
go]
DIGITAL

RESEARCH

Access Manager™
Productivity Tool

Reference Manual

Copyright © 1983

All Rights Reserved

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

Access Manager™
Productivity Tool

Reference Manual

COPYRIGHT

DISCLAIMER

TRADEMARKS

The Access Manager Reference Manual was prepared
using the Digital Research TEX Text Formatter and
printed in the United States of America.

CBASIC and CP/M are registered trademarks of Digital
Research. Access Manager, CB80, CB86, MP/M,
Pascal/MT+, Pascal/MT+86, PL/I-80, and PL/I-86 are
trademarks of Digital Research. Z80 is a registered
trademark of Zilog, Inc.

* First Edition: March 1983 *********************************

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

Foreword

is a general purpose, keyed, file accessing

Access Manager Documentation Set

the CP/M Family offor

iii

• Access Manager Programmer's Guide for the CP/M-86 Family of
Operating Systems.

This manual describes Access
productivity tool from Digital Research.

The Access Manager hardware environment must include an 8080,
8085, 8088, 8086, or Z80® microprocessor, at least 48K bytes of
Random Access Memory (RAM), at least one random access secondary
storage device such as a floppy or hard disk drive, and a console.

Manager, a programming
It is important that you

understand how this manual is organized and what it contains for it
to serve you well.

Access Manager™
package for 8080 or 8086 compatible microprocessors which run under
CP/M® or MP/M™ operating systems. It is designed for programmers
creating application packages that must access data records on the
basis of identifying key values, such as a name or a number.

There are three manuals in this documentation set. The first
is the Access Manager Reference Manual. Contained here are
descriptions of the product, instructions for using it, and numerous
examples of how it can be applied in your application programs.

Access Manager is a set of routines called from programs
written in CB80™ , CB86™ , PL/I-80™ , PL/I-86™ , Pascal/MT+™ , and
Pascal/MT+86™ ; Access Manager is not a stand-alone data base
management system. The routines require approximately 5K to 11K
excluding buffer areas. In a multiple-user environment, Access
Manager requires a separate memory segment of at least 20K bytes, a
minimum of three pages (768 bytes) of common memory for special
Access Manager queues, and 2K bytes of memory in each user’s memory
segment. Up to eight users can share Access Manager under MP/M if
there is enough queue space.

Here you will find information for using Access Manager with a
specific operating system and programming language. Your
Programmer’s Guide also contains facts concerning basic requirements
and design constraints for Access Manager. Finally, there are

The second manual is the Access Manager Programmer’s Guide for
either the 8080 or 8086 implementations. Your set contains one of
the following:

• Access Manager Programmer’s Guide
Operating Systems.

As you

Prerequisites

Massachusetts:

New York, New York: McGraw-

How to Use this Documentation

arranged

Conventions Used in this Documentation

iv

several examples showing how to organize your application program
for the various languages that are supported.

Your Access Manager documentation contains several forms of
indexing to help you find information quickly and efficiently.

• Your Reference Manual and Programmer's Guide each contain a
Table of Contents and subject index.

Take a few moments to understand how the indexing facilities
are constructed in this manual, and you will be able to find the
information you need when you need it.

These manuals assume you are knowledgeable about keyed file
accessing methods. If you are not familiar with these methods, the
following reading is recommended:

• Appendix A of your Reference Manual contains a function index.
All the functions you can perform with Access Manager are
listed alphabetically and cross-referenced to the mnemonic
function name.

The third manual in
Manager Function Summary.

• The function descriptions in Section 3 are
alphabetically by their mnemonic function names.

WiederhoId, G. Database Design.
Hill Book Company, 1977.

your documentation set is the Access
_______________________ The summary is a compact, abbreviated
version of information you need when using Access Manager.
become familiar with the Access Manager functions, you will rely
less on your Reference Manual and Programmer's Guide and more on the
Function Summary.

Knuth, D.E. The Art of Computer Programming. Vol. 3, Sorting
and Searching. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1973.

Access Manager is designed for use in two distinct
environments: single-user and multiple-user. A single-user
environment consists of a single microcomputer, a single terminal,
and one person to operate them. A multiple-user environment (which
we hereafter shorten to multiuser), consists of a single
microcomputer, two or more terminals, and two or more people
simultaneously running programs on the computer.

V

With a few exceptions, the rules for using Access Manager are
the same in single-user and multiuser environments. When a
distinction is necessary in the procedure, the text is preceded by
[SINGLE] or [MULTI], whichever is applicable.

Hexadecimal values are noted by the letter H appended to the
number. For example, 20H represents a hexadecimal value of 20; OFFH
represents hexadecimal FF.

All examples shown in your Access Manager Reference Manual are
coded in CBASIC® Compiler language. Similarities to PL/I and
Pascal/MT+ should be apparent as the logic is the same in all cases.

Table of Contents

Product Description1
1-1What is Access Manager? 1.1
1-1Access Manager Architecture 1.2

1-3Access Manager Benefits1.3

1-4Concepts and Facilities 1.4
1.4.1

1.4.4
1-8Application Program Structure 1.5

Function Parameters2
2-12.1 Parameter Types

2-2Parameter Descriptions 2.2

vii

1.3.1
1.3.2
1.3.3

1.4.2
1.4.3

2.1.1
2.1.2
2.1.3

Simplified Programming
Fast Data Retrieval .Language Portability

Two-byte Integers
Character Strings
Pointers

1-1
1-2
1-2
1-2
1-2
1-2
1-2

1-4
1-4
1-4
1-5
1-5
1-7
1-7
1-8
1-8

1-3
1-3
1-4

2-1
2-1
2-2

1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7

System Initialization and Maintenance . .
Index File Setup and Maintenance
Index File Updates
Index File Searches
Data File Setup and Maintenance
Data File Updates
Data File and Record Locking

File Structures . . .
Data Files
Data Records
Index Files
B-Tree Index Structure
Data Locking
Data Record Locks . .
Data File Locks . . .
File Recreation . . .

Table of Contents
(continued)

Function Descriptions3
ADDKEY Function 3-3

AFTKEY Function 3-14
BEFKEY Function 3-20

3-23CLSDAT Function
3-25CLSIDX Function
3-27DATVAL Function
3-28DELKEY Function
3-31ERADAT Function
3-33ERAIDX Function

ERRCOD Function 3-35
FRELOK Function 3-36

3-38FRSKEY Function
GETDFS Function 3-40
GETDFU Function 3-42
GETKEY Function 3-44
INTUSR Function 3-46

3-49LASKEY Function
LOKCOD Function 3-51

3-52NEWREC Function
NMNODS Function 3-54
NOKEYS Function 3-56
NXTKEY Function 3-58

viii

3-5
3-5
3-6
3-9

Key Value Padding . . .
Duplicate Key Values . .
Coding Numeric Key Values
Large Data Files

3-61OPNDAT Function

3-66OPNIDX Function
3-72OPRDAT Function
3-74OPRIDX Function
3-76PRVKEY Function
3-78READAT Function
3-80RETREC Function
3-83SAVDAT Function
3-85SAVIDX Function
3-87SERKEY Function
3-90SETDAT Function
3-91SETLOK Function
3-94SETUP Function
3-96UPDPTR Function
3-98WRTDAT Function

4 Access Manager Error Codes
4.1 4-1Error Types

RECREATE Utility Program5
4-15.1 Recreate Parameter File
4-45.2 Data File Recreation
4-5Index File Recreation 5.3
4-55.4 Recreate Messages

A-lAccess Manager Function Index A
ix

4.1.1
4.1.2

Internal Consistency Errors
User Errors

Table of Contents
(continued)

4-1
4-1

Tables, Figures, and Listings

Tables

4-1. Access Manager User Error Codes 4-2
Recreate Parameter File Record Contents5-1. 5-2

A-l. Access Manager Functions A-l

x

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9

2-1
2-2

Access Manager Parameters
Parameter Use Table . .

2-2
2-6
3-4
3-8

3-13
3-15
3-21
3-24
3-26
3-29
3-30
3-32
3-34

 3-37
3-37
3-39
3-40
3-42
3-45
3-47
3-50
3-53
3-54
3-56
3-59
3-65
3-71
3-72
3-75
3-77
3-79
3-81
3-82
3-84
3-86
3-88

 3-92
3-93
3-95
3-97
3-97
3-99

ADDKEY Function Values
Constant Values
ADDKEY Error Codes
AFTKEY Error Codes
BEFKEY Error Codes
CLSDAT Error Codes
CLSIDX Error Codes
DELKEY Function Values
DELKEY Error Codes

3-10. ERADAT Error Codes
3-11. ERAIDX Error Codes
3-12. Data File/Record Lock Release Request
3-13. FRELOK Error Codes
3-14. FRSKEY Error Codes
3-15. GETDFS Error Codes
3-16. GETDFU Error Codes
3-17. GETKEY Error Codes
3-18. INTUSR Error Codes
3-19. LASKEY Error Codes
3-20. NEWREC Error Codes
3-21. NMNODS Error Codes
3-22. NOKEYS Error Codes
3-23. NXTKEY Error Codes
3-24. OPNDAT Error Codes
3-25. OPNIDX Error Codes
3-26. OPRDAT Error Codes
3-27. OPRIDX Error Codes
3-28. PRVKEY Error Codes
3-29. READAT Error Codes
3-30. Contents of Deleted Data Record . .
3-31. RETREC Error Codes
3-32. SAVDAT Error Codes
3-33. SAVIDX Error Codes
3-34. SERKEY Error Codes
3-35. Data File/Data Record Lock Requests
3-36. SETLOK Error Codes
3-37. SETUP Error Codes
3-38. UPDRTR Function Values
3-39. UPDPTR Error Codes
3-40. WRTDAT Error Codes

Tables, Figures, and Listings (continued)

Figures

Listings

xi

5-3
5-4

1-1.
1-2.
1-3.

3-1.
3-2.

5-1.
5-2.

3-1.
3-2.
3-3.

B+ Tree Structural Diagram
Single-user Program Flow .
Multiuser Program Flow . .
Access Manager Functions by Category . . .
Sample Data File Layout for 32-byte Records
Recreate Parameter File Record Ordering
Example Recreate Parameter File . . .

AFTKEY Function Program Code
NXTKEY Function Program Code
OPNIDX Function Program Code

3-16
3-60
3-69

1-6
1-9

1-10
3-2

3-64

1.1 What is Access Manager?

1.2 Access Manager Architecture

1.2.1 System Initialization and Maintenance

1-1

Section 1
Product Description

Access Manager functions are categorized into the following
groups:

• System Initialization and Maintenance
• Index File Setup and Maintenance
• Index File Updates
• Index File Search
• Data File Setup and Maintenance
• Data File Updates
• Data File and Record Locking

Access Manager is a general purpose, keyed, file accessing
method for microcomputers. It is designed for use with application
programs that need to access data records based on identifying key
values, such as a name or a number.

The librarian prepares the card index in the public library
based on specific subject matter, with Access Manager you decide how
to index the information in your computer files.

Access Manager is comprised of several different functions that
you can call from your application program. These functions are
categorized according to basic purpose. This categorization has no
effect on how you use Access Manager, but does help explain its
logical structure.

These are commonly known as housekeeping functions. They
prepare Access Manager to work with your application program by
indicating how you want to handle errors, how many data files will
be used by the program, and more. Normally, your program will only
use these functions at the beginning.

Think about your public library for a moment. There is a
staggering volume of information located there. Yet, the card
indexes make it possible to find specific information quickly and
easily. Access Manager is something like the card index files in
the public library. But, Access Manager provides a way to find
specific information on computer disks rather than between the
covers of a book.

Access Manager ArchitectureAccess Manager Reference Manual 1.2

Index File Setup and Maintenance1.2.2

1.2.3 Index File Updates

1.2.4 Index File Searches

Data File Setup and Maintenance1.2.5

1.2.6 Data File Updates

1.2.7 Data File and Record Locking

1-2

index files for use by Access
They are used to open a file,
There are also functions for

In multiuser environments, it is often necessary to protect
information in a data file to prevent its use at critical times;
such as while a customer’s balance is being updated. There are
Access Manager functions to prevent anyone from using a data file or
data record at these critical points.

You can use these functions to make actual changes in a data
file. For example, there is a function to read a record from the
file and another to write a record into it.

These functions ready a data file for use by Access Manager and
your application program. For example, they can be used to open a
data file, close it, or save updates made to it at critical points
in your program. There are also functions to aid in counting the
entries (or records) in a data file or to erase it when necessary.

These functions ready your
Manager and your application program,
close it, or save updates made to it.
determining the size of the file and erasing it when desired.

To locate a data record in a data file, you must first find its
corresponding entry in the matching index file. Index File Search
functions help you find the index file entry. They can be used to
find specific entries in the index or entries relative to some other
value. For example, with these functions you can find the first
entry in an index, the last entry, a specific entry, an entry that
is greater or less than one you specify, and more.

Update functions are used to add information to or remove it
from an index file. You can also change the information the index
uses to point to its associated data records. These pointers are
called data record numbers.

Access Manager Reference Manual 1.2 Access Manager Architecture

1.3 Access Manager Benefits
Here are

1.3.1 Simplified Programming

1.3.2 Fast Data Retrieval

1-3

The wide variety of Access Manager functions provides you with
simple methods to accomplish the following:

• simplified programming
• fast data retrieval
• language portability

will
are

from a
speed.

There are numerous benefits to using Access Manager,
just a few:

• create and/or maintain data files.
• create and/or maintain indexes for your data files.
• retrieve information from your data files.
• protect the integrity of your data files when they are being

used simultaneously by two or more people.

can be
Access

Furthermore, you
developed faster and
Manager is used.

Standardizing access methods for keyed data files across
single-user and multiuser environments can be a complex programming
task. This is further complicated by the variety of programming
languages in use. Access Manager overcomes these complications by
being readily compatible with various operating system environments
and most program languages.

find application programs
much less prone to error when

Most keyed access methods for retrieving information
data file are slow compared to the computer’s processing
Consequently, many otherwise efficient application programs slow to
a snail’s pace when retrieving information under these conditions.
Access Manager overcomes this problem with its unique indexing
structure. The structure (known as a B-Tree and described later in
this section) minimizes the number of times an index file has to be
read to locate a data record. Under typical circumstances, Access
Manager can locate a specific record in a file of one-half million
records with a maximum of four disk accesses. This is not only
fast, it is efficient use of your hardware.

Access Manager Benefits1.3Access Manager Reference Manual

Language Portability1.3.3

Concepts and Facilities1.4

1.4.1 File Structures

Data Files

the same length.

Data Records

1-4

Access Manager provides the necessary functions to create and
manage index files and data files on secondary storage devices, such
as floppy or hard disks.

Access Manager uses the following concepts and facilities to
efficiently create, index, share, and recreate your index and data
files:

• file structures
• B-Tree structures
• data locking
• file recreation

Every record in a data file used with Access Manager must be
That is, every record must contain the same number

of bytes, and the record length must be at least four bytes.

Unlike data base systems, Access Manager treats a data record
single entity, not a collection of fields. This means your

implication program must parse each data record into the required

With Access Manager you can reduce disk accesses by properly
allocating disk buffers. Each buffer holds an index file record and
is shared by all the index files. A least-recently-used priority
scheme manages the assignment of index records to buffers. Of
course, Access Manager checks to see if the required index record is
in a buffer before needlessly accessing the disk.

as a single entity, not a collection of fields. This means your
application program must parse each data record into the required
fields when necessary. One or more fields in a data record can be
used as the key to that particular record. Normally, the key is a
name, number, or other value uniquely identifying the contents of
the data record.

Access Manager can be used with a variety of programming
languages. And because the functions are standardized, application
programs written in different languages are able to access a common
data base. For example, in a multiuser environment, one user can be
accessing the data base via an application program written in PL/I-
80, another user accesses the same data base through a Pascal/MT+
program, and yet another via a CBASIC program.

Concepts and FacilitiesAccess Manager Reference Manual 1.4

Index Files

1.4.2 B-Tree Index Structure
Under

To locate

1) Access the root node.
2)

3)

4)

1-5

Access Manager’s separate index
flexibility in your program design,
files can reference one data file,
referenced without a companion data file,
data files, one index file can reference many volumes,
this flexibility leaves you with the responsibility for maintaining
consistency between your index and data files.

and data files permit
For example, several index
or an index file can be

For exceptionally large
However,

A B-Tree is a height-balanced, multiway tree structure,
this structure, the tree is inverted with the root at the top and
the nodes at the bottom. Access Manager uses a variant of the B-
Tree structure known as a B+ Tree where all key values are stored at
the bottommost level of the tree.

180 is greater than 178, so the right branch is taken to
access node 4.

Figure 1-1 shows part of a simple B+ Tree structure.
the data record with a key value of 180, the following steps are
taken:

Because 180 lies between 150 and 270, the middle branch is
taken to access node 12.

Access Manager assumes nothing about the relationships between
index and data files. Your application program must interpret the
contents of the index files and how, if at all, they relate to the
data files. Because Access Manager does not explicitly link index
and data files, you can create key values in any way that suits your
application.

Index and data file concepts used by Access Manager are
discussed in detail under the ADDKEY function description in Section
3.

Index files contain the key value for each record and its
assigned data record number. With just a key value, the index files
make it possible for an application program to locate the associated
data record (even allowing for duplicate keys) without a lengthy
search of the data file. Access Manager creates index files using a
height-balanced, multiway tree structure known as a B-Tree. This
index structure guarantees the least number of disk accesses to
search an index file. Besides being speedy, B-Trees eliminate the
need to reorganize the index files.

Because a match is found in node 4, the data record
corresponding to key value 180 is record number 9 in the
data file.

Concepts and Facilities1.4Access Manager Reference Manual

270 — II —

±±

I
180*269

23 44

J
AN 092

B+ Tree Structural DiagramFigure 1-1.

1-6

I
data record numbers

 0 HH H

Consider these key points regarding Access Manager's index
structures:

Node 14
• 23* 88* 142*

Node 1
(Leaf)

• 150* 158
Node 5
(Leaf)

• 161 *162 *175

Node 12
• 160* 178

Node 15
(Root)

150

Node 3
• 296 •330* 381 •

Node 4
(Leaf)

• 178

• In a multiway tree structure, many branches can emanate from
each node of the tree. By comparison, in a binary tree there
are at most two branches from each node. The advantage of
additional branches is the height of the tree decreases as the
number of branches per node increases; and the height of the
tree determines the maximum number of disk accesses to search
the tree.

1.4 Concepts and FacilitiesAccess Manager Reference Manual

thestructures,

Data Locking1.4.3

1-7

are made automatically,
remain efficient.

• Placing all key values in the leaf nodes speeds and simplifies
sequential key value accesses because Access Manager links the
nodes in both ascending and descending key value order.

root
A height-

Knuth, D.E. The Art of Computer Programming. Vol. 3, Sorting
and Searching, 451-479. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1973.

If you want further information on B-Tree
following reading material is recommended:

For example, if Access Manager is set up with 512-byte nodes,
and the length of the key values is ten bytes, up to 34 key
values can be stored in each node. This ensures that a tree
structure with no more than four levels can store 192,780 key
values under worst case conditions. By contrast, the same
number of key values in a binary tree would require 18 levels.

To ensure that data files maintain their integrity in multiuser
environments, Access Manager provides the ability to lock data
records and/or data files. The locking facilities make it possible
for the same or different application programs running concurrently
to share and/or update index and data files at the same time.

• A height-balanced tree structure ensures that all nodes at the
bottom of the tree are equadistant from the root node.
Therefore, no key value ever has a long access path.
balanced tree eliminates the problems of overflow areas with
unpredictable access times.

Any time you add a key to or delete one from an index file
using Access Manager, the required changes in the B+ Tree structure
-- _..x.--------- -i i, This guarantees that key searches always

Reorganization of the index structure is not
necessary even after thousands of updates to the index file.

The locking facilities take two forms: shared locks and
exclusive locks. Shared locks permit separate users simultaneous
access to the same data file or data record. An exclusive lock can
only be held by one user at a time and bars all other users from
having access to the locked data file or data record.

Comer, D. "The Ubiquitous B-Tree." ACM Computing Surveys 11,
no. 2(June 1979): 121-137.

Concepts and Facilities1.4Access Manager Reference Manual

Data Record Locks

Data File Locks

Note:

File Recreation1.4.4

Application Program Structure1.5

1-8

Thus, file
Section 5

Figure 1-2
environment.
environment,
Remember , an
environment
environment,
all of your application programs for a multiuser environment.

This subsection discusses common structures for application
programs that use Access Manager. However, you should not conclude
from this discussion that other program structures or uses of Access
Manager are inappropriate.

flow in
intended

Any number of users can hold
the same data record at the same time,
can hold an exclusive record lock on a
Used correctly, the locks allow several

Access

You will find the suggested program structures in Figures 1-2
and 1-3 more meaningful after you have studied the individual
function descriptions in Section 3.

the locking facilities pertain only to data files and data
records. The only way to exclude other users from accessing an index
file is by using passwords.

Besides locking data records, Access Manager can set locks on
individual data files. Once a user holds an exclusive data file
lock, all other requests for file or record locks on that file are
refused. A shared data file lock signals your intent to use and
possibly update a data file without the need to block other users
from it.

outlines the program flow in a single-user
If your application is intended for a multiuser

the program flow in Figure 1-3 is more appropriate,
application program that runs in a multiuser

also runs, without modification, in a single-user
For this reason, you might want to consider designing

Access Manager contains a utility program for quickly
recreating index and data files when file integrity has been lost.
You can set up a special file containing parameters which tell the
utility program precisely how to reconstruct the files.
reconstruction becomes a simple task when necessary,
contains a complete description of the RECREATE utility program.

An application program can request a shared or exclusive record
lock on individual data records,
shared record locks on
However, only one user
particular data record,
users to access a data record, but only one to update it.
Manager record locks are set at the logical record level, not the
physical or logical sectors of the operating system or storage
medium.

Access Manager Reference Manual 1.5 Program Structure

1-9

To simplify the program structures, error handling routines
have been omitted from Figures 1-2 and 1-3. If you do not want
error trapping, no changes are required to the program structures
shown. This structure causes user error messages to display or
print on the console and then return control to your operating
system. If you want to control program actions when user errors
occur, call the INTUSR function with a nonzero ERROPT% parameter.
In this case, you should call the ERRCOD function after each call to
the other Access Manager functions. If ERRCOD returns with a
nonzero value, you can either branch to your error handling routines
to recover, or perform an orderly shutdown of the application.

If an application program requires more than 65,535 entries in an
index file or records in a data file, you will want to modify the
program structures outlined in Figures 1-2 and 1-3 to call the
DATVAL function after any other Access Manager function that returns
a data record number. Call the SETDAT function before any other
Access Manager function that accepts a data record number as an
input parameter.

Program Structure1.5Access Manager Reference Manual

 I

Delete RecordsAdd Records Retrieve Records

JTT

AN 090

Single-user Program FlowFigure 1-2.

1-10

Application
Dependent Processing

Get next available
data record (NEWREC)

Add key values to
index files (ADDKEY)

If key value is
found, read data
record (READAT)

Return data
record (RETREC)

Delete key
values (DELKEY)

Write data record
(WRTDAT)

Close Index and Data Files
(CLSIDX, CLSDAT)

Open Index and Data Files
(OPNIDX, OPNDAT)

Initialize Access Manager
(INTUSR, SETUP)

Search index for
data record

(GETKEY, SERKEY,
FRSKEY, LASKEY,
BEFKEY, AFTKEY,
PRVKEY, NEXKEY)

Search index for
data record

(GETKEY, SERKEY,
FRSKEY, LASKEY,
BEFKEY, AFTKEY)

Access Manager Reference Manual 1.5 Program Structure

1

Add Records Retrieve Records Delete Records

I J I

Figure 1-3. Multiuser Program Flow

1-11

Application Dependent
Processing

Add key values to
index files (ADDKEY)

If lock request is
granted (LOKCOD)

read data (READAT);
else branch to
lock conflict

routine

Write data record
(WRTDAT)

Free record lock
(FRELOK)

Close Index and Data Files
(CLSIDX, CLSDAT)

Open Index and Data Files
(OPNIDX.OPNDAT)

Initialize Access Manager
(INTUSR)

Free record lock
(FRELOK)

Get next available
data record with
exclusive record
lock (NEWREC)

Check for File Lock Conflict
(LOKCOD)

If no lock conflict, proceed;
otherwise, abort application.

Search index for
data record with

shared record lock
(GETKEY, SERKEY,
FRSKEY, LASKEY,
BEFKEY, AFTKEY)

If lock request is
granted (LOKCOD),

delete key values
(DELKEY); else
branch to lock
conflict routine

Search index for
data record with
exclusive record
lock (GETKEY,

SERKEY, FRSKEY,
LASKEY, BEFKEY,

AFTKEY)

Return data record
(RETREC)

Took conflict routine:
I Determine whether to try lock

request again or skip processing
| of this key value.

. If try again, branch back to
' index routine; else skip to
, Application Dependent Processing^

1.5 Program StructureAccess Manager Reference Manual

End of Section 1

1-12

Note the following points about the multiuser program flow
shown in Figure 1-3.

• Your application program can request data record locks as part
of the index search or get-next-available-data-record function.
This eliminates the need to get a data record number and then
request a lock as a separate action.

• If your application program opens a data file with a shared or
exclusive data file lock, a call to NEWREC with an exclusive
data record lock is always accepted.

Remember, Access Manager makes it possible to override the lock
settings. Unless your experience and requirements demand you make
such overrides, you should strictly adhere to the lock settings. In
particular, if a LOKCOD value indicates you did not get the
requested lock, be sure your application program can follow an
appropriate course of action. Do not ignore the LOKCOD results!

The importance of data record locking in multiuser environments
cannot be overemphasized. If you set shared data record locks when
you scan or review a data record and set exclusive record locks when
updating, your application program will operate smoothly in
multiuser environments.

Your Programmer’s Guide contains examples illustrating the use
of Access Manager to create and maintain a simple data base. Your
distribution disk contains the complete source code for these
examples.

• The RETREC function, which deletes data records, automatically
releases the data record lock if the user holds one.
Therefore, do not call the FRELOK function after RETREC.

• If a lock request is denied as part of an index search, the
search function still returns the associated data record number
and the key value found in the index (via the IDXVAL$
parameter). Therefore, your application program can use the
before and after key functions (BEFKEY and AFTKEY) to skip the
locked item.

2.1 Parameter Types

2.1.1 Two-byte Integers

2.1.2 Character Strings

2-1

Section 2
Function Parameters

allow an additional
Access Manager.

There are three types of parameters used with Access Manager
functions: two-byte integers, character strings, and pointers.

Access Manager treats two-byte integers as unsigned quantities.
Most application languages treat them as signed quantities ranging
from -32,768 to +32,767. Therefore, if you print a data record
number returned from an Access Manager function, you might get a
negative result. For example, the largest, unsigned, two-byte
quantity is 65,535, which corresponds to -1 as a signed quantity.
If you want to display the actual, unsigned value of a two-byte
integer, add 65,536 to the quantities in the negative range.

Key values and filenames are always represented as character
strings.

an
while the additional
SETDAT is called before
functions.

Data record numbers and attributes measuring the number of data
records and index file entries are stored in the files as four-byte
integer quantities. Two-byte integers span the range from 0 to
65,535. Because most application programs find this range of data
record numbers sufficient, Access Manager is designed to use two-
byte parameters. Whenever an application program requires the four-
byte capacity of Access Manager, the SETDAT and DATVAL functions

two bytes to be passed to or returned from
For example, if your program references multiple

data files by a single index file, the two-byte integer returned by
index search function might represent the data record number,

two bytes represent the data file number,
and DATVAL after other Access Manager

Most Access Manager functions are called with parameters that
restrict or determine what the function will do. Before reading the
function descriptions in Section 3, you should have a basic
understanding of these parameters.

Access Manager Reference Manual 2.1 Parameter Types

Pointers2.1.3

Parameter Descriptions2.2
the

function descriptions in Section 3.

Table 2-1. Access Manager Parameters
DescriptionParameter

BUFFER%

[MULTI]DLOCK%

DRN% a

2-2

character string value,
two-byte integer.

$
%

See the SETLOK
request codes; the FRELOK
release codes.

The READAT and WRTDAT functions use pointers as one of their
parameters. Different operating systems sometime require different
pointer lengths. Fortunately, your application language
automatically sizes pointer parameters correctly.

data file are assigned
Entries in an

index file contain the key value of the
corresponding record in the data file and its
assigned data record number. Thus, the data
record number points to the record in the
data file with an equal key value. Note that
a data record number of zero is considered an
error by Access Manager.

A code is passed in this parameter
to request a lock on or release a lock from a
data file or data record,
function for lock
function for lock

Descriptions of the parameters used with Access Manager
functions are summarized in Table 2-1. Specific information on the
use and content of each parameter is provided with the individual

Note that parameter names are
suffixed with a dollar ($) or percent (%) sign to indicate the type
of value it must contain:

This parameter is used only in conjunction
with the READAT and WRTDAT functions. It
contains a pointer to the input/output buffer
area in your application program. When your
program reads a data record, Access Manager
places it in this buffer area; when it writes
a data record, it is written from the buffer.

All records in a
unique data record number.

Parameter Descriptions2.2Access Manager Reference Manual

(continued)Table 2-1.
Descr iptionParameter

DUPKEY%

ERROPT%

FILE%

FILNAMES

IDXNAME$

2-3

If KEYTYP%
DUPKEY% has no effect.

Before opening an index file, Access Manager
looks in the directory of the disk for the
name of the file. The value passed in this
parameter must match exactly the name of the
index file as it is recorded in the
directory.

The value passed in this parameter tells
Access Manager how duplicate key values in an
index file are to be handled. DUPKEY% is
used in conjunction with the KEYTYP%
parameter. If DUPKEY% is one and KEYTYP% is
zero, Access Manager assigns unique sequence
numbers to each key value. If KEYTYP% is
other than zero,

Before opening a data file, Access Manager
looks in the directory of the disk for the
name of the file. The value passed in this
parameter must match exactly the name of the
data file as it is recorded in the directory.

The value passed in this parameter tells
Access Manager whether or not to trap user
errors for handling by your application
program. A zero value disables the error
trapping facility; a nonzero value causes
Access Manager to trap user errors and make
them available to your application program.
See the INTUSR function in Section 3 and in
Section 4 "Error Codes" for further
information.
With Access Manager, your application program
can process several data files
simultaneously. Hence, every data file is
assigned a unique file number. The value
passed in this parameter tells Access Manager
which data file you want to access. Data
file numbers used by Access Manager are
separate from those used with your
application language. Assigning a particular
number to an Access Manager data file does
not preclude your using the same file number
with an application language file.

Parameter Descriptions2.2Access Manager Reference Manual

Table 2-1. (continued)
DescriptionParameter

IDXVAL$

KEY%

KEYLEN%

KEYTYP%

KEYVAL$
To add,

NBUFS%

NDATF%

2-4

your
of

To open an index file, Access Manager needs
to know the length of the key values in the
file. This parameter is used to indicate the
number of bytes contained in each key value.

This is the only function parameter that
passes a value to your application program.
It is used in conjunction with those
functions that locate a key value in an index
file. At the conclusion of one of these
functions, Access Manager places the value of
the key it locates in this parameter. Your
application program can then use subsequent
functions to process that key as required.

[SINGLE] This parameter specifies the number
of input/output buffers allocated to your
application program. Note that there must be
at least three such buffer areas.

To open an index file, Access Manager must
know whether the key values are stored in
alphanumeric or numeric order. Pass a zero
in this parameter to indicate alphanumeric
order; a one indicates that key values are
stored in numeric order.

With Access Manager, your application program
can process several index files
simultaneously. Hence, every index file is
assigned a unique file number. The value
passed in this parameter tells Access Manager
which index file you want to access. Index
file numbers are independent of data file
numbers assigned by Access Manager or the
application language.

Entries in an index file contain a key value
and associated data record number.
delete, or retrieve an entry from an index
file, your program must specify the exact
value of the key for that entry. This
parameter is used to pass the key value to
Access Manager.

[SINGLE] This parameter specifies the
maximum number of data files that will ever
be open by your program at any given time.

Parameter Descriptions2.2Access Manager Reference Manual

(continued)Table 2-1.
DescriptionParameter

NKEYS%

NNSEC%

[MULTI]PROGID%

RECLEN%

[MULTI]TIMOUT%

2-5

This parameter specifies the number
of seconds within which the background server
must respond to the INTUSR function call.

This parameter contains the unique
identifier assigned to each program or task.

Table 2-2 shows which parameters are used with specific
functions. The table also shows whether the parameter value is
input (meaning your program passes the value to Access Manager) or
output (meaning your program receives the value from Access Manager
at the conclusion of the function) . Finally, the table shows if the
parameter value is required in a multiuser environment, single-user
environment, or both.

[SINGLE] This parameter specifies the
maximum number of index files that will ever
be open by your program at any given time.

The value of this parameter tells Access
Manager the length (that is, number of bytes)
of each record in a data file.

[SINGLE] This parameter determines or
specifies the length of the records in an
index file. Specifically, it refers to the
number of 128-byte disk sectors in each index
file record.

Parameter Descriptions2.2Access Manager Reference Manual

Parameter Use TableTable 2-2.
Parameter

lb

lb
lb lblb
lb

Im
Ob lb

lblbIm
lb Im Im

lb Ob lbIm
lbIm

Ob
lblb

lblb lb lb lb
lblb lbIm

lb lb lb lb
ObIm

lb
Im

lbObIm lb
Im Im Is Is Is Is

lb lbIm
lb

End of Section 2

2-6

Im
Im

Input parameter for multiuser environment.
Input parameter for single-user environment.
Input parameter for single- and multiuser environments.

= Output parameter for single- and multiuser environments.

Im
Im

Im
Im
Im

Im
Im

ADDKEY
AFTKEY
BEFKEY
CLSDAT
CLSIDX
DATVAL
DELKEY
ERADAT
ERAIDX
ERRCOD
FRELOK
FRSKEY
GETDFS
GETDFU
GETKEY
INTUSR
LASKEY
LOKCOD
NEWREC
NMNODS
NOKEYS
NXTKEY
OPNDAT
OPNIDX
OPRDAT
OPRIDX
PRVKEY
READAT
RETREC
SAVDAT
SAVIDX
SERKEY
SETDAT
SETLOK
SETUP
UPDPTR
WRTDAT

B
U
F
F
E
R

D
L
0
C
K

D
R
N

lb
lb

lb
lb

D
U
P
K
E
Y

E
R
R
O
P
T

lb
lb

lb
lb
lb
lb

I
D
X
V
A
L

Ob
Ob

K
E
Y

lb
lb
lb

lb
lb

lb
lb

lb
lb
lb

K
E
Y
L
E
N

K
E
Y
T
Y
P

lb
lb
lb

N
B
U
F
S

N
D
A
T
F

N
N
S
E
C

P
R
0
G
I
D

R
E
C
L
E
N

T
I
M
O u
T

Im
Is
lb
Ob

lb
Im

F
I
L
E

Im
lb

Im
lb

Im
lb
lb
lb
lb

F
I
L
N
A
M
E

I
D
X
N
A
M
E

K
E
Y
V
A
L

N
K
E
Y
S

Im
lb
lb
lb

Function

I

• An explanation of the function.
• A list of the parameters required in the command syntax.

are

3-1

Section 3
Function Descriptions

This
Manager functions,
information:

• When appropriate, a section of additional comments regarding
uses and restrictions placed on the function.

that only a brief explanation of the
A complete description of each can be

"Error Codes".

• A descriptive list of the error codes that can be returned by
the function. Note that only a brief explanation of
problem is provided,
found in Section 4,

Figure
categorized.

• When appropriate and useful, a segment of program code is
included as an example of how to use the function in a program.

3-1 shows the way Access Manager functions
The categories are explained in Section 1.

Some functions, for example, ADDKEY, DELKEY, and UPDPTR, do
codes. The ERRCOD function should be called
these functions to test for errors (unless error

ERRCOD returns

Access Manager functions return values to your program. The
returned value can be an error code, a code indicating the results
of the function, or a data record number. Your program must, in all
cases, examine the returned value to determine exactly what took
place.

section contains detailed descriptions of all Access
Each function description shows the following

not return error
following any of
trapping is not enabled by the ERROPT% parameter).
a nonzero value if a user error occurs.

• The syntax of the function call as it must be coded in an
application program, and the category to which the function is
assigned.

3 Function DescriptionsAccess Manager Reference Manual

Index File Update

Index File Search

Data Locking

Data File Functions Index File Functions
AN 095

Access Manager Functions by CategoryFigure 3-1.

3-2

Index File Setup
and Maintenance

Data File
Update

System Initialization
and Maintenance

Data File Setup
and Maintenance

CLSDAT
DATVAL
ERADAT
GETDFS
GETDFU
OPNDAT
OPRDAT
SAVDAT
SETDAT

NEWREC
READAT
RETREC
WRTDAT

FRELOK
SETLOK

INTUSR
SETUP

ERRCOD
LOKCOD

CLSIDX
ERAIDX

NMNODS
NOKEYS
OPNIDX
OPRIDX
SAVIDX

ADDKEY
DELKEY
UPDPTR

AFTKEY
BEFKEY
FRSKEY
GETKEY
LASKEY
NXTKEY
PRVKEY
SERKEY

Access Manager Reference Manual ADDKEY Function

ADDKEY Function

(KEYS, FILES, DLOCKS, KEYVAL$, DRNS)Syntax: ADDKEY

Index File Update Function

Explanation;

Parameters:
KEYS

FILES

DLOCKS

See

in

3-3

key values.
indicating its

[MULTI]
environment.
zero.
with the
parameter.

The number of the index file where the key value is
added.

ADDKEY adds a new key and associated data record number to an
index file and, optionally, assigns sequence numbers to duplicate

At the conclusion of the function, a value is returned
success or failure (see Additional Comments below).

You might encounter situations in a multiuser
environment where the associated data record, DRNS
parameter, should already have an exclusive record
lock before calling ADDKEY (for example, by a
previous call to NEWREC) . In this case, ADDKEY can
be called with a zero DLOCKS, or DLOCKS can be set
to two (the code for an exclusive record lock) .
The lock request should always be granted because,
presumably, the same program already holds an
exclusive lock. The advantage of the latter
approach is that if the requested exclusive record
lock is not granted, you might have detected a flaw
in your program logic.

This parameter is ignored in a single-user
If you want to ignore it in a

multiuser environment, set the DLOCKS parameter to
It is the number of the data file associated

index file specified by the KEYS

[MULTI] This parameter is ignored in a single-user
environment. If you want to ignore it in a
multiuser environment, assign a value of zero. It
is the type of data record lock requested for the
data file specified by the FILES parameter.
the SETLOK function for a list of acceptable lock
codes.

ADDKEY FunctionAccess Manager Reference Manual

KEYVAL$

a

The data record number associated with KEYVAL$.DRN%

Additional Comments:

Table 3-1. ADDKEY Function Values
MeaningValue

0

1 has successfully addedbeen theto

2 The index

4

3-4

The ADDKEY function returns the following values to indicate
its success or failure:

KEYVAL$ already exists in the index,
file update has not taken place.

the
are

KEYVAL$
index.

KEYVAL$ has been added to the index but
automatic, duplicate-key sequence numbers
exhausted.

The only assumption Access Manager makes regarding the content
of an index file entry is that zero is never used for the data
record number. If this happens, user error 36/BD occurs.

The key value to be added to the index file. Your
application program must ensure that the data
record number, DRN% parameter, corresponds to
KEYVAL$. If the associated data record number
requires more than two bytes, call the SETDAT
function immediately before ADDKEY with the higher-
order two-byte value as its argument.

The DLOCK% request for the data record (DRN%) in
the data file (FILE%) cannot be granted.
KEYVALS was not added to the index file.

If you pass a null string in KEYVAL$, the ADDKEY
function takes no action but returns a one unless
the associated lock request is denied. A string is
null if it has a zero length. Access Manager
handles null key values in this manner to simplify
coding for multiple key applications. For example,
if a data file is indexed by name, number, and zip
code, a loop that adds the key values to their
respective index files can ignore whether or not a
key value is actually present for an index by
representing missing values as null strings.

ADDKEY FunctionAccess Manager Reference Manual

Key Value Padding

Duplicate Key Values

to
Therefore, Access Manager

3-5

Each set of duplicate key values
Thus, there can be up

, Each time another

If you want to store alphanumeric KEYVAL$'s in right-justified
form, you must ensure that the KEYVAL$1s are properly justified in
view of the truncation of oversized keys.

In most applications, you should include the key values in both
the data file and index file records. This redundancy provides the
best protection when or if you have to reconstruct your index files.
You should only omit key values from data files if you have an
extreme secondary storage space constraint and there are other ways
to determine the key values associated with each data record.

blanks (20H) on the right,
long. However, to ensure

ADDKEY pads KEYVAL$1s that are less than KEYLEN% bytes with
and truncates KEYVAL$1s that are too
proper handling of numeric keys, all

numeric KEYVAL$'s must be passed to the Access Manager functions
with the exact KEYLEN%.

You can exhaust the sequence numbers if more than 65,535
identical entries are made. However, if the last entry in a set of
duplicates is deleted, this sequence number is reused before the
sequence numbers are incremented. When the last available sequence
is used for a set of duplicates, ADDKEY returns a value of zero. At
this time, the index file must be rebuilt or it will either start to
reject duplicates with a return code of two, or enter the duplicates
out of sequence. Which of these possibilities takes place depends
on the pattern of sequence numbers still in the set of duplicates.

There are many situations, such as building an index based on
last names, where the key values are not unique. When this occurs,
you must append a unique identifier to the key, possibly after
truncating the original key value to a prespecified length. This
way, the KEYVAL$,s are still stored in the expected order, but there
is no conflict between like-valued entries.

If DUPKEY% is one when the index file is opened, Access Manager
automatically places a unique, binary sequence number in the last
two bytes of the key value. For example, if KEYLEN% is ten and
KEYVAL$ equals the string 12345, Access Manager adds three spaces of
padding and a two byte sequence number to the end of KEYVAL$ before
adding it to the index file,
maintains a separate set of sequence numbers. ’

65,535 entries in each set of duplicates.
duplicate is added to an existing set of duplicates, the new entry
gets the next higher sequence number.
stores duplicate key values in entry order.

ADDKEY FunctionAccess Manager Reference Manual

Coding Numeric Key Values

3-6

in binary format. (
quantities while the other applies to unsigned integers.

If your application requires integer key values, Access Manager
provides three alternatives for representing them. In all cases,
however, the KEYVAL$ parameter must be a string valued variable.
Only the last alternative uses signed, integer key values; the first
two alternatives require alphanumeric key values.

Note: read the DELKEY function description for important
information concerning the adverse effect of automatic duplicate
keys on the time required to delete a duplicate key value.

If you use this approach, the resulting strings must be
carefully right-justified and padded with blanks or zeros on the
left and KEYTYP% should be zero (for an alphanumeric key type) . The
main disadvantage to this approach is that the key length must be
set to the maximum number of digits in the number as opposed to the
number of bytes required to store the number in internal binary
format.

For unsigned integer key values, the CBASIC Compiler function
UNSIGNED.INT.KEY$ (see example below) converts an integer quantity
into a string equivalent. The function assumes NUMBER is a real,
positive quantity; NUMBER can be represented in KEY.LEN% bytes.
CHR$ is capable of converting an arbitrary byte value to a string
whether or not the byte corresponds to a valid ASCII character.

The simplest approach to represent an integer key value is to
create a string variable which equals the ASCII representation of
the integer. With the CBASIC Compiler,
automatically performs this conversion,
assignment statement of a numeric variable '
accomplishes the conversion.

, the STR$ function
In PL/I, a simple

to a CHAR VAR string
In Pascal/MT+, redirected I/O can be

used to convert a numeric quantity to a string.

The two remaining approaches for representing integer key
values do take advantage of the compact representation of integers

One approach treats the key values as signed ----------------------------- --- , In both
cases, it is necessary to create a string with characters actually
equal to the bytes that comprise the integer quantity. The
resulting string is probably an unprintable image because any bit
pattern from OOH to FFH might result in each element of the string.

ADDKEY FunctionAccess Manager Reference Manual

3-7

The preceding function example creates a string whose
individual bytes correspond to the bytes necessary to represent
NUMBER as an integer with the most significant byte first and the
least significant last. As with the first approach, ensure KEYTYP%
is zero (for alphanumeric keys).

DEF UNSIGNED.INT.KEY$(NUMBER,KEY.LEN%)
STRING TEMP$
INTEGER I%,BYTES
REAL FACTOR
TEMP$=""
FOR 1% = 1 TO KEY.LENS

FACTOR = INT(NUMBER/256.)
BYTES = NUMBER - 256. * FACTOR
TEMP$ = CHR$(BYTES) + TEMP$
NUMBER = FACTOR

NEXT IS
UNSIGNED.INT.KEY$ = TEMP$
RETURN

FEND

DEF SIGNED.INT.KEY$(NUMBER,KEY.LENS)
STRING TEMP$
INTEGER IS,BYTES
REAL FACTOR

IF NUMBER < 0 THEN NUMBER = NUMBER + constant
TEMP$="’’
FOR IS = 1 TO KEY.LENS

FACTOR = INT(NUMBER/256.)
BYTES = NUMBER - 256. * FACTOR
TEMP$ = CHR$(BYTES) + TEMP$
NUMBER = FACTOR

NEXT IS
SIGNED.INT.KEY$ = TEMP$
RETURN

FEND

If you want to treat the integers as signed quantities with
negative values preceding positive ones, set KEYTYPS to one and
revise the UNSIGNED.INT.KEY$ function so the least significant byte
is first and the most significant byte (which includes the sign bit)
is last. You must also convert NUMBER to a positive quantity before
conversion. With these changes, the conversion function looks like
this:

In the preceding example, ’’constant" should be replaced by 256
raised to the KEY.LEN% power. Some example values for constant
follow:

ADDKEY FunctionAccess Manager Reference Manual

Table 3-2. Constant Values
KEY.LEN% Constant

" + STR? (SOC.SEC.NO) ,9)KEYVAL? = RIGHT?("
and using the second approach:

KEYVAL? = UNSIGNED.INT.KEY?(SOC.SEC.NO,4)

The

the second or

3-8

The first approach is faster, but the index file is about 62.5%
larger because each entry requires thirteen bytes; nine for the
social security number and four for the data record number,
second approach requires only eight bytes.

2
3
4

65536.0
16777216.0

4294975296.0

For example, let’s compare the first and second approaches for
integer keys as applied to social security numbers. If SOC.SEC.NO
is a real quantity, then an example of using the first approach
would be

The preceding values for "constant" also indicate the maximum
value plus one for unsigned integer key values. The signed integer
key values range from -constant/2 to (constant/2)-1.

If either the second or third approach is used to compact
integer key values, it might be necessary to unpack these strings
when they are returned to your program in the output parameter
IDXVAL?. The following function unpacks key values prepared
according to the second approach:

Note: if signed integer quantities are implemented by setting
KEYTYP% to one in OPNIDX, the key value string passed to the index
functions must have the least significant byte as the first byte of
the string, followed by increasingly significant bytes until the
most significant byte is in the last position. Further, the most
significant bit of the last byte is treated as the sign; zero if
positive, one if negative.

SOC.SEC.NO
SOC.SEC.NO

ADDKEY FunctionAccess Manager Reference Manual

Large Data Files

3-9

See your Programmer's Guide for information concerning the use
of numeric key values with PL/I or Pascal/MT+.

DATA.SEGMENT% = 5
DRN% = 10000
CALL SETDAT(DATA.SEGMENT%)
RET.CODE% = ADDKEY%(KEY%,DATA.SEGMENT%,X.LOCK%, \

KEYVALUE$,DRN%)

DEF UNPACK.UNSIGNED.INT(IDXVAL$,KEY.LEN%)
REAL TEMP,POWER
INTEGER 1%

An Access Manager index file must be contained in one physical
disk file. However, this is not true for the data file because the
two files are separate entities. Hence, the data file can be spread
over more than one disk file. This segmentation of the data file is
represented in the index file by the data record numbers associated
with the key values.

The function MID$ returns the string beginning at the position
specified by the second parameter with a length given by the third
parameter. The function ASC returns the byte value of the first
character of its string parameter.

An important point concerning segmented data files is setting
record locks during index file searches. Because the target segment
(that is, data file) is unknown until after the index search, it
seems unfeasible to set a record lock at the time the index is
searched. However, you can avoid this by always setting the lock on
the first segment, regardless of the actual segment where the
associated data record is found. This approach is effective because

To use the associated data record numbers to keep track of
segmented data files, set the two high-order bytes of the data
record number to the segment number and the two low-order bytes to
the relative data record number in the segment. For example, the
following code inserts the key value corresponding to the ten-
thousandth data record of the fifth data file segment:

POWER = 1
TEMP = 0
FOR 1% = KEY.LEN% TO 1 STEP -1

TEMP = TEMP + POWER * ASC(MID$(IDXVAL$,I %,1))
POWER = POWER * 256.

NEXT 1%
UNPACK.UNSIGNED.INT = TEMP
RETURN

FEND

ADDKEY FunctionAccess Manager Reference Manual

add

REM No more space

3-10

the lock function uses all four bytes (two for the actual segment
and two for the record number) to identify the locked record.

CALL ERROR.HANDLER(2)
FEND

FOR SEG.NOS = 1 TO TOTAL.SEGS
FILE.NOS(SEG.NOS) = OPNDAT(-1,3,FILNAME$(SEG.NOS),RLENS)
IF ERRCOD <> 0 THEN CALL ERROR.HANDLER(1)

IF LOKCOD <> 0 THEN CALL LOCK.CONFLICT(1)
NEXT SEG.NOS

DEF GET.SEGMENT.NOS(ACTIVE.REC.LIMITS,NO.OF.SEGMENTS %)
INTEGER SEG.NOS

you must first determine the correct
The simplest approach is to

The following examples show how to manage a very large data
file and its associated index file. To simplify the discussion, we
assume only positive, two-byte logical record numbers (0 through
32,767) are required within each segment.

To add a new entry,
physical segment for its placement,
assume a fixed, upper limit on the active number of records in each
segment. The following function returns the segment number to use
for the new data file entry:

First, the physical segments comprising the large logical file
are opened with shared file locks. For example,

The next code example shows how to set locks and add the new
entry to the data and index files. Assume up to 10,000 records can
be active in each physical segment:

FOR SEG.NOS = 1 TO NO.OF.SEGMENTS%
IF GETDFU(FILE.NOS(SEG.NOS)) < ACTIVE.REC.LIMITS \

THEN \
GET.SEGMENT.NOS = SEG.NOS :\
RETURN

NEXT SEG.NOS

Access Manager Reference Manual ADDKEY Function

REM Get next available data record number

0 THEN \

Add key value with upper portion of DRN = SEG.NOREM

1 \

0 THEN \

REM Free exclusive record lock

0 THEN \

REM

3-11

CALL SETDAT(SEG.N0%)
IF FRELOK(FILE.NO*(1),XCLSV.REC.LOCK*,DRN*)

CALL LOCK.CONFLICT(6)

WAIT.LOOP:
DRN* = GETKEY(KEY*,FILE.N0%(1),SHARE.REC.LOCK*,KEYVAL?)
SEG.NO* = DATVAL
IF LOKCOD <> 0 THEN \

PRINT "LOCK REQUEST DENIED." :\
INPUT "ENTER 'W' TO WAIT OR PRESS RET TO SKIP",-LINE WAIT$:\
IF WAIT$ = "" THEN GOTO SKIP.DATA ELSE GOTO WAIT.LOOP

IF READAT(FILE.NO*(SEG.NO*),DRN%,BUFFER.PTR%) <> 0 THEN \
CALL ERROR.HANDLER(7)

CALL SETDAT(SEG.NO*)
IF ADDKEY(KEY*,FILE.NO*(1),XCLSV.REC.LOCK*,KEYVAL$,DRN*)

THEN CALL ERROR.HANDLER(4)
REM
REM
REM

NULL.LOCK* = 0
SHARE.REC.LOCK* = 1
XCLSV.REC.LOCK* = 2

CALL SETDAT(SEG.NO*)
IF SETLOK*(FILE.NO*(1),XCLSV.REC.LOCK*,DRN*)

CALL LOCK.CONFLICT(3)

SEG.NO* = GET.SEGMENT.NO*(10000,TOTAL.SEG%)
DRN* = NEWREC(FILE.NO*.(SEG.NO*),NULL.LOCK*)
REM
REM

IF WRTDAT(FILE.NO*(SEG.NO*),DRN*,BUFFER.PTR*)
CALL ERROR.HANDLER(5)

Always set lock on the first segment with a 4-byte DRN
that includes the actual segment number

The next code example searches for a data file entry based on
the specified KEYVAL$ and applies a shared record lock if it is
found.

Write data record to actual physical segment. Note
that SETDAT is not used since DRN* is the actual
record number.

Find, lock, and read data record referenced by KEYVAL*

ADDKEY FunctionAccess Manager Reference Manual

Process data (no updates since shared lock)REM
CALL PROCESS.DATA
Free shared lockREM

0 THEN \

SKIP.DATA:

deletionThe from thea

Find the data file entry by key valueREM

Test if entry is foundREM

Test if exclusive lock obtainedREM

:\
Delete key valueREM

1 \

Free exclusive lockREM

0 THEN \

Return record to available poolREM
0 THEN \

3-12

final code example demonstrates
segmented data file.

the
the

DRNS = GETKEY(KEY%,FILE.N0%(1),XCLSV.REC.LOCK%,KEYVAL$)
SET.NOS = DATVAL

CALL SETDAT(SEG.NO%)
IF DELKEY(KEYS,FILE.NOS(1),XCLSV.REC.LOCK%,KEYVALS,DRNS)
THEN CALL ERROR.HANDLER(9)

CALL SETDAT(SEG.NO %)
IF FRELOK(FILE.NOS(1),XCLSV.REC.LOCKS,DRNS)
CALL LOCK.CONFLICT(10)

IF RETREC(FILE.NO%(SEG.NOS).NULL.LOCKS,DRNS)
CALL ERROR.HANDLER(11)

IF DRNS = 0 THEN \
GOTO SKIP.DELETE

IF LOKCOD <> 0 THEN \
PRINT "CANNOT DELETE ";KEYVAL$;". CURRENTLY IN USE!"
GOTO SKIP.DELETE

CALL SETDAT(SEG.NOS)
IF FRELOK(FILE.NOS(1),SHARE.REC.LOCKS,DRNS)
CALL LOCK.CONFLICT(8)

We have assumed that all access to the data file is through
index file. If you must scan the data file without reference to
index file, it is best to perform such a scan with an exclusive file
lock, which ensures no unexpected updates to the file during your
processing.

Access Manager Reference Manual ADDKEY Function

Error Codes:

The ADDKEY function can cause these error codes:

Table 3-3. ADDKEY Error Codes
Value Code Explanation

Example:

3-13

No directory or disk space available.
Index file number (KEYS) is out of range.
Key value has a zero data record number.
Index file is not open.
Lock code (DLOCKS) is out of range.
Bad parameter value.

21
30
36
46

147
153

DEF EXCEPTION(LOCALE,RETURN.CODE)
INTEGER LOCALE,RETURN.CODE

";ERRCOD; \
";LOKCOD
";RETURN.CODE

AE
AN
BD
BN
IC
II

PRINT "
ii

PRINT "
STOP

FEND

PRINT "Exception at location ";LOCALE
Error Code:
Lock Code:

Return Code:

INPUT "PART NAME:";KEY.VALUE$
DRNS = NEWREC(FILE.NOS,X.LOCKS)
IF ERRCOD <> 0 OR LOKCOD <> 0 THEN \

CALL EXCEPTION(1,1)
RET.CODES = ADDKEY(KEYS,INV.FILES,X.LOCKS,KEY.VALUES,DRNS)
IF ERRCOD <> 0 OR RET.CODES <> 1 OR LOKCOD <> 0 THEN \

CALL EXCEPTION(2,RET.CODES)

EXCEPTION provides a concise method to communicate unexpected
results during program development. EXCEPTION is not designed to
handle on-line resolution of lock conflicts or error conditions.

AFTKEY FunctionAccess Manager Reference Manual

AFTKEY Function

(KEY%, FILE%, DLOCK%, KEYVAL$, IDXVAL$)Syntax: AFTKEY

Index File Search Function

Explanation:

Parameters;
KEY%

FILES

DLOCKS

KEYVAL$

as

3-14

Use AFTKEY to move forward through an index file sequentially
in key-ascending order if one of the following situations apply:

• your application operates in a multiuser environment.
• you want to update a data file while moving through its index
file.

[MULTI]
environments.

The number of the index file where the search takes
place.

The key value that precedes the one being sought.
Note that KEYVAL$ does not have to exist in the
index for AFTKEY to function. KEYVAL$ serves only

a reference value for seeking the actual index
entry.

AFTKEY returns the data record number associated with the first
entry, in key-sequential order, immediately following (that is,
strictly greater than) a specific key value. AFTKEY also places the
key value it finds in the IDXVAL$ parameter.

If neither of the preceding situations apply, you will find it
efficient to use the NXTKEY function. However, using AFTKEY ensures
compatibility between single-user and multiuser environments.

This parameter is ignored in single-user
It specifies the type of data record

lock requested for the data file referenced by the
FILE% parameter. If the requested lock for the
data record that AFTKEY found cannot be granted,
LOKCOD returns a nonzero value. See the SETLOK
function for a list of acceptable lock codes.

[MULTI]
environment. It is the number of
referenced by the KEY% parameter.

This parameter is ignored in a single-user
the data file

AFTKEY FunctionAccess Manager Reference Manual

IDXVAL$

Additional Comments:

Error Codes:

Table 3-4. AFTKEY Error Codes
Value Code Explanation

Example:

3-15

30
35
46

147
153

AN
BC
BN
IC
II

Before calling the AFTKEY function, IDXVAL$ must be
at least as long as the key length specified for

Normally, it is only

To determine the two high-order bytes of the associated data
record number , call the DATVAL function immediately following
AFTKEY.

Index file number (KEY%) is out of range.
IDXVAL$ too short to contain key value.
Index file is not open.
Lock code (DLOCK%) is out of range.
Bad parameter value.

the KEY% file. Normally, it is only necessary to
initialize IDXVAL$ once at the beginning of a
program. Notice that KEYVAL$ and IDXVAL$ must not
be the same variable.

The following example listing shows many of the index and data
file functions. It creates a physically ordered data file from an
existing indexed data file. Also, the index file is updated in
place to reflect the new data record positions.

This is an OUTPUT parameter. Access Manager places
the key value found in the index file in IDXVAL$ at
the conclusion of the function,
is found with a
AFTKEY returns zero,

The AFTKEY function can cause the error codes listed in Table
3-4.

If no index entry
key value greater than KEYVAL$,

and IDXVAL$ is set to all
blanks (which is not the same as a null string).

AFTKEY FunctionAccess Manager Reference Manual

External AM80 Declarations

SINCLUDE AM80EXTR.BAS

Listing 3-1. AFTKEY Function Program Code

3-16

NBUFS = 6
NKEYSS = 1
NNSECS = 4
NDATFS = 2
X.FILES = 4
N.LOCKS = 0
PROGIDS = -1
ERROR.TRAP% = YESS
TIME.OUT.TESTS = 3

REM
REM
REM

YESS = -1
NOS = 0

REM
REM System Initialization
REM

DEF TEMP.LOCK
PRINT "Temporary Sort File ";FIL.NAME$; \

" cannot be locked!"
DUMMYS = CLSDAT(OLD.FILESS)
STOP

FEND

DEF ERROR.HANDLER(LOCALE)
INTEGER LOCALE

REM
REM System Parameters
REM

REM
REM Error Handling Routine
REM

PRINT
PRINT "Fatal ERROR at Locale ";LOCALE
PRINT " ERROR Code ";ERRCOD
PRINT " Return Code ";RET.CODES
STOP

FEND

AFTKEY FunctionAccess Manager Reference Manual

STOP

53 THEN \

0 THEN \

Listing 3-1. (continued)

3-17

If lock granted, erase
See

REM
REM Data File Set Up
REM

PROGIDS = INTUSR(PROGIDS,ERROR.TRAPS,TIME.OUT.TESTS)
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(1)
IF SETUP(NBUFS,NKEYSS,NNSECS,NDATFS <> 0 THEN \

CALL ERR0R.HANDLER(2)

REM
REM I/O Buffer Set Up
REM

FIL.NAMES = "SORT.SS" + RIGHTS(STR$(PROGIDS),1)
NEW.FILES = OPNDAT(NEW.FILES,X.FILES,FIL.NAMES,REC.LENS)

IF LOKCOD <> 0 THEN \
CALL TEMP.LOCK

IF ERRCOD <> 0 AND ERRCOD
CALL ERROR.HANDLER(4)

IF ERADAT(NEW.FILES,N.LOCKS)
CALL ERROR.HANDLER(14)

NEW.FILES = -1
NEW.FILES = OPNDAT(NEW.FILES,X.FILES,FIL.NAMES,REC.LENS)
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(15)
IF LOKCOD <> 0 THEN \

CALL TEMP.LOCK

REM
REM Check for left over SORT.SS?
REM then reopen file to ensure fresh data file.
REM Section 4 for description of User Error Codes.
REM

INPUT "Enter data filename & record length:"; \
FIL.NAMES,REC.LENS

OLD.FILES = -1
NEW.FILES = -1
OLD.FILES = OPNDAT(OLD.FILES,X.FILES,FILE.NAMES,REC.LENS)
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(3)
IF LOKCOD <> 0 THEN \

PRINT "Data File ";FIL.NAMES;" cannot be locked at"; \
" this time. Try later!" :\

Access Manager Reference Manual AFTKEY Function

Index File Set Up

Get the First Key Value

WHILE DRNS <> 0 OR DRN2S <> 0
Read old data fileREM

0 THEN \

Get next record in new fileREM

Listing 3-1. (continued)

3-18

REM
REM

REM
REM
REM

REM
REM
REM

SORT.DRNS = NEWREC(NEW.FILES,N.LOCKS)
S0RT.DRN2S = DATVAL
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(7)

INPUT "Enter index name, key length, & type:"; IDX.NAME?, \
KEY.LEN %,KEY.TYPE %

KEYS = -1
KEYS = OPNIDX(KEYS,IDX.NAME?,KEY.LENS,KEY.TYPES,0)
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(4)
IDX.ENTRY? = LEFT?(FILLER?,KEY.LENS)

CALL SETDAT(DRN2S)
IF READAT(OLD.FILES,DRNS,BUFFER.PTR%)

CALL ERROR.HANDLER(6)

DRNS = FRSKEY(KEYS,OLD.FILES,N.LOCKS,IDX.ENTRY?)
DRN2S = DATVAL
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(5)
REM
REM Loop over key values until index is exhausted, writing

data to new file in key value order

REM 1 2 3 4 4
FILLER? = "123456789012345678901234567890123456789012345678"
IO.BUFFER? = ""
NO.FILLERSS = INTS((REC.LENS + 47) / 48)
FOR IS = 1 TO NO.FILLERSS

IO.BUFFER? = IO.BUFFER? + FILLER?
NEXT IS
BUFFER.PTRS = SADD(IO.BUFFER?) + 2
REM "+2" because each string has a 2-byte length header

Access Manager Reference Manual AFTKEY Function

Write out new record (in key value order)REM

Update pointer in index file to reflect sorted orderREM

Get next key valueREM

WEND

Close files

Sign-Off Message

Listing 3-1. (continued)

3-19

CALL SETDAT(SORT.DRN2S)
IF WRTDAT(NEW.FILES,SORT.DRNS,BUFFER.PTRS) <> 0 THEN \

CALL ERR0R.HANDLER(8)

CALL SETDAT(SORT.DRN2S)
RET.CODES = UPDPTR(KEYS,NEW.FILES,N.LOCKS,IDX.ENTRY$, \

SORT.DRNS)
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(9)

TARGETS = LEFTS(IDX.ENTRY$,KEY.LENS)
DRNS = AFTKEY(KEYS,OLD.FILES,N.LOCKS,TARGETS,IDX.ENTRY$)
DRN2S = DATVAL
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(10)

PRINT "Last record written:
STOP

REM
REM
REM

REM
REM
REM

";SORT.DRN2S;SORT.DRNS

IF CLSDAT(NEW.FILES) <> 0 THEN \
CALL ERROR.HANDLER(11)

IF CLSDAT(OLD.FILES) <> 0 THEN \
CALL ERROR.HANDLER(12)

IF CLSIDX(KEYS) <> 0 THEN \
CALL ERROR.HANDLER(13)

BEFKEY FunctionAccess Manager Reference Manual

BEFKEY Function

(KEY%, FILE%, DLOCK%, KEYVAL$, IDXVAL$)BEFKEYSyntax:

Index File Search Function

Explanation:

Parameters:
KEY%

FILE%

DLOCK%

3-20

Use BEFKEY to move backward through an index file sequentially
in key-descending order if either of the following situations apply:

value you provide,
in the IDXVAL$ parameter.

• your application operates in a multiuser environment.
• you want to update the index file while moving through it.

[MULTI]
environment.

[MULTI]
environments.

BEFKEY returns the data record number assigned to the index
entry immediately preceding (that is, strictly less than) a key

BEFKEY also places the value of the key it finds

The number of the index file where the search takes
place.

This parameter is ignored in a single-user
It is the number of the data file

referenced by the KEY% parameter.

If neither of the preceding situations apply, you will find it
more efficient to use the PRVKEY function. Use BEFKEY to maintain
compatibility between single-user and multiuser environments.

This parameter is ignored in single-user
It specifies the type of data record

lock requested for the data file referenced by the
FILE% parameter. If the requested lock for the
data record BEFKEY found cannot be granted, LOKCOD
returns a nonzero value. See the SETLOK function
for a list of acceptable lock codes.

BEFKEY FunctionAccess Manager Reference Manual

KEYVAL$

IDXVAL$ Access Manager places

Additional Comments:

Error Codes:
Table 3-5 lists the BEFKEY function error codes.

BEFKEY Error CodesTable 3-5.
ExplanationCodeValue

Example;

3-21

To determine the two high-order bytes of the associated data
record number, call the DATVAL function immediately after BEFKEY.

30
35
46

147
153

Index file number (KEY%) is out of range.
IDXVAL$ too short to contain key value.
Index file is not open.
Lock code (DLOCK%) is out of range.
Bad parameter value.

AN
BC
BN
IC
II

In this example, BEFKEY is used to determine the sequence
number automatically appended to the key value by the ADDKEY
function. This assumes the DUPKEY% parameter is set to one in the
call to OPNIDX. Further assumptions are that this is a single-user
environment and the function SPACE$ has already been defined and
returns a string of blanks.

This is an OUTPUT parameter.
the key value found in the index file in IDXVAL$ at
the conclusion of the function. If no index entry
is found with a key value less than KEYVAL$, BEFKEY
returns zero, and IDXVAL$ is set to all blanks
(which is not the same as a null string).

The key value immediately following the one being
sought. Note that KEYVAL$ does not have to exist
in the index for BEFKEY to function. KEYVAL$
serves only as a reference value for seeking the
actual index entry.

Before calling the BEFKEY function, IDXVAL$ must be
at least as long as the key length specified for
the KEY% file. Normally, it is only necessary to
initialize IDXVAL$ once at the beginning of a
program. Also notice that KEYVAL$ and IDXVAL$ must
not be the same variable.

BEFKEY FunctionAccess Manager Reference Manual

1 THEN \

0 THEN CALL ERROR.HANDLER(2)IF LOKCOD

IDXVAL? = SPACE?(KEYLEN%)
DRN% THEN \

IF ERRCOD <> 0 THEN CALL ERROR.HANDLER(4)
SEQUENCE.NO? = RIGHT?(IDXVAL?,2)

3-22

The approach used in this example works because the last key
added to the index has the largest sequence number less than OFFFFH.

TARGET? = LEFT?(KEYVAL?+SPACE?(KEYLEN%),KEYLEN%-2) + \
CHR?(OFFH)+CHR?(OFFH)

IF BEFKEY(KEY%,0,0,TARGET?,IDXVAL?)
CALL ERROR.HANDLER(3)

INPUT "Enter key valueKEYVAL?
IF ADDKEY(KEY%,0,0,KEYVAL?,DRN%)

CALL ERROR.HANDLER(1)

SEQUENCE.NO

Access Manager Reference Manual CLSDAT Function

CLSDAT Function

Syntax: CLSDAT (FILE%)

Data File Setup and Maintenance Function

Explanation:

Parameters:
The number of the closed data file.FILES

Additional Comments:

Error Codes:

3-23

closed
the

If CLSDAT is called prior to program termination, you should
also call the FRELOK function to release whatever type of data file
lock you requested at the time the file was opened.

[MULTI]
actually performs
available to the other users,
a locked mode, a file is not accessible to users outside of Access
Manager unless all programs that opened the file subsequently closed
it.

CLSDAT closes a data file. If the data file is
successfully, CLSDAT returns a zero at the conclusion of
function; otherwise, a nonzero user error code is returned.

If other programs are using the data file, CLSDAT
a save operation. The data file is still

Because Access Manager opens files in

If a data file is not properly closed or saved after it is
updated, Access Manager issues user error 70/DF the next time that
data file is opened. In such cases, the data file must be
reconstructed.

If you make any changes to a data file, your application
program must call the CLSDAT or SAVDAT function to force the updates
to the disk file. If you do not do this, the integrity of the data
file can be disrupted because the Access Manager header record could
be incorrect. Further, the operating system might be holding data
in internal buffers. CLSDAT and SAVDAT force the updated header
record to the disk and flush the operating system buffers.

CLSDAT FunctionAccess Manager Reference Manual

Table 3-6 lists the CLSDAT function error codes.

Table 3-6. CLSDAT Error Codes
ExplanationValue Code

Example:

3-24

55
60
74

177
183

CG
CL
DJ
KA
KG

Data filename not in directory.
Data file number (FILE%) is out of range.
Data file (FILE%) is inactive.
Lock code (DLOCK%) is out of range
Bad parameter value.

IF CLSDAT(FILE.NO%) <> 0 THEN \
PRINT "Error while closing data file."

CLSIDX FunctionAccess Manager Reference Manual

CLSIDX Function

Syntax: CLSIDX (KEY%)

Index File Setup and Maintenance Function

Explanation:

the

Parameters:
The number of the closed index file.KEY%

Additional Comments:

to the disk f ile.

Error Codes;

3-25

conclusion of
is returned.

If an index file is not properly closed or saved after it is
updated, Access Manager issues user error 40/BH the next time that
index file is opened. In such cases, the index file must be
reconstructed.

If you make any changes to an index file, your application
program must call the CLSIDX or SAVIDX function to force the updates

If you do not do this, the integrity of the index
file can be disrupted because some updated nodes might still be in
an I/O buffer and/or the header record could be incorrect.

[MULTI] If other programs are still using the index file,
CLSIDX actually performs a save operation. The index file is still
available to the other users. Because Access Manager opens files in
a locked mode, a file is not accessible to users outside of Access
Manager unless all programs that opened the file subsequently closed
it.

CLSIDX closes an index file. If the index file is closed
successfully, CLSIDX returns a zero at the
function; otherwise, a nonzero user error code

CLSIDX FunctionAccess Manager Reference Manual

Table 3-7 lists the CLSIDX function error codes.

Table 3-7. CLSIDX Error Codes
ExplanationCodeValue

Example:

3-26

21
25
30
44
46

153

Disk or directory full.
Index filename not found in directory.
Index file number (KEY%) is out of range.
Index file (KEY%) is inactive.
Index file (KEY%) is not open.
Bad parameter value.

AE
Al
AN
BL
BN
II

IF CLSIDX(KEY.NO%) <> 0 THEN \
CALL ERROR.HANDLER

DATVAL FunctionAccess Manager Reference Manual

DATVAL Function

Syntax: DATVAL

Data File Setup and Maintenance Function

Explanation:

Parameters;
The DATVAL function is called without parameters.

Additional Comments:

Error Codes:
The DATVAL function does not cause user errors.

Example:

3-27

that
in

called immediately after
DRN2% contains

If your application program does not require more than 65,535
data records or index file entries, there is no need to call DATVAL.
However, there is no harm in doing so under these circumstances
because a value of zero is returned.

DATVAL returns the high-order two bytes of the data record
number. DATVAL can be called following any Access Manager function
that returns a data record number as a function value (such as
NEWREC) or a size attribute of the data file (GETDFS, GETDFU, or
NOKEYS).

Note that DATVAL is called immediately after the NEWREC
function in the following example. DRN2% contains the most
significant two bytes of the data record number, and DRN% contains
the least significant two bytes.

DLOCK% = 2 REM Exclusive record lock
DRN% = NEWREC(FILE.N0%,DLOCK%)
DRN2% = DATVAL
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(3)
IF LOKCOD <> 0 THEN \

CALL LOCK.CONFLICT(3)

DELKEY FunctionAccess Manager Reference Manual

DELKEY Function

(KEY%, FILE%, DLOCK%, KEYVAL$, DRN%)Syntax: DELKEY

Index File Update Function

Explanation:
DELKEY

Parameters:
KEY%

FILE%

[MULTI]DLOCK%

KEYVAL$

3-28

The number of the index file where the key value and
data record number are removed.

the data
See the

list of acceptable lock

multiuser
This

SETLOK
codes.

removes
specified index file,
returns a value indicating its success or failure (see Additional
Comments below).

The value of the key record to be deleted from the
index file.

a key and its data record number from a
At the conclusion of the function, DELKEY

If you pass a null string in the KEYVAL$ parameter,
the DELKEY function takes no action but returns a
value of one unless the requested DLOCK% is denied.
This simplifies coding in multiple key
applications. A loop designed to delete all key
values for a given data record from their
respective index files does not have to test for
nonexistent keys as long as they appear as null
strings.

To ignore locking protocols in a
environment, assign DLOCK% a value of zero,
procedure is not normally recommended.

This parameter is ignored in single-user
environments. It contains the code to specify the
type of data record lock requested for
file referenced by the FILE% parameter,

function for a

[MULTI] This parameter is ignored in single-user
environments. It is the number of the data file
referenced by the KEY% parameter.

DELKEY FunctionAccess Manager Reference Manual
DRN%

Additional Comments:

Table 3-8. DELKEY Function Values
MeaningValue

KEYVAL$ was not found in the index.0
1

2

4

3-29

Because Access Manager must search a set of duplicates for the
one with a matching data record number, the number of disk accesses
required to delete a duplicate key value can be excessive for a very
large set of identical keys.

KEYVAL$ was successfully deleted from the index
file.

DRN% .
file,
length, it is padded with blanks before
truncated.

DELKEY returns one of the following values at its conclusion to
indicate its success or failure:

If an index file is opened with a DUPKEY% parameter of one
(implying automatic suffixing of key values), DELKEY ignores the
last two bytes of KEYVAL$ and searches for an entry matching the
first KEYLEN%-2 bytes, and for which the data record number equals

If a match is found, the entry is deleted from the index
If the key value in KEYVAL$ is less than KEYLEN% bytes in

the last two bytes are

The data record number in the index file
containing KEYVAL$ does not agree with the DRN%
parameter. The index entry was not deleted.

The data record number associated with the key value
contained in KEYVAL$. Specifically, this is the
number of the record to be deleted from the index
file. Access Manager checks the data record number
associated with KEYVAL$ before making the deletion.

If you foresee large sets of duplicate key values (several
hundred or thousands of identical values) and a regular need to
delete members of these sets, you can avoid longer delete times by
not using the Access Manager automatic duplicate feature. Instead,
you should append your own unique suffix to these keys. For
example, you might append a data record number to the end of the key
value or an associated unique key value. If you append your own
suffix, set the DUPKEY% parameter in the OPNIDX function to zero.
When you delete one of these key values, you can construct the exact
composite key (identical portion plus unique suffix) to use in a
regular deletion operation. No special Access Manager search of the
duplicate set is required.

The DLOCK% request on the data record given by
DRN% for the data file specified by FILE% could
not be granted. The index entry was not deleted.

Access Manager Reference Manual DELKEY Function

Error Codes:
The DELKEY function error codes are listed in Table 3-9.

Table 3-9. DELKEY Error Codes
ExplanationCodeValue

is out of range.

Example:

3-30

In this example^ SETDAT passes the two high-order bytes of the
associated data record number.

30
46

147
153

CALL SETDAT(DRN2%)
IF DELKEY(KEY%/FILE.NO%/LOCK%/KEY.VALUE$ZDRN%) <> 1 \

THEN PRINT "Unsuccessful Deletion"

AN
BN
IC
II

Index file number (KEY%)
Index file is not open.
Lock code (DLOCK%) is out of range.
Bad parameter value.

Access Manager Reference Manual ERADAT Function

ERADAT Function

Syntax: ERADAT (FILE%, DLOCK%)

Data File Setup and Maintenance Function

Explanation:

Parameters;
FILE%

DLOCK% [MULTI]

Additional Comments;

files,

3-31

If your application program requires that a data file be new,
successive calls to OPRDAT, ERADAT, and then OPNDAT ensure this.

If your application program creates temporary data
ERADAT can be used to delete them when necessary.

Specifies the type of data file lock
operation requested for the data file to be erased.
If the value is set to zero when ERADAT is called,
all data file lock operations are ignored,
extreme care
exclusive data file lock,
for a list of acceptable lock codes.

Use
when calling ERADAT without an

See the SETLOK function

ERADAT erases a data file. Note that the data file must have
been previously opened using either the OPNDAT or OPRDAT function.
At the conclusion of the ERADAT function, a zero value is returned
if the erasure was successful; otherwise, a nonzero user error code
results.

Use the ERADAT function with care to prevent accidental loss of
a data file.

The number of the erased data file. If the data
file is not open when ERADAT is called, an error
results.

If a file lock is requested and granted, the data
file is erased. If the file lock request cannot be
granted, the data file is not erased. Your
application program must examine the contents of
LOKCOD immediately after calling ERADAT to
determine if the lock request was granted.

ERADAT FunctionAccess Manager Reference Manual

Error Codes:

Table 3-10. ERADAT Error Codes
ExplanationCodeValue

Example:

3-32

60
175
176
177
183

CL
JO
K@
KA
KG

Data file number (FILE%) is out of range.
The data file (FILE%) is inactive.
File name not found in directory.
Lock code (DLOCK%) is out of range.
Bad parameter value.

In the following example, the data file is assumed to be open.
The arguments of the ERROR.HANDLER and LOCK.CONFLICT functions
indicate from where the functions were called.

DLOCK% = 4 REM Exclusive data file lock
IF ERADAT(FILE.NO%,DLOCK%) <> 0 THEN \

CALL ERROR.HANDLER(2)
IF LOKCOD <> 0 THEN \

CALL LOCK.CONFLICT(2)

Access Manager returns a value in ERADAT to indicate the
results of the operation. If no user errors occur, a zero is
returned. The ERADAT function can cause any of the following user
errors:

Access Manager Reference Manual ERAIDX Function

ERAIDX Function

Syntax: ERAIDX (KEY%)

Index File Setup and Maintenance Function

Explanation:

successful;

Parameters;
KEY%

Additional Comments;

If

Error Codes;

3-33

your application program creates temporary index files,
ERAIDX can be used to delete them when necessary.

The index file must have been
ERAIDX

If the index
an error

The number of the erased index file,
file is not open when ERAIDX is called,
results.

Use the ERAIDX function with care to prevent accidental loss of
an index file.

If your application program requires that an index file be new,
successive calls to OPRIDX, ERAIDX, and OPNIDX will initialize the
file correctly.

ERAIDX returns the error code as its function value. If ERAIDX
returns zero, erasure of the index file is successful; otherwise, a
user error has occurred. The ERAIDX function can cause the user
errors listed in Table 3-11.

ERAIDX erases an index file.
opened previously using the OPNIDX or OPRIDX function.
returns a zero at the conclusion of the function if the erasure was

otherwise, a nonzero user error code results.

ERAIDX FunctionAccess Manager Reference Manual

ERAIDX Error CodesTable 3-11.
ExplanationCodeValue

3-34

30
46

145
146
153

AN
BN
IB
IC
II

Index file number (KEY%) is out of range.
Index file is not open.
The index file (KEY%) is inactive.
Index file name not found in directory.
Bad parameter value.

ERRCOD FunctionAccess Manager Reference Manual

ERRCOD Function

Syntax: ERRCOD

System Initialization and Maintenance Function

Explanation:
ERRCOD returns the current value of the user error code.

Parameters:
The ERRCOD function is called without parameters.

Additional Comments;

Error Codes:
Calls to ERRCOD do not cause user errors.

Example:

3-35

RET.CODES = ADDKEY(KEY.N0%,FILE.N0%,LOCK.REQ%,KEY.VALUE$,DRN%)
IF ERRCOD <> 0 THEN CALL ERROR.HANDLER
IF RET.CODES <> 1 THEN CALL ADD.KEY.PROBLEM

user errors and
(Internal consistency errors are

When internal consistency errors occur,
Access Manager cannot trap them, so it routes an error message to
the console and returns control to the operating system.

Access Manager checks for two types of errors:
failures of internal consistency,
explained in Section 4.) I”-- -•

The value of ERRCOD does not change until a subsequent index or
data file function is called. Consequently, if a function causes a
user error, later calls to ERRCOD without intervening calls to other
functions return the same error code value. ERRCOD clears to zero
only when an Access Manager function executes without a user error.

the function completes execution
On the other hand, if a user error

(see INTUSR function) was
ERRCOD returns a zero if

without a user error occurring.
DOES occur and the ERROPT% parameter
passed with a nonzero value, ERRCOD returns the appropriate error
code value.

FRELOK FunctionAccess Manager Reference Manual

FRELOK Function

Syntax: FRELOK (FILE%, DLOCK%, DRN%)

Data Locking Function

Explanation:

Parameters:
FILES

DLOCKS

DRN%

Additional Comments:

3-36

The number of the data record from which the lock is
to be released.

The number of the data file from which you want to
release the lock.

data
function returns
returned. This
environment.

Table 3-12 lists the codes you can use to request
release of a data file lock. The appropriate code
is passed via this parameter.

FRELOK attempts to remove a specified type of lock held by the
calling program (see PROGIDS parameter under the INTUSR function).
To release a lock, set the DLOCKS parameter to the appropriate value
shown in Table 3-12. Note that if the specified file or record
does not have a lock set when FRELOK is called, no action takes
place and LOKCOD is set to one.

FRELOK releases (or, frees) an existing lock on a data file or
record. If the lock is released successfully, the FRELOK

a zero at its conclusion; otherwise, a one is
function has no effect if called in a single-user

FRELOK FunctionAccess Manager Reference Manual

Data File/Record Lock Release RequestsTable 3-12.

Unlock Request

6

7

Error Codes:
Table 3-13 lists the error codes for FRELOK function.

FRELOK Error CodesTable 3-13.
ExplanationCodeValue

is(DRN%)52 CD

Example:

3-37

60
177
183

0
1
2
3
4
5

CL
KA
KG

DLOCK%
Value

IF FRELOK(FILE.NO%,5,DRN%) <> 0 THEN \
PRINT "No record lock was held on ";DRN%: \
PRINT "by this user."

Data record number
beyond end of file.
Data file number (FILE%) is out of range.
Lock code (DLOCK%) is out of range.
Bad parameter value.

No action, but LOKCOD is set to zero.
Release shared lock on DRN%.
Release exclusive lock on DRN%.
Release shared file lock on FILE%.
Release exclusive file lock on FILE%.
Release either shared or exclusive record lock
on DRN%.
Release all locks held by the calling program
(PROGID%) on the specified FILE%.
Release all locks held by the calling program
(PROGID%) on all files with numbers greater
than or equal to FILE%.

zero or

It is far more efficient to release each record lock after the
record is processed than to release all record locks at the same
time. While Access Manager has no practical limit on the number of
record locks held simultaneously, a large number of locks forces
some of the lock information out to disk. This results in slower
processing.

FRSKEY FunctionAccess Manager Reference Manual

FRSKEY Function

(KEY%, FILE%, DLOCK%, IDXVAL$)Syntax: FRSKEY

Index File Search Function

Explanation:

Parameters:
KEY%

FILE%

DLOCK%

IDXVAL$

Additional Comments:

3-38

The number of the
search for the first index entry.

The FRSKEY function locates the first entry in an index file.
This function returns the data record number assigned to the first
entry and also returns its key value in the IDXVAL$ parameter.

To determine the two high-order bytes of the associated data
record number, call the DATVAL function immediately after FRSKEY.

Before calling the FRSKEY function, IDXVAL$ must be
at least as long as the key length specified for
the KEY% file or user error 35/BC results.

[MULTI]
environment.

[MULTI]
environments.

This is an OUTPUT parameter. Access Manager places
the key value found in the index file in IDXVAL$.
If the index is empty, FRSKEY returns a zero and
IDXVAL? is set to all blanks (which is not the same
as a null string).

This parameter is ignored in single-user
It specifies the type of data record

lock requested for the data file referenced by the
FILE% parameter. If the requested lock for the
data record that FRSKEY found cannot be granted,
LOKCOD returns a nonzero value. See the SETLOK
function for a description of lock codes.

This parameter is ignored in a single-user
It is the number of the data file

referenced by the index file specified by the KEY%
parameter.

index file where you want to

FRSKEY FunctionAccess Manager Reference Manual

Error Codes:

Table 3-14. FRSKEY Error Codes
ExplanationValue Code

Example;

3-39

30
35
46

147
153

AN
BC
BN
IC
II

The FRSKEY function can cause the error codes listed in Table
3-14.

Index file number (KEYS) is out of range.
IDXVAL$ too short to contain key value.
Index file is not open.
Lock code (DLOCK%) is out of range.
Bad parameter value.

REC.LOKS = 2 REM Exclusive Record Lock Request
DRNS = FRSKEY(KEY.NOS,FILES,REC.LOKS,IDXVAL$)
SEG.NOS = DATVAL
IF ERRCOD <> 0 THEN CALL ERROR.HANDLER
IF LOKCOD <> 0 THEN CALL LOCK.CONFLICT
IF DRNS = 0 AND SEG.NOS = 0 THEN \

PRINT "Index file is empty."

GETDFS FunctionAccess Manager Reference Manual

GETDFS Function

Syntax: GETDFS (FILE%)

Data File Setup and Maintenance Function

Explanation:

Parameters;
FILES

Additional Comments:

Error Codes:
Table 3-15 lists the GETDFS Error Codes.

Table 3-15. GETDFS Error Codes
Value Code Explanation

is out of range.

3-40

60
183

CL
KG

Data file number (FILES)
Bad parameter value.

The number of the data file where the record count
takes place.

includes
use.

The
and those

GETDFS returns a count of the records in a data file,
count includes the number of records in current use
available for

The record count returned by the GETDFS function includes the
header record and any other records automatically reserved by the
NEWREC function. This ensures that the first available data record
begins on or after the 129th byte of the data file, as required by
Access Manager.

To determine the two high-order bytes of the logical data file
size, call the DATVAL function immediately after GETDFS. Also see
the GETDFU function.

GETDFS FunctionAccess Manager Reference Manual

Example:

\

REC.LEN* + 1023.) / 1024.)

3-41

If the file is certain to contain less than 65,535 records, the
actual number of kilobytes used by the data file can be computed as
follows:

If the file might contain more than 65,535 records, the number
of kilobytes is given by

In this case, DATVAL returns the two high-order bytes of the
If the size is less than 65,536, DATVAL returnsdata file size,

zero.

* DATVAL)
* REC.LEN* + 1023.) / 1024.)

IF GETDFS(FILE.NO%) < 0 THEN \
TOTREC = GETDFS(FILE.NO%) + 65536.

ELSE \
TOTREC = GETDFS(FILE.NO%)

KILOBYTES* = INT%((TOTREC *

IF GETDFS(FILE.NO%) < 0 THEN \
TOTREC = GETDFS(FILE.NO%) + 65536.

ELSE \
TOTREC = GETDFS(FILE.NO*)

TOTREC = TOTREC + (65536.
KILOBYTES* = INT%((TOTREC

where REC.LEN* is the record length of the file specified by
FILE.NO*. Note how the signed integer quantity is converted to a
positive real quantity.

GETDFU FunctionAccess Manager Reference Manual

GETDFU Function

Syntax: GETDFU (FILE%)

Data File Setup and Maintenance Function

Explanation:
GETDFU returns a count of records in use in a data file.

Parameters:
FILE%

Additional Comments;

count, call the

Error Codes:
lists the GETDFU error codes.Table 3-16

Table 3-16. GETDFU Error Codes
Value Code Explanation

3-42

60
183

CL
KG

The number of the data file where the record count
takes place.

Data file number (FILE%) is out of range.
Bad parameter value.

To determine the two high-order bytes of the in-use record
DATVAL function immediately after GETDFU.

The difference between the counts returned by GETDFS and GETDFU
represents the data records returned for reuse, plus the header
record, plus (for record lengths less than 128 bytes) records that
share the first 128 bytes with the header record.

GETDFU FunctionAccess Manager Reference Manual

Example:

\

\

UTILIZATION = ACTIVE.RECORDS / TOTAL.RECORDS

3-43

GETDFU and GETDFS can be used together to compute the fraction
of data records in active use, as shown in this example:

IF GETDFU(FILE.N0%) < 0 THEN \
ACTIVE.RECORDS = GETDFU(FILE.N0%) + 65536.

ELSE \
ACTIVE.RECORDS = GETDFU(FILE.N0%)

ACTIVE.RECORDS = ACTIVE.RECORDS + (65536.
IF GETDFS(FILE.N0%) < 0 THEN \

TOTAL.RECORDS = GETDFS(FILE.N0%) + 65536.
ELSE \

TOTAL.RECORDS = GETDFS(FILE.NOS)
TOTAL.RECORDS = TOTAL.RECORDS + (65536. * DATVAL)

* DATVAL)

GETKEY FunctionAccess Manager Reference Manual

GETKEY Function

(KEY%, FILES, DLOCKS, KEYVAL$)Syntax: GETKEY

Index File Search Function

Explanation:

Parameters:
the keyKEYS

FILES

DLOCKS

If the requested lock for
See the SETLOK function

KEYVAL$

Additional Comments:

3-44

[MULTI]
environments.

number associated with a
GETKEY locates the entry in

The number of the index file where
value/data record number can be located.

GETKEY returns the data record
specific key value in an index file,
the index file that exactly matches a key value you provide in the
KEYVAL$ parameter.

This parameter is ignored in single-user
It specifies the type of data record

lock requested for the data file referenced by the
FILES parameter. If the requested lock for the
data record GETKEY found cannot be granted, LOKCOD
returns a nonzero value,
for a description of lock codes.
The actual key value of the index file record being
sought.

If your application program takes advantage of the four-byte
capacity of the associated data record numbers, your program must
call the DATVAL function immediately after GETKEY to return the
value of the two high-order bytes. GETKEY returns the value of the
two low-order bytes.

[MULTI] This parameter is ignored in a single-user
environment. It is the number of the data file
referenced by the KEYS parameter.

GETKEY FunctionAccess Manager Reference Manual

Error Codes:
Table 3-17 lists the error codes for the GETKEY Function.

Table 3-17. GETKEY Error Codes
Value Code Explanation

is out of range.

Example:
Also,

1

3-45

In this example, notice GETKEY only finds exact matches.
CONV.INT converts the part numbers to numeric information.

30
46

147
153

DEF CONV.INT(INTVAL%)
STRING CONV.INT
INTEGER MSB,LSB

AN
BN
IC
II

INPUT "Enter Desired Part #:”;PART.NO%
PART.NO$ = CONV.INT(PART.NO%)
LOCK% = 1 REM Shared data record lock
POINTER% = GETKEY(PART.KEY%,INV.FIL%,LOCK%,PART.NO$)
SEGMENT% = DATVAL
IF ERRCOD <> 0 THEN \

CALL EXCEPTION(2,1)
IF POINTER% = 0 AND SEGMENT% = 0 THEN \

PRINT "Requested Part Number not in data base"
IF LOCK.CODE% <> 0 THEN \

PRINT "Shared Record Lock not granted."

MSB = INT%(INTVAL% / 256)
LSB = INTVAL% - MSB * 256
IF LSB < 0 THEN MSB = MSB
CONV.INT = CHR$(LSB) + CHR$(MSB)

FEND

Index file number (KEY%)
Index file is not open.
Lock code (DLOCK%) is out of range.
Bad parameter value.

INTUSR FunctionAccess Manager Reference Manual

INTUSR Function

Syntax: INTUSR (PROGID%, ERROPT%, TIMOUT%)

System Initialization and Maintenance Function

Explanation:

Parameters:
PROGID%

ERROPT%

3-46

INTUSR initializes Access Manager and must be called by your
application program prior to calling any other functions.

A value to indicate how you want Access Manager to
handle user errors when they occur.
Set ERROPT% to zero if you want Access Manager to
display a two-character error message on the
console and then return control to the operating
system.
Set ERROPT% to a nonzero value if you want Access
Manager to trap user errors and return them to your
program for processing. In this case, the ERRCOD
function detects user errors, making it possible
for your application program to determine the
reason for the error and take appropriate action.
The value of ERRCOD should be examined following
each call to an Access Manager function. Section 4
contains a list of possible ERRCOD values.

To simplify program development, if PROGID% is set
to -1, INTUSR returns the number of the console
requesting the application program. This makes it
possible to run an application program from
different consoles without any changes to set up a
unique program ID or having to predetermine the
PROGID% values.

[MULTI] This parameter is ignored in a single-user
environment. It should contain the identification
number assigned to your application program. Each
application program calling the background server
must have a unique PROGID% number. PROGID% numbers
begin at zero. For example, in a three-user
environment the acceptable values for PROGID% are
0, 1, and 2. (See your Programmer’s Guide for
additional information on system configuration.)

INTUSR FunctionAccess Manager Reference Manual

TIMOUT%

Run MPMSTAT

Control then returns to your operating system.

Additional Comments:

[MULTI] the

Error Codes;
Calls to the INTUSR function should never cause user

[MULTI]

Table 3-18. INTUSR Error Codes
ExplanationValue Code

3-47

Subsequent calls of the INTUSR function clear
message queue and remove all pending locks associated with PROGID%.
This can produce unpredictable results and should be avoided.

161
162
163

JA
JB
JC

Be sure Access Manager is operational,
to see.

Program number (PROGID%) is out of range.
Cannot open Access Manager input queue.
Cannot open output queue.

[SINGLE]
errors.

[MULTI] This parameter is ignored in a single-user
environment. Your program can use it to specify the
number of seconds within which the background
server must respond to the INTUSR call. If the
background server fails to respond within this
timeframe, the following message appears on the
console:

User errors might result if PROGID% is outside the
allowed range of the background server, or the server is not active
when INTUSR is called. The possible errors are listed in Table 3-
18.

[SINGLE] Must be called at least once, but can be called as
often as necessary to change the error handling technique.

If TIMOUT% is zero, no response time check is made.
Therefore, if Access Manager is not running, the
application program hangs indefinitely at the
INTUSR call. A reasonable value for TIMOUT% is
three seconds. The time check starts only after
the call to INTUSR is sent to the background
server. If the call must wait in a queue, the time
check is not affected.

INTUSR FunctionAccess Manager Reference Manual

Example:

[SINGLE]

Is PROG ID out of range?

Has an Access Manager RSP been included at GENSYS?

3-48

If the background server has not been initiated, the TIMOUT%
value of three causes the Run MPMSTAT... message to display (see
TIMOUT% parameter description).

An application
These are established

program is run.
console.
executed
values.

PROGID% = INTUSR(-1,1,3)
IF ERRCOD <> 0 THEN \

PRINT "Cannot Initialize User ... ErrorERRCOD
IF SETUP(7,3,4,1) <> 0 THEN \

PRINT "Illegal SETUP parameters”

If an Access Manager Resident System Process is required but
not included at GENSYS, INTUSR returns a user error code. If error
trapping is not enabled, the following message is displayed:

Error trapping is enabled by the nonzero ERROPT% parameter.
Because the PROGID% parameter is passed as -1, INTUSR returns the
value corresponding to the console number from which the application

Therefore, the program uses PROGIDS to identify the
More importantly, the same application program can be
from different consoles without predetermined PROGID%

If the assigned PROGID% is beyond the permissible range, INTUSR
returns a user error code. But, if error trapping is not enabled,
the following message is displayed:

The above statements imply there are seven buffers,
up to three index files can be open at one time, the index file
record length is 512 bytes (four 128-byte sectors), and only one
data file is opened at a time. Further, it is implied that user
errors are trapped by calling the ERRCOD function following all
calls to Access Manager functions, although calls to INTUSR should
never result in user errors.

[MULTI] Note the call to SETUP is ignored,
program cannot affect the SETUP parameters.
at the time the background server is configured.

LASKEY FunctionAccess Manager Reference Manual

LASKEY Function

(KEY%, FILE%, DLOCK%, IDXVAL$)Syntax: LASKEY

Index File Search Function

Explanation;

Parameters:
KEY%

FILES

DLOCKS

IDXVAL$

3-49

[MULTI]
environments.

LASKEY also places the value of the last
in the IDXVAL$ parameter.

The number of the index file in which you want to
find the last key.
[MULTI]
environment. It is the number of
referenced by the KEYS parameter.

This is an OUTPUT parameter. Access Manager places
the last key value found in the index file in
IDXVAL$ at the conclusion of the function. If the
index is empty, LASKEY returns a zero and IDXVAL$
is set to all blanks (which is not the same as a
null string).

This parameter is ignored in a single-user
the data file

LASKEY returns the data record number assigned to the last
entry in an index file,
key it locates

Before calling the LASKEY function, IDXVAL$ must be
at least as long as the key length specified for
the KEY% file or user error 35/BC results. (See
KEYLEN% parameter under OPNIDX function.)

This parameter is ignored in single-user
It specifies the type of data record

lock requested for the data file referenced by the
FILE% parameter. If the requested lock for the
data record LASKEY found cannot be granted, LOKCOD
returns a nonzero value. See the SETLOK function
for a description of lock codes.

LASKEY FunctionAccess Manager Reference Manual

Additional Comments:

Error Codes:
Table 3-19 lists the error codes for the LASKEY Function.

LASKEY Error CodesTable 3-19.
ExplanationCodeValue

Example:

Shared Record LockREC. LOO = 1 REM

3-50

To determine the two high-order bytes of the associated data
record number, call the DATVAL function immediately after LASKEY.

The following example prints data record numbers in reverse key
order.

IF ERRCOD <> 0 THEN CALL ERROR.HANDLER
IF LOKCOD <> 0 THEN CALL LOCK.CONFLICT
PRINT "The End"

30
35
46

147
153

AN
BC
BN
IC
II

DRNS = LASKEY (KEY. NOS, FILE. NOS, REC. LOO, LAST. KEYS)
WHILE DRNS <> 0 AND ERRCOD <> 0 AND LOKCOD <> 0

PRINT LAST.KEYS,DRNS
TARGETS = LEFTS(LAST.KEYS,KEY.LENS)
DRNS = BEFKEY(KEY.NOS,FILE.NOS,REC.LOKS,TARGETS,LAST.KEYS)

WEND

Index file number (KEYS) is out of range.
IDXVALS too short to contain key value.
Index file is not open.
Lock code (DLOCKS) is out of range.
Bad parameter value.

LOKCOD FunctionAccess Manager Reference Manual

LOKCOD Function

LOKCODSyntax:

System Initialization and Maintenance Function

Explanation:

Parameters;
The LOKCOD function is called without parameters.

Additional Comments:

Error Codes;
Calls to LOKCOD do not cause user errors.

3-51

LOKCOD returns a value indicating whether or not a request to
lock a data file or data record was granted.

A request to unlock a data file or individual data record fails
only if the expected lock is not found. In this case, LOKCOD
returns a one.

When a data record lock is not granted, LOKCOD returns a one to
signify a conflict with another record lock, or a two to signify the
data file (not just an individual record) is locked exclusively.

When a lock/unlock request is successful, LOKCOD
value of zero; otherwise, it returns a nonzero value.

returns a

[SINGLE] Because data file and record locks are unnecessary in
a single-user environment, all calls to LOKCOD return zero,
indicating a successful lock operation.

When a request for an exclusive data file lock is not granted,
LOKCOD returns a two if another user already holds the exclusive
file lock, or a one if another user holds a data record lock in the
specified data file.

NEWREC FunctionAccess Manager Reference Manual

NEWREC Function

(FILE%, DLOCK%)Syntax: NEWREC

Data File Update Function

Explanation:
returns the number of the next available record in a

Parameters:
FILE%

DLOCK%

LOKCOD

Additional Comments:

3-52

NEWREC
data file.

[MULTI]
operation requested
accessed.

The number of the data file where you want to locate
the next available data record.

To determine the two high-order bytes of the next available
data record number, call the DATVAL function immediately after
NEWREC.

If another user holds an exclusive file lock on the
data file specified by the FILE% parameter, LOKCOD
returns a two and the value returned by NEWREC has
no meaning. If you have already opened a data file
with either a shared or exclusive file lock,
another program cannot get an exclusive file lock.
Thus, once you open a data file, you should not run
into a lock conflict when calling NEWREC.
should never equal one following a call to NEWREC.

NEWREC automatically reclaims previously deleted data records
(see RETREC function) before extending the size of the data file.
That is, if any deleted data records are available, NEWREC uses them
first. If not, NEWREC increases the size of the data file to
generate a new data record.

Specifies the type of data record lock
for the data file to be

Even though you do not normally need to test the
LOKCOD function following a call to NEWREC, it can
be an aid to debugging your program. See the
SETLOK function for a description of lock codes.

NEWREC FunctionAccess Manager Reference Manual

Error Codes:
Table 3-20 lists the error codes for the NEWREC Function.

Table 3-20. NEWREC Error Codes
ExplanationCodeValue

Example:
file has been openedthe dataassume

3-53

NEWREC must be called each time a new data record is required.
If it is not, Access Manager does not track the actual size of the
data file. The next time you attempt to use the RETREC, READAT, or
WRTDAT function, user error 52/CD might occur (indicating the data
record number is beyond the end of the file).

60
69

177
183

CL
DE
KA
KG

Data file number (FILE%) is out of range.
First byte of deleted data record not FFH.
Lock code (DLOCK%) is out of range.
Bad parameter value.

For this example,
successfully.

DLOCK% = 2 REM Exclusive Record Lock Request
DRN% = NEWREC(FILE.NO%,DLOCK%)
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(3)
IF LOKCOD <> 0 THEN \

CALL LOCK.CONFLICT(3)

The first available data record number NEWREC returns for a
newly created data file is the first data record beginning on or
after the 129th byte of the data file. For example, if the data
file record length is greater than or equal to 128 bytes, the first
available data record number is two. If the record length is less
than 128, the first available record number ranges from three to
thirty-three, depending on the record length. (For further
information, refer to the OPNDAT function.)

NMNODS FunctionAccess Manager Reference Manual

NMNODS Funct ion

NMNODS (KEY%)Syntax:

Index File Setup and Maintenance Function

Explanation:

The number will not be

Parameters:
KEY%

Additional Comments:

Error Codes;
The NMNODS% function causes these error codes:

Table 3-21. NMNODS Error Codes
Code ExplanationValue

3-54

NMNODS returns a count of the number of used and usable records
(that is, B-Tree nodes) in an index file,
more than two bytes in length.

The count returned by the NMNODS function does not include the
index file header record.

30
46

153
AN
BN
II

The number of the index file where the used and
usable records are counted.

Index file number (KEY%) is out of range.
Index file is not open.
Bad parameter value.

The NMNODS and GETFDS functions provide a way to compute how
much disk space your Access Manager files occupy. (The example at
the end of this section shows how to do this for an index file.)

NMNODS FunctionAccess Manager Reference Manual

Example:

NO.NODES.SECTORS +7 \

3-55

This example shows how to compute the number of kilobytes
occupied by an index file. Note that one is added to TOTAL.NODS to
account for the index file header record.

TOTAL.NODES = NMNODS(PART.KEY%)
IF TOTAL.NODES < 0 THEN \

TOTAL.NODES = TOTAL.NODES + 65536.
KILOBYTES% = INT((TOTAL.NODES +1.) *

/ 8)

Access Manager Reference Manual NOKEYS Function

NOKEYS Function

NOKEYS (KEY*)Syntax;

Index File Setup and Maintenance Function

Explanation:
returns a count of the number of entries in an index

Parameters;
KEY*

*

Additional Comments:

Error Codes:
Table 3-22 lists the error codes for the NOKEYS* Function.

Table 3-22. NOKEYS Error Codes
ExplanationValue Code

is out of range.

3-56

30
46

153

The number of the index file where the entries are
counted.

Index file number (KEY*)
Index file is not open.
Bad parameter value.

AN
BN
II

NOKEYS
file.

NOKEYS returns the two low-order bytes of the number of entries
in the index file specified by KEY*. If your application program
requires the two high-order bytes, call the DATVAL function
immediately after NOKEYS.

NOKEYS FunctionAccess Manager Reference Manual

Example:

DATVAL)

3-57

NO.OF.PARTS = NOKEYS(PART.KEY%)
IF NO.OF.PARTS < 0.0 THEN \

NO.OF.PARTS = NO.OF.PARTS + 65536.
NO.OF.PARTS = NO.OF.PARTS + (65536. *

Assume you have an inventory index file with more than 65,535
entries. This example might be used to count the number of entries
or "parts” in that index file.

NXTKEY FunctionAccess Manager Reference Manual

NXTKEY Function

(KEY%, FILES, DLOCKS, IDXVAL$)Syntax: NXTKEY

Index File Search Function

Explanation:

[SINGLE]

multiusernormally used in theisNXTKEY not

Parameters:
KEYS

FILES

DLOCKS

IDXVAL$

3-58

[MULTI]
environment.

Before calling the NXTKEY function, IDXVAL$ must be
at least as long as the key length specified for
the KEYS file. Normally, it is only necessary to
initialize IDXVAL$ once at the beginning of a
program.

The number of the index file where the search takes
place.

NXTKEY is an efficient way to move through an index
file sequentially when no updates are performed. You can interleave
calls to NXTKEY for different KEYSs because separate position
pointers are maintained for each index file.

This is an OUTPUT parameter. Access Manager places
the key value found in the index file in IDXVAL$.
If no next index entry is found, NXTKEY returns a
zero, and IDXVAL$ is set to all blanks (which is
not the same as a null string).

[MULTI] This parameter is ignored in a single-user
environment. It is the number of the data file
referenced by the KEYS parameter.
[MULTI] This parameter is ignored in single-user
environments. It specifies the type of data record
lock requested for the data file referenced by the
FILES parameter. If the requested lock for the
data record that NXTKEY found cannot be granted,
LOKCOD returns a nonzero value. See the SETLOK
function for a description of lock codes.

NXTKEY returns the data record number associated with the next
entry in an index file. NXTKEY also places the key value it finds
in the IDXVAL$ parameter.

NXTKEY FunctionAccess Manager Reference Manual

Additional Comments:

Error Codes:
Table 3-23 lists the NXTKEY Function error codes.

Table 3-23. NXTKEY Error Codes
Value Code Explanation

Example;

3-59

To determine the two high-order bytes of the associated data
record number, call the DATVAL function immediately after NXTKEY.

30
35
46

147
153

AN
BC
BN
IC
II

Index file number (KEY%) is out of range.
IDXVAL$ too short to contain key value.
Index file is not open.
Lock code (DLOCK%) is out of range.
Bad parameter value.

The example listing assumes customer names are a maximum of
sixteen bytes, and the names entered into the index file are
truncated to nine bytes and suffixed with a two-byte, unique
sequence number by Access Manager. The data file record length is
64 bytes.

In the following example, SERKEY finds the first potential
match for a customer name, and NXTKEY moves through the index file
sequentially to scan the remaining potential matches. This example
is only for single-user environments because NXTKEY is used.

Before the very first call to NXTKEY for a given KEY% or after
the index file associated with KEY% is updated, one of the other
index search functions, except PRVKEY, must be called for the same
KEY%. The other search functions establish the internal pointer
used by NXTKEY and PRVKEY for sequential processing. Each time any
of the search functions are called, including NXTKEY and PRVKEY, the
internal pointer is appropriately updated. The internal pointers
are not maintained when the index file is updated.

NXTKEY FunctionAccess Manager Reference Manual

TARGETS = LEFTS(CUST.NAMES,9) + CHR$(0) + CHR$(0)

0

PRINT "Search for Customer Name ended"

NXTKEY Function Program CodeListing 3-2.

3-60

DEF SPACE(LENGTH)
INTEGER LENGTH
STRING SPACE

DLOCKS = 0
10.BUFFERS = SPACE(48) + SPACE(16)
BUFFER.PTRS = SADD(10.BUFFERS) + 2
ENTRYS = SPACE(11)
INPUT "Enter Customer Last Name;CUST.NAMES
CUST.NAMES = LEFTS(CUST.NAMES + SPACE(16),16)

REM 123456789012345678901234567890123456789012345678
SPACE = LEFTS(\

ii

,LENGTH)
RETURN

FEND

IF LEFTS(IO.BUFFERS,16) = CUST.NAMES THEN \
PRINT DRN%;IO.BUFFERS

DRNS = NXTKEY(CUST.KEYS,FILES,DLOCKS,ENTRYS)
WEND

REM
REM Target is padded with CHR$ (0) so Access Manager does
REM not pad with blanks. Note these last two bytes can
REM have any binary value because they serve simply as tie-
REM breakers. If Access Manager were allowed to pad with
REM blanks (20H), some key values which matched in the
REM significant bytes (for example, the first nine) might
REM be skipped when SERKEY is called because their last
REM two bytes were less than 2020H.
REM

DRNS = SERKEY(CUST.KEYS,FILES,DLOCKS,TARGETS,ENTRYS)
WHILE LEFTS(TARGETS,9) = LEFT$(ENTRY$,9) AND DRNS <>

IF READAT(FILES,DRNS,BUFFER.PTRS) <> 0 THEN \
PRINT "Read Error ";ERRCOD :\
STOP

REM
REM Assume Customer Name occupies the first sixteen bytes
REM of the data record
REM

OPNDAT FunctionAccess Manager Reference Manual

OPNDAT Function

OPNDAT (FILE%, DLOCK%, FILNAME$, RECLEN%)Syntax:

Data File Setup and Maintenance Function

Explanation;

Parameters:
FILE%

-1,value of

3-61

• If no match exists for FILNAME$, OPNDAT returns
the first file number not in use.

At the conclusion of the function, OPNDAT returns the number of
the opened data file.

If the FILE% parameter contains a
OPNDAT returns an integer value as follows:

• If no file number is available, OPNDAT causes
user error 60/CL, indicating the file number is
out of range.

Note that file numbers used by Access Manager are
separate from those used with your application
language. Assigning a particular number to an
Access Manager data file does not preclude your
using the same file number with an application
language file.

The number of the data file to be opened. The file
number can be an integer between zero and NDATF%-1
(NDATF% is a parameter of the SETUP function) . The
maximum value of NDATF% depends on your operating
system and whether yours is a single-user or
multiuser environment. Consult your Programmer’s
Guide.

• If an exact match for FILNAME$ (see below) is
found among the currently opened data files,
OPNDAT returns the number assigned to that file.

OPNDAT opens a data file. A data file must be opened before it
can be read, written, or erased.

Reference Manual OPNDAT FunctionAccess Manager

Specifies the type of lock requested forDLOCK%

FILNAME$

RECLEN%

Additional Comments:

3-62

[MULTI] r_
the data file to be opened.

Access Manager will assign a password to a data file created
with the OPNDAT function if a password is part of the FILNAME$
parameter (for example, B:CUSTOMER.DAT;SECRET where the password is
SECRET), and the drive on which the file is created has been set for

Set DLOCK% to four to request an exclusive file
lock. The lock is only granted if no other locks
(file or record) are held on the data file by other
programs.

A value to specify the length of the individual
records in the data file. Records must be a
minimum of four bytes in length.

DLOCK% values of one or two should not be used with
the OPNDAT function because they refer to
individual record locks.

[MULTI] Passing a FILES parameter of -1 to OPNDAT
allows different applications, or different users
of the same application, to share the same data
files without prior knowledge of file number
assignments. If a file is already open and your
application program does not use a FILES parameter
of - 1, Access Manager returns user error 63/CO
(indicating the file is already in use) or causes a
lock conflict.

A character string to indicate the name of the data
file you want to open. Access Manager always
converts the string value to upper-case letters.
The data filename can include a password. A
password is designated by a file specification
(which includes a semi-colon) followed by the
password.

If you hold a shared lock on a data file, you can
only change to an exclusive file or record lock if
no other users hold shared locks at the time. Use
the SETLOK function to attempt such a change.

Set DLOCK% to three to request a shared data file
lock. If granted, this lock stops any other user
from gaining an exclusive file lock. Any number of
users can hold shared file locks simultaneously.

You cannot open a corrupted data file with the OPNDAT function,
user error 53/CE results. See the OPRDAT function for an
explanation of opening corrupted data files.

OPNDAT FunctionAccess Manager Reference Manual

INT((128 + RECLEN% -1) / RECLENS) + 1

3-63

where INT truncates its argument. For example, if the record length
is 32 bytes, the first record available for data is number 5.
Figure 3-2 shows how the beginning of a data file is organized when
the record length is 32 bytes.

The first 128 bytes of a data file are reserved for status
information. No other data can be stored in this area. Therefore,
the first data record available to an application program use is the
one beginning at or beyond the 129th byte of the data file. The
first available data record number in a file can be determined by
the following expression:

automatic XFCB (extended File Control Block) creation. When both
conditions are satisfied, the files created by OPNDAT are protected
at the highest level; namely, READ protected (the password is
required even to read the file) . See your operating system
documentation to determine if the SET command is available to enable
automatic XFCB creation.

[MULTI] Even if automatic XFCB creation is not enabled in a
multiuser environment, or if the file was not created with a
password, the Access Manager background server will maintain
temporary passwords as long as the data file is open. However, the
password will not be permanently recorded with the data file.

OPNDAT FunctionAccess Manager Reference Manual

Available Records

T

Rec 1 Rec 2 Rec 3 Rec 5 Rec 6Rec 4

JI

9-121-4 5-8

AN 091

Sample Data File Layout for 32-byte RecordsFigure 3-2.

3-64

I
128 bytes

Reserved for
Data File Status Information

I

I
i
i
I
I

I
32 byte
records

Note that the NEWREC function automatically determines the
number of the first usable data record; your application program
need not compute this number.

13

L— Update flag.

------- Total number of records.
------- Records in use.
------- Pointer to top of deleted

records stack.

OPNDAT FunctionAccess Manager Reference Manual

Error Codes:
OPNDAT causes the following user errors:

OPNDAT Error CodesTable 3-24.
ExplanationCodeValue

Example:

If a

3-65

error
error occurred.

63
70

119
177
183

53
54
60
61

CE
CD
CL
CM

REM
REM

Automatic file number assignment
Shared file lock

CO
DF
GG
KA
KG

Data file is corrupt; no header record.
No more directory space.
Data file number (FILES) is out of range.
Data filename (FILNAME$) incorrectly
formed.
Data file (FILES) is already in use.
The data file is corrupt.
Incorrect or missing password.
Lock code (DLOCKS) is out of range.
Bad parameter value.

FILE.NOS = -1
DLOCKS = 3
RECORD.LENS = 100
FILE.NAME$ = "E:CUSTOMER.DAT"
FILE.NOS = OPNDAT(FILE.NOS,DLOCKS,FILE.NAME$,RECORD.LENS)
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(1)
IF LOKCOD <> 0 THEN \

CALL LOCK.CONFLICT(1)

Note that the OPNDAT function assigns FILE.NOS a value,
user error occurs when opening the data file, the program calls an

handling subroutine with a parameter indicating where the
The error handling routine can then call the ERRCOD

function to get the actual error code value. Likewise, if Access
Manager refuses the requested data file lock, control transfers to
the lock conflict handler.

Access Manager Reference Manual OPNIDX Function

OPNIDX Function

OPNIDX (KEY%, IDXNAME$, KEYLEN%, KEYTYP%, DUPKEY%)Syntax:

Index File Setup and Maintenance Function

Explanation:

Parameters:
KEY%

• If

indicating KEY%

or

means

3-66

• If an exact match for the IDXNAME$ parameter (see
below) is found among the currently open index
files, OPNIDX returns the index file number.

no match is found, OPNIDX returns the first
unused index file number.

of
The

[MULTI]
parameters

Index file numbers are
numbers assigned by
application language.

OPNIDX opens or creates an index file and, optionally, assigns
the file a number. When a file number is assigned, all subsequent
references to the index file are made using this number.

The ability to automatically assign KEY%
application programs running

simultaneously can share index files without any
concern about how KEY% numbers are assigned.

• If no index file number is available, user error
30/AN is returned, indicating KEY% is out of
range.

The number of the index file to be opened or
created. The number must range from zero to
NKEYS%-1 (see the SETUP function for an explanation
of NKEYS%). If KEY% passes -1 to OPNIDX, an
integer value is returned as follows:

independent of data file
Access Manager or the

Access Manager Reference Manual OPNIDX Function

IDXNAME$

KEYLEN%

KEYTYP%

DUPKEY%

is other thaneffect if KEYTYP%

3-67

Numeric key values are integers (not necessarily
restricted to two bytes) stored with the least
significant byte first and the most-significant,
including the sign of the integer, last. Negative
integers are stored in two’s complement form.

A value specifying the maximum length (in bytes) of
the key values in this index file. The value must
be at least one and not greater than forty-eight.
Integer keys must be at least two bytes in length.

All key values are passed to and from Access
Manager as string-valued quantities, even if the
key is designated as numeric. The KEYTYP%
parameter affects only the order in which keys are
stored.

A value indicating whether or not duplicate key
values should be handled by Access Manager. If
DUPKEY% is one and KEYTYP% is zero (alphanumeric
key values) , Access Manager automatically assigns
sequence numbers to the last two bytes of each key
value. For example, if KEYLEN% is ten, bytes nine
and ten of each key value are filled (or
overwritten) by Access Manager with a sequence

These sequence

A character string to indicate the name of the index
file you want to open or create. Access Manager
converts the string to upper-case letters. The
index filename might include a password. A
password is designated by a file specification
(which includes a semi-colon) followed by the
password.

by Access Manager with
number guaranteed to be unique.
numbers are in binary form and usually do not
represent valid ASCII symbols.
DUPKEY% has no
zero.
Note: please read the DELKEY function description
for important information concerning the adverse
effect of automatic duplicate keys on the time
required to delete them.

A value indicating whether the keys in this index
file are stored in alphanumerically increasing
order or numeric order. Zero indicates
alphanumeric keys; one indicates signed, integer
keys. See the description of the ADDKEY function
for additional information on coding integer key
values.

OPNIDX FunctionAccess Manager Reference Manual.

Additional Comments;

128) - 10) / (KEYLEN% + 4)

3-68

The maximum key values per index file record is computed as the
largest even integer less than or equal to

A corrupted index file cannot be opened using the OPNIDX
function. Refer to the OPRIDX function for an explanation of
opening corrupted index files.

Once you choose values for NNSEC% and KEYLEN%, you can compute
MAXKV (the maximum number of key values per index file record) . For
a computed MAXKV, the minimum possible index file size (in bytes)
for a given number of index entries is computed in Pascal/MT+ as
follows:

Access Manager assigns a password to an index file created by
OPNIDX if a password is part of the IDXNAME$ parameter (for example,
CUSTOMER.IDX;SCRAMBLE where the password is SCRAMBLE), and the drive
on which the file is created is set for automatic XFCB (extended
File Control Block) creation. When both conditions are satisfied,
the files created by OPNIDX are protected at the highest level;
namely READ protected (the password is required even to read the
file). See your operating system documentation to determine if the
SET command is available to enable automatic XFCB creation.

Based on the index file record length (refer to the NNSEC%
parameter under the SETUP function), Access Manager automatically
determines the maximum number of key values stored in each index
file record. As the number of key values per index file record
increases, the number of levels in the index structure decreases.
The number of levels in the index structure determines the maximum
number of disk accesses required to locate a key value. Of course,
if an index file record is in an Access Manager I/O buffer, no disk
access is required. Also, if the index file record length is
greater than the physical sector size of the disk, each logical
access can require two or more disk accesses.

[MULTI] Even if automatic XFCB creation is not enabled in a
multiuser environment, or if the file was not created with a
password, the Access Manager background server will maintain
temporary passwords as long as the index file is open. However, the
password will not be permanently recorded with the index file.

Further, the maximum number must be at least four, or user error
39/BG occurs. Access Manager restricts the maximum number of key
values per index file record. These restrictions are stated in your
Programmer’s Guide.

((NNSEC% *

Access Manager Reference Manual OPNIDX Function

NODES = NODES + INDEX NODES
128(NODES + 1)

AM80 External Declarations

%INCLUDE AM80EXTR.BAS

Parameter Setup

Listing 3-3. OPNIDX Function Program Code

3-69

REM
REM
REM

REM
REM
REM

WEND
INDEX FILE SIZE =

NODES = <ENTRIES / MAXKV> [where <X> is the smallest
integer greater than or equal to X]

INDEX_NODES = NODES
WHILE INDEX_NODES > 1

INDEX_NODES = <INDEX_NODES / (MAXKV + 1)>

YES% = 1
N0% = 0
PROGID% = -1
ERROR.TRAPS = NOS
TIMOUTS = 0
BUFSS = 10
KEYS* = 2
NSECS = 4
DFILES = 1

Because user errors are automatically sent to the console in
this example listing (ERROPT%, the second parameter of INTUSR,
equals 0), there are no tests of the ERRCOD function.

To compute the largest possible index file size, replace MAXKV
by MAXKV/2 in the preceding algorithm. The minimum size computation
assumes completely full nodes, while the largest size computation
assumes half-full nodes. The ordinary B-Tree structure ensures at
least half-full nodes. Access Manager performs local node rotations
that help maintain the smallest index file size by avoiding
unnecessary node splitting.

* NNSEC% *

For example, assume NNSEC% is four and KEYLEN% is ten. Access
Manager computes MAXKV to be thirty-four. The minimum bytes
required to index 10,000 key values under these circumstances is
156,672 (153K). The maximum number of bytes required is 320,512
(313K) . Actual experience with Access Manager indicates for random
insertions the index file records are approximately three- quarters
full. This corresponds to an estimated file size of 210,432 bytes
(206K).

OPNIDX FunctionAccess Manager Reference Manual

Initialize AM80

Open Index Files

No duplicate part numbersREM

Open Data File

(continued)Listing 3-3.

3-70

Alphanumeric Key
Integer Key

REM
REM
REM

REM
REM
REM

PROGID* = INTUSR*(PROGID*,ERROR.TRAP*,TIMOUTS)
DUMMY* = SETUP(BUFS*,KEYS*,NSEC*,DFILE*)

INV.LENS = 192 REM Record length
S.FILES = 3 REM Shared file lock
INV.FILES = OPNDAT(-1,S.FILES,INV.DAT$,INV.LENS)

REM
REM
REM

COST.KEYS = OPNIDX(-1,CUST.IDX$,OUST.LENS,OUST.TYPES,CUST.DUPS)
PART.KEYS = OPNIDX(-1,PART.IDX$,PART.LENS,PART.TYPES,PART.DUPS)

INV.DAT$ = "D:INVENTRY.DAT"

CUST.IDX? = "B:CUST.IDX"
PART.IDX$ = "C:PART.IDX"
OUST.TYPES = 0 REM
PART.TYPES = 1 REM
CUST.LENS = 11
PART.LENS = 4
CUST.DUPS = YESS
PART.DUPS = NO*

OPNIDX FunctionAccess Manager Reference Manual

Error Codes:
Table 3-25 lists the OPNIDX Function error codes.

Table 3-25. OPNIDX Error Codes
ExplanationValue Code

is already in

3-71

23
24
30
31
33
34
39
40
89
53

AG
AH
AN
AO
AQ
BB
BG
BH
El
II

Index file is corrupt; no header record.
No more directory space.
Index file number (KEY%) is oct of range.
Illegal index filename.
Index file number (KEY%)
use.
Key length (KEYLEN%) exceeds 48 bytes.
Key length (KEYLEN%) too long for number
of assigned disk sectors (NNSEC%).
Index file is corrupted.
Incorrect or missing password.
Bad parameter value.

OPRDAT FunctionAccess Manager Reference Manual

OPRDAT Function

OPRDAT (FILE%, DLOCK%, FILNAME$, RECLEN%)Syntax:

Data File Setup and Maintenance Function

Explanation;

the number of the opened

it

Parameters:

Error Codes:
OPRDAT causes the following user errors:

Table 3-26. OPRDAT Error Codes
ExplanationValue Code

3-72

At the conclusion of the function,
data file is returned.

Parameters for OPRDAT are
Please refer to OPNDAT for explanations of these parameters.

63
119
177
183

53
54
60
61

CO
GG
KA
KG

CE
CD
CL
CM

exactly the same as those for OPNDAT.

in place of the OPNDAT function to open a
A data file is corrupted when it has been

OPRDAT is used
corrupted data file,
updated but not subsequently closed by a SAVDAT or CLSDAT function.
OPRDAT performs exactly like the OPNDAT function except it does not
check to see if the data file is corrupted. OPRDAT can be used to
open and reconstruct a corrupted data file.

No header record in data file.
No more directory space.
Data file number (FILE%) is out of range.
Data filename (FILNAME$) incorrectly
formed.
Data file (FILE%) number already in use.
Incorrect or missing password.
Lock code (DLOCK%) is out of range
Bad parameter value.

Note: a corrupted data file opened with OPRDAT and then
subsequently saved (SAVDAT) or closed (CLSDAT) will no longer appear
corrupted to Access Manager even if it still is corrupted.
Therefore, use OPRDAT with due caution.

Access Manager Reference Manual OPRDAT Function

Example:

Exclusive file lockREM

REM

3-73

FILE.NO% = OPRDAT(FILE.NO%,DLOCK%,FILE.NAME?,RECORD.LEN%)
IF ERRCOD <> 0 AND ERRCOD <> 53 THEN \

CALL ERROR.HANDLER(1)
IF LOKCOD <> 0 THEN CALL LOCK.CONFLICT(1)

DUMMY% = ERADAT(FILE.NO%,DLOCK%)
FILE.NO% = OPNDAT(-1,DLOCK%,FILE.NAME?,RECORD.LEN%)
IF ERRCOD <> 0 THEN CALL ERROR.HANDLER(2)
IF LOKCOD <> 0 THEN CALL LOCK.CONFLICT (2)

FILE.NO% = -1
DLOCK% = 4
RECORD.LEN% =100
FILE.NAME? = "E:DUMMY.DAT"

If no errors, erase old file and create new, empty file.

This examples demonstrates how to create a data file that is
guaranteed to be new. The old data file is erased first, even if it
is corrupted.

OPRIDX FunctionAccess Manager Reference Manual

OPRIDX Function

OPRIDX (KEY%, IDXNAME$, KEYLEN%, KEYTYP%, DUPKEY%)Syntax:

Index File Setup and Maintenance Function

Explanation:

of the file.
If OPNIDX

Parameters;

Additional Comments:

3-74

function,
these parameters.

Parameters for OPRIDX are exactly the same as for the OPNIDX
Please refer to the OPNIDX Function for a discussion of

OPRIDX behaves exactly the same as the OPNIDX function except
it does not check the integrity of the index file.

An index file opened with OPRIDX and subsequently closed using
SAVIDX or CLSIDX might appear uncorrupted to Access Manager when in
fact it is corrupted. If an index must be opened with OPRIDX,
replace or rebuild it immediately.

OPRIDX opens or creates an index file that cannot be opened or
created using the OPNIDX function.

Each time OPNIDX opens an index file, it checks the integrity
Integrity is lost if the file has been updated but not

subsequently closed using the SAVIDX or CLSIDX functions.
discovers a loss of integrity in the index file, the file is not
opened, instead, user error 40/BH is issued.

OPRIDX is typically used with the ERAIDX function. Any other
use of OPRIDX can cause unexpected error conditions, including
Access Manager internal consistency errors.

OPRIDX FunctionAccess Manager Reference Manual

Error Codes;
OPRIDX causes the error codes listed in Table 3-27.

OPRIDX Error CodesTable 3-27.
ExplanationCodeValue

is already in

153 II

Example:

3-75

23
24
30
31
33
34
39

DUMMY% = ERAIDX(KEY%)
KEY% = OPNIDX(-1,KEY.NAME$,KEY.LEN%,KEY.TYP%,KEY.DUP%)
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER(2)

AG
AH
AN
AO
AQ
BB
BG

KEY% = -1
KEY.NAME$ =

KEY% = OPRIDX(KEY%,KEY.NAME$,KEY.LEN%,KEY.TYP%,KEY.DUP%)
IF ERRCOD <> 0 AND ERRCOD <> 23 THEN \

CALL ERROR.HANDLER(1)

"DUMMY.IDX"
KEY.LEN% = 10
KEY.TYP% = 0
KEY.DUP% = 0

This example demonstrates how to create an index file
guaranteed to be new and empty (possibly for temporary use) . Note
that OPRIDX should be used in conjunction with the ERAIDX and OPNIDX
functions.

No header record in index file.
No more directory space.
Index file number (KEY%) is out of range.
Illegal index filename.
Index file number (KEY%)
use.
Key length (KEYLEN%) exceeds 48 bytes.
Key length (KEYLEN%) is too long for the
number of assigned disk sectors
(NNSEC%).
Bad parameter value.

PRVKEY FunctionAccess Manager Reference Manual

PRVKEY Function

(KEY%, FILE%, DLOCK%, IDXVAL$)Syntax: PRVKEY

Index File Search Function

Explanation;

move
file updates are performed.

in multiuseris normally usedPRVKEY not a

Parameters;
KEY%

FILE%

DLOCK%

IDXVAL$

3-76

[MULTI]
environment.

[MULTI]
environment.

This parameter is ignored in a single-user
It is the number of the data file

referenced by the KEY% parameter.
This parameter is ignored in single-user

It contains a code to specify the
the data

If the

PRVKEY returns the data record number associated with the
preceding key value in an index file. PRVKEY also places the value
of the key it finds in the IDXVAL$ parameter.

The number of the index file where the search takes
place.

PRVKEY is an efficient way to move sequentially backward
through an index file in a single-user environment when no index

You can interleave calls to PRVKEY for
different KEY%s because separate position pointers are maintained
for each index file.

This is an OUTPUT parameter. Access Manager places
the key value found in the index file in IDXVAL$ at
the conclusion of the function. If no previous
index entry is found, PRVKEY returns a zero, and
IDXVAL$ is set to all blanks (which is not the same
as a null string).

[MULTI]
environments.
type of data record lock requested for
file referenced by the FILE% parameter,
requested lock for the data record PRVKEY found
cannot be granted, LOKCOD returns a nonzero value.
See the SETLOK function for a list of acceptable
lock codes.

PRVKEY FunctionAccess Manager Reference Manual

Additional Comments:

Error Codes:
Table 3-28 lists the PRVKEY Function user errors.

PRVKEY Error CodesTable 3-28.
ExplanationCodeValue

3-77

To determine the two high-order bytes of the associated data
record number, call the DATVAL function immediately after PRVKEY.

30
35
46

147
153

AN
BC
BN
IC
II

Index file number (KEY%) is out of range.
IDXVAL$ is too short to contain key value.
Index file is not open.
Lock code (DLOCK%) is out of range.
Bad parameter value.

Before calling the PRVKEY function, IDXVAL$ must be
at least as long as the key length specified for
the KEY% file. Normally, it is only necessary to
initialize IDXVAL$ once at the beginning of a
program.

Before the very first call to PRVKEY for a given KEY% or after
the index file associated with KEY% is updated, one of the other
index search functions, except NXTKEY, must be called for the same
KEY%. The other search functions establish the internal pointer
used by PRVKEY and NXTKEY for sequential processing. Each time any
of the search functions are called, including NXTKEY and PRVKEY, the
internal pointer is appropriately updated. However, the internal
pointers are not maintained when the index file is updated.

Access Manager Reference Manual READAT Function

READAT Function

(FILES, DRNS, BUFFERS)Syntax: READAT

Data File Update Function

Explanation;
into a buffer

memory.

Parameters:
FILES

DRNS

BUFFERS

buffer

Additional Comments:

3-78

If the data record number (DRNS) exceeds two bytes, call the
SETDAT function immediately before READAT to set the two high-order
bytes of the data record number.

The number of the data file from which the data
record is read.

Your application program must also parse the data record into
the desired variables for use. This is easily accomplished in
languages permitting based variables and/or data structures.

Your application program must ensure that sufficient space is
allocated at the location specified by the BUFFERS parameter to
accommodate the data records. In other words, make sure your buffer
area is large enough to contain your data records.

The address of a buffer area in memory,
data record is read from the data
placed in this buffer area for
processing.

The number of the data record to be read from the
file specified by the FILES parameter.

READAT reads a specified data record into a buffer area in
If the read operation is successful, READAT returns a zero

at the conclusion of the function; otherwise, a nonzero user error
code results.

When the
file, it is
subsequent

READAT FunctionAccess Manager Reference Manual

Error Codes:

Table 3-29. READAT Error Codes
ExplanationCodeValue

52 CD or
53 CE
60 CL

183 KG

Example:

0 THEN \

NEXT FLD%

3-79

READ.BUFFER? = SPACE$(RECORD.LENGTH%)
ADR.BUFFER% = SADD(READ.BUFFER?) + 2

FOR FLD% = 1 TO NO.FLDS%
FIELD?(FLD%) = MID?(READ.BUFFER?,FIELD.BEG%(FLD%), \

FIELD.LEN%(FLD%))

IF READAT(FILE.NO%,DRN%,ADR.BUFFER%)
CALL ERROR.HANDLER

Data record number (DRN%) is zero
beyond the logical end-of-file.
Attempt to read past physical end-of-
file or read unwritten data.
Data file number (FILE%) is out of
range.
Bad parameter value.

READAT returns zero if the read operation is successful;
otherwise, a nonzero value is returned. User errors that might
result are listed in Table 3-29.

RETREC FunctionAccess Manager Reference Manual

RETREC Function

(FILE%, DLOCK%, DRN%)Syntax: RETREC

Data File Update Function

Explanation:

Parameters;
FILE%

DLOCK%

after deleting the data record.

3-80

If Access Manager grants the requested data record
lock, RETREC places the returned data record number
at the top of a logical stack of deleted records.
If a lock conflict occurs, no action is taken and
LOKCOD returns the appropriate nonzero value.

[MULTI]
env ironment.

If the RETREC
its conclusion;

The number of the data file where data records are
reclaimed.

Note that unless RETREC is called with a DLOCK%
parameter of zero, you must test the return value
of LOKCOD immediately after calling RETREC. If
LOKCOD returns a nonzero value, the data record is
not deleted and your application program must take
appropriate action. Further, if RETREC is
successful, the data record lock held by the
calling program is automatically released.

RETREC returns data records to the pool of available records
for subsequent reuse with the NEWREC function,
function is successful, zero is returned at
otherwise, a nonzero user error code results.

RETREC automatically releases the data record lock
This ensure that

no other program gets the just deleted record from
NEWREC before the deleting program releases its
data record lock. In short, the deletion and
release-lock operations work as an automatic
operation. Therefore, it is unnecessary to call
FRELOK after RETREC.

This parameter is ignored in a single-user
It contains a code specifying the

type of data record lock requested for the data
file to be accessed. See the SETLOK function for a
list of acceptable lock codes.

RETREC FunctionAccess Manager Reference Manual

DRN%

Additional Comments:

Table 3-30. Contents of Deleted Data Record

Contents
0

1-3 A link to the next available data record.
4 + Undefined.

3-81

Byte
Position

If the data record number requires more than two bytes, call
the SETDAT function immediately after RETREC.

The data record number of the record to be returned
to the pool.

The OFFH value in the first byte of deleted data records serves
two purposes. First, Access Manager checks the first byte of every
deleted record it is about to reuse to see if it contains OFFH. If
it does not, user error 69/DE results. Second, your application
program can use the first byte as a deleted record flag. Therefore,
when reading through a data file without accessing the index files,
you can disregard data records with OFFH in the first byte. This
latter use assumes you either reserved the first byte for the delete
flag or your valid data can never contain OFFH in the first byte.

OFFH (255 decimal) . This byte serves as a
flag for deleted data records. Your program
should reserve this byte and ensures it never
otherwise contains OFFH.

The stack of deleted records is implemented by a linked list
that ensures fast operation because the NEWREC and RETREC functions
manipulate only the topmost record in the stack. After a successful
call to RETREC, the record in the data file with record number DRN%
has two fields written over the previous contents. These fields are
defined in the following table:

RETREC FunctionAccess Manager Reference Manual

Error Codes:
Table 3-31 lists the error codes caused by the RETREC Function.

RETREC Error CodesTable 3-31.
ExplanationCodeValue

52 CD

Example;

Exclusive Record Lock Request Code

3-82

60
69

177
183

DLOCK% = 2 REM
CALL SETDAT(DRN2%)

CL
DE
KA
KG

IF RETREC (FILE.NO% ,DLOCK%,DRN%) <> 0 THEN \
CALL ERROR.HANDLER(4)

IF LOKCOD <> 0 THEN \
CALL LOCK.CONFLICT(4)

In this example, DRN2% contains the two high-order bytes and
DRN% the two low-order bytes of the data record number to be
returned to the pool of available data records. Note the use of
SETDAT to initialize DRN2%. The arguments of the exception
processing functions indicate the location of the exception.

Data record number (DRN%) is zero of
beyond the logical end-of-file.
Data file number (FILE%) is out of range.
First byte of record is not OFFH.
Lock code (DLOCK%) is out of range.
Bad parameter value.

Access Manager Reference Manual SAVDAT Function

SAVDAT Function

Syntax: SAVDAT (FILE%)

Data File Setup and Maintenance Function

Explanation:

no

Parameters;
FILES The number of the saved data file.

Additional Comments:

3-83

SAVDAT has the same affect on a data file as issuing a call to
CLSDAT followed by a call to OPNDAT, except that if there are
updates, SAVDAT simply returns without performing any actions.

SAVDAT forces data file updates to the disk while keeping the
data file open for further use. If the save operation is
successful, a zero is returned at the conclusion of the function;
otherwise, a nonzero user error results.

If you make changes to a data file, your application program
must call the SAVDAT or CLSDAT function to force the updates to the
disk file. If you do not do this, the integrity of the data file
can be disrupted because the Access Manager header record could be
incorrect. Further, the operating system might be holding data in
internal buffers. SAVDAT and CLSDAT force the updated header record
to the disk and flush the operating system buffers. Calling SAVDAT
after each new record is added to a data file will degrade system
performance. You must balance the desire for security with the need
for quick response times.

The main use of the SAVDAT function is to save data file
updates at critical points in your application program. Hardware or
software failures cannot corrupt a saved data file unless additional
updates have been performed subsequent to the save.

SAVDAT FunctionAccess Manager Reference Manual

Error Codes:
Table 3-32 lists the user errors for the SAVDAT Function.

SAVDAT Error CodesTable 3-32.
ExplanationCodeValue

Example:

3-84

CL
DI
KA
KG

60
73

177
183

IF SAVDAT(FILE.N0%) = 0 THEN \
PRINT "File save was successful."

Data file number (FILE%) is out of range.
Could not reopen data file during save.
Lock code (DLOCK%) is out of range.
Bad parameter value.

Access Manager Reference Manual SAVIDX Function

SAVIDX Function

Syntax: SAVIDX (KEY%)

Index File Setup and Maintenance Function

Explanation:

Parameters;
KEY% The number of the saved index file.

Additional Comments:

3-85

SAVIDX has the same affect on an index file as issuing a call
to CLSIDX followed by a call to OPNIDX, except that if there are no
updates, SAVIDX simply returns without performing any actions.

If you make changes to an index file, your application program
must call the SAVIDX or CLSIDX function to force the updates to the
disk file. If this is not done, the integrity of the index file is
not ensured because some updated nodes might still be in an I/O
buffer and/or the header record might be incorrect. Calling SAVIDX
after each update of an index file will degrade system performance.
You must balance the need for security with that for speedy updates.

SAVIDX forces index file updates to the disk while keeping the
file open for further use. If the save operation is successful,
zero is returned at the conclusion of the function; otherwise, a
nonzero user error code results.

The main use of the SAVIDX function is to save index file
updates at critical points in your application program. Hardware or
software failures cannot corrupt a saved index file unless
additional updates have been performed since SAVIDX was used.

SAVIDX FunctionAccess Manager Reference Manual

Error Codes:
The SAVIDX function causes the following user errors:

Table 3-33. SAVIDX Error Codes
ExplanationValue Code

3-86

21
30
43
46

153

AE
AN
BK
BN
II

Disk or directory full.
Index file number (KEY%) is out of range.
Could not reopen index file during save.
Index file (KEY%) is not open.
Bad parameter value.

SERKEY FunctionAccess Manager Reference Manual

SERKEY Function

(KEY%, FILE%, DLOCK%, KEYVAL$, IDXVAL$)Syntax: SERKEY

Index File Search Function

Explanation:

Parameters;

KEY%

FILE%

[MULTI]DLOCK%

See

KEYVAL$ of key record being usedthe aas

IDXVAL$

n

3-87

SERKEY can be used to locate an entry in an index file when
only the beginning portion of the key value is known.

[MULTI]
environment.

This parameter is ignored in a single-user
It is the number of the data file

referenced by the KEY% parameter.
This parameter is ignored in single-user

environments. It contains the code specifying the
type of data record lock requested for
file referenced by the FILE% parameter,
requested lock for
cannot be granted, LOKCOD returns a nonzero value,

the SETLOK function for a list of acceptable
lock codes.

the data
If the

the data record SERKEY found

This is an OUTPUT parameter. Access Manager places
the key value found in the index file in IDXVAL$.
If no index entry is found with a key value equal
to or greater than KEYVAL$, SERKEY returns a zero
and IDXVAL$ is set to all blanks (which is not the
same as a null string) . Also see "Additional
Comments" below.

The number of the index file where the search takes
place.

SERKEY returns the data record number assigned to the first
entry (in key-sequential order) that is equal to or greater than a
specific key value. SERKEY also places the key value it finds in
the IDXVAL$ parameter.

The value
reference.

Access Manager Reference Manual SERKEY Function

Additional Comments:

(See OPNIDX

Error Codes:
Table 3-34 lists the SERKEY Function user errors.

Table 3-34. SERKEY Error Codes
ExplanationCodeValue

3-88

If you must determine the two high-order bytes of the data
record number found by SERKEY, call the DATVAL function immediately
after SERKEY.

There are three additional notes to consider concerning the
IDXVAL$ parameter:

• KEYVAL$ and IDXVAL$ cannot be the same variable because IDXVAL$
might be initialized to all blanks before the actual search of
the index file.

30
46

147
153

AN
BN
IC
II

Index file number (KEY%) is out of range.
Index file is not open.
Lock code (DLOCK%) is out of range.
Bad parameter value.

•If IDXVAL$ is longer than the KEYLEN% associated with KEY%,
IDXVAL$ is padded on the right with blanks,
function description.)

As mentioned under "Duplicate Key Values" in the ADDKEY
function, situations can arise where key values must be modified to
accommodate duplicate key values. When this is done, you can no
longer use GETKEY to locate such an index entry because the sequence
number modifies the original value. SERKEY can find the first
candidate for a match with the specified key value. Subsequent
candidates are found using the NXTKEY and/or AFTKEY function.
KEYVAL$ must be set up to avoid automatic padding by Access Manager.

• Access Manager never changes the address or length of IDXVAL$
(which is a string-valued parameter). If IDXVAL$ is not
initially set to a string value that is long enough to contain
the string-valued index entries assigned to IDXVAL$, Access
Manager cannot make the assignment (this results in user error
35/BC). At the beginning of an application program, you must
set up one or more string variables that can be used in
subsequent calls to SERKEY and to the other Access Manager
functions that return key values from the index. This can be
accomplished by assigning sufficiently long, blank strings to
these variables.

SERKEY FunctionAccess Manager Reference Manual

Example:

3-89

KEY.VALUE? = LEFT?(KEY.VALUE? + SPACE?(KEY.LEN%),KEY.LEN%-2)
KEY.VALUE? = KEY.VALUE? + CHR?(0)
DRN% = SERKEY(KEY%,FILE%,DLOCK%,KEY.VALUE?,IDXVAL$)

This example shows how to use SERKEY to find the first key
value in a set of duplicates. Assume the function SPACE? has been
defined and returns a blank string equal in length to its argument
value. Also, assume KEY.LEN% is the key length including the two-
byte sequence number automatically set by the ADDKEY function.

IDXVAL? = SPACE?(KEY.LEN%)
INPUT "Enter the target key value: KEY.VALUE?

Access Manager Reference Manual SETDAT Function

SETDAT Function

SETDAT (DRN%)Syntax:

Data File Setup and Maintenance Function

Explanation:

Parameters:
The two high-order bytes of the data record number.DRN%

Additional Comments:

Error Codes;

Example:

3-90

CALL SETDAT(SEG.NO%)
RET.CODE% = ADDKEY(KEY%,FILE.NO%(1),XCLSV.LOCK%,KEYVAL$,DRN%)
IF ERRCOD <> 0 THEN CALL ERROR.HANDLER
IF LOKCOD <> 0 THEN CALL LOCK.CONFLICT
IF RET.CODE <> 1 THEN CALL ADDKEY.PROBLEM

SETDAT is always used with another Access Manager function and
is called immediately before that function.

Use SETDAT only when the input data record number parameter
(DRN%) exceeds the two-byte capacity of an ordinary integer variable
(65,535) .

SETDAT passes the two high-order bytes of the four-byte data
record number when needed. If you do not call SETDAT, the two high-
order bytes are set to zero.

SETDAT does not return a value; it sets the two high-order
bytes for data record numbers used as input parameters in other
Access Manager functions (such as RETREC).

SETDAT does not cause user errors.

SETLOK FunctionAccess Manager Reference Manual

SETLOK Function

SETLOK (FILE%, DLOCK%, DRN%)Syntax;

Data Locking Function

Explanation:
SETLOK sets a

This function has no
effect in a

Parameters:
FILES

DLOCKS

DRNS

Additional Comments:

Acceptable lock request codes are shown in Table 3-35.

3-91

to specify the type of lock operation
Table 3-35 lists the lock requests that

be requested with this function.

The number of the data file for which the lock is
requested.

If the requested lock is granted, LOKCOD is set to zero and the
calling program (see PROGIDS parameter under the INTUSR function)
holds the lock.

The code
requested.
can

lock on a data file or data record. If the lock
operation is successful, zero is returned at the conclusion of the
function; otherwise, a one or two is returned.

single-user environment.

The number of the data record for which the lock is
requested.

If the requested lock cannot be granted, LOKCOD is set to one
or two. One indicates a record lock conflict; two indicates a
conflict with an exclusive file lock.

Access Manager Reference Manual SETLOK Function

Data File/Data Record Lock RequestsTable 3-35.

Lock Request

lock

3-92

update a data record,
same record at the same time.

A shared file lock (DLOCK% = 3) ensures that the user cannot be
subsequently blocked from the file by another user's exclusive file
lock.

Use an exclusive data record lock (DLOCKS = 2) when you want to
This prevents two users from updating the

2
3
4

0
1

DLOCK%
Value

of
an

the record for

When one user holds an exclusive file lock, all other nonzero
lock requests (that is, DLOCK% = 1, 2, 3, or 4) by other users are
denied with a LOKCOD of two.

Locks are ignored but LOKCOD returns zero.
Attempt a shared record lock on record number
DRN%.
Attempt an exclusive record lock on DRN%.
Attempt a shared file lock on FILE%.
Attempt an exclusive file lock on FILE%.

review the record but have
updating it.
exclusive lock,
review.

The ignore lock request (DLOCK% = 0) always returns a
successful LOKCOD result. Therefore, unless your program relies on
locking protocols outside Access Manager, use caution when passing
DLOCK% with a zero. This lock request is most commonly used when
your program must search an index file but you do not want to access
the data record associated with the returned key value.

A user holding a shared record lock can try to change to an
exclusive lock; but an attempt to change to an exclusive lock on a
data record that already carries shared locks by other users fails
with a LOKCOD of one.

Use an exclusive data file lock (DLOCK% = 4) when it is
imperative that no other users have access to the records in a data
file. An exclusive file lock is granted only if no other users have
shared locks on the file and there are no active data record locks.

Index file functions can set data record locks at the time the
index file operation takes place. Therefore, calling SETLOK when a
data record is located by the index file functions is not normally
necessary.

Use a shared data record lock (DLOCK% = 1) when you want to
no intention (at least not yet)

The shared lock blocks other users from gaining
but still allows them to access

SETLOK FunctionAccess Manager Reference Manual

Error Codes:
SETLOK Function error codes are listed in Table 3-36.

Table 3-36. SETLOK Error Codes
ExplanationValue Code

52 CD or

Example:

IF ERRCOD <> 0 THEN CALL ERROR.HANDLER

3-93

60
177
183

CL
KA
KG

IF SETLOK(FILE.NO%,2,DRN%) <> 0 THEN \
PRINT "Exclusive lock failed."

For this example, assume a shared record lock is held on the
data record (DRN%) . The purpose is to upgrade the shared lock to an
exclusive record lock.

Data record number (DRN%) is zero
beyond the logical end-of-file.
Data file number (FILE%) is out of range.
Lock code (DLOCK%) is out of range.
Bad parameter value.

Access Manager Reference Manual SETUP Function

SETUP Function

SETUP (NBUFS%, NKEYS%, NNSEC%, NDATF%)Syntax:

System Initialization and Maintenance Function

Explanation:

Parameters;
NBUFS%

NKEYS%
The value

NNSEC%

the

the following practical

3-94

There is no upper
but because there are

area and
You must

A value specifying the maximum number of index files
the program will use simultaneously,
must be at least one.

SETUP only applies in single-user environments. Calls to SETUP
are ignored in a multiuser environment because the background server
automatically calls the function.

A value specifying the number of index file I/O
buffers to be used. There must be at least three
of these buffers.

SETUP prepares the special Access Manager buffer
specifies the basic characteristics of the index files,
complete the SETUP function before opening or using any index and/or
data files in your program.

As the number of buffers increases, the time to
access a key value decreases and the memory space
required increases. All index files share the same
buffer space, thereby minimizing the memory
required in your program. Even if several index
files are used simultaneously, it is not necessary
to use more than three buffers.

Determines or specifies the length of the records in
an index file. Specifically, NNSEC% is the number
of 128-byte disk sectors in each index file record.
Each record corresponds to a B-Tree node. The more
sectors per record, the more key values stored per
node. The more key values stored per node,
fewer accesses required to find a key value.
NNSEC% must be at least one.
limit for this parameter,
limits on the number of key values stored per node,
you should consider
limitations.

SETUP FunctionAccess Manager Reference Manual

NDATF%

Additional Comments:

Error Codes:

SETUP Error CodesTable 3-37.
ExplanationCodeValue

209 MA

Example;
See the INTUSR function description.

3-95

See the "Access Manager Design Constraints" section of your
Programmer’s Guide for additional information on the maximum values
permitted for SETUP parameters.

• Access Manager forces all index files open at the
same time to have the same record length.

Illegal parameter
too small.

The SETUP function returns a zero if the parameter values fall
within their legal ranges and the buffer area is large enough.
Error codes that can result are listed in Table 3-37.

A value specifying the maximum number of data files
that are open at one time. It is not necessary to
use the Access Manager data file functions. You
can use routines coded in the application language
or in whatever form is appropriate for your
programs.

• To maintain compatibility with application
software from other vendors, Digital Research
suggests a value of four as an informal standard
for the NNSEC% parameter. Compatibility is
particularly important for multiuser environments
because different software can operate
simultaneously.

Although unlikely, you might want to change the SETUP
parameters during the course of your application program. If you
do, be certain to close all index and data files before subsequent
calls to SETUP.

value or buffer area

Access Manager Reference Manual UPDPTR Function

UPDPTR Function

(KEY%, FILE%, DLOCK%, KEYVAL$, DRN%)Syntax: UPDPTR

Index File Update Function

Explanation:

(DRN%).

Parameters:

KEY%

[MULTI]FILE%

[MULTI]DLOCK%

KEYVAL$

3-96

The key value for the record where the data record
number is changed.

Without UPDPTR, you would first have to delete KEYVAL$ from the
index file and then reinsert it with its new data record number

UPDPTR provides a more efficient method for doing this.

If sequence numbers are assigned for duplicate keys
by Access Manager (see ADDKEY function)t KEYVAL?
must include the proper sequence number.

the data
See the

lock

This parameter is ignored in single-user
environments. It contains the number of the data
file referenced by the KEY% parameter.

This parameter is ignored in single-user
environments. It contains a code specifying the
type of data record lock requested for
file referenced by the FILE% parameter.
SETLOK function for a list of acceptable
codes.

UPDPTR changes the data record number assigned to an existing
key value. At the conclusion of the function, a value is returned
to indicate the success or failure of the update operation (see
Additional Comments below).

The number of the index file where the data record
number is changed.

To ignore locking protocols in a multiuser
environment, assign DLOCK% a value of zero. This
procedure, however, is not recommended.

UPDPTR FunctionAccess Manager Reference Manuar

DRN%

Additional Comments:
UPDPTR returns one of the values listed in Table 3-38.

UPDPTR Function ValuesTable 3-38.
MeaningValue

Error Codes;
Table 3-39 lists the user errors for the UPDPTR Function.

UPDPTR Error CodesTable 3-39.
ExplanationCodeValue

Example:

3-97

0
1
4

30
46

147
153

AN
BN
IC
II

Index file number (KEY%) is out of range.
Index file is not open.
Lock code (DLOCK%) is out of range.
Bad parameter value.

CALL SETDAT(DRN2%)
IF UPDPTR(KEY%,0,0,KEY.VALUE$,DRN%) <> 1 THEN \

PRINT "Index file pointer not updated."
IF ERRCOD <> 0 THEN \

CALL ERROR.HANDLER

was
(DRN%).

KEYVAL$ was not found in the index.
The data record number was successfully changed.
The requested DLOCK% was not granted for the
specified data record (DRN%). The change is not
made nor is the index file searched for KEYVAL$.

The data record number assigned to the key value
contained in KEYVAL$. Specifically/ this is the
new number assigned to the key value.

Access Manager Reference Manual WRTDAT Function

WRTDAT Function

Syntax: (FILE%, DRN%, BUFFER%)WRTDAT

Data File Update Function

Explanation:

Parameters;
FILE%

DRN%

BUFFER%

Additional Comments;

3-98

If the data record number (DRN%) exceeds two bytes, call the
SETDAT function immediately before WRTDAT to set the two high-order
bytes of the data record number.

The number of the data file into which the data
record is written.

The address of a buffer area from which the data
record is written into the data file.

The relative number of the data record to be written
into the file specified by the FILE% parameter.

a zero is returned at the
the function; otherwise, a nonzero user error code

Your application program must ensure that sufficient space is
allocated at the location specified by the BUFFER% parameter to
accommodate the data records. In other words, make sure your buffer
area is large enough to contain your data records.

WRTDAT writes a data record into a data file. The data record
to be written is taken from a buffer area in your computer’s memory.
If the write operation is successful,
conclusion of
results.

WRTDAT FunctionAccess Manager Reference Manual

Error Codes:

WRTDAT Error CodesTable 3-40.
ExplanationCodeValue

write

Example:

End of Section 3

3-99

the write operation,
the WRTDAT Function.

If WRTDAT returns a nonzero value, a user error occurred during
Listed in Table 3-40 are the error codes for

60
183

51
52

ADR.BUFFER% = SADD(WRITE.BUFFERS) + 2
IF WRTDAT(FILE.NO%,DRN%,ADR.BUFFER%) <> 0 THEN \

CALL ERROR.HANDLER(LOCALE%)

CC
CD
CL
KG

WRITE.BUFFERS = " "
FOR FLD% = 1 TO NO.FLDS%

WRITE.BUFFERS = WRITE.BUFFERS + FIELDS(FLD%)
NEXT FLD%

Disk or directory is full.
Attempt to write record zero or
past logical end-of-file.
Data file number (FILE%) is out of range.
Bad parameter value.

4.1 Error Types

4.1.1 Internal Consistency Errors

Access Manager Internal Error ...XY...
where XY is replaced by one of the codes listed in Table 4-1.

4.1.2 User Errors

is called with a

USER ERROR ...XY... CHECK ACCESS MANAGER MANUAL

4-1

Section 4
Access Manager Error Codes

where XY is replaced by one of the codes listed in Table 4-1.
Control then returns to the operating system.

User errors occur when Access Manager finds avoidable problems;
such as no more space on a disk or an illegal value for the KEY%
parameter. You determine how Access Manager handles user errors by
the value passed in the ERROPT% parameter via the INTUSR function.
You have two options:

If, after reviewing your application program you cannot find
any obvious cause for the internal error and cannot successfully
recreate the file, please contact Digital Research. Provide as much
information about the error as possible, including the two character
error code that is displayed.

Access Manager functions generate two
internal consistency errors and user errors.

If an Access Manager internal consistency error does
console displays an error message of the following

• If the INTUSR function is called with a zero value in the
ERROPT% parameter, the console displays a user error message of
the following form:

Access Manager generates internal consistency errors when a B-
Tree index file or a data file does not satisfy the internal
consistency checks the Access Manager functions perform when a file
is used. Such errors do not occur unless your application is
processing corrupted files or a pointer variable is not properly
initialized.
occur , the
form:

• If the INTUSR function is called with a nonzero value in the
ERROPT% parameter, user errors can be trapped by testing the
ERRCOD function for a nonzero value after calls to Access
Manager functions. When a user error occurs, ERRCOD returns
one of the values listed in Table 4-1.

types of errors:

Access Manager Reference Manual 4.1 Error Types

Table 4-1. Access Manager User Error Codes
ExplanationCodeValue

21 AE

23 record.AG

24 AH

25 Al

30 The valueAN

0 <= KEYS < NKEYSS
31 AO

33 BA
an

34 BB

35 BC

36 BD

4-2

In Table 4-1, the symbol
error message to the console.

KEYS parameter value is out of range,
must satisfy the following equation:

The KEYLENS parameter value in an OPNIDX function
exceeds the maximum allowable value of 48.

Cannot write an index file record. Check to see
if the disk or its directory is full.

the disk,
new index

*
The symbol

IDXNAME$
contains
see if

While using the ADDKEY function, an attempt was
made to assign zero as the data record number.

The
function
Check to
value.
You are attempting to reuse an index file number
(KEYS parameter value) already assigned to
open index file.

marks errors that send a complete
marks errors that are

trapped by Access Manager only if your operating system supports
extended BDOS error returns.

There is no more directory space on
This occurs while trying to create a
file.

parameter value in an OPNIDX
unacceptable information,

the parameter contains

Access Manager could not find the name of the
index file in the disk directory while attempting
to close the file. This might occur if overlays
destroy the Access Manager data areas.

a null

Cannot read index file record. You might be
attempting to use a newly created index file was
never closed properly.

The IDXVAL$ parameter has been initialized with
an improper value. Check to make sure the
parameter value is at least as long as the key
length.

Access Manager Reference Manual 4.1 Error Types

Table 4-1. (continued)
Value Code Explanation

39 BG

40 BH

43 BK

44 BL

46 BN

51 CC

52 CD

53 CE

54 CF

55 CG

4-3

You have attempted to close an index file that is
not currently open.

the
The
to

file
This

an overlay destroys the Access
Access Manager cannot close the data
specified in a CLSDAT function parameter,
might occur if
Manager data areas.

You have made an attempt to
that is not currently open.

The key length (KEYLEN%) is too long for
number of disk sectors assigned (NNSEC%).
number of sectors must be sufficient
accommodate at least four key values.

Access Manager was unable to reopen an index file
while performing the SAVIDX function. This error
should not occur under normal circumstances. If
it persists, notify Digital Research.

Access Manager cannot read the data record your
program has requested. You might be attempting
to read a newly created data file that was not
properly closed, read past the physical end of
the data file, or read unwritten data.

When trying to open an index file with the OPNIDX
function, Access Manager found the file to be
corrupted. Index files become corrupted when
they are not closed (CLSIDX or SAVIDX functions)
following updates. The index file must be
rebuilt.

Access Manager cannot write the data record into
the data file. The disk or directory might be
full.
While using the READAT, WRTDAT, or RETREC
function, you have attempted to use a data record
number of zero, or a data record beyond the
logical end of the data file. If applicable,
check the way you have used the NEWREC function.

There is no more directory space on the disk
where you are attempting to create a data file.

use an index file

Access Manager Reference Manual Error Types4.1

(continued)Table 4-1.
ExplanationValue Code

60 CL

0 <= FILES < NDATF%
61 CM

63 CO

69 DE
YouFFH.

70 DF

73 DI

74 DJ

(FILEShave attempted to76 DL

disk during83" EC a

84" ED

85" EE

86" EF

4-4

value
conta ins
likely

An index filename references a nonexistent drive,
or the File Control Block is no longer active.

You have attempted to close a data file (FILES
parameter) that is not currently open.

You have attempted to update an index file on a
disk with Read-Only status.
You have attempted to update an index file with
Read-Only status.

specified in a FILES
The file number must

Access Manager cannot reopen a data file during a
SAVDAT function. See discussion of user error
43/BK.

The data file number
parameter is out of range,
satisfy this equation:

in an OPNDAT or
unacce p table

cause is a null

The data file you have attempted to open with the
OPNDAT function is corrupted. The file can be
corrupted if updates are made but not posted with
the CLSDAT or SAVDAT functions. The data file
can be opened using the OPRDAT function.

A physical error occurred on
input/output to an index file.

You have attempted to use a data file
parameter) that is not currently open.

The NEWREC function attempted to reuse a data
record in which the first byte did not contain

(The RETREC function sets this byte.)
might be attempting to use a data file that has
not been properly closed.

You have attempted to use a data file number
(FILES parameter) already assigned to another
data file.

The FILNAME$ parameter
OPRDAT function
information. Most
filename.

Access Manager Reference Manual 4.1 Error Types

Table 4-1. (continued)
Value Code Explanation

87 EG process

88 FCB checksum error on index file close.EH
89 Incorrect or missing password for an index file.El
90 EJ

Should

91" An illegal character (?) in index filename.EK
92 EL

93 EM

113" Physical error on disk during data file I/O.GA
114" Attempt to update data file on Read-Only disk.GB
115" Attempt to update Read-Only data file.GC
116" GD or

117 file inGE process a

118 FCB checksum error on data file close.GF
119 Incorrect or missing password for a data file.GG
120" GH

Should

121" (?) in data filename.An illegal characterGI
122 GJ

123 GK

145 IA

4-5

You have attempted to erase an index file (KEY%
parameter) that is not currently open.

Space in system lock list exhausted during data
file operation.

Data filename references nonexistent drive.
File Control Block is no longer active.

Operating system open file limit exceeded during
index file open.

Operating system open file limit exceeded during
data file open.

Space in system lock list exhausted during index
file operation.

Data file opened by another
multitasking environment.

Index file opened by another
multitasking environment.

OPNDAT attempts to create a second copy of file
instead of simply opening existing file,
not occur. Report to Digital Research.

OPNIDX attempts to create a second copy of file
instead of simply opening existing file,
not occur. Report to Digital Research.

in a

Access Manager Reference Manual Error Types4.1

Table 4-1. (continued)
CodeValue Explanation

146 IB

147 IC

153 II

154 IJ

155 filenodes in indexIK an

161 JA*

162 JB*
multiuser module.

163 JC*
is out of

175 JO

176 K@

177 KA

Same as error 153/11 above.183 KG
184 Same as error 154/IJ above.KH
209 MA

End of Section 4

4-6

The type of lock you have requested in a DLOCK%
parameter is unacceptable.

The filename of the index file you are attempting
to erase cannot be found in the disk directory.

The value passed in the PROGID% parameter is out
of range.

You have attempted to erase a data file (FILE%
parameter) which is not currently open.

You have passed
function parameter,
a problem with the interface
application program and Access Manager.

Access Manager cannot find the name of the data
file you are attempting to erase in the disk
directory.

Usually indicates a bad language interface and/or
failure to call the INTUSR function in your
program.

an unacceptable value in a
This code usually indicates

the interface between the

Access Manager cannot open the queue for a user
because the PROGID% parameter value
range.

Access Manager cannot open the queue for a shared,
Make sure a Resident System

Process has been included as part of the GENSYS
procedure.

While using the SETUP function, you have passed a
bad parameter value, or the buffer area is too
small.

The number of B-Tree
exceeds 65,535.

You have passed an illegal value in the DLOCK%
parameter.

Your

5.1 Recreate Parameter File

5-1

Section 5
RECREATE Utility Program

explicitly represents the relationships between
files.
File:

• Recreate Header Record
• Data File Records
• Index File Records
• Key Part Records

The Recreate Parameter File is the only place Access Manager
index and data

There are four types of records in the Recreate Parameter

Table 5-1 illustrates the contents of each Recreate Parameter
File record type.

You can modify the RECREATE program to automatically read the
appropriate parameter file without any user intervention, or to be
started automatically by the application program when error trapping
detects corrupted files.

The parameters you place in this file tell the RECREATE program
how to rebuild a particular index or data file. When you run the
RECREATE program, it asks you to enter the name of the Recreate
Parameter File to use. The filename is the only thing you are asked
to enter .

Access Manager provides a utility program for recreating index
and data files when necessary. Normally, the only time you need to
recreate files is when they are vulnerable and the hardware loses
power or the application program terminates abnormally.

To simplify the recreation process, the RECREATE program uses a
parameter file to describe the characteristics of the index and data
files.

The source code for the RECREATE program is provided in each
language supported by Access Manager. Your Programmer’s Guide
contains instructions and examples for using the RECREATE program
with each of these languages.

Recreate Parameter File5.1Access Manager Reference Manual

Recreate Parameter File Record ContentsTable 5-1.
MeaningParameter

Header Record

Data File Record i

Index File Record i-j

record
BLANK.KEY.TO.NULL?

Key Part Record i-j-k

5-2

NO.DATA.FILES%
NNSEC%

FILNAME?
RECLEN%
NO.INDEX.FILES%
BEG.REC%

IDXNAME?
KEYLEN%
KEYTYP%
DUPKEY%
NO.KEY.PARTS%

BEG.BYTE%
KEY.PART.LENGTH%

The number of data files to be recreated.
The size of index file records in sectors.

The starting byte of key part.
The length of key part.

In Table 5-1, BEG.REC% in the Data File Record specifies the
first data record used for actual data. If BEG.REC% is zero, the
RECREATE program automatically computes its value as the first data
record to begin on or after the 129th byte of the file.

In the Key Part Record, BEG.BYTE% specifies the byte position
of a key part and KEY. PART. LENGTH % specifies its length. For
example, if BEG.BYTE% is two and KEY. PART. LENGTH % is five, the data
in the second through sixth bytes of the data record forms a key

In the Index File Record, NO.KEY.PARTS% specifies the number
of data record fields to be concatenated to form a key value. This
information is used directly in conjunction with the Key Part
Record. BLANK.KEY.TO.NULL? determines whether or not to convert a
key value equal to all blanks to a null string. A Y indicates
conversion is necessary; a N means no conversion is required.
Convert a blank string to a null key value when a blank field means
there is missing data and there is no key value to be entered. Null
key values are not added to the index by the ADDKEY function, but a
blank string is.

The data filename.
The data record length.
The number of associated index files.
The number of first record to be scanned.

The index filename.
The length of index file key values.
The key type (alphanumeric or integer).
The duplicate key flag.
The number of data record fields
concatenated to form a key value.
How to deal with blank key values.

Recreate Parameter FileAccess Manager Reference Manual 5.1

a

Header Record

Data File Record 1

Index File Record 1-1

Key Part Record 1-1-1

Key Part Record 1-1-r

Index File Record 1-s

Key Part Record 1-S-1

Key Part Record 1-s-t

Data File Record w

Index File Record w-1

Key Part Record w-1-1

Key Part Record w-1-r

Index File Record w-s

Key Part Record w-s-1

Key Part Record w-s-t

AN 093

Recreate Parameter File Record OrderingFigure 5-1.

5-3

part.
value.

Multiple key parts can be combined to form a complete key
Note that the first byte of the record is considered byte

position number one.

Figure 5-1 illustrates the required order for records in
Recreate Parameter File.

When you run the RECREATE program, the order of the duplicate
keys is determined by the order in which they are present in the
data records. This might not be the same order as before the
recreation, due to the reclamation of deleted records.

Access Manager Reference Manual Recreate Parameter File5.1

Figure 5-2. Example Recreate Parameter File

Data File Recreation5.2

5-4

two bytes longer,
anyway.

2,4
CUSTOMER.DAT,100,3,0
NAME.IDX,10,0,1,1,Y
22,8
NUMB.IDX,4,0,0,1,N
2,4
ZIPC.IDX,11,0,1,1,Y
84,9
INVENTRY.DAT,192,1,0
INVENTRY.IDX,12,0,1,3,Y
15,5
100,2
4,3

Figure 5-2 illustrates the contents of an example Recreate
Parameter File. In this example, the header record indicates two
data files and 512-byte index file records (NNSEC% equals four).
CUSTOMER.DAT has a 100-byte record length and three associated index
files. The RECREATE program automatically determines the first
record with actual data because BEG.REC% is zero. Notice that the
key parts for NAME.IDX and ZIPC.IDX are two bytes shorter than the
key length declared in the respective index file records. This is

The RECREATE program checks the integrity of each data file
specified in the Recreate Parameter File. If a data file is not
corrupt, the RECREATE program does not modify the data file. If the
data file is corrupt, the RECREATE program corrects the data file in
place. It reads each record in the data file to determine whether
or not the record is active or deleted. If deleted, the RECREATE
program automatically links the record onto the stack of deleted
records for the data file. Once the entire file is read, the header
record is rebuilt and written to the front of the data file.

key length declared in the respective index file records,
because both of these index files are using the automatic suffixing
of the key values to accommodate duplicates. If the key parts were

the suffix would replace the last two bytes

In Figure 5-2, INVENTRY.DAT has 19 2-byte records and only one
associated index file. However, the key values for INVENTRY. IDX are
constructed from three fields of the INVENTRY.DAT records: bytes
15-19, 100-101, and 4-6. That is, the ten bytes comprising these
three fields are combined to form one key value.

Data File Recreation5.2Access Manager Reference Manual

Index File Recreation5.3

the index file is

5.4 Recreate Messages

End of Section 5

5-5

If your application program conflicts with the use of OFFH as
a delete flag in the first byte of the data records, you must modify
the RECREATE program to recognize deleted records some other way.

This
Further, the RECREATE

A data record is considered deleted if the first byte of the
record contains OFFH. Access Manager automatically writes OFFH into
the first byte of each record deleted with the RETREC function.
Therefore, if your application program uses RETREC to return deleted
data records and either reserves the first byte of each record for
the delete flag or ensures that no valid data can cause OFFH in the
first byte, you can use the RECREATE program as distributed.

If the RECREATE program modifies the data file corresponding
index file or the data file is corrupt,to an

erased and recreated from scratch.

The RECREATE program generates two types of messages: those
that report on the progress of the recreate process and those that
report on unexpected conditions. Conditions that terminate the
recreate process are caused by illegal values in the parameter file,
lack of disk or directory space, inability to secure exclusive data
file locks in a multiuser environment, or system inconsistencies.

The Recreate Parameter File indicates which index files are
related to each data file. If the data file corresponding to an
index file is not modified by the RECREATE program, and the index
file is neither corrupt nor empty, the index file is not recreated.

If a system inconsistency arises (such as an inability to
close a file or to reopen a file previously closed) , be sure to
check the integrity of your hardware and operating system. If these
are operating correctly and there is no apparent cause for the
RECREATE error message, you should go back to your most recent data
base back-up files instead of trying to rebuild from your current,
but corrupted, data.

To speed recreation of the index file, the RECREATE program
buffers scanning of the associated data file to extract key values.
That is, the RECREATE program processes a large number of data file
records before making the corresponding index file entries,
reduces disk head movement significantly,
program sorts the buffered key values before adding them to the
index file. This also enhances the speed of the recreate process.

Access Manager FunctionsTable A-l.
Function Description Name

ADDKEYADD key to index file

UPDPTR
CLSDATCLOSE data file
CLSIDXCLOSE index file
NOKEYSCOUNT entries in an index file

(used and available) in an
NMNODS
GETDFSCOUNT records in a data file

COUNT records used in a data file GETDFU
DELKEYDELETE key from index file

LOKCOD
ERADATERASE data file

ERASE index file ERAIDX
ERRCODFIND error code value
FRSKEYFIND first entry in index file

DATVAL

SERKEY

AFTKEY

A-l

Appendix A
Access Manager Function Index

COUNT nodes
index file

CHANGE data record number in index file
entry

DETERMINE results of data lock/unlock
request

FIND index entry equal to or greater
than a specific key value
FIND index entry following a specific key
value

FIND two high-order bytes of data
record number

Table A-l is an alphabetical list of Access Manager
functions, cross-referenced to the mnemonic function name. These
functions are organized alphabetically by mnemonic function name and
discussed in detail in Section 3.

Function IndexAccess Manager Reference Manual A

(continued)Table A-l.
Function Description Name

FIND index entry in index file GETKEY

BEFKEY
FIND last entry in index file LASKEY
FIND next available data record number NEWREC
FIND next entry in an index file NXTKEY
FIND previous entry in an index file PRVKEY

INTUSRINITIALIZE Access Manager

SETUP
LOCK data file or data record SETLOK
OPEN corrupted data file OPRDAT
OPEN corrupted index file OPRIDX
OPEN data file OPNDAT
OPEN index file OPNIDX
READ data record from data file READAT
RECLAIM available data file records RETREC
RELEASE data file or data record lock FRELOK

SAVE data file updates SAVDAT
SAVE index file updates SAVIDX

SETDAT
WRITE data record in data file WRTDAT

End of Appendix A

A-2

SET two high-order bytes of data record
number

FIND index entry preceding a specific key
value

INITIALIZE Access Manager for single-user
environment

Index

A

B
F

1-5
2-1

IC
CBASIC, 1-4
D

2-4

E

Index-1

error codes
find value of, 3-35
trapping, 3-1

errors
codes, 4-2
internal consistency, 4-1

filenames,
function
categories, 3-1, 3-2

application program
ID number, 1-4
structure, 1-8

errors (continued)
trapping, 3-3, 4-1
types, 4-1
user, 4-1

index file
add key value, 3-3
close, 3-25
count keys, 3-56
count records, 3-54
delete key value, 3-28
disk sectors, 2-4
erase, 3-33
estimating size of, 3-68
get first entry, 3-38
get following key, 3-14
get last key, 3-49
get next key, 3-58, 3-87
get preceding key, 3-20
get previous key, 3-76
get specific key, 3-44
name, 2-3
number, 2-4
number open,
open, 3-66
open corrupted, 3-74
password, 3-68
recreation, 1-8, 5-1, 5-5
save updates, 3-85
structure, 1-5, 1-6
update pointer, 3-96

initialize Access Manager,
3-46, 3-94

data file
close, 3-23
count records, 3-40, 3-42
deleted record contents, 3-81
erase, 3-31
get available record, 3-52
get high-order bytes, 3-27
large, 3-9
name, 2-3
number, 2-3
number open, 2-4
open, 3-61
open corrupted, 3-72
pass high-order bytes, 3-90
read record, 3-78
reclaim deleted records, 3-80
record length, 2-5
recreation, 1-8, 5-1, 5-4
save updates, 3-83
segmented, 3-9
structure, 1-4
write record, 3-98

data record number, 2-1, 2-2, 2-4

B-Tree structure,
buffer area, 2-2
buffer areas, 3-78, 3-98

number of, 2-4

K R

T
timeout delay, 2-5

L

P

2-5

Index-2

2-4
2-4
2-5
2-5

lock facility, 1-7, 1-12, 2-2
check lock results, 3-51
data files, 1-8
data records, 1-8
lock codes, 3-91
passwords, 1-8
release lock, 3-36
set lock, 3-91

recreate
messages, 5-5
parameter file, 5-1
utility program, 5-1

key values, 2-1, 2-3, 2-4
add, 3-3
coding numeric, 3-6
duplicates, 2-3, 3-4, 3-88
length, 2-4
maximum number, 3-68
padding, 3-5
type, 2-4

parameters, 2-1
BUFFER%, 2-2
DLOCK%, 2-2
DRN%, 2-2
DUPKEYS, 2-3
ERROPT%, 2-3
FILE%, 2-3
FILNAME$, 2-3
IDXNAME?, 2-3
IDXVAL$, 2-4
KEY%, 2-4
KEYLEN%, 2-4
KEYTYP%, 2-4
KEYVAL$, 2-4
NBUFS%,
NDATF%,
NKEYS%,
NNSEC%,
PROGID%, 2-5
RECLEN%, 2-5
TIMOUT%, 2-5
types, 2-1
use table,

PL/I-80, 1-4
pointers, 1-2

Reader Comment Card

First Edition: March 1983Date

What sections of this manual are especially helpful?1.

2.

3.

Access Manager™ Productivity Tool Reference Manual

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

We welcome your comments and suggestions. They help us provide you with better
product documentation.

Did you find errors in this manual? (Specify section and page number.)

What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

o

I
I
I
I
I

I
I
I
I
I

o
OT

CD
C
(/)

I
I
t
I
I

I
I

i
I

o
co

□□
m

I
I
I
I
I
I

I
I

I
I
I
I
I
I
I

0
m

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

O
O
ZD
m
co
co
m
m

>

"0 c
5

2
□
"0
O
Q.
C
O

2

o
3

CD “□
CO CD
CD
CD
O

u
z o

£
I
I

2

s
ZD

! DO
” m

TJ

s <
o
0
ZD

? m
O

O S’
0 X
o
p
o
o
3
0'

o
> V/
c^co z

m
co
c/>

llllllllllllllllll I

I

