
know (or suspect) is not used, and the machine will search for

it, flashing up in succession all the ones that are used.

3.3 FILES

The term "file" is used very much as in an office. The contents
of files we have been using up to now have been programs,
although they can contain other things. Just as a file has a
label, we have been using FILE NAMES to get the contents of the
FILE off the tape. The usage is a natural one. When you come to
make your own files, for filenames:

do not use more than eight characters, which can be letters
and/or numbers;

do not include colons in the name;

leave no spaces within them;

to avoid confusion, do not use any BASIC keywords, i.e. those in
the Basic Quick Reference Section, Ch.6., or DOS keywords, listed
in Ch.5. The computer will probably not become confused, but you
might!

Filenames can be extended by a full stop and three
characters. Thus "Chap.6" is valid, as is "REFER.UKl". Make them
useful reminders.

3.4 TAPES

Information stored on cassette tape is subject to the same
general conditions as music or speech in audio usage. That is, it
can be deleted by recording over, and the tape is available for
indefinite re-use. If you try playing a cassette with computer
information, you get a series of high-pitched tones. This can be
useful when reading from or writing to a tape, since you can hear
that the information is where it is.

The same conditions for care apply as for sound tapes. Keep the
cassette heads and tape paths clean. Tauten slack tapes when
using, and store them in boxes.

You will find it most convenient to use short high-quality tapes
specified for computer usage (although others work o.k.). Make a
note of where programs are on the tapes by using the tape
counters, to permit rapid relocation. Label your tapes with the
filenames.

3.5 SAVING TO CASSETTE

Obviously, you will now want to know how to save your own files,
that is, to store information (write) to the tape. This
information will be as important as LOADing when you start
writing your own programs. For the present, and as a
demonstration, let's SAVE "HILO", which we will come back to, in
the section on BASIC. Type in, exactly, the program on p.5-2 .

After each line of text, press ENTER
computer to store that line.

), which tells the

When you have it typed in,type RUN. Play a game or two, until
you are familiar with it. Side Two of your WELCOME cassette is
empty, and you can save HILO on there. Type

SAVE "HILO"

and press ENTER. Start the motor on your recorder. Stop when you
get the O.K. and the cursor. Wind the tape a little, and do it a
second time. To convince yourself, switch the computer off. You
have erased HILO from the computer's RAM. Power up again, and
load HILO from tape. You can now load and save your own files. To
find something useful to put in them, go to the section on Basic.

r

M

Page

4.1 Introducing the Keyboard 4-1

4.2 Function Keys 4-5

4.3 <Num-Lock> 4-6

4.4 Using Multiple Keys 4-9

4.5 DOS and the Keyboard 4-10

4.6 Typing In 4-12

) I
) !

4.1 Introducing The Keyboard

You communicate with your Advance through the keyboard. At first
glance the keyboard may appear very complicated - after all there
are 84 keys on it (if we include the space bar).

However, if we look at the keyboard in detail and describe the
keys and their use you should soon be able to find your way
around it. You will have already noticed that the keyboard is
divided into three sections and we shall look at the light grey
keys in the centre section first.

When we refer to specific keys in this chapter and in the rest of

within two angle brackets.
The table below explains the

for example <Ctrl>.
abbreviations used.

Table 4.1. Key abbreviations and references.

<Ctrl> 1 Control

- <Esc> i Escape

<Caps
Lock>

1

1

Capitals lock

<Alt> 1 Alternate

<Num
Lock>

1

1

Number lock

- 1 Delete

<Pg Up> 1 Page Up

<Pg Dn> 1 Page Down

<Ins> 1 Insert

<PrtSc> Print Screen

< t > 1

1

Up arrow. Key 8
on number pad.

< 4, > 1

1

1

Down arrow.
Key 2 on number
pad

< 4- > 1

1

1

Left arrow.
Key 4 on number
pad

< > 1

1

Right arrow. Key
6 on number pad.

The keys shaded above are similar to keys on a typewriter. On the
Advance keyboard these are all coloured light grey.

On the top row of keys there are the numerals and
characters obtained by using the shift key < ^ > .

additional

On the second row dov/n, the key on the extreme right is a
backward slash <\>. There is a forward slash key </> on the
bottom row and you will find that it is very important to use the
correct slash key when you are entering commands to the computer.

On the third row, the two extreme righthand keys <’> and <’>
provide single scare quotes. Unlike many typewriters, it is not
necessary to use the shift key to obtain these characters.

The wide,
space bar.

horizontal bar key at the bottom is, of course, the

If you have not used a microcomputer keyboard before, many of
these keys will be new to you. They are used to help you enter
information, to give commands to the system and to write and run
programs.

Taking the keys on the left first -

<Esc> (Escape)

This removes the line that the cursor is on so that you
may correct it. The line is still present in the
computer memory.

<Caps
Lock

This is a tab key and it works in the same way as a
typewriter tab key. With most programs the tabs are set
to move eight characters at a time.

If you press the key, all the letters will appear in
block capitals (uppercase). To return to lowercase
letters, press
toggle key).

the key again. (This is known as a

<Ctrl^ (Control),

This key is never used on its own, but with another
key. For example, <Ctrl> + <Home> used together will
clear the screen, leaving the cursor at the top right
hand corner.

>

This is a shift key. As on a typewriter keyboard, there
is a shift key at the left and at the right of the
keyboard.

<Alt> (Alternate)

This key is used with the alpha keys (letter keys) when
you are entering BASIC keywords. It is also used as an
alternative control key in some applications.

> (backspace)

This key 'backspaces' the cursor to the left and
removes one character each time you press the key.

There are two keys with this symbol. They are both
<ENTER> keys and they both work exactly the same way so
you may use whichever one is easiest for you. <ENTER>
must be pressed whenever you have finished typing in a
command.

4.2 Function Keys

These keys are called function keys. They perform different
functions depending on the software application program you are
using. For example, in BASIC the function keys allow single key
entry of common keywords. When you are using BASICA, you will see
at the bottom of the screen a line similar to the following-

ILIST 2RUN 3L0AD" 4SAVE" 5C0NT 6"LPT1 7TR0N 3TR0FF 9KEY

The number on each label corresponds to the number on the
function key. For example, 5C0NT means if you press <F5>, the
machine will type the keyword CONT for you. In Basic you can
assign the function keys yourself, using a KEY statement (see
chapter six).

When you are using other applications, for example. Perfect
Writer, the function keys will have other functions. If this
sound complicated, don't worry. You will find that most programs
that use the function keys help you by displaying a reminder of
how the function keys operate within that particular program.

4.3 <Num Lock>

The key at the top left is <NUM L0CK> which stands for 'number
lock'. This is another 'toggle' key. Pressing it once activates
the number pad, pressing it again cancels it.

When <NUM L0CK> has been pressed -

1. The numeric keys 1 to 9 are operative.

2. is the decimal point key.

3. <Ins> is the zero key.

4. <-> is the minus key.

5. <+> is the plus key.

When <NUM L0CK> is off

1. < 7 >
Home

2. <^ 8 >

3. < 9 >
PgUp

4. <^4 >

moves the cursor to the top of the screen,

moves the cursor up one line at a time.

When you are running some software packages such
as word processing, moves the cursor up one page
at a time.

moves the cursor one character to the left.

5. < _^ >

6 . < 1 >
End

7. < , 2 >

8. < 3 >
PgDn

9. < 0 >
Ins

10. <De1>

moves the cursor one character to the right,

moves the cursor to the end of the current line.

moves the cursor down one line.

moves the cursor down one page when running, for
example, a word processing package.

A toggle key. Pressing <Ins> allows you to insert
characters. Pressing again cancels insert mode.

Deletes the character where the cursor is placed.

These keys, like the function keys, can change their use
according to the particular application you are running so you
should make a point of checking this in the relevant manual.

There are two more keys -

<PrtSc> (Print Screen)

This key prints an * or if used with the shift key,
causes all data on the screen to be printed on the
printer.

<Scroll> This key in only used with <Ctrl> (see next page)
Lock

Break

4.4 Using Multiple Keys

Sometimes you will need to press down more than one key at once,
just like pressing the shift key on a typewriter to type capital
letters. The most usual combinations you will use are

1. <Ctrl> + <Scroll Lock/Break> or <Ctrl> + <Break>

This stops the program you are running.

2. <Ctrl> + <Num Lock>

This stops the program but you may press any key to continue.

3. <Ctrl> + < - ♦ » > and <Ctrl> + < h— >

Tabs the cursor to the next word on the line in the direction
of the arrow.

4. <Ctrl> + <Home>

Clears the screen. The cursor will move to the top left hand
corner of the screen.

5. <Ctrl> + <Alt> +

This causes v/hat is called a 'system reset'. Hold <Ctrl> and
<Alt> down together, then, keeping them down, press .

4.5 DOS and the Keyboard

These keys are used when you are using DOS. Their functions are
explained more fully in Chapter 5.

<F1> Redisplays, one character at a time, a previously entered

1 ine.

<F2> Entering F2 followed by a character causes the screen to

redisplay a line already entered upto that character.

<F3> The whole of a previously entered line is shown.

<F4> Entering F4 followed by a character causes the screen to

pass over all the characters of a line you have already

entered upto that character f.e. it is the opposite of F2

<F5> Saves the line currently displayed.

The <Ctrl> key also has special functions under DOS.

1. <Ctrl> + <Num Lock>

Stops the system operation. Pressing any key causes the
system operation to continue.

2. <Ctrl> + <Prtsc>

This 'echoes' and prints on the printer all screen
display. To cancel, press the same keys.

3. <Ctrl> + <Scroll Lock/Break>

Stops the program you are running.

4.5 Typinq In

Typing-in using the Advance keyboard is very easy but
makes the occasional 'typo' (typing error) To correct a
use the <♦— > (backspace) key. When you use this key you
that the character to the left of the cursor disappears
cursor moves one
word(s) correctly.

everyone
mistake

wi11 see
and the

space to the left. You can then retype the

When you have typed in
press the <ENTER> key <♦
'command' until you have

your instruction, you must
— *>. The computer will not
pressed this key.

remember to
receive your

Summary In this chapter we have

1. described the keyboard, use of control and function keys and
how the number pad functions.

explained how to correct typing errors and
instructions.

enter

CHAPTER FIVE ADVANCE DOS

Page

5.1 Introduction 5-1
5.2 Booting the DOS 5-2
5.3 Entering the date 5-3
5.4 Entering the time 5-4
5.5 Changing from Drive A to Drive B 5-5
5.6 Formatting a diskette 5-6
5.7 System and non-system diskettes 5-7

Formatting a system diskette 5-8
5.8 Copying diskettes 5-9

mrn^ 5.9 Introducing Files 5-11
Filenames 5*11
File specification 5-12
Names that cannot be used for filenames 5-12

5.10 Wi1dcards 5-14
5.11 Listing filenames 5-16
5.12 Introducing file directories 5-18
5.13 Paths to sub-directories and files 5-20
5.14 DOS commands and path specifications 5-22
5.15 Introducing DOS commands 5-27

I . - 5.16 Batch processing 5-30
The Autoexec.Bat file 5-32
Creating a .Bat file with replaceable
parameters 5-33

5.17 Input and Output 5-36
Redirecting Output 5-36
Filters 5-37
Piping commands 5-38

5.18 DOS commands 5-40
Command formats 5-40
Batch processing commands 5-88

5.19 DOS Editing and function keys 5-95
Control character functions 5-100

5.20 The Line Editor (EDLIN) 5-101
Special DOS Editing Keys 5-103
EOLIN command options 5-115
EDLIN Editing commands 5-117
EDLIN Error messages 5-141

5.21 File Comparison Utility (FC) 5-144
Using FC 5-145

— FC Options 5-148
How file differences are reported 5-147
How to redirect FC output 5-148
Examples of using FC 5-148
FC Error messages 5-152

■ -fe-*',. v-r -. ̂
"v.S*‘ '’-/■■?'

-'. ' '•>>■' ' ,'• ~ *-‘N -.>1;̂ '

f -■̂- ' ̂;-.'
■ ■ •- ̂;.i .: '■, ? ;'-i'

•«UT: "-5
•>C.'̂ .̂r-

• ■-’■**: "j .
 ̂ **.-'. ■\̂ "̂ ' 7,’l LJ

fc' f -;'i.fC'

CHAPTER FIVE

5.1 Introducing the Advance Pisk Operating System (DOS)

What is DOS? DOS is your 'silent partner' when you are using the
Advance 86. It is a sophisticated piece of software that provides
the interface between the computer hardware and both you (the
user) and other software.

Advance DOS is a custom implementation of the stahdard disk
operating system for 16-bit Microcomputers - Microsoft MS-DOS.
The Advance implementation of MS-DOS is designed to be compatible
with the IBM Personal Computer DOS, giving the Advance user
access to the wide range of applications software which has been
designed for the IBM and compatible machines.

Advance DOS allows you to load and execute applications programs,
format and copy floppy disks, create and edit files and control
whatever hardware devices you have attached to the Advance.

If some of the above terms are new to you, don't worry - as we go
along we will introduce and define their usage.

How do you use DOS?

One of the diskettes supplied with your Advance will be labelled
'DOS'. On this floppy disk is the collection of computer programs
that make up the Advance Disk Operating System.

To use DOS you will need to know how to load and start DOS and
the names and use of DOS commands. In the first part of this
chapter we shall introduce you to the most commonly used
commands. Part 5.18 of this chapter defines the operation of all
the commands and programs supplied with Advance DOS.

You need only master a small subset of the Advance DOS commands
before you can do productive work. DOS is a toolbox; individual
programs make up each tool. As with all toolboxes, some tools are
so specialised you use them only rarely. Others you will use
almost every time you switch on your computer. It is these that
we will introduce now.

A note on notation.

Pirst, let's make our notation clear. DOS will accept both
capital (A-Z) and lower case letters (a-z) but for ease, we have
printed what needs to be typed in in capital letters in bold
print. For example

(type) DISKCOPY

5.2 Booting the DOS

To use DOS you must first load it from the DOS diskette into the
computer memory. For historical reasons loading DOS is often
known as 'booting' DOS.

If your computer is not switched on

1. Put the DOS diskette into Disk Drive A and close the
drive latch. (Remember to insert the diskette carefully as we
described in chapter 2).

2. Switch on the monitor or television, the printer, if you have
one, and then the computer. There will be a few seconds pause,
then the short beep of the system check, then the
red Drive 'in use' light will come on. This indicates that the
computer is transferring the DOS information from the disk to
the computer memory. You will hear the Disk Drive clicking.

3. When DOS is loaded, the Disk Drive will stop clicking and the
red light will go out. On the screen you will see a message
similar to the following

Current date is Sun
Enter new date:

01-01-1984

If your computer is switched on

1. Insert the DOS diskette into Drive A and close the Drive
latch. (Remember to insert the diskette carefully, as we
described in chapter 2).

2. Press and hold down the <Ctrl> +<ALT> keys, and press .
This is called a system reset and you use these three keys
whenever you wish to restart DOS.

The red light will come on, on Disk Drive A, indicating that the
information from the DOS diskette is being transferred into the
computer memory. You will also hear the Disk Drive clicking.

3. When DOS is loaded the Disk Drive will stop clicking and the
red light will go out. On your screen you will see a message
similar to the following

'Current date is Sun 01-01-1984
Enter new date '

5.3 Entering the date

To enter the date use the number keys across the top of the
keyboard.

1. Type one or two numbers for the month.

2. Type a dash - or a slash /

3. Type one or two numbers for the day

4. Type a dash - or a slash /

5. Type the numbers of the year. You can used four numbers for

example 1984 or the last two, for example 84.

6. Press the <ENTER> key.

Try this now.

The current date should now be on the screen.

If you have made a mistake in typing in the date, DOS will return
an error message

'Invalid date
Enter new date'

Check the following -

1. The month, day and year must be separated by eitner a dash or
a slash, NOT a space.

2. Only numbers can be used, NOT letters.

3. Did you make a typing error? If you entered an impossible
number for the day of the month, for example, 34, DOS will
return the error message.

DOS does not insist that you enter the date. If you do not want
to just press the <ENTER> key after the message

'enter new date '

5.4 Entering the time.

After you have entered the date you will then see a message
similar to the following

'Current time is 9: 30 : 42.21
Enter new time:'

The display gives the hours, minutes , and seconds.

To enter the time use the number keys across the top of the
keyboard.

1. Type the number of hours, between 0 and 23.

2. Type a colon (remember to use the shift key).

3. Type the number of minutes.

4. Type a colon

5. Type the number of seconds.

6. Press the <ENTER> key.

Try thi s.

The current time should now be displayed on the screen.

If DOS returns an error message

'Invalid time
Enter new time

check the following -

I. Did you put colons between the hours, minutes and seconds?
Semi-colons, slashes etc. are not accepted.

2. Only a period (fullstop) between seconds and hundreds of
seconds will work.

If DOS gives you the error message try again.

If you do not wish to enter the time press the <ENTER> key after

Enter new time:

Note:
If you do not wish to enter either the date or the time then
press the <ENTER> key twice after 'Enter new date*. However we
strongly recommend that you do enter the date and time correctly.

5.5 Changing from Drive A ^ Drive

After you have either entered the date and time, or pressed the
<ENTER> key twice, the following message is displayed

The Advance 86 Personal Computer DOS
Version 2.11 (C)Copyright Advance Technology (UK) Ltd 1983

A>_

The 'A>' on the last line is called the prompt. There are
different prompts for when you are running different programs but
whenever you see this prompt it means that the computer is
expecting you to enter a DOS command.

The A indicates that you are using the disk in Drive A.

The Drive that is in use is often known as the 'default or
'current'' dri ve.

You may wish to use programs on a disk that is in Drive B. To
change from Drive A to Drive B type

B:

Try it. (Remember to use the shift key (^) to type the colon).

The prompt should now be

B> -

Now change back.

type A:

The prompt is now

A>

5.6 Formatting a Diskette

Before you can use a new blank diskette it has to be prepared or
'formatted'. The DOS command to do this is

FORMAT

FORMAT checks the diskette for defective areas and builds a
directory ready to hold the files that will be written to it.

To format a diskette-

1. Load DOS diskette in Drive A.

2. When the A> prompt is displayed, type the command

FORMAT B:

3. You will see the message

'Insert new diskette for drive B:
and strike any key when ready.'

4. Insert your new diskette in Drive B and close the latch.
Press a key.

5. You will see the message

'formatting'

Formatting takes a few seconds and you will hear the Disk Drive
clicking.

6. When formatting is completed you will see a message similar to
the following

'Formatting...Format complete

362496 bytes total disk space
362496 bytes available on disk

Format another (Y/N)?'

Note: If FORMAT gives you an error message (see the further
information on FORMAT in Part 5.18 of this chapter) we recommend
that you abandon this diskette and re-run FORMAT on a new
diskette.

7. Type Y for yes, or N for no.

5.7 System and non-system diskettes.

Your Advance loads DOS from the floppy disk in three sections or
files as follows -

COMMANO.COM

10.SYS

MSDOS.SYS

Processes the commands you enter and then
runs the appropriate program.

Controls the hardware of the machine.

DOS itself.

10.SYS and MSDOS.SYS are normally 'hidden', that is, they will
not appear in the directory .

Disks that have these three files stored on them are called
'system disks'. You can copy these programs from the DOS diskette
onto a previously formatted diskette. System disks can be used in
place of the Advance DOS diskette whenever you switch your
computer on or restart DOS.

If you try to load DOS from a non-system disk you will get an
error message similar to

'Non-system disk or disk error
Replace and strike any key when ready'

Take the non-system disk out of the drive, insert a system disk
and press a key. DOS will be loaded normally.

Formatting a System Disk

FORMAT can be used to format and copy the system files onto a new
diskette at the same time. The procedure is the same as the one
above but this time the command is

FORMAT B: /S

The 'S' stands for system. When formatting is completed the
message this time will be similar to the following

'Formatting....Format complete
System transferred

362496 bytes total disk space
40960 bytes used by system
321536 bytes available on disk'

Format another (Y/N)?

The message tells you how much space the system files have taken
up and how much space there is still available on the diskette.

Again, if FORMAT gives an error message, we recommend that you
abandon this diskette and re-run FORMAT on a new diskette.

5.8 Copying diskettes

One very good habit to develop is copying your diskettes so that
you have always another copy of your programs available.
Diskettes are easily damaged and if this happens, you will
probably lose the programs that are stored on it. (For how to
take care of diskettes, see chapter 2.) Copying a diskette is
known as 'backing-up'.

The DOS command that enables you to do this is

DISKCOPY

Since it is so very important we suggest that the first diskette
you should copy or 'back up' is the DOS disk itself.

Read through the following steps carefully before you start.

1. Using Drive A and the DOS diskette, load DOS. Make sure the A>
prompt is displayed.

2. Insert the diskette (previously formatted, see 5.7) onto
which you are going to copy DOS in Drive B.

3. Type

DISKCOPY A: B:

and press the <ENTER> key.

If DOS returns an error message, check the following -

1. There has to be a space between A: and B:
2. Colons only after letters A and B.

4. This message is now on the screen

'Insert source diskette in drive A:
Insert formatted target diskette in drive B:

Strike any key when ready.'

You have already inserted the source diskette (the DOS diskette)
in Drive A and the new diskette (the target diskette) in Drive B.
Press any key to tell DOS you are ready.

5. The following message will appear on the screen.

'Copying '

While DOS files are being copied from the diskette in Drive A to
the diskette in Drive 8, the red 'in use' light will go on on
Drive A and then the one on Drive B.

6. When the copying is complete the message is

'Copy complete
Copy another? (Y/N)'

7. Type N

This tells the computer that you do not wish to make another
copy.

The DOS prompt is returned

A>_

8. Remove the diskette in Drive B and label it, using a felt
tip pen.

Sutimary. You should now be able to

1. To load DOS

2. To enter the date

3. To enter the time

4. To change from Drive A to Drive B

5. To back up a diskette.

5.9 Introducing files.

File is the name given to a collection of related information.
You may, for example, enter into the computer, details of
current stock held and this information would be kept in one
file. Another file might contain information about personnel and
another details of accounts.

Filenames.

When you want information from a particular file you must give
DOS the name of the file.

A name of a file has two parts.

1. Filename. This can be one to eight characters long, made up of

* letters For example STOCK

and/or * * numbers 0 to 9 For example ST0CK84

and/or * any of the following special characters $

! % () _ { } < > ' - / * " I '

2. An extension. This is optional but it is useful for
distinguishing between different sorts of files. You can use the
extension TXT to indicate a text file. Some extensions are
assigned by the programs, for example, BASICA expects .8AS

An extension * starts with a period (full stop).

* consists of one, two or tnree characters.

.* follows immediately after the file name.

For example ST0CK84.TXT

Remember that if the name of your file does consist of both a
filename and an extension you must always give DOS both parts.

It's a good idea to use names that indicate the content of the
files. AAAAAAAA is an acceptable filename but not particularly
informative!

If your filename is not accepted DOS will return an error
message. Check the following -

1. There should be no spaces between the characters.

2. You cannot have more than eight characters in a file name or
more than three characters in an extension.

3. Commas are not acceptable.

4. If the name of a file has an extension, the extension begins
with a period and comes after the file name.

File specification.

In addition to knowing the name of your file, you can tell DOS
which Disk Drive to use. To specify the Drive you type the letter
A or B followed by a colon.

The filename follows immediately.

A : S T0 C K 8 4 . T X T

Notice that there are no spaces between the three parts of the
file specification.

Whenever the drive specification is the same as the drive you are
using currently, there is no need to specify the drive. So if you
are using a diskette in Drive A and want to access another file
on that diskette, there is no need to specify the drive in your
file specification.

If you do not specify a Drive DOS assumes the file can be found
on the current Drive. If your file is in fact on the diskette in
Drive B DOS will give you the following error message.

'File not found'

Check that you have remembered to give the drive specification.
Unless the file is on the current drive the drive specification
must be given.

Names that cannot ^ used for filenames

There are some names you cannot use because they are 'reserved'
to refer to devices, for example, the printer or keyboard. These
'illegal names' are

CON: The Console device. Normally
and screen, unless the CTTY

the Advance keyboard
command has been used

AUX: or
COMl: Serial port No 1.

COM2: Serial port No 2.

PRN: or
LPTl: Parallel printer port No 1.

LPT2: Parallel printer port No 2.

LPT3: Parallel printer port No 3.

NUL: This is a dummy device name.

Points to remember about device names

* If you use a device name make sure the device does
exist and is connected on your system.

* You may use the reserved device name instead of a
filename.

* DOS will ignore any drive specifier or filename
extension entered with these device names.

♦Typing a colon after the reserved device name is
optional.

5.10 Wild Cards

This is the name given to two special characters that can be used
in filenames and extensions. They enable you to pick out a group
of files and can save you considerable time.

The 2 wild card.

A ? in a file name or extension means that any character can
occupy that place. So DOS will select all files that have
matching names except for the character in the ? position. For
example, suppose the following files are on the diskette

ST0CK84.TXT

ST0CK83.TXT

ST0CK82.TXT

PERS0N84.TXT

If you type

PERS0N83.TXT

DIR ST0CK87.TXT

all the STOCK files will be listed on the screen. (DIR is the DOS
command which you use when you want to list one or more files.
You will find more information about DIR in parts 5.11 and
5.18).

You can used more than one ? in your specification and it may
take the position of a character in either the filename, the
extension or both.

The 2 wildcard.

A * in a filename or extension means that any character can
occupy that position OR any other position in that filename or
extension. Only one * is used, unlike the ?

For example if your diskette contains the following files

LIST1.EXE

LIST2.EXE

LIST3.EXE

LIST4.EXE

LISTINGS

DIR LIST*.*

would display all five filenames.

It is possible to use both ? and * together.

The command

DIR *.*

refers to all the files on your diskette.

5.11 Listing filenames.

To list all the files on the DOS diskette.

1. Switch on your computer and load DOS

2 Type DIR and press the <ENTER> key.

Your list on the screen should be similar to the following

Volume in drive A is ADVANCE DOS
Directory of A:

COMMAND COM 17984 1-01-80 12:59a
FORMAT COM 6463 1-01-80 12:01a
MORE COM 282 1-01-80 12:15a —
PRINT COM 4506 1-01-80 12:30a
CHKDSK COM 6468 1-01-80 12:48a
RECOVER COM 2308 1-01-80 1:01a
SYS COM 1454 1-01-80 1:22a
EDLIN COM 8080 10-19-83 7:51p
DISKCOPY COM 1409 10-19-83 7:51p
SORT EXE 1664 1-01-80 1:35a M W

FIND EXE 6400 1-01-80 1:40a
FC EXE 2585 10-19-83 7:51p
SET40 COM 16 1-01-80 12.02a
SET80 COM 16 1-01-80 12.03a
EXE2BIN EXE 1649 10-19-83 7:51p
DEBUG COM 12223 10-19-83 7:52p
BASICA COM 59392 1-01-80 5:30a
LINK EXE 42330 10-19-83 7 . 5 1 P —

18 File(s) 154624 bytes free

To list a11 the filenames on another diskette.

1. Load DOS in Drive A,

2. Insert your diskette in Drive B

3. Type DIR B:

4. Press the <ENTER> key.

Remember that you have to tell DOS where to find the diskette. If
you do not, DOS will look for your file on the current drive.

To list one filename on a diskette

1. Load DOS in Drive A

2. Insert the diskette into Drive B

3. Type DIR B:<filename>

4. Press the <ENTER> key.

The full filename, its size, and the date and time it was last
modified are shown.

Summary. In parts 5.9 to 5.11 you have learned

1. How to name files.

2. How to use wildcards.

3. How to list filenames.

5.12 Introducing File Directories.

As we mentioned above the names of your files are kept in a
directory on each diskette. This initial directory is known as
the root or system directory and is the directory that is
automatically created whenever you format a new diskette.

When you have a large number of files on your diskette, or when
you wish to classify your files, you will probably find it more
convenient to divide your files into groups. For example, you may
wish to group all your text files together in one directory, all
your accounting files in another and all your games files in
another. To do this you create sub-directories, in this case one
for text files, one for the accounts ?iMes and a third for the
games files. These sub-directories can in turn contain the names
of other sub-directories so we could divide the texts files into
letters and reports and the accounts files into invoices received
and annual reports. This way of organising your files is known as
an hierarchical directory structure. (Don't panic! It is not
nearly as complicated as it sounds.)

The structure for our example is as below -

ROOT (\)
(directory)

TEXT
(directory)

LETTERS REPORT
(directory) (directory)

DP.TXT JAN.TXT
(file) (file)

ACCOUNTS
(directory)

r
INVOICE
(directory)

GAMES
(directory)

ANNUAL DOTS.BAS
(directory) (file)

The backslash
directory.

(\) after ROOT is a special symbol for the root

You may find it helpful to think of this structure as an upside
down 'tree' structure with the root directory at the first level,
the sub-directories as branches and the files within those sub­
directories as the leaves.

In the example above we have the root directory at the first
level. At the second level there are three sub-directories,
TEXT, ACCOUNTS and GAMES. TEXT contains two further sub­
directories named LETTERS and REPORT. ACCOUNTS has two further
sub-directories, INVOICE and ANNUAL. LETTERS has two files,
DP.TXT and JAN.TXT. GAMES has one file, DOTS.BAS

N

Sub-directories, unlike the root directory, are actually files
and this means that they are not restricted in size. Hence they
can hold any number of filenames but for practical reasons we
suggest you do not keep more than 30 - 40 files in
directory. The only limitation will be the amount of
space on the diskette. So your tree structure can grow as you add
more sub-directories and more files within those sub-directories.

any one
avai1 able

Naming a sub-directory.

The rules for naming a sub-directory are the same as those for a
file, (see 5.9)

It is possible to use a file name that is also in another sub­
directory. For example, a file named ADDRESS could be created
within the REPORT sub-directory and the same filename
could be used for a file in the ANNUAL sub-directory,
that the files are defined in separate sub-directories,
no problem.

ADDRESS
Provided
there is

ROOT (\)
(directory)

TEXT
(directory)

ACCOUNTS
(directory)

(iAMES
(directory)

LETTERS
(Directory)

REPORT
(Directory)

INVOICE
(Directory)

ANNUAL
(Directory)

DOTS.BAS
(file)

OP.TXT JAN.TXT ADDRESS
(file) (file) (file)

ADDRESS
(file)

The Current Directory.

The current directory,like the current drive, is the one
will assume you are using unless you tell it otherwise,
search your current directory if you enter a filename
telling it which sub-directory it is in and will create
file within your current directory unless you take
action.

that DOS
DOS will
without

your new
special

To check what your current directory is or to change your
current directory you use the CHDIR (CD) command. (CHange
DIRectory).Note that when DOS is first started it will use the
root directory as the current directory until you use CHOIR.
For more details about CHDIR see 5.14 and 5.18.

5.13 Paths to sub-directories and files.

When you are using hierarchical directories DOS needs to know the
path or route to the sub-directory or file you want to access.
This is done by giving DOS the pathname. This is a sequence of
sub-directory names ending with the file name. Each name must be
separated by a backslash (\).

The path you specify can start from the root directory or the
current directory. Putting a backslash (\) at the beginning of
the pathname instructs DOS to start at the root directory. For
example

X T E X T U E H E R S

directs DOS from the root directory,
directory to LETTERS.

through the TEXT sub-

Without this initial slash, DOS will start its search in the
current directory and search downwards. If your current directory
is TEXT, and you wish to use a file in REPORT, the pathname
would be

REPORT\<fi1ename>

If the file you wish to access is in your current directory you
do not need to specify a path because DOS automatically searches
the current directory.

There are two special shorthand notations that DOS can use.

. This indicates the name of the current directory.
DOS creates this automatically when a subdirectory
is made.

. . This indicates the parent directory of the current
sub-directory. In the example above, TEXT is
the parent of LETTERS

This particular special notation is useful when
you are specifying a path to DOS because the
double period is a quick way of telling DOS to
move back up one level. For example, if the
current directory is LETTERS and you wish to
access ADDRESS you could use

\TEXT\REPORT\AODRESS

or

..\REPORT\ADDRESS

The second instruction
level to the parent of
to continue from there.

tells DOS to back up one
the current directory and

This useful shorthand form can be used more than
once in a path and it can be used with DOS
commands such as DIR

DIR ..

lists the files in the parent directory of the
current directory.

DIR..\..

lists the files in the parent of the parent
directory!

A final point to remember about path specifications is that the
longest path you can specify is limited to a maximum of 63
characters.

If necessary, the drive is specified at the beginning of the path
specification. For example

B:\ACCOUNTS\ANNUAL\<f11ename>

5.14 DOS commands and path specifications.

There are two types of DOS commands:

External commands.

External commands reside on the diskette as a
program file. They must, therefore be read
from the diskette before they will execute. When you give DOS an
external command, DOS will immediately search the current
directory to find that command. If the external command
is not in the current directory, you must tell DOS where to look
for it by using the command

PATH

For example, if your current directory is
REPORT, and all the external commands are in TEXT, the command

PATH \TEXT

instructs DOS to search both in your current directory and
TEXT.

5.18 gives more details about the command PATH.

Internal commands

Internal commands are built in to DOS so they
will execute immediately. They are the most
commonly used commands. Some internal commands can use paths,
and this gives them greater flexibility.

DIR \TEXT\LETTERS

lists all the files in the directory LETTERS.

DEL \TEXT\LETTERS

tells DOS to erase all the files in LETTERS.

If you try to delete the files in a sub-directory a message will
appear on the screen.

'Are you sure (Y/N)?'

This gives time for second thoughts but if you wish to go ahead
type Y (for yes). If you type N DOS will not delete the files in
the subdirectory.

The conroand TYPE displays the contents of a file on a screen.

TYPE TEXT\REPORTS\<Filename>

Notice that this pathname has to have the filename specified at
the end.

Displaying the current sub-directory.

To find out the name of your current sub-directory type

CHDIR

For example, if your current sub-directory is \TEXT\REPORT

and you type CHOIR

DOS will return the message

A:\TEXT\REPORT

This gives you your current drive and your current directory.
To see what is in your current directory you use the command

DIR

The display will resemble the following

Volume in drive A has no label
Directory of A:\text\report

ADDRESS
COLOUR BAS

4 File(s)

<DIR>
<DIR>

17984
1408

1-01-80
1-01-80
1-01-80
1-01-80

296960 bytes free

12:00a
12:00a
12:59a
12:08a

There was no volume label assigned when the diskette was
formatted.

REPORT has two files, ADDRESS and COLOUR.BAS.

Notice that files and directories are listed together. This means
you cannot use the same name for both a sub-directory and a file.

indicates the current directory \TEXT\REP0RT

is the shorthand for the parent directory \TEXT

Creating a sub-directory.

To create a sub-directory in your current directory use the
command

WCDIR

or

MD

For example, to create a new sub-directory named MONREP type

IKOIR MONREP

To create a sub-directory in another part of the tree structure
the command is

MKDIR <pathname> <name of new sub-directory>

For example

fKDIR \ACCOUNTS\MONTHFI6

creates a new sub-directory, MONTHFIG, under ACCOUNTS.

Changing the current directory.

It is very easy to change from your current sub-directory to
another. The command is

CHOIR <pathname>

For example

CHOIR \TEXT\REPORT

changes the current directory from \REP0RT to \TEXT

The command

CHOIR ..

will always put you in the parent directory of the current sub­
directory.

Deleting ^ Sub-directory.

To delete a sub-directory the command is

RMOIR

For example

RMDIR LETTERS

would remove this from the current directory. The command will
not work, unless the sub-directory is empty (except for the . and
.. entries). This ensures that you do not delete files and sub­

directories by accident.

To remove directories other than the current one, the command is
RMOIR <pathname>

For example, to remove the REPORT directory

RMDIR \TEXT\REPORT

Once more, you must ensure that the sub-directory is empty except
for the . and .. entries.

To remove al1 the files in a directory, the command is

DEL <pathname>

For example, to delete all the files in TEXT\REPORT, type

DEL \TEXT\REPORT

DOS returns the message

'Are you sure' (Y/N)

The . and .. entries cannot be deleted. DOS creates these as part
of the hierarchical directory structure.

Summary. In Parts 5.12 to 5.14 we have talked about

1. Hierarchical file directories.

2. File names and path names.

3. Path specifications and the following DOS commands

PATH

DIR

TYPE

DEL

4. Displaying the current directory or changing the current
directory using

CHOIR

5. Creating a new directory using

MCDIR

6. Removing a directory using

RMDIR

7. Removing files using

DEL

Part 5.18 of this chapter contains more information about these
and additional DOS commands.

5.15 Introducing DOS commands

'Command' is the term used for an instruction you give to the
system. DOS commands are used to ask the system to perform the
following tasks.

* Copy and format diskettes

* Copy, compare, display and delete files

* Copy DOS system files to another diskette

* Load and execute systems programs such as EDLIN

* Load and execute applications programs such as SuperCalc 3 or
Perfect Writer.

* Load and execute your own programs

* List filenames and directories

* Enter date, time and comments

* Set various printer and screen options

Internal and External Commands.

Internal commands are the most commonly used commands. When you
use an internal command it will execute immediately. The
following internal commands are described in Part 5.18.

BREAK DEL (ERASE) MKDIR (MO) SET

- CHDIR (CD) DIR PATH SHIFT

CLS ECHO PAUSE TIME

COPY EXIT PROMPT TYPE

CITY FOR REM VER

DATE GOTO REN (RENAME) VERIFY

- IF RMDIR VOL

Commands in brackets are synonyms and can also be used.

External commands are stored as program files on
has to read them from the diskette before it can

diskette,
execute tnem

DOS

the relevant file is not on the diskette in your current drive,
DOS will not be able to find it, and will return the error
message -

'Bad command or file name'

All filenames with the following extensions .COM .EXE .BAT are
considered as external commands. For example, FORMAT.COM and
FIND.EXE are external commands.

Because all external DOS commands reside on the diskette, you can
create external commands and add them to your system. Progams
created with most programming languages will be .EXE (that is,
executable) files.

Note that when you are entering the name of an external command
the file extension should not be entered.

The following external commands are described in 5.18.

CHKDSK MORE

DISKCOPY PRINT

FIND RECOVER

FORMAT SET40

EXE2BIN SET80

MODE SORT

SYS

Command options

You may add further information to a DOS command by using a
command option. If you do not include an option, DOS assumes a
'default' value.

For example if you just type

DIR

DOS lists all the entries on the current drive.

If you type

DIR B:DOTS.BAS

only information about the file DOTS.BAS will be listed.

The default values for individual commands are given in the
descriptions in part 5.18.

Points to Remember about al1 DOS Commands

* Commands are usually followed by one or more options.

* Commands and options may be entered in uppercase, lowercase,
or a combination of both.

* Commands and options must be separated by 'delimiters', such as
a space or a comma (,). You could also use a semicolon, (;), an
equals sign, (=), or the tab key. You may use different
delimiters within one command but you will probably find the
space or the comma (,)the easiest to use.

* File specifications (drive:filename.ext) already contain
delimiters (the colon and the period) so do not separate the
three parts by additional delimiters.

* Files do not have to have an extension when you create them but
if a filename does have an extension, you must include this when
you are giving the filename to DOS.

* Most commands which are followed by a filename will also accept
a path (directory) specification in front of the filename. If you
are not creating directories you will not need path
specifications.

* Commands can be aborted while they are running by pressing

<Ctrl> + <Break>

* DOS will only execute your command after you have pressed the
<ENTER> key.

* Wildcards (? and *) and device names (for example PRN or CON)
cannot be used as commands but can be used in command options.

* When commands produce a large amount of output on the screen,
the display will automatically scroll to the next screen. To stop
the display use

<Ctr1> + <Num Lock>

To continue, press any numeric or letter key.

* DOS editing and control keys can be used while entering DOS
commands (see 5.19).

* Disk drives are referred to as source drives and target drives.
The source drive is the drive from which you are transferring
information. The target drive is the drive to which you will be
transferring the information.

* The usual prompt for you to enter a command is the current
drive letter plus >, for example,'A>'

* When the command has been completed, the system prompt will
appear on the screen. If no error message appears on your screen
the task has been successfully completed.

5.16 Batch processing

If you find yourself typing in the same sequence of commands over
and over again to perform an often used task, you will find it
more convenient to create a Batch file. This performs the entire
sequence simply on receiving the name of the batch file.
'Batches' of your commands in such files are followed as if they
were typed in at the keyboard.

Batch filenames

Each Batch file must be named with the extension .BAT. However,
only the filename is entered to run the batch file. You do not
enter its extension.

Creating batch files

There are two ways to create a batch file.

1. Use the Line Editor (EDLIN). Information on how to use EDLIN
is given in 5.20.

2. Use the COPY command directly from the keyboard.

Batch Commands

There are two DOS commands available especially for use in batch
files.

REM and PAUSE

REM allows you to include comments within your batch file.

PAUSE stops the system processing and allows you either to
continue or to abort the batch process.

REM and PAUSE are described more fully in 5.18

An example of a batch file

One useful batch file would be one which could be used whenever
you want to format and check a new diskette. Such a batch file
would look like this;

1. REM

2. REM

3. PAUSE

4. FORMAT B:

5. DIR B:

6. CHKDSK B:

This file formats and checks new diskettes.

The name of the file is NEWOISK.BAT

(Insert new diskette in Drive B:)

To execute this file you would simply type in the filename

NEWOISK

You do not type in the extension.

The result is the same as if you had typed in each of the lines
at the keyboard as individual commands.
The three steps are

1. Write a program

2. Give a filename extension
of .BAT to your filename and
save on your directory

3. Type NEWDISK as a command
to DOS

NEWDISK

Directory: NEWDISK.BAT

Execute NEWDISK batch
process.

Points ^ remember about batch processing

* Only the filename should be entered. Do not enter the
extension.

* Only the commands in the file named <filename>.BAT will be
executed.

* If you press <Ctrl>+ <Break> while the Batch program is running
(that is, while you are in 'batch mode'),this message appears on
the screen.

'Terminate batch job (Y/N)?'

If you press Y the batch processing will stop and the system
prompt (>) will appear.

If you press N only the current command ends and the batch
processing will continue.

* If you remove the diskette containing a batch file being
executed, DOS prompts you to insert it again before the next
command can be read.

* The last command in a batch file may be the name of another
batch file. This allows you to call one batch file from another
when the first is finished.

The AUTOEXEC.BAT File.

AUTOEXEC stands for Automatic Program Execution. An AUTOEXEC.BAT
file allows you to execute programs automatically when you start
DOS. This is useful when you want to run a specific package (for
example SuperCalc 3) under DOS and when you want DOS to execute a
batch program automatically each time you start the system. Using
an AUTOEXEC.BAT file avoids having to load two separate disks to
perform either of these tasks.

When you start or restart DOS, the command processor searches the
DOS diskette for the file AUTOEXEC.BAT. If DOS finds the file
AUTOEXEC.BAT, the file will be immediately executed by the
command processor. The date and time prompts are bypassed. If DOS
does not find the AUTOEXEC.BAT file, then the date and time
prompts will be given.The diagram below shows how DOS uses the
AUTOEXEC.BAT file.

Creating an AUTOEXEC.BAT file using COPY

Suppose you want to load BASIC automatically and run a program
called MENU each time you start DOS. You could create the
following AUTOEXEC.BAT file. Do not forget to press the <ENTER>
key at the end of each statement.

1. Type COPY CON: AUTOEXEC.BAT

This statement tells DOS to copy the information from the
keyboard into the AUTOEXEC.BAT file.

2. Type 8ASICA MENU

This statement will go into the AUTOEXEC.BAT file. It tells DOS
to load BASIC and run the MENU program whenever DOS is started.

3. Press <F6>, then the <ENTER> key to put the command BASICA
MENU into the AUTOEXEC.BAT file.

4. The MENU program will now run automatically whenever you start
DOS.

To run your own BASIC program, type the name of your program in
place of MENU in the second line of the example above.

Points to remember about creating an AUTOEXEC.BAT file

* The AUTOEXEC.BAT file must be created in the root directory of
your diskette.

* You can enter any DOS command or series of commands in the
AUTOEXEC.BAT file.

* If you use an AUTOEXEC.BAT file, DOS will not prompt you for
date and time unless you include the DATE and TIME commands in
the AUTOEXEC.BAT file. It is a good idea to do this since DOS
uses this information to keep your directory upto date.

Creating ai .BAT file with Replaceable Parameters

It may be that you want to create an application program and run
it with different sets of information (data). These data may be
stored in various DOS files. A .BAT file with replaceable,
('dummy') parameters will help you to do this.

A parameter is an option which you can include in your command
statement amd it gives additional information to the system. With
DOS you can create a batch file which has dummy parameters. These
are replaced by values supplied when the batch file is being
executed.

The dummy parameters are named %0, %i and so on upto %S.

For example, when you type the following command line

COPY CON MYFILE.BAT

the next lines you type are copied from the keyboard to a file
named MYFILE.BAT on the current drive.

A>C0PY CON MYFILE.BAT <ENTER>

COPY Xl.MAC X2.MAC <ENTER>

TYPE X2.PRN <ENTER>

TYPE XO.BAT <ENTER>

Now press <F6> and then the <ENTER> key.

DOS responds with the message

1 File(s) copied

A> _

The file MYFILE.BAT, which consists of three commands, now
resides on the diskette in the current drive.

The dummy parameters %1 and %2 are replaced sequentially by the
parameters you supply when you execute the file. The dummy
parameter 5K0 is always replaced by the drive designator, if
specified, and the filename of the batch file (e.g. MYFILE).

Points to remember about creating a .BAT file witn replaceable
parameters

* Upto 10 dummy parameters (%0 to %9) can be specified. If you
want to specify more than 10, refer to the description of the
command SHIFT in 5.18.

* If you use a percent sign (%) as part of a filename within i
batch file you must type it twice.

For example

To specify the file DNEX.EXE you must type is as DNE^»t.EXE in the
batch file.

Executing A .BAT file.

To execute the batch file MYFILE.BAT and to specify the
parameters that will replace the dummy ones, you must enter the
batch filename (but not its extension), followed by the
parameters you want DOS to substitute for %1, %2, and so on.

You will remember that MYFILE.BAT contains the following three
lines.

COPY XI.MAC X2.MAC

TYPE X2.PRN

TYPE XO.BAT

To execute MYFILE, type

MYFILE ArPROGl B:PR0G2

MYFILE is substituted for %0,

ArPROGl for XI

B:PR0G2 for X2.

The result is the same as if you had typed in each of the
following commands, with their parameters.

COPY ArPROGlMAC B:PR062.MAC

TYPE B:PR0G2.PRN

TYPE MYFILEBAT

The following table illustrates how DOS replaces each of the
above parameters.

BATCH PARAMETER KXO)
FILENAME MYFILE

PARAMETER2 XI) PARAMETERS (X2)
(PROGl) (PR0G2)

MYFILE MYFILE.BAT PROGl.MAC PR0G2.MAC

PR062.PRN

A point to remember about executing £ .BAT file

Remember that the dummy parameter XO is always replaced by the
drive designator (if specified) and the filename of the batch
file.

\

5.17 Input and Output

DOS always assumes that input comes from the keyboard and
output goes to the screen. However you can redirect both input
and output. Input, for example, can come from a file, rather than
the keyboard, and output can be sent to a file or a printer,
instead of to the screen. Moreover you can create 'pipes' that
allow output from one command to become the input to another.

Redirecting output

Most commands produce output that is sent to your screen. To send
this information to a file you use a greater-than sign (>) in
your command.

For example

DIR

sends a list of the directory on the current drive to the screen.
But the same command, DIR, plus a filename

for example

DIR >LIST1.TXT

sends the output to the file, LIST1.TXT.

If the file LIST1.TXT does not exist, DOS creates it. If it
already exists, DOS will overwrite what is in the file with the
new information.

Another example.

DIR >PRN

This command sends the output to the printer.

If you want to add your directory, or file, to another file,
two greater than signs (>>) can be used to tell DOS to add the
output of the command (for example, a directory listing) to the
end of the specified file.

For example

DIR »MYFILE

would add your directory listing to the file MYFILE. If MYFILE
does not exist, DOS creates it.

In some circumstances you will want input to come, not from the
keyboard, but from another file. This is made easy in DOS by
using a less-than sign (<) in the command.

For example

SORT <NAMES >LIST1

sorts the file NAMES alpabetically and sends the sorted output to
a file called LISTl. The input is from the file NAMES, not the
keyboard.

A point to remember about redirecting input.

When you use this way of providing input to a program you have to
be sure al1 the program's input is in the file. If the program
attempts to obtain more input after the end of the file is
reached, DOS cannot supply the input and processing will cease.
You can return to the DOS prompt (>) by entering Ctrl-Break.

FiIters

A filter is a program or command that reads your input,
transforms or modifies it in some way, and then 'outputs' or
'writes' it , perhaps to your screen, or perhaps to your printer.
Hence the data is said to have been 'filtered' by the program.

For example

SORT

is a filter that reads input, sorts it and then outputs the
results to the screen or printer.

Filters can be put together in many different ways so often you
can use a few filters to replace a large number of specific
commands.

There are three filters on the DOS diskette.

FIND

MORE

SORT

This searches for a constant string (word)
of text in a file.

Takes standard keyboard output and displays
it, one screen at a time. Then pauses
with the message - MORE -

Sorts text data.

Piping commands

If you want to give more than one command to the system at a
time, you can 'pipe' commands to DOS. You may want to do this,
for example, if you need to have the output of one program sent
as the input to another program.

Piping is done by separating commands with
the 'pipe separator', (|).

For example

OIR I SORT

will produce an alpabetically sorted list of your directory. The
'I' pipes the output generated by DIR to be the input of SORT.

To send the result, the sorted directory, to a file, called
perhaps READLST.FIL you would type

OIR I SORT >READLST.FIL

DOS will create the new file, READLST.FIL on your current drive.

To specify a drive other than the current one, type

DIR I SORT >B:READLST.FIL

In this case the sorted data would be sent to a file called
READLST.FIL on drive B.

A pipeline can consist of more than two commands.

For example

DIR I SORT I MORE

will sort your directory and show it to you one screen at a
time, putting -MORE- at the bottom of the screen when there is
more output to be seen.

Summary In 5.15 to 5.17 we have looked at

1. Internal and External DOS commands.

2. Command Options.

3. Points to remember about all DOS commands.

4. Batch processing.

5. Creating and executing an AUTOEXEC.BAT file.

6. Creating and executing a .BAT file with replaceable
parameters.

7. Redirecting input and output.

8. Using filters and piping.

9. New DOS commands, as listed below.

REM

PAUSE

MORE

SORT

Adds comment line for batch files.

Suspends the execution of a batch file.

Displays a screen full of data at a time, then
pauses with the message -MORE- when there is more
output to be seen.

Sorts text data.

You will find more information about these commands in the next
section (5.18) of this chapter.

5.18 DOS COMMANDS

Command Formats

The following notation indicates how you should enter DOS
commands:

* The words in this section shown in capital letters and
bold print are called keywords. You can enter these keywords
in any combination of uppercase and lowercase letters. DOS
converts all keywords to uppercase.

* You supply the text for any items enclosed in angle
brackets (< >). For example, you should enter the name of
your file when <filename> is shown in the format.

* Items in square brackets (C]) are optional. If you
wish to include optional information, do not include the
square brackets, only the information within the brackets.

* An ellipsis (...) indicates that you may repeat an item
as many times as you want.

* You must include all punctuation where shown (with
the exception of square brackets), such as commas, equal
signs, question marks, colons, or slashes.

* 'd' in the format description refers to the disk drive
specification.

* Items separated by '|' mean that you can enter one of
the separated items.

For example ON | OFF

means that you can either enter ON or OFF, but not both.

* 'Filename' refers to any valid name for a file, including
a filename extension.

BREAK (Control Break) Coiwnand.

TYPE: Internal

PURPOSE Allows you to tell DOS to check for a control break
whenever a program asks DOS to perform any functions,
(for example, disk operations).

FORMAT BREAK [ON|OFF]

COMMENTS

If you are running an application program that
uses Ctrl-break function keys, you will want to
turn off the DOS Ctrl-break function so that when you
press <Ctrl-Break> you affect your program and not
the operating system. Specify BREAK OFF to turn
off Ctrl-Break and BREAK ON when you have finished
running your application program and are using DOS.

Entering BREAK with no parameters causes DOS to display
the current position (on or off) of Ctrl- Break
checking.

CHOIR (CD) command.

TYPE Internal

PURPOSE Change the DOS current directory of
specified or current drive, or to display
current directory path of a drive.

FORMAT CHOIR [pathname] or CD [pathname]

the
the

COMMENTS

If you do not specify a drive, DOS assumes the current
drive.

Examples.

CO

This displays your current directory.

CD \

This changes the current directory of the current drive to its
root directory.

CO..

This commands puts you in the parent directory of your current
directory.

If your current directory is \TEXT\REPORT and you want to change
your path to another directory such as \TEXT\REPORT\ADDRESS, type

CO \TEXT\REPORT\ADORESS

DOS will put you in the new directory.

CO 8;\ACC0UNTS\ANNFI6

This changes drive B's current directory to the path

•root...... ACCOUNTS.........ANNFI6*

CHKDSK Command (Check Disk)

TYPE External

PURPOSE Scans the directories and the File Allocation
Table on the specified disk drive; reports on
the status of the disk and memory.

FORMAT CHKDSK [d:] <filespec> C/F] [/V]

COMMENTS

If you specify a filename, CHKDSK displays the number
of non-contiguous areas occupied by the file or files.

CHKDSK only looks in the current directory for files.

CHKDSK should be run occasionally on each disk to
check for errors in the directory. If any errors are
found, CHKDSK will display error messages, if any,
and then a status report.

The following is an example of a status report.

Volume ADVANCE DOS created Jan 30,1984 12:32a

362496 bytes total disk space
22528 bytes in 3 hidden files
194560 bytes in 22 user files
145408 bytes available on disk

131072 bytes total memory
105312 bytes free

CHKDSK will not correct the errors found in your
directory unless you specify the '/F' (fix) option.

Typing /V causes CHKDSK to display messages while
it is running.

You can redirect the output from CHKDSK to a file.
Simply type:

CHKDSK A: >filename

The errors will be sent to toe filename
specified. Do not use the /F option if you
redirect CHKDSK output.

The following errors will be
automatically if you specify the /F option;

* Invalid drive specification

* Invalid parameter

* Invalid sub-directory entry

■* Cannot CHOIR to <filename>
Tree past this point not processed

* First cluster number is invalid
entry truncated

* Allocation error, size adjusted

* Has invalid cluster, file truncated

* Disk error reading FAT

* Disk error writing FAT

* <filename> contains
non-contiguous blocks

* A11 specified file(s) are contiguous

corrected

You must correct the following errors returned by
CHKOSK, even if you specified the /F option

'Incorrect DOS version'

You cannot run CHKDSK on versions of DOS
that are not 2.11 or higher.

'Insufficient memory
Processing cannot continue’

There is not enough memory in your machine
to process CHKDSK for this disk. You must
obtain more memory to run CHKDSK.

'Errors found, F parameter not specified
Corrections will not be written to disk'

You must specify the /F option if you want
the errors corrected by CHKDSK.

'Invalid current directory
Processing cannot continue'

Restart the system and re-run CHKDSK.

Chapter Five Advance DOS Pace 5-45

'Cannot CHOIR to root
Processinq cannot continue'

The disk you are checking is bad.
restarting DOS and RECOVER the disk.

'<filename> is cross linked on cluster'

Try

Make a copy of the file you want to keep,
and then delete both files that are cross
1 inked.

'X lost clusters found in y chains
Convert lost chains to files (Y/N)?'

If you respond Y to this prompt, CHKDSK
will create a directory entry and a file
for you to resolve this problem (files
created by CHKDSK are named FILEnnnnnnnn).

CHKDSK will then display;

'X bytes disk space freed'

If you respond N to this prompt and have
not specified the /F option, CHKDSK frees
the clusters and displays:

'X bytes disk space would be freed'

'Probable non-DOS disk
Continue (Y/N)?'

The disk you are using is a non-DOS disk.
You must indicate whether or not you want
CHKDSK to continue processinq.

'Insufficient room in root directory
Erase files in root and repeat CHKDSK'

CHKDSK cannot process until you delete
files in the root directory.

'Unrecoverable error in directory
Convert directory to file (Y/N)?'

If you respond Y to this prompt, CHKDSK
will convert the bad directory into a file.
You can then fix the directory yourself or
delete it.

CIS command. (Clear Screen).

TYPE Internal

PURPOSE Clears the display screen,

FORMAT CLS

COMMENTS

The CLS command causes DOS to send the ANSI escape
sequence ESCC2J (which clears your screen) to your
keyboard. This commmand will only work if you have the
ANSI.SYS device driver loaded.

COPY command.

TYPE Internal

PURPOSE Copies one or more files to another diskette. If you
prefer, you can give the copies different names. This
command can also copy files on the same diskette, but
if you do this, you must give the copies different
names (unless different directories are are specified).

FORMAT COPY <filespec> [filespec] [pathname]
[pathname] [/V]

COMMENTS

If you do not give the second filespec option, the copy
will be on the current drive and will have the same
name as the original file (first filespec
option). If the first filespec is on the current drive
and the second filespec is not specified, the
COPY will be aborted.

DOS will display the error message:

'File cannot be copied onto itself
0 File(s) copied'

The second option-may take three forms:

1. If the second
(d:) only, th<
the original
drive.

the original
the default
specified.

3. If the second
the original
the default
specified.

option is a dr i ve designation
origii)d1 f i le is copied with
filename to the designated

option is a filename only,
file is copi ed to a file on

drive wi th the filename

option is a full filespec,
f i le is copi ed to a file on

dri ve wi th the filename

The /V option causes DOS to verify that the sectors
written on the destination disk are recorded
properly. Although there are rarely recording
errors when you run COPY, you can verify that
critical data has been correctly recorded. This

option causes the
because DOS must
disk.

COPY command to run more slowly
check each entry recorded on the

The COPY command also allows file concatenation
(joining) while copying. Concatenation is
accomplished by simply listing any number of files
as options to COPY, separated by +.

For example

COPY A.XYZ + B.TXT + BrC.TXT BIGFILE.CRP

This command concatenates files named A.XYZ,B.TXT,
and BrC.TXT and places them in the file on the default
drive called BIGFILE.CRP.

To combine several files using wild cards into one
file, you could type:

COPY *.LST COMBIN.PRN

This command would take all files with a
filename extension of .LST and combine them into a
file named COMBIN.PRN.

In the following example, for each file found
matching *.LST, that file is combined with the
corresponding .REF file. The result is a file with
the same filename but with the extension .PRN. Thus,
FILEI.LST will be combined with FILEI.REF to form
FILEl.PRN; then XYZ.LST with XYZ.REF to form XYZ.PRN;
and so on.

COPY *.LST + *.REF *.PRN

The following COPY command combines all files
matching *.LST, then all files matching *.REF, into
one file named COMBIN.PRN:

COPY *.LST + *.REF COMBIN.PRN

Do not enter a concatenation COPY command where one
of the source filenames has the same extension
as the destination.

For example the following
ALL.LST already exists:

COPY *.LST ALL.LST

command is an error if

The error would not be detected, however, until ALL.LST
is appended. At this point it could have already
been destroyed.

COPY compares the filename of the input file with
the filename of the destination. If they are the same,
that one input file is skipped, and the error
message

"Content of destination lost before copy"

is printed. Further concatenation proceeds
normally. This allows "summing" files, as in this
example:

COPY ALL.LST + *.LST

This command appends all *.LST files, except
ALL.LST itself, to ALL.LST. This command will not
produce an error message and is the correct way to
append files using the COPY command.

CITY command

TYPE Internal

PURPOSE Allows you to change the device from which you issue
commands (TTY represents the keyboard).

FORMAT CTTY <device>

COMMENTS

The <device> is the device from which you are giving
commands to DOS. This command is useful if you
want to change the device on which you are
working. The command

CTTY AUX

moves all command I/O (input/output) from the current
device (the keyboard) to the AUX port.

The command

CTTY CON

moves I/O back to the original device
keyboard).

(here, the

DATE command.

TYPE Internal

PURPOSE Allows you to enter or change the date known to the
system. This date will be recorded in the directory
for any files you create or alter.

You can change the date from your terminal or
from a batch file. (DOS does not display a prompt for
the date if you use an AUTOEXEC.BAT file, so you may
want to include a DATE command in that file.)

FORMAT DATE [<mm>-<dd>-<yy>]

COMMENTS

If you type DATE, DATE will respond with the
message:

Current date is <mm>-<dd>-<yy>
Enter new date:_

Press <ENTER> if you do not want to change the date
shown.

You can also type a particular date after the DATE
command, as in:

DATE 3-9-81

In this case, you do not have to answer the 'Enter
new date:'prompt.

The new date must be entered using numerals only;
letters are not permitted. The allowed options are:

<dd> = 1-31
<mm> ® 1-12
<yy> * 80-99 or 1980-2099

The date, month, and year entries may be
separated by hyphens (-) or slashes (/). DOS is
programmed to change months and years correctly,
whether the month has 31, 30, 29, or 28 days. DOS
handles leap years, too!

If the options or separators are not
displays the message:

valid, DATE

Invalid date
Enter new date:

DATE then waits for you to enter a valid date.

You may change the date either from the keyboard or
from a batch file. If you use an AUTOEXEC.BAT file when
you start the system, it does not prompt you for the
date. However, if you wish, you can include a DATE
command in the AUTOEXEC.BAT file.

DEL command (Delete) (ERASE)

TYPE Internal

PURPOSE Deletes all files with the designated filespec,

FORMAT DEL [filespec][pathname]

COMMENTS

Examples.

If the filespec is *.*, the prompt
'Are you sure? appears.

If you ^ wish to erase all the files on the diskette,
type Y or y. All files will be deleted as
requested. Otherwise type N or n and press the enter
key.

Although you can use the wildcard characters ? and * in
the filename and in the extension, you should do this
with care to avoid erasing multiple files accidentally
with the single command.

You can also type ERASE for the DELETE command.

DEL [d:] *.*

deletes all files in the current directory.

DEL [d:] [pathname]

deletes all files in the specified directory.

A>DEL AtDPFILE.TXT

deletes the file DPFILE.TXT from the current directory of
drive A.

DIR command (Directory)

TYPE

PURPOSE

FORMAT

COMMENTS

Internal

Lists the files in the directory.

DIR [filespec][pathname][/P][/W]

If you just type DIR, all directory entries on the
current drive are listed.

If only the drive specification is given DIR d:,
all entries on the disk in the specified drive are
listed.

If only a filename is entered with no extension DIR
[filename], then al1 files with the designated
filename on
listed.

the disk in the current drive are

If you designate a file specification for example

DIR d:filename.ext

all files with the filename specified on the diskette
in the drive specified are listed.

In all cases, files are listed with their size in
bytes and with the time and date of their last
modification.

The wild card characters ? and * (question mark
and asterisk) may be used in the filename option.

It is useful to know that the following DIR commands
are equivalent:

COMMAND EQUIVALENT

DIR DIR *.*
DIR FILENAME DIR FILENAME.*
DIR .EXT DIR *.EXT —

Two options may be specified with OIR. The '/P'
option selects 'Page Mode'. With '/P', display of the
directory pauses after the screen is filled. To
resume display of output, press any key.

The '/W ' option selects 'Wide Display.' Witn
'/W.'only filenames are displayed, without other
file information. Filenames are displayed five per
l i n e .

DISKCOPY command (Copy diskette)

TYPE External

PURPOSE Copies the contents of the disk in
drive to the disk in the target drive.

FORMAT DISKCOPY [d:] [d:]

the source

COMMENTS

The first option you specify is the source drive.
The second option is the target drive.

The disk in the target drive must
prior to using DISKCOPY.

be formatted

Remember

You can specify the same drives or you may specify
different drives. If the drives designated are
the same, a single-drive copy operation is
performed. You are prompted to insert the disks at
the appropriate times.

DISKCOPY waits for you to press any key before
continuing.
After copying, DISKCOPY prompts:

'Copy complete
Copy another (Y/N)?'

If you press Y, the next copy is performed on the
same drives that you originally specified, after you
have been prompted to insert the proper disks.

To end the COPY, press N.

1. If you omit both options, a single-drive
copy operation will be performed on the
default drive.

2. If you omit the second option, the default
drive will be used as the destination
dri ve.

3. Both disks must have the same number of
physical sectors and those sectors must be
the same size.

Disks that have had a lot of file creation
and deletion activity become fragmented,
because disk space is not allocated
sequentially. The first free sector found
is the next sector allocated, regardless of
its location on the disk.

A fragmented disk can cause poor
performance due to delays involved in
finding, reading, or writing a file. If
this is the case, you must use the COPY
command, instead of DISKCOPY, to copy your
disk and eliminate the fragmentation.

For example:

COPY A:*.* B:

copies all files from the disk in drive A:
to the disk in drive B:.

DISKCOPY automatically determines the
number of sides to copy, based on the
source drive and disk.

If disk errors are encountered during a
DISKCOPY, DOS displays:

DISK error while reading drive A
Abort, Ignore, Retry?

Refer to Appendix A, Disk Errors, for
information on this error message.

EXE2BIN command

TYPE External

PURPOSE Converts .EXE (executable) files to binary
format.

FORMAT EXE2BIN <filespec> [d:][<filename>C<.ext>]]

COMMENTS

This command
.EXE files
filespec is
specified,

is useful only if you want to convert
to binary format. The file named by
the input file. If no extension
it defaults to .EXE. The input file

converted to .COM file format (memory
program) and placed in the output file.

image of

IS
is

the

If you do not
input file will

specify
be used.

a drive, the drive of the

If you do not specify an output
input filename will be used.

filename, the

If you do not specify a filename extension in the
output filename, the new file will be given an
extension of .BIN.

The input file must be in valid .EXE format
produced by the linker. The resident, or actual
code and data part of the file must be less than 64K.
There must be no STACK segment.

Two kinds of conversions are
depending on whether the initial
Segment:Instruction Pointer)is specified
file:

possible,
CS:IP (Code
in the .EXE

If CS:IP is not specified in the .EXE file, a
pure binary conversion is assumed. If segment

(i e., the program
requiring segment
prompted for the
the absolute segment
be loaded. The

fixups are necessary
contains instructions
relocation), you will be
fixup value. This value is
at which the program is to
resulting program will be usable only when loaded
at the absolute memory address specified
by a user application. The command processor
will not be capable of properly loading the
program.

2. If CS:IP is specified as
assumed that the file i
file with the location poin
the assembler statement ORG;
of the file are deleted,
are allowed, as .COM fi
relocatable; that is,
entry conditions explained
Reference Manual. Once
complete, you may rename
with a .COM extension,
processor will be able to
program in the same way
supplied on your DOS disk.

0000:lOOH, it is
s to be run as a .COM
ter set at lOOH by

the first lOOH bytes
No segment fixups

les must be segment
they must assume the
in the Programmers
the conversion is

the resulting file
Then the command

load and execute the
as the .COM programs

If CS:IP does not meet either of these
criteria, or if it meets the .COM file
criterion but has segment fixups, the following message
will be displayed:

'File cannot be converted'

This message is also displayed if the file is not a
valid executable file.

If EXE2BIN finds an error, one or more of
following error messages will be displayed:

'File not found'

The file is not on the disk specified.

the

f
V

'Insufficient memory'

There is not enough memory to run EXE2BIN.

'File creation error'

EXE2BIN cannot create the output file. Run CHKDSK to
determine if the directory is full, or if some other
condition caused the error.

'Insufficient disk space'

There is not enough disk space to create a new file.

'Fixups needed - base segment (hex):'

The source (.EXE) file contained information
indicating that a load segment is required for the
file. Specify the absolute segment address at
which the finished module is to be located.

'File cannot be converted*

The input file is not in the correct format.

'WARNING -Read error on EXE file.'

Amount read less than size in header. This is a warning
message only.

EXIT command

TYPE Internal

PURPOSE Exits the program COMMAND.COM (the command
processor) and returns to a previous level, if
one exists.

FORMAT EXIT

COMMENTS

This command can be used when you
applications program and want
command processor, then return to
example, to look at a directory on
running an application program,
command processor by typing

COMMAND

in response to the current drive prompt:

A>C0MMAND

are running certain
to start the DOS
your program. For
drive B: while

you must start the

You can now type the DIR
display the directory for
you type EXIT, you return
(your application program).

command and DOS wi11
the default disk. When
to the previous level

FIND command

TYPE External

PURPOSE Searches for a specific string of text in a
file or files.

FORMAT FIND C/V /C /N] <string> [<filename...>]

COMMENTS

FIND is a filter that takes as options a string and a
series of filenames. It will display all the lines
that contain a specified string from the files
specified in the command line.

If no files are specified, FIND will take the input
on the screen and display all lines that contain the
specified string.

Options for FIND are:

/V causes FIND to display all lines
not containing the specified
string.

/C causes FIND to print only the count
of lines that contained a match
in each of the files.

/N causes each line to be preceded by
its relative line number in the
file.

The string should be enclosed in quotes.

For Example:

FIND "Fool's Paradise" B00K1.TXT B00K2.TXT

displays all lines from B00K1.TXT and B00K2.TXT (in
that order) that contain the string "Fool's Paradise."

The command

DIR B: I FIND /V "DAT"

causes DOS to display all names of the files on the
disk in drive B: which do not contain the string DAT.

Type double quotes around a string that already has
quotes in it.

When an error is detected, FIND responds with one of
the following error messages:

'Incorrect DOS version'

FIND will only run on versions of DOS
that are 2.11 or higher.

'FIND: Invalid number of parameters'

You did not specify a string when issuing
the FIND command.

'FIND: Syntax error'

You typed an illegal string when issuing
the FIND command.

'FIND: File not found <filename>'

The filename you have specified does not
exist or FIND cannot find it.

'FIND: Read error in <filename>‘

An error occurred when FIND tried to read
the file specified in the command,

'FIND: Invalid parameter <option-name>'

You specified an option that does not
exist.

FORMAT command

TYPE External

PURPOSE Formats the disk in the specified drive to accept
DOS files.

FORMAT FORMAT [d]:C/1]C/8]C/0]C/V][/S]

COMMENTS

This command initializes the directory and file
allocation tables. If no drive is specified, the
diskette in the current drive is formatted.

Remember the following options must be
specified in the order in which they appear above.

The /I option creates a single sided disk.

The /8 option creates a disk with 8 sectors
per track.

The /O option causes FORMAT to produce an IBM
personal Computer DOS version l.X compatible
disk. The /O option causes FORMAT to
reconfigure the directory with an 0E5 hex byte
at the start of each entry so that the disk may
be used with l.X versions of IBM PC DOS, as
well as MS-DOS 1.25/2.00 and IBM PC DOS 2.00.
This option should only be given when needed
because it takes a fair amount of time for
FORMAT to perform the conversion, and it
noticably decreases 1.25 and 2.00 performance
on disks with few directory entries.

The /V option causes FORMAT to prompt for a
volume label after the disk is formatted.

If the /S option is specified, it must be the
last option typed; then FORMAT copies
operating system files from the disk in the
default drive to the newly formatted disk. The
files are copied in the following order:

10.SYS
MSDOS.SYS
COMMAND.COM

MKDIR command. (MD) (Make Directory)

TYPE Internal

PURPOSE Makes a new directory.

FORMAT MKDIR <pathname>

COMMENTS

This command is used to create a hierarchical
directory structure. When you are in your root
directory, you can create subdirectories by using
the MKDIR command.

For example

MKDIR \REP0RTS

will create a subdirectory \REP0RTS in your root
directory. To create a directory named CHAPMAN
under \REP0RTS, type:

MKDIR \REPORTS\CHAPMAN

u
Chapter Five Advance DOS Page 5-66

MODE

/
V.

MORE command

TYPE External

PURPOSE Sends output to the screen 25 lines at a time,

FORMAT MORE

COMMENTS

MORE is a filter that reads from standard input and
displays one screen of information at a time. The
MORE command then pauses and displays the '--MORE--'
message at the bottom of your screen.

Pressing the <ENTER> key will display another screen
of information. This process continues until all the
input data has been read.

The MORE command is useful for viewing a long file
one screen at a time.

For example if you type

TYPE MYFILE.TXT 1 MORE

DOS will display the file MYFILE.TXT (on the current
drive) one screen at a time.

PATH command

TYPE Internal

PURPOSE Sets a command path.

FORMAT PATH [<pathname>[;<pathname>]...]

COMMENTS

This command allows you to tell DOS which directories
should be searched for external commands after DOS
searches your current oirectory. The default value
is no path.

For example, to tell DOS to search your
\TEXT\REPORT\CHAPMAN directory for external commands,
type:

PATH \TEXT\REPORT\CHAPMAN

DOS will now search the \TEXT\REPORT\CHAPMAN
directory for external commands until you set another
path or shut down DOS.

You can tell DOS to search more than one path by
specifying several pathnames separated by semicolons.

For example,

PATH \TEXT\REPORT\CHAPMAN;\TEXT\REPORT\COHEN

tells DOS to search the directories specified
by the above pathnames to find external
commands. DOS searches the pathnames in the
order specified in the PATH command.

The command PATH with no options will print the
current path.

If you specify PATH

DOS will set the NUL path, meaning that only the
current directory will be searched for external
commands.

L

PRINT command

TYPE External

PURPOSE Prints a text file on a printer while you
are processing other DOS commands (usually
called 'background printing' or 'print spooling').

FORMAT PRINT CCfilespec][/T][/C][/S]]...

COMMENTS

You will use the PRINT command only if you have a
printer attached to your computer. The following
options are provided with this command:

/T TERMINATE: this option deletes all files
in the print queue (those waiting to be
printed). A message to this effect
will be printed.

/C CANCEL: This option turns on cancel mode.
The preceding filespec and all following
filespecs will be suspended in the print
queue until you type a /P option.

/P PRINT: This option turns on print mode.
The preceding filespec and all following
filespecs will be added to the print
queue until you issue a /C option.

PRINT with no options displays the contents of the
print queue on your screen without affecting the
queue.

For example

PRINT /T

empties the print queue.

PRINT /T ♦.ASM

empties the print queue and queues all .ASM files on
the current drive.

PRINT A:TEMP1.TST/C A:TEMP2.TST A:TEMP3.TST

removes the three files indicated from the print queue.

PRINT TEMPI.TST /C TEMP2.TST /P TEMP3.TST

removes TEMPI.TST from the queue, and adds TEMP2.TST
and TEMP3.TST to the queue.

If an error is detected, PRINT will display one of the
following error messages:

'Name of list device [PRN:]'

This prompt appears when PRINT is run the
first time. Any current device may be
specified and that device then becomes the
PRINT output device. As indicated in the
brackets, simply pressing <ENTER> results
in the device PRN being used.

'List output is not assigned to a device'

This message will be displayed if the "Name
of list device" specified to the above
prompt is invalid. Subsequent attempts
will return the same message until a valid
device is specified.

'PRINT queue is full'

There is room for 10 files in the queue.
If you attempt to put more than 10 files in
the queue, this message will appear on the
console.

'PRINT queue is empty'

There are no files in the print queue.

'No files match d:XXXXXXXX.XXX'

A filespec was given for files to add to
trie queue, but no files match a
specification.

NOTE: if there are no files in the queue
to match the cancelled filespec, no error message
will appear.

'Drive not ready'

If this message occurs when PRINT attempts
a disk access, PRINT will keep trying until
the drive is ready. Any other error causes
the current file to be cancelled. An error
message would be output on your printer in
such a case.

'All files cancelled'

If the /T (TERMINATE) option is issued, the
message "All files cancelled by operator"
will be output on your printer. If the
current file being printed is cancelled by a
/C, the message "File cancelled by operator"
will be printed.

PROMPT command

TYPE Internal

PURPOSE Changes the DOS command prompt.

FORMAT PROMPT [<prompt-text>]

COMMENTS

This command allows you to change the DOS system
prompt (for example, A>). If no text is typed, the
prompt will be set to the default prompt, which is
the default drive designation.

You can set the prompt to
as the current time,
indicated below.

a special prompt, such
by using the characters

The following characters can be used in the prompt
command to specify special prompts. They must all
be preceded by a dollar sign ($)in the prompt command:

Specify
This

Character To Get This Prompt:

$ - The '$' character
t - The current time
d - The current date
p - The current directory of the

default drive
V - The version number
n - The default drive
g - The '>' character
1 - The '<' character
b - The 'I' character
_ - A CR LF sequence
s - A space (leading only)
h - A backspace
e - ASCII code X'lB' (escape)

For example

PROMPT $n

Sets the normal DOS prompt (>).

PROMPT Time = t_Date « $d

Sets a two-line prompt which prints:

'Time = (current time)
Date = Uurrent date)'

If your Advance has the ANSI SYS driver loaded, then
you can use escape sequences in your prompts.

For example:

PROMPT $e[7mSn:$e[m

Sets the prompts in inverse video mode and returns to
video mode for other text.

C

RECOVER command

TYPE External

PURPOSE Recovers a file or an entire disk containing
bad sectors.

FORMAT RECOVER <filename | d:>

COMMENTS

If a sector on a diskette is bad, you can recover
either the file containing that sector (without the bad
sector) or the entire diskette (if the bad sector was
in the directory).

To recover a particular file, type:

RECOVER <filename>

This will cause DOS to read the file sector by sector
and to skip the bad sector(s). When DOS finds the bad
sector(s), the sector(s) are marked and DOS will no
longer allocate your data to that sector.

To recover a disk, type:

RECOVER <d:>

where d: is the letter of the drive
diskette to be recovered.

containing the

If there
directory,
information
A1location

is not enough room in the root
RECOVER will print a message and store
about the extra files in the File

Table. You can run RECOVER again to
regain these files when there is more room in the root
directory.

Chapter Five Advance Dos Page 5-75

REM command (Remark)

TYPE Internal

PURPOSE Displays remarks which are on the same line as
the REM command in a batch file during
execution of that batch file.

FORMAT REM [comment]

COMMENTS

The only separators allowed in the comment
space, tab, and comma.

For example

are the

REM This file checks new disks
REM It is named NEWDISK.BAT
PAUSE Insert new disk in drive B:
FORMAT B:/S
DIR B;
CHKDSK B:

REN command (RENAME)

TYPE Internal

PURPOSE Changes the name of the first option (filespec) to
the second option (filename).

FORMAT REN <filespec> <filename>

COMMENTS

The first option (filespec) must be given a drive
designation if the diskette resides in a drive
other than the current drive. Any drive designation
for the second option (filename) is ignored. The file
will remain on the disk where it currently resides.

The wild card characters may be used in either option.
All files matching the first filespec are renamed. If
wild card characters appear in the second filename,
corresponding character positions will not be changed.

For example

the following command changes the names of all files
with the .LST extension to similar names with the .PRN
extension:

REN *.LST *.PRN

In the next example, REN renames the file ABODE on
drive B: to ADOBE:

REN B:AB00E ?0?B?

The file remains on drive B:.

An attempt to rename a filespec to a name already
present in the directory will result in the error
message "File not found."

(
V

RMOIR command (RD) (Remove Directory)

TYPE Internal

PURPOSE Removes a directory from
directory structure.

FORMAT RMDIR <pathname>

hierarchical

COMMENTS

This command removes a directory that is empty except
for the . and .. shorthand symbols.

For example type:

RMDIR \TEXT\REPORT\CHAPMAN

The directory has been deleted from the
directory structure.

SET command

TYPE Internal

PURPOSE Sets one string value equivalent
for use in later programs.

FORMAT SET [<string*string>]

to another string

f

COMMENTS

This command is meaningful only if you want to set
values that will be used by programs you have
written. An application program can check all values
that have been set with the SET command by issuing
SET with no options.

For example.

SET TTY-VT52

sets the TTY value to VT52 until
another SET command.

you change it with

The SET command can
processing. In this
replaceable parameters
numbers. If your
statement "LINK %FILE%",

also be used in batch
way, you can define your
with names instead of
batch file contains the
you can set the name that

DOS will use for that variable with the SET command.

The command SET FILE=DOMORE replaces the %FILE%
parameter with the filename OOMORE. Therefore, you do
not need to edit each batch file to change the
replaceable parameter names. Note that when you use
text (instead of numbers) as replaceable parameters,
the name must be ended by a percent sign.

SET40 command

TYPE External

PURPOSE Sets display width to 40 columns

FORMAT SET40

SET80 command

TYPE External

PURPOSE Sets display width to 80 columns

FORMAT SET80

SORT command

TYPE External

— PURPOSE SORT reads input from your terminal, sorts the
data, then wri tes it to your terminal screen or
files.

FORMAT SORT C/R] C/+n]

COMMENTS

- SORT can be used. for example, to alphabetize a file
by a certain column. There are two options.

/R reverse the sort; that is, sort
from Z to A.

/+n sort starting with column n where
n is some number. If you do not
specify this option, SORT will
begin sorting from column 1.

For example

The following command will read the file
UNSORT.TXT, reverse the sort, and then write the
output to a file named S0RT.TXT:

SORT /R <UNSORT.TXT >S0RT.TXT

The following command will pipe the output of the
directory command to the SORT filter. The SORT filter
will sort the directory listing starting with
column 14 (this is the column in the directory listing
that contains the file size), then send the
output to the console. Thus, the result of this command
is a directory sorted by file size;

DIR I SORT /+14

The command

OIR I SORT /+14 I MORE

will do the same thing as the command in the
previous example, except that the MORE filter will
give you a chance to read the sorted directory
one screen at a time.

SYS (System) command

TYPE External

PURPOSE Transfers the DOS system files from the diskette
in the current drive to the disk in the drive
specified by d:.

FORMAT SYS <d>:

COMMENTS

SYS is normally used to update the system or to place
the system on a formatted disk which contains no
files. An entry for d: is required.

If 10.SYS and MSDOS.SYS are on the target disk, they
must take up the same amount of space on the disk as
the new system will need.

The target diskette must be completely blank or
only have the system files 10.SYS and MSDOS.SYS on
it.

The transferred
following order:

files are copied in the

10.SYS
MSDOS.SYS

10.SYS and DOS.SYS are both hidden files that do not
appear when the DIR command is executed. COMMAND.COM
(the command processor) is not transferred. You
must use the COPY command to transfer COMMANO.COM.

If SYS detects an error, one of
messages will be displayed:

the following

'No room for system on destination disk'

There is not enough room on the destination
disk for the 10.SYS and MSDOS.SYS files.

Incompatible system size'

The system files 10.SYS and MSDOS.SYS do
not take up the same amount of space on the
destination disk as the new system will
need.

TIME command

TYPE Internal

PURPOSE Displays and sets the time.

FORMAT TIME C<hh>[:<mm>]]

COMMENTS

If the TIME command is entered without any
arguments, the following message is displayed:

Current time is <hh>:<mm>:<ss>.<cc>
Enter new time:_

Press the <ENTER> key if you do not want to change
the time shown.

A new time may be given as an option to the TIME
command as in:

TIME 8:20

The new time must be entered using numerals only;
letters are not allowed.

the allowed options are:

<hh> = 00-24
<mm> = 00-59

The hour and minute entries must be separated by
colons. You do not have to type the <ss>(seconds)
or <cc> (hundredths of seconds) options.

DOS uses the time entered as the new time if the
options and separators are valid. If the options or
separators are not valid, DOS displays the message:

'Invalid time
Enter new time:_'

DOS then waits for you to type a valid time.

TYPE command

TYPE Internal

PURPOSE Displays the contents of the file on the
screen.

FORMAT TYPE <filespec>

COMMENTS

Use this command to examine the contents of a text
file without modifying it. (Use DIR to find the name
of a file and EDLIN to alter the contents of a
file. EDLIN is discussed in 5.20). The only formatting
performed by TYPE is that tabs are expanded to
spaces consistent with tab stops every eighth column.
Note that a display of binary files (.BIN, .COM or
.EXE) causes control characters to be sent to your
computer, including bells, form feeds, and escape
sequences.

VER command (version)

TYPE Internal

PURPOSE Prints DOS version number.

FORMAT VER

COMMENTS

If you want to know what version of DOS
using,type

VER <ENTER>

The version number will be displayed on your
screen.

you are

VERIFY command

TYPE Internal

PURPOSE Turns the verify option on or off when
writing to disk.

FORMAT VERIFY [ON|OFF]

COMMENTS

This command has the same purpose as the /V option
in the COPY command. If you want to verify that all
files are written correctly to disk, you can use
the VERIFY command to tell DOS to verify that your
files are intact (no bad sectors, for example). DOS
will perform a VERIFY each time you write data to a
disk.

You will receive an error message only if DOS was
unable to successfully write your data to disk.

VERIFY ON remains in effect until you change it in a
program (by a SET VERIFY system call), or until you
issue a VERIFY OFF command to DOS.

If you want to know what the current setting of VERIFY
is, type

VERIFY <ENTER>

r

VOL command (Volume)

TYPE Internal

PURPOSE Displays disk volume label, if it exists.

FORMAT VOL [d:]

COMMENTS

This command prints the volume label of
the disk in drive d;. If no drive is
specified, DOS prints the volume label of
the disk in the current drive.

If the disk does not have a volume
VOL displays:

'Volume in drive x has no label'

label,

BATCH PROCESSING COMMANDS

The following cotnmands are called batch processing
commands. They can add flexibility and power to
your batch programs. The commands discussed are
ECHO, FOR, GOTO, IF, and SHIFT.

If you are not writing batch programs,
need to read this section.

you do not

ECHO command

TYPE Internal

PURPOSE Turns batch echo feature on and off.

FORMAT ECHO [ON |OFF| message]

COMMENTS

Normally, commands in a batch file are
displayed ("echoed") on the screen when they are seen
by the command processor.

ECHO OFF

turns off this feature.

ECHO ON

turns the echo back on.

If ON or OFF are not specified, the current setting
is displayed.

ECHO <message> will display the message on the console
device.

c-

FOR command

TYPE Internal

PURPOSE Command extension used in batch
interactive file processing.

FORMAT FOR «<c> IN <set> 00 <command>

- for batch processing

FOR X<c> IN <set> DO <command>

- for interactive processing

and

COMMENTS

C

<c> can be any character except 0,1,2,3,..,9
to avoid confusion with the X0-X9
batch parameters,

<set> is (f<item>*£)

The X*<c> variable is set sequentially to
each member of <set>, and then
<command> is evaluated. If a member of
<set> is an expression involving *
and/or ?, then the variable is set to
each matching pattern from disk. In
this case, only one such <item> may be in
the set, and any <item> besides the first is
ignored.

Remember the words IN,FOR, and DO must be in
upper case.

For example

/

FOR t X f IN (*.ASM) 00 MASM X t f ;

FOR XX f IN (FOO BAR BLECH) DO REM XXf

The '%%' is needed so that after
batch parameter (%0-%9) processing is done,
there is one left. If only '%f were
there, the batch parameter processor
would see the look at 'f, decide that
'%f was an error (bad parameter reference)
and throw out the '%f, so that the command
FOR would never see it. If the FOR is
not in a batch file, then only one 'X'
should be used.

GOTO command

TYPE Internal

PURPOSE Command extension used in
file processing.

FORMAT GOTO <label>

batch

COMMENTS

GOTO causes commands to be taken from tne
batchfile beginning with the line after the
<label> definition. If no label has been
defined, the current batch file will
terminate.

For example

:foo
REM looping...
GOTO foo

will produce an infinite sequence of
messages:

'REM looping... '

Starting a line in a batch file with
causes the line to be ignored by batch
processing.

The characters following GOTO define a
label, but this procedure may also be used
to put in comment lines.

IF command

TYPE Internal

PURPOSE Command extension used in
file processing.

FORMAT IF <condition> <command>

batch

COMMENTS

The parameter
the following:

<condition> is one of

ERRORLEVEL <number>

True if and only if the previous program
executed by COMMAND had an exit code of
<number> or higher.

<stringl> == <string2>

True if and only if <stringl> and <string2>
are identical after parameter substitution.
Strings may not have embedded separators.

EXIST <filename>

True if and only if <filename> exists.

NOT <condition>

True if and only if <condition> is false.

/
V

The IF statement allows conditional
execution of commands. When the
<condition> is true,then the <command> is
executed. Otherwise, the <command> is
ignored.

Note: The words ERRORLEVEL, EXIST and NOT must
be in uppercase.

For example

IF NOT EXIST \TMP\FOO ECHO Can't find file

IF NOT ERRORLEVEL 3 LINK $1,,;

PAUSE command

TYPE Internal

PURPOSE Suspends execution of the batch file,

FORMAT PAUSE [comment]

COMMENTS

During tne execution of a batch file, you
may need to change diskettes or perform
some other action. PAUSE suspends
execution until you press any key, except
<Ctrl-Break>.

When the command processor encounters PAUSE,
it prints:

'Strike a key when ready . . .'

If you press <Ctrl-Break>, another prompt
will be displayed:

'Abort batch job (Y/N)?'

If you type Y in response to tnis
prompt, execution of the remainder of the
batch command file will be aborted and
control will be returned to the operating
system command level.

Therefore, PAUSE can be used to break a
batch file into pieces, allowing you to end
the batch command file at an intermediate
point.

The comment is optional and may be entered
on the same line as PAUSE. You may also
want to prompt the user of the batch file
with some meaningful message when the
batch file pauses. For example, you may want
to change disks in one of the drives.
An optional prompt message may be given in
such cases. The comment prompt will be
displayed before the "Strike a key"
messaoe.

SHIFT command

TYPE Internal

PURPOSE Allows access to more than 10
replaceable parameters in batch file
processing.

FORMAT SHIFT

COMMENTS

Usually, command files are limited to
handling 10 parameters, %0 through %9. To
allow access to more than ten parameters,
use SHIFT to change the command line
parameters.

For example:

if to * "foo”
%1 = "bar"
%2 = "name"
X3...X9 are empty

then a SHIFT will result in the following:

XO = "bar"
%1 = "name"
%2,,.%9 are empty

If there are more than 10 parameters given
on a command line, those that appear after
the 10th i%9) will be shifted one at a time
into X9 by successive shifts.

C

5.19 DOS EDITING AND FUNCTION KEYS

DOS editing keys are used to make corrections to commands and
input lines as they are being entered. The DOS editing keys are
used to edit within a line. The line editor program (EOLIN),
discussed in the next part of this chapter, operates on complete
lines within a file.

It is important to remember that some program packages,such as a
word processing package, have special editing conventions and
the DOS editing keys may not work with them in the way described
below. You can also set up special editing rules yourself when
using the BASIC Program Editor in BASIC.

The special DOS editing keys deserve particular emphasis because
they depart from the way in which most operating systems
handle command input. Any line that you enter from the keyboard
is kept in an input 'buffer* when you press <ENTER>. The line is
then made available for processing to your program. Since the
line remains in the input buffer you can use it as a 'template'
for editing purpose. The special DOS editing keys operate on
that copy of the line.

By using the template and the special editing keys,
take advantage of the following DOS features:

you can

1. A command line can be
pressing two keys.

instantly repeated by

If you make a mistake in the command line, you can
edit it and retry without having to retype the
entire command line.

A command line that is similar to a preceding
command line can be edited and executed with a
minimum of typing by pressing a special editing
key.

The relationship between the command line and the template
is shown in the diagram below.

User Input

Command Line <• •> Template

COMMAND.COM

As seen in the diagram, you type a command to DOS on the
command line. When you press the <ENTER> key, the command is
automatically sent to the command processor (COMMAND.COM)
for execution. At the same time, a copy of this command is sent
to the template. You can now recall the command or modify it
with DOS special editing keys.

The table below contains a complete list of the special
editing keys. You will find a full description of these keys and
their use in editing your text files in 5.20.

Table 5.1 Special Editing Functions

Key

<F1> or <-y>

<F2>

Editing Function

Copies one character from the template
to the command line

Copies characters up to the character
specified in the template and puts these
characters on the command line

<F3> Copies all remaining characters in the
template to the command line

 Skips over (does not copy) a character in
the template

<F4> Skips over (does not copy) the characters
in the template up to the character
specified .

<Esc> Voids the current input; leaves
the template unchanged

<Ins>

<F5>

<F6>

Enters/exits insert mode

Re-edits line with new template

Puts a CONTROL-Z (lAH) 'end-of-file character
in the new template

For example

If you type the following command

DIR PR06.COM

DOS displays information about the file PROG.COM on your
screen. The command line is also saved in the template. To the
command, just press two keys: <F3> and <ENTER>.

The repeated command is displayed on the screen as you type, as
shown below:

<F3>0IR PR0G.C0M<ENTER>

Notice that pressing the <F3> key causes the contents of the
template to be copied to the command line; pressing <ENTER>
causes the command line to be sent to the command processor
for execution.

If you want to display information about a file named
PROG.ASM, you can use the contents of the template and type:

<F2>C

Typing <F2>C copies all characters from the template to the
command line, up to but not including C. DOS displays:

DIR PR0G._

Note that the underline is your cursor. Now type:

.ASM

The result is:

DIR PR0G.ASM_

The command line DIR PROG.ASM is now in the template and
ready to be sent to the command processor for execution. To do
this, press <ENTER>.

Now assume that you want to execute the following command:

TYPE PROG.ASM

To do this, type:

TYPE<Ins> <F3XRETURN>

Notice that when you are typing, the characters are entered
directly into the command line and overwrite corresponding
characters in the template. This automatic replacement
feature is turned off when you press the insert key. Thus,the
characters "TYPE" replace the characters "DIR " in the
template. To insert a space between "TYPE" and "PROG.ASM", you
pressed <INS> and then the space bar. Finally, to copy the
rest of the template to the command line, you press <F3>
and then <ENTER>.

The command TYPE PROG.ASM has been
the template becomes TYPE PROG.ASM.

processed by DOS, and

If you had misspelled TYPE as BYTE, a command error would
have occurred. Still, instead of throwing away the whole
command, you could save the misspelled line before you press
<ENTER> by creating a new template with the <F5> key:

BYTE PR0G.ASM<F5>

You could then edit this erroneous command by typing:

T<F1>P<F3>

The <F1> key copies a single character from the template to the
command line. The resulting command line is then the command
that you want:

TYPE PROG.ASM

As an alternative, you can use the same template containing

BYTE PROG.ASM

and then use the and <Ins> keys to achieve the same
result:

<Del XDel ><FlXIns>YP<F3>

To illustrate how the command line is affected as you type,
examine the keys typed on the left; their effect on the
command line is shown on the right:

<F1 > T

<Ins> YP TYP

Skips over 1st template character

Skips over 2nd template character

Copies 3rd template character

Inserts two characters

<F3> TYPE PROG.ASM Copies rest of template

Notice that does not affect the command line. It
affects the template by deleting the first character.

Similarly, <F4> deletes characters in the template, upto but
not including a given character.

These special editing keys can add to your effectiveness at the
keyboard.

The next section describes control character functions that can
also help when you are typing commands.

CONTROL CHARACTER FUNCTIONS

A control character function is a function that affects the
command line. You have already learned about <Ctrl-Break>
and <Ctrl-Num Lock>. Other control character functions are
described below.

Remember that when you type a control character, such as
<Ctrl-Break>, you must hold down the control key and then
press the Break key.

Table 5.2 Control Character Functions

Control
Character Function

<Ctrl-Break> 1 Aborts current command.

<Ctrl-H>
or

< ^ >

1 Removes last character from command line,
1 and erases character from terminal screen.

—

<Ctrl-Enter> 1 Inserts physical end-of-line, but does not
1 empty command line. Use the <LINE FEED> key
1 to extend the current logical line beyond
1 the physical limits of one terminal screen.

<Ctrl-P>
or

<Ctrl-PrtSc>

1 Toggles terminal output to printer.
—

< t-PrtSO t Screen print

<Ctrl-Num Lock> 1 Suspends output display on terminal screen.
1 Press any key to resume.

<Esc> 1 Cancels the current line; empties the command
1 line; and then outputs a back slash (\),
1 carriage return, and line feed. The template
1 used by the special editing commands is not
1 affected.

—

5.20 THE LINE EDITOR (EDLIN)

EDLIN is the line editor program which you can use to create,
change, and display files, whether they are source program
or text files.

You can use EDLIN to:

Create new source files and save them.

Update existing files and save both the updated and
original files.

Delete, edit, insert, and display lines.

Search for, delete, or replace text within one or
more lines.

The text in files created or edited by EDLIN is divided into
lines, each up to 253 characters long. Line numbers are
generated and displayed by EDLIN during the editing process, but
are not actually present in the saved file.

When you insert lines, all line numbers following the
inserted text advance automatically by the number of lines
being inserted. When you delete lines in a file, all line
numbers following the deleted text decrease automatically by the
number of lines deleted. As a result, lines are always numbered
consecutively in your file.

Starting EDLIN

To start EDLIN, tyoe:

EDLIN <filename>

If you are creating a new file, the <filename> should be the
name of the file you wish to create. If EDLIN does not find this
file on a drive, EDLIN will create a new file with the name you
specify. The following message and prompt will be displayed:

New file
*

Notice that the prompt for EDLIN is an asterisk (*).

You can now type lines of text into your new file,
entering text, you must enter an I (Insert)
insert lines. The I command is discussed later
chapter.

To begin
command to

in this

If you want to edit an existing file, <filename> should be the
name of the file you want to edit. When EDLIN finds the file you
specify on the designated or default drive, the file will be
loaded into memory. If the entire file can be loaded, EDLIN will
display the following message on your screen:

End of input file
★

You can then edit the file using EDLIN editing commands.

If the file is too large to be loaded into memory, EDLIN will
load lines until memory is 3/4 full, then display the * prompt.
You can then edit the portion of the file that is in memory.

To edit the remainder of the file, you must save some of the
edited lines on disk to free memory; then EDLIN can load the
unedited lines from disk into memory. Refer to the Write
and Append commands in this chapter for the procedure.

When you complete the editing session, you
original and the updated (new) files by
command. The End command is discussed in this
section "EDLIN Commands".

can save the
using the End
chapter in the

The original file is renamed with an extension of .BAK, and the
new file has the filename and extension you specify in the
EDLIN command. The original .BAK file will not be erased until
the end of the editing session, or until disk space is needed
by the editor (EDLIN).

Do not try to edit a file with a filename extension of .BAK
because EDLIN assumes that any .BAK file is a backup file. If
you do have to edit such a file, rename the file with another
extension (using the DOS RENAME command discussed in 5.18), then
start EDLIN and specify the new <filename>.

SPECIAL DOS EDITING KEYS

The special editing keys and template discussed in part 5.19 of
this chapter can be used to edit your text files. The
table below summarises the use of these keys. Detailed
descriptions follow the table.

Table 5.3 Special Editing Keys

Function 1 Key | Description

Copy one character | <F1>
orI

I Copies one character from
I the template to the new
line.

Copy up to I
character |

<F2> I Copies all characters
I from the template to the
1 new line, up to the
I character specified.

Copy template |
i
1

____________ ___ _______ ___________

<F3> 1 Copies all remaining
1 characters in the
1 template to the screen.

. 4*___
Skip one character | 1 Does not copy (skips

1 1 over) a character.

Skip up to
character

<F4> I Does not copy (skips
I over) the characters in
I tne template, up to the
I character specified.

-
Quit input i <Esc> 1 Voids the current input;

1 1 leaves the template
1 i unchanged.

Insert mode 1 <Ins> 1 Enters/exits insert mode.

New template 1 <F5> 1 Makes the new line
1 1 the new template.

C

EDLIN

PURPOSE Copies one character from the template to the
command line.

COMMENTS

Pressing the <F1> key copies one character from the template
to the command line. When the <F1> key is pressed, one
character is inserted in the command line and insert mode is
automatically turned off.

For example:

Assume that the screen shows:

l:*This is a sample file.
1 :*_

At the beginning of the editing session, the cursor
(indicated by the underline) is placed at the beginning
of the line. Pressing the <F1> key copies the first
character (T) to the second of the two lines displayed:

l:*This is a sample file
<F1> 1:*T_

Each time the <F1> key is pressed, one more character appears:

<F1> l:*Th
<F1> l:*ThI_
<F1> l:*This

EDLIN

PURPOSE Copies multiple characters up to a given
character.

COMMENTS

Pressing the <F2>
character from the
character is the
copied or displayed
causes the cursor to move to the single character
specified in the command. If the template does not
the specified character, nothing is copied.

key copies all characters up to
template to the command line,
next character typed after <F2>;
on the screen. Pressing the

a given
The given
it is not

<F2> key
that is
contain

Pressing <F2> also automatically turns off insert mode.

Example:

Assume that the screen shows:

l:*This is a sample file.
1 :*_

At the beginning of the editing session, the cursor
(indicated by the underline) is positioned at the
beginning of the line. Pressing the <F2> key copies all
characters up to the character specified immediately after the
<F2> key.

l:*This is a sample file
<F2>p l:*This is a sam_

EDLIN

PURPOSE Copies template to command line.

COMMENTS

Pressing
template
at the
appears,
on the line.

the <F3> key copies all remaining characters from the
to the command line. Regardless of the cursor position

time the <F3> key is pressed, the rest of the line
and the cursor is positioned after the last character

Example:

Assume that the screen shows:

l:*This is a sample file.

At the beginning of the editing session, the cursor
(indicated by the underline) is positioned at the
beginning of the line. Pressing the <F3> key copies
all characters from the template (shown in the upper line
displayed) to the line with the cursor (the lower line
displayed):

l:*This is a sample file
<F3> l:*This is a sample file.

(template)
(command line)

Also, insert mode is automatically turned off.

EDLIN

PURPOSE Skips over one character in the template.

COMMENTS

Pressing the key skips over one character in the
template. Each time you press the key, one character is
not copied from the template. The action of the key is
similar to the <F1> key, except that skips a character
in the template rather than copying it to the command line.

Example:

Assume that the screen shows:

l:*This is a sample file.
1 :*_

At the beginning of the editing
(indicated by the underline)
beginning of the line. Pressing
the first character (T).

session, the cursor
is positioned at the

the key skips over

l:*This is
 1:*

a sample file

The cursor position does not change and only the template is
affected. To see how much of the line has been skipped over,
press the <F3> key, which moves the cursor beyond the last
character of the line.

l:*This
 1:*
<F3> l:*Fis is

is a sample file,

a sample file.

EDLIN

PURPOSE Skips multiple characters
the specified character.

in the template up to

COMMENTS

Pressing the <F4> key skips over all characters up to a
given character in the template. This character is not copied
and is not shown on the screen. If the template does not
contain the specified character, nothing is skipped over. The
action of the <F4> key is similar to the <F2> key, except
that <F4> skips over characters in the template rather than
copying them to the command line.

Example:

Assume that the screen shows:

l:*This is a sample file.
1 :*_

At the beginning of the editing session, the cursor
(indicated by the underline) is positioned at the
beginning of the line. Pressing the <F4> key skips over all
the characters in the template up to the character pressed after
the <F4> key:

<F4>p
l:*This
1:*

is a sample file

The cursor position does not change. To see how much of
the line has been skipped over, press the <F3> key to copy the
template. This moves the cursor beyond the last character of the
line:

l:*This is a sample file:
<F4>p 1:*_
<F3> l:*ple file.

EDLIN KEY <Esc>

PURPOSE Quits input and empties the command line.

COMMENTS

Pressing the <Esc> key empties the command line, but it
leaves the template unchanged. <Esc> also prints a back slash
(\), carriage return, and line feed, and turns insert mode
off. The cursor (indicated by the underline) is positioned
at the beginning of the line. Pressing the <F3> key copies the
template to the command line and the command line appears
as it was before <Esc> was pressed.

For example: Assume that the screen shows:

l:*This is a sample file.
1 :*

At the beginning of the editing session, the
(indicated by the underline) is positioned
beginning of the line. Assume that
1ine with "Sample File:"

cursor
at the

you want to replace the

l:*This is a sample file.
l:*Sample File_

To cancel the line you just entered (Sample File),
keep "This is a sample file.", press <Esc>. Notice
backslash appears on the Sample File line to tell you
been cancelled.

l:*This is a sample file.
<Esc> l:*Sample File\

1 :

and to
that a
it has

Press <Enter> to keep the original line, or to
other editing functions. If <F3> is pressed,
template is copied to the command line:

<F3> 1: This is a sample file.

perform any
the original

C

EDLIN

PURPOSE Enters/exits insert mode.

COMMENTS

Pressing the <Ins> key causes EDLIN to enter and exit insert
mode. The current cursor position in the template is not
changed. The cursor does move as each character is inserted.
However, when you have finished inserting characters, the
cursor will be positioned at the same character as it was
before the insertion began. Thus, characters are inserted in
front of the character to which the cursor points.

Example:

Assume that the screen shows:

l:*This is a sample file.
1 :*_

At the beginning of the editing session, the cursor
(indicated by the underline) is positioned at the
beginning of the line.

Assume that you press the <F2> and f keys:

l:*This is a sample file
<F2>f l:*This is a sample _

Now press the <Ins> key and insert the characters "edit"
and a space:

l:*This is a sample file.
<F2>f l:*This is a sample _

<Ins>edit l:*This is a sample edit _

If you now press the <F3> key, the rest of the template is copied
to the line:

l:*This is a sample edit
<F3> l:*This is a sample edit Tile._

If you pressed the <Enter> key, the remainder of the template
would be truncated, and the command line would end at -the
end of the insert:

<Ins>edit <Enter> l:*This is a sample edit _

To exit insert mode, simply press the <Ins> key again.

E O L I N

PURPOSE Creates a new template.

COMMENTS

Pressing the <F5> key copies the current command line to the
template. The contents of the old template are deleted.
Pressing <F5> outputs an I? ("at sign" character), a carriage
return, and a line feed. The command line is also emptied and
insert mode is turned off.

NOTE:

<F5> performs the same function as the <Esc> key, except
that the template is changed and an 0 ("at sign"character) is
printed instead of a \ (backslash).

For example:

Assume that the screen shows:

l:*This is a sample file.
1:*_

At the beginning of the editing session, the cursor
(indicated by the underline) is positioned at the
beginning of the line.

Assume that you enter <F2>m, <Ins>lary,<Ins> tax, and then
<F3>:

l:*This is a sample file.
<F2>m l:*This is a sa
<Ins>lary l:*This is a saTary_
<Ins> tax l:*This is a salary tax_

<F3> l:*This is a salary tax file._

At this point, assume that you want this line to be the new
template, so you press the <F5> key:

<F5>l:*This is a salary tax file.l?

The @ indicates that this new line is now the new template.
Additional editing can be done using the new template.

COMMAND INFORMATION

EDLIN commands perform editing functions on lines
Points to remember;

of text,

1. Pathnames are acceptable as options to
commands. For example, typing EDLIN
\TEXTS.84\REP0RT.AUG\CHAPMAN \SALES will
allow you to edit the SALES file in the
subdirectory CHAPMAN.

2. You can reference line numbers relative to the
current line (the line with the asterisk).
Use a minus sign with a number to indicate
lines before the current line. Use a plus
sign with a number to indicate lines after the
current line.

Example:

-10,+lOL

This command lists 10 lines
line, the current line, and
current line.

before the current
10 lines after the

3. Multiple commands may be issued on one command
line. When you issue a command to edit a
single line using a line number (<line>), a
semicolon must separate commands on the line.
Otherwise, one command may follow another
without any special separators. In the case
of a Search or Replace command, the <string>
may be ended by a <F5> instead of an <ENTER>.

For example:

The following command line
then displays lines 10
screen.

edits line
through 20

15
on

and
the

I
V

15;-5,+5L

The command line in the next example searches
for "This string" and then displays 5 lines
before and 5 lines after the line containing
the matched string. If the search fails, then
the displayed lines are those line numbers
relative to the current line.

SThis string<F6>-5,+5L

4. You can type EDLIN commands with or without a
space between the line number and command.
For example, to delete line 6, the command 6D
is the same as 6 0.

5. It is possible to insert a control character
Uuch as Ctrl-Break) into text by using the
quote character Ctrl-V before it while in
insert mode. Ctrl-V tells DOS to
recognize the next capital letter typed as a
control character. It is also possible to use
a control character in any of the string
arguments of Search or Replace by using the
special quote character. For example:

S<Ctrl-V>Z
will find the first occurrence
of CONTROL-Z in a file

R<C0NTR0L-V>Z<C0NTR0L-Z>foo
will replace all occurrences
of CONTROL-Z in a file by foo

S<C0NTR0L-V>C<C0NTR0L-Z>bar
will replace all occurrences
of CONTROL-C by bar

It is possible to insert
CONTROL-V-V.

CONTROL-V into the text by typing

6. The <F6> key ordinarily tells EDLIN, "This
is the end of the file." If you have CONTROL-Z
characters elsewhere in your file, you must tell
EDLIN that these other control characters do not mean
end-of-file. Use the /B option to tell EDLIN to ignore
any CONTROL-Z characters in the file and to show
you the entire file.

f
K

SUMMARY of EDLIN COMMANDS.

The EDLIN commands are summarized in the following table.
They are also described in further detail following the
description of command options.

EDLIN Conmands

Command Purpose

<1ine> 1 Edits line no.
A 1 Appends lines
C 1 Copies lines
D 1 Deletes lines
E 1 Ends editing
I 1 Inserts lines
L 1 Lists text
M 1 Moves lines
P 1 Pages text
0 1 Quits editing
R 1 Replaces lines
S 1 Searches text
T 1 Transfers text
W 1 Writes lines

EDLIN COMMAND OPTIONS

Some EDLIN commands accept one or more options. The effect of
a command option varies, depending on with which command it is
used. The following list describes each option.

<line> <line> indicates a line number that you
type. Line numbers must be separated by a
comma or a space from other line numbers,
other options, and from the command.

<line> may be specified one of three ways:

Number Any number less than 65534. If a
number larger than the largest
existing line number is specified,
then <line> means the line after
the last line number.

Period (.) If a period is specified for
<line>, then <line> means the
current line number. The current
line is the last line edited, and
is not necessarily the last line
displayed. The current line is
marked on your screen by an
asterisk (*) between the line
number and the first character.

Pound (£) The pound sign indicates the
line after the last line numoer.
If you specify £ for <line>, this
has the same effect as specifying a
number larger than the last line
number.

<ENTER> A carriage return entered
without any of the <line>
specifiers listed above directs
EDLIN to use a default value
appropriate to the command.

r

The question mark option directs EDLIN to
ask you if tne correct string has been
found. The question mark is used only with
the Replace and Search commands. Before
continuing, EDLIN waits for either a Y or
<ENTER> for a yes response, or for any
other key for a no response.

<string> <strinq> represents text to be found, to be

replaced, or to replace other text. The
<string> option is used only with the
Search and Replace commands. Each <string>
must be ended by a <C0NTR0L-Z> or a
<R£TURN> (see the Replace command for
details). No spaces should be left between
strings or between a string and its command
letter, unless you want those spaces to be
part of the string.

EDLIN EDITING COMMANDS

EDLIN (A)ppend

PURPOSE

FORMAT

Adds the
the file
added at
memory.

[<n>]A

specified number of lines from disk to
being edited in memory. The lines are
the end of lines that are currently in

COMMENTS

This command
too large to
into memory

is meaningful only if the file being edited is
fit into memory. As many lines as possible are read
for editing when you start EDLIN.

To edit the remainder of the file that will not fit into
memory, lines that have already been edited must be written to
disk. Then you can load unedited lines from disk into memory
with the Append command. Refer to the Write command in this
chapter for information on how to write edited lines to disk.

NOTE:

If you do not specify the number of lines
to append, lines will be appended to memory
until available memory is 3/4 full. No
action will be taken if available memory is
already 3/4 full.

The message "End of input file" is
displayed when the Append comr^nd has read
tne last line of the file into memory.

/
V

EDLIN

PURPOSE

FORMAT

(C)opy

Copies a range of lines to a specified line
number. The lines can be copied as many times
as you want by using the <count> option.

[<1ine>],C<line>],<!ine>,C<count>]C

COMMENTS

If you do not specify a number in <count>, EDLIN copies the
lines one time. If the first or the second <line> are omitted,
the default is the current line. The file is renumbered
automatically after the copy.

The line numbers must not overlap or you will get an "Entry
error" message. The following, for example,

3,20,15C

would result in an error message.

For example:

Assume that the following file exists and is ready to edit:

1: This is a sample file
2: used to show copying lines.
3: See what happens when you use
4: the Copy command
5: (the C command)
6: to copy text in your file.

You can copy this entire block of text
following command:

by issuing the

The result is:

1 :
2 :
3:
4:
5:
6:
7:
8:
9:

1 0:
1 1 :
1 2 :

1,6,7C

This is a sample fi le
used to show copying lines.
See what happens when you use
the Copy command
(the C command)
to copy text in your file.
This is a sample file
used to show copying lines.
See what happens when you use
the Copy command
(the C command)
to copy text in your file.

If you want to place the text within other text, the third

<line> option should specify the line before which you want the
copied text to appear. For example, assume that you want to
copy lines and insert them within the following file:

1: This is a sample file
2: used to show copying lines.
3: See what happens when you use
4: the Copy command
5: (the C command)
6: to copy text in your file.
7: You can also use COPY
8: to copy lines of text
9: to the middle of your file.
10: End of sample file.

he command 3,6,9C results in the following file:

1: This is a sample file
2: used to show copying lines.
3: See what happens when you use
4: the Copy command
5: (the C command)
6: to copy text in your file.
7: You can also use COPY
8: to copy lines of text
9: to the middle of your file.
10: See what happens when you use
11: the Copy command
12: (the C command)
13: to copy text in your file.
14: End of sample file.

EOLIN (D)elete

PURPOSE Deletes a specified range of lines in a file.

FORMAT C<1ine>][,<line>]D

COMMENTS

If the first <line> is omitted, that option will default to
the current line (the line with the asterisk next to the line
number). If the second <line> is omitted, then just the first
<line> will be deleted. When lines have been deleted, the line
immediately after the deleted section becomes the current line
and has the same line number as the first deleted <line> had
before the deletion occurred.

For example;

Assume that the following file exists and is ready to edit:

1: This is a sample file
2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert

25: (the 0 and I commands)
26: to edit the text
27:*in your file.

To delete multiple lines, type <line>,<line>D:

5.24D

The result is:

1: This is a sample file
2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert
5: (the D and I commands)
6: to edit text
7:*in your file.

To delete a single line, type:

6D

The result is:

1: This is a sample file
2: used to show dynamic line
3: See what happens when you
4: Delete and Insert
5: (the D and I commands)

numbers,
use

6;*in your file.

Next, delete a range of lines from the following file:

1: This is a sample file
2: used to show dynamic line numbers.
3:*See what happens when you use
4: Delete and Insert
5: (the D and I commands)
6: to edit text
7: in your file.

To delete
type:

a range of lines beginning with the current line.

,60

The result is:

1: This is a sample file
2: used to show dynamic line numbers.
3:*in your file.

Notice that the lines are automatically renumbered.

EOLIN

PURPOSE

FORMAT

<line> Edit

Edits line of text.

[<1ine>]

COMMENTS

When a line number is typed, EDLIN displays the line number and
text; then, on the line below, EDLIN reprints the line number.
The line is now ready for editing. You may use any of the
EDLIN editing commands to edit the line. The existing text
of the line serves as the template until the <ENTER> key is
pressed.

If no line number is typed (that is, if only the <ENTER> key
is pressed), the line after the current line (marked with an
asterisk (*))is edited. If no changes to the current line are
needed and the cursor is at the beginning or end of the line,
press the <ENTER> key to accept the line as is.

WARNING

If the <ENTER> key is pressed while
the cursor is in the middle of the
line, the remainder of the line is
deleted.

For example:

Assume that the following file exists

1: This is a sample file.
2: used to show
3: the editing of line
4:*four.

and is ready to edit:

To edit line 4, type:

4

The contents of the line are displayed with a cursor below the
line:

4:* four.
4:*_

Now, using the <F3> special editing key, type:

<Ins>number 4: number_
<F3XENTER> 4: number four.

5:*

EDLIN (E)nd

PURPOSE Ends the editing session,

FORMAT

COMMENTS

This command saves the edited file on disk, renames the
original input file <filename>.BAK, and then exits EDLIN. If the
file was created during the editing session, no .BAK file is
created.

The E command takes no options. Therefore, you cannot tell
EDLIN on which drive to save the file. The drive you want to
save the file on must be selected when the editing session
is started. If the drive is not selected when EDLIN is
started, the file will be saved on the disk in the default drive.
It will still be possible to COPY the file to a different
drive using the DOS COPY command.

You must be sure that the disk contains enough free space for
the entire file. If the disk does not contain enough free space,
the write will be aborted and the edited file lost,
although part of the file might be written out to the disk.

For example:

E<ENTER>

After execution of the E
prompt (for example, A>)

command, the
is displayed.

DOS default drive

EDLIN (Dnsert

PURPOSE Inserts text immediately before the specified
<1ine>.

FORMAT [<1ine>]I

COMMENTS

If you are creating a new file, the I command must be given
before text can be typed (inserted). Text begins with line
number 1. Successive line numbers appear automatically
each time <ENTER> is pressed.

EDLIN remains in insert mode until <Ctrl-Break>is typed. When
the insert is completed and insert mode has been exited,
the line immediately following the inserted lines
becomes the current line. All line numbers following the
inserted section are incremented by the number of lines inserted.

If <line> is not specified, the default will be the current
line number and the lines will be inserted immediately before the
current line.If <line> is any number larger than the last
line number, or if a pound sign (£) is specified as
<line>, the inserted lines will be appended to the end of the
file. In this case,the last line inserted will become the
current line.

For example:

Assume that the following file exists and is ready to edit:

1: This is a sample file
2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert
5: (the 0 and I commands)
6: to edit text
7:*in your file.

To insert text before a specific line
line, type <line>I:

that is not the current

71

The result is:

Now, type the new text for line 7:

7: and renumber lines

Then to end the insertion, press <F6> on the next line:

8: <F6>

Now type L to list the file. The result is:

1: This is a sample file
2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert
5: (the D and I commands)
6: to edit text
7. and renumber lines
8:*in your file.

To insert lines immediately before the current line, type:

I

The result is:

8: _

Now, insert the following text and terminate with a <F6> on
the next line:

8: so they are consecutive
9: <F6>

Now to list the file and see the result, type L:

The result is:

1: This is a sample file
2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert
5: (the D and I commands)
6: to edit text
7: and renumber lines
8: so they are consecutive
9:*in your file.

To append new lines to the end of the file,
type:

101

This produces the following:

1 0 : _

Now, type the following new lines:

10: The insert command can place new lines
11: in the file; there's no problem
12: because the line numbers are dynamic;
13: they'll go all the way to 65533.

End the insertion by pressing <F6> on line 14. The new lines
will appear at the end of all previous lines in the file. Now
type the List command, L:

The result is:

1: This is a sample file
2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert
5: (the D and I commands)
6: to edit text
7: and renumber lines
8: so they are consecutive
9: in your file.

10: The insert command can place new lines
11: in the file; there's no problem
12: because the line numbers are dynamic;
13: they'll go all the way to 65533.

EOLIN

PURPOSE

FORMAT

(L)ist

Lists a range of lines, including the two lines
specified.

C<line>][,<line>]L

COMMENTS

Default values are provided if either one or both of
options are omitted. If you omit the first option, as in:

the

,<line>L

the display will start 11 lines before the current line and
end with the specified <line>. The beginning comma is required to
indicate the omitted first option.

NOTE: If the specified <line> is more than 11
lines before the current line, the
display will be the same as if you
omitted both options.

If you omit the second option, as in

<line>L

23 lines will be displayed, starting with the specified <line>.

If you omit both parameters, as in

L

23 lines will be displayed--the 11 lines before the current
line, the current line, and the 11 lines after the current line.
If there are less than 11 lines before the current line,
more than 11 lines after the current line will be displayed to
make a total of 23 lines.

For example:

Assume that the following file exists and is ready to edit:

1: This is a sample file
2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert
5: (the D and I commands)

15:*The current line contains an asterisk.

26: to edit text
27: in your file.

To list a range of lines without reference to the current line,
type <1ine>,<!ine>L: 2,5L

The result is:

2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert
5: (the D and I commands)

To list a range of lines beginning with the current line,
type ,<line> L:

,26L

The result is:

15:*The current line contains an asterisk.

26: to edit text

To list a range of 23 lines centered around the current line,

type only L

The result is:

4: Delete and Insert
5: (the 0 and I commands)

13: The current line is listed in the middle.
14: The current line remains unchanged.
15:*The current line contains an asterisk.

26: to edit text,

EOLIN (M)ove

PURPOSE Moves a range of text to the line specified,

FORMAT C<1ine>],[<1ine>],<!ine>M

COMMENTS

Use the Move command to move a block of text (from the first
<line> to the second <1ine>) to another location in the file.
The lines are renumbered according to the direction of the
move. For example,

,+25,100M

moves the text from the current line plus 25 lines to line
100. If the line numbers overlap, EOLIN will display an
"Entry error" message.

To move lines 20-30 to line 100, type:

20,30,100M

EOLIN (P)age

PURPOSE Pages through a file 23 lines at a time.

FORMAT C<line>][,<line>]P

COMMENTS

If the first <line> is omitted, that number will default to
the current line plus one. If the second <line> is omitted, 23
lines will be listed. The new current line becomes the last
line displayed and is marked with an asterisk.

EOLIN (Q)uit

PURPOSE

FORMAT

Quits the editing session, does not save any
editing changes, and exits to the DOS
operating system.

COMMENTS

EOLIN prompts you to make sure you don't want to save the
changes.

Type Y if you want to quit the editing session.

No editing changes are saved and no .BAK file is created.
Refer to the End command in this chapter for information about
the .BAK file.

Type N or any other character except Y if you want to continue
the editing session.

NOTE:

When started, EDLIN erases any previous
copy of the file with an extension of
.BAK to make room to save the new copy.
If you reply Y to the Abort edit (Y/N)?
message, your previous backup copy will
no longer exist.

For example:

Example: Q
Abort edit (Y/N)?Y<RETURN>

A>

EDLIN

PURPOSE

FORMAT

(R)eplace

Replaces all occurrences of a string of text in
the specified range with a different string of
text or blanks.

[<line>][,<l ine>]C?]R<stringl><F6Xstring2>

COMMENTS

As each occurrence of <stringl> is found, it is replaced by
<string2>. Each line in which a replacement occurs will be
displayed. If a line contains two or more replacements
of <stringl> with <string2>, then the line will be displayed
once for each occurrence. When all occurrences of <stringl> in
the specified range are replaced by <string2>, the R
command terminates and the asterisk prompt reappears.

If a second string is to be given as a replacement,
then <stringl> must be separated from <string2> with a <F6>.
<String2> must also be ended with a <F6XENTER> combination or
with a simple <ENTER>.

If <stringl> is omitted, then Replace will take the old <stringl>
as its value. If there is no old <stringl>, i.e., this is the
first replace done, then the replacement process will be
terminated immediately. If <string2> is omitted, then
<stringl> may be ended with an <ENTER>. If the first <line>
is omitted in the range argument (as in ,<line>) then the
first <line> will default to the line after the current line.
If the second <line> is omitted (as in <line>
second <line> will default to £. Therefore,
<line>,£. Remember that £ indicates the
line of the file.

or <line>,), the
this is the same as
line after the last

If <stringl> is ended with
<string2> will be taken as
the new replace string.

<F6> and there is
an empty string and

no <string2>,
wi11 become

For example,

R<string2XF6XENTER>

will delete occurrences of <stringl>, but

R<stringlXreturn>
R<ENTER>

and

will replace <stringl> by the old <string2> and the old
<stringl> with the old <string2>, respectively. Note that
“old" here refers to a previous string specified either in a
Search or a Replace command.

If the question mark (?) option is
will stop at each line with a s
display the line with <string2>
prompt O.K.?. If you press Y
<string2> will replace <stringl>
<stringl> will be found. Again,
displayed. This process will cont
or until the end of the file.
<stringl> is found, EOLIN displ

given, the Replace command
tring that matches <stringl>,
in place, and then display the
or the <ENTER> key, then
, and the next occurrence of
the O.K.? prompt will be

inue until the end of the range
After the last occurrence of
ays the asterisk prompt.

If you press any key besides Y or <ENTER> after the O.K.?
prompt, the <stringl> will be left as it was in the line, and
Replace will go to the next occurrence of <stringl>. If
<stringl> occurs more than once in a line, each occurrence of
<stringl> will be replaced individually, and the O.K.?
prompt will be displayed after each replacement. In this way,
only the desired <stringl> will be replaced, and you can
prevent unwanted substitutions.

For example:

Assume that the following file exists
editing:

and is ready for

1: This is a sample file
2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert
5: (the D and I commands)
6: to edit text
7: in your file.
8: The insert command can place new lines
9: in the file; there's no problem
10: because the line numbers are dynamic;
11: they'll go all the way to 65533.

To replace all occurrences of <stringl> with <string2> in
specified range, type: 2,12 Rand<F6>or<ENTER>

The result is:

4: Delete or Insert
5: (the D or I commors)
8: The insert commor can place new lines

Note that in the above
substitutions have occurred. To
replacement, the same original
slightly different command.

replacement,
avoid these and
file can be

some unwanted
to confirm each
used with a

In the next example, to replace only certain occurrences
the first <string> with the second <string>, type:

of

2? Rand<F6>or<ENTER>

The result is;

4: Delete or Insert
O.K.? Y
5: (The D or I commands)
O.K.? Y
5: (The D or I commors)
O.K.? N
8: The insert commor can place new lines
O.K.? N
*

Now, type the List command (L) to see the result of al
these changes:

4: Delete or Insert
5: (The D or I commands)

8: The insert command can place new lines

EDLIN (S)earch

PURPOSE Searches the specified range
specified string of text.

of lines for a

FORMAT [<1 ine>][,<1 ine>][?]S<stringXENTER>

COMMENTS

The <string> must be ended with an <ENTER>. The
that matches <string> is displayed and becomes
line. If the question mark option is
Search command will terminate when a match
line contains a match for <string>,
found" will be displayed.

first line
the current

not specified, the
is found. If no
the inessage "Not

If the question mark option (?) is included in the command,
EDLIN will display the first line with a matching string; it
will then prompt you with the message O.K.? If you
press either the Y or <ENTER> key, the line will become the
current line and the search will terminate. If you press any
other key, the search will continue until another match is
found, or until all lines have been searched (and the Not
found message is displayed).

If the first <line> is omitted (as in ,<1ine>S<string>), the
first <line> will default to the line after the current line.
If the second <line> is omitted (as in <line> S<string> or
<line>, S<string>), the second <line> will default to £
(line after last line of file), which is the same as <line>,£
S<string>. If <strinq> is omitted. Search will take the old
string if there is one. (Note that "old" here refers to a
string specified in a previous Search or Replace command.) If
there is not an old string (i.e., no previous search or replace
has been done), the command will terminate immediately.

For example:

Assume that
editing:

the following file exists and is ready for

1: This is a sample file
2: used to show dynamic line numbers.
3: See what happens when you use
4: Delete and Insert
5: (the D and I commands)
6: to edit text
7: in your file.
8: The insert command can place new lines
9: in the file; there's no problem

iO: because the line numbers are dynamic;
ll:*they'll go all the way to 65533.

To search for the first occurrence of the string "and"
type 2,12 Sand<ENT£R>

The following line is displayed:

4: Delete and Insert

To get the "and" in line 5, modify the search command by
typing:

<DelXF3>,12 Sand<ENTER>

The search then continues from the line after the current line
(line 4), since no first line was given. The result is:

5: (the D and I commands)

To search through several occurrences of a string until the
correct string is found, type:

1, ? Sand

The result is:

4: Delete and Insert
O.K.?_

If you press any key (except Y or <ENTER>), the search
continues, so type N here:

O.K.? N

Continue:

5: (the D and I commands)
O.K.?

Now press Y to terminate the search:

O.K.? Y
★

To search for string XYZ without the verification
(O.K.?), type: SXYZ

EDLIN will report a match and will continue to search for the
same string when you issue the S command:

EDLIN reports another match.

S

EDLIN reports the string is not found.

Note that <string> defaults to any string specified by a
previous Replace or Search command.

EDLIN (T)ransfer

PURPOSE Inserts (merges) the contents of <filename>
into the file currently being edited at <line>.
If <line> is omitted, then the current line
will be used.

FORMAT [<line>]T<filename>

COMMENTS

This command is useful if you want to put the contents of a
file into another file or into the text you are typing. The
transferred text is inserted at the line number specified by
<line> and the lines are renumbered.

EDLIN

PURPOSE

FORMAT

(W)rite

Writes a specified number of lines to disk from
the lines that are being edited in memory.
Lines are written to disk beginning with line
number 1.

[<n>]W

COMMENTS

This command is meaningful only if the file you are
too large to fit into memory. When you start EDLIN,
lines into memory until memory is 3/4 full.

editing is
EDLIN reads

To edit the remainder of your file, you must write edited
lines in memory to disk. Then you can load additional unedited
lines from disk into memory by using the Append command.

NOTE:

If you do not specify the number of
lines, lines will be written until
memory is 3/4 full. No action will be
taken if available memory is already
more than 3/4 full. All lines are
renumbered, so that the first remaining
line becomes line number 1.

EDLIN ERROR MESSAGES

When EDLIN finds an error, one of the following error
messages is displayed:

'Cannot edit .BAK file--rename file'

Cause: You attempted to edit a file with a filename
extension of .BAK. .BAK files cannot be edited
because this extension is reserved for backup
copies.

Cure: If you need the .BAK file for editing purposes,
you must either RENAME the file with a
different extension; or COPY the .BAK file and
give it a different filename extension.

'No room in directory for file'

Cause: When you attempted to create a new file, either
the file directory was full or you specified an
illegal disk drive or an illegal filename.

Cure: Check the command line that started EDLIN for
illegal filename and illegal disk drive
entries. If the command is no longer on the
screen and if you have not yet typed a new
command, the EDLIN start command can be
recovered by pressing the <F3> key.

If this command line contains no illegal
entries, run the CHKDSK program for the
specified disk drive. If the status report
shows that the disk directory is full, remove
the disk. Insert and format a new disk.

'Entry Error'

Cause: The last command typed contained a syntax
error.

Cure: Retype the command with the correct syntax and
press <ENTER>.

'Line too long'

Cause: During a Replace command, the string given as
the replacement caused the line to expand
beyond the limit of 253 characters. EDLIN
aborted the Replace command.

Cure: Divide the long line into two lines, then try

the Replace command twice.

'Disk Full— file write not completed'

Cause: You gave the End command, but the disk did not
contain enough free space for the whole file.
EDLIN aborted the E command and returned you to
the operating system. Some of the file may
have been written to the disk.

Cure: Only a portion (if any) of the file has been
saved. You should probably delete that portion
of the file and restart the editing session.
The file will not be available after this
error. Always be sure that the disk has
sufficient free space for the file to be
written to disk before you begin your editing
session.

Incorrect DOS version'

Cause: You attempted to run EDLIN under a version of
DOS that was not 2.11 or higher.

Cure: You must make sure that the version of DOS
that you are using is 2.11 or higher.

Invalid drive name or file'

Cause: You have not specified a valid drive
filename when starting EDLIN.

Cure: Specify the correct drive or filename.

or

'Filename must be specified'

Cause: You did not specify a filename when you started
EDLIN.

Cure: Specify a filename.

Invalid Parameter'

Cause: You specified an option other than /3 wnen
starting EDLIN.

Cure: Specify the /B option when you start EDLIN.

Insufficient memory'

Cause: There is not enough memory to run EDLIN.

Cure: If you have multiple programs loaded you must free
some memory by writing files to disk or by
deleting files.

'File not found'

Cause: The filename specified during
command was not found.

Cure: Specify a valid filename when
Transfer command.

Transfer

issuing

'Must specify destination number'

Cause: A destination line number was not specified for
a Copy 3r Move command.

Cure: Reissue the command with a destination line
number.

'Not enough room to merge the entire file'

Cause: There was not enough room in memory to hold the
file during a Transfer command.

Cure: You must free some memory by writing some files
to disk or by deleting some files before you
can transfer this file.

'File creation error'

Cause: The EDLIN temporary file cannot be created.

Cure: Check to make sure that the directory has
enough space to create the temporary file.
Also, make sure that the file does not have the
same name as a subdirectory in the directory
where the file to be edited is located.

5.21 FILE COMPARISON UTILITY (FC)

The File Comparison Utility (FC) compares the contents of two
files. The differences between the two files can be output to the
screen, the printer or to a third file. You may use FC to
compare text files or binary files (files output by the
MACRO assembler, the LINK Linker utility, or by a high-level
language compiler).

FC makes the comparisons in one of two ways: on a line-
by-line or a byte-by-byte basis. The line-by-line
comparison isolates blocks of lines that are different
between the two files and prints those blocks of lines. The
byte-by-byte comparison displays the bytes that are
between the two files.

Limitations On text file comparisons

FC uses a large amount of memory as buffer (storage) space to
hold the text files. If the text files are too large for the
available memory,
buffer space,
buffer space.

FC will compare what can be loaded into the
If no lines match in the parts of the files in the
FC will display only the message:

*** Files are different * ***

For binary files larger than available memory, FC compares both
files completely, overlaying the portion in memory with the next
portion from disk. All differences are output in the same
manner as those files that fit completely in memory.

FILE SPECIFICATIONS

All file specifications use the following format

[d:]<filename>[<.ext>]

d: is the letter designating a disk drive. If the drive
designation is omitted, FC defaults to the current drive.

filename is a one- to eight-character name of the file.

USING FC

The format of FC is as follows:

FC [/ /B /W /C] <filenamel> <filename2>

FC matches the first file (filenamel) against the second
(filename2) and reports any differences between them. Both
filenames can be pathnames. For example,

FC B:\TEXT\REP0RT\FILE1.TXT \REP0RT\FILE2.TXT

FC takes FILE1.TXT in the \TEXT\REPORT directory of disk drive
B: and compares it with FILE2.TXT in the \REP0RT directory.
Since no drive is specified for filename2, FC assumes that the
\REP0RT directory is on the disk in the current drive.

FC OPTIONS

There are four options that
Comparison Uti1ity:

you can use with the File

/B Forces a binary comparison of both files. The two
files are compared byte-to-byte, with no attempt to
re-synchronize after a mismatch. The mismatches are
printed as follows:

-ADDRS--- FI----F2-
xxxxxxxx yy zz

(where xxxxxxxx is the relative address of the pair
of bytes from the beginning of the file). Addresses
start at 00000000; yy and zz are the mismatched
bytes from filel and file2, respectively. If one of
the files contains less data than the other, then a
message is printed out. For example, if filel ends
before file2, then FC displays:

0ata left in F2

/ £ stands for a number from 1 to 9. This option
specifies the number of lines required to match for
the files to be considered as matching again after a
difference has been found. If this option is not
specified, it defaults to 3. This switch is used
only in text comparisons.

fV

/W Causes FC to compress whites (tabs and spaces) during
the comparison. Thus, multiple contiguous whites in
any line will be considered as a single white space.
Note that although FC compresses whites, it does not
ignore them. The two exceptions are beginning and
ending whites in a line, which are ignored. For
example (note that an underscore represents a white)

More data to be found

will match with

More data to be found

and with

/C

More data to be found

but will not match with

____ M̂ored at a_to_be_f ound

This option is used only in text comparisons.

Causes the matching process to ignore the case of
letters. All letters in the files are considered
uppercase letters. For example,

Much_MORE_data_IS_NOT_FOUND

will match

m uc h_mo r e_d a t a_i s_n o t_f o u n d

If both the /W and /C options are specified, then FC
will compress whites and ignore case. For example,

___DATA_was_found____

will match:

data_was_found

This switch is used only in source comparisons.

HOW FILE DIFFERENCES ARE REPORTED

FC reports the differences between the two files you specify by
displaying the first filename, followed by the lines that
differ between the files, followed by the first line to match
in both files.

FC then displays the name of the second file followed by the
lines that are different, followed by the first line that
matches.

The default for the number of lines to match between the
files is 3. (If you want to change this default, specify the
number of lines with the / option). For example.

----------<filenamel>
<difference>
<lst line to match file2 in filel>

----------<filename2>
<difference>
<lst line to match filel in file2>

FC will continue to list each difference.

If there are too many differences (involving too many
lines), the program will simply report that the files are
different and stop.

If no matches are found after the first difference is found, FC
will display:

*** Files are different ***

and will return to the Advance DOS default drive prompt (A>).

HOW TO REDIRECT FC OUTPUT TO A FILE

The differences and matches between the two files you
specify will be displayed on your screen unless you redirect the
output to a file. This is done in the same way as DOS command
redirection (refer to 5.17)

To compare Filel and File2, and then send the FC
OIFFER.TXT, type:

FC FILEl FILE2 >DIFFER.TXT

output to

The differences and matches between Filel and File2 will be put
into OIFFER.TXT on the default drive.

EXAMPLES OF USING FC

Example 1:

Assume these two ASCII files are on disk:

ALPHA.TXT BETA.TXT

FILE A FILE B

A A
B B
C C
D G
E H
F I
rn J
H 1
I 2
M P
iN 0
0 R
P S
Q T
R U
S V
T 4
U 5
V W
w X
X Y
Y Z
Z

To compare the two files and display the differences on
screen, type:

FC ALPHA.TXT BETA.TXT

the

FC compares ALPHA.TXT with 8ETA.TXT and displays the
differences on the screen. All other defaults remain intact.
(The defaults are: do not use tabs, spaces, or comments for
matches, and do a text file comparison on the two files.)

The output will appear as follows on the screen
(the Notes do not appear):

D
E
F
G

•ALPHA.TXT
NOTE: ALPHA file
contains defg,
BETA contains g.

•BETA.TXT

M
N
0
P

•ALPHA.TXT
NOTE: ALPHA file
contains mno where
BETA contains jl2.

J
1
2
P

•BETA.TXT

..........ALPHA.TXT
W NOTE: ALPHA file

contains w where
----------BETA.TXT BETA contains 45w.
4
5
W

Example 2:

You can print the differences on the printer using the same two
source files. In this example, four successive lines must be
the same to constitute a match.

Type:

FC /4 ALPHA.TXT BETA.TXT >PRN

The following output will appear on the printer:

..........ALPHA.TXT
0
E
F
6
H
I
M
N NOTE: P is the 1st of
0 a string of 4 matches.
P

..........BETA.TXT
G
H
1
J
1
2
P

..........ALPHA.TXT
W

NOTE: W is the 1st of a
----------BETA.TXT string of 4 matches.
4
5
W

Example 3:

This example forces a binary comparison and then displays the
differences on the screen using the same two text files as were
used in the previous examples.

Type:

FC /B ALPHA.ASM BETA.ASM

The /B switch in this example forces binary comparison. This
switch and any others must be typed before the filenames
in the FC command line. The following display should appear:

-ADORS — -Fl- -F2—
o o n o n o o p 44 47
o o o o o o o c 45 48
OOOOOOOF 46 49
00000012 47 4A
00000015 48 31
00000018 49 32
OOOOOOIB 40 50
0000001E 4E 51
00000021 4F 52
00000024 50 53
00000027 51 54
0000002A 52 55
0000002D 53 56
00000030 54 34
00000033 55 35
00000036 56 57
00000039 57 58
0000003C 58 59
0000003F 59 5A
00000042 5A lA

FC ERROR MESSAGES

When FC detects an error, one or more of the following error
messages will be displayed:

'Incorrect DOS version'

You are running FC under a version of Advance DOS that
is not 2.11 or higher.

'Invalid parameter:<option>'

One of the switches that you have specified
invalid.

'File not found:<filename>'

FC could not find the filename you specified.

'Read error in:<filename>'

FC could not read the entire file.

'Invalid number of parameters'

You have specified the wrong number of options on
the FC command line.

is

CHAPTER SIX ADVANCE 86 BASIC

6.1 For the Absolute Beginner in Basic

Page

6-1
6.2 Versions of Advance Basic 6-3
6.3 Loading Basic 6-4
6.4 The Basic Prompt 6-4
6.5 Basic programs 5-5
6.6 Variable names and types 5-5
6.7 Arrays 6-7
6.8 Arithmetric operations 5-8
6.9 The Basic Screen Editor 6-11
6.1U Free memory 6-14
6.11 Format of SAVEd programs 6-14
6.12 The character set 6-15

■** 6.13 Reading the keyboard 6-15
6.14 Random Number Generator 6-17
6.15 Soft keys and key trapping 5-17
6.16 Sound 6-21
6.17 The Advance display 6-24
6.18 The Text screen 6-25
6.19 The virtual screen 6-27
6.20 The Graphics screen 6-28
6.21 Advance Basic Quick Reference Section 6-38
6.22 Basic Error messages 6.69

J

This chapter introduces the Basic programming language supplied
with vour Advance 85.

6.1 For absolute beginner in Basic

This chapter is not intended as a tutorial for newcomers - it's a
guide for those who already know Basic. If you want to learn
Basic, you should refer to the separate Advance Basic manual or
indeed any of the many Basic tutorials available on the market.
If you do buy an 'independent' Basic tutorial, you'll find that
tnere are commands and features that are specific to the Advance.
This chapter will serve as a good introduction to them.

However, if you want to begin in Basic, and do not have immediate
access to a tutorial you can at least make a start. This little
section will explain the absolute minimum about Basic, using a
short program called HILO. 86a users already have this program;
86b users can type it in from page (For how to get Basic
running, see the sections immediately following this which
explain how to load Basic).

Basic is a programming language, which means that there is a way
of getting computers to work out problems by using a special set
of instructions; the set of instructions is the programming
language called Basic. The Beginners ATT-purpose Symbolic
Instruction Code (i.e. Basic) is not just one language; there a*“e
several variants of Basic in use on computers.

Each computer tends to have its own version of Basic, but there
are sufficient similarities to make it sensible to talk of Basic
as one language.

When we examine Basic there are certain key functions: input
(actually entering information into the comouter); output
(displaying information); calculation and comparison. We have to
study, also, the ways in which the sequence of instructions in
the program can be varied depending upon circumstance. All these
aspects can be illustrated by a simple program.

Suppose our problem is to design a simple number guessing game.
One simple game is for the person who is not guessing to choose a
number between,say, 1 and 100, and not to tell the guesser. The
guesser then guesses and is told whether the guess is higher or
lower than the chosen number. Depending on the number originally
chosen, and on the guesses, it is possible to see how even'such a
simple problem can produce many different sequences of numbers:
one problem is to cope with all the possible sequences; for
example, it is no game if the number chosen is the same every
time.

First of all, then, we have to work out in outline the way in
which the game can be played, so that all eventualities are
covered by one problem-solving method. In programming, the way in
which we solve the problem is called the algorithm. For this case

we must first choose a secret number (steo 1); tnen set tne
number of guesses made to 1 (step 2, not really necesary, out
helpful); next tne quesser is asked for a number (step 3); we
then find whether the guess is correct, and tell the quesser, and
end, or if the guess is higher or lower, tell the guesser (steo
4); we increase the number of guesses by 1, and return to step 3.

algorithm note thatIn this
guessed),
calculation (what

we have input (what numoe'̂ is
output (we tell the guesser how their ouess compares),

___________ number is chosen in the first place),
comparison (how does the guess compare in size to the cnosen
number?) and control (what happens depends upon the auess ana tne
original number chosen).

The algorithm
below.

is developed as a Basic program in the listing

lu REM Hiqh/Low - A Number Guessing Game
20 REM
3U REM This version by Boris Allan
40 REM
50 PRINT "HILO - Choose a number betv/een 0 and 100, and try to
match the computer's number": REM Heading for program.
6b REM
50 let computernumber = lNT(RND*(100+i))
65 REM
70 LET guesses = 1
75 REM
80 Input "/̂ hat is your guess";n
35 REM
90 IF n > computernumber THEN PRINT "Your number is too

high": REM First check
95 REM
lOO IF n < computernumber THEN PRINT "Your number is too

low": REM Second check
105 REM
110 IF n * computernumber THEN GOTO 140: REM last check
115 REM
120 LET guesses=guesses+l:REM Increment to the number of guesses
125 REM ■
130 GOTO 80: REM return to the input line
125 REM
140 PRInT "Success in";guesses: REM Final line
145 REM
150 STOP

We can now see how a Basic program is
this program start with a number: tne
of instructions and allows jumps to
another. The program starts witn line
can extend over two lines on the printe
this to be only
unimportant here,
for REMark). This
for the computer,

one real line --
Line 10 follows the
means that the rest
but meant for the

developed. All lines in
number orders the sequence
be made from one line to
10, and tne program line
r: tne computer considers
the physical lines are
10 by the word REM (short
of the line is not meant

human reader -- to help

understand what is happening in the program. Lines 20, 30 and 40,
are further information for the reader - who wrote the program,
plus some spaces to clarify the reading (as are all the lines
ending in 5).

The first line which is actually an instruction to do something
IS line 50: PRINT out on the screen a program heading. Line 60
calculates something called 'computernumber' and is a number
ciiosen at random by tne computer (i.e. the RNO command). This is
tiie number the user will have to guess. Before we get the user to
do anything we have to set (line 70) the number of guesses equal
to 1.

When we come to line 80, the user is asked "What is your guess?"
and types in his answer. If (line 90) the user's guess is greater
than tlie computer number THEN tne computer tells the user that
"Your number is too high": if the number is too low, the user
(line 100) is so told. If the guess is neither too high nor too
low (line 110) tnen a jump is made in the program to line 140,
and line 140 informs tne user of success and how many guesses
were made.

If tnere has not been a jump to 140, then the number of guesses
is increased by 1 (line 120) and a jump is made from line 130
hacK to line 60. From line 60 the process is reoeated.

Tiie program is one way of implementing the algorithm but there
are other possible ways. As users are human, really to be fool -
proof we need to have some way of checking that the user types in
proper numbers. When v;e say the numbers from 1 to 100, we do not
include fractional numbers and really need some way of weeding
out fractional numbers.

A rather more interesting problem is tnat some people, when asked
"how many?" actually type m FIFTY FOUR and not 54. However, if
tiie program is to be used by people then we have to expect
perfectly reasonable (although in program terms, wrong) behaviour
which is not as we expect. We would also have to try to ensure
that strange input does not lead to ridiculous answers. But this
will do for our example.

If
as

any of the detail of tne instructions still puzzles you, such
the purposes of INT(RN0*(1U0+1) look up the Basic commands,

here, INT and RND, in the list below, wnich will enable you to
figure out what they do. (You know that RNO generates a '^andom
number: you will find under the entry that this
1, which would not make for a good game, so
fraction by lUl, but it then needs rounding to an
INT does that.)

is between 0 and
you multiply this

integer - and

Having got SO far, you should be able to make some sense of what
follows in this chapter. You should progress, skimming, to the
Screen Editor section, and then try the programs under SOUND,
tyoing them in and seeing how they work.

Basic is compatible with the Basic used on the IBM Persona!
Computer and many other 15-bit microcomputers. What's more,
because it is derived from the standard old 'Microsoft Basic'[
it's easy to convert programs from other machines to run on the
Advance. If you learn on the Advance, you'll also have no
trouble using the Basics on other machines.

Programmers familiar with IBM Personal Computer Basic should note
that while Advance Cassette Basic is the equivalent of IBM
Cassette Basic, Advance Disk Basic is the equivalent of IBM
Advanced Basic (BASICA).

6.3 Loading Basic

On an 86a, just switch on! Basic is stored in ROM and is
available instantly. On an 86b, Basic has to be loaded from disk
- it's in a file called BASICA.COM. To load it, at the DOS
prompt (A>) type BASICA and press <Enter>. If you are unsure
about how to do tnis, refer to the DOS chapter, page 5-17. Your
86b will stay in Basic until you execute the SYSTEM command.

Cassette Basic is still available on the 86b although there will
be few times when you need it. To run Cassette Basic, switch on
the 86b with no disk in drive A or, if it's already switched on,
remove any disks and reset the machine by pressing <Ctrl>, <Alt>
and at the same time. The 86b will look for a disk in
drive A. As it can't find one, it will start Cassette Basic.

Be warned! Any work you do in Cassette Basic can only be SAVEd
to a cassette recorder. There is no way to change to Disk Basic
without clearing the machine's memory. This situation is not
likely to cause problems since you can use Disk Basic for
everything that Cassette Basic does including LOADing and SAVEing
onto cassettes.

6.4 The Basic prompt

Basic prompts with the message "Ok" and the flashing cursor on
the line below, indicating that it is ready and waiting for you
to type a command. Across the bottom of the screen are a series
of white boxes. These are labels for the ten function keys (<F1>
to <F10>) and sJiow you what will be typed whenever you press one
of the keys. For example, pressing <F1> types the word "LIST"
and <F2> enters the command "RUN". You can turn this line off,
get a full list of the settings and set your own values using the
KEY command.

/
V

Basic runs in two 'modes'. You can type in individual commands
and have Basic respond immediately - this is sometimes called

"Oirect" mode and is used primarily for developing
Alternatively, Basic might actually he

"Immediate" or
and testing programs.
running a program stored in its memory.
whatever the programmer chose to make the program display.

All vou'll see is

You v/ill return to immediate mode when the program ends (Basic
hits a STOP or END command or simply runs out of program!) or
when an error occurs or when you interrupt it.

The Break Key

To stop a running Basic program, particularly if it has got stuck
in an infinite loop, hold down <Ctrl> and press <Scroll Lock>.
You should see the Basic "Ok" message. Notice that tne front of
this key is actually marked <Break> as a reminder!

6.5 Basic programs

Program lines can be up to 240 characters in length. Each
starts with a line number between 0 and 65529. More than
Basic statement may be entered per line by separating them
full colons (:).

1 m e
one
wi th

All the standard Basic editing techniques apply. Use NEW before
entering a new program. New lines are added simply by typing
them - they can be entered in any order - Basic automatically
sorts them into numerical sequence. Existinq lines can be
modified by re-typing a new version of the line. A line can be
deleted by typing just its line number and pressing <Enter>.
Alternatively, the DELETE command allows a whole block of lines
to be deleted. In addition, Advance Basic has a powerful screen
editor (described below) which allows efficient and easy editing
of programs.

6.6 Variable names and types

Advance Basic is very flexible about variable names. However,
there are some rules. Variable names must:

* Start with a letter

* Be in upper case. You can type variables in any way you
want but Basic will convert them to all upper case. So
"john" is toe same name as "JOHN"

* Not be a reserved word. Basic words such as LIST, RUN,
PRINT and so on can't be used as variable names. However, a
name can contain a reserved word. So LET=10 won't work but
LETTER=10 will.

Have 40 significant characters. Names can be any length but
Basic only uses the first forty characters to distinguish
between them. This is hardly likely to prove a restriction
in practice!

Basic supports four
types can either be
DEF INT, DEF DBL,
in a constant. The

Single precision.

data types and conversion between them. The
specified as part of the variable name (or by
DEF SNG and DEF STR) or by implying the type
types are:

This is the most common type - numbers can be up to seven digits,
including decimal places. Constants in a program with less than
8 digits will be assumed to be single precision - you can ^orce
numbers to be single precision by following them with an
exclamation mark (!). Variables with no special suffix on their
name are single precision. Mathematical functions such as SIN,
COS and TAN return single-precision values.

Integer

Integers
indicated
constant.

are whole numbers in the range -32768 to +32767 and are
by adding a percent sign {%) to a variable name or
For example, LET A%=10/3:PRINT A% gives a result of 3.

Double precision

Double precision numbers can be up to sixteen digits long and are
indicated by adding a hash sign (#) to a variable name or
constant.

Strings

Strings hold sequences of characters - that is letters, digits,
punctuation symbols and so on. The characters are stored by
converting each one into a code given by the ASCII code. This
convention is used on many microcomputers and a full listing
appears in appendix D at the back of the manual. A string
literal is any text enclosed in double quotation marks, such as:

"Hello World"
• • * * ? ? I l £ £ i i
"123"

A strino variable is indicated with a dollar sign, for example
LET NAME$="J0HN". Strings may be concatenated (joined together)
using the + sign. For example, LET NAME$="SIR "+NAMES. A string
can be up to 255 characters long.

Scientific notation

Most of the time, Basic uses numbers that you will recoanise and
understand. However, very large or very small numbers are given
in a special form - similar to the way a calculator behaves.
Scientific notation divides the number into two parts: a mantissa
- which represents the actual number reduced to a value between 0
and 10 and an exponent which gives the power of ten to which the
mantissa must be raised to get the actual number. That sounds
more complicated than it is.

For example, 6.23E07 represents 62300000. 6.23 is the mantissa
and 7 is the exponent. When translating from scientific
notation, notice that all you do is move the decimal point the
number of places specified by the exponent. If the exponent is
positive, the point moves to the right, if it's negative, the
point moves to the left.

4.356E-09 therefore represents 0.000000004356 which is a really
small number. Basic will use scientific notation for both single
and double precision numbers. In the former case, an "E"
proceeds the exponent whereas double precision scientific numbers
have a "D" before the exponent.

6.7 Arrays

All the variables discussed so far have been simple variables -
one name is associated with each value. Basic supports arrays -
groups of related variables all stored under the same name.

An array has one name and many separate values, each called
elements. The names and types are just like simple variables.
Each element is referenced by a number (or 'subscript') in
brackets after the name. So in an array NAMES, the elements
would be NAMES(l), NAME$(2), NAMES(3) ... and so on. The maximum
number of elements available is declared with tne DIM statement.

Individual elements can be treated just like simple variables.
But their real advantage is that, because a subscript can be any
numeric expression, a short routine can process all the elements
of an array in turn. It might print them out, sort them or
search through them for a particular value.

The simpest form of array is often
one 'dimension' for each element,
creates a list of elements:

called a list. It has just
For example, DIM NAMES(20)

up to

NAMESd)
NAME$(2)
NAME$(3)
)
NAME$(20)

However, an array can have two dimensions. DIM A(3,4)
creates a table or matrix of elements like this:

A(l,l)
A(l,2)
A(l,3)
A(l,4)

A(2,l)
A(2,2)
A(2,3)
A(2,4)

A(3,l)
A(3,2)
A(3,3)
A(3,4)

dimension is "rows" and which is "columns". Arrays can liave
three, four or more dimensions although these are less frequently
useful. The absolute limits are 255 dimensions, each with 32767
elements - however, you'll find that memory limits restrict you
before you get anywhere near this sort of size.

Once an array has been DIMed, it's size is fixed. If you might
need to add items to it later on in a program, declare the array
bigger than you need it in the first place. Large arrays don't
actually use up a lot of memory until you fill them with
information. However, if you don't mind losing the information
in an array, you can scrap it and then DIM it to another size
using the ERASE command.

Basic arrays have two surprise features. Until you declare an
array with DIM, Basic assumes that all arrays are 11 element
lists. The second thing is that, by default, arrays start with
element 0 not element 1. So the default array size is actually
from A(0),A(1),A(2) ... A(10) and DIM X(IOO), for example,
creates a list of 101 elements, from X(0) to X(IOO).

You can, of course, simply ignore the zeroth element.
Alternatively, you can make sure that your program actually uses
it consistently all the way through. If you get confused, the
OPTION BASE command can set the first element to be 1 rather than
0 .

Users familiar with Basic on mainframe or minicomputers may have
used MAT commands associated with manipulating two-dimensional
arrays (matrices). Advance Basic, like most microcomputer
Basics, does not provide these facilities.

6.8 Arithmetic operations

Basic provides a number of operators for performing calculations
and making expressions. These include standard arithmetic such
as add, subtract, divide and multiply although the symbols used
may be unfamiliar at first.

Basic evaluates expressions in the same way as a mathematician or
good calculator - in a previously determined and standard order.
For example, the result of 4*10+2 is 42 not 48 - that is, the
multiply (*) is performed before the add (+). The order of
operations is called their precedence. This list gives all the
operators in order of precedence.

1. Basic Functions Commands such as
evaluated first.

ABS and SOP are always

Brackets Any section of an expression enclosed in
brackets is evaluated before the rest of
the expression. You can use brackets
wherever you want to be sure of the order
of calculation. For example, 4*(10+2)
really is 48 not 42.

Exponentiation

4. - Negation

5. *,/

6. \ Integer divide

7. MOD

The up arrow symbol is used to raise
numbers to powers. For example, 2*3 is
two cubed and 4*(l/3) is the cube root of
four. For small powers, such as *2 and
*3, you will often find multiplication
quicker.

For example, -4 is negative four

Multiply and Divide

This is the same as ordinary division
except that the result is always a whole
number (integer). For example, 10\3
evaluates to 3 not 3.33333 recurring.
Integer division only works for numbes in
the range +32767

Modulo arithmetic

This returns the remainder after one number
is divided by another. For example, 25 MOD
6 is 1.

8.

9.

+ - Addition and Subtraction

Relational operators

These are used to compare two values. The
result is either 0 (the specified
condition is false) or -1 (it's true).
These can be used with care in arithmetic
expressions although they usually occur
within IF THEN statements.

The operators are:

= equals
<> or >< not equals
< less-than
> qreater-than
<= or =< less-than-or-equal
>= or => qreater-than-or-equa’

10. Logical operators

These are used to perform looical and
boolean operations on numeric values.
They occur most commonly within IF THEN
statements (for example IF X<0 OR X>10
THEN ...) However, if used witiiin numeric
expressions they return bit-wise logical
values.

The operators return a true (-1) or false
(0) depending on the true (non-zero) or
false (0) value of the two operands. The
operators, and the results they return,
appear below:

X Y
F F

X Y
F T

X Y
T F

X Y
T T

AND Y
OR Y
XOR Y
EQV Y
IMP Y

F
F
F
T
T

F
T
T
F
T

F
T
T
F
F

T
T
F
T
T

Note: F represents false (0) and T
represents True. Any non-zero value is
treated as truth in evaluating an
expression but a result of
always given as -1.

'truth' is

There is one
requires a
inverts false

other operator NOT, which
single operand and merely
to truth and vice-versa.

(
V

6.9 The Basic Screen Editor

Advance Basic has a very powerful screen editor to provide a
simple and quick way of making corrections to Basic programs.
The basic idea is to move the flashing cursor freely around tne
screen, making insertions and corrections to program lines
previously listed on the display. It's a very powerful system
and it is well worth learning to use it.

The screen editor uses the cursor pad on the right of the
keyboard. To use it, the <Num Lock> key should be off. To check
this, press the 6 key on the cursor pad. It should move the
cursor one space to the right and not type a 6. If it types a 6,
press <Num Lock> once. The cursor pad now produces commands for
the screen editor rather than numbers.

The following keys are used with the screen editor:

<Up arrow> (8)
<Down arrow> (2)
<Left arrow> (4)
<Right arrow> (6)
<Home> (7)
<End> (1)
<Esc>
<Backspace>
<Ins>

<Enter>

Move up one 1ine
Move down one line
Move left one character
Move right one character
Move to top of screen
Move to end of current line
Clear current line
Delete character to left of cursor
Start inserting characters
Delete character to right of cursor
Accept current line

To correct a program line, LIST the line on the screen. It may
already be there - because it appears in a previous listing or
you've only iust entered it. If Basic finds an error while
running a program it will automatically LIST the offending line
for you. If the line isn't on the screen, use the EDIT command.
This LISTS the line and puts the cursor ready at its start.

Move to the noint where you want to make changes by using the
arrow keys and <Home> and <End>. Type new characters over the
old ones or use the <Ins>, and <Backspace> keys to make
changes. When the line is correct, press the <Enter> key.

Using <Ins> When you press <Ins>, the cursor will change
shape to show that you are now inserting
characters. As you type, all the text to tne
right of the cursor will move along to make
space for the new information. This is very
useful for inserting missing spaces and so on
as well as adding whole new commands to long
1ines.

Using

Using <Backspace>

The editor will continue to insert until you
press <Ins> again or use one of the other
screen editor keys.

The key deletes characters to the right
of the cursor. As each character is deleted,
the remaining text closes up the gap. The
cursor stays still.

<Backspace> works just like it always does -
it moves the cursor to the left and rubs out
one character as it goes. Any text to the
right of the cursor moves to the left to fill
the gap.

Your changes are only 'accepted' when you press <Enter>.
Sometimes, it will be easier to make lots of changes to lots of
lines and then go back through them pressing <Enter> once on each
line. Also remember that the screen editor doesn't mind program
lines that extend over several actual screen lines. <Ins>,
and so on all work no matter how long the Basic line is.

Once you start using the screen editor a lot, you'll often ^ind
that you are typing a new command on a line that already has text
on it. To avoid errors, you should get into the habit of
pressing <Escape> before starting a new command on a 'busy'
screen. This will clear the line you are on and so make sure
that your new command doesn't get mixed up with any old
information already on the screen.

Alternatively, many people always use the <Down arrow> to drive
the cursor to the bottom of the screen before starting new
commands. Don't let the screen get too messy - it'll will become
easy to make mistakes. After a lot of correcting, clear the
screen (CLS) and LIST the program again.

Tricks with the screen editor

There are lots of useful 'tricks' when using the screen editor.
As you get used to it, you'll discover lots more for yourself.
Some of the popular ones are:

Forget changes:

Repeat a command:

Copy a line:

Recover a deleted line:

N

If you make a mess of correcting a line,
press <Escape> and then try EDITing it
again.

Just put the cursor on the same line as a
command that is already on the screen and
hit <Enter>.

To copy a line, just move the cursor to
its start, alter its line number and
press <Enter>. You'll get two copies of
tne line - one with the old and one with
the new number. If you actually want to
move a line, copy it and then delete the
original by entering its line number.

If you delete a line by mistake and you
have a copy of it on the screen, you can
re-enter it into the program by placing
the cursor at its start and pressino
<Enter>. This can be very useful but
don't rely on it as a technique - it's
best not to delete lines by mistake in
the first place!

6.10 Free memory

To discover how much memory is remaining at any time, enter PRINT
FRE(O). You’ll notice that at most, the Advance returns a figure
of around 62K despite your machine having an internal memory of
at least 128K.

This limit is imposed by the architecture of the Advance's 8086
microprocessor which divides memory up into 64K segments.
Persuading Basic to ignore these divisions would result in a
sionificant loss of performance. However, you are unlikely (and
possibly unwise) to need more memory space for Basic programs.

Should you need to, you can access the remainder of the Advance's
Ram by switching segments (the DEF SEG command) and using Basic's
interfaces to machine language - PEEK, POKE, CALL and USR.

The Advance microcomputer does offer a tremendous memory capacity
but one that is generally impractical for Basic. Other langauges
allow access to the full Ram - such as machine code, and C.
However, the main reason for providing so much memory is to allow
professional applications programs such as word processors and
databases the space they need to run.

6.11 Format of SAVEd programs

Advance Basic normally SAVEs programs in its ov/n internal
compressed format. This saves disk space and speeds up loading.
However, it makes the files pretty incomprehensible to anything
but Basic. It is possible to save a Basic program as a pure
ASCII text file using:

SAVE "FILENAME",A

This produces a file which can easily be edited
program, such as the EDLIN line editor. It is
that routines that are intended to be MERGEd into
are saved in this way.

by another DOS
also essential
other programs

Many other microcomputers use similar Basics to the Advance. But
the internal format would normally prevent you moving Basic
programs across from these machines. By using the SAVE,A option
on the source micro, it should be possible to read in a Basic
program from another machine - if it uses the MS-DOS disk format,
you can probably read its disks directly on the Advance.
Otherwise, you would need to transfer the ASCII file of the Basic
program over a serial line linking both computers.

Basic automatically recognises ASCII files when it is loading
programs. So you just LOAD an ASCII file in exactly the same way
as an internal format file.

There's a second option on the SAVE comand. SAVE "FILENAME",?.
This saves the program in an encrypted binary format so that it
can no longer be listed or edited. Use this option to protect
sensitive data and/or programs. However, be warned! There is no
way to remove the encryption. Protect a program and you protect
it for good. So only ever use this option when you have a number
of normal copies of the complete program safely locked away!

6.12 The character set

The Advance has a full character set consisting of 255 different
symbols arranged according to the ASCII code common to most
computers. A full list is given in appendix 0. All the
characters are accessible with PRINT CHRS(code). As you can see,
tie range of symbols lets you create displays for almost any work
- including mathematical and business formulae and even simple
games. The range of block and box characters make it easy to
produce neat rules and boxes to present tidy displays. Should
this array of characters not satisfy you, it is possible to
define your own character shapes using a technique described in
the Advance Basic manual.

6.13 Reading the keyboard

Advance Basic provides all
information from the user,
addition, it has a number
just individual keystrokes.

the usual Basic commands for reading
including INPUT and LINE INPUT. In
of other useful commands for reading

INPUTS

inputs reads a certain number of characters from a data fi''e or
from the keyboard. It blindly accepts all characters including
codes that it would normally be impossible to enter such as
<Enter> and <Back space>. The only way to interrupt an INPUTS is
with the Break key. The characters that are typed do not
normally appear on i.tie screen. For example:

10 CLS.'PRINT "Tvpe a 3 letter password"
20 IF INPUTS(3)0"BYE" THEN 10
30 PRINT "BYE"

INPUTS should be used whenever tne program must halt and wait for
at least one character to be entered.

INKEYS

c
This function reads back a single keypress from tne keyboard.
The function does not wait for a key to be pressed. If no xey
has been pressed, cnen trie function returns a null string ("").
INKEYS is used for aoplications which don't actually halt when
tney scan the keyboard such as simulations and games.

The Advance keyboard does not always generate a single key code
for a single key press. The Soft keys <F1> to <F10> will return
tneir contents character-by-character if they are enabled. If
they are not, they return a special extended key code consisting
of two characters - an ASCII null (CHR$(0)) and then a special
scan code for the key that was pressed.

The extended key code mechanism allows the user to generate a
whole set of extra functions from the keyboard without distorting
the normal ASCII codes. The only problem with this approach is
that occasionally INKEYS will return a two character string,
starting with a 00 and followed with an extended code. Programs
that rely on INKEYS therefore should always check the length of
returned strings and take appropriate action.

The complete set of extended codes is:

Extended code Key pressed

3
15

16-25
30-38
44-50
59-68

71
72
73
75
77
79
80
81
82
83

84-93
94-103
104-113

114
115
116
117
118
119

120-131
132

NUL
<ShiftXTab>
<Alt> and Q,W,E,R,T,Y,U,I,0,P
<Alt> and A,S,0,F,G,H,J,K,L
<Alt> and Z,X,C,V,8,N,M
<F1> to <F10> if not being used as
soft keys
<Home>
<Up arrow>
<PqUp>
<Left arrow>
<Right arrow>
<End>
<Down arrow>
<Pg0ri>
<Ins>

<Shift> and <F1> to <F10>
<Ctrl> and <F1> to <F10>
<Alt> and <F1> to <F10>
<Ctrl> and <PrtSc>
<Ctrl> and <Left arrow>
<Ctrl> and <Right arrow>
<Ctrl> and <End>
<Ctrl> and <PgDn>
<Ctrl> and <Home>
<Alt> and 1,2,3,4,5,6,7,8,9,0,-,=
<Ctrl> and <PgUp>

6.14 Random number generator

Basic provides a function to generate pseudo-random numbers. The
computer, like most microcomputers, can't provide for true-
randomriess but can provide a close enough imitation suitable for
games, simulations and similar applications.

The Advance random number function is RNO(n) which returns a
random number between 0 and 1. If 'n' is greater than 0, RND
returns the next random number in sequence from its random number
table. If 'n' is 0, RND returns the last random number
generated. This can be very useful in debugging!

A common formula to convert RND(l) into a number between 1 and X
is often used as a defined function like this:

DEF FN R(X)=INT(RND(1)*X)+1

The general form of this can be remembered as:

INT(RND(1)*number of numbers to choose from) + lowest possible
number to choose.

rV

6.15 Soft keys and trapping

The Advance's ten function keys can be used in two different
ways. Both Cassette and Disk Basic let you use then as 'soft
keys', setting them up so that tney type a string of characters
at the touch of a button. Disk Basic also lets the keys work as
interrupts, telling Basic to tempoarily halt a program and
execute another section of program instead.

Using the keys as Soft keys is easy. The command KEY ON displays
a row of key labels at the bottom of the screen. In 40 column
mode, the first five labels will be visible. In 80 column mode,
all ten keys are labelled. KEY OFF will switch the label line off
again. Each of the ten keys can store up to 15 characters,
including special codes for keys such as <Enter> and so on.
However, the labels will only show the first six characters of
the key setting. To get a full list, use the command KEY LIST.

To set the contents of a key, use a command of the form KEY
number, string. For example, to set <F10> to clear the screen,
enter KEY 10,"CLS"+CHRS(13). The CHR$(13) is necessary to add an
<Enter> to the end of the string. 13 is the character code for
<Enter>. If you now press <F10>, the characters C, L, S and
<Enter> are automatically typed and the screen will clear.

To disable a soft key, assign it a null strino with KEY
number,"". The disabled key will produce a two-character
seouence, the fiî st being a CHR$(0) and the second being a code
for the key's position on the keyboard.

It's usual to use the soft keys to generate useful commands
during program development. When you first start Basic, the keys
are set to ten useful commands such as LIST, RUN, LOAD" and so
on. You may find your own working habits prefer other settings.

You can use the keys in your own programs by setting appropriate
strings to generate commands for your program although this can
be a long-winded way of using them. If you do, notice that the
INKEYS command will read each character out of a soft key just as
if you were typing them in turn on the keyboard.

Key Trapping

The second method of using the keys is only available in Disk
Basic and turns them into special devices which interrupt the
Basic intepreter. Basic handles the keys in the same way as
several other devices such as a light pen or a joystick "Fire'
button. The support provided is called "Event trapping".

To use key trapping, you should first set up a series of ON
KEY(n) GOSUB statements to tell Basic where to branch to should
one of the specified keys be pressed. The key numbers are:

I to 10 Function keys <F1> to <F10>
II Up arrow
12 Left arrow
13 Right arrow
14 Down arrow

For example, if you set ON KEY(l) GOSUB 1000, Basic would jump to
a subroutine at line 1000 every time it 'trapped' the user
pressing <F1>. Once the ON KEY(n) GOSUBs are set, trapping can
be turned on with KEY(n) ON. This is different from the KEY ON
command for displaying Soft key labels. With KEY(n) ON, Basic
keeps an eye open for the user pressing the particular key
specified. If he does, Basic will stop whatever it is doing and
jump to the specified subroutine.

Key trapping can be turned off again with KEY(n) OFF though
note that this doesn't affect the ON KEY(n) GOSUB setting - it
just tells Basic not to bother looking for that particular key.
A variation on this is KEY(n) STOP. This stops Basic actually
interrupting when the key in question is pressed. But Basic
takes note that it has been pressed and jumps to the subroutine
the moment that trapping is turned back on again with KEY(n) ON.

t
K

Each key
'hand 1inq '
that key.
there is no v/ay
which key it was.
to where you left
careful, you can
number command,
caused Basic to
properly finsihing

that is being trapped must have its own separate
routine that carries out the appropriate action for
Once Basic has jumped to a trap handling subroutine

for commands such as INKEYS and INPUT to read
At the end of the subroutine, you can return

off with a normal RETURN command or, if you're
go back to a particular line with a RETURN line
This can be dangerous as the trap may have
leap out of FOR loops or subroutines without
them.

If you think about it, you can see that there would be obvious
problems if a key was trapped again during its own trap handling
routine. To prevent this, whenever a trap occurs, Basic does an
automatic KEY(n) STOP. When you return to the normal program, it
does a KEY(n) ON again.

Let's try a simple key trapping demo:

10 ON KEY(l) GOSUB 1000
20 1 = 1
30 PRINT I
40 1=1+1
50 GOTO 30

1000 REM Handle FI trap
1010 PRlNT:PRlNT"You pressed
1020 RETURN

FI!

RUN this as it is to prove that normally, Basic ignores any keys
that are pressed while it is busy. Now add a line 15 KEY(l) ON
and RUN it again. This time, pressing <F1> interrupts the
program and executes the subroutine. A slightly more daring trap
handler is one that alters variables outside of its own confines.
This one works quite nicely:

10 ON KEY(11) GOSUB 1000
20 ON KEY(14) GOSUB 1020
30 KEY(11) 0N:KEY(12) ON
40 I=1:C=0
50 PRINT I
60 I=I+C
70 GOTO 50

1000 REM count upwards
1010 C=1:RETURN
1020 REM count downwards
1030 C=-l:RETURN

up arrow
down arrow

'When this is running, the up and down arrows (make su^e you're in
cursor pad mode) alter the direction of the cou^^ting. Obviously,
handlers should be very careful about alierina information
outside their own scope. If you have any parts of the program
that really shouldn't be trapped, make sure they are surrounded
by KEY(n) OFFs.

Controlled interrupts like tnis are traditionally only available
in machine language. Advance Basic implements this powerful
facility in an easy form. However, it does need to be used with
care if your programs are to work reliably. Some of the more
obvious uses for the system are panic buttons - to get people out
of sections of program they don't want to be in or to present
help with that particular operation. You could even have a
function key open a litle window with a calculator or watch in
it!

5.16 Sound

The Advance has a built in speaker which can be used not only for
warning beeps but also for special noises and music. Advance
Basic provides a number of commands to help here.

BEEP

BEEP is available in both versions of the Basic and makes a
single beep sound on the speaker. This is the eauivalent of the
Bell on old fashioned mechanical computer terminals and you'll
find that printing a Bell character (CHR$(7)) actually rings the
bell! Basic itself frequently uses the Bell to tell you that
something has gone wrong. If you use BEEP in your own programs,
many users will recognise it is a warning sound. Other than
that, all it's good for is a temporary warning command to insert
in programs as you debug them.

SOUND

SOUND is a much more useful command. It is followed by the
frequency of the note to play and the number of 'clock ticks' to
play it for. There's 18.2 ticks in one second and the duration
can vary from 0 to 65535. The program continues to execute even
while a sound is playing but will halt at the next SOUND command
and wait for the first one to finish. Use a frequency of 32767
for a pause in the sound.

RNDSOUND

10 SOUND INT(RND(1)*1000)+130,RND(1)
20 GOTO 10

SOUND1

10 REM SOUND DEMOl
20 FOR F=523 TO 261 STEP -10
30 SOUND F,F/1000
40 NEXT F
50 GOTO 20

PLAY

The final sound command is PLAY. This is only available in Disk
Basic. PLAY provides a very powerful technique for producing
tunes and sequences of sounds. It is followed by a string which
contains one-letter codes for various actions. As an example,

PLAY "CDEFGABC"

plays a scale. The complete "music language" is:

A-G Plays the specified note in the current octave.
Each note can be followed by a £ or + (for a sharp
note) or a - (for a flat note). The sharps and
flats only work for a normal scale - if you put B£,
Basic won't figure out that you mean a C!

Each note can also be followed by a number to say
how long it plays for. The number can vary from 0
to 64 and the actual note played is 1/number - that
is, a crotchet is followed by 1, a quaver by 2, a
semi-quaver by 4 and so on.

On

r

Selects an Octave from 0 to 6. Basic starts off in
octave 4, an octave higher than middle C. Each
octave starts with C and ends at B.

Nn This is an alternative way of selectinq from the
notes available - particularly useful if you only
want to change octaves for just a single note. n
can be from 0 to 84.

Ln L sets the length of the following notes. This
v/orks just as lengths for individual notes but it
sets the length for all the notes following.

Pn Pauses for 1/n. The length of the pause is set in
the same way as for notes (above).

a dotted note.

Tn This sets the overall tempo of the music by setting
the number of semi-quavers in a minute to a value
from 32 to 255.

ME

MB

Selects foreground mode. A new sound
the program to stop and wait until
finished playing. Basic
foreground mode.

will cause
an old sound has

starts off in the

Selects background mode. Music (from either SOUND
or PLAY) is automatically queued up so that a Basic
program can carry on executing while music is being
played. Up to 32 notes can be queued at once.

—
Chapter Six Advance 86 Basic Page 6-23

MN Selects 'normal' music

ML Selects legato music

— MS Selects staccato music

—
X variable; Executes the named string as if it were

command. This allows particular sequences
put into separate strings and then combined
large PLAY command. This makes it easy to
phrases and so on.

a PLAY
to be
into a
repeat

Putting PLAY strings together.

You can combine as many commands as you like in a PLAY string in
any order you like. If you can't get the string long enough, use
separate strings and then use a final PLAY command which "Xs"
them together. For clarity commands can be separated with a
space. Where 'n‘ occurs above, it can either be a constant (such
as "G4A2" and so on) or an equals sign followed by a variable
name and a semi-colon (such as "G=Y;A*Y;"). PLAY commands are
designed primarily for tunes but, as the examples below should
show, you can use them for special effects:

10 REM PLAY DEMO
30 T$="C16E8F4"
40 FOR 0CTAVE=1 TO 5
50 PLAY "0=0CTAVE;XTS;"
60 NEXT OCTAVE
70 PLAY "03"
80 FOR T=32 TO 252 STEP 30
90 PLAY "T*T;XT$;"
100 NEXT T

10 REM NOISE DEMO WITH PLAY
20 PLAY "T255L64"
30 N$="BAGFEDC"
40 FOR 1=1 TO 10
50 PLAY N$
60 NEXT I
70 FOR 1=1 TO 500:NEXT I
80 FOR 0=1 TO 6
90 PLAY "0=0;XN;"
100 NEXT 0

6.17 The Advance display

The Advance has a very powerful range of display options selected
using the WIDTH and SCREEN commands. These are:

TEXT screens

40x25 characters, 16 colours + flashing, 8 screens
80x25 characters, 16 colours + flashing, 4 screens

Medium resolution graphics

320x200 graphics, 40x25 text, 4 colours, 2 palettes

High resolution graphics

640x200 graphics, 80x25 text, Black-and-White

In addition, you can set the border colour of the screen. Users
familiar with IBM should note that the Advance effectively has
only a Colour/Graphics adapter and should ignore the
complications introduced by the IBM monochrome adapter.

The SCREEN command can be used to switch between different
display modes and, within a particular mode, COLOR sets the
various colour options. CLS will clear the current screen.

The SCREEN command looks like this:

SCREEN mode,burst,apaqe,vpage

'mode' selects the type of display. 0 is
medium resolution graphics and 2 is high
'burst' turns the colour signal on or off.
you are working with a monochrome screen,
value of 0 turns colour off and a value of
medium resolution graphics, 'burst' should
for no colour! High resolution graphics are in black and white
so the setting of 'burst' is irrelevant.

either text mode, 1 is
resolution graphics.
You may need this if
In a text mode, a

1 turns colour on. In
be 0 for colour and 1

'apage' and 'vpage' work only in
enough memory to keep several
available. You could put a help
another. In 40 column mode,
'pages') and in 80 column mode,
selects which screen is active -
such as PRINTS, CLSs and so on
necessarily be the screen you can
screen is actually visible. By
it's possible to create and upd
doing something else and switch in

text mode. The Advance has
copies of a screen display
screen on one and enter data on
there are 8 such screens (or
there's 4 of them. 'apage'
that is which one any changes
will affect. This need not
see. 'vpage' selects which

manipulating these parameters,
ate screens while the user is
stantly between them.

Kortunately, you don't always nef'ci to work out all the parameters
in a SCREEN command. You can miss some off or skip them by just
puttinq extra commas in. Here are some examples:

SCREEN 0,0,0 Selects a black and white text screen with screen 0
active.

SCREEN ,,1,1 Moves onto and displays text screen number 1.

SCREEN 2 Selects High resolution mode

SCREEN 1,0

6.18 The Text screen

Selects Medium resolution graphics and makes sure
that the colour is on

The text screen is the easiest to deal with. Basic starts off in
text mode but you should always make sure with a SCREEN 0 ...
command. The two different screen widths are set with either
WIDTH 40 or WIDTH 80. Executing these will also clear the screen
and set the border to black.

Selecting text colours

In text mode, the COLOR command works like this:

COLOR foreground, background, border

'foreground' is the colour that characters (text) will appear in.
This can he from 0 to 31 as shown below, the colours from 16 to
31 being flashing versions of the colours from 0 to 15.

'background' sets the backdrop colour of the screen. This can
only be taken from colours 0 to 7.

'border' selects the colour for the screen border. You can pick
any colour from 0 to 15.

The text colours are:

0 Black
1 Blue
2 Green
3 Cyan
4 Red
5 Magenta
6 Brown
7 White

8 Gray
9 Light blue
10 Light green
11 Light cyan
12 Light red
13 Light magenta
14 Light brown
15 Bright white

So a simple example of a COLOR command is COLOR 4,7,7 wnich sets
red text on a white screen with a white border. This program
shows you (most of) the possible combinations:

0

10 REM 16 COLOURS
20 SCREEN 0,l:WIDTh 40:KEY OFF;CLS
30 FOR F=0 TO 15:FOR B=0 TO 7
40 COLOR F,B:PRINT " 86
50 NEXT:NEXT:NEXT
60 COLOR 20,15:L0CATE 20:PRINT "And there's 16 flashing colours
":COLOR 15,0:PRINT

Controlling the cursor

Advance Basic provides two ways of controlling the cursor. The
Basic command LOCATE will move it to a particular position on the
screen. In addition, printing certain special control codes will
move it. The useful codes are:

09 Tab the cursor to the next column
10 Line feed (Moves the cursor to the start of the next line)
11 Home the cursor in the top left
12 Form feed (Clears the screen)
13 Move the cursor to the start of the next line
28 Move the cursor right
29 Move the cursor left
30 Move the cursor up
31 Move the cursor down

These codes can easily be used, for example PRINT
STRIN6S(4,CHR$(29)) will move the cursor four places to the left.

LOCATE row,column,cursor

Alternatively, LOCATE row,column moves the cursor to any point on
the screen. The functions POS(O) and CSRLIN return the currrent
column number and row of the cursor repectively. The top left of
the screen is, in both cases, 1,1.

Normally, there's 24 lines of screen to play with because the
25th status line is being used for soft key labels. You can use
the 25th line yourself by executing KEY OFF and then LOCATE 25,1

by PRINT. Information on the 25th line doesn't get
off the screen like information on lines 1-24. So it
ideal place for status or help information in your own

followed
scrolled
makes an
programs.

The 'cursor' parameter of LOCATE can be used to turn the flashing
cursor on and off within programs. Normally, when a program is
running, the cursor is not visible. A value of 1 for 'cursor'
turns it on (for example, LOCATE ,,1). Setting 'cursor' to 0
switches it off. This facility is useful in providing a flashing
cursor when commands such as INKEYS are being usee.

6.19 Virtual Screens

As discussed above, the Advance has space for 8 40x26 text images
and 4 80x25 text images. Basic has a built in facility where you
can swap these copies of the screeen around, making it easy to
provide instant information and tidy displays. By default, the
Advance writes all its information onto to Screen 0 and shows you
Screen 0.

To view an alternate screen, use SCREEN ,,,n where n is the
number of the screen (0 to 7 in 40 column mode or 0 to 3 in 80
columns). Unless you tell it otherwise, Basic will still be
writing new information on Screen 0. To pick which screen is
actually being used, use SCREEN ,,n. This system allows you to
create new screens without the user ever seeing them and also to
have a set of ready-made screens instantly available.

The Advance however has only one cursor. If you are trying to
write information onto a number of screens, you will have to
remember the cursor position as you switch between them. In this
case, the code to switch screens would look more like this:-

lOn REK go to screen 2
110 CX1=P0S(0):CY1=CSRLIN:REM remember position
120 SCREEN ,,2,2
130 LOCATE CY2,CX2: REM restore cursor

200 REM go to screen 1
210 CX2=P0S(0):CY2=CSRLIN:REM remember position
220 SCREEN ,,l,i
230 LOCATE CY1,CX1; REM restore cursor

and so on.

The following example program uses the virtual screen facility to
provide an 'electronic jotter' where the user can jot down up to
seven screenfuls of messages, reminders and so on. A more
developed version of this could prove quite a handy office tool!

10 REM Virtual screen demo
20 REM
30 REM A 7-page electronic jotter
40 REM
50 REM Set everything up
60 SCREEN 0,1,0,0:WIDTH 40:KEY OFF
70 FOR S=0 TO 7
80 SCREEN ,,S,0:CX(S)=1:CY(S)=1
90 CLS:LOCATE 25,1;PRINT"PAGE ";S;": press FI last F2 next F3 end"
100 NEXT S
n o FOR 1 = 1 TO 3:KEY I ,CHRS(I) :NEXT I
120 SCREEN ,,0,0:S=0:L0CATE 1,1
130 REM Loop to get & print keypresses
140 LOCATE ,,1:A$=INKEYS:IF AS="" THEN 140 ELSE LOCATE ,,0:A=ASC(AS)
150 IF A=0 THEN GOSUB 210 ' cope with arrow keys

160 IF A=1 THEN P0=-1:G0SUB 280:60T0 140
170 IF A=2 THEN P0=+1:G0SUB 280:GOTO 140
laO IF A=3 THEN SCREEN ,,0,0:CLS:END
190 IF A=8 THEN PRINT CHR$(29);" CHR$(29);:GOTO 140
200 PRINT CHR$(A);:G0T0 140
210 REM Convert arrow codes into cursor codes
220 A=ASC(MI0$(AS,2))
230 IF A=72 THEN A=30:RETURN

IF A=75 THEN A=29:RETURN
IF A=77 THEN A=28:RETURN
IF A=80 THEN A=31:RETURN

trap any other codes
280 REM Chanae the screen that's showing
290 CX(S)=P0S(0):CY(S)=CSRLIN:S=S+P0
300 IF S<0 THEN S=7
310 IF S>7 THEN S=0
320 SCREEN,,S,S:LOCATE CY(S),CX(S)
330 RETURN

do a backspace

240
250
260
270 A=0:RETURN

6.20 Ttie Graphics Screen

The Advance must be in a graphics mode before it can produce
finely detailed drawings and diagrams. Do this with a SCREEN 1
SCREEN 2 for high resolution, black-and-white, graphics. The
WIDTH command works in the graphics modes - in medium resolution
mode, WIDTH 80 will switch to high resolution mode and in high
resolution mode, WIDTH 40 acts just like a SCREEN 1.

Selecting the Palette

This only applies to medium resolution graphics - High resolution
graphics are in black-and-white and using the COLOR command
produces an error. Medium resolution graphics provide a choice
of one of two sets of four colours. The sets are called palettes
and are:

Colour number Palette 0 Palette 1

0
1
2
3

Background
Green
Red
Brown

Background
Cyan
Magenta
White

As you can see,
background colour,
like this:

colour 0 is always the same as the current
To set the colour, you use the COLOR command

COLOR background,palette

'background' can be selected from any of the sixteen colours
described in the text screen section (a number from 0 to 15). If
'palette' is an even number, palette 0 will be selected. If it's
odd, palette one will be selected. When the palette is changed
all the colours currently on the screen will instantly change to
their new equivalents. This can be useful for special effects.
Once the palette is set, the other graphics commands (such as
PSET, PRESET, LINE and so on can choose from any of the four
colours in the palette). Text that appears on the graphics
screen will normally appear in colour 3

A quick tour of the graphics commands

Put the system into medium resolution graphics with SCREEN 1,0.
The graphics screen is divided up into a grid of dots called
pixels (short for picture elements). There's 320 across
(numbered from 0 to 319) and 200 down (from 0 to 199). When you
use graphics, you can set the colour of each particular pixel
setting a row of them produces a straight line for example. In
order to specify which pixels we want to alter (basically where
we want to draw), we use a co-ordinate system.

Starting in the top left of the screen, we say how far along the
pixel is and then how far down it is. The very top-most left­
most pixel is pixel (0,0). (160,100) is in the centre of the
screen and so on. The bottom right-hand corner is (319,199).

PSET (x,y),colour

This is the simplest of graphics commands - it sets the colour of
a particular pixel on the screen. 'x' and 'y' are its co­
ordinates and 'colour' is a number from 0 to 3 specifying which
colour you want it to be. If you miss 'colour'off, PSET will use
colour 3. To see this in action, clear the screen (CLS) and
enter PSET (160,100),3. This should produce a tiny dot in the
centre of the screen. This program produces a few more:

10 REM random dots
20 SCREEN 1,0:C0L0R 0,0
30 PSET (INT(RND(1)*320), INT(RND(1)*200)), INT(RND(1)*3+l
40 GOTO 30

Use the break key to stop this and try changing the palette with
COLOR ,1 and COLOR ,0. PSET has a near twin called PRESET. This
does exactly the same thing only if you miss the colour off, , it
will set the specified pixel to the background oolour,
effectively "turning it off".

LINE

It woulw wgv-- — —
need a fast way of drAwing

d take ages to draw things with PSET! First of all, we
fast way of drAwing lines. Clear the screen and try this:

LINE (0,0)-(319,0)
LINE -(0,199)
LINE (160,0)-(160,199)

And perhaps the odd box here and there:

LINE (10,10)-(260,170),2,B
LINE (130,30)-(190,180),,B
Even filled in boxes:

LINE (70,120)-(300,150),1,BF
LINE (180,10)-(310,190),2,BF

The LINE command looks very formidable:

LINE (xl,yl)-(x2,y2),colour,BF

'xl' and 'yl' are the starting co-ordinates of the line. You can
leave these out if you want to, for example LINE -(10,20) draws a
line from the last point referenced on the screen to 10,20. 'x2'
and 'y2' are, of course, where you want the line to go to.
'colour' as you might guess is the colour that the line will be
drawn in. If you leave it out, Basic will use colour 3.

Next 'B' stands for Box. If you put a B here, Basic will take
(xl,yl) and (x2,y2) to be the corners of a rectangle and draw a
box around it. Use BF here and it will fill the rectangle with
colour. As usual, you can leave off any parameters you don't
want to set and fill in any missing ones with dummy conrrias. So
LINE -(50,60),,BF draws and fills a box with one corner at the
last point we drew to on the screen and the opposite corner at
(50,60) in colour 3.

One final trick. The second co-ordinate can be given
relative to the first. This method doesn't give an actual (or
absolute) position on the screen but tells Basic to move so many
pixels down and so many along - negative numbers will move up and
left. To do this, use a command like LINE - STEP(10,10). Here's
a little example:

10 SCREEN 1,0:CLS
20 PSET 0,199
30 FOR 1=1 TO 10
40 LINE - STEP(30,-20),,BF
50 NEXT I

CIRCLE

This is only available in Disk Basic

Circle provides a quick way to draw circles, arcs and ellipses.
The command is of the form:

CIRCLE (x,y),r,col our,start,end,aspect

'x' and 'y' are the co-ordinates of the centre and 'r' is the
radius of the circle. As usual, 'colour' can be set to a value 0
to 3 or skipped with a dummy comma. The last three values
control how much of a circle is drawn - both how complete it is
and how round it is.

'start' and 'end' tell CIRCLE where to start and stop drawing. Be
default, you'll get a full circle. To set the limits, use values
in the range +2*PI (PI=3.141593). The circle is drawn starting
at 3-o'clock (0) and progresses anti-clockwise round to 2*PI.
12-o'clock is at PI/2, 6 is at 3*PI/2 and 9-o'clock is equivalent
to PI. A negative angle will join the arc to the centre point.

'aspect' controls how squashed (or elliptical) the circle is. If
the 'aspect' is 1, CIRCLE will produce a visually correct circle.
Less than 1 and it is squashed downwards. More than one and the
circle is squashed sideways. The following programs demonstrate
some of these features:

10 REM Smile
20 SCREEN 1,0:CLS
30 CIRCLE (15,15),15
40 CIRCLE (10,12),4:CIRCLE(20,12),4
50 CIRCLE (15,13),10,3,3.927,5.498
60 LOCATE 10,1

10 SCREEN 1,0:CLS
20 FOR A=0 TO 2 STEP .15
30 CIRCLE (160,100),95,,,,A
40 NEXT A

PAINT

Tnis is only available in Disk Basic

PAINT can be used to fill any shape on the screen with a
particular colour. You have to make sure that the shape really
is fully enclosed and the more complex a shape is the more memory
you Advance will need while it is trying to fill it. If you have
problems with memory, reserve some more stack space with the
CLEAR command.

PAINT is used like this:

PAINT (x,y),paint colour,edge colour

'x' and 'y' are the co-ordinates of any point within the shape to
be filled in. 'paint colour' is the colour that you want the
shape filled with. Occasionally you might like to specify an
'edge colour' as well - this tells PAINT where to stop PAINTing
so that you achieve effects such as a green area with a red edge
around it.

You should be able to try PAINT out for yourself, filling
areas created by LINE and CIRCLE. Some examples:

10 REM PAINT demo
20 SCREEN 1,0:KEY 0FF:CLS
25 F=1
30 DEF FN R(X)=INT(RND(1)*X)+1
40 LINE (0,0)-(319,199),,B
100 X=30+FNR(260):Y=30+FNR(130):R=FNR(50):A=FNR(10)
105 IF A<5 THEN A=A/5
110 CIRCLE (X,Y),R,,,,A
120 PAINT (X,Y),FNR(4)-1,3
125 IF RND(1)>.9799999 THEN COLOR 0,F:F=ABS(F-1)
130 GOTO 100

10 SCREEN 1,0:CLS
20 FOR A=0 TO 2 STEP .15
30 CIRCLE (160,100),95,,,,A
40 NEXT A
50 PI=3.141593
60 R»INT(RND(1)*100:A=RND(1)*2*PI
70 PAINT 160+C0S(A)*R, 100+SIN(A)*R, INT(RND(1)*3)+1
80 GOTO 60

L

DRAW

This is only available in Disk Basic

DRAW provides a method for defining and drawing any shapes you
want to. It works a bit like the PLAY command in that tne shape
is defined by a series of one-letter commands in a string. For
example, DRAW "M160,100 U5R5D5L5" will produce a square in the
centre of the screen. There's a whole mini-1anguage that can be
used with DRAW.

Un
Dn
Ln
Rn
En
Fn
Gn
Hn

Move up n units
Move down n units
Move left n units
Move right n units
Move diagonally up and right
Move diagonally down and right
Move diagonally down and left
Move diagonally up and left

Mx,y Move to positon (x,y) on the screen. If you want
to move relative to your current position, put +
and - signs in front of x and y as appropriate.
You must have either a + or a - sign in front of x
for this to work. With a relative move, x and y
specify how many units right (or left) and down
(or up) to move rather than the actual position to
go to.

This is
commands,
are drawn,

used in front of any of
The move is carried out

the movement
but no points

This is used in front of any of tne movement
commands. It means move but return to the
starting position afterwards.

An Sets angle to n. n can be from 0 to 3 and says
vjhether the drawing is rotated a quarter, half or
three quarter turn.

Cn

Sn

Sets the colour to a value from 0 to 3 (medium
resolution) or 0 to 1 (high resolution).

Sets
the

scale factor n from 1 to 255.
size of the units used in the

This affects
moving commands

and thus the overall size o^ the drawinc.

Xvariable; Executes the named str’nq as if it were a DRAW
command in itself. This allows drawings to be
built up as separate strings anq then combined
together to form complex and large patterns.

Just like PLAY, n can either be a number or an equals sign
followed the name of a numeric variable and a semi-colon. So you
can use DRAW "UlO" as well as DRAW "U=\/;". This neat example
uses the S command to draw a series of growing octogons, with
interesting results:

10 REM PYRA
20 SCREEN 1,0:KEY 0FF:CLS
40 DRAW "bm200,10"
50 0T$="FDGLHUER"
60 FOR S=10 to 255 STEP 5
70 DRAW "S=S;X0TS;"
80 NEXT S

10 REM DRAW tester
20 SCREEN 1,0:KEY 0FF:CLS
30 ON ERROR GOTO 150
40 PRINT "DRAW tester"
50 PRINT:PRINT"This program lets you try out commands in the DRAW

language one at a time."
60 PRINT:PRINT"You can also enter CLS to clear the

screen and END to stop the program."
70 PRINT:PRlNT"Press SPACE to start
80 IF INPUT$(1)<>" " THEN 80
90 CLS
100 LOCATE 1,1:PRINT SPACE$(40);
n o LOCATE 1,1:LINE INPUT "";AS
120 IF A$="CLS" OR A$="cls" THEN CLStORAW "BM160,100":G0T0 100
130 IF A$*"END" OR A$="end" THEN END
140 DRAW AS:G0T0 100-
150 BEEP:RESUME 100

GET and PUT

These commands are only available in Disk Basic

GET and PUT are a powerful pair of commands that allow images to
be 'picked up* off the graphics screen and copied and moved
around it at high speed. The basic idea is that GET captures an
area of the graphics screen in an ordinary Basic array. This
area can then be PUT back onto the screen in different ways and
pi aces.

To capture an area of the screen, you use:

GET (xl,yl)-(x2,y2),array

where (xl,yl) is the top left corner and (x2,y2) is the bottom
right corner of a rectangle surrounding the area you wish to
capture. 'array' is name of the array you want the image copied
to. This can be any numeric type though if you use an integer
array, you may be able to work out your own ways of manipulating
the image once it is captured in an array.

There's a problem in working out how bia tne array needs to be.
Generally, if you make the array have as many elements as there
are pixels in the area you are trying to capture, it will work
but you will be wasting memory space. The actual number of bytes
needed to store tne picture is:

y*INT((2*x+7)/8)+4 for medium resolution graphics

y*INT((x+7)/8)+4 for high resolution graphics

where 'x' and 'y' are the number of pixels across and down you
are trying to capture. If you use an integer array, each element
holds two bytes. You can therefore halve the result of the above
calculation to get the number of elements needed. For example,
to GET a 10x20 block of pixels off a medium resolution screen, we
could use an integer array of (20*INT((2*10)+7)/8)+4)/2 elements.
All we need is to DIM PIC%(32).

Once you've got the array size right (and you should find your
Advance has enough memory to let you be lazy and use a massively
oversized array!), GET and PUT are very easy. Use GET to grab
the image. Replace it on the screen with:

PUT (x,y),array,mode

(x,y) are the co-ordinates where you want to place the drawing,
'array' is the name of the array that has got the image in it.
'mode* sets exactly how the stored image will be drawn onto the
screen. Some of the words used here will already be familiar to
you. 'mode' can be:

PSET
PRESET
XOR
OK
AND

and will automatically be XOR if you don't specify anything else.
PSET is our old friend for setting pixels on. In this case, it
just means that the image is copied as it was back onto the
screen.

PRESET will cause every colour to be inverted. What was colour 0
will become colour 3. What was colour 1 will become colour. 2.
And vice versa. Try it and you'll find that PRESET produces a
negative image. By GETing an image and then immediately PUTing
it back with PRESET, you'll cause it to go negative on the
screen!

OR will superimpose the image on any image that is already on the
screen while AND works like a mask ... the image will only appear
where there is already a drawing below.

The most useful 'mode' is XOR. XOR superimposes the image onto
an existing image except it inverts the existing image wherever
the two cross! This gives a rather odd property - you can do two
XORed PUTS onto a complex background and you'll leave the
background totally unchanged. This is very useful for animation.
You XOR the object onto the screen, work out its new position,
XOR it onto its old position again and go back to the first step!

Even so, the only way to see PUT and GET working is to try them:

10 REM Get and PUT demo
20 DIM A%(125):SCREEN 1,0:CLS
50 REM Capture a face
60 CIRCLE (15,15),15
70 CIRCLE (10,12),4:CIRCLE(20,12),4
80 CIRCLE (15,13),10,3,3.927,5.498
90 GET (0,0)-(30,30),Ai«:
100 REM Copy it all over
n o CLS:F0R 1=1 TO 500:NEXT I
120 FOR Y=0 TO 150 STEP 30
125 FOR X=U TO 270 STEP 30
130 PUT (X,Y),A%,PSET
140 NEXT X,Y
150 REM pause and do it again
160 CLS:F0R 1=1 TO 500:NEXT I
170 FOR Y=0 TO 150 STEP 30
175 FOR X=0 TO 270 STEP 30
180 PUT (X,Y),A%,PRESET
190 NEXT X,Y
200 G O TO n o

10 REM Movement witfi GET & PUT
20 DIM A%(125):SCREEN 1,0:CLS
30 DEF FN R(X)=5^INT(RND(1)*3-1)
40 REM Capture a face
50 CIRCLE (15,15),15
60 CIRCLE (10,12),4:CIRCLE(20,12),4
70 CIRCLE (15,13),10.3,3.927,5.498
80 GET (0,0)-(30,30),A*
90 REM Set up a background display
100 CLS
n o FOR 1=5 TO 15:L0CATE I,8:PRINT"Animation with GET & PUT":NEXT I
120 REM Move the face around
130 X=160:Y=100 ' start in centre
140 PUT (X,Y),A%,X0R
150 NEWX=X+FNR(5):NEWY=Y+FNR(Y)
160 IF NEWX<0 THEN NEWX=0
170 IF NEWY<0 THEN NEWY=0
180 IF NEWX>290 THEN NEWX=290
190 IF NEWY>160 THEN NEWY=160
200 PUT (X,Y),A%,X0R:X=NEWX:Y=NEWY
210 GOTO 140

10 REM MORE GET & PUT
20 DIM A%(125):SCREEN 1,0:CLS
30 DEF FN R(X)=5*INT(RN0(1)*3-1)
40 REM CAPTURE A CIRCLE
50 CIRCLE (15,15)
60 GET (0,0)-(30,30),A%
70 REM TRY DIFFERENT STEP VALUES AND
80 REM DIFFERENT 'MODES' WITH PUT
90 CLS
100 FOR X=0 TO 2*3.141593 STEP .05
n o PUT (X*40,70+SIN(X)*70),A%,R
120 NEXT X

6.21 Advance Basic Quick Reference Section

This is a list of Basic commands, statements
available on the Advance Personal Computer.

and functions

The form of the entries is as follows: alphabetic order; term
underlined with an indication of whether it is command, statement
or function; syntax of term; statement of purpose; remarks (if
any); then C for "available with cassette Basic" and/or D for
"available with disc Basic".

A command is an instruction that returns control to the operating
system after the instruction has been performed. A statement is
an instruction that is entered as part of a program source line.A
function converts a value into some other value according to a
fixed formula. These functions are built-in to the BASIC, and may
be called from any program without further definition. Arguments
to functions are always enclosed in parentheses. In syntax as set
out, arguments abbreviated as follows: X,Y represent any numeric
expression; I,J represent any integer expression; X$,Y$ represent
string expressions.

General notes:

"filespec" : string expression of form device:filename, enclosed
in inverted commas. Device = Casl (cassette),A:,B:,disc drives.

(...) indicates optional repetition.<...> indicates description
of possible substitution that will be further defined, unless
wholly obvious, in the remarks that follow. [....] indicate
that what is enclosed by the brackets is optional.

For further explanations, a much fuller treatment, and examples,
see the Advance Basic Manual.

ABS Function, ABS(X)
Peturns absolute value of expression X.

C,D.

ASC Function.
Returns ASCII

ASC(XS)
code for first character of XS. C,0,

ATN Function. ATN(X).
Returns the arctangent of X, wnere X is in radians. C,D.

AUTO Comnand. AUTO [<line number>][,<increment>].
AUTO begins numbering at <line number>, increments each
subsequent line number by <increment>. Default on both = 10, if
<line number> omitted, begins at 0. If AUTO generates a number
already in use, an asterisk indicates this. Press ENTER to keep
existing line, and generate next line number. CTRL-Break to stop
AUTO. C,D.

BEEP Statement. BEEP.
Sounds speaker at 800hz for 1/4 sec.C,0.

BLOAD Command. 8L0AD <filespec> [,<offset>].
Loads specified memory image file into memory from disc or
cassette. If using cassette Basic, CASl is assumed. <offset> is a
numeric expression in range 0 - 65535, the address at which
loading is to start in segment declared by last OEF SE6
statement. If offset omitted, offset specified at BSAVE used.
BLOAD does not check address range: do not load over Basic or
DOS. C,0.

BSAVE Command. BSAVE <filespec>,<offset>,<length>.
Saves contents of specified area of memory as a disc or cassette

file. <offset> as for BLOAD; saves from this address in segment
declared by last DEF SE6 statement. <length> is numeric
expression in range 1 - 65535 * length in bytes of memory image
file to be saved. C,D.

CALL Statement. CALL <variable name> [(<argument list>)]
Calls a machine language subroutine, or compiler routine written
in another high level language."variable name" contains an
address that is the starting point in memory of the subroutine.
Called as an offset into current segment of memory, as defined by
last DEF SEG statement. <argument list> specifies variables to be
passed as arguments to external subroutine.

CDBL Function. CDBL(X). Converts X to a double precision number.

CHAIN Statement. CHAIN [MERGE] <filespec>[,[<1ine number exo>]
delete <range>]]

Calls another program, passing control to it, can pass variables.
<filespec> specifies program to be called; <line number> is
starting point in chained program - if omitted, execution begins
at first line. Not affected by RENUM command. "ALL" specifies
that every variable in current program is passed to called

program. If ALL omitted, current program must contain COMMON
statement listing variables to be passed. "MERGE" option allows
subroutine to be brought into Basic program as an overlay:
current program and called program are merged. Called program
must be ASCII file to be merged. After overlay used, desirable to
delete it using DELETE option, so that new overlay can be brought
in. D.

CHRS Function. CHRSS (I)
Replaces an ASCII code I by its character equivalent. C.D.

xCINT Function. CINT(X)
Converts X to an integer. C,D.

CIRCLE Statement. CIRCLE (<xcentre>,<ycentre>),<radius>C,<color>
[,<start>,<end>,[,<aspect>]]]
Draws an ellipse with specified centre and radius.
<xcentre.ycentre> coordinates x,y for centres of circles;
<radius> is radius;<color> specifies colour of ellipse, see COLOR
statement. 0= background colour, 1-3 foreground colours (in
medium resolution.) <start,end> are angles in radians. Specify
where ellipse begins and ends. <aspect> is the aspect ratio,
ratio of x radius to y radius. D.

CLEAR Statement. CLEAR C,C<expl>][,<exp2>]]
<expl> is a memory location that, if specified, sets highest
location available for use by Advance Basic. <exp2> sets aside
stack space for Basic. CLEAR closes all files, clears all COMMON
variables, resets numeric variables and arrays to zero, resets
stack and string space, resets all string variables and arrays to
null, releases all disc buffers, deletes all DEF FN statements.
C,0.

CLOSE Statement. CLOSE [W<file number >[,0*Fj<f i le number.. .>]].
Cone!udes I/O to a file. <file number> is the number used when
file was opened. Association between file and file number
terminates with CLOSE. CLOSE for sequential output writes final
buffer of output. C,D.

CLS Statement. CLS . Erases screen. C,D.

COLOR Statement.
Varies with mode. (1) Text mode.
COLOR [<foreqround>] C,[<background>][,<border>]
Sets colours for screen.
<foreqround> is number in range 0-31, 0-15 set col our, 15-31,
colours, but flashing. For list of colours, see
<background> is number in range 0-7, sets backgroun
<border> is number in range 1-15, sets colour for

same
p.6-21.
col our.

border around
screen.
(2) Graphics Mode.
COLOR [<background>[,<palette>]
Sets screen colour for medium resolution graphics. <background>
is number 0-15, standing for colour range, see p.6-21. Colour of
background. <palette> number selects foreground colours, see p.6-

24. Any parameters outside specified ranges, returns "Illegal
function call" error.Foreground colour may be same as background
colour, making displayed characters invisible. Any parameter can
be omitted, previous value retained.

COM Statement. COM (n)
COM
COM

ON
(n)
(n)

OFF
STOP

Enables or disables event traoping of communications activity on
the specified channel, "n" is the number of the communications
adapter, 1 or 2. This statement allows communications event
traoping by ON COM statement. With COM (n) ON, and specification
of non-zero line in ON COM statement, Basic checks between every
statement to see if there has been communication activity - if
so, ON COM is executed. 0.

COMMON Statement. COMMON <list of variables>. Passes variables
To aTchained program. Used in conjunction with CHAIN statement.
Recommended tnat it is used at beginning of program. Same
variable cannot occur in more than one COMMON statement.Array
variables specified by appending "()"to variable chain. D.

CONT Command. CONT
Continues program execution after BREAK, STOP or END, from where

break occurred. Invalid if program has been edited during break.
C,D.

COS Function. COS(X)
Returns cosine of X. where X in radians. C,D.

CSNG Function. CSNG(X)
Converts X to single precision number. C,D.

CSRLIN Function.
Stores current line
returned in range 1

X = CSRLIN
position of
- 24. C,D.

cursor in numeric variable. Value

CVI.CVS,CVD Functions. CVI (<2-byte string>)
CVS (<4-byte string>)
CVO (<8-byte string>).

Converts string values to numeric values. Numeric values read in
from random access disc file must be converted from strings back
into numbers. I converts 2-byte string to integer, S 4-byte
string to single precision number, D 8-byte string to double
precision number. D.

DATA Statement. DATA <list of constants>
Stores numeric ana string constants accessed by program's READ
statement{s). Nonexecutable; placed anywhere in program; can
contain as many constants as will fit on a line (separated by
commas). READ statements access DATA statements in order.
Constants must not be expressions. Must agree with type (numeric
or string) in READ statement. C,D.

DATES Statement. DATES = <string expression>
Sets current date. <string expression> should return string in
one of following forms:mm-dd-yy

mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

D.

DATESS Funct i on. xS = DATES
Retrieves current date,in form mm-dd-yyyy. D.

DEF FN Statement. DEF FN name [(<parameter list>)] = <function
definition>
Defines and names a function that is written by the user, "name"
must be legal variable name, becomes name of function. <parameter
list> = variable names in function definition that are replaced
when function is called; items in list separated by commas.
<function definition> * expression that performs operation of
function. Variable names appearing in expression only define
function - do not affect proaram variables with same name. If
variable name used in function definition appears in parameter
list, value of parameter supplied when function is called - if
not, current value of variable used.

Variables in parameter list represent one-to-one
variables or variables given in function call.

argument

May define either numeric or string functions
be specified, otherwise type mismatch. C,0.

DEF INT/SNG/DBL/STR Statements.

right type must

DEFINTrange(s) of letters
DEFSNGrange(s) of letters
OEFDBLrange(s) of letters
DEFSTRrange(s) of letters

Declares variable types as integer, single precision, double
precision or string. Any variable names beginning with the
letter(s) specified in the range considered the type of variable
specified. C,D.

DEF SEG Statement. DEF SEG [* address]
Assigns current segment address to be referenced by a subsequent
BLOAO, BSAVE, CALL,CALLS or POKE statement or by USR or PEEK
function. <address> is numeric expression returning unsigned
integer in range 0-65535. Saved for use as segment required by
subsequent statements, functions. If omitted, data segment used
as default. C,D.

DEF USR Statement. DEF USR[<Digit>3 = <integer expression>
Specifies starting address of assembly language subroutine.
<Digit> is 1-9, corresponds to number of USR routine whose
address is being specified. If omitted, DEF USRO assumed. Value
of <integer expression> is starting address of USR routine. Any
number can be used, allowing access to any number of
subroutines. C,D

DELETE Command. DELETE [<line number>] [-<line number>]
Deletes program lines. C,D.

DIM Statement. DIM <list of subscripted variables>
Specifies maximum values for array variable subscripts and
allocates storage accordingly. If array variable name used
without DIM statement, maximum value of array's subscript(s) is
assumed to be 10. DIM statement sets all elements of specified
arrays, to initial value of zero. C,D.

DRAW Statement. DRAW <string expression>
Draws lines. <string expression> is a subcommand specifying
direction and distance from current graphics position - last one
defined with LINE or PSET, or, by default, the centre of the
screen. Subcommands: U C<n>] - Move up scale factor*n points (and
so on for following subcommands) D, down; L, left; R, right;
diagonally up and right; F, diagonally up and left; G, diagonally
down and left; H, diagonally down and right.

M x,y Move absolute and relative. If x is preceded by + or -, x
and y (which will itself have a + or - specification numbered in
pixels) are added to the current graphics position and connected
by a line. Otherwise, line drawn to point x,y from current cursor
position.

Following prefix commands may precede any of above movement
commands: B, move but do not plot; N, move, but return to
original position; A n, set angle n. "n" may range from 0-3, 0*0
degrees, 1*90 degrees, 2*180 degrees, 3*270 degrees; C n, set
colour n, may range from 0-3; S n, set scale factor, may range
from 1-255.

X<string expression>. Execute substring; allows execution of
second substring from a string. D.

EDIT Command. EDIT <line number>
Enters edit mode at the specified line. C,D

END Statement. END
Terminates program execution, closes all files, returns to
command level. C,D

EOF Function. EOF (<file number>)
Tests for the end-of-file condition. Returns -1 (true) if end of
sequential file has been reached. C,D

ERASE STATEMENT ERASE <1 i St of array vari ab 1 es>...
Eliminates arrays from memory. C,D

ERR&ERL Variables. var=ERR var*ERL
Variable ERR contains error code for last error. Variable ERL
line number of line in which error was detected. Used in
IF...THEN statements directing program flow in error handling
routine. C,D

ERROR ERROR <integer expression>
Simulates occurrence of Basic error, or allows error codes to be
defined by user. <integer expression> between 0 and 255. If it is
same as error code already in use by Basic, error statement will
simulate that error. If defining own error code, select from
highest integer expressions; user defined error can be
conveniently handled in error handling routine. Otherwise, Basic
will return "Unprintable Error". C,D

EXP Function. EXP(X)
rilculates exponential function, ie e (base of natural
logarithms) to the power of X. X must be <= 88.02969. C,D

FIELD Statement. FIELD [ff] <file number>, <field width >AS<string
vari able>---
Allocates space for variables in a random file buffer. Before GET
or PUT executed, must be FIELD statement to format random file
buffer. <file number> is number under which file was
opened. <field width> is number of characters to be allocated to
<string variable>. Total number of bytes allocated in FIELD
statement must not exceed record length specified when file
opened - otherwise "Field overflow" error occurs.

Any number of FIELD statements may be executed for the same file.
All FIELD statements that have been executed will remain in
effect at the same time. D

FILES Statement. FILES C<filespec>]
Prints names of files residing on specified disk. <filespec>
includes file name and optional device designation. If omitted,
all files on currently selected disk listed. ? or * can be used
as wild cards, first matching any single character, second one or
more characters starting at position. D.

FIX Function. FIX(X)
Returns truncated integer part of X. Unlike INT, FIX does not
return next lower number of negative X. C,D.

FOR...NEXT Statement. FOR <variable>*x TO y [STEP z]

NEXT [<variable>][,<variable>...3

where x,y,z are numeric expressions.

Allows a series of instructions to be performed in a loop a given
number of times. <variable> used as a counter, from first, x, to
last, y. Program lines following FOR are executed until NEXT
statement, then counter adjusted by amount specified by STEP.
Check performed to see if value of counter is now greater than
final value, y. If no, Basic branches back to the statement after
FOR statement, process repeated. If greater, goes to statement
after NEXT. If STEP omitted, defaults to 1. C,D

FRE Function. FRE(X) FRE(XS)
X and X$ are dummy arguments. With number, returns number of
bytes in memory not being used by Basic. With string, forces
housecleaning, tidying garbage before returning free bytes. C,0

GET Statement. With FILES. GET [^] <file number> [,<record
number>3
Reads record from random disk file into random buffer. <file
number> is number under which file was opened. <record number>,
up to 32767, is number of record to be read. If omitted, next
record (after last GET) read into the buffer. After GET, INPUT£
and LINE INPUTi allow reading characters from random file buffer.
After GET statement has been executed use INPUTi and LINE INPUTi
to read characters from the random file buffer.

With Graphics. GET (xl,yl)-(x2,y2),<array name> used with PUT
(xl,yl),<array name>[,action verb]
where (xl,yl)-(x2,y2) is a rectangle on the screen.

<Array name> name assigned to place that will hold imaae.
can be any type except string. Must be dimensioned la^oe
to hold whole of image.In PUT, <xl,yl> gives co-ordinate o
left-hand corner of image.(If image transferred is too
error will be returned). <action verb> is one of:PSE^, P
AND, OR, XOR. PSET transfers data on to screen verbatim,
same but negative image produced. AND is used to transfer
if an image already exists on screen. OR is used to super
image on to an existing image. XOR causes points on screen
inverted where a point exists in the array image. Use
animation, see p.6-30.C,D

GOSUB & RETURN Statements. GOSUB<line number>

A r r a v'

 ̂ too
i arce,

P Q r ̂ T
i 'ndC-

■: npose
f- he.

RETURN [<line number)]

Branches to, returns from, subroutine. <line number) is first
line of subroutine. Subroutine can be called any number of times
from within program. May also be called from within another
subroutine. Nesting limited only by available memory. RETURN
makes Basic branch back to statement following most recent GOSUB
statement. <line number> option causes return to specific
1 ine.C,0

GOTO Statement. G0T0<line number>
Branches unconditionally out of normal program sequence to
specified line number. C,0

HEXS Function. HEXS(X)
Returns string that represents nexadecima' >/a'ue cf cecima'
argument. X is rounded to integer before HExfX) is evaluated.
C,D.

2JF THEN,ELSE,GOTO Statements.

IF <expression> THEN <statement(s)> ELSE <statement(s))

IF <expression> GOTO <line number> ELSE <statement(s)>

Makes a decision regarding program flow based on resuU returned
by an expression. <statement(s) > = statem.ent or sequence
statements (with ; between), or line number to branch t . j
result of <expression> . is not zero, THEN or- GOTO
executed. If zero, THEN,GOTO clauses igno^^u, ElS
Execution continues with next executable statement
before THEN.

; a - s e i s

o n r a a ' l t o ^ v e o

IF...THEN...ELSE statements can be nested. Nesting limitec
by length of line. C,D

INKEYS Function. INKEYS
Returns a 1-character string containing character read from
terminal, or null string if no character pending at terminal. C,0

INP Function. 1NP(I)
Returns byte read from port L
Complementary to OUT. C,0

I must be in range 0-65535.

INPUT Statement.
INPUT [;] [<"prompt string">;]<1ist of variabies>

Allows input from keyboard during program execution. Wnen INPUT
statement encountered, program execution pauses, ? printed to
indicate program waiting for data. If <prompt string> included,
string printed before ? To suppress ? use comma instead of semi­
colon after <prompt string>. For D, [;] and enter by user does
not produce carriage return on screen.

Data entered is assigned to variable(s) given in <variable list>.
Number supplied, separated by commas, must be same as list, same
type. Otherwise, error message will be returned. C,D.

INPUT# Statement.
Reads data from
program variables

INPUT#(file number>,<variable list>
sequential device or file, assigns them to

<file number> is number used when file was
OPENed for input. <variable list> contains variable names to be
assigned to items in file - type must match. Whatever source
used, data items in file should appear just as if data were being
typed for INPUT. With numeric values, leading spaces, carriage
returns, linefeed, ignored. Similarly, if Basic scanning file for
string item, will ignore leading spaces, carriage return,
linefeed - first character encountered assumed to be string
start. If string begins with ", second" marks end of string - so
no " within C,D

INPUTS Function. INPUTS (X[,[#^Y])
Returns string of X characters, read from file number Y. If file
number not specified, input from keyboard, with no screen echo.
All control characters passed through except CTRL-break, used to
interrupt execution of INPUTS function. C,D.

INSTR Function. INSTR([I,]XS,YS)
Searches for first occurrence of Y$ in X$, returns position at
which match is found. Optional I sets position for search to
start. If X$ null,YS not in X$, or I greater than length of X$,
INSTR returns 0. If YS null, returns I or 1. C,0

INT Function. INT(X)
Returns largest integer <=X. C,0.

KEY Statement. KEYn.xS
KEY list
KEY ON
KEY OFF

Assigns soft key values to function keys and displays values,
n is number (1-10) of function key. x$ is text assigned to
specified key. KEY statement allows function keys to be
designated for soft key functions. Each F key can be assigned
15 byte string that when key is pressed will be input to Basic.

/
V.

Initially soft keys assigned following values: Fi LIST <space>,
F2 RUN <enter>, F3 L0AD",F4 SAVE",F5 CONT <enter>, F6 ,"LPT1:",
<enter>, F7 IRON <enter>, F8 TROFF<enter>, F9 KEY<space>, FIO
EDIT <space>

KEY ON displays soft key values on 25th line of screen, first six
characters of each key only. For all 10, use Mode 80. KEY OFF
erases soft key display, making line available for programming.
KEY l i s t displays all 10 values onscreen, all 15 characters
displayed.

Assigning null string to soft key disables function key as soft
key. If value entered for n not in range 1-10, "Illegal function
call" error returned.

When softkey called, INKEYS function returns one character of
softkey string. C,D.

KEY(N) Statement. KEY(n)0N
KEY(n)0FF
KEY(n)ST0P

Enables or disables event trapping of soft key or cursor
direction key activity for specifed function key.

(n) is number of key, as F-1-10, then 11-14 for cursor up,left,
right,down. While trapping enabled, if non-zero line number
specified in ON KEY statement (q.v.),Basic checks between every
statement to see if specified key was used. If so, ON KEY
statement executed. KEY(n)0FF disables event trap, event not
remembered. KEY(n)ST0P disables event trap, but if event occurs,
remebered and ON KEY executed as soon as trapping enabled. D

KILL Statement. KiLKfilespec>
Deletes file from disk. 0.

LEFTS Function. LEFTS(X$,I)
Returns string comprising the leftmost I characters of X$. I
must be in range 1-255. If I greater than number of characters in
X$ (LEN (X$)), entire string returned. If I = 0, null string
returned. C,D.

I^Function. LEN(XS)
Returns number of characters in XS. Nonprinting characters and
blanks are counted. C,D

LET Statement. [LET] <variab1e>=<expression>
Assigns value of expression to variaole. LET is optional. C,D

LINE Statement. LlNEC(xl,yl)]-x2,y2 [,C<color>][,b[f]]]
Draws a line or a box on the screen.

(xl,yl) is optional co-oroinaLe for starting point of line.
(x2,y2) is ending puiril. <culor> is colour of line. Can be used

L

with ,b or, bf. ,b draws box with co-ordinates as opposite
corners, ,bf filled box.

When out of range co-ordinates given, closest legal value
assigned. Co-ordinate form STEP (xoffset,yoffset can be used in
place of absolute co-ordinate. If,for example, most recent point
referenced was (0,0) the statement LINE STEP (10,5) would specify
a point at offset 10 from x and 5 from y. If STEP option used for
second co-ordinate on LINE statement, it is relative to first co­
ordinate in statement. C,D.

LINE INPUT Statement. LINE INPUT[;][<"prompt string">;],<string
vari ab1e>
Inputs entire line (up to 254 characters)to a string variable,
without use of delimiters. <"prompt string"> is string literal
printed at terminal before input is accepted. No ? unless part of
string. All input from end of prompt string to carriage return
assigned to <string variable>. If 1inefeed/carriage return, in
that order, encountered, both characters echoed, carriage return
ignored, linefeed goes in <string variable>, data input
continues. C,D.

LINE INPUT-<>» Statement. LINE INPUT <file number>,<string variable>
Reads entire line (up to 254 characters) without delimiters,
from sequential data file to string variable. <file number> is
number under which file was OPENed. <string variable> is variable
to which line will be assigned. LINE INPUT# reads all characters
in sequential file up to carriage return, skips over carriage
return/1inefeed sequence. Next LINE INPUT# reads all characters
up to next carriage return. If 1inefeed/carriage return sequence
encountered, preserved. C,D.

LIST Command. LlST[<line number)]
LIST[<linenumber>][-[<!ine number)]j[<filespec)]

Lists all or part of program currently in memory at terminal. If
Line number omitted, whole program listed. If second syntax used,
and only 1st line specified, that and all higher numbers
specified. If only 2nd line specified, all lines from beginning
through that line listed. If both, range listed. C,0

LUST Command. LLIST [<line number)[-C<line number)]]]
Lists all or part of proaram currently in memory at line printer,
assuming 132-character-wide printer. Options as for LIST, syntax
2. C,D.

LOAD Command. LOAD <fi lespeOC,R]
Loads program from disk or cassette into memorv. <filesoec) -must
include filename used when -ile was saved. R o p t i o n runs orogram
after in has been loaded. LOAD closes all open f i l e s , d e l e t e s all
variable lines ano program lines currently in Ho we ve r , if
R option, all open data files kept open - may oe u s e d t o chain
segments or programs. Information may be passed between programs
using data fi1es. C,D.

LOC function. L0C(<file number))

With random disk files, LOC returns record number of last record
read or written. With sequential files, LOC returns number of
records read from, or written to, file since it was opened. Basic
reads from any file opened for sequential input, so LOC retuns 1
before input. For communications file, LOC(X) used to determine
if characters in input queue remain to be read. 0.

LOC Statement. LOCATE [row][,[col][,Ccursor][,[start][stop]]]]
Moves cursor to specified position. Optional parameters turn
blinking cursor on/of, define vertical start and stop lines, size
of cursor.

<row> is vertical line number on screen, expressed as number 1 -
25. <col> is column number on screen (1-40 or 1-80.) <cursor> is
Boolean value indicating whether cursor should be visible or
not. 0=off,l=on. <start> is cursor starting line, <stop> is
cursor stop line, range 0-31. Any omitted parameter means
previous value is assumed. Values outside ranges result in
"Illegal function call error". C,D.

LOF Function. L0F(<file number>)
Returns length of file in bytes. <file number> is that used when
file opened. D.

LOG Function. LOG(X)
Returns natural logarithm of X. X must be greater than zero.
C,D.

LPOS Function. LPOS(X)
Returns current position of line printer head within line printer
buffer. For Disk Basic, X is number indicating which line printer
is being tested, 0/1,2 or 3. C,D.

LPRINT & LPRINT USING Statements. LPRINT [<list of expressions<]
LPRINKstring expression>;<list of expressions>

Prints data at the line pri nter.<l i st of expressions> list of
numeric or string expressions to be printed. Expressions
punctuated by commas, semicolons. <string expression> gives
format to be used, using special formatting characters.

Print Positions

Position of each printed item is determined by the punctuation
used to separate the items in the list. Basic divides line into
print zones of 14 spaces. Comma causes next value to be printed
at beginning of next zone; semi-colon causes it to be printed
immediately after last value; spaces have semicolon effect.

If there is a comma, or semicolon, at the eno of the list of
expressions, next LPRINT statement begins priming on the same
line. If none of these, and carriage return inserted, Basic goes
to next line. If printed line longer tnan width, Basic continues
print on next line.

Printed numbers are always followed by a space. Positive preceded
by a space, negative by Numbers are printed in different
formats depending on whether they are single or double precision,
and possibility of representing them accurately in unsealed
format - otherwise scaled.

Special Formatting Characters and Strinq Fields

With LPRINT USING, one of 3 formatting characters can be used to
format string field: "!" specifies only first character printed;
"\N SPACES\ specifies that 2+n cnaracters from string to be
printed. If string longer than field, extra characters ignored.
If field longer than string, string left-justified in field and
padded with spaces on right. specifies variable length string
field: when so specified, string output without modifications.

Special characters for numeric fields:#. + - ♦ * $ $ **$

, ---- %

represents each digit position - number sign. Always filled -
if fewer digits, filled with spaces.

(Decimal point) may be inserted at any position in the field.
If the format string specifies that a digit is to precede the
decimal point, it will always be printed. Numbers are rounded as
necessary.

+ at beginning or end of format string causes number to be
printed with sign (+/-),before or after.

- at end of format field causes negative numbers to be printed
with trailing minus sign.

** at beginning of format string causes leading spaces in mumeric
field to appear with trailing minus sign, ** also specifies
positions for two more digits.

SS causes dollar sign to be printed to immediate left of
formatted number, specifies two more digit positions, one is $
sign. No exponential format with $S. Negative numbers cannot be
used unless - sign trails to right.

**S combines effects of above two symbols. Leading spaces
asterisk filled, and a S sign is printed before number.**S
specifies three more digit positions, one of which is S. No
exponentials with **S. When negative numbers printed, - appears
immediately to left of $.

","(Comma) to left of decimal point in formatting string causes
comma to be printed to left of every 3rd. digit to left of
decimal point. Comma at end of format string printed as part of
string. Comma specifies another digit position. Comma has no
effect if used with exponential () format.

(carets or up-arrows) may be oiaced after digit position
characters to specify exponential format. Allow space for E+xx to
be printed. Any decimal point position may be specified.
Significant digits left-justified, exponent adjusted. Unless
leading + or trailing +/- specified, one digit position will be
used to left of decimal point to print space or - .

Underscore _ in format string causes next character to be output
as literal character; may itself be underscored by placing "__ "
in the format string.

% printed if number is larger than specified field. If rounding
causes the number to exceed the field ,% printed in front of
rounded number.

In the Advance implementation of GW-BASIC, LPRINT assumes 80-
character wide printer. To avoid skipped line after exactly 80
characters, print ; at end of line. C,0.

L$ ET & RSET Statements.
rSTT<siring variable>=<string expression>
RSET <string variable>*<string expression>
Moves data from memory to random file buffer in preparation for
PUT statement. <string variable> defined in FIELD statement,
<string expression> data to go in field. If <string expression>
requires fewer bytes than were fielded to <string variable>, LSET
left-justifies string in field, RSET right justifies. Spaces pad
out.If string too long, characters dropped from right. Numeric
values must be converted to strings before LSET or RSET. See
MKI$,MKS$,MKD$. D.

MERGE Command. MERGE<filespec>
Merges specified file into program currently in memory.
<filespec> must include filename used when saved, must be in
ASCII format. If any lines in data file have same line numbers as
program in memory, lines from file replace those in memory. After
MERGE, Basic returns to command level. C,D.

MIPS Statement. MI0S(<string expl>,n[,m])=<string exp2>
Replaces a portion of one string with another string. n,m are
integer expressions, and <string expl/2> are string expressions.
Characters in <string expl> are replaced by characters in <string
exp2>. Optional "m" refers to number of characters used to
replace, if omitted, all of <string exp2> used. Replacement never
goes beyond orginal length of <string expl>. C,D.

MIPS Function. MIDS{XS,n[,m])
Returns a string of length m characters from XS, beginning with
nth character. n,m must be 1-255. If m omitted, or if there are
fewer than m characters to right of nth character, all rightmost
characters beginning with the nth character are returned. If n <
no. of characters in X$ (LEN(XS)), null string returned. C,D.

MKIS,MKS$,MKD$ Functions. MKIS(<integer expression>

MKSS(<sing1e precision expression>)
MKDS(<doub1e precision expression>)

Converts numeric values to string values. MKI$ converts integer
to 2-byte string, MKSS single precision number to 4-byte
string,MKD$ converts double precision number to 8-byte string. D.

MOTOR MOTOR(state)
Turns cassette motor on or off. <state> is Boolean value
(0 or 1...) indicating off or on. If state omitted, MOTOR
switches the motor to the ooposite state than current one. C,D.

NAME Statement. NAME <old filename> AS <new filename>
Changes name of disk file. <old filename> must exist and <new
fi 1 ename>must not exist, else error. File may not be renamed with
new drive designation - otherwise "Rename Across Disks" error.
File with new name in same space as before. D.

NEW Command. NEW
D e 1etes program currently in memory and clears all
variables, closes all files, turns tracing off. C,D.

OCTS Function. OCTS(X)
Returns a string that represents octal value of digital argument.
X rounded to integer before OCTS(X) evaluated. C,D.

ON COM Statment. ON COM(n) GOSUB <line number>
Specifies first line number of subroutine to be performed when
activity occurs on communications channel, n is number of
communications channel. <line number> is number of first line of
subroutine. If zero, communications event trap disabled. See COM
ON/OFF/STOP for further control of event trapping on
communications activity.

Event trapping only takes place when Basic is executing a
program; disabled when error trap occurs. When event trap occurs,
automatic COM STOP activated to avoid recursive trapping. RETURN
from trapping subroutine sets COM ON automatically, unless
explicit COM OFF performed inside subroutine.

ON ERROR GOTO Statement. ON ERROR GOTO <line number>
Enables error handling and specifies first line of error handling
routine. If line number 0, error handling disabled. Subsequent
errors will print error and stop execution. If line number does
not exist, "Undefined line" error. If error occurs during
execution of error handling routine, that error message printed
and execution terminates. Error trapping does not occur within
error handling routine. C,0

ON...GOSUB & ON...GOTO Statements.

0N<expression>G0T0<liSt of line numbers>
ON<expression>GOSUB<list of line numbers>

Branches to one of several specified line numbers, depending on

value returned when an expression evaluated.

Value of <expression> determines which line number in list will
be used for branching, eg if value is 3, 3rd line number will be
destination. (If value is noninteger, fractional portion
rounded.) In 0N...G0SUB, each line number must be first line
number of subroutine. If value of <expression> is zero or greater
than number of items in list (but < = 255) Basic continues with
next executable statement. If value negative, or >255, "Illegal
function calT'error.

ON KEY Statement. ON KEY(n) GOSUB <1ine number>
Specifies first line number of subroutine to be performed when
specified function or cursor direction key is pressed. <line
number> is first line number of subroutine, n is as KEY and
KEY(n) statements,q.v.

<line number> of zero disables event trap.

ON KEY statement only executed if a KEY (n)0N statement has been
executed to enable event trapping. If enabled, and if Kline
number> in ON KEY statement is not zero, Basic checks between
statements to see if specified function or cursor direction key
has been pressed. If so GOSUB is performed to specified line. If
KEY(n)0FF statement has been executed for specified key, GOSUB is
not performed and is not remembered.

If a KEY STOP statement has been executed for specified key,
GOSUB not performed, but will be as soon as a Key(n) ON statement
is executed. When an event trap occurs (i.e.GOSUB executed)an
automatic KEY(n) STOP is executed so that recursive traps cannot
take place. The RETURN from trapping routine will automatically
perform a KEY(n) ON statement unless an explicit Key(n) OFF was
performed inside the subroutine.

RETURN Kline number> form of RETURN statement may be used to
return to a specific line number from the trapping subroutine.
Take care, since other GOSUBS WHILES and FORS may be active,
resulting in possibility of "For without NEXT error" etc.

Event trapping does not take place when no program being
executed, event trapping disabled when error trap occurs.

When a key is trapped, that occurrence of the key is destroyed.
Cannot test for key using INPUT or INKEY$. If different functions
to be assigned to particular keys, set up a different subroutine
for each key.

ON PEN Statement. ON PEN GOSUB Kline number>
Specifies first line number of subroutine to be performed when
lightpen is activated. Kline number> is first line. Kline number>
of zero disables pen event trap.

ONPEN statement only executed if a PEN ON statement has been
executed to enable event trapping. If enabled, and if Kline
number> in ON PEN statement not zero, Basic checks between
statements to see if lightpen has been activated.If so a GOSUB is
performed to specified line. If PEN OFF statement has been
executed for specified key, GOSUB is not performed and is not
remembered.

If a PEN STOP statement has been executed GOSUB is not performed,
but will be as soon as a PEN ON statement is executed. When an
event trap occurs (i.e.GOSUB executed)an automatic PEN STOP is
executed so that recursive traps cannot take place. The RETURN

Chapter Six Advance 86 Basic Page 6-57

from trapping routine will automatically perform a PEN ON
statement unless an explicit PEN OFF was performed inside the
subroutine.

RETURN<line number> form of RETURN statement may be used to
return to a specific line number from the trapping subroutine.
Take care, since other GOSUBS WHILES and FORS may be active,
resulting in possibility of "For without NEXT error" etc.

Event trapping does not take place when no program being
executed, event trapping disabled when error trap occurs. D.

ON STRI6(n) Statement. ON STRIG(n) GOSUB <line number>

Specifies first line number of subroutine to be performed when
joystick trigger is pressed, n is number of joystick trigger.
<line number> is number of first line of subroutine.

<line number> of zero disables event trap.

ON STRIG statement is only executed if a STRIG ON statement has
been executed to enable event trapping. If enabled, and if <line
number> in ON STRIG statement is not zero, Basic checks between
statements to see if specified function or cursor direction key
has been pressed. If so a GOSUB is performed to specified line.
If STRIG OFF statement has been executed for specified key, GOSUB
is not performed and is not remembered.

If aSTRIG STOP statement has been executed for specified key,
GOSUB not performed, but will be as soon as a STRIG ON statement
is executed. When an event trap occurs (i.e.GOSUB executed)an
automatic STRIG STOP is executed so that recursive traps cannot
take place. The RETURN from trapping routine will automatically
perform a STRIG ON statement unless an explicit STRIG OFF was
performed inside the subroutine.

RETURN <line number> form of RETURN statement may be used to
return to a specific line number from the trapping subroutine.
Take care, since other GOSUBS WHILES and FORS may be active,
resulting in possibility of "FOR without NEXT error" etc.

Event trapping does not take place when no program being
executed, event trapping disabled when error trap occurs. D.

OPEN Statement.

OPEN <mode>,(?>ifc]<fi le number>,<fi lespec>C,<record length>]

OPEN <filespec> [FOR <mode>] AS &fc] <file number> [LEN = <record
length>]

Allows I/O to a file or device.

<mode> is string expression whose first character is one of
following: 0 - specifies sequential output mode. I - specifies

sequential input mode. R - specifies random input-output mode,
and this is default value. A -specifies sequential output mode
and sets the file pointer at the end of the file and record
number as last record of the file. PRINT or WRITE statement
will then extend (append) the file. Disk only.

<file number> is integer expression whose value is between 1 and
15. Number is then associated with file for as long as it is
open, used to refer other disk I/O statements to the file.

<record length> is integer expression that sets record length for
random files - do not use with sequential ones.

Disk file must be opened before any disk I/O operation can be
performed on that file. OPEN allocates a buffer for I/O to the
file and determines the mode of access that will be used with the
buffer.

A file can be opened for sequential input or random access on
more than one file number at a time. For output, however, only
one file number at a time.

Notes on Cassette Files: if the cassette is the addressed
device, and no fileneame is given, the next file on the cassette
will be read. On the tape, only one file can be open at a time;
other open files could be printer, keyboard and screen. C,D.

OPEN COM Statement.

OPEN "COMn: [<speed>] [,[<parity>] C,[<data>] C,C<stop>] C,RS3
C,CSCn]3 [,DSCn33 C,CD[n33 C,BIN] [,ASC3 C,LF 3 3 33 AS C#-3<device
number>

Opens and initialises a communications channel for input/output.

Comn: name of device to be opened. <speed> is baud rate, in bits
per second. <parity> designates parity of device to be opened.
Valid entries are, e.g. N (none),E (even), or 0(odd).<data>
designates number of bits per byte. Valid entries are
5,6,7,or8.<stop> designates stop bit. Valid entries 1 or 2. RS
suppresses RTS (request to send). CS(n) controls CTS (clear to
send), n specifies time in milliseconds before error returned, if
omitted or 0 line status is not checked. (Default 1 sec.) DS(n)
controls DSR (data set ready). “Device Timeout Error" will occur
if DSR not detected. CD(n) controls CD (carrier detect). <device
number> is number of device to be opened.

<speedXparityXdata><stop>options must be listed in this order -
others in any order, after these.

LF specifies that linefeed is to be sent after carriage return.
Allows communication files to be printed on a serial line
printer.Nb INPUT and LINE INPUT , when used to read from a COM
file that was opened with the LF option, stop when they see a

carriage return, ignoring the linefeed.

LF option superseded by BIN option. BIN opens device in binary
mode, selected unless ASC is specified. In BIN mode, tabs not
expanded to spaces, carriage return not forced at end-of-line.
Control Z not treated as end of file. When channel closed.
Control Z will not be sent over the RS232 line.

In ASC mode, tabs expanded, carriage returns are forced at the
end-of-line. Control Z is treated as eno-of-file. When channel is
closed. Control Z sent over RS232 line. 0.

OPTION BASE Statement. OPTION BASE n
Declares minumum value for array subscripts, n is 1 or 0. Default
base 0. If used, must be coded before defining or using arrays.
C,D

OUT Statement. 0UTI,J
Sends a byte to a machine output port. I is port number. J is
data to be transmitted. C,D

P A INT Statement. PAINT (<xstart>,<ystart>)C,<paint
co1or>[,<border color>]]
Fills graphics figure with colour specified.

<xstart,ystart> are co-ordinates where painting is to begin.
Should be within area, not at border. <paint co1or> is number of
colour. If not specified, foreground colour used. <border color>
is colour of border, when encountered, painting stops. If not
specified, <paint colour> used. D.

PEEK Function. PEEK(I)
Returns byte read from indicated memory location (I).

Returned value integer in range 0 - 255. I is offset from current
segment, defined by last DEF SEG statement. C,D.

PEN Statement/Function. PEN ON
PEN OFF
PEN STOP
x=PEN(n)

PEN ON enables lightpen read function and event trapping. PEN OFF
disables. PEN STOP (0 only) disables functions and trapping, but
remembers event for trapping when enabled. Function reads light
pen co-ordinates, (n) is numeric expression range 1-9, returning
values as follows: 0/-1 - was pen down since last poll? -l,if
down, 0 if not. 1 - returns x co-ordinate where pen last pressed.
2 - y co-ordinate same. 3 - current pen switch value, -1 if down,
0 if up. 4 returns last known valid x co-ordinate.5, y, same. 6 -
character row position where pen last pressed. 7 - column
position, same. 8 - last known character row wnere pen was
positioned. 9 - last known valid character column where pen
posi tioned.

Pen initially off, PEN ON executed before any pen read function
calls. Call to pen function with PEN OFF gives "Illegal function
call" error. See ON PEN for event trapping. Lightpen may return
inaccurate values in border areas of screen. C,D.

PLAY Statement. PLAY <string expression> . Plays music as
specified by string expression. Like DRAW, PLAY embeds a macro
language, here defining sequential notes, into single statement.
Turns music into character string, andvice versa.

Subcommands for <string expression> are :

A-G C# or +,-] - plays note in range A-6, + sharp, - flat.

L(n) - length of notes, 1 equals whole note, up to 64 being
fractions of notes (eg 4 is quarter note). Length may also follow
note if change of length for one note only - eg A 16 equivalent
to L16A.

MF sets music (PLAY) statement and SOUND to run in foreground,
i.e.,each subsequent note or sound will not start until previous
note or sound has finished; this is default mode.

MB - Music (PLAY statement) and SOUND set to run in background,
i.e., each note or sound placed in buffer allowing program to
continue executing while note or sound plays in background.

MN - sets "music normal" so that each note plays 7/8 of time
determined by length. ML- sets "music legato" so that each note
will play full period set by length.

N<n> Plays note n. n may range from 0 - 84 (7 octaves); n = 0
means a rest.0<n> - sets current octave; 7 octaves numbered 0-6.

P<n> specifies pause, ranging 1-64; option corresponds to L<n>.

T<n>sets "tempo", number of L4s in Isec, ranging from 32 - 255,
default 120. Period after note causes note to play 3/2 times L
multiplied by T (Tempo), may be multiple, scaled accordingly;
works with P, same.

X <string> - executes substring; may be executed by appending
character form of substring address to "X". D

POINT Function. <xcoordinate>,<ycoordinate>
Reads colour value of pixel from screen. <Coordinates> are
coordinates of pixel to be referenced. If specified point is out
of range, value -1 returned. C,D.

POKE Statement. POKE I,J
Writes a byte into memory location. I is aodress, in integer
range 0 to 65535. Offset from current segment set by last DEF
SEG statement. J is data byte. C,D.

POS Function. POS(I)
Returns current horizontal (column) position of cursor. (I)is
dummy argument. Leftmost position is 1. C,0.

PRESET Statement.
PRESET (<x coordinate>,<y coordinate>)C,<color>]
Draws specified point on screen, if <color> not specified,
background colour selected. <coordinates> specify pixel to be
set. <color> is number assigned to color used for specified
point. If out-of-range coordinate given, no action taken, error
message returned. Co-ordinates can be shown as absolutes, or STEP
option can be used to reference a point relative to most recent
point used.

STEP <xoffset>,<yoffset>. C,0.

PRINT Statement. PRINT [<list of exoressions>]
Outputs data on the screen. Expressions in list may be numeric or
string expressions in quotation marks. If <list of expressions>
omitted, blank line is printed. If included, values of expression
printed at terminal.

Further specifications of print positions are identical to
LPRINT; please refer to these. C,D.

PRINT US ING Statement. PRINT USING <string exp.>;<list of
expressions>.
Prints strings or numbers using a specified format. <list of
expressions> comprised of string expressions or numeric
expressions that are to be printed, separated by semicolons.
<string exp> is a string literal (or variable) composed of
special formatting characters, determining field and format of
printed strings and numbers.

For specification of fields and formats, see details under LPRINT
USING Statement, which are identical. C,D.

PRINT#and PRINT USING#Statements.
PRlN'W'<file number>,CuSING<string exp>;]<list of expressions>

Writes data to a sequential file. <file number> is number used
when file was opened for output. <string exp> formatting
characters as for LPRINT USING. <list of expressions> expressions
that will be written to file.

PRINT'#^does not compress data. Image of data written to file,
just as would be displayed on terminal with PRINT. In list of
expressions, numeric expressions should be delimited by
semicolons. If commas are used as delimiters, extra planks
inserted between print fields will also be written to file.
String expressions must be separated by semicolons in the list.
Use explicit delimiters to format string expressions correctly in
the file. If strings themselves contain commas, semicolons,
significant leading blanks, carriage returns or linefeeds, write
them to file surroundeu by explicit quotation marks with

CHR$(34). Print statement may also be used with the USING option
to control format of file.

See also WRITE Statement. C,D.

PUT Statement. PUT E^]<file number>[,<record number>].
Writes record from random buffer to random access file. <file
number> is number under which file was opened. <record number> ,
1-32767, is record number for record - if omitted, next available
number, after last PUT, is used. PRINT ,PRINT USING and WRITE
may be used to put characters in the random file buffer before
executing a PUT statement. With WRITE , buffer padded with spaces
up to carriage return.

PUT statement with graphics modes - syntax PUT (xl,yl),array
name> [,<action verb>].
For further specification see GET statement. D.

RANDOMIZE Statement. RANDOMIZE C<expression>]
Reseeds random number generator. <expression> is integer (-32768
to 32767) used as seed, if omitted, query asking for this
returned. If random number generator not reseeded, RND function
returns same sequence each time program is run. To change
sequence of random numbers every time program run, place a
RANDOMIZE statement at the beginning of program, and change
argument with each run. C,D

READ Statement. READ <list of variables>
Reads values from a DATA statement and assigns them to variables.
(See DATA statement.) READ statement must always be used with
DATA statement. READ assigns variables to DATA values on one-to-
one basis. READ variables may be numeric or string, and values
read must agree with variable types sped fed, or "Syntax error"
will result.

A single read statement may access one or more DATA statements
(accessed in order), or several READ statements may access the
same DATA statement. If number of variables in <list of
variab1es> exceeds number of elements in DATA statement(s), "Out
of data" error message printed. If number of variables specifed
is fewer than number of elements in DATA statement(s), subsequent
READ statements will begin reading data at first unread element.
If there are no subsequent READ statements, extra data is
ignored. To reread DATA statements from start, use RESTORE
statement. C,D.

REM Statement. REM <remark>
Allows explanatory remarks to be inserted into program. REM
statements are not executed, but are output exactly as entered
when program is listed. REM statements may be branched into from
a GOTO or GOSUB statement. Execution will continue with first
executable statement after the REM statement. Remarks may be
added to end of line by preceding remark with single quotation
mark instead of :REM. C,D.

RENUM Command.
RENUM [C<new number>][,C<old number>][,<increment>]]] Renumbers
program lines. <new number> is first line number to be used in
new sequence, default 10. <old number> is line in current program
where renumbering is to begin. Default is first line in program.
<increment> is increment to be used in new sequence, default 10.

RENUM also changes all line number references following
GOTO,GOSUB,THEN, ON....GOTO, ON...GOSUB, and ERL statements to
reflect new line numbers. If nonexistent line number appears
after one of these statements, error message "Undefined line
number xxxxx in yyyyy" is printed. Incorrect reference (xxxxx)
not changed by RENUM, but yyyyy may be changed. RENUM cannot be
used to change order of program lines or to create line numbers
greater than 65529, else "Illegal function call"error. C,D.

RESET Command.
Closes all files

RESET
on all drives. D.

RESTORE Statement.
A1"1'6w s"'DATA

RESTORE [<line number>]
statements to be reread from a specified line. After

RESTORE statement executed, next READ statement accesses first
item in first DATA statement in the program. If <line numbers
specified, next READ statement accesses first item in specified
DATA statement. C,0

RESUME Statement. RESUME [03
RESUME NEXT
RESUME <line numbers

Continues program execution after error recovery procedure has
been performed. Any format can be used, depending on where
execution is to be resumed. RESUME [03 resumes at statement that
caused error. RESUME NEXT resumes at statement following error.
RESUME <line numbers resumes at specified line. RESUME statement
that is not in an error handling routine causes a "RESUME without
error" message to be printed. C,D

RETURN Statement. See GOSUB....RETURN Statements.

RIGHTS Function. RIGHTS(X$,I)
Returns rightmost I characters of string
of characters in X$ (LEN(XS)), returns
string (length zero) is returned. C,0

X$. If I equal to number
X$. IF I * 0, the null

RND Function. RND C(X)]
Returns a random number between 0 and 1. The same sequence of
random numbers is run each time the program is run unless the
random number generator is reseeded (See RANDOMIZE statement.)

RUN Statement/Command, RUN [<line number>]
RUN filespec C,R]

<1ine number> is line number where execution is to begin.
Otherwise, execution begins at lowest line number. <files'pec>
loads a file from disk into memory and runs it. <filespec> must
include filename used when file was saved. Except with R option
which keeps files open, RUN closes all open files and deletes
current contents of memory before loading designated program.
C,D.

SAVE Command. SAVE <filespec> [{,A or,P}]
Saves a program file on disk or cassette. <filespec> is string
expression conforming to general rules for file names. "A"option
saves file in ASCII format. P is protected by saving in encoded
binary format - when later LOADed or RUN cannot be LISTed or
edited. C,D.

SCREEN Function. X = SCREEN (<row>,<column>[,z])
Reads a character or colour at specified screen location, returns
ASCII code. <row> is numeric expression 1 - 25. <column> is
numeric expression 1-40 or 80 depending on screen width, x is
valid numeric expression returning Boolean result (i.e. 0 is
false, l + ..true.) If optional parameter z is given and is true,
color returned instead.

SCREEN Statement.
SCREEN [<mode>]C,C<burst>][,C<apage>3[,vpage>]]]
Sets specifications for display screen. <mode> is numeric
expression value 0,1,2. 0 = text mode, 1 medium resolution
graphics, 2 High resolution. <burst> is numeric expression
retuning Boolean result (0 is false,l+...true.)

Works differently according to mode: - in text mode, false gives
black and white, true gives colour; MR mode, opposite.

<apage> integer expression, width 40, 0-7, width 80, 0-3. Selects
page to be written to, text mode only.<vpage> same for visual
page, can be different from active page. Default is <apage>. F.or
further explanation and examples, see p.6 - 24.

On execution, screen cleared, black and white display, new mode
stored. In text mode,<apage> and <vpage> permit alternation of
pages on the screen, without loss. Values outside range will
result in"Illegal function calT'error. C,D.

SGN Function. SGN(X)
Indicates value of X, relative to zero: if X>0, returns 1, X=0,
returns 0, X<0, returns -1. C,D.

SIN Function. SIN(X)
Returns sine of X, where X in radians. C,D.

SOUND Statement. SOUND <freq>,<duration>
Generates sound through the speaker. <freq> is desired frequency
in hertz, numeric expression in range 37 to 32767. <duration> is
duration in clock ticks (tick = 18.2 per sec.); numeric
expression in range 0 to 65535. If duration is zero, any current
SOUND statement running will be turned off. If no SOUND statement
currently running, SOUND statement with duration of zero will
have no effect. C,D.

SPACES Function. SPACES(X)
Returns a string of spaces of length X. X must be integer in
range 0 to 255. C,D

SPC Function. SPC(I)
Used with PRINT , LPRINT statements, skips I spaces, in range 0
to 255. assumed to follow SPC(I) command. C,D

SQR Function. SQR(X)
Returns square root of X, where X<=0.C,D

STICK Function. X = STICK(n)
Returns x and y coordinates of two joysticks, n is numeric
expression returning integer in range 0 to 3: 0, x coordinate for
joystick A; 1, y co-ordinate; 2, x coordinate of joystick B; 3, y
coordinate. C,D

STOP Statement. STOP
Terminates program execution and returns to command level. STOP
statements may be used anywhere in a program to terminate
execution. When encountered, "Break in line nnnnn" printed. Basic
returns to command level after STOP. Execution resumed by issuing
CONT command. C,D.

STR$ Function. STR$(X)
Returns a string representation of the value of X. C,D

STRIG Statement/Function. STRI6 ON
STRIG OFF
STRIG STOP
X = STRIG(n)

STRIG ON enables event trapping of joystick function, OFF
disables. STOP disables, but event remembered , trapped as soon
as trapping enabled. Function returns status of specified
joystick trigger. For further remarks see ON STRIG statement.

In function, values returned for n can be 0, returns -1 if
trigger A was pressed since last STRIG(O) statement; returns 0 if
not. 1, returns -1 if trigger A is currently down, 0 if
not.2,returns -1 if trigger B' was passed since last STRIG(2)
statement, 0 if not. 3, returns -1 if trigger B is currently
down,0 if not.

When joystick event trap occurs, that occurrence of event is
destroyed. Therefore, the x=STRIG(n) function will always return
false inside a subroutine, unless event has been repeated since
the trap. So, if you wish to perform different procedures for
various joysticks, must set up different routine for each
joystick, rather than including all procedures in single
subroutine. C,D.

STRINGS Function, STRINGS(I,J)
STRING$(I,X$)

Returns a string of length I whose characters all have ASCII code
J or first character of X$. C,D

SWAP SWAP <vari able>,<vari able>
Exchanges values of two variables. Any type variable may be
swapped, but two variables must be of same type or "Type
Mismatch" error results. C,D

SYSTEM Command. SYSTEM
all open files and returns control to operating system.

is executed, a "warm start" is performed, DOS
Closes
When SYSTEM command
reloaded. D.

TAB Function. TAB(I)
Moves print position to I. If current print position already
beyond space I, TAB goes to that position on the next line. Space
1 is leftmost position, and the rightmost position is the width
minus one. I must be in range 1 - 255. TAB may only be used in
PRINT and LPRINT statements. C,D

TAN Function. TAN(X)
Returns tangent of X. X should be given in radians. C,D.

TIMES Function. TIMES
Retrieves current time. TIMES function returns 8-character
string, hh,mm,ss (hours, minutes seconds: 24hr.clock.) 0

TRON/TROFF Statements/
Commands.

TRON
TROFF

Trace execution of program statements. As debugging aid, TRON (in
direct or indirect mode) enables a trace flag that prints each
line number of program as it is executed. Numbers appear enclosed
in square brackets. Disabled by TROFF. C,0

IJSR Function. USR [<digit>][(<argument>)]
Cal Is assembly language subroutine. <digit> specifies which USR
routine is being called, set by DEF USR statement, q.v. If
<digit> omitted, USRO assumed. <argument> is value passed to
subroutine. May be any numeric or string expression.

If segment other than default segment (data segment DS) is to be
used, a DEF SEG statement must be executed prior to a USR

function call. Address given in OEF SE6 statement determines
segment address of subroutine. For each USR function,
corresponding DEF USR statement must be executed to define USR
call offset. This offset, and currently active DEF SEG segment
address determine starting address of subroutine. Type of
variable receiving function call must be consistent with argument
passed. C,D.

VAL Function. VAL(X$)
Returns numerical value of string X$. Strips leading blanks,
tabs, and linefeeds from argument string. XS is string
expression. C,D.

VARPTR Function,(1). VARPTR(<variable name>)
(2). VARPTR(-^ <fi le number>)

(1) Returns address of first byte of data identified witn
<variable name>. Value muse be assigned to <variable name> prior
to execution of VARPTR, otherwise, "Illegal function call" error.
Any type variable name may be used. For string variables, address
of addresss of first byte of string descriptor is returned.
Address returned will be integer in range 0 to 65535. All simple
variables should be assigned before calling VARPTR for an array,
because addresses of arrays change whenever a new simple variable
is assigned. C,D

(2) For sequential files, returns starting address of the disk
I/O buffer assigned to <file number>. For random files, returns
the address of the FIELD buffer assigned to <file number>. 0

VARPTRS VARPTR$(<variable name>)
Returns character form of memory address of variable. Primarily
used with DRAW and PLAY in programs that will be compiled. Value
must be assigned to <variable name> prior to execution of
VARPTRS, or "Illegal function call" occurs. Any type variable can
be used. Returns 3-byte string in form: pyte 0 = type, byte 1 =
low byte of address, byte 3 = high byte of address. Because array
addresses change whenever a new variable is assigned, always
assign all simple variables before calling VARPTRS for an array
element. D

WAIT Statement. WAIT <port number>,I,[,J]
Suspends program execution while monitoring status of machine
input port. I and J are integer expressions, <port number> is
specified machine input port. WAIT statement suspends execution
until specified port develops specified bit pattern. Data read at
the port is exclusive ORed with J and then ANDed with I. If
result is zero, Basic loops back and reads data at the port
again. If result is nonzero, execution continues witn next
statement. If J omitted, assumed to be 0. Possible to enter
infinite loop with WAIT statement, in which case macnine will
have to be reset. To avoid, set WAIT with specified value at
<port number> during some point in the program execution. C,D

WHILE....WEND Statements. WHlLE<expression>

[<1oop statements>]

WEND
Executes a series of statements in a loop as long as a given
expression is true. If expression is not zero (i.e. true) <1ood
statements> are executed until the WEND statement is
encountered. Basic then returns to <expression> and checks, if
still true, repeats; if not true, resumes with statement
following WEND statement. WHILE...WEND statements can be nested
to any level. Each WEND will match the most recent WHILE.
Unmatched WHILE statement causes a "WHILE without WEND" error,
and v.v. C,D

WIDTH Statement (1) . WIDTH CLPRINT]<size>
(2) . WIDTH <file number>,<size>
(3) . WIDTH <device>,<size>

Sets printed line width in number of characters for screen or
line printer. <size> is numeric expression in range 0 to 255,
specifies width of printed line. If 255, line width is
"infinite", i.e.no carriage return is inserted. POSition of
cursor or print head returns to zero after 255. <file number> is
numeric expression in range 1-15, number of file that is open.
<device> is string expression indicating device to be used.

(1) If tne LPRINT option is omitted, line width is set at
screen (40 or 80). If LPRINT included, line width set at line
printer. (2) If file is open to line printer, width immediately
changed to specified size, file remains open. (3) Width
assignment stored, but current setting not changed. Subsequent
OPEN <device> FOR OUTPUT AS n will use specified value for
width while file is open.

WRITE Statement. WRITE [<list of expressions>]
Outputs data to screen. If <list of expressions> omitted, blank
line output. Included, values of expressions output to screen.
May be numeric and/or string expressions, separated by commas.
When output, each item separated by comma, strings delimited by
quotation marks. After last item in list printed, Basic inserts
carriage return, linefeed. WRITE outputs numeric values using
same format as PRINT statement. C,D

WRITE#^ Statement. WRIT&iit<file number>,<list of expressions>
Writes data to a sequential file. <file numoer> is number under
which file was OPENed. <list of expressions> string or numeric
expressions separated by commas. WRITE inserts commas between
items as they are written to file, and delimits strings with
quotation marks. Carriage return/1inefeed sequence is inserted
after last item in list is written to file. C,D.

6.22 Basic Error Messages

We all make mistakes. Basic provides a complete set of error
messages to tell you what's gone wrong and where. This list
gives the error message, the error number (for use with ON ERROR
and ERR) and some helpful suggestions for each possible error.

NEXT without FOR (1)

A NEXT statement doesn't have a corresponding FOR statement. Tne
usual cause is that you have given a different variable name in
the NEXT tnan in the last FOR statement. Remember that FOR-NEXT
loops can be nested but they can't cross over.

Syntax error (2)

Tnere's something Basic can't understand. A command used in the
wrong way or some characters typed in the wrong order. Usually,
you'll find Syntax errors are typos - missing brackets or commas
for example. Or it might be that the type of data given in a
DATA statement doesn't match the READ statement that is reading
i t.

RETURN without GOSUB (3)

You can't RETURN from a subroutine if you've not done a GOSUB to
get there. The usual cause for this is letting the main code of
a program 'fall' into a subroutine rather than ending it with an
END statement.

Out of DATA (4)

You've asked the program to READ more data items than you've
given in DATA lines. It's usually a matter of counting the
number of elements on the DATA lines. You may find that a
missing comma has caused two items to be treated as one.

Illegal function call (5)

The parameter given to a function is out of range. This error
covers a variety of sins - from trying to delete non-existent
lines to asking for a square root of a negative number. Look at
the functions on the line and see if you are providing them with
reasonable values. Try each one out as an immediate command to
see where the problem is.

Overflow (6)

C
A number is too bio for Basic to handle,
integer value exceeds 32767.

This applies if an

Out of memory (7)

Your program is too large or you are using too many nested FOR
loops and subroutines. This error also applies to too many
variables, too complex expressions or complex PAINT commands.
Remember Basic needs space to think - don't fill the machine up.

Undefined line number (8)

You've tried to GOTO or GOSUB to a line which doesn't exist.

r

Subscript out of range (9)

You've tried to use an array with a subscript that was too large
or had the wrong number of dimensions. Check the value used in
the line against the values given in the DIM statement used to
set up the array.

Duplicate definition (10)

You've tried to define the same array twice. Either you've used
DIM a second time or tried to DIM the array after you've already
used it as a default list of eleven elements. You'll also get
the error if you use OPTION BASE after your DIM statements.

Division by zero (11)

You can't divide by zero and neither can your Advance. However,
after issuing this message, your Advance will continue with the
program, using its own 'machine infinity' as a result of the
calculation. If this could prove dangerous, use ON ERROR to trap
for error number 11.

Illegal direct (12)

The command you entered can only be used as part of a
program. It is not acceptable in immediate mode.

Type mismatch (13)

You've mixed up variables of different types. Normally this
doesn't matter but it will cause an error if you try to put a
string value in a numeric variable or vice-versa.

Out of string space (14)

There's not enough memory to store all the strings you are
currently using. You should find it hard to generate this
message accidentally but if you do, make sure that you don't have
unused strings hanging around in memory. You can re-use
variables throughout a program - always try to minimise the
number of variables in use.

T
String too long (15)

Strings can have up to 255 characters in them. If you need more,
figure out a way of working with a number of separate shorter
strings.

String formula too complex (16)

An string expression is too long or too complex to evaluate. Try
breaking the calculation down into a series of smaller steps.

Can't continue (17)

The CONT command cannot continue a program that either stopped
due to an error, has been changed after being stopped or simply
doesn't exist. You may be able to restart the program using GOTO
as an immediate command. RUN isn't very effective in this
situation as it clears all current variables before starting
execution.

Undefined user function (18)

You must define a function with DEF FN before you use FN to call
it.

No RESUME (19)

Your program has ended during an ON ERROR trapping routine. You
should end the error handling routine with RESUME.

RESUME without error (20)

RESUME has been executed without any error being trapped.
Usually, you'll find that this is because your program accidently
'falls' into the error trapping routine from the main program.

Missing operand (22)

You've missed an operand out of an expression - for example used
+ or * without any value following it.

Line buffer overflow (23)

You've tried to enter a line that is too long. If it's a program
line, separate it into a number of shorter lines. If it's got
long strings in it, make sure that they are stored in a variable
rather than written out as constants.

Device timeout (24)

Basic has failed to receive a response from some device it is
communicating with. With your 86a, this could be a problem with
the cassette recorder or the printer. It is not a problem with
fiperaprogram. Try and fix whatever is wrong and retry the

r

Device fault (25)

A device communicating with Basic has developed a fault. On your
86a, this could only be a printer fault. Check that the printer
is on-line ('selected'), has paper and is connected correctly.

FOR without NEXT (26)

A program has ended with a FOR loop left unfinished. You should
add a suitable NEXT statement or remove the FOR if it is not
needeo.

(■

Out of Paper (27)

The printer has run out of paper. Reload it and check it is back
'on-line' then continue with the program.

WHILE without WEND (29)

A program has ended with a WHILE still active. You should either
remove the WHILE if you don't need it, or add a suitable WEND
statement.

WEND without WHILE (30)

A WEND was executed before a corresponding WHILE. Make sure that
each WHILE and WEND forms a pair in the correct order.

FIELD overflow (50)

A FIELD statement is demanding more bytes for each random record
in a file than you've set aside when you opened the file. Make
sure that your OPEN and FIELD statements don't have different
ideas about how long the records are.

Internal error (51)

You should never see this message. It indicates an internal
fault within Advance Basic. Check that your machine is running
properly and if the fault continues to occur, contact your
supplier.

Bad file number (52)

A file number (or file or device name) is invalid for some reason
the name is too Iona and so on.

File not found (53)

A command has refered to a file that doesn't exist. The usual
cause of this is a mis-spelt file name or failure to specify the
right drive that the file is on.

Bad file mode (54)

You're using commands that don't relate to the type of files
involved, such as: GET and PUT with a sequential file or MERGE
with a tokenised file and so on. Check that you have the file
OPENed as you intended.

File already open (55)

You can't OPEN a file twice. You'll also get this error if you
try to KILL a file while it is open - you must close it first.

Device I/O Error (57)

An input/output device, such as an RS232 port, has detected a
fault in data transmission. This error is fatal to Basic.

File already exists (58)

You've used NAME to try to rename a file to a name that already
exists. Pick a different name.

Disk Full (61)

There's no space left on the disk in use. This error closes all
the files on the disk so you can often substitute another disk
and try the operation again. If this occurs when you are running
an application program, you may need to use a file delete option
to erase some unwanted files before trying again. Try and avoid
the situation by keeping a close eye on disk free space before
you start running programs.

Input past end (62)

You've tried to read past the end of a file (or you've
file open for output or append!). To trap this, your
routines should use the EOF function.

got the
reading

C

Bad record number (63)

GET and PUT allow random record numbers from 0 to 32767 only.

Bad file name (64)

A file name is invalid for some reason. Check the section on
naming files (page 5-11) for further information.

Direct statement in file (66)

An ASCII program file contains lines that are not valio Basic
lines (that is, they don't start with a line number). If the
file contains a handful of these duff lines, you should be able
to remove them using a text editor such as the EDLIN program
supplied with your Advance.

Too many files (67)

There are too many files on the disk in use to create another one
- either KILL some files or switch disks.

Device unavailable (58)

You've tried to use a device that either doesn’t exist or is
currently disabled. Check that the device is correctly installed
and that you've done nothing to disable it.

Communications buffer overflow (69)

You've tried to read more data from
the data buffer is still full. This
ON ERROR to prevent data being lost,
faster than you
communications at a
handshaking system.

are receiving
slower rate or

a communications port while
error should be trapped with

If you can't process data
it, you need to run the

implement a more sophisticated

Disk Write Protect (70)

The disk you are trying to write to is write-protected,
continue, remove the write-protect tab from the disk and
again. But think first there may be a good reason why the
is protected.

To
try

disk

Disk not ready (71)

The Advance can't read the disk at all - probably because you've
got no disk in the drive, have put one in sideways or left the
door open. Check the drive and try again!

Disk media error (72)

A fault has developed with the disk in use. This might be a
hardware fault but is more likely to mean that the disk in
question has become damaged or worn. You should try and copy any
valuable files off the disk immediately. If your files are
damaged, there are commercial packages available that can read
from corrupt disks.

It is often possible to reformat a duff disk but if you continue
to get errors, it's probably best to throw it away. You do have
backup copies don't you?

Unprintable error (invalid number)

An error has occured for which there is no error message. You
can get this by using an undefined error number with the ERROR
statement.

CHAPTER SEVEN OPTIONS and POSSIBILITIES.

7.1 The Printer

7.2 Plotters

7.3 Monitors

7.4 Communications Adaptors

7.5 Additional Memory

7.6 Hard Disks

7.7 Games Control

7.8 Expansion Boards

7.9 Additional Software

Page

7-1

7-2

7-2

7-2

7-2

7-3

7-3

7-3

7-3

c

OPTIONS AND POSSIBILITIES

The Chapters on DOS and BASIC have outlined the fundamentals of
communication with the Advance, and shown its specific features.
In this Chapter, for the beginner, we briefly outline some of the
possibilities for use of the Computer, its applications, and its
potentials for extension.

The major usage on computers of this power is of Applications
Programs, packages of software designed around particular tasks
or areas of jobs. The best known and most obvious of these are
Word Processors,Spread Sheets, Financial Packages, and Business
Analysis, but these are only a sample of what is avai 1 able.Your
Advance comes with a library of software, including a powerful
word processing package and a sophisticated Spread Sheet. Precise
instructions in using these packages are included with them in
the shape of Manuals which you will now find approachable and
easy to work with. Remember to follow immediately the advice in
these manuals { and elsewhere) and back up the discs! (See both
the DOS Ch.5.8., and the instructions in the Manuals, if you are
unsure how to do this.) These extremely effective programs and
applications will run with no knowledge of programming, by merely
following the simple procedures outlined.

When you have begun to use these, your enthusiasm for new uses
will rapidly grow, and you will start thinking about still
further applications and possibilities. In this section, we will
run through a few of the most obvious extensions.

7.1 The Printer.

It may very well be that you have already acquired a Printer.
Your Word Processing package will not be particularly useful
without one, and after the main system components, including
upgrading to disc drives and the 8 6 B , a printer would be most
people's first choice. Prices on printers now put them well
within the reach of modest budgets.

They work in two main ways: dot matrix and daisy wheel (each of
which vary immensely in technical specification.) It is possible
to connect a good quality electric typewriter, normally via a
SERIAL INTERFACE, but output would be very slow (if of good
quali tyT) A serial interface card transmits data through a
limited numer of channels (probably two) in a stream, ie with
the data ordered sequent! al ly. This is contrasted with a
parallel INTERFACE, whicn transmits data in chunks of 8-bits at a
time. A printer may work either way. The Advance has a parallel
port on the back of the A unit, and a serial port on the E.

Daisy wheel printers produce very high quality print, often
described as letter-quality. The daisy wheels exchange, like
similar devices or golf-balls on a typewriter, to produce
different typefaces. Dot matrix printers are normally regarded as
producing less quality, but it is more than adequate for all

normal purposes, and they tend to be rather faster and rather
cheaper. They also will produce varying fonts, like italic or
'heavier' print described as "emphasised", or bold, normally by
software programs that can be simply selected. The whole area is
one of rapid technical advance, and in selecting your printer you
should attend to price, the quality you really require, and tne
speed you desire. For a relatively small outlay, you can have a
printer that will produce a thoroughly acceptable product very
swiftly, and which will photocopy and reduce to produce manuals,
books etc with a minimum of trouble. Any standard printer will
connect easily to the Advance.

7.2 PLOTTERS

A plotter is an automated draughtsman's workboard powered by your
computer. The plotter uses pens with coloured inks under program
control. This means, in effect, that you can have hard copy of
what you can produce electronically on the screen. The Advance's
built in ports for serial and parallel transmission mean that all
common plotters can be plugged straight in, without any special
adapter.

7.3 MONITORS

r The Advance will output to an ordinary black-and-white or colour
T.V. These devices are not, however, designed to give the best
resolution or highest colour quality. If you want these, you
should investigate the purchase of a video monitor. The two most
common types are composite monitor (or comp.sync.) and R.6.B.
(Red,Green,B1 ue.) A composite monitor sums the inputs, and drives
the video guns with that summed signal. An R.G.B. monitor
supplies the signals separately to the guns, producing the
highest of quality. Again, you need to calculate your precise
preferences and needs against price. Either kind of monitor will
interface immediately to your Advance, via the connections
described on Ps. 4 & 5.

7.4 COMMUNICATIONS ADAPTERS

A communications adapter allows you to connect your Advance to
other computers. With a modem, electronic or via an acoustic
coupler, the connection can be via a 'phone line. By these means
you could send or receive electronic mail; exchange information
with other computer users; connection to Prestel and similar
systems; use of networks with other microcomputer systems.

7.5 ADDITIONAL MEMORY

The 86B has 126k of memory board. For anyone who finds this a
limitation, your supplier will fit a furtner i28K on to the
system board. Memory up to 640k can be installed in the bus
structure.

7.6 HARD DISKS

The Disk units supplied with the 86 use floppy disks. A hard disk
is a larger, non-flexible disk housed permanently in a drive
unit. Hard disks are fast, reliable, and of high capacity - forty
times more than a floppy. They are suitable for large-memory
application, with the standard disk drives as backups and for
transfer.

7.7 GAMES CONTROL

Two analog-type joysticks will plug directly into the adapter
built into the Advance. These are enjoyable tools for arcade style
games.

7.8 EXPANSION BOARDS

The Advance 86 BUS structure is hardware compatible with that of
the IBM PC, and most cards designed for that and similar systems
can be installed without problem. See the Advance Technical
Reference Guide for more information.

7.9 ADDITIONAL SOFTWARE

This represents (obviously) endless possibi1ities.Nonetheless, a
great deal of care is required to make the most advantageous
acquisitions. Utilise your Advance supplier. S/he will have the
best information on what will be the best for the potential of
your machine. Obviously, with I.B.M.compati bi 1 i ty, the range of
software available will be unmatched. Even so, check carefully
that it will run on your system with its present configuration.
Where possible, see it demonstrated on an Aovance. Make sure you
have a specific guarantee of replacement in case of unforeseen
trouble. Check out an evaluation copy; test it to its limits.
Try unusual options, enter impossible data. Certainly, if you have
a specific application in mind, try it out at the Dealer's.

c

u

) \

DISK ERRORS

If a disk or device error occurs at any time during a or
program, DOS returns an error message in the following format;

<vyy> ERROR WHILE <1/0 action> ON' DRIVE x
Abort,Iqnore,Retry

In this message,<yyy> may be one of the following:

WRITE PROTECT
BAD UNIT
NOT READY
BAD COMMAND
DATA
BAD CALL FORMAT
SEEK
NON-DOS DISK
SECTOR NOT FOUND
NO PAPER
WRITE FAULT
READ FAULT
DISK

The <I/0-action> may be either of the following:

READING
WRITING

The drive <x> indicates the drive in which
occurred.

the error has

DOS waits
responses:

for you to enter one of the following

A Abort. Terminate the program requesting the disk
read or write.

I Ignore. Ignore the bad sector and pretend the
error did not occur.

R Retry. Repeat the operation. This response is to
be used when the operator has corrected the error
(such as witn NOT READY or WRITE PROTECT errors).

C

Usually, you will want to attempt recovery by entering
responses in this order:

R (to try again)
A U o terminate program and try a new disk)

One other error message might be related to faulty disk read or
write:

FILE ALLOCATION TABLE BAD FOR DRIVE x

This message means that the copy in memory of one of the
allocation tables has pointers to nonexistent blocks.
Possibly the disk was incorrectly formatted or not formatted
before use. If this error persists, the disk is currently
unusable and must be formatted prior to use.

(

e

HOW TO CONFIGURE YOUR SYSTEM

In many cases, there are installation-specific settings
that need to be configured at system startup.

for DOS

The DOS configuration file (CONFIG.SYS) allows you to
configure your system with a minimum of effort. With this
file, you can add device drivers to your system at startup. The
configuration file is simply an ASCII file that has certain
commands for DOS startup (boot). The boot process is as
follows:

1.

2.

3.

4.

The disk boot sector is read,
code to read DOS code and
BIOS (machine-dependent code)

This contains enough
the installation's

The DOS code and BIOS are read.

A variety of BIOS initializations are done.

A system initialization routine
configuration file (CONFIG.SYS), if
perform device installation and other
Its final task is to execute
interpreter, which finishes the
process.

reads the
it exists, to
user options,
the command

MS-DOS boot

CHANGING THE CONFIG.SYS FILE

If there is not a CONFIG.SYS file on the DOS disk, you can
use the DOS editor, EDLIN, to create a file; then save it on
the DOS disk in your root directory.

The following is
CONFIG.SYS:

a list of commands for the configuration file

BUFFERS = <number>
This is the number of
comprise the system list,
dependent. If not set, 10

sector buffers that
It is instal1ation-
is a reasonable number.

wi

FILES = <number>
This is the number of open files that the XENIX system
calls can access. It is installation-dependent.
If not set, 10 is a reasonable number.

DEVICE = <fi1ename>
This installs the device driver
system list. (See below.)

in <filename> into tne

BREAK = <0N or OFF>
If ON is specified (the default is OFF), a check for
CONTROL-C as input will be made every time the system
is called. ON improves the ability to abort programs
over previous versions of the MS-DOS.

SHELL = <filename>
This begins execution of the shell (top-level
processor) from <filename>.

A typical configuration file might look like this:

Buffers = 10
Files = in
Device = \BIN\NETWORK.SYS
Break = ON
Shell = A:\BIN\C0MMAND.C0M A:\BIN /P

command

Note here that the Buffers and Files parameters are set to 10.
The system initialization routine will search for the filename
\BIN\NETWORK.SYS to find the device that is being added to the
system. This file is usually supplied on disk with your device.
Make sure that you save the device file in the pathname that
you specify in the Device parameter.

This configuration file also sets the DOS command EXEC to the
COMMAND.COM file located on disk A: in the \BIN
directory. The A:\BIN tells COMMAND.COM where to look for
itself when it needs to re-read from disk. The /P tells
COMMAND.COM that it is the first program running on the
system so that it can process the DOS EXIT command.

Advance at a glance

CPU Type:

RAM Memory:

ROM Memory:

ROM Contents:

Keyboard:

Character set:

Display:

Text display:

Graphics display:

Sound;

Cassette interface:

Diskette interface:

DOS:

Parallel printer:

Serial interface:

16-bit 8086 running at a clock speed of 4.77 Mhz.

128K bytes main memory with parity checking.
Additional 128K bytes can be fitted to system board.
Additional expansion to 640K bytes via bus structure.

Separate 16K bytes of video memory.

64K bytes.

Self-test, diagnostic routines.
Advance Cassette Basic interpreter.
ROM BIOS.

Separate detached keyboard.
Fully programmable.
Typematic, with auto-repeat.
84 Keys.
10 Programmable function keys.
Numeric/cursor control pad.

256 characters.
Software definable in graphics modes.

UHF Television via integral modulator.
RGB monitor.
Composite video monitor, colour or black and white.

80 X 25 or 40 x 25.
8 video pages with 40 x 25 text.
4 video pages with 80 x 25 text.

640 x 200, bit mapped display with 2 colours.
320 X 200, bit mapped display with 4 colours.

Additional modes possible with custom programming.

Built-in loudspeaker under software control.

Audio cassette interface, with motor control.

Twin 5 1/4" minifloppy drives.
360K capacity on each.
Read/write/format wide variety of popular,
soft sectored, disk formats.

Advance 86 Personal Computer DOS 2.11.

Centronics standard parallel printer interface.

RS232 serial interface.

Appendix C Page C-2
—

Game ports: Provision for two analogue joysticks, plus fou'̂
trigger inputs.

Expansion; Provision for 8087 floating point co-processor.
3 expansion slots to IBM PC bus structure.
2 15-bit expansion slots.

(y
I. ' j
1 I
j
1 ::
j 4-
1 5
j. t>
17
1 B
1 ̂
?o TT
21

A j

<: N U L ;
o 1

• 34 "
¥ 35 4
♦ ' 3 i:
4*
A ZB z

RRL. . 39
0 40 (

■■■ TAR •̂ 4 I)
LF >

: HUM
F F :

•: CR >

!l

24

2B
29

3 1

i
t

42
a
4 4
‘■i-U

*1
4 8
49
5 0
51
t, •.
, . j

54
I IS
, . J I

56
5' /
5 8

ti

vCUR: ^0 :
CLiL c:.l =
CUU> 6 2 >
CUD. c,Z -

c. ■’Ai^ACi'iOK CODES f o r t h e A d v a n c e S6

6 4 a) 9 6 1 28 1 d O c: 192 *- 5 2 -1 ‘X
6 5 A 9 7 a 129 ij I cdI 1 19 3 i- C.-̂
6 6 B 9 8 b 1 37^ 162 6 194 -r- 33 a
6 7 C 9Q c 1 :: 1 a 1 6 3 A 1 - 2 [A* ' IT
6 8 D 1 00 d 132 a 164 n 19 6 .. 3' 2 (irs
t)9 E 1 '0 1 e 1 33 a 165 r'•1 197 1 2 .7 a-
7 0 F i 0 2 ■f 134 a 16 6 a 19 3 h 23 1' 1/
7 1 G 1 -73 Q 1 3 5 0 167 u 199 _ 1 'V
7 .2 I-! 1 '0 4 h 13 6 e 16 8 6 2 U‘J I- '■ -y. $
T I 1 -05 I 137 e 169 r 2'0 1 r- 0
'7 H- .7 10 6 1 1 3 3 e 1 7 0 —I 2 0 2 -L 2 3
7 5 (■ 1-07 1. 1 3 9 T 1^1 9 2 '7'3 T 233
7 6 L 1 - jB J. 1 4 0 3. 172 '4. 2 'j 4 i- —
J-/ !i i -0 /D 14 1 1 173 11 2 0 5 - ii>
7 b N 11 • n 1 42 A 174 2 ')t> f ‘7-7 H*

G 111 o 1 4 3 A 17 5 2 u 7 -L 2 '" n
8 0 !"■ 1 12 P 1 4 4 176 2 0 8 24^.' z
81 (J 1 13 q 14 5 cfi 177 2(19 r 2 4 1 T
O ' ■UJ F,’ 1 14 r 1 a 17B U'i 2 1 0 1 2 4 2
8 3 S 1 1 5 c 1 4 7 o 179 21 1 f 2 4 3
8 4 1 1 16 t 1 4 8 0 1 87) 21 2 2 4 4 r
8 5 l..i J 17 U 1 cb 181 2 1 3 r 2 4 5 1J
8 6 V .1 18 V 1 5 0 18 2 2 1 4 1- 2 4 or.
8 7 u 1 19 w 151 ».i 183 ■|[2 1 5 j- 2 4 / -
8 8 l' 1 2 0 ;; 1 5 2 V 184 ■11 . 2 1 6 h 4 8 0

8 9 V 12 1 V 15 3 G 18 5 -!1 2 1 7 i 2 4 9 .

9 0 z 12 2 Z 154 iJ 1 8 6 2 1 8 i- 257) .

9 1 12 3 r
V 1 5 5 (t 187 ■|1 2 1 9 i 251 -J

9 2 124 1 1 5 6 £ 18 8 J1 CZ, ii
9 3 1 2 5 J 157 169 J 221 f 2 5 3
9 4 1 2 6 1 58 ft 1 9 0 J 2 2 2 ‘ t 2 5 4 ■
9 5 127 1 59 f 191 -j 2 2 3 * -• c. c:'— ..J •Bl.

C

AnschluBbelegung des Genie 16;

Parallelport:

1 Strobe**
2 DATA 0

9 DATA 7
1 0 Acknowledge
1 1 Busy
1 2 Paper Out
1 3 Printer selected
1 4 Printer: CR nach LF
1 5 Printer ERROR**
1 6 Printer Initialize**
1 7 Select In**
1 8 0 V
25 0 V

** = negiertes Signal

Serialport:

2
3
4
5
6
7
8
9

1 1
1 8
20
22
25

TX Data
RX Data
RTS
Clear to Send
Data set Ready
0 V
Carrier detect
+ XM ITCL REL
- XM ITCL Data
+ Receive Clock Data
DTR
RI
- Receive Clock Return

SELF TESTS

When you first switch your computer on, it goes through a
complete set of self-test routines, designed to check that
everything is working O.K. If any of these tests fail the Advance
will attempt to give an indication of what is wrong on the
loudspeaker or video display.

Errors signalled by the loudspeaker.

Error Loudspeaker notes

Processor fai1ure
ROM ciiecksum fai 1 ure
RAM checksum fai1ure
(including video ram)
PIC Interrupt
controller fai1ure
Time failure
Video logic failure

Long

1
1
2

0
0
2

Short

0
2
1

Errors signalled on the video screen

Error

KEY E

KEY STUCK

CAS E
QSK E

Message

Keyboard
complete
A key is
keyboard

error, keyboard reset did not

stuck on the keyboard, or the
interface circuitry is

malfunctioning.
Cassette interface circuitry is faulty.
Disk interface circuitry is faulty.

L

PIN CONNECTIONS

Keyboard connector Jl.

Pin

1 Keyboard clock
2 Keyboard data
3 Reserved
4 Ov
5 +5v

Cassette interface J2

Pin

1
2
3
4
5

Motor control output 1
Ov
Kotor control output 2
Data in - from audio output of cassette recorder
Data out - to AUX input of cassette recorder

Parallel printer port J5

Pin

1 Strobe signal (active low)
2-9 Printer data. Pin 2 is data bit 0, pin 9 is data bit 7
10 Acknowledge (active low)
11 Busy (active hiah)
12 Paper end (active high)
13 Printer selected (active hign)
14 Print LF after CR (active low)
15 Printer error (active low)
Ifi Initialise printer (active low)
17 select in (active low)
18 Ov
25 Ov

Advance 86 Personal Computer User guide.

Reader Comment form.

Please use this form to report errors, or suggest changes or
improvements that you feel would improve the quality of this
documentation.

Thank you for your comments.

Please return this form to: Advance Technology (UK) Ltd.
Attn: Technical Publications.
8A Hornsey Street.
London. N7 8HR.
U.K.

	Cover
	1 Introduction
	2 The Hardware
	2.1 The System Unit
	2.2 The Keyboard
	2.3 Connections and Cables
	2.4 Converting the 86a to the 86b
	2.5 Connections on the 86b
	2.6 Additional Requirements
	l.l The 86b unit and the Disk Drives
	2.8 Diskettes
	2.9 Inserting and removing Diskettes

	3 Powering UP
	3.1 Powering up and system tests
	3.2 Using a cassette recorder with the Advance 86
	3.3 Files
	3.4 Tapes
	3.5 Saving to Cassette

	4 The Advanced Keyboard
	4.1 Introducing the Keyboard
	4.2 Function Keys
	4.3 <Num-Lock>
	4.4 Using Multiple Keys
	4.5 DOS and the Keyboard
	4.6 Typing In

	5 Advanced DOS
	5.1 Introduction
	5.2 Booting the DOS
	5.3 Entering the date
	5.4 Entering the time
	5.5 Changing from Drive A to Drive B
	5.6 Formatting a diskette
	5.7 System and non-system diskettes
	5.8 Copying diskettes
	5.9 Introducing files.
	5.10 Wild Cards
	5.11 Listing filenames.
	5.12 Introducing File Directories.
	5.13 Paths to sub-directories and files.
	5.14 DOS commands and path specifications.
	5.15 Introducing DOS commands
	5.16 Batch processing
	5.17 Input and Output
	5.18 DOS COMMANDS
	5.19 DOS Editing and function keys 5-95 Control character functions
	5.20 The Line Editor (EDLIN)
	5.21 File Comparison Utility (FC)

	6 Advanced 86 BASIC
	6.1 For the Absolute Beginner in Basic
	6.2 Versions of Advance Basic
	6.3 Loading Basic
	6.4 The Basic Prompt
	6.5 Basic programs
	6.6 Variable names and types
	6.7 Arrays
	6.8 Arithmetric operations
	6.9 The Basic Screen Editor
	6.10 Free memory
	6.11 Format of SAVEd programs
	6.12 The character set
	 6.13 Reading the keyboard
	6.14 Random Number Generator
	6.15 Soft keys and key trapping
	6.16 Sound
	6.17 The Advance display
	6.18 The Text screen
	6.19 The virtual screen
	6.20 The Graphics screen
	6.21 Advance Basic Quick Reference Section
	6.22 Basic Error messages

	7 OPTIONS and POSSIBILITIES.
	7.1 The Printer
	7.2 Plotters
	7.3 Monitors
	7.4 Communications Adaptors
	7.5 Additional Memory
	7.6 Hard Disks
	7.7 Games Control
	7.8 Expansion Boards
	7.9 Additional Software

	Appendix
	DISK EPRORS
	HOW TO CONFIGURE YOUR SYSTEM
	Advance at a glance
	AnschluBbelegung des Genie 16
	SELF TESTS
	PIN CONNECTIONS

