
INTERNATIONAL
DIVISION OF L/F TECHNOLOGIES INC.

TURBODOS
1.4

8086 IMPLEMENTOR'S GUIDE

I TurboDOS 1.4
I
I 8086 Implementor's Guide

June 1984

Copyright 1984

Software 2000, Inc.
1127 Hetrick Avenue

Arroyo Grande, CA 93420
U.S.A.

All rights reserved.

TurboDOSR is a registered trademark of Software 2000, Inc.

TurboDOS 1.4 8086
Implementor's Guide

NOTICES

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Copyright Notice

Trademark Notice

Disclaimer

Copyright 1984 by Software 2000, Inc. All
rights reserved. No part of this publication
may be reproduced, transmitted, transcribed,
stored in a retrieval system, or translated
into any language or computer language, in
any form or by any means, electronic, mecha-
nical, magnetic, optical, chemical, manual or
otherwise, without the prior written permis-
sion of Software 2000, Inc., 1127 Hetrick
Avenue, Arroyo Grande, California 93420,
U.S.A.

TurboDOS is a registered trademark of Soft-
ware 2000, Inc., and has been registered in
the united States and in most major countries
of the free world.

IBM is a trademark of International Business
Machines Corporation. CP/M, Concurrent CP/M
and MP/M are trademarks of Digital Research.

Software 2000, Inc., makes no representations
or warranties with respect to the contents of
this publication, and specifically disclaims
any implied warranties of merchantability or
fitness for any particular purpose. Software
2000, Inc., shall under no circumstances be
liable for consequential damages or related
expenses, even if it has been notified of the
possibility of such damages.

Software 2000, Inc., reserves the right to
revise this publication from time to time
without obligation to notify any person of
such revision.

First Edition: June 1984

TurboDOS 1.4 8086
Implementor's Guide

ABOUT THIS GUIDE

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ABOUT THIS GUIDE

Purpose

Assumptions

Organization

We've designed this 8JL8J?. J mple men t or' s £iiidje_
to provide the information you need to know
in order to generate various TurboDOS config-
urations for 8086-family microcomputers, and
to write the driver modules for various peri-
pheral devices. This document describes the
modular architecture and internal programming
conventions of TurboDOS, and explains the
procedures for system generation, serializa-
tion, and distribution. It also provides
detailed interface specifications for hard-
ware-dependent driver modules, and includes
assembler source listings of sample drivers.

In writing this guide, we've assumed that you
are an OEM, dealer, or sophisticated TurboDOS
user, knowledgable in 8086-family microcompu-
ter hardware and assembly-language program-
ming. We've also assumed you have read both
the IL&ejLLs £uJLd_e_ and the SJLSf, Pjggjamin̂ jjg
£lLLdje_, and are therefore familiar with the
commands, external features, and internal
functions of 8086 TurboDOS.

This guide starts with a section that de-
scribes the architecture of TurboDOS. It
explains the function of each internal module
of the operating system, and how these
modules may be combined to create the various
configurations of TurboDOS.

The next section explains the system genera-
tion procedure in detail, and describes each
TurboDOS parameter which can be modified
during system generation.

The third section of this guide explains the
TurboDOS distribution procedure, including
licensing, serialization, and support.

TurboDOS 1.4 8086
Implementor's Guide

ABOUT THIS GUIDE
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Organization
(Continued)

Related Documents

The fourth section is devoted to an in-depth
discussion of internal p r o g r a m m i n g conven-
t ions, a i m e d a t t he p r o g r a m m e r w r i t i n g
drivers or resident processes for TurboDOS.

The f i f t h section presents f o r m a l in terface
specifications for implement ing ha rdware -
dependent driver modules.

This guide concludes wi th a large appendix
c o n t a i n i n g a s s e m b l e r s o u r c e l is t ings of
actual dr iver modules. The sample dr ivers
cover a wide range of peripheral devices, and
p rov ide an excel lent s t a r t i n g point fo r
programmers involved in driver development.

In a d d i t i o n to th is gu ide , you m i g h t be
interested in four other related documents:

S i,JL .ZM Programmer's

You should read the f i rs t two volumes before
start into this document . The ILs^ejJ.s guide.
introduces the external features and facili-
ties of TurboDOS, and describes each TurboDOS
command. The 8085 PiGgxammei: 's Guide ex-
plains the internal workings of TurboDOS, and
describes each operat ing system f u n c t i o n in
detail.

You ' l l need the Z80 guides if you are pro-
g r a m m i n g or c o n f i g u r i n g a TurboDOS system

microprocessors.that uses Z80

TurboDOS 1.4 8086
Implementor's Guide

TABLE OP CONTENTS

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ARCHITECTURE Module Hierarchy 1-1
Process Level 1-1
Kernel Level 1-2
Driver Level 1-2
TurboDOS Loader 1-2
Module Flow Diagram 1-3

Process Modules 1-4
Kernel Modules 1-5
Driver Modules 1-8
Standard Packages 1-8

Package Contents Table 1-9
Supplementary Modules 1-10

Memory Required 1-11
Other Languages 1-12

SYSTEM GENERATION Introduction 2-1
TLINK Command 2-2
Patch Points 2-7
Network Operation 2-21

Network Model 2-21
Network Tables 2-21
Message Forwarding . 2-24

A Complex Example 2-25
Sysgen Procedure 2-27

DISTRIBUTION TurboDOS Licensing 3-1
Legal Protection 3-1
User Obligations 3-2
Dealer Obligations 3-2
Distributor Obligations 3-3
Serialization 3-4
Technical Support 3-5

SERIAL Command 3-6
PACKAGE Command 3-8
Distribution Procedure 3-10

TurboDOS 1.4 8086
Implementor's Guide

TABLE OF CONTENTS
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

CODING CONVENTIONS Undefined External References 4-1
Memory Allocation 4-2
List Processing 4-3
Task Dispatching 4-4
Interrupt Service 4-6
Poll Routines 4-7

_ Mutual Exclusion 4-8
"' Sample Driver Using Interrupts 4-9

Sample Driver Using Polling 4-10
Inter-Process Messages 4-11
Console Routines 4-12
Sign-On Message 4-12
Resident Process 4-13
User-Defined Function 4-14

DRIVER INTERFACE General Notes 5-1
Initialization 5-2
Memory Table 5-2
Console Driver . . . 5-3
Printer Driver 5-5
Disk Driver 5-6
Network Driver 5-9
Comm. Driver 5-13
Clock Driver 5-14
Bootstrap 5-16

APPENDICES OTOASM Command A-l
Sample Driver Source Listings B-l

TurboDOS 1.4 8086 ARCHITECTURE
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

ARCHITECTURE This section introduces you to the internal
architecture of the TurboDOS operating sys-
tem. TurboDOS is highly modular, consisting
of more than forty separate functional
modules distributed in relocatable form.
These modules are "building blocks" that you
can combine in various ways to produce a
family of compatible operating systems. This
section describes the modules in detail, and
describes how to combine them in various
configurations.

Possible TurboDOS configurations include:

. single-user without spooling

. single-user with spooling

. network master

. simple network slave (no local disks)

. complex network slave (with local disks)

Numerous subtle variations are possible in
each of these categories.

Module Hierarchy The diagram on page 1-3 illustrates how the
functional modules of TurboDOS interact. As
the diagram shows, the architecture of Turbo-
DOS can be viewed as a three-level hierarchy.

Process Level The highest level of the hierarchy is the
process level. TurboDOS can support many
concurrent processes at this level. There is
one active process that supports the local
user who is executing commands and programs
in the local TPA. There are also processes
to support users running on other computers
and making requests of the local computer
over the network. There are processes to
handle background printing (de-spooling) on
local printers. Finally, there is a process
that periodically causes disk buffers to be
written out to disk.

1-1

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Module Hierarchy
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Level

Driver Level

TurboDOS Loader

The
the

intermediate
level.

level of the hierarchy is
The kernel supports the

various C-functions and T-functions, and
controls the sharing of computer resources
such as processor time, memory, peripheral
devices, and disk files. Processes make
requests of the kernel through the entrypoint
module OSNTRY, which decodes each C-function
and T-function by number and invokes the
appropriate kernel module.

The lowest level of the hierarchy is the
driver level. and contains all the device-
dependent drivers necessary to interface
TurboDOS to the particular hardware being
used. Drivers must be provided for all peri-
pherals, including console, printers, disks,
communications channels, and network inter-
face. A driver is also required for the
real-time clock (or other periodic inf^i-runt-.
source).

interrupt

TurboDOS is designed to interface with almost
any kind of peripheral hardware. It operates
most efficiently with interrupt-driven, DMA-
type interfaces, but can also work fine using
polled and programmed-I/0 devices.

The TurboDOS loader OSLOAD.CMD is a program
containing an abbreviated version of the
kernel and drivers. Its purpose is to load
the full TurboDOS operating system from a
disk file (OSMASTER.SYS) into memory at each
system cold-start.

1-2

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Module Hierarchy
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

CefiECfil
DSPOOL

Process Level 1

L_fiädejL_ |
OSLOAD 1
LDRMSG 1

1 1
1 1

Kernel Level

1 1
Hemoxy; D.t-hej
MEMMGR NONFIL

CPMSUP
MPMSUP
QUEMGR

1
1
1
-L

1 1 1
£fimm_£Ji Piinfcej; £OTLSJ?Ĵ
COMMGR LSTMGR CONMGR

LSTTBL CONTBL
SPOOLR DOMGR
SPLMSG INPLN

l ii i
_ _ i i

Driver Level 1 1
1 1 1

COMDRV LSTDRA CONDRA
MfJßOJLy. LSTDRB or
MEMTBL etc. CONREM

flule Hier

Lei üsr
LCLUSR
LCLMSG
LCLTBL
CMDINT
AUTLOD
SGLUSR
AUTLOG
BIOS
SUBMIT

J
— l -

1

OSNTRY

1
_JEiLe
FILMGR
FILSUP
FILCOM
FILLOK
FFOMGR
DRVLOK

1
1
1

RejSÄriL.
BUFMGR
DSKMGR
DSKTBL

i
il__ i

_ — j __

1
1

DSKDRA
DSKDRB
etc.

Net Svc Buffers
NETSVC FLUSHR
NETTBL
NETFWD

1
1
1
1
1
1
) _

1 1 1
Ne± Req £lock Support
NETMGR RTCMGR DSPCHR
NETREQ DSPSGL
MSGFMT COMSUB
NETTBL
NETLOD

Initial
SYSNIT

CKTDRA RTCDRV HDWNIT
CKTDRB or
etc. RTCNUL

1-3

Tu rboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Process Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Process Modules Modulp I

LCLUSR Responsible for supporting local
user's TPA activities.

LCLMSG Contains all 0/S error messages.

LCLTBL Local user option table.

CMDINT Command interpreter, processes
commands from local user.

AUTLOD Autoload routine which processes
COLDSTRT.AÜT and WARMSTRT.AUT.

SGLUSR Flushes disk buffers at each
console input. Use for single-
user systems instead of FLUSHR.

AUTLOG Automatic log-on routine. Used
when full log-on security is not
desired. See AUTUSR patch point.

BIOS Direct BIOS Call (C-fcn 50).

SUBMIT Routine to emulate CP/M proces-
sing of $$$.SUB files.

NETSVC Services network requests from
other processors on the network.

NETTBL Tables to define local network
topology, used by NETSVC-fNETREQ.

NETFWD Manages network message forward-
ing. Requires NETREQ+NETSVC.

DSPOOL Processes background printing.

FLUSHR Periodically flushes disk buf-
fers. Use for network master
configuration instead of SGLUSR.

1-4

Tu rboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Kernel Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules

OSNTRY

FILMGR

FILSUP

FILCOM

FILLOK

FFOMGR

DRVLOK

BUFMGR

DSKMGR

DSKTBL

NONFIL

CPMSUP

Kernel entrypoint module which
decodes each C-function and
T-function by number and invokes
the appropriate kernel module.

File manager responsible for
requests involving local files.

File support routines used by
FILMGR.

Processes common file-oriented
requests that are never sent
over the network.

File- and record-level interlock
routines called by FILMGR.

FIFO management routines called
by FILLOK.

Drive interlock routines.

Buffer manager called by FILMGR.
Maintains pool of disk buffers
used to speed local file access.

Disk manager responsible for
physical access to local disks,
called by BUFMGR.

Table defining drives A-P as
local or remote disk drives.

Responsible for functions that
are not file-oriented.

Processes C-functions 7, 8, 24,
28, 29, 31, 37 and 107 which are
rarely used. May be omitted.

1-5

Tu rboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Kernel Modules
(Continued)

Copyright 1984 by Software 2000, Ine,
All rights reserved.

Kernel Modules
(Continued)

Moduls 1

MPMSUP

QUEMGR

CONMGR

CONTBL

DOMGR

INPLN

LSTMGR

LSTTBL
•

SPOOLR

COMMGR

NETREQ

MSGFMT

NETMGR

Processes C-functions 141-143,
153, 160, 161 (optional).

Emulates MP/M queues, supports
C-functions 134-140 (optional).
Requires MPMSUP.

Responsible for console I/O.

Links CONMGR to console driver.

Responsible for do-files.

Console input line editor used
by CMDINT and C-function 10.

Responsible for printer output.

Table defining printers A-P and
queues A-P as local or remote.

Print spooler which diverts
print output to a spool file
when spooling is activated.
Also handles direct printing to
remote printers.

Responsible for communications
channel functions.

Responsible for issuing network
request messages for all func-
tions not processed locally.

Network message format table
used by NETREQ.

Network message routing routine
used by NETSVC and NETREQ.

1-6

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Kernel Modules
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Kernel Modules
(Continued)

NETLOD Loads programs over the network.

RTCMGR Real-time clock manager keeps
system date and time.

DSPCHR Multi-task dispatcher which con-
trols sharing of the local pro-
cessor among multiple processes.

DSPSGL Null dispatcher used as alterna-
tive to DSPCHR when only one
process is required (OSLOAD.CMD
and single-user w/o spooling).

MEMMGR Memory manager responsible for
dynamic allocation of memory,
and for supporting TPA alloca-
tion C-functions (53-58).

COMSUB Common subroutines used in all
configurations.

SYSNIT System initialization routine
executed at system cold-start.

RTCNUL Null real-time clock driver,
used in configurations where
there is no periodic interrupt
source.

CONREM Remote console driver for net-
work master to support MASTER
command.

PATCH 128 bytes of zeroes, may be in-
cluded to provide patch area.

1-7

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Driver Modules

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Driver Modules Module I

CONDR_ Console I/O driver.

LSTDR__ Printer output driver(s).

DSKDR__ Disk driver(s).

CKTDR__ Network circuit driver(s).

COMDRV Communications channel driver.

RTCDRV Real-time clock driver.

MEMTBL Table defining the size and
structure of main memory (RAM).

HDWNIT Cold-start initialization for
all hardware-dependent drivers.

Standard Packages To simplify the system generation process,
the most commonly-used combinations of Turbo-
DOS modules are pre-packaged into the follow-
ing standard configurations:

STDLOADR
STDSINGL
STDSPOOL
STDMASTR
STDSLAVE
STDSLAVX

cold-start loader
single-user without spooling
single-user with spooling
network master
simple slave w/o local disks
complex slave with local disks

The contents of each standard package is
detailed in the matrix on the next page.
Most TurboDOS requirements can be satisfied
by linking the appropriate standard package
together with a few additional modules plus
the requisite driver modules.

1-8

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Standard Packages
(Continued)

Copyright 19*84 by Software 2000, Inc.
All rights reserved.

-Mfidjilfi 1
AUTLOD
AUTLOG
BIOS
BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR
CONREM
CONTBL
CPMSUP
DOMGR
DRVLOK
DSKMGR
DSKTBL
DSPCHR
DSPOOL
DSPSGL
FFOMGR
FILCOM
FILLOK
FILMGR
FILSUP
FLUSHR
INPLN
LCLMSG
LCLTBL
LCLUSR
LDRMSG
LSTMGR
LSTTBL
MEMMGR
MPMSUP
MSGFMT
NETFWD
NETLOD
NETMGR
NETREQ
NETSVC
NETTBL
NONFIL

_.QSLfiAJ>„

K l
.2
.0
.3

1.2
1.7
.1
.2
.4
.5
.0
.3
.4
.1
.6
.0
.7

1.0
.2

1.1
.4

2.0
2.5
2.9
.2
.2
.4
.0

1.1
.1
.3
.1

1.2
.1
.1
.3
.3
.9

1.6
1.8
.0
.2

JUJ„

iDADB-J.

-
-

BUFMGR
-
-

COMSUB
CONMGR
-

CONTBL
-

-
-

DSKMGR
DSKTBL

—-
DSPSGL
-

FILCOM
-

FILMGR
FILSUP
-
-
-
-
-

LDRMSG
-
-
-
-
-
-
-

—-
-
-

NONFIL
„QSLQML.

„££NGL_J.
AUTLOD
AUTLOG
BIOS
BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR
-

CONTBL
4

DOMGR

-
DSKMGR
DSKTBL

—-
DSPSGL
-

FILCOM
-

FILMGR
FILSUP
-

INPLN
LCLMSG
LCLTBL
LCLUSR
-

LSTMGR
LSTTBL
MEMMGR
+
-
-

-

—-
-
-

NONFIL

SPOOL 1
AUTLOD
AUTLOG
BIOS
BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR
-

CONTBL
4

DOMGR
-

DSKMGR
DSKTBL
DSPCHR
DSPOOL
-
-

FILCOM
-

FILMGR
FILSUP
-

INPLN
LCLMSG
LCLTBL
LCLUSR
-

LSTMGR
LSTTBL
MEMMGR
4
-

-
-
-
-

-
-

NONFIL

HAS:ER-L -SLAVE J— SLAKX
AUTLOD
AUTLOG
BIOS
BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR
4

CONTBL
4

DOMGR
DRVLOK
DSKMGR
DSKTBL
DSPCHR
DSPOOL
-

FFOMGR
FILCOM
FILLOK
FILMGR
FILSUP
FLUSHR
INPLN
LCLMSG
LCLTBL
LCLUSR
-

LSTMGR
LSTTBL
MEMMGR
4
4
4
4

NETMGR
4

NETSVC
NETTBL
NONFIL

AUTLOD
AUTLOG
BIOS
-

CMDINT
COMMGR
COMSUB
CONMGR
-

CONTBL
4

DOMGR
-
-

DSKTBL
DSPCHR
1
-
-

FILCOM
-
-
-
-

INPLN
LCLMSG
LCLTBL
LCLUSR
-

LSTMGR
LSTTBL
MEMMGR
4

MSGFMT
4

NETLOD
NETMGR
NETREQ
4

NETTBL
NONFIL

AUTLOD
AUTLOG
BIOS
BUFMGR
CMDINT
COMMGR
COMSUB
CONMGR
-

CONTBL
4

DOMGR
-

DSKMGR
DSKTBL
DSPCHR
DSPOOL

- -
-

FILCOM
-

FILMGR
FILSUP
-

INPLN
LCLMSG
LCLTBL
LCLUSR
-

LSTMGR
LSTTBL
MEMMGR
4

MSGFMT
4

NETLOD
NETMGR
NETREQ

4 1
NETTBL 1
NONFIL

1

1-9

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Standard Packages
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Module
OSNTRY
PATCH
PGMLOD
QUEMGR
RTCMGR
RTCNUL
SGLUSR
SPLMSG
SPOOLR
SUBMIT
SYSNIT

K 1 LOADR 1 SINGI^J SPOOL. J MASIR__L
. 5 OSNTRY
.1 +

1.0
1.3
.1

-«•«1 +
.1
.1
.6
.2
.1 -

OSNTRY
+

PGMLOD
-

RTCMGR
-f

SGLUSR
-

-
+

„S-YJS1UL3L.

OSNTRY
+

PGMLOD
-

RTCMGR
+

SGLUSR
SPLMSG
SPOOLR
+

SYSNIT_

OSNTRY
+

PGMLOD
+

RTCMGR
+
-

SPLMSG
SPOOLR
+

-SLAKE J.5LAK2L 1
OSNTRY
+

PGMLOD
+
-
+
-

SPLMSG
SPOOLR
+

OSNTRY 1
+ 1

PGMLOD 1
4- 1

RTCMGR 1
+ 1

SGLUSR 1
SPLMSG 1
SPOOLR 1

+ 1
_JS2SHI!LI

Optional Modules To supplement the standard packages, certain
optional modules (marked by "+" in the matrix
above) may have to be added. The following
table explains where these optional modules
are required:

l_JÜßjäul£ | . . Where Required
I
CONREM Network masters with no console (instead of CONDR_).
CPMSUP To support C-fcns 7, 8, 24, 28, 29, 31, 37 and 107.
MPMSUP To support C-fcns 134-143, 153, 160 and 161.
MSGFMT Network masters that make requests over the network.
NETFWD To support forwarding of network messages.
NETLOD Network masters that load programs over the network,
NETREQ Network masters that make requests over the network.
PATCH Wherever a supplementary patch area is required.
QUEMGR To support MP/M queue emulation (C-fcns 134-140.)
RTCNUL Wherever no RTC driver is available.
SUBMIT To emulate CP/M processing of $$$.SUB.

1-10

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Memory Required

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Memory Required To estimate the memory required by a particu-
lar TurboDOS configuration, you need to take
into account the combined size of all func-
tional modules, driver modules, disk buffers,
and other dynamic storage.

Drivers typically require IK to 4K, and can
be even larger if the hardware is especially
complex. Disk buffer space should be as
large as possible for optimum performance,
especially in a network master. About 4K of
disk buffer space is reasonable for a single-
user system, although less can be used in a
pinch. Other dynamic storage doesn't usually
exceed IK in single-user systems, 2K in net-
work masters.

The following table gives typical memory
requirements for standard TurboDOS configura-
tions:

__LDADJL S JLNGL SPOOL̂ MASTIC SLAVE SLAVJL

0/S
Drivers
Buffers
Dynamic

Total

10K
2K
4K
IK

17K

17K
2K
4K
IK

24K

19K
2K
4K
IK

26K

25K
3K

16K
3K

47K

13K
IK
-
2K

16K

22K
2K
4K
2K

30K

1-11

TurboDOS 1.4 8086
Implementor's Guide

ARCHITECTURE

Other Languages

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Other Languages To facilitate translation into languages
other than English, TurboDOS has been
implemented with all textual messages
segregated into separate modules. All such
message modules are available in source form
to TurboDOS OEM licensees upon request.

The following modules contain all TurboDOS
operating system messages:

LCLMSG
SPLMSG
LDRMSG

Most operating system messages.
Spooler error messages.
Loader messages for OSLOAD.CMD.

In addition, a separate message module is
available for each TurboDOS command.

1-12

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SYSTEM GENERATION

Introduction

This section explains the TurboDOS system
generation procedure in detail. It describes
how to use TLINK to l ink a desired set of
TurboDOS modules together , and details the
n u m e r o u s system patch points w h i c h may be
modified during system generation. Step-by-
step procedures and examples are provided.

The func t i ona l modu les of TurboDOS are dis-
t r i b u t e d in r e loca t ab le o b j e c t f o r m (.0
f i les) . Hardware -dependen t d r ive r modules
are f u r n i s h e d in the same f a s h i o n . The
TurboDOS TLINK command is a specialized
l inker used to bind the desired combinat ion
of m o d u l e s t o g e t h e r in to an e x e c u t a b l e
version of TurboDOS. TLINK also includes a
symbolic patch faci l i ty used to m o d i f y a
variety of operating system parameters.

To genera te a complete TurboDOS system, you
typically mus t use T L I N K several times. At
m i n i m u m , you have to genera te both a loader
OSLOAD.CMD and a master opera t ing system
OSMASTER.SYS. For a n e t w o r k i n g system you
also have to g e n e r a t e a s lave o p e r a t i n g
system OSSLAVE.SYS. Complex n e t w o r k s may
require generation of several d i f fe ren t slave
or master c o n f i g u r a t i o n s . Final ly, you may
have to use T L I N K to generate a cold-start
boots t rap rou t ine for the s tar t -up PROM or
boot track.

At cold-start , the boots t rap rou t ine loads
the loader program OSLOAD.CMD into the TPA of
the master computer and executes it. OSLOAD
loads the mas ter opera t ing system f r o m the
f i le OSMASTER.SYS into m e m o r y . The master
opera t ing system then down-loads the slave
opera t ing system f r o m the f i le OSSLAVE.SYS
over the network into each slave computer.

2-1

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

TLINK Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

TLINK Command

Syntax

Explanation

The TLINK command is a specialized linker
used for 8086 TurboDOS system generation, and
may also be used as a general-purpose linker
for object modules produced by the TurboDOS
assembler TASM.

I
I TLINK inputfn {outputfn} {-options}

I

I

The T L I N K command l inks a specif ied collec-
tion of relocatable object modules together
into a single executable file. The "inputfn"
argument identifies the two input files used
by TLINK: a configuration file "inputfn.GEN"
and a parameter f i le "inputf n.PAR". The
"outputfn" argument specifies the name of the
executable output file to be created (normal-
ly type . C M D or .SYS) . If " o u t p u t f n " is
omitted f r o m the command, then "inputfn" is
also used as the name of the executable out-
put file, and should include an explicit file
type (.CMD or .SYS).

If the .GEN f i le is found , it must contain
the list of object modules (.0 f i l e s) to be
linked together. If the conf igura t ion f i le
is not f o u n d , then T L I N K o p e r a t e s in an
interactive mode. You are prompted by an
aster isk * to enter a series of d i rec t ives
from the console. The syntax of each direc-
tive (or each line of the .GEN f i le) is:

I objfi le {,objf i le}. . . {;comment}
I I

The object files are assumed to have type .0
unless a type is given explicitly. A null
directive (or the end of the .GEN file) ter-
minates the prompting sequence and causes
processing to proceed.

2-2

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Explanation
(Continued)

Options

After obtaining the list of modules f rom the
f i l e or console , T L I N K l i n k s a l l of the
modules together, a two-pass process that
displays the name of each module as it is
encountered. When the linking phase is com-
plete , T L I N K looks fo r a p a r a m e t e r f i l e
" i n p u t f n . P A R " and processes it if present
(described be low) . Final ly, the executable
f i le (.CMD or .SYS) is w r i t t e n out to disk.

NOTE: Each mo'dule of the TurboDOS operat ing
system is magnetical ly ser ial ized w i t h a
unique serial number . The serial n u m b e r
consis ts of two c o m p o n e n t s : an " o r i g i n
number" which identifies the issuing TurboDOS
licensee, and a "unit number" which uniquely
ident i f ies each copy of TurboDOS issued by
that l icensee. W h e n used f o r T u r b o D O S
operating system generation, TLINK verifies
that all modules to be linked are serialized
consistently, and serializes the executable
file accordingly.

Options are a lways preceded by a "-" p r e f i x ,
and may appear before, between, or af ter the
file names. Several options may be concate-
nated after a single "-" prefix.

i°n_

-8
-B
-C
-D
-H
-L
-M
-R
-S
-U
-X

JE.xplaiiatj.piL

Force 8080 model (single group)
No 128-byte base page
List to console, not to printer
Force data group G-Max to 64K
No .CMD header (implies -8, -B)
Listing only, no output file
List link map
List inter-module references
List sorted symbol table
List unsorted symbol table
Diagnose undefined references

2-3

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Parameter File TLINK includes a symbolic patch facility that
may be used during TurboDOS system generation
to override various operating system para-
meters and to effect necessary software cor-
rections. Patches must be stored in a .PAR

__ file. The syntax of each .PAR file entry is:

I I
I location = value {,value}... {;comment} I

where the "value" arguments are to be stored
in consecutive memory locations starting with
the address specified by "location".

The "location" argument may be the name of a
public symbol, an integer constant, or an
expression composed of names and integer
constants connected by + or - operators.
Integer constants must begin w'ith a digit to
distinguish them from names. Constants of
the form "Oxdddd" are taken to be hexadeci-
mal. Constants of the form "Odddddd" are
taken to be octal. Constants that start with
a nonzero digit are taken to be decimal. The
"location" expression must be followed by an
equal-sign = character.

The "value" arguments may be expressions (as
defined above) or quoted ASCII strings, and
must be separated by commas. A "value" ex-
pression is stored as a 16-bit word if its
value exceeds 255 or if it is enclosed in
parentheses (...) or brackets [...]; other-
wise, it is stored as an 8-bit byte. An
expression enclosed in brackets is treated as
IP-relative (for example, the target address
of a CALL or JMP instruction). A quoted
ASCII string must be enclosed by quotes
"...", and is stored as a sequence of 8-bit
bytes. Within a quoted string, ASCII control
characters may be specified by using TASM
backslant escape sequences.

2-4

Tu rboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example In the fol lowing example, TLINK is used to
link a single-user TurboDOS system for an IBM
Personal Compu te r , us ing the modules listed
in OSMASTER.GEN and patches in OSMASTER.PAR,
creating the executable file OSMASTER.SYS.

I
0A} JLmUDSMASTEH.SYS. -M
Copyright 1984, Software 2000, Inc.
* ; Single-user without spooling for

; IBM Personal Computer with 256K RAM
STDSINGL ;standard single-user pkg.

;seldom-used CP/M functions
;IBM PC console driver
;IBM PC serial list driver
;IBM PC initialization
;IBM PC floppy disk driver
;IBM PC 256K mem spec table
;IBM PC real-time clock drvr

*
*
* CPMSUP
* CONIPC
* LSTACA
* NITIPC
* DSKIPC
* MSTIPC
* RTCIPC

Pass 1
LCLUSR LCLTBL CMDINT AUTLOD SGLUSR etc.

Pass 2
LCLUSR LCLTBL CMDINT AUTLOD SGLUSR etc.

Processing parameter file:
; Patches for single-user w/o spooling
OSMLEN = 1024 jdynamic memory area (16K)
OSMTOP = 0x1000 ;but limit to first 64K
AUTUSR = 0x80 ;logon to user 0 privileg.
NMBUFS = 8 ;number of disk buffers
EOPCHR = OxlA ;end-of-print character "Z
SRHDRV = 1 ;search drive A
PRTMOD = 0 ;direct printing mode

Writing output file A:OSMASTER.SYS
OA>

2-5

TurboDOS 1.4 8086
Implementier's Guide

SYSTEM GENERATION

TLINK Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Error Messages
Serial number violation
Not enough memory
No object files specified
Can't open object file
Non-privileged user
Unexpected EOF in object file
Bad token in object file: <type>
Can't create output file
Can't write output file
Load address out-of-bounds
Duplicate transfer address
Duplicate def: <name>
Undefined name: <name>
Too many externals in module
Name table overflow

2-6

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points The following table describes various public
symbols in TurboDOS which you may wish to
modify using the symbolic patch facility of
TLINK. (Other patch points may exist in
hardware-dependent drivers, but they are
beyond the scope of this document.)

ABTCHR = 0x03 ;CTRL-C CONTBL

Abort character (after attention).

ATNBEL = 0x07 ;CTRL-G CONTBL

Attention-received warning character.

ATNCHR - 0x13 ;CTRL-S CONTBL

Attention character. May be patched to
another character if the default value of
CTRL-S is needed by application programs.
A common choice is zero (NUL), which al-
lows the console BREAK key to be used as
an attention key.

AUTUSR = OxFF AUTLOG

Automatic log-on user number. Default
value of OxFF requires that user log-on
via LOGON command. If automatic log-on
desired at cold-start, patch AUTUSR to
the desired user number (0-31) , and set
the sign-bit if a privileged log-on is
desired. Generally patched to 0x80 in
single-user systems to cause automatic
privileged log-on to user zero.

2-7

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

BFLDLY = (300) FLUSHR

Buffer flush delay determines how often
disk buffers are written to disk, stated
in system "ticks". Default value (300
decimal) causes buffers to be flushed
about every five seconds (assuming 60
ticks per second) .

BUFBAS = (0000) BUFMGR

Base paragraph address of external disk
buffer area (see BUFLEN).

BUFLEN = (0000) BUFMGR

Length (in paragraphs) of external disk
buffer area starting at BUFLEN. Default
value (0000) indicates that buffers are
to be allocated from the regular dynamic
memory pool (see OSMLEN, OSMTOP).

BUFSIZ = 3 BUFMGR

Default disk buffer size (0=128, 1=256,
2=512, 3=1K,..., 7=16K). Default value
specifies IK disk buffers.

2-8

TucboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

CKTAST = (0x0000),(CKTDRA), NETTBL
(0x0100),(CKTDRB),
(0x0200),(CKTDRC),
(0x0300),(CKTDRD)

Circuit assignment table defines network
topology. Contains NMBCKT two-word en-
tries, one for each network circuit to
which this processor is attached. The
first word of each entry specifies the
network address by which this processor
is known on a particular circuit, and the
second word specifies the entrypoint ad-
dress of the circuit driver responsible
for that circuit. (Possibly several cir-
cuits may be handled by the same driver.)

CLBLEN =157 CMDINT

Command line buffer length defines long-
est permissible command line. The de-
fault value permits two 80-char lines.

CLPCHR = "}"

Command line prompt character.

CMDINT

CLSCHR = "\\" CMDINT

Command line separator character.

COLDFN = 0,nCOLDSTRTtI,nAUTn AUTLOD

File name and drive for cold-start auto-
load processing (in FCB format).

2-9

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

SymboJL I

COMPAT = 0 FILCOM

Default compatibility flags which define
rules to be used for file-sharing. Patch
to OxF8 to relax most MP/M restrictions.

CONAST = 0,(CONDRA) CONTBL

Console assignment table defines how con-
sole I/O is handled. First byte passed
to console driver, and commonly defines
the channel number (e.g., serial port) to
be used for the console. Following word
specifies the entrypoint address of the
console driver to be used.

CPMVER = 0x31 NONFIL

CP/M BDOS version number returned by
C-function 12 in BL-register.

DEFDID = (0) NETTBL

Default network destination ID, used for
routing all network requests that are not
related to a particular disk drive, queue
or printer. In a slave, DEFDID should be
set to the network address of the master.

2-10

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol I DefauU: Value

DSKAST 0,(DSKDRA),1,(DSKDRB),
OxFF,(0),OxFF,(0),...

DSKTBL

Disk assignment table/ an array of 16
three-byte entries (one for each drive
letter A-P) that defines which drives are
local, remote, and invalid.

For a local drive, the first byte must
not have the sign-bit set. That byte is
passed to the disk driver, and is common-
ly used to differentiate between multiple
drives connected to a single controller.
The following word specifies the entry-
point address of the disk driver to be
used.

For a remote drive, the first byte must
have the sign-bit set. The low-order
bits of that byte specify the drive let-
ter to be accessed on the remote proces-
sor. The following word specifies the
network address of the remote processor.

For an invalid drive, the first byte must
be OxFF, and the following word should be
(0) .

NOTE: In slave configurations STDSLAVE
and STDSLAVX, the default values are:

DSKAST = 0x80,(0) ,0x81, (0) ,
0x82, (0) ,0x83, (0) ,
...,Ox8E,(0),Ox8F,(0)

2-11

TurboDOS 1.4 8086
Implementoc's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol J Default Value

DSPPAT = 1,1,1,... ,1 LSTTBL

De-spool printer assignment table, an ar-
ray of 16 bytes (one for each printer
letter A-P) that defines the initial
queue to which each printer is assigned.
Values 1 through 16 correspond to queues
A-P, and 0 means that the printer is off-
line. The default value assigns all
printers to queue A.

ECOCHR = 0x10 ;CTRL-P CONTBL

Echo-print character (after attention).

EOPCHR = 0 LSTTBL

End-of-print character. May be patched
to any non-null character, in which case
the presence of that character in the
print output stream will automatically
signal an end-of-print-job condition.
The value zero disables this feature.

FWDTBL = (OxFFFF),(OxFFFF),
(OxFFFF),(OxFFFF),OxFF

NETTBL

Network forwarding table, an array of
two-byte entries that define any explicit
message forwarding routes to be used by
this processor. The first byte of each
entry specifies a "foreign" circuit num-
ber N, and the second byte a "domestic"
circuit number C. Any messages destined
for circuit N will be routed via circuit
C. This table is variable-length, termi-
nated by OxFF, and defaults to empty.

2-12

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

LDCOLD = OxFF AUTLOD

Cold-start autoload enable flag. Patch
to zero if you want to disable the cold-
start autoload feature (COLDSTRT.AUT).

LDWARM = OxFF AUTLOD

Warm-start autoload enable flag. Patch
to zero if you want to disable the warm-
start autoload feature (WARMSTRT.AUT).

LOADFN = 0,"OSMASTER","SYS' OSLOAD

Default file name and drive (in FCB for-
mat) loaded by OSLOAD.COM. Drive field
(FCB byte 0) may be patched to an expli-
cit drive value to inhibit scanning.

LOGUSR = 31 FILCOM

User number for logged-off state.

MAXMBS = 0 NETMGR

Maximum number of message buffers that
will ever be allocated. Default value of
0 means number of message buffers is
limited only to size of available memory.

2-13

TurboDOS 1.4 8086
Implementoc's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol 1 Default Value

MAXRPS = 0

I Module

NETMGR

Maximum number of reply packets that will
ever be allocated. Default value of 0
means number of reply packets is limited
only to the size of available memory.

NMBCKT = 1 NETTBL

Number of network circuits to which this
processor is connected.

NMBMBS NETMGR

Number of message buffers pre-allocated
at cold-start. Message buffers are allo-
cated dynamically as needed, but this may
cause fragmentation which prevents you
from changing the size of the disk buffer
pool with the BUFFERS command. If this is
important, patching NMBMBS to a suitable
positive value will eliminate the problem
(twice the number of network nodes is a
good starting value to try).

NMBRPS = 0 NETMGR

Number of reply packets pre-allocated at
cold-start. Reply packets are allocated
dynamically as needed, but this may cause
fragmentation which prevents you from
changing the size of the disk buffer pool
with the BUFFERS command. If this is
important, patching NMBRPS to a suitable
positive value will eliminate the problem
(the number of network nodes is a good
starting value to try).

2-14

TurboDOS 1.4 8086
Implementor'8 Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

I_£yjab_pj. I Default... Value
I
NMBSVC = 2 NETSVC

Number of network server processes to be
activated. (The number of network nodes
is a good starting value to try.)

NMBUFS = 4 BUFMGR

Default number of disk buffers allocated
at cold-start. Must be at least 2. For
optimum performance, allocate as many
buffers as possible (consistent with TPA
and other memory requirements).

OSMLEN = (128) ;2K bytes MEMMGR

Length (in paragraphs) of the memory area
to be allocated immediately above the
TurboDOS operating system resident for
dynamic working storage. This area must
accomodate disk buffers if no external
disk buffer area is defined (BUFLEN is
zero). The default value (128 paragraphs
or 2K bytes) is appropriate for a simple
slave with no disk buffers. For other
configurations, patch OSMLEN to a value
large enough to accomodate dynamic memory
needs. Divide required length in bytes
by 16 to give the value of OSMLEN in
paragraphs. (See OSMTOP.)

2-15

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Pointe
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

OSMTOP = (0000) MEMMGR

Absolute upper bound (paragraph address)
for dynamic working storage area. The
actual upper bound is either OSMTOP or
the top of TurboDOS plus OSMLEN, which-
ever is smaller. The default value of
zero indicates no specified upper bound.

PRTCHR = OxOC ;CTRL-L CONTBL

End-print character (after attention).
This is a console attention-response, not
to be confused with EOPCHR.

PRTMOD LCLTBL

Initial print mode for local user. The
default value of 1 specifies spooling.
Patch to 0 for direct, or 2 for console.

2-16

I ̂

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol,

PTRAST « 0,(LSTDRA),OxFF,(0),
OxFF,(0),OxFF,(0),..

LSTTBL

Printer assignment table, an array of 16
three-byte entries (one for each printer
letter A-P) that defines which printers
are local, remote, and invalid.

For a local printer, the first byte must
not have the sign-bit set. That byte is
passed to the disk printerr, and is com-
monly defines the channel number (e.g.,
serial port) to be used for the printer.
The following word specifies the entry-
point address of the printer driver.

For a remote printer, the first byte must
have the sign-bit set. The low-order
bits of that byte specify the printer
letter to be accessed on the remote pro-
cessor. The following word specifies the
network address of the remote processor.

For an invalid printer, the first byte
must be OxFF, and the following word
should be (0).

NOTE: In slave configurations STDSLAVE
and STDSLAVX, the default values are:

PTRAST = 0x80,(0),0x81,(0),
0x82,(0),0x83,(0),
...,Ox8E,(0),Ox8F,(0)

2-17

TurboDOS 1.4 8086
Implementor'B Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

5ymbol I Def ault. Value. .A

QÜEAST « 0,(0) ,OxFF,(0) ,
OxFF,(0),OxFFf(0),..

LSTTBL

Queue assignment table, an array of 16
three-byte entries (one for each queue
letter A-P) that defines which queues are
local, remote, and invalid.

For a local queue, all three bytes must
be set to zero.

For a remote queue, the first byte must
have the sign-bit set. The low-order
bits of that byte specify the queue let-
ter to be accessed on the remote proces-
sor. The following word specifies the
network address of the remote processor.

For an invalid queue, the first byte must
be OxFF, and the following word should be
(0) .

NOTE: In slave configurations STDSLAVE
and STDSLAVX, the default values are:

QUEAST = 0x80,(0),0x81,(0),
0x82, (0) ,0x83, (0) ,
...,Ox8E,(0) ,Ox8F, (0)

QUEDLY = (0000) QUEMGR

Polling delay used in unconditional Read
Queue (when queue is empty) and Write
Queue (when queue is full), stated in
system "ticks". If RTC driver is avail-
able, patch to largest delay that yields
reasonable queue performance.

2-18

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc,
All rights reserved.

Patch Points
(Continued)

QUEDRV = OxFF

Drive used for FIFOs that emulate MP/M
queues. Default value OxFF means use the
system disk (disk from which TurboDOS was
loaded at cold-start). Patch to 0 - 15
to specify a particular drive A-P.

QUEPTR LCLTBL

Initial queue or printer assignment. If
PRTMOD = 1 (spooling), QUEPTR specifies a
queue assignment. If PRTMOD = 0 (direct)
QUEPTR specifies a printer assignment.
In both cases, values 1 through 16 corre-
spond to letters A-P, and zero means do
not queue or print off-line.

RCNMSK = OxFF MPMSUP

Mask used in deriving a console number
from a network node in C-function 153.

RCNOFF = 0 MPMSUP

Offset used in deriving a console number
from a network node in C-function 153.

RESCHR = Oxll ;CTRL-Q CONTBL

Resume character (after attention).

2-19

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Patch Points
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Patch Points
(Continued)

Symbol Default Value I Module

SCANDN = 0 OSLOAD

Scan direction flag for OSLOAD. Patch to
OxFF to scan P-to-A (instead of A-to-P).

SLVFN "OSSLAVE "f
nSYSn NETSVC

Name and type of file (in FCB format) to
be down-loaded into slave processors.

SPLDRV = OxFF LCLTBL

Initial spool drive. Default value OxFF
indicates spool to system disk (disk from
which TurboDOS was loaded at cold-start).
Patch to 0 - 15 to specify'drive A-P.

SRHDRV = 0 CMDINT

Search drive for command files. Patch to
value 1 through 16 to search drive A-P
if command is not found on current
(default) drive. Patch to OxFF to search
system disk (disk from which TurboDOS was
loaded at cold-start). Default value 0
disables this feature altogether.

SUBFN = 0,"$$$ n,"SUBn SUBMIT

FCB for emulating CP/M submit files.

WARMFN = 0,"WARMSTRT"f"AUT AUTLOD

File name and drive for warm-start auto-
load processing (in FCB format).

2-20

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Network Operation

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Operation

Network Model

Network Tables

TurboDOS accomodates a wide variety of net-
w o r k topologies, ranging f r o m the simplest
point-to-point master/slave networks to the
most complex star, ring, and hierarchical
structures.

A TurboDOS ne twork is defined to consist of
up to 255 ciicuits, wi th up to 255 nodes
(processors) on each circuit. Each node has
a unique 16-bit network adAress consisting of
an 8-bit circuit number plus an 8-bit node
number (on that circuit).

Any processor may be connected to several
circuits, if desired. A processor connected
to mult iple c i rcui ts has mul t ip le n e t w o r k
addresses, one for each circuit. Such a
processor even may be set up to perform mes-
sage forwarding f rom one circuit to another,
pe rmi t t ing dialogue between n e t w o r k nodes
that do not share a common c i rcu i t between
them (more on this later) .

The actual n e t w o r k topology is def ined by a
series of tables in each processor. The
tables are set up d u r i n g system genera t ion ,
and def ine the n e t w o r k as "seen" f r o m the
viewpoint of each processor. The tables are:

NMBCKT A byte value that defines the
number of network circuits to
which this processor is connec-
ted.

2-21

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Tables
(Continued)

Symbol 1

CRT AS T

DSKAST

,

PTRAST

QUEAST

DEFDID

Descr iptiPiL

The circuit assignment table
containing NMBCKT entries defin-
ing the network address by which
this processor is known on each
circuit, and specifying the net-
work circuit driver responsible
for each handling each circuit.

The disk assignment table that
specifies for all drive letters
A-P which are local, remote, and
invalid. This table specifies
a network address for each re-
mote drive, and a disk driver
for each local drive.

The printer assignment table
that specifies for all printer
letters A-P which are local, re-
mote, and invalid. This table
specifies a network address for
each remote printer, and a prin-
ter driver for each local prin-
ter.

The queue assignment table that
specifies for all queue letters
A-P which are local, remote, and
invalid. This table specifies a
network address for each remote
queue.

The default network destination
ID, used for routing all network
requests that are not related to
a specific disk drive, printer,
or queue.

2-22

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Tables
(Continued)

Description,

FWDTBL The message forwarding table
that specifies any additional
circuits (not directly connected
to this processor) which may be
accessed via explicit message
forwarding/ and how messages
destined for such circuits are
to be routed.

I

These tables are pre-defined wi th defaul t
values to make set-up of simple master/slave
ne tworks very easy. For complex multi-
circuit networks, the set-up is somewhat more
complicated (as might be expected).

Refer to the preceding Patch Points sub-
section for details of the organizat ion and
defaults for these network tables.

2-23

TurboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Network Operation
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Message Forwarding The TurboDOS module NETFWD supports both
"implicit" and "explicit" forwarding of net-
work messages. To unders tand the distinc-
tion, consider the case of a ne twork wi th
three processors (PI, P2, and P3) connected
by two circuits (Cl and C2) as follows:

P1 | cl C2 | P3

A program running in PI makes an access to
drive D. Suppose the disk assignment tables
in the three processors are set up in the
following fashion:

Pi's DSKAST defines its drive D as a
remote reference to P2's drive B.

P2's DSKAST defines its drive B as a
remote reference to P3's drive A.

P3's DSKAST defines its drive A as a
local device attached directly to P3.

In this case, Pi's access to its drive D
actually winds up implicitly accessing P3's
drive A. This is implicit forwarding.

Alternatively, suppose Pi's DSKAST defines
its drive D as a remote reference to P3's
drive A, and that Pi's FWDTBL provides that
messages destined for circuit C2 may be
routed via Cl. In this case, Pi sends a
request to P3 on circuit Cl. P2 receives the
request, recognizes that it should be forwar-
ded, and retransmits the request to P3 via
circuit C2. Thus, PI accesses P3's drive A
with the assistance of P2, but this time PI
is not aware of P2's role in the transaction.
This is explicit forwarding.

2-24

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

A Complex Example

Copyright 1984 by Software 2000, Inc.
All rights reserved.

A Complex Example Let's take a reasonably complex network situ-
ation and see how to construct the required
.GEN and .PAR files.

Our hardware is a board-and-bus microcomputer
system consisting of an 80286 CPU running in
unmapped (8086) mode, 128K of RAM, hard disk
and floppy disk subsystems (all these make up
the master processor), and several single-
board slave computers with 80186 CPUs and
256K of RAM each. The master processor is
interfaced to two printers via RS232 serial
ports: a daisywheel printer on port 0 using
XON/XOFF protocol and a matrix printer on
port 1 using clear-to-send handshaking. In
addition, the master has a high-speed RS422
interface connecting it to another board-and-
bus system of similar configuration some
distance away.

We want to configure a TurboDOS system for
this hardware that permits all of the users
of each system to access the hard disk,
floppy disks, and printers attached to both
the local and remote system. We might create
the following OSMASTER.GEN file:

; OSMASTER
STDMASTR ;
NETREQ ;
MSGFMT ;
CONREM
LSTXON
LSTCTS
DSKHDC
DSKFDC
CKTSLV
CKT422
RTCDRV
NITDRV
MEMTBL

.GEN for complex example
standard master package
to make requests of other sys
needed by NETREQ
no console on the master
XON/XOFF for daisy (LSTDRA)
CTS for matrix (LSTDRB)
hard disk controller (DSKDRA)
floppy disk control. (DSKDRB)
circuit driver for slaves (CO)
circuit driver for RS422 (CD
real-time clock driver
hardware initialization driver
memory specification table

2-25

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

A Complex Example
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

A Complex Example
(Continued)

Our system generat ion task is completed by
creating the companion OSMASTER.PAR file:

; OSMASTER.PAR for complex example
NMBCKT = 2 ; 2 network circuits:
CKTAST = (0x0000) , (CKTDRA) ; CO = bus

(0x0100) , (CKTDRB) ; Cl = RS422
DSKAST =

PTRAST =

QUEAST =

DEFDID
DSPPAT
OSMLEN
COMPAT
NMBSVC
NMBUFS

0x00,(DSKDRA)
0x00,(DSKDRB)
0x01,(DSKDRB)
0x80,(0x0101)
0x81,(0x0101)
0x82,(0x0101)
0x00,(LSTDRA)
0x01,(LSTDRB)
0x80,(0x0101)
0x81,(0x0101)
0x00,(0x0000)
0 x 0 0 , (0 x 0 0 0 0)
0x80,(0x0101)
0x81,(0x0101)
(0x0101)
1,2,3,4
(0x0600)
OxB8
5
20

drv A=local HD
drv B=local FDO
drv C=local FDl
drv D=remote HD
drv E=remote FDO
drv F=remote FDl
ptr A=lcl daisy
ptr B=lcl matrix
ptr C=rmt daisy
ptr D=rmt matrix
cjueue A=local
queue B=local
queue C=remote A
queue D=remote B

default=other master
assgn ptrs to queues
24K dynamic memory
compatibility flags
5 server processes
20 IK disk buf fe r s

The generation of the second master operating
system could be identical, except that all
occurrences of network addresses (0x0100) and
(0x0101) in the OSMASTER.PAR f i le would be
reversed. Generation of the slave operating
system would be very s t ra igh t forward , and
identical for both systems.

If you study this example thoroughly until
you unders tand the reason for every .GEN and
.PAR f i l e e n t r y , you shou ld have little
trouble setting up your own "sysgens".

2-26

TurboDOS 1.4 8086
Implementor's Guide

SYSTEM GENERATION

Sysgen Procedure

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sysgen Procedure To conclude this section, here is a suggested
step-by-step procedure for generat ing a new
version of TurboDOS:

1. Br ing up a previous vers ion of 8086
TurboDOS. If this is your f i r s t attempt
to generate an 8086 TurboDOS system, you
may bring up CP/M-86 instead. However, if
you are using CP/M, all disks wil l have to
be in a fo rmat compatible with both CP/M
and TurboDOS (e.g., eight-inch one-sided
single-density with 128-byte sectors).

2. Make a working copy of your TurboDOS dis-
t r ibut ion disk. Do not use the original
d isk (in case s o m e t h i n g goes w r o n g) .
Insert the w o r k i n g diskette in a conven-
ient disk drive.

3. Using your favorite text editor, create or
revise the f i le OSMASTER.GEN containing
the names of the relocatable modules to be
l inked together. General ly, this will
consist of the appropriate STDxxxxx stan-
dard package plus selected additional
modules and all required device drivers.

4. using your editor once again, create or
revise the f i le OSMASTER.PAR containing
any required patches. This may be omitted
if no patches are desired.

5. Using the command TLINK OSMASTER.SYS,
generate an executable master operating
system in accordance with the .GEN and
.PAR files.

6. In a similar fashion, construct a new
loader by creating or revis ing the f i les
OSLOAD.GEN and OSLOAD.PAR, then using the
command TLINK OSLOAD.CMD to generate the
executable loader.

2-27

TucboDOS 1.4 8086 SYSTEM GENERATION
Implementor's Guide

Sysgen Procedure
(Continued)

^

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sysgen Procedure 7. For a master/slave network system, con-
struct a slave operating system in the
same manner. Create or revise the files
OSSLAVE.GEN and OSSLAVE.PAR, then use the
command TLINK QSSLAVE.SYS to generate the
down-loadable slave operating system.

8. To test the newly-generated system, eject
all disks other than your working disk
(again, in case something goes wrong).
Enter the command OSLOAD. The new system
should cold-start. If it fails to come up
or to function properly, you will have to
start over at step 1 and check your work
carefully — there is most likely an error
in one of your .GEN or .PAR files, or a
"bug" in one of your drivers.

2-28

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

Copyright 1984 by Software 2000, Inc.
All rights reserved.

DISTRIBUTION This section explains the TurboDOS distribu-
tion procedure in detail. It covers TurboDOS
licensing requirements, and the obligations
of licensed distributors, dealers, and end-
users. It describes how to make up and
serialize TurboDOS distribution disks.

Although this section is of concern primarily
to licensed TurboDOS distributors, we've
included it here so that dealers and end-
users can gain a better perspective on the
overall distribution process.

TurboDOS Licensing

Legal Protection

TurboDOS is a proprietary software product of
Software 2000, Inc. As such, it is protected
by law against unauthorized use and reproduc-
tion. Authorization to use and/or reproduce
TurboDOS is granted only by written license
agreement.

TurboDOS programs and documentation are copy-
righted, which means it is against the law to
make copies without express written authori-
zation from Software 2000 to do so.

The word "TurboDOS" is a trademark owned by
Software 2000 and registered in Class 9 (com-
puter software) and Class 16 (documentation)
with the trademark offices of the united
States and most of the developed countries of
the free world. This means it is against the
law to make use of the TurboDOS trademark
without express written authorization from
Software 2000.

Software 2000 has licensed certain companies
to distribute TurboDOS. Such distributors
are authorized to use the TurboDOS trademark,
and to reproduce, distribute, and sub-license
TurbcDOS programs and documentation to deal-
ers and end-users.

3-1

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

I User Obligation's

Dealer Obligations

TurboDOS may be used only after the user has
paid the required license fee, signed a copy
of the TurboDOS end-user license agreement,
and returned the signed agreement to the
issuing TurboDOS distributor. Then, TurboDOS
may be used only in strict conformance with
the terms of the license.

Each end-user license allows TurboDOS to be
used on one specific computer system identi-
fied by make, model, and serial number. The
end-user license may not be transferred from
one computer system to another, and expressly
forbids copying programs and documentation
except as required for backup purposes only.

A separate license fee must be paid and a
separate license signed for each computer
system on which TurboDOS is used. Network
slave computers that cannot'operate stand-
alone do not have to be licensed separately
from the network master. (This would be the
case, for example, if the slave computers
have no local disk storage, or if TurboDOS is
furnished in a form that cannot be run stand-
alone on the slave computers.) However,
networked computers that are also capable of
stand-alone operation under TurboDOS must
each be licensed separately.

A dealer must sign a TurboDOS dealer agree-
ment and return the signed agreement to the
issuing distributor. Then, the dealer is
permitted to purchase pre-serialized copies
of TurboDOS programs and documentation from
the distributor, and to resell them to end-
users. Dealers may not reproduce TurboDOS
programs or documentation for any purpose.
Before delivering each copy of TurboDOS, the
dealer must see to it that the end-user signs
the TurboDOS end-user license agreement and
returns it to the issuing distributor.

3-2

TürboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distributor
Obligations

Each licensed TurboDOS distributor is provi-
ded a master copy of TurboDOS relocatable
modules and command programs on diskette. A
dis t r ibutor is allowed to reproduce and
distribute copies of TurboDOS to dealers and
end-users , but only in connection wi th
certain specifically au thor ized ha rdware
(usually manufactured or sold by the distri-
b u t o r) . The d i s t r i b u t o r is r e q u i r e d to
serialize each copy of TurboDOS with a unique
sequential magnetic serial n u m b e r , and to
register each serial number promptly wi th
Software 2000. (Serialization is described
in more detail below.)

Each dis t r ibutor is also provided with a
master copy of TurboDOS documentation, either
in camera-ready hardcopy or in ASCII files on
disk. The dis t r ibutor is responsible for
reproducing the documentation and furnishing
it with each copy of TurboDOS it issues.

A dis tr ibutor must requi re each dealer to
sign and r e t u r n a TurboDOS dealer agreement
befo re issuing copies of TurboDOS to the
dealer for resale. A d i s t r i bu to r must
require each end-user to sign and re tu rn a
TurboDOS end-user license agreement before
issuing a copy of TurboDOS directly to the
end-user.

3-3

TurboDOS 1.4 8086 DISTRIBUTION
Implementor's Guide

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Serialization Each copy of TurboDOS is magnetically serial-
ized with a unique serial number. Such
serialization helps ensure that reproduction
and distribution of TurboDOS is done in
strict accordance with the required licensing

_^ and registration procedures, and facilitates
tracing of unlicensed copies of the software.

Each relocatable module of TurboDOS distribu-
ted to a dealer or end-user has a magnetic
serial number composed of two parts:

an origin number that identifies the
issuing distributor, and

a sequential iinu jUiJBJ2£JL that uniquely
identifies each copy of TurboDOS issued
by that distributor.

i

During system generation, the TLINK command
verifies that all modules making up a Turbo-
DOS configuration are serialized consistent-
ly, and magnetically serializes the resulting
executable version of TurboDOS accordingly.

The relocatable modules on the master disk
furnished to each licensed TurboDOS distribu-
tor are partially serialized with an origin
number only. Each distributor is provided a
serialization program (SERIAL.CMD) that must
be used to add a unique sequential unit num-
ber to each copy of TurboDOS issued by the
distributor. The TLINK command will not
accept partially-serialized modules that have
not been serialized with a unit number. Con-
versely, the SERIAL command will not re-
serialize modules that have already been
fully serialized.

3-4

TurboDOS 1.4 8086 DISTRIBUTION
Implementor's Guide

TurboDOS Licensing
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Technical Support Software 2000 maintains telephone and telex
"hot-lines" to provide TurboDOS technical
assistance to its distributors. These are
unlisted numbers providing direct access to
the authors of the TurboDOS operating system,
and are furnished only to licensed TurboDOS
distributors. We encourage distributors to
take advantage of this service whenever tech-
nical questions or problems arise in using or
configuring TurboDOS.

It is the responsibility of each licensed
distributor to provide technical support to
its dealers and end-user customers. Software
2000 £a.nn£±. assist dealers or end-users
directly. Where exceptional circumstances
seem to require direct contact between Soft-
ware 2000 technical personnel and a dealer or
end-user, this must be handled strictly by
prior arrangement between Software 2000 and
the distributor.

3-5

Tu rboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

SERIAL Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SERIAL Command

Syntax

Explanation

Options

The SERIAL command enables TurboDOS distribu-
tors to magnetically serialize relocatable
modules of TurboDOS for distribution.

I SERIAL srcefile destfile jünnn {options} I
I SERIAL ;Unnn {options} I
I I

The SERIAL command works exactly like the
COPY command, and accepts exactly the same
arguments and options. However, SERIAL has
the additional function of magnetically
serializing relocatable modules as they are
copied. SERIAL serializes files of type .REL
(Z80 modules) and type .0 (8086 modules).
Other files are copied without any change.

The unit number must be specified on the
command line as ;Unnn, where "nnn" represents
a decimal unit number in the range 0-65535.
Unit numbers must be assigned sequentially,
starting with 1. Unit number 0 is reserved
by convention for in-house use by the distri-
butor.

SERIAL produces fully-serialized modules that
are encoded with the distributor's origin
number and the specified unit number. TLINK
does not accept TurboDOS modules unless they
have been fully serialized in this fashion.

Opt ion. J

SERIAL accepts all COPY options, plus:

;Unnn Relocatable modules (type .REL
or .0) are magnetically serial-
ized with unit number nnn, which
must be a decimal integer in the
range 0 to 65535. This "option"
is mandatory for SERIAL.

3-6

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

SERIAL Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example
OA>SERIAL *.O B; ;U289N
OA:AUTLOD .0 copied to OB:AUTLOD .0
OA:AUTLOG .0 copied to OB:AUTLOG .0

OArSYSNIT .0
OA)

copied to OB:SYSNIT .0

Error Messages
SERIAL incorporates all COPY error mes-
sages, plus:

Unit number not specified
Origin number violation
File is already serialized
Unexpected EOF in .0 or .REL file

3-7

TurboDOS 1.4 8086
Implementor'8 Guide

DISTRIBUTION

PACKAGE Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

PACKAGE Command

Syntax _

Explanation

The PACKAGE command lets you combine any
collection of relocatable object modules into
a single concatenated .0 file.

I
PACKAGE srcefile {destfile}

PACKAGE may be used to construct custom
packages of TurboDOS modules, make additions
or changes to the supplied STDxxxxx packages,
pre-package collections of driver modules,
and so forth.

The "srcefile" argument specifies the name of
an input file "srcefile.PKG" that lists the
modules to be packaged. The "destfile" argu-
ment specifies the name of the concatenated
.0 file to be created. If' "destfile" is
omitted, then the "srcefile" argument is also
used as the name of the output .0 file.

If the .PKG file is found, it must contain
the list of relocatable object modules (.0
files) to be linked together. If the .PKG
file is not found, then the PACKAGE command
operates in an interactive mode. You are
prompted by an asterisk * to enter a series
of directives from the console. The syntax
of each directive is:

I I
I objectfn {,objectfn}... {/comment} I
I I

A null directive terminates the prompting
sequence and causes processing to proceed.

After obtaining the list of modules from the
file or console, PACKAGE concatenates all of
the modules together (displaying the name of
each module as it is encountered) and writes
the result to the output file.

3-8

Tu rboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

PACKAGE Command
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Example
OA}PACKAGE STDLOADR
* ; STDLOADR.PKG standard loader package
* OSLOAD,LDRMSG,OSNTRY,FILMGR,FILSUP
* FILCOM,BUFMGR,DSKMGR,DSKTBL,NONFIL
* CONMGR,CONTBL,DSPSGL,COMSUB
OSLOAD LDRMSG OSNTRY FILMGR FILSÜP etc.
OA>

Error Messages
File name missing from command
Invalid input file name
Non-privileged user
Unexpected EOF in input file
Disk is full
Can't make output file
Can't open input file
No input files

3-9

TurboDOS 1.4 8086 DISTRIBUTION
Implementor's Guide

Distrib. Procedure

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distribution Here is the procedure to be followed by dis-
Procedure tributors when creating each copy of TurboDOS

to be issued to a dealer or end-user:

1. Assign a unique sequential unit number for
this copy of TurboDOS, and register it

""' immediately by filling out a serial number
registration card (or agreed-to substi-
tute) and mailing to Software 2000, Inc.

2. Format a new disk, and label it with the
following information clearly legible:

. trademark TurboDOSR

. version number (1.4x)

. origin and unit numbers (oo/uuuu)

. statutory copyright notice:
Copyright 198x by Software 2000, Inc.
All rights reserved.

3. Use the SERIAL command to copy and serial-
ize the appropriate files from your dis-
tribution master disk to the new disk.
Use the tables on the following page to
guide you in determining what files to put
on the new disk.

IMPORTANT NOTE: Be absolutely certain
that the new disk does mat contain any
unserialized modules or SERIAL.CMD!

4. Using the new serialized disk, use the
TLINK command to generate an executable
loader and operating system. Follow the
system generation procedure described in
the previous section.

5. In addition to the serialized disk, you
should issue copies of TurboDOS documenta-
tion and a start-up PROM (if applicable).

3-10

TurboDOS 1.4 8086
Inplementor's Guide

DISTRIBUTION

Distrib. Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distribution
Procedure
(Continued)

The following table may be used for guidance
in preparing TurboDOS disks for distribution.
In addition to the files shown, you need to
include hardware-dependent driver modules and
utility programs as appropriate.

single-user
w/o spooler

STDLOADR.
STDSINGL.

-
-
-

—
CPMSUP .
MPMSUP .
RTCNUL .
PATCH
SUBMIT .
OSBOOT .

-

-
-

—
-

—
AUTOLOAD.
BACKUP .

-
BOOT
BUFFERS .

-
COPY
DATE
DELETE .
DIR
DO
DRIVE
DUMP

0
0

0
0
0
0
0
0

CMD
CMD

CMD
CMD

CMD
CMD
CMD
CMD
CMD
CMD
CMD

single-user
w±th_ spooler

STDLOADR. 0
STDSINGL. 0
STDSPOOL.O

—
-

—
CPMSUP .0
MPMSUP .0
RTCNUL . 0
PATCH . 0
SUBMIT .0
OSBOOT .0

-

-
-

—
-

—
AUTOLOAD.CMD
BACKUP .CMD

-
BOOT . CMD
BUFFERS .CMD

-
COPY .CMD
DATE . CMD
DELETE . CMD
DIR .CMD
DO .CMD
DRIVE . CMD
DUMP . CMD

multi-user
1 netwojrkinci

STDLOADR.O
STDSINGL. 0
STDSPOOL.O
STDMASTR.O
STDSLAVE.O
STDSLAVX.O

CPMSUP .0
MPMSUP .0
RTCNUL . 0
PATCH . 0
SUBMIT .0
OSBOOT .0
NETREQ .0
NETFWD . 0
QUEMGR . 0
MSGFMT .0
NETSVC . 0
CONREM . 0

AUTOLOAD.CMD
BACKUP .CMD
BATCH . CMD
BOOT . CMD
BUFFERS .CMD
CHANGE . CMD
COPY . CMD
DATE . CMD
DELETE .CMD
DIR .CMD
DO .CMD
DRIVE .CMD
DUMP . CMD

3-11

TurboDOS 1.4 8086
Implementor's Guide

DISTRIBUTION

Distrib. Procedure
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Distribution
Procedure
(Continued)

""

1

single-user 1
w/o spooler ̂J

ERASEDIR.CMD
-

FIXDIR .CMD
FIXMAP . CMD
FORMAT . CMD
LABEL . CMD

-

-
-

OTOASM .CMD
PRINT .CMD

-

READPC . CMD

-RENAME . CMD
-

SET . CMD
SHOW . CMD
TASM . CMD
TBUG . CMD
TLINK .CMD
TPC . CMD
TYPE . CMD
VERIFY .CMD

single-user 1
.vith .spooler _L

ERASEDIR.CMD

—FIXDIR .CMD
FIXMAP . CMD
FORMAT . CMD
LABEL . CMD

—
-
-

OTOASM . CMD
PRINT .CMD
PRINTER .CMD
QUEUE . CMD
READPC . CMD

—RENAME . CMD ,

—SET .CMD
SHOW . CMD
TASM . CMD
TBUG . CMD
TLINK .CMD
TPC . CMD
TYPE . CMD
VERIFY .CMD

multi-user
network in? _ _ .

ERASEDIR.CMD
FIFO .CMD
FIXDIR .CMD
FIXMAP .CMD
FORMAT . CMD
LABEL . CMD
LOGOFF . CMD
LOGON . CMD
MASTER . CMD
OTOASM . CMD
PRINT . CMD
PRINTER .CMD
QUEUE .CMD
READPC . CMD
RECEIVE .CMD
RENAME . CMD
SEND . CMD
SET . CMD
SHOW . CMD
TASM .CMD
TBUG . CMD
TLINK .CMD
TPC . CMD
TYPE . CMD
VERIFY .CMD

3-12

TurboDOS 1.4 8086
Implementor'B Guide

CODING CONVENTIONS

Copyright 1984 by Software 2000, Inc.
All rights reserved.

CODING CONVENTIONS This section is devoted to in-depth discus-
sion of TurboDOS internal coding conventions,
aimed at the systems programmer writing hard-
ware-dependent drivers or resident processes.
All coding examples and driver listings in
this document make use of the TurboDOS 8086
assembler TASM.

Undefined External
References

To allow various TurboDOS modules to be in-
cluded or omitted at will, TLINK auto-
matically resolves all undefined external
references to the default names "UndCode"
(for code references) and "UndData" (for data
references). The common subroutine module
COMSUB contains the following:

LOG Data*
UndData::

WORD 0,0

LOG Code*
UndCode::

XOR AL,AL
RET

;data segment
;undefined data

;code segment
;undefined code
;zero AL & flags
;return

Thus, it is always safe to load or call an
external name, whether or not it is present
at TLINK time. It is bad form to store into
an undefined external name, however!

4-1

TurboDOS 1.4 8086
Implementor'8 Guide

CODING CONVENTIONS

Memory Allocation

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Memory Allocation A common memory management module MEMMGR
provides dynamic allocation and deallocation
of memory space required for disk and message
buffers, print queues, file and record locks,
do-file nesting, and so forth. TurboDOS
reserves a region of memory for such dynamic
workspace, located immediately above the
TurboDOS resident. The length of this area
(in paragraphs) is determined by the patch-
able parameter OSMLEN. Memory segments are
allocated downward from the top of the
reserved region. Deallocated segments are
concatenated with any neighbors and threaded
on a free-memory list. A best-fit algorithm
is used to reduce memory fragmentation.

Allocation and deallocation requests are
coded in this manner:

;code to allocate a memory segment
MOV BX,=36 ;BX=segment size
CALL ALLOC* ;allocate segment
TEST AL,AL ;alloc successful?
JNZ ERROR ;NZ -> not enuf mem
PUSH BX ;else, BX=&segment

••

;code to deallocate a memory segment
POP BX ;BX=&segment
CALL DEALOC* ;deallocate segment

ALLOCt prefixes each allocated segment with a
word containing the segment length, so that
DEALOCt can tell how much memory is to be
deallocated. ALLOC* does not zero the newly-
allocated segment.

4-2

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

List Processing

Copyright 1984 by Software 2000, Inc.
All rights reserved.

List Processing TurboDOS maintains its dynamic structures as
threaded lists with bidirectional linkages.
This technique permits a node to be added or
deleted anywhere in a list without searching.
The list head and each list node have a two-
word linkage (forward and backward pointers).

List manipulation is coded in this manner:

LOG Data* ;data segment
;list head (linkage initialized empty)
LSTHED: WORD LSTHED ;forward pointer

WORD LSTHED ;backward pointer

;list node (linkage not initialized)
LSTNOD: WORD 0 ;forward pointer

WORD 0 ;backward pointer
RES 128 ;contents of node

LOG Codet ;program segment
;code to add node to end of list

MOV BX,&LSTHED ;BX=&head
MOV DX,&LSTNOD ;DX=&node
CALL LNKENDS ;link to list end

;code to unlink node from list
MOV BX,&LSTNOD ;BX=&node
CALL UNLINK* ;unlink node

;code to add node to beginning of list
MOV BX,&LSTHED ;BX=&head
MOV DX,&LSTNOD ;DX=&node
CALL LNKBEG* ;link to list beg.

4-3

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Task Dispatching

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Task Dispatching TurboDOS incorporates a flexible, efficient
mechanism for dispatching the 8086-family CPU
among various competing processes. In coding
drivers for TurboDOS, you must take extreme
care to use the dispatcher correctly in order
to attain maximum system performance.

The dispatcher allows one process to wait for
some event (for example, data-available or
seek-complete) while allowing other processes
to use the processor. For each such event,
you must define a three-word structure called
a "semaphore".

A semaphore consists of a count-word followed
by a two-word list head. The count-word is
used by the dispatcher to keep track of the
status of the event. (At present, only the
LSB of the count word is used, supporting
counts in the range -128 to +127.) The list
head anchors a threaded list of processes
waiting for the event to occur.

Two primitive operations operate on a sema-
phore: waiting for the event to occur
(WAIT*), and signalling that the event has
occurred (SIGNAL*). They are coded in this
following manner:

;this semaphore represents some event
EVENT: WORD 0 ;semaphore count

WORD EVENT+2 ;semaphore f-ptr
WORD EVENT+2 ;semaphore b-ptr

;wait for the event to occur
MOV BX,&EVENT ;BX=&semaphore
CALL WAIT* ;wait for event

;signal that event has occurred
MOV BX,&EVENT ;BX=&sempahore
CALL SIGNAL* ;signal event

4-4

TUrboDOS 1.4 8086 CODING CONVENTIONS
Implementor's Guide

Task Dispatching
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Task Dispatching Whenever a process waits on a semaphore,
(Continued) WAIT* decrements the semaphore's count-word.

Thus, a negative count -N signifies that
there are N processes waiting for the event
to occur. Whenever an event is signalled,
SIGNAL* increments the semaphore count-word
and awakens the process that has been waiting
longest.

If an event is signalled but no process is
waiting for it, then SIGNAL* increments the
count-word to a positive value. Thus, a
positive count N signifies that there have
been N occurrences of the event for which no
process was waiting. In this case, the next
N calls to WAIT* on that semaphore will
return immediately without waiting.

Sometimes it is necessary for a process to
wait for a specific time interval (for exam-
ple, a motor-start delay or carriage-return
delay) rather than for a specific event.
TurboDOS provides a delay facility (DELAY*)
that permits other processes to use the CPU
while one process is waiting for such a timed
delay. Delay intervals are specified as some
number of "ticks". A tick is an implementa-
tion-defined interval, usually 1/50 or 1/60
of a second. Delays are coded thus:

I

I
I ;delay for one-tenth of a second
I MOV BX,=6 ;BX=delay in ticks
I CALL DELAY* ;delay process
I

Accuracy of delays is usually plus-or-minus
one tick. A delay of ze ro t icks may be
specif ied to rel inquish the processor to
other processes on a "courtesy" basis.

All driver delays should be accomplished via
WAIT* or DELAY*, neyer by spinning in a loop.

4-5

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Interrupt Service

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Interrupt Service Dispatching is especially efficient when used
with interrupt-driven devices. Usually, the
interrupt service routine just calls SIGNALS
to signal the interrupt-associated event.

Most interrupt service routines should exit
via the usual IRET instruction. However,
some periodic interrupt (usually a 50 or 60
hertz clock interrupt) should have an inter-
rupt service routine that exits by jumping to
the dispatcher entrypoint ISRXITf to provide
periodic time-slicing of processes. To avoid
excessive dispatcher overhead, don't use
ISRXIT* more than about 60 times per second.

Before calling any TurboDOS support routine
(such as SIGNAL!) or referencing any DS-
relative data, an interrupt service routine
must call the subroutine GETSDS* to set up
register DS.

A simple interrupt service routine might be
coded like this:

DEVISR: PUSH
PUSH
PUSH
PUSH
PUSH
CALL
MOV
CALL
MOV
MOV
OUT
POP
POP
POP
POP
POP
IRET

AX
BX
CX
DX
DS
GETSDS*
BX,&EVENT
SIGNAL*
DX,&EOIR
AX,=INTN
DX,AX
DS
DX
CX
BX
AX

;save registers
. n n

. n n
r
. n n
,
. n n
l

;get system DS
;BX=& semaphore

; signal event
;DX=&end-of-int
;AX=interrupt#
;reset interrupt
/restore registers
. w n; -
, It N

. n ii
/
/return from int.

4-6

I
-.' i.
i *-

I
TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Poll Routines

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Poll Routines Devices incapable of interrupting the CPU
have to be polled by the driver. The dis-
patcher maintains a threaded list of poll
routines, and executes them every dispatch.
The function of each poll routine is to check
the status of its device, and to signal the
occurrence of some event (for example, data-
available) when it occurs. The routine
LNKPOL* links a poll routine onto the poll
list, and UNLINK* removes it.

A poll routine must be coded so that it will
not signal the occurrence of a particular
event more than once. The best way to assure
this is for the poll routine to unlink itself
from the poll list as soon as it has signal-
led the event. An example:

EVENT: WORD 0 ;semaphore
WORD EVENT+2
WORD EVENT+2

;driver waits for event
MOV DX,&POLNOD ;DX=&poll node
CALL LNKPOL* ;activate poll rtn
CALL POLRTN ;optional pretest
MOV BX,&EVENT ;BX=&semaphore
CALL WAIT* ;wait for event

;poll routine signals event when detected
POLNOD :

POLRTN :

X:

WORD
WORD
IN
TEST
JZ
MOV
CALL
MOV
CALL
RET

0 ;poll rtn linkage
0 ; " " "
AL,=STAT ;AL=device status
AL,=MASK ;did event occur?

X ;if not, exit
BX,&EVENT ;BX=&semaphore
SIGNAL* ; signal event
BX,&POLNOD ;BX=&poll node
UNLINK* ;unlink poll rtn

;all done

4-7

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Mutual Exclusion

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Mutual Exclusion TurboDOS is fully re-entrant at the process
and kernel levels. However, most driver
modules are not coded re-entrantly (since
most peripheral devices can only do one thing
at a time). Consequently, most drivers must
make use of a mutual-exclusion interlock to
prevent TurboDOS from invoking them re-ent-
rantly.

This is very easy to accomplish using the
basic semaphore mechanism of the dispatcher.
It is only necessary to define a semaphore
with its count-word initialized to 1 (instead
of 0). Mutual exclusion may then be accom-
plished by cal l ing W A I T * upon en t ry and
SIGNAL* upon exit. An example:

mutual-exclusion semaphore
MXSPH: WORD 1 ;count-word=lI

WORD MXSPH+2
WORD MXSPH+2

DRIVER: MOV BX,&MXSPH ;BX=&semaphore
CALL WAIT* ;wait if in-use

MOV BX,&MXSPH ;BX=&semaphore
CALL SIGNAL* ;unlock mut-excl
RET ;done

4-8

TürboDOS 1.4 8086
Implementor's Guide

COOING CONVENTIONS

Sample Driver
Using Interrupts

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sample Driver
using Interrupts

Here is a simple device driver for an inter-
rupt-driven serial input device. It illus-
trates coding techniques discussed so far:

MXSPH :

RDASPH:

CHRSAV :

; device
INPDRV:

WORD
WORD
WORD
WORD
WORD
WORD
BYTE

driver
:MOV
CALL
STI
MOV
CALL
PUSH
MOV
CALL
POP
RET

1 ;MX semaphore
MXSPH+2
MXSPH+2
0 ;RDA semaphore
RDASPH+2
RDASPH +2
0 ; saved input char

main code
BXf&MXSPH ;BX=&MXsemaphore
WAIT! ;lock MX

;need ints enabled
BX,&RDASPH ;BX=&semaphore
WAIT* ;wait data avail
CHRSAV ; stack input char
BX,&MXSPH ;BX=&MXsemaphore
SIGNAL* ; unlock MX
AX ;return AL=char

; done

; interrupt service routine
INPISR::PUSH

PUSH
PUSH
PUSH
PUSH
CALL
IN
MOV
MOV
CALL
POP
POP
POP
POP
POP
IRET

AX ;save registers
BX ; "
CX j "
DX ; " "
DS ; " "
GETSDS* ;get system DS
AL,=INPUT ;get input char
CHRSAV, AL ;save for driver
BX,&RDASPH ;BX=&semaphore
SIGNAL* ; signal data avail
DS ;restore registers
DX ; " "
CX ; "
BX ; " "
AX ;

;return from int.

4-9

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Sample Driver
Using Polling

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Sample Driver
Using Polling

Here is a simple device driver for non-inter-
rupting serial input device. It illustrates
how polling is used:

MXSPH: WORD 1 ;MX semaphore
WORD MXSPH+2
WORD MXSPH+2

RDASPH: WORD 0 ;RDA semaphore
WORD RDASPH+2
WORD RDASPH+2

CHRSAV: BYTE 0 ;saved input char

;device driver main code
INPDRV::MOV BX,&MXSPH ;BX=&MXsemaphore

CALL WAIT* ;lock MX
MOV DX,&POLNOD ;DX=&pollnode
CALL LNKPOL* ;activate poll rtn
CALL POLRTN ;optional pretest
MOV BX,&RDASPH ;BX«=&semaphore
CALL WAIT* ;wait data avail
PUSH CHRSAV ;stack input char
MOV BX,&MXSPH ;BX=&MXsemaph
CALL SIGNAL* ;unlock MX
POP AX ;return AL=char
RET ;done

;device poll
POLNOD: WORD

WORD
POLRTN: IN

TEST
JZ
IN
MOV
MOV
CALL
MOV
CALL

X: RET

routine with linkage
0 ;poll rtn linkage
0
AL,=STAT ;get device status
AL,=MASK ;data available?
X ;if not, exit

AL,=DATA ;get input char
CHRSAV,AL ;save for driver
BX,&RDASPH ;BX=&semaphore
SIGNAL* ;signal data avail
BX,&POLNOD ;BX=&pollnode
UNLINK* ;unlink poll rtn

;done

4-10

TurboDOS 1.4 8086
Implementor's Guide

CODING CONVENTIONS

Inter-Process
Messages

Copyright 1984 by Software 2000, Inc,
All rights reserved.

Inter-Process
Messages

To pass messages from one process to another,
a five-word structure called a "message node"
is used. A message node consists of a three-
word semaphore followed by a two-word message
list head. Routines are provided for sending
messages to a message node (SNDMSGf), and
receiving messages from a message node
(RCVMSG*). Typically, the sending process
allocates a memory segment in which to build
the message, and the receiving process deal-
locates the segment after reading the mes-
sage. The first two words of each message
must be reserved for a list-processing link-
age. Coding is done in this manner:

;message node
MSGNOD: WORD 0 semaphore part

WORD MSGNOD+2
WORD MSGNOD+2
WORD MSGNOD+6 message list head
WORD MSGNOD+6 ; " " "

;one process allocates/builds/sends msg
BX,=12+4 ;BX=message size+4

;allocate segment
;save &segment
;build msg in seg
;DX=&segment

MOV
CALL
PUSH

•
•

POP
MOV
CALL

ALLOCf
BX

DX
BX,&MSGNOD ;BX=&msgnode
SNDMSGf ;send message

;other process reads/deallocates message
MOV BX,&MSGNOD ;BX=&msgnode
CALL RCVMSG* "—
PUSH BX

POP
CALL

BX
DEALOC#

;receive message
;save fcsegment
;process message
;BX=&segment
;deallocate seg

4-11

TurboDOS 1.4 8086
Implementot's Guide

CODING CONVENTIONS

Console Routines

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Routines TurboDOS includes several handy console I/O
subroutines which may be called from within
driver modules as illustrated:

;raw console I/O routines
CALL CONST* ;get status in AL
TEST AL/AL ;input char avail?
JZ X ;if not, exit
CALL CONIN* ;get input in AL
CALL UPRCASt ;make upper-case
MOV CL,AL ;char to CL
CALL CONOUT* ;output char in CL

;message output routines
;message must be null-terminated

CALL DMS# ;output following
MSG: BYTE "This is a test messageNO"

MOV BX,&MSG ;BX=&message
CALL DMSBX« ;output msg *BX

;binary-to-decimal output routine
MOV BX,=31416 ;BX=word value
CALL DECOUTt ;displays decimal

Sign-On Message You may add your own custom sign-on message
to TurboDOS. Your message will be displayed
at cold-start immediately following the nor-
mal TurboDOS sign-on and copyright notice.

Your sign-on message must be coded as an
ASCII character string terminated with a $
delimiter, and labelled with the public entry
symbol USRSOM. An example:

USRSOM::BYTE
BYTE
BYTE
BYTE

OxOD, OxOA
"Implementation by "
"Trigon Computer Corp."
"$"

4-12
t -a

TurboDOS 1.4 8086
Implementor'8 Guide

CODING CONVENTIONS

Resident Process

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Resident Process You can code a resident process that runs in
the background concurrent with other system
activities, and link it into TurboDOS. The
create-process subroutine CRPROC* may be
called to create such a process at cold-start
as shown:

HDWNIT::MOV
CALL

MOV
CALL

MYPROC: INC
MOV
MOV
CALL
JMP

BX,=128 ;BX=workspace size
ALLOCf ;alloc workspace

;BX=&workspace
DX,&MYPROC ;DX=&entrypoint
CRPROC* ;create process

COUNT[DI3 ;increment count
DX,=60*60 ;ticks/minute
CL,=2 ;T-function 2
OTNTRY* ;delay 1 minute
MYPROC ;loop forever

CRPROC* automatically allocates a TurboDOS
process area (address appears in register SI)
and a stack area (address appears in SP). If
the process requires a re-entrant workspace,
it should be allocated with ALLOC* and passed
to CRPROC* in BX (as shown above), and will
appear to the new process in register DI.

The resident process must make all operating
system requests by calling OCNTRYl or OTNTRY*
with a C-function or T-function number in
register CL. It jjuist not execute INT OxEO or
INT OxDF, nor make direct calls on kernel
routines such as WAIT», SIGNAL*, DELAY*,
SNDMSG», RCVMSG», ALLOCt, and DEALOC*.

4-13

TurboDOS 1.4 8086
iBiplementor' s Guide

CODING CONVENTIONS

Resident Process
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Resident Process
(Continued)

A resident process is not attached to a con-
sole, so any console I/O requests will be
ignored.

You can do file processing within a resident
process, using the normal C-funct ions open,
close, read, wr i t e , and so fo r th , called via
OCNTRY*. First , howeve r , you mus t r e m e m b e r
to warm-s t a r t wi th C-funct ion 0 (O C N T R Y *) ,
and then log-on with T-function 14 (OTNTRY*).

A resident process must always be coded to
preserve the contents of index register SI,
which Turbodos relies upon as a pointer to
its process area. The process may use all
other registers as desired.

User-Defined
Function

The user-Def ined Function (T-function 41)
provides a means of adding your own special
func t ions to the normal TurboDOS reper to i re
of C-functions and T-functions. To do this,
you simply create a func t ion processor sub-
routine with the public entrypoint symbol
USRFCN.

Whenever a p rogram invokes T-funct ion 41,
TurboDOS t ransfers control to your USRFCN
r o u t i n e . On e n t r y , E S : C X con ta ins the
address of the 128-byte record area passed
f r o m the caller 's cur ren t DMA address, and
registers BX and DX contain whatever values
the caller loaded into them. Your USRFCN
routine may return data to the caller in the
128-byte record area (address in CX at entry)
and in any of the registers AL-BX-CX-DX.

Archi tec tura l ly , your USRFCN rout ine is in-
side the TurboDOS kernel . Consequently, it
may call kernel subrout ines directly. Any
calls to C-func t ions and T-funct ions mus t
t he re fo re be made by means of two special
recursive entrypoints: XCNTRYl and XTNTRYI.

4-14

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Copyright 1984 by Software 2000, Inc.
All rights reserved.

DRIVER INTERFACE This section explains how to code hardware-
--. dependent device driver modules, and presents

formal interface specifications for each
category of driver required by TurboDOS.

Following this section is a large appendix
that contains assembler source listings of
actual driver modules. The sample drivers
cover a wide range of peripheral devices, and
provide an excellent starting point for your
driver development work.

General Notes Drivers modules are coded with standard pub-
lic entrypoint names, and linked to TurboDOS
using the TLINK command. You may package
your drivers into as many or few separate
modules as you like. In general, it is
easier to reconfigure TurboDOS for a variety
of devices if the driver for each device is
packaged as a separate module.

TurboDOS is designed to accomodate multiple
disk, console, printer, and network drivers.
For disk drivers, for instance, the DSKAST is
normally set up to refer to disk driver
entrypoints DSKDRA*, DSKDRBf, DSKDRC*, and so
forth. Each disk driver should be coded with
the public entrypoint DSKDR__. TLINK automa-
tically maps successive definitions of such
names by replacing the trailing __ by A, B, C,
etc. The same technique may be used for
console, printer, and network driver entry-
points.

You must code driver routines to preserve CS,
DS, SS, SP, SI and DI registers, but you may
use other registers as desired.

5-1

TürboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Initialization

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Initialization Hardware initialization and interrupt vector
set-up should be performed in an initializa-
tion routine labelled with the public entry
symbol HDWNIT::. TurboDOS calls this routine
during cold-start with interrupts disabled.

Your HDWNIT:: routine uui&t not enable inter-
rupts or make calls to WAITf or DELAY*. In
most cases, HDWNIT:: will contain a series of
calls to individual driver initialization
subroutines contained in other modules.

Memory Table All 8086 TurboDOS systems must include a
table that specifies the size and layout of
main memory. The table must be labelled with
the public symbol MEMTBL. It must begin with
a byte value that specifies the number of
discontiguous regions of main memory (up to
eight), followed by two words for each region
which specify the base address and length of
the segment (both in paragraphs). The first
segment in the table must be large enough to
contain the resident portion of 8086 TurboDOS
plus the dynamic workspace (given by OSMLEN).

The following example illustrates the simple
case of a system with 256K of contiguous
memory starting at zero:

MODULE "MEMTBL1 ;module ident

MEMTBL:
LOG
•t

BYTE
WORD
WORD
END

Data* ;data segment
;memory spec table

1 ;just one region
0x40 ;base (paragraph)
0x4000-0x40 jlength (para)

Note that the f i r s t 0 x 4 0 pa rag raphs (I K
bytes) a r e r e s e r v e d fo r 8086 i n t e r r u p t
vectors and must not be included in MEMTBL.

5-2

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Console Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Driver A console driver should be labelled with the
public entry symbol CONDR_. A console number
(from CONAST) is passed in register CH. The
driver must perform a console I/O operation
according to the operation code passed in
register DL:

Function,

0 Return status in AL, char in CL
1 Return input character in AL
2 Output character passed in CL
8 . Enter error-message mode
9 Exit error-message mode

10 Conditional output char in CL

If DL=0, the driver determines if a console
input character is available. If no char-
acter is available, the driver returns AL=0.
If an inpu t c h a r a c t e r is ava i l ab le , the
driver returns AL=-1 and the input character
in CL, lüLt JDiLSi H£i "consume" iiie. chaxaciei.
TurboDOS depends upon this look-ahead capa-
bility to detect at tention requests. The
d r i v e r m u s t no t d i spa tch (v ia W A I T * o r
DELAY*) when processing a DL=0 call.

If DL=1, the dr iver r e t u r n s an input char-
acter in AL (waiting if necessary).

If DL=2, the driver displays the output char-
acter passed in CL (waiting if necessary).

If DL=8, the driver prepares to display a
TurboDOS e r ro r message; if DL=9, it rever ts
to normal . TurboDOS always precedes each
e r ro r message wi th an DL=8 call and fo l lows
it w i t h an DL=9 call. This gives the dr iver
an opportuni ty to take special action (25th
l i n e , r e v e r s e v i d e o , e t c .) f o r e r r o r
messages. For simple consoles, the driver
should output CR-LF in response to DL=8 or 9.

5-3

Tu rboDOS 1.4 8086 DRIVER INTERFACE
Implementor's Guide

Console Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Console Driver If DL=10, the driver determines whether or
(Continued) not it can accept a console output character

without dispatching (via WAIT* or DELAY#).
If so, it outputs the character passed in CL,
and returns AL=-1 to indicate that the char-
acter was accepted. However, if the driver

""* cannot accept a console output character
without dispatching, it returns AL=0 to
indicate that the character was not accepted;
TurboDOS will then make an DL=2 call to
output the same character. This special
conditional output call is used by TurboDOS
to optimize console output speed by avoiding
certain dispatch-related overhead whenever
possible.

You should make a special effort to code the
console driver to execute the minimum number
of instructions possible, especially func-
tions 0, 2, and 10. Excessive use of subrou-
tine calls, stack operations, and other time-
consuming coding techniques can make the
difference between running the console device
at full rated speed or something less. Study
the sample driver listings in the appendix
with this in mind.

5-4

TurboDOS 1.4 8086
Implementor'8 Guide

DRIVER INTERFACE

Printer Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Printer Driver A printer driver should be labelled with the
public entry symbol LSTDR_. A printer number
(from PTRAST) is passed in register CH. The
driver must perform a printer output opera-
tion according to the operation code passed
in register DL:

DL= function.

2 Print character passed in CL
7 Perform end-of-print-job action

If DL=2, the driver prints the output charac-
ter passed in CL (waiting if necessary).

If DL=7, the dr iver takes any appropriate
e n d - o f - p r i n t - j o b ac t ion . This is qu i t e
hardware-dependent, and may include slewing
to t o p - o f - f o r m , h o m i n g the pr int head,
dropping the ribbon, and so forth.

5-5

TurboDOS 1.4 8086
Implementoc'8 Guide

DRIVER INTERFACE

Disk Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Disk Driver A disk driver should be labelled with the
public entry symbol DSKDR_. The driver per-
forms the physical disk operation specified
by the Physical Disk Request (PDR) packet
whose address is passed by TurboDOS in index
register SI. The structure of the PDR packet
is:

- Of f ßet-J-._- _ Contents

;physical disk request (PDR) packet
OtSI]
ItSIl
2ISI1
4ISI1
6ISI]
8[SI]

10ISI1
12ISI]
14ISI1
»•copy
161SI1
17ISI1
19ISI1
20ISI1
21ISI1
23ISI1
251SI1

BYTE
BYTE
WORD
WORD
WORD
WORD
WORD
WORD
WORD

of disk
BYTE
WORD
BYTE
BYTE
WORD
WORD
WORD

OPCODE
DRIVE
TRACK
SECTOR
SECCNT
BYTCNT
DMAOFF
DMABAS
DSTADR
specif
BLKSIZ
NMBLKS
NMBDIR
SECSIZ
SECTRK
TRKDSK
RESTRK

;operation code
;drive (base 0)
;track (base 0)
;sector (base 0)
;f sectors to rd/wr
;#bytes to rd/wr
;DMA offs to rd/wr
;DMA base to rd/wr
;DST address

ication table (DST)
;block size (3-7)
;#blocks on disk
;*directory blocks
;sector size (0-7)
; sectors per track
;tracks on disk
»•reserved tracks

The operation to be performed by the driver
is specified in the first byte of the PDR
packet (OPCODE) as follows:

OPCODE

0
1
2
3
4

1 FUnCt iOJL

Read sectors from disk
Write sectors to disk
Determine disk type, return DST
Determine if drive is ready
Format track on disk *,*

5-6

TurboDOS 1.4 8086 DRIVER INTERFACE
Implementor's Guide

Disk Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Disk Driver If OPCODE=0, the driver reads SECCNT physical
(Continued) sectors (or equivalently, BYTCNT bytes) into

DMAOFF/DMABAS, s tart ing at TRACK and SECTOR
on DRIVE. The driver re turns AL=0 if the
opera t ion is succe s s fu l , or AL=-1 if an
unrecoverable er ror occurs. TurboDOS may
request multiple consecutive sectors to be
read, but will never request an operation
that extends past the end of the track.

If OPCODE=1, the driver writes SECCNT physi-
c a l s e c t o r s (o r B Y T C N T b y t e s) f r o m
DMAOFF/DMABAS, starting at TRACK and SECTOR
on DRIVE. The driver re turns AL=0 if the
opera t ion is s u c c e s s f u l , or AL=-1 if an
unrecoverable e r ror occurs. TurboDOS may
request multiple consecutive sectors to be
written, but will never request an operation
that extends past the end of the track.

If OPCODE=2, the driver must de te rmine the
type of d i sk m o u n t e d in D R I V E , and m u s t
r e t u r n , in the DSTADR f i e l d of the PDR
packet, the address of an 11-byte disk speci-
fication table (DST) structured as follows:

1 Off sei J
1
1 0
1 1-2
1 3
1 4
1 5-6
1 7-8
1 9-10
1

DfiÄcriptirm 1
1

block size (3=1K,4=2K,. . . ,7=16K) 1
total number of blocks on disk 1
number of directory blocks 1
sector size (0=128, ... ,7=16K) 1
number of sectors per track 1
number of tracks on the disk 1
number of reserved (boot) tracks 1

The f i rs t byte of the DST (B L K S I Z) specifies
the allocation block size in bits 2-0. In
addition, bit 7 is set if the disk is f ixed
(non-removable) , and bit 6 is set if file
extents are limited to 16K (E X M = 0) .

5-7

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Disk Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Disk Driver
(Continued)

The driver returns AL=-1 if the operation is
successful, or AL=0 if the drive is not ready
or the disk type is unrecognizable. On suc-
cessful return, TurboDOS moves a copy of the
DST into 16ISI] through 26fSI], where it is
available for subsequent operations.

If OPCODE=3, the driver determines whether
DRIVE is ready, and returns AL=-1 if it is
ready or AL=0 if not.

If OPCODE=4, the driver formats (initializes)
TRACK on DRIVE, using hardware-dependent
formatting information at DMAOFF/DMABAS (put
there by the FORMAT command). The driver
returns AL=0 if successful, or AL=-1 if an
unrecoverable error occurs.

5-8

TurboDOS 1.4 8086 DRIVER INTERFACE
Implementoc's Guide

Network Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver A network circuit driver should be labelled
with the public entry symbol CKTDR_. A mes-
sage buffer address is passed in register DX.
The driver must either send or receive a
network message, according to the operation
code passed in register CL:

1 . CL=
1
1 0
1 1
1

1 runcii£>n_

Receive message into buffer
Send message from buffer at

at DX
DX

If CL=0, the driver receives a network mes-
sage into the message buffer whose address is
passed in DX (waiting if necessary). If a
message is received successfully, the driver
returns AL=0. If an unrecoverable malfunc-
tion of any remote processor is detected, the
driver returns AL=-1 with the network address
of the crashed processor in DX.

If CL=1, the driver sends a network message
from the message buffer whose address is
passed in DX. If the message is sent suc-
cessfully, the driver returns AL=0. If the
message could not be sent because of an unre-
coverable malfunction of the destination
processor, the driver returns AL=-1 with the
network address of the crashed processor in
DX.

The structure of a network message buffer is
shown on the next page. The first two words
of the buffer are reserved for a linkage used
by TurboDOS, and should be ignored by the
driver. The 11-byte message header and
variable-length message body should be sent
or received over the circuit. The driver
needs to look at only the first two header
fields (MSGLEN and MSGDID) and possibly the
last field (MSGFCD).

5-9

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Network Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver
(Continued) ; message buffer format

WORD ? ;linkage (ignored)
WORD ? ; " "

; 11-byte message header
BYTE MSGLEN
WORD
BYTE
WORD
WORD
BYTE
BYTE
BYTE

MSGDID
MSGPID
MSGSID
MSGOID
MSGOPR
MSGLVL
MSGFCDJ-/ J, +. ±t A * h/W *• Ni» *̂

; variable-length body
ripe" 1RES
RES
RES
RES

7
1
37
128

;msg length
;destination addr
/process id
;source addr
;originator addr
;orig'r process id
;forwarding level
;msg format code

/registers
;user # and flags
/optional FCB data
/optional record

The message format code field MSGFCD contains
bit-encoded flags that define the format and
context of each network message. This field
may be ignored by most simple drivers, but
its contents may be useful in complex network
environments. Encoding of MSGFCD is:

Bit

0
1
2
3
4
5
6
7

J Meaning

first message of session
last message of session
continuation message follows
request includes FCB data
request includes record data
reply includes FCB data
reply includes record data
this is a reply message

.1 '

5-10

TurboDOS 1.4 8086 DRIVER INTERFACE
Implementor's Guide

Network Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver The length field MSGLEN represents the number
(Continued) of bytes in the message, including the header

and body (but exc lud ing the l inkage) . On a
receive request (C L = 0) , TurboDOS presets
MSGLEN to the m a x i m u m allowable message
length, and expects MSGLEN to contain the
actual message length on re turn. On a send
request (CL=1) , TurboDOS presets MSGLEN to
the actual length of the message to be sent.

In a master/slave network, it is often desir-
able for the circuit driver in the master to
periodically "poll" the slave processors on
the circuit to detect any slave malfunctions
q u i c k l y and to e f f e c t r ecove ry . I f the
dr iver reports that a slave has crashed (by
returning AL=-1 and DX=network-address), then
the circuit dr iver must not accept any fu r -
ther messages f rom that slave until TurboDOS
has completed its recovery process.

TurboDOS signals the driver that such recov-
ery is complete by sending a d u m m y message
destined for the slave in quest ion wi th a
length of zero. The d r ive r should not actu-
ally send such a message to the slave, but
could initiate whatever action is appropriate
to reset the slave and download a new copy of
the slave operating system.

A slave mus t request an opera t ing system
download by sending a special download re-
quest message to the master (usually done by
a boots t rap rou t ine) . The download request
message consists of a standard 11-byte header
(with MSGPID, MSGOID and MSGFCD zeroed) fol-
lowed by a 1-byte body containing a "download
s u f f i x " character . The master processor
addressed by MSGDID will return a reply mes-
sage whose 128-byte body is the first record
of the download file OSSLAVEx.SYS (where "x"
is the specified download su f f i x) .

5-11

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Network Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Network Driver
(Continued)

The slave continues to send download request
messages and to receive successive download
records until it receives a short reply mes-
sage (1-byte body) signifying end-of-file.
The single byte passed as the body of the
final short message identifies the system
disk, and should be passed to the system in
register AL.

The entire failure detection, failure recov-
ery, and slave downloading procedure is very
hardware-dependent. Study the driver listing
in the appendix for guidance.

5-12

TurboDOS 1.4 8086
Implementier' s Guide

DRIVER INTERFACE

Comm Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Comm Driver The comm driver supports the TurboDOS commu-
nications extensions (T-functions 34-40), and
may be omitted if these functions are not
used. The driver should be labelled with the
public entry symbol COMDRV. A comm channel
number is passed in register CH. The driver
must perform an I/O operation according to
the operation code passed in register DL:

Function.

0 Return input status in AL
1 Return input character in AL
2 Output character passed in CL
3 Set channel baud rate from CL
4 Return channel baud rate in AL
5 Set modem controls from CL
6 Return modem status in AL

If DL=0, the driver determines if an input
character is available. If one is available,
the driver returns AL=-1, otherwise AL=0.

If DL=1, the driver returns an input char-
acter in AL (waiting if necessary).

If DL=2, the driver outputs the character
passed in CL.

If DL=3, the driver sets the channel baud
rate according to the baud-rate code passed
in CL. If DL=4, the driver returns the
channel baud-rate code in AL. See T-func-
tions 37 and 38 in the BOB6 £jLß5JLäJDJB£JLLs
Guide for baud-rate code definitions.

If DL=5, the driver sets the modem controls
according to the bit-vector passed in CL. If
DL=6, the driver returns the modem status
vector in AL. See T-functions 39 and 40 in
the .8JL8JL Programmer^ Guide for bit-vector
definitions.

5-13

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Clock Driver

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Clock Driver The real-time clock driver does not take the
form of a subroutine called by TurboDOS/ as
do the other drivers described in this sec-
tion. Rather, the clock driver generally
consists of an interrupt service routine
which responds to interrupts from a periodic
interrupt source (preferably 50 to 60 times a
second). The interrupt service routine
should call DLYTIC* once per system tick (to
synchronize DELAY* requests). It should also
call RTCSEC* once per second (that is, every
50 to 60 ticks) to update the system time and
date. Finally, it should exit by jumping to
ISRXIT* to provide a periodic dispatcher
time-slice. Excluding initialization code, a
typical clock driver might be coded thus:

RTCCNT :
RTCISR:

X:

BYTE
PUSH
PUSH
PUSH
PUSH
PUSH
CALL
CALL
DEC
JNZ
MOV
CALL
MOV
MOV
OUT
POP
POP
POP
POP
POP
JMP

60
AX
BX
CX
DX
DS
GETSDS*
DLYTICt
RTCCNT
. X
RTCCNT, =
RTCSEC*
DX,&EOIR
AX,=INTN
DX,AX
DS
DX
CX
BX
AX
ISRXIT»

;divide-by-60 cntr
;save registers
. n n
/
. n n
,
. n H
,
. n n

;get system DS
; signal one tick
;decrement counter
;not 60 ticks yet

60 ; reset counter
; signal one second
;DX=&end-of-int
;AX=interrupt#
;reset interrupt
;restore registers
. n n
,

; "
. « W

;
;go to dispatcher

#
'f

I

' •»''
-•.*-

1

5*

5-14

TurboDOS 1.4 8086
Implementor's Guide

DRIVER INTERFACE

Clock Driver
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Clock Driver
(Continued)

If the hardware is capable of determining the
date and time-of-day at cold-start (by means
of a battery-powered clock, for example), the
clock driver may initialize the following
public symbols in the RTCMGR module:

SECS:: BYTE 0
MINS:: BYTE 0
HOURS:: BYTE 0
JDATE:: WORD 0x8001

;seconds 0-59
;minutes 0-59
;hours 0-24
;Julian date
;base 31-Dec-47

5-15

TurboDOS 1.4 8086 DRIVER INTERFACE
Implementor's Guide

Bootstrap

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Bootstrap The bootstrap is usually contained in a ROM
or on a boot track. Its function is to
search all disk drives for the TurboDOS
loader program OSLOAD.CMD, and to load and
execute it if found. To generate a boot-

— strap, use TLINK to combine the standard
bootstrap module OSBOOT.O with your own
hardware-dependent driver. Your driver must
define the following public names: INIT,
SELECT, READ, XFER, CODE, and DATA.

INIT:: is called once to perform any required
hardware initialization. It returns with
register AX set to the paragraph address of
the load base (where the file OSLOAD.CMD
should be loaded into memory by the boot-
strap). This address should be chosen so
that OSLOAD will not overlay the bootstrap or
the operating system to be loaded.

SELECT:: is called to select the disk drive
passed in AL (0-15). If the selected drive
is not ready or non-existent, it returns
AL=0. Otherwise, it returns AL=-1 and the
address of an 11-byte disk specification
table (DST) in register SI (see page 5-7).

READ:: is called to read one physical sector
from the last-selected drive. The track is
passed in CX, the sector in DX, the DMA
offset in BX, and the DMA base in ES. It
must return AL=0 if successful, or AL=-1 if
an unrecoverable error occurred.

XFER:: is transferred to at the end of the
bootstrap process. In most cases, this
routine must set register DS to the base
paragraph address of the loader (normally the
load base returned by INIT:: plus 8 to allow
for the .CMD header), set location DS:0080 to
zero (to simulate a null command tail) , and
jump to the loader (using a JMPF to set CS=DS
and IP=OxlOO).

5-16

TurboDOS 1.4 8086 DRIVER INTERFACE
Implementor's Guide

Bootstrap
(Continued)

Copyright 1984 by Software 2000, Inc.
All rights reserved.

Bootstrap CODE:: defines the base paragraph (CS value)
(Continued) under which the bootstrap itself is to be

executed. OSBOOT loads this value into
register CS before calling INIT::, SELECT::,
READ:: or XFER::.

DATA:: defines the base paragraph (DS value)
of a 128-byte RAM area that OSBOOT may use
for working storage. (It should not be
located where OSLOAD.CMD will be loadedl)
OSBOOT loads this value into register DS
before calling INIT::, SELECT::, READ:: or
XFER::.

5-17

TurboDOS 1.4 8086 DRIVER INTERFACE
Implementor's Guide

Copyright 1984 by Software 2000, Inc.
All rights reserved.

(Intentionally left blank.)

5-18

f?
4.

TurboDOS 1.4 8086
Implementor's Guide

OTOASM Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

OTOASM Command

Syntax

Explanation

Some TurboDOS implementations require that a
Z80 master processor download 8086-family
slave processors. In w r i t i n g the ne twork
circuit driver for the Z80 master processor,
it is of ten necessary to embed a download
bootstrap routine written in 8086 code. The
utili ty program OTOASM.CMD is designed to
simplify this process.

OTOASM converts an 8086 object file (type .0)
produced by TASM into a Z80 source file (type
.ASM) acceptable to either the PASM or M80
assemblers . The o u t p u t f i l e conta ins a
sequence of data definition statements (.BYTE
and .WORD, or DB and DW) represent ing 8086
machine-language.

OTOASM filename {-M}
I. .1

The "filename" argument must not have an
explicit type, and specifies the name of both
the input file "filename.0" and the output
file "filename.ASM" to be used. The "-M"
option causes the output to be formatted for
the M80 assembler rather than the PASM assem-
bler.

The input file (type .0) must not contain any
relocatable tokens. Consequently, the 8086
source module (type .A) must define only
absolute location counter values (LOG) and
must make no external references (# suffix).
Public symbols may be defined as long as they
do not have relocatable values.

A-l

TurboDOS 1.4 8086
Implementor's Guide

OTOASM Command

Copyright 1984 by Software 2000, Inc.
All rights reserved.

(Intentionally left blank.)

A-2

TurboDOS 1.4 8086
Implementor's Guide

SAMPLE DRIVER
SOURCE LISTINGS

Copyright 1984 by Software 2000, Inc.
All rights reserved.

SAMPLE DRIVER
SOURCE LISTINGS

The remainder of this document consists of
assembler source listings of actual drivers.
The l i s t ings c o m p r i s e the d r i v e r s for a
working TurboDOS system for the IBM Personal
Computer with 256K of RAM.

The listings appear in the following order:

- Module. J .

DREQUATE
MPBIPC
NITIPC
CONIPC
LSTPPA
LSTACA
RTCIPC
DSKIPC
MSTIPC

1

common
IBM PC
IBM PC
IBM PC
IBM PC
IBM PC
IBM PC
IBM PC
IBM PC

DfiÄCriptißJL - - - - - - - 1
1

symbolic equates 1
bootstrap driver 1
driver initialization 1
TTY-mode console driver 1
parallel printer driver 1
serial printer driver 1
real-time clock driver i
floppy disk driver
memory spec table (256K)
.. 1

Network circuit drivers will be furnished in
the next edition of this document. In the
meantime, refer to the 2&Q. ImplementoxJg
Guide for circuit driver examples.

B-l

TurboDOS 1.4 8086 SAMPLE DRIVER
Iroplementor's Guide SOURCE LISTINGS

Copyright 1984 by Software 2000, Inc.
All rights reserved.

-,Jote: Sample source listings are available upon request.

(Intentionally left blank.)

B-2

