
ffl
rk

1

Pascal / MT +"
Language

Programmer’s Guide
for the CP/M-86®

Family of Operating Systems

Copyright © 1983

All Rights Reserved

Digital Research
P.O. Box 579

160 Central Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

Pascal/MT+™
Language

Programmer’s Guide
for the CP/M-86®

Family of Operating Systems

COPYRIGHT

DISCLAIMER

TRADEMARKS

The Pascal/MT+ Language Programmer’s Guide for the
CP/M-86 Family of Operating Systems was prepared
using the Digital Research TEX Text Formatter and
printed in the United States of America.

SBC-86
Z80 is a

* First Edition: February 1983 **** * * ******************************

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
own programs.

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

CP/M and CP/M-86 are registered trademarks of
Digital Research. ASMT-86, DIS-86, LIB/MT+86, LINK-
86, LINK/MT+86, Pascal/MT+, and SID-86 are
trademarks of Digital Research. Intel is a
registered trademark of Intel Corporation. Intel
MCS-86 and Intel SBC-86 are trademarks of Intel
Corporation. Z80 is a registered trademark of
Zilog, Inc.

Foreword

refer to the

iii

For information about the Pascal/MT+ language,
Pascal/MT+ Language Reference Manual.

The Pascal/MT+ system, which includes a compiler, linker, and
programming tools, is implemented on a variety of operating systems
and microprocessors. Because the language is consistent among the
various implementations, Pascal/MT+ programs are easily
transportable between target processors and operating systems. The
Pascal/MT+ system can also generate software for use in a ROM-based
environment, to operate with or without an operating system.

This manual describes the Pascal/MT+ system which runs under
any of the CP/M® family of operating systems on an 8086- or 8088-
based microcomputer with at least 118K bytes of memory. The manual
tells you how to use the compiler, linker, and the other Pascal/MT+
programming tools. Also included are topics related to the
operating system for your particular implementation.

The Pascal/MT+™ language is a full implementation of standard
Pascal as set forth in the International Standards Organization
(ISO) standard DPS/7185. Pascal/MT+ also has several additions to
standard Pascal that increase its power to develop high-quality,
efficiently maintainable software for microprocessors. Pascal/MT+
is useful for both data processing applications and for real-time
control applications.

Table of Contents

Getting Started with Pascal/MT+1
Pascal/MT+ Distribution Disks 1.1 1-2

1-6Installing Pascal/MT+ 1.2
1-71.3 Compiling and Linking a Simple Program

Compiling and Linking2
Compiler Organization 2-12.1

2.2 Invoking the Compiler 2-1

2-92.3 Using the Linker

2-152.4 Using Other Linkers

3 Segmented Programs
3-13.1 Modules
3-43.2 Overlays

3-14Chaining 3.3

Run-time Interface4
4-1Run-time Environment 4.1

v

2.2.1
2.2.2
2.2.3
2.2.4

2.3.1
2.3.2
2.3.3

3.2.1
3.2.2
3.2.3
3.2.4
3.2.5

4.1.1
4.1.2

Linker Options
Required Relocatable Files
Linker Error Messages . .

Pascal/MT+ Overlay System . .
Using Overlays
Linking Programs with Overlays
Overlay Error Messages . . .
Example

Stack
Program Structure

2-10
2-14
2-15

2-2
2-3
2-3
2-5

4-2
4-2

3-5
3-6
3-7

3-11
3-11

Compilation Data
Compiler Errors . .
Command Line Options
Source Code Options

4-2Assembly-language Routines 4.2

Pascal/MT+ Interface Features 4-104.3

4-18Recursion/Nonrecursion 4.4
4-19Stand-alone Operation 4.5
4-20Error and Range Checking 4.6

Pascal/MT+ Programming Tools5
5-1ASMT-86, the Assembler 5.1

5-3DIS-86, the Disassembler5.2
5-5LIB/MT+86, the Software Librarian 5.3

5-65.4 Debugger

vi

4.2.1
4.2.2
4.2.3
4.2.4

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

4.6.1
4.6.2
4.6.3
4.6.4

5.3.1
5.3.2

5.4.1
5.4.2

Accessing Variables and Routines . . .
Data Allocation
Parameter Passing
Assembly Language Interface Example . .

Range Checking . . .
Exception Checking
User-supplied Handlers
I/O Error Handling

Assembler Operation
Invoking ASMT-86
ASMT-86 Command Line Options

Debugging Programs
Debugger Commands

Invoking LIB/MT+86
Searching a Library

Table of Contents
(continued)

4-10
4-12
4-14
4-15
4-17

4-2
4-4
4-6
4-7

5-2
5-3
5-3

5-6
5-7

5-5
5-5

5.1.1
5.1.2
5.1.3

Direct Operating System Access
INLINE
Absolute Variables
Interrupt Procedures
Heap Management

. 4-21

. 4-21

. 4-22

. 4-22

ASMT-86 Assembly Language6
6-16.1 Pseudo-opcodes
6-36.2 Fundamental Values
6-56.3 Operators
6-6Expressions6.4
6-6Attribute Overrides6.5
6-7Indexing Expressions6.6

vii

Table of Contents
(continued)

Appendixes

A-lCompiler Error MessagesA

B-lLibrary RoutinesB

Sample Disassembly C-lC

Sample Debugging Session D-lD

Interprocessor Portability E-lE

Syntax of ASMT-86 F-lF

Comparison of I/O Methods G-lG

viii

Tables, Figures, and Listings

Tables

A-lCompiler Error Messages A-l.
Run-time Library Routines B-lB-l.

G-2Size and Speed of Transfer Procedures G-l.

Figures
Software Development under Pascal/MT+ 1-1. 1-2
Pascal/MT+ Compiler Organization 2-12-1.

Z

Listings

ix

5-2
5-4

1-1.
1-2.
2-1.
2-2.
2-3.
2-4.
2-5.
4-1.
4-2.
5-1.
5-2.
5-3.
5-4.

4-1.
4-2.
5-1.
5-2.

3-1.
3-2.
3-3.
3-4.
3-5.

4-1.
4-2.

Pascal/MT+ System Filetypes .
Pascal/MT+ Distribution Disks

Default Values for Compiler Command Line Options.
Compiler Source Code Options
$K Option Values
Linker Options
Linker Error Messages

ASMT-86 Command Line Options
Examples of Parameters . .
Debugger Display Commands .
Debugger Control Commands .

Size and Range of Pascal/MT+ Data Types . .
@ERR Routine Error Codes

Memory Layout
Storage for the Set A
ASMT-86 Operation
DIS-86 Operation

Pascal PEEK_POKE Program
Assembly Language PEEK and POKE Routines

1-3
1-4

4-1
4-5

4-8
4-9

2-4
2-5
2-7

2-10
2-15
4-6

4-21
5-3
5-8
5-9

5-10

3-3
3-4

3-12
3-12
3-13
3-15
3-16

Main Program Example
Module Example
DEMOPROG.PAS
MODI.PAS
MOD2.PAS

3-6a. Chain Demonstration Program 1
3-6b. Chain Demonstration Program 2

Listings

D-lD-l. DEBUG.PAS Source File

x

C-2
C-3

C-l.
C-2.

G-l.
G-2.
G-3.
G-4.
G-5.

4-3.
4-4.
4-5.
4-6.
4-7.

Compilation of PPRIME
Disassembly of PPRIME

4-11
4-12
4-13
4-14
4-16

G-l
G-3
G-4
G-5
G-6

Calling BDOS Function 6
Calling BDOS Function 23
Using INLINE to Store Values in ES Register . .
Using INLINE to Contruct Compile-time Tables. .
Using Interrupt Procedures

Tables, Figures, and Listings
(continued)

Main Program Body for File Transfer Programs
File Transfer with BLOCKREAD and BLOCKWRITE . .
File Transfer with GNB and WNR
File Transfer with SEEKREAD and SEEKWRITE . . .
File Transfer with GET and PUT

1-1

Section 1
Getting Started with Pascal/MT+

The compiler and
To handle larger

The Pascal/MT+ system runs under any of the CP/M-86® family
of operating systems on an 8086-based computer,
linker need at least 118K bytes of memory to run.
programs, they both need more memory.

Figure 1-1 illustrates the software development process using
the Pascal/MT+ system.

• ASMT-86™, a relocating assembler
• DIS-86™, a disassembler
• LIB/MT+86™, a software library-building utility
• a dynamic debugger

The size of a program developed with Pascal/MT+ depends on
the size of the source code, and on the number of run-time
subroutines it uses. Typically, the minimum size of a simple
program is about 8K bytes.

The Pascal/MT+ system includes a compiler, a linker, a large
library of run-time subroutines, and other programming tools to help
you build better programs faster. The programming tools are

Pascal/MT+ (86) Programmer’s Guide 1 Getting Started

LISTING

I

AN 040

Figure 1-1. Software Development under Pascal/MT+

Pascal/MT+ Distribution Disks1.1

1-2

RUN-TIME
LIBRARY

SOURCE
FILE

RELOCATABLE
FILE

EXECUTABLE
PROGRAM

MT+
LINKER

INCLUDE
FILES

DISASSEMBLED
LISTING

MT+
COMPILER

MT+
DISASSEMBLER

OTHER
Pascal/Assembler

MODULES

MT +
DEBUGGER

The Pascal/MT+ system is supplied on three separate disks.
These disks contain a number of files of different types. Table 1-1
describes the filetypes used in the Pascal/MT+ system. Table 1-2
briefly describes the contents of each distribution disk.

Pascal/MT+ (86) Programmer’s Guide 1.1 Distribution Disks

Table 1-1. Pascal/MT+ System Filetypes
Filetype Contents

Build file; input file used by LIB/MT+86BLD
CMD file; directly executable under

DOC

ERR Error message file output by compiler
186

Linker input command fileKMD
LIB Library file; contains subroutines
PAS

Print file output by compilerPRN
PSY Intermediate symbol file used by linker
R86

SRC

SYP Symbol file used by debugger
Symbol file used by SID-86 TMSYM

TXT

Hexadecimal n; used for numbering overlaysnnn

1-3

Document file; contains printable text in
ASCII form

Pascal source file; contains source code in
ASCII form (the compiler also accepts SRC as
a source filetype)

Relocatable
relocatable
compiler

Intel®8086 file; contains assembly-language
source file for ASMT-86

Command
CP/M-86

Pascal source file; contains source code in
ASCII form (the compiler also accepts PAS as
a source filetype)

Text file; contains text of messages output
by compiler, etc.

8086 object file; contains
object code emitted by the

Pascal/MT+ (86) Programmer’s Guide 1.1 Distribution Disks

Pascal/MT+ Distribution DisksTable 1-2.
Disk 1

File Content or Use

Disk 2
File Content or Use

STRIP.CMD
NM.CMD
SZ.CMD

DEBUGGER.R86

1-4

Compiler Error Message Text File
Release Notes for Version 3.1

DIS86.CMD
MT+86.CMD
MT+86.000
MT+86.001
MT+86.002
MT+86.003
MT+86.004
MT+86.005
MTERRS.TXT
REL31.DOC

LINKMT.CMD
LINKMT.001
LINKMT.002
LIBMT.CMD

TRANSCEND.R86
FPREALS.R86
PASLIB.R86

Overlay
Overlay
Overlay
Overlay
Overlay

Disassembler
Pascal/MT+ Compiler
Compiler
Compiler
Compiler
Compiler
Compiler
Overlay used with Debugger

Pascal/MT+ Linker
Linker Overlay
Linker Overlay
LIB/MT+86 Librarian Utility

Debugging module that can be
linked to a program
Transcendental arithmetic module
Floating-point arithmetic module
Pascal/MT+ Run-time System module

Utility program used with LINKMT
to eliminate unused entry points
Utility program used with LIBMT
to determine module names
Utility program used with LIBMT
to determine module sizes

Pascal/MT+ (86) Programmer’s Guide Distribution Disks1.1

Table 1-2. (continued)
Disk 3

File Content or Use

1-5

CONCAT.CMD
MT2INT.CMD

87REALS.BLD
ECHO.PAS
IOMOD.PAS
CPMGET.PAS
CPMINI.PAS
MODI.PAS
MOD2.PAS
DEMOPROG.PAS

ASMT86.CMD
ASMT.001
ASMT.002
ASMT.003
ASMT.004
AMERS.TXT

HLT.I86
OVLMGR3.I86
DBUGHELP.TXT
FIBDEF.LIB
IOALONE.DOC

87REALS.R86
BCDREALS.R86
FULLHEAP.R86
RANDOMIO.R86
REALIO.R86
INI3.I86
8087.186
87XOP.I86
87TRS.I86

Pascal/MT+ Assembler
Assembler Overlay
Assembler Overlay
Assembler Overlay
Assembler Overlay
Assembler Error Message Text File

8087 processor arithmetic module
BCD arithmetic module
Heap management module
Random I/O file processing module
Real arithmetic I/O module

Concatenates TEXT files
Conversion utility for changing R86
files into Intel relocatable object
file format

CP/M-86 initialization routine
8087 math routines
8087 miscellaneous routines
8087 truncate, round, and square root
routines
CP/M-86 halt routine
Overlay Manager
Help file for debugger module
File Information Block definition
Document file explaining stand-alone
I/O
Build file for 8087 arithmetic module
Sample Program
Source file for I/O routine
Source file for GET routine
Source file for initialization routine
Sample Program
Sample Program
Sample Program

Installing Pascal/MT+Pascal/MT+ (86) Programmer’s Guide 1.2

Installing Pascal/MT+1.2

perform the

1)

Put a text editor on the compiler disk.2)
3)

4) Copy the following files to the linker disk:

1-6

• MT+86.CMD
• MT+86.000 through MT+86.005
• MTERRS.TXT

Install CP/M-86 and the PIP utility on two blank disks.
Label one disk as the compiler, and the other, the linker.

linker ,
disks,

• LINKMT.CMD
• LINKMT.001
• LINKMT.002
• all the R86 files

Copy the following files from the distribution disk to the
compiler disk:

Note:
Digital Research products,
agreement.

This suggested configuration is just one way of setting up
your disks. The important thing is that all the compiler modules
are on one disk, and all the linker modules are on one disk. For
simplicity, it is a good idea to put all the related relocatable
files on the same disk as the linker.

To make a
following steps:

Note that the file MT+86.005 is only necessary when using the
debugger, and that the compiler can run without the error message
file MTERRS.TXT. If your compiler disk is short of space, you can
eliminate these two files.

Although you can use the compiler, linker, and other
utilities directly from the distribution disks, it is more
convenient if you copy specific files from the distribution disks to
working system disks. One way to set up your Pascal/MT+ system is
to use one disk for compiling and another disk for linking. You can
use other disks for the programming tools, assorted source code, and
examples.

you have certain responsibilities when making copies of
Be sure you read your licensing

The first thing you should do when you receive your
Pascal/MT+ system is make a copy of all the distribution disks.

linker disk,compiler disk and a

Pascal/MT+ (86) Programmer’s Guide Compiling and Linking1.3

1.3 Compiling and Linking a Simple Program

PROGRAM SIMPLE_EXAMPLE;

3) Now, compile the program with the following command:
A>MT+86 B:TESTI

B>LINKMT TESTI,PASLIB/S

enter the command:5) To run the program,
B>TESTI

1-7

Your directory will now contain a file named TEST1.CMD that
is directly executable under CP/M-86.

BEGIN
WRITELN (’THIS IS JUST A TEST’);
FOR I := 1 TO 10 DO
WRITELN (I);

WRITELN (’ALL DONE’)
END.

1) Put the compiler disk in drive A and the linker disk in
drive B.

If you have never used Pascal/MT+ before, the following step-
by-step example shows you how to compile, link, and run a simple
program. This example assumes that you are using a CP/M-86 system
with two disk drives and that you are familiar with CP/M-86.

If you examine your directory, you will see a file named
TESTI.R86 that contains the relocatable object code emitted
by the compiler. If the compiler detects any errors,
correct your source program and try again.

VAR
I : INTEGER;

2) Using the text editor, create a file called TESTI.PAS and
enter the following program. Put the file on drive B using
PIP.

4) Now, log on to drive B, and link the program using the
following command:

Pascal/MT+ (86) Programmer’s Guide Compiling and Linking1.3

End of Section 1

1-8

If you want to write other simple programs, follow the same
steps, but use your new program’s filename instead of TESTI.

Although the test program shown above is very simple, it
demonstrates the essential steps in the development process of any
program, namely editing, compiling, and linking.

2.1 Compiler Organization

those files.

in the

OPTIONALREQUIRED OVERLAYS

MT+86.005 MTERRS.TXTMT+86.003 MT+86.004MT+86.001 MT+86.002

AN 052

ROOT

Figure 2-1. Pascal/MT+ Compiler Organization

Invoking the Compiler2.2

MT+86 <filespec> {<options>}

2-1

Section 2
Compiling and Linking

The compiler is segmented into overlays,
following figure.

MT+86.000
MT+86.CMD

the
to

This section tells how to use the compiler with its various
options. It also describes how to link programs using the
Pascal/MT+ linker as well as different linkers.

You invoke the Pascal/MT+ compiler with a command line of the
following format:

The Pascal/MT+ compiler processes source files in three steps
called passes or phases.

• Phase 0 checks the syntax and generates the token file.
• Phase 1 generates the symbol table.
• Phase 2 generates the relocatable object file.

where <filespec> is the source file to be compiled, and
<options> are a list of optional parameters that you can use
control the compilation process.

The compiler creates some temporary files on the disk
containing the source file, and under normal conditions it deletes

Make sure there is enough space on the disk, or use
the T option to specify a different disk for the temporary files.
See Section 2.2.3.

as shown

Pascal/MT+ (86) Programmer’s Guide Invoking the Compiler2.2

Compilation Data2.2.1

to the

During this

2-2

The Pascal/MT+ compiler periodically outputs information
during Phases 0 and 1 to assure you it is running properly.

When the processing is complete, the compiler displays the
following information:

relocatable object file with the
The relocatable file has

During Phase 0, the compiler outputs a + (plus sign)
console for every 16 lines of source code it scans.

lines of source code compiled (in decimal)
number of errors detected
bytes of code generated (in decimal)
bytes of data reserved (in decimal)

If you do not specify a filetype, the compiler searches for
the file with no filetype. If the compiler cannot find the file, it
then assumes a SRC filetype, then assumes a PAS filetype. If the
compiler still cannot find the file, it displays an error message.

1, the compiler indicates the
The space is shown as a decimal

Lines :
Errors:
Code :
Data :

The compiler generates a
same filename as the input source program,
the R86 filetype.

At the beginning of Phase
amount of available memory space,
number of memory bytes available before generation of the the symbol
table. Phase 1 also indicates available memory space following
generation of the symbol table. This second indication is the
amount of memory left for user symbols after the compiler symbols
are loaded.

The compiler can read the source file from any disk. The
<filespec> must conform to the standard filespec format, and end
with a carriage return, line-feed, and CTRL-Z. Refer to your
operating system manual for a description of a Digital Research
standard filespec.

During Phase 1, the compiler also outputs a # (pound sign) to
the console each time it reads a procedure or function. Symbol
table overflow occurs if too little symbol table space remains for
the current symbol. You can overcome this by using the $K option
and breaking the program into modules. At completion, Phase 1
indicates the total number of bytes remaining in memory.

Phase 2 generates the relocatable object code.
phase, the compiler displays the name of each procedure and function
as it is read. The offset from the module’s beginning and the size
of the procedure (in decimal) follow the name.

Pascal/MT+ (86) Programmer’s Guide 2.2 Invoking the Compiler

2.2.2 Compiler Errors

<overlay #>

name

2.2.3 Command Line Options

2-3

If the compiler cannot find an overlay or a procedure within
an overlay, it displays the following messages:

When all processing is completed, the ERR file generated by
the compiler summarizes all nonsyntactic errors.

001
002
003
004
005

INITIALI or PHASE1
PH2INIT
BLK
PH2TERM
DBGWRITE

The number preceding the name is the group number of the overlay
that contains the procedure.

The compiler displays the following procedure
cannot find an overlay name in the entry point table:

Unable to open <filename> <overlay # >
Proc: "<procname>" not found ovl: <filename>

When the compiler finds a syntax error, it displays the line
containing the error. If you are using the MTERRS.TXT file, the
compiler also displays an error description. If you are not using
the MTERRS.TXT file, or you have a nonsyntax error, the compiler
displays an error identification number.

Compiler command line options control specific actions of the
compiler such as where it writes the output files. All command line
options are single letters that start with a $ or a #. Certain
options require an additional parameter to specify where to send the
output file or where an input file is located. If you specify more
than one option, do not put any blanks between the options.

Note: in Pascal/MT+, the compilation errors have the same sequence
and meaning as in Jensen’s and Wirth’s Pascal User Manual and
Report. Appendix A contains a complete list of the error messages,
explanations, and causes.

Usually you can find a missing overlay by ensuring that the
is correct, and it is on the disk. If you cannot find it,

recopy the overlay from your distribution disk. If you are sure the
overlay is on the disk and you still get an error message, it means
the file is corrupted.

When the compiler encounters an error, it asks if you want to
continue or stop, unless you use the command line option C. (See
Section 2.2.3.)

names if it

Invoking the CompilerPascal/MT+ (86) Programmer’s Guide 2.2

the commmand line options.
device.

Default Values for Compiler Command Line OptionsTable 2-1.
Option Meaning Default

Binary realsbinary forB

C

D
file

Ed The is on on

file) No PRN filePd PRN

Q

Rd R86 file on disk d: on

Td Put the on

V

X

2-4

Compiler outputs
all messages

• X sends the output file to the console.
• P sends the output file to the printer.
• @ specifies the logged-in drive.
• Any letter from A to 0 specifies a specific drive.

Use BCD rather than
real numbers.
Continue
to pause
on each error,

Make the
equivalent to

; debugger
object

r file

character
character.

each
when

Procedure names
not printed

R86 file cannot
be disassembled
@ not equivalent
to

stops
on

MTERRS.TXT
disk d:

MTERRS.TXT
default disk

PASTEMP.TOK
default disk

the

the
and

Quiet, suppress any unnecessary
unnecessary console messages.

Print
procedure
found in source
to determining
during Phase 0.

Put the
d=@,A..O

information
and write

the drive

Compiler
and asks
each error

R86 file
default disk

on error; default is
and let user interact

one at a time.
Generate
in the object code
the PSY file to
specified by the R option.

file
d= @,A..0

(listing
d= X,P,@,A..O

Put the
on disk d:

Generate an extended R86 file
including disassembler records.

token file PASTEMP.TOK
on disk d: d= @,A..O

Table 2-1 describes the commmand line options. In this
table, d stands for a parameter to specify a disk drive or output

The parameters are as follows:

No debugger
information and
no PSY
generated

name of
function
code as an aid

error locations

Pascal/MT+ (86) Programmer’s Guide Invoking the Compiler2.2

The following is an example command line:
A>MT+86 A:TESTPROG $RBPX

2.2.4 Source Code Options

Compiler Source Code OptionsTable 2-2.
Option Function Default

Cn

E +/" Controls entry point generation E+
I<filespec>

{$1 XXX.lib}
Kn

L +/- listingthe of source L+

Enter a form-feed in the PRN fileP
Qn

R +/- range checking codeControls R-
S +/- recursive/static var i- S+

2-5

Source code compiler options are special instructions to the
A source code

No
included

You can put any number of options in a source program, but
only one option per comment is allowed,
between the dollar sign and the option letter.

This command line tells the compiler to read the source from drive
A, write the R86 file to drive B, and display the PRN file on the
console.

You cannot place blanks
The compiler accepts

blanks between the option letter and the parameter.
Pascal/MT+ supports twelve source code compiler options, as

summarized in Table 2-2.

Controls
ables

Controls
code

compiler that you put in the program source code.
option is a single lower- or upper-case letter preceded by a dollar
sign, embedded in a comment. The option must be the first item in
the comment. Certain source code options require additional
parameters.

Includes another source file into
the input stream, for example,

Removes built-in routines to save
space in symbol table (n=0..15)

in 8086 version;
compatibility only

effect in 8086 version;
for compatibility only

No effect
included for

Pascal/MT+ (86) Programmer’s Guide Invoking the Compiler2.2

Table 2-2. (continued)
Option Function Default

T +/- Controls strict type checking T-
W +/“ Generates warning messages W-
X +/- Controls exception checking code X-

Sets the stack pointerZ

Entry Point Record Generation (E)

available as entry points.

Include Files (I)

The

2-6

The following examples show proper
options:

file.
using a - parameter.

The E option generates entry point records in the relocatable
You enable the option using a + parameter, and disable it

E+ is the default.

{$E+}
(*$P*)
{$1 DjUSERFILE.LIB}

and functions if the E+ option is in effect,
generation of entry point records,
procedures, and functions local.

I<filespec> tells the compiler to include a specified file
for compilation in the input stream of the original program,
compiler supports only one level of file inclusion, so you cannot
nest include files.

E+ makes global variables and all procedures and functions
For example, EXTERNAL declarations in

separate modules can reference global variables and all procedures
E- suppresses the

thus making all variables,

The filespec must contain the drive specification, filename,
and filetype in standard format. If you omit the filetype, the
compiler looks first for a SRC, then a PAS, and finally a blank
filetype. The file must end with a carriage return, line-feed, and
CTRL-Z. If you omit the drive specification, the compiler looks on
the default drive.

source code compiler

Pascal/MT+ (86) Programmer’s Guide Invoking the Compiler2.2

Symbol Table Space Reduction (Kn)

$K Option ValuesTable 2-3.
Routines RemovedGroup

0

1 LENGTH,

2 BLOCKREAD,

3 CLOSE, OPEN, PURGE, CHAIN, CREATE
4

5 IORESULT, PAGE, NEW, DISPOSE
6 SUCC, PRED, EOF, EOLN
7
8

9
10 WRITE, WRITELN
11 unused
12 MEMAVAIL, MAXAVAIL

2-7

GNB, WNB, CLOSEDEL, OPENX,
BLOCKWRITE

ROUND, TRUNC, EXP, LN, ARCTAN,
SQRT, COS, SIN

The K option removes unreferenced built-in routine
from the symbol table to make more room for user

COPY, INSERT, POS, DELETE,
CONCAT

Predefined identifiers normally take about 6K bytes of symbol
table space. T' —— ------------ -------c-----------J ----
definitions
symbols.

WRD, HI, LO, SWAP, ADDR, SIZEOF,
INLINE, EXIT, PACK, UNPACK

The K option uses an integer parameter ranging from 0 to 15.
Each integer corresponds to different groups of routines as defined
in Table 2-3. Enter all K options before the words PROGRAM or
MODULE in the source code. Use as many K options as required, but
place only one integer parameter after each letter K. Note that any
reference in a program to the removed symbols generates an undefined
identifier error message.

RESET, REWRITE, GET, PUT, ASSIGN,
MOVELEFT, MOVERIGHT, FILLCHAR
READ, READLN

TSTBIT, CLRBIT, SETBIT, SHR, SHL

Pascal/MT+ (86) Programmer’s Guide Invoking the Compiler2.2

(continued)Table 2-3.
Routines RemovedGroup

13 SEEKREAD, SEEKWRITE
14 unused on the 8086

unused on the 808615

Listing Controls (L,P)

a

Run-time Range Checking (R)

Recursion and Stack Frame Allocation (S)

Strict Type and Portability Checking (T,W)

2-8

In the 8086 implementation, the compiler ignores the S option
because it always generates reentrant and recursive programs, unlike
the 8080/Z80® version. Global variables within programs or modules
are always allocated statically.

The L option controls the listing that the compiler generates
during Phase 0. You enable the L option with the + parameter and
disable it with the - parameter.

The P option starts
character in the PRN file.

The R option controls the generation of run-time code that
performs range checking for array subscripts and storage into
subrange variables. You enable the R option with the + parameter
and disable it with the - parameter. Refer to Section 4.6.1 for
information on range checking.

When the T option is enabled, the compiler performs weak type
checking only. If the T and W options are enabled and the compiler
detects a nonportable feature, the compiler displays error message
500. String operations cause error 500 when the two options are
enabled because the STRING data type is not standard.

The T and W options check for compatibility with the ISO
Pascal standard. They do not check for all features listed in the
Pascal/MT+ Language Reference Manual, because certain features are
implementation dependent and others are software routines.

new page by placing a form-feed

The T option controls the strict type checking/nonportable
warning facility. The W option controls the display of warning
messages pertaining to the T option. You enable both options with
the + parameter and disable them with the - parameter. The default
value for both options is -.

Invoking the CompilerPascal/MT+ (86) Programmer’s Guide 2.2

Run-time Exception Checking (X)

Setting the Stack Pointer (Z)

Using the Linker2.3

LINKMT <main module> {,<module>} {,<library>}
or

LINKMT <new filespec>=<main module> {,<module>} {,<library>}

2-9

You invoke LINK/MT+86 with
format:

equal sign. 1
logical drive,
command line.

The linker assumes a R86 filetype for the <main module> and all
the discussion
LINK/MT+86 can

<modules> unless you specify a KMD filetype, see
about the /F option for information about KMD files,
link a maximum of 40 files at one time.

LINK/MT+86™is the linkage editor that reads relocatable object
modules with filetype R86 and generates an executable command file
with filetype CMD. The linker can also generate overlay files.

In a CP/M-86 environment, the compiler initializes the
hardware stack by loading the SS register with the value in data
segment 15H and the SP register with the value in data segment 12H.
If you use the Z option, you must provide code to preload the SS and
SP registers before executing the program. This code is normally in
the form of an assembly-language routine.

The $Z option suppresses generation of the CP/M-86 type
initialization. You should enter the option as $Z+ only once before
the PROGRAM line in the main program, and not on the individual
modules.

a command line of the following

The linker writes the executable file to the same logical disk
as the <main module>, unless you specify a new <filespec> using an

The <main module> and each <module> can be on any
> You can specify the drive before each file in the

In the current release of Pascal/MT+, the X option remains in
effect. Normally, the X option controls exception checking.
Exception checking covers integer and real zero division, string
overflow, real number overflow, and underflow. Refer to Section 4.6
for information on run-time error handling.

Pascal/MT+ (86) Programmer’s Guide 2.3 Using the Linker

The following examples show valid LINK/MT+86 command lines:
A>LINKMT CALC,TRANCEND,FPREALS,PASLIB/S
A>LINKMT B:CALC=CALC,B:TRANCEND,FPREALS,PASLIB/S
A> LINKMT D:NEWPROG=B:CALC,C:TRANCEND,C:FPREALS , C:PASLIB/S/M

2.3.1 Linker Options

Table 2-4. Linker Options
Option Function

S

List modules as they are being linked.L

List all entry points in tabular form.M
E

Relocate object code to nnnnH.P:nnnn

ofD:nnnn nnnnH

R:nnnn of nnnnH

X:nnnn ofsegment nnnnH

ofZ:nnnn segment nnnnH

Y1<filespec>’ Write linker messages to <filespec>.

2-10

Specify maximum
bytes.

Specify maximum
bytes.

Search preceding name as a library,
extracting only the required
routines.

Specify Stack
paragraphs.

List entry points beginning with $, ?
or @ in addition to other entry
points requiring /M or /W to operate.

Linker options are special instructions to LINK/MT+86 that you
specify in the command line. You specify options as a single lower-
or upper-case letter. Each option must be preceded in the command
line with a slash, /. Some options require an additional parameter.
LINK/MT+86 supports 16 options as summarized in Table 2-4.

data area

code area

Spec if y Extra
paragraphs for root programs).

Pascal/MT+ (86) Programmer’s Guide 2.3 Using the Linker

Table 2-4. (continued)
Option Function

W

F

C

Overlay area starting address.Vm:nnnn
X:nnnn (when

0: n

Run-time Library Search (/S)

Each

Memory Map (/M)

2-11

file.
list.

The M option generates a map and sends it to the map output
Place the M option after the last file named in the parameter

library and to extract only the necessary
The S option must follow the name of the run-time library

The S option extracts modules from
It does not extract procedures and functions from

Continuation flag in KMD file (use on
all but last line).

The S option tells the linker to search the file whose name the
option follows as a
modules,
in the linker command line,
libraries only,
separately compiled modules.

Take preceding filename as a KMD file
containing input filenames.

Overlay static variable space
linking overlays).
Number the overlay and use the
previous filename as the root program
symbol table. By default, n ranges
from 1 to 50 but can be extended (1
to 256) by altering the overlay
manager.

The order of modules within a library is important,
searchable library must contain routines in the correct order and be

PASLIB and FPREALS are specially constructed for
Unless otherwise indicated, the other R86 files

You cannot
followed by /S.
searchability. Unless otherwise indicated,
supplied with the Pascal/MT+ system are not searchable.
search user-created modules unless they are processed by LIB/MT+86,
as described in Section 5.3.

Write a SID-86 compatible SYM file
(written to the same disk as the CMD
file).

Using the Linker2.3Pascal/MT+ (86) Programmer’s Guide

Load Maps (/L)r (/E)

Program Origin (/P)

The syntax of the P option is
/P:nnnn

where nnnn is a hexadecimal number in the range 0 to FFFF.

Maximum Code Size (/R) and Maximum Data Size (/D)

The R opti

Generate SYM File (/W)

The

Linker Input Command File (/F)

ItipL

2-12

The L option tells the linker to display module code and data
locations as they are linked.

SYM file,
program.

a colon
OFFFFH,

The W option tells the linker to generate a SID-86 compatible
The file contains information about entry points in the

The linker uses the SYM file when it links overlays.
V option also enables the W option.

Normally in a CP/M-86 environment, you must use the SUBMIT
facility for typing repetitive sequences such as linking multiple
files together. LINK/MT+86 allows you to enter this data into a file
and have the linker process the filenames from the file. You must
specify a file with a filetype of KMD and follow this filename with
a /F, for example, CFILES/F.

The R option specifies the maximum code
option specifies the maximum data area size,
have a single hexadecimal number
(/R:nnnn, /D:nnnn). The argument can
specifying the segment size in bytes.

Use the P option to link overlays by controlling the location
of the object code within the Code segment. The linker supports
relocation of object code so that it can overlay. The P option does
not tell the linker to leave space at the beginning of the CMD file.

area size. The D
The R and D options

argument following
range from 0 to

When used with the M or W options, the E option tells the
linker to display all routines as they are linked, including
routines that begin with ? or @, which are reserved for run-time
library-routine names. The E option does not enable the L, M, or W
option. E will not display module code and data locations if used
alone.

Pascal/MT+ (86) Programmer’s Guide 2.3 Using the Linker

to

A>LINKMT CALC/F/L
The file CALC.KMD contains

A:CALC,D:TRANCEND,F:PREALS,B:PASLIB/S
and

Extra Segment and Stack Segment Size Switches (/X),(/Z)

Its

Directing Linker output to a file (/Y)

2-13

the
or

At the end
, The last

the
the
and

X option controls the size of the Extra segment.
Therefore, MEMAVAIL returns 0 and no heap is

On the 8086 under CP/M-86, you can specify the size of
Extra segment that the heap uses exclusively and the size of
Stack segment that the return addresses, parameter passing,
local variables use.

The
default value is 0.
available if you do not specify X.

stack.
paragraphs, not bytes.

The Z option default value of Z:200 allocates 8K bytes for the
Note that you specify the size of the segments in 16-byte

The number is in hexadecimal, so x:800 asks
for 800H paragraphs, which actually means 8000H bytes, or 32K.

The following example demonstrates how to use a KMD file
link the files CALC, TRANCEND, FPREALS, and PASLIB into a CMD file.
The command to link the files is

The linker
filenames.

The input from the file is concatenated logically after the
data on the left of the filename. In the command line, additional
options can follow the /F, but not additional object module names.

reads input from this file and processes
Filenames can be on one line, separated by commas,

each name or group of names can be on a separate line, j
of each line except the last, you must place a /C option,
line must end with a carriage return or line-feed.

The linker searches PASLIB only for
generates a link map.

LINK/MT+86 lets you direct linker output to a file with the Y
linker option. The default action directs output to the console.
You must follow the Y option with the filespec or device name in
single apostrophes. For example,

the necessary modules,

Pascal/MT+ (86) Programmer’s Guide Using the Linker2.3

/Y’MYFILE’
tells the linker to generate the file MYFILE.MAP, and

/Y’LST:'

Overlay Options

Required Relocatable Files2.3.2

• TRANCEND:

SEEKREAD and SEEKWRITE are resolved here.• RANDOMIO:

Comparisons, I/O, arithmetic support, etc.• PASLIB:

The following files contain the real-number routines:

BCD real numbers, @XOP, @RRL, @WRL• BCDREALS:
Binary real numbers @XOP,@RRL,@WRL (searchable)• FPREALS:

numbers usingHardware real the Intel 8087

2-14

or declares any real number.
undefined references, link
resolve them.

Support for SIN, COS, ARCTAN, SQRT, LN, EXP, SQR.
Use only with FPREALS.

@NLN, @EXT, @ENT generated when debugger option is
If @XOP and @WRL are undefined, see Section 5.4.

• DEBUGGER:
requested.

tells the linker to route the output to the system-list device.
When errors occur, a message goes to both the output file and the
console.

• 87REALS:
coprocessor

The linker uses three options to process an overlay or a root
program in an overlay scheme. The Vm option gives the overlay-area
address. The X option controls how the linker allocates data space
for overlays and how the linker allocates space for the heap. The 0
option numbers the overlay and indicates that the previous filename
is the root program symbol table. Section 3.2 explains these
overlay options.

The distribution disks contain certain R86 files that you must
link into any program that loads, stores, assigns, inputs, outputs,

If you have any of these routines as
references, link the appropriate relocatable file to

The following are R86 files:

Pascal/MT+ (86) Programmer’s Guide Using the Linker2.3

2.3.3 Linker Error Messages
Table 2-5 shows the three linker error messages.

Linker Error MessagesTable 2-5.
Meaning Message
Duplicate symbol: xxxxxxx

SYSMEM not found in SYM file
the root-program symbol file is

External offset table overflow

2.4 Using Other Linkers

You invoke MT2INT with a command line of the form:
MT2INT <filename>

where <filename> is the name of an R86 file.

End of Section 2

2-15

This means you have exceeded the 200 externals
plus offset addresses that the linker allows in
its offset table.

This usually means a run-time routine or
variable has the same name as a user routine or
variable.

This means
corrupt.

LINK/MT+86 links Pascal/MT+ main programs, Pascal/MT+ modules,
and assembly-language modules created by ASMT-86. The MT2INT
program, supplied on distribution disk #3, converts R86 files into
Intel format 8086 OBJ files. You can transport these files to other
CP/M-86 systems and link them with LINK-86™.

leaving shared
data for

you

Modules3.1

The differences are

• Use the word MODULE instead of the word PROGRAM.
Instead,

3-1

Section 3
Segmented Programs

Pascal/MT+ provides three methods for segmenting programs:
modules, overlays, and chaining.

Modules are similar in form to programs,
the following:

You can link
or

One of the biggest advantages of Pascal/MT+ is the ability to
write a large, complex program as a series of small, independent
modules. You can code, test, debug, and maintain each module
separately, and thereby greatly simplify the overall task of program
design. The process of breaking a program into separate units is
called segmenting.

• Modules are separately compiled program sections,
modules together to build entire programs, libraries,
overlays.

The Pascal/MT+ system lets you do modular programming with
little preplanning. You can develop programs until they become too
large to compile and then split them into modules. The $E compiler
option lets you make variables and procedures private.

• There is no main statement body in a module. Instead, after
the definitions and declaration section, use the word MODEND,
followed by a period.

• Overlays are sections of programs
memory when a routine in that overlay is called,
the overlay remains on the disk.

that only need to be in
Otherwise,

If you are not an experienced Pascal/MT+ programmer,
should start by writing programs without overlays.

• Chaining allows one program to call another,
the new program in memory.

You can use these three features in any combination to
produce modular programs that are easier to maintain and take up
less memory than monolithic programs.

Pascal/MT+ (86) Programmer's Guide 3.1 Modules

For example,

MODULE LITTLEMOD;
VAR

EXTERNAL TEXT;MAINFILE

MODEND.

Note that a module must contain at least one procedure or function.

other module. variables

For variables, the colon and
For example,

(* in another module
(R:

END;

3-2

Be sure the declarations match with the declarations in the
The compiler and linker do notmodule where the space is allocated,

check declarations between modules.

put the word EXTERNAL between
the type in a global declaration.

VAR
I,J,K : EXTERNAL INTEGER;

any

program,
module.
level of a module or program.

Modules can have free access to procedures and variables in
If you want to keep procedures or

private within a module, use the $E- compiler option.

*)
)EXTERNAL RECORD (in another module

x,y : integer;
st : string;

For procedures and functions declared in other modules, put
the word EXTERNAL before the word FUNCTION or PROCEDURE. These
external declarations must come before the first normal procedure or
function declaration in the module or program.

PROCEDURE ECHO (ST: STRING; TIMES: INTEGER);
VAR

I : INTEGER
BEGIN

FOR I:= 1 TO TIMES DO
WRITELN (MAINFILE, ST)

END;

Use the EXTERNAL directive to declare variables, procedures,
and functions that are allocated in other modules or in the main

EXTERNAL tells the compiler not to allocate space in the
You can declare externals only at the global (outermost)

Pascal/MT+ (86) Programmer’s Guide 3.1 Modules

seven

Modules

PROGRAM EXTERNALJDEMO;
type declarations>

VAR
I, J : INTEGER; AVAILABLE IN OTHER MODULES

LOCATED ELSEWHEREK,L : EXTERNAL INTEGER;
EXTERNAL PROCEDURE SORT (VAR Q:LIST; LEN:INTEGER);
EXTERNAL FUNCTION IOTEST:INTEGER;

END;

Listing 3-1. Main Program Example

3-3

In Pascal/MT+, the code generated for main programs and for
modules differs in the following ways:

• Main programs begin with sixteen bytes of header code,
do not.

(*

(*

*)

*)

*)

*)

• Main programs have a main body of code following the procedures
and functions. Modules do not.

Numbers and types of parameters must match in the Pascal/MT+
system. Returned types must match for functions; the compiler and
linker do not type-check across modules. External routines cannot
have procedures and functions as parameters.

Listing 3-1 shows the outline of a main program, and Listing
3-2 shows the outline of a module. The main program references
variables and subprograms in the module; the module references
variables and subprograms in the main program.

BEGIN
SORT(....)
(* CALL AN EXTERNAL PROC NORMALLY

END.

PROCEDURE PROCI;
BEGIN

IF IOTEST = 1 THEN
(* CALL AN EXTERNAL FUNC NORMALLY

In Pascal/MT+, external names are significant to
characters only. Internal names are significant to eight.

clabel, constant,

3.1 ModulesPascal/MT+ (86) Programmer’s Guide

MODULE MODULE_DEMO;
< label, const, type declarations>
VAR

USE THOSE FROM MAIN PROGRAM: EXTERNAL INTEGER;I, J
(* DEFINE THESE HEREK,L : INTEGER?

EXTERNAL PROCEDURE PROCI; USE THE ONE FROM MAIN PROG
(* DEFINE SORT HEREPROCEDURE SORT(...)?

(* DEFINE IOTEST HEREFUNCTION IOTEST:INTEGER;

<maybe other procedures and functions here>
MODEND.

Listing 3-2. Module Example

Overlays3.2

The following terms are used in this section:

3-4

• overlay area:
loads overlays.

• root program:
memory.

(*

*)

(* *)
*)

*)
*)

the portion of the program that
Root programs have the CMD filetype.

consists of a main program, the run-time routines it requires,
and optionally, the run-time routines the overlays require.

is always in
A root program

else in the
for example,

an area of memory where the overlay manager
You must plan the location and size of the

overlay areas and specify them at link-time.

Using overlays, you can link programs so that parts of them
automatically load from the disk as they are needed. Thus, a whole
program does not have to fit in memory simultaneously. Store
infrequently used modules and module groups that need not be co­
resident in overlays.

• overlay: a set of modules, linked together as a unit, that
loads into memory from disk when a procedure or function in one
of the modules is referenced from somewhere
program. Overlays have hexadecimal filetypes,
PROG.OIF.

Pascal/MT+ (86) Programmer’s Guide 3.2 Overlays

Pascal/MT+ Overlay System3.2.1

even

• Overlays 241 to 255 load into overlay area 15.

3-5

You can
The

Most Pascal/MT+ programs only use one overlay area,
devise more extensive schemes using multiple overlay areas,
overlay number determines the area where LINKMT86 loads an overlay.

The major features of the Pascal/MT+ overlay system are the
following:

• Overlays 1 to 16 load into overlay area 1.
• Overlays 17 to 32 load into overlay area 2.

• overlay static variables: global variables, or variables local
to a run-time or assembly-language routine in the overlay. All
Pascal/MT+ modules are recursive. Recursion reduces the amount
of static data. It does not necessarily eliminate it because
run-time code linked with the overlay might contain static
data. When you link the overlay, the linker determines the
amount of data space required for static variables.

The overlay-loading routine loads overlays into memory in 128-
byte segments, so consider the extra size when you save space for
overlays. You must specify area 1; the remaining areas are
optional.

• Supports up to 255 overlays.
• Supports up to 15 separate overlay areas.
• Overlays can call other overlays, even in the same overlay

area.
• Overlays can access procedures and variables in the root.
• Overlays load from the disk only when necessary.
• Overlays can contain an arbitrary number of modules.
• Linkage to a procedure in an overlay is by name.
• You can specify drives containing individual overlays.

Overlays have an arbitrary number of entry points for the root
program and other overlays to access. They access the entry points
by name. The linker and relocatable formats limit overlay procedure
and function names to 7 significant characters, as with all
externals.

You assign overlay areas when you link the root module. You
assign overlay numbers when you link the overlay. If you do not
specify an overlay area when you link the root module, the default
action is to place it in overlay area 1.

You must determine the size and address of overlay areas and
make sure the overlays are smaller than the area into which they
load. If you do not specify the address for an overlay area, it
defaults to the same address as overlay area 1.

Pascal/MT+ (86) Programmer’s Guide 3.2 Overlays

than 15 overlays into overlay area 1 by

Using Overlays3.2.2

Calling an Overlay Procedure

INTEGER;

3-6

Overlays can access procedures, functions, variables, and run­
time routines in the root by using regular external declarations.

For example,
you can

EXTERNAL [3] PROCEDURE CONV_SYM;
EXTERNAL [FIXUP] FUNCTION NEW_TOK :

To tell the compiler that a procedure or function is in an
overlay, put the overlay number in the declaration, as in the
following examples:

You do not have to number overlays consecutively,
if you want to use three overlays in three overlay areas,
number them 1, 17, 33, or any combination that puts the overlays in
different areas.

If a procedure or function is in an overlay, the compiler
inserts a call to the overlay manager, @OVL, before the call to the
procedure or function. @OVL makes sure that the requested overlay
is in memory, loading it from disk if necessary. When the procedure
or function returns, the overlay manager returns control to the
calling procedure.

When part of a program calls an overlay-resident routine, the
program accesses that routine through an entry point table at the
beginning of the overlay. Only procedures and functions declared
without the $E- compiler option have their names in the entry point
table. Use the $E- option to make routines private to an overlay
and to save space in the table.

You can load more
explicitly supplying the overlay area number when you link the root
module. Otherwise, the default number is 15.

The overlay number must be an integer constant, either literal or
named.

Overlays have one or more modules, written in Pascal or
assembly language. The overlay manager in PASLIB has space in its
drive table for 50 overlays, numbered 1 to 50. If you need more
overlays, you can modify the overlay manager source, reassemble it,
and link it before PASLIB. The source code for the overlay manager
is in the file OVLMGR3.I86 on distribution disk #3.

Pascal/MT+ (86) Programmer’s Guide 3.2 Overlays

disk.

Overlays Calling Other Overlays

followingcall other overlays under thecan

Assembly Language Modules

Linking Programs with Overlays3.2.3

3-7

Over lays
conditions:

the overlays,
of another.

EXTERNAL PROCEDURE @OVS
(OVERLAY_NUMBER : INTEGER; DRIVE : CHAR)?

but other modules
The overlay does not
Do not use DB in the

If the overlays are
same

• You use /X to link overlays if there are static variables in
This ensures that no procedure alters the data

Pascal/MT+ overlays are always pure code,
written in assembly language might not be.
reload if it is already in the overlay area.
Code segment for variables that are modified because they will not
be initialized every time the overlay is called.

If an overlay is not on the same disk as the main CMD file, use
the @OVS routine to specify the drive. Declare the routine as
follows:

The standard overlay manager does not reload a previous overlay
when it returns from an overlay call. If you want to return control
to a previous overlay in the same overlay, you must change the
overlay manager to a reloading version. The source for the overlay
manager is in the file OVLMGR3.I86 which is on distribution disk #3.
If you need the reloading version, link it before PASLIB.

• You must use the reloading overlay manager if an overlay calls
another overlay in the same overlay area.
in different overlay areas, both are in memory at the
time.

The linker separately links each part of a program containing
overlays. The linker first builds a SYM file containing the entry
points for the root, and then uses that file when it links the
overlays.

Call @OVS to define the drive before calling the overlay-resident
procedure or function. The drive must be upper-case, and can be the
@ character or a letter from A...0. The @ represents the logged-in

You must ensure that the specified disk is on-line.

Pascal/MT+ (86) Programmer’s Guide 3.2 Overlays

The first time that you

files.

1)

2) link the overlays. This

3)

4) Relink the overlays, using the new SYM file.

There are three linker options that control overlay linking:

SYM Option /0:Overlay Group and

overlay.

Overlay Area Option /V:

3-8

that n is the overlay number, in hexadecimal,
overlay number to make the filename.
only.

the linker to generate a SYM file,
only.

If you make a change in an overlay, you only need to relink the
The exception is when the code size or data size changes

beyond the constraints you gave when you linked the root.

• The 0 option
• The V option
• The X option

specifies overlay numbers.
specifies overlay-area addresses.
specifies data-area sizes.

The V option automatically enables the E and W options, causing
This option is for root programs

/0:n tells the linker that the previous file is a SYM file and
The linker uses the

This option is for overlays

Use the SYM file from step 1 to
step tells you how much space the overlays need.

You can use the /V option up to 16 times when you link the main
program, once for each of the 16 overlay areas. You must use it at
least once to give the default address for overlay area 1.

Link the root program without
overlay areas and overlay data,
first SYM file.

reserving space for the
This step generates the

Relink the root, specifying the overlay-area addresses and
static-data size. This step produces the SYM file with the
correct entry points.

Before the entry points can be correct, you have to know how
much code and data space the overlays need,
link an overlay program, you have to link the entire program twice,
once to determine the sizes, and once to produce the actual program

The following steps outline the linking process.

/Vn:mmmm tells the linker where to locate the overlay area,
mmmm is the hexadecimal address of the overlay area, and n is the
overlay area number, in hexadecimal.

Pascal/MT+ (86) Programmer’s Guide 3.2 Overlays

Overlay Local Storage Option /X:

Linking a Root Program

The command line for linking a root program has the

LINKMT <modules and libraries> /Vn:mmmm/D:oooo/R:pppp
You can

3-9

This command line only shows the three required options,
use any of the other options as needed.

program,
and i
static data,
general form:

Linking a root program is similar to linking a nonoverlayed
The difference is that you have to generate the SYM file,

you have to allow room for the overlay areas and for overlay

When linking overlays, /X:nnnn tells the linker how far to
offset a particular overlay’s static data area. nnnn is the
hexadecimal number of bytes from the top of the root’s data area.
The default value for this option is /X:0000.

To find the value for /V, link the root program with the
necessary libraries. The root program’s total code size plus 80H is
the lowest address you can use for an overlay area.

Note: when you use this option, give yourself extra space so that
you do not have to relink everything when the data areas change
size.

X:nnnn controls how the linker allocates space for data. This
option is for both roots and overlays. To determine the amount of
data used by an overlay, link it and note the total data size put
out by the linker.

For example, suppose a program has two overlays with a combined
total of 500 bytes of static data. Overlay 1 has 350 bytes, and
overlay 2 has 150 bytes. Overlay 1 needs no offset, and overlay 2
needs to have its data area 350 bytes from the end of the root’s
data area. The minimum value for overlay 2 is /X:015E, which is 350
in hexadecimal.

When used to link roots, /X:nnnn tells the linker how much
space to leave for the Extra segment. nnnn is the hexadecimal
number of 16-byte paragraphs. See Section 2.3.1 for more
information.

Pascal/MT+ (86) Programmer’s Guide 3.2 Overlays

The value is

Either

Linking an Overlay

which symbols are in the root.
The

LINKMT <prog>=<sym file>/O:n,<modules/libraries>/P:mmmm/X:ssss

If

3-10

You must at
If you do not

the linker

• Use the V option for each separate overlay area,
least specify the location of overlay area 1.
specify a location for any other overlay areas,
assigns them the same location as area 1.

• Remember to use the X option if your program uses the heap.
The default size is 0.

When linking an overlay, the linker uses the SYM file to tell
If an external symbol is not in the

SYM file, the linker looks for it in the specified libraries,
command line for linking overlays has the following form:

During development, you should leave some extra room in the
overlay areas so that you do not have to relink the entire program
if one overlay gets bigger.

• The D option specifies the size of the data area.
the sum of the root’s data size and the sizes of the overlay’s
data. Leave room during development, so that the overlay data
areas can grow.

If an overlay calls a library routine that the root does not
call, the linker puts the routine in the overlay. To force a
routine into the root, make a dummy reference to the routine in the
root.

root program just to generate a SYM file,
either use a dummy value for V or use the E and W options,
way generates the symbol file.

The linker generates a file with the same name as the program,
but with a filetype that is the overlay number in hexadecimal,
you do not specify the program name, the linker uses the name of the
first module after the SYM file.

The command line above only shows the three options that are
required for linking overlays.

When you link a

The overlay manager reads in 128 bytes of code at a time. Make
sure you allow room at the end of your overlay areas so that the
garbage bytes that pad out the last sector do not overwrite the next
area. The minimum size for an overlay area should be the size of
the largest overlay plus 80H, rounded to the next multiple of 128.

• The R option specifies the total code size, which includes the
overlay areas. Use the sum of root program’s code, plus 80H,
and the size of each separate overlay area, plus 80H for each
area.

Pascal/MT+ (86) Programmer’s Guide 3.2 Overlays

• Use the X option if the overlay has any static data.

3.2.4 Overlay Error Messages
The overlay manager can detect two errors:

<f ilename>Unable to open <overlay #>

not found ovl: <filename> <overlay #>
incorrect EXTERNAL a

3.2.5 Example

3-11

• If the overlay manager cannot find a particular procedure or
function in the specified overlay it displays the message:

• DEMOPROG.PAS
• MODI.PAS
• MOD2.PAS

same value
overlay area.

3-4,
disk #3.
overlays.

Use the
the

• For P, use the starting address of the overlay area.
that you use with the V option that sets up

The problem might be an
misnumbered overlay.

• If the overlay manager cannot find the requested overlay it
displays the message:

The following example has a
character from the console keyboard,
procedures, depending on the character entered,
business package could work in a similar way.

overlay whenever you relink the root,
Be sure to use the new SYM file.

If the overlay is not on the default disk, call @OVS in the
program to tell the overlay manager where to look.

The main program and the two modules are shown in Listings 3-3,
and 3-5 respectively. These files are also on distribution

You should compile and link them to get a feel for using
The files are the following:

• The 0 option tells the linker that the file is a SYM file and
that the overlay number is n, in hexadecimal.

root program that asks for a
It calls one of two

A large menu-driven

You must relink an
because entry points change.

statement or
Proc: ”<procname>”

Pascal/MT+ (86) Programmer's Guide 3.2 Overlays

PROGRAM DEMO_PROG;

(* TO BE ACCESSED BY THE OVERLAYS *)

(* COULD HAVE HAD PARAMETERS *)EXTERNAL [1] PROCEDURE OVL1;

(* ALSO COULD HAVE HAD PARAMETERS *)

1;

'B','b'
2;

Listing 3-3. DEMOPROG.PAS

MODULE OVERLAY1;

LOCATED IN THE ROOT

(* ONE OF POSSIBLY MANY PROCEDURES IN THIS MODULE *)PROCEDURE OVL1;

('In overlayl, I = ',I)

MODEND

Listing 3-4. MODI.PAS

3-12

VAR
I : INTEGER;
CH: CHART­

EXTERNAL [2] PROCEDURE OVL2;
2
(* EITHER COULD ALSO HAVE BEEN A FUNCTION IF DESIRED *)

BEGIN
WRITELN

END;

(* TO DEMONSTRATE ACCESS OF GLOBALS *)
(* FROM AN OVERLAY *)

(*

: BEGIN
I : =
OVL1

END;

BEG IN
REPEAT
WRITE('Enter character, A/B/Q: ');
READ (CH) ;
CASE CH OF

'A' ,'a '

: BEGIN
I : =
OVL2

END

*)

ELSE
IF NOT (CH IN ['Q' , ' q']) THEN

WRITEI24 ('En ter only A or B')
END (* CASE *)

UNTIL CH IN ['Q','q'];
WRITELN ('End of program')

END.

VAR
I : EXTERNAL INTEGER;

Pascal/MT+ (86) Programmer’s Guide 3.2 Overlays

MODULE OVERLAY 2;

(* LOCATED IN THE ROOT *)
(*ONE OF POSSIBLY MANY PROCEDURES IN THIS MODULE *)

MODEND.

Listing 3-5. MOD2.PAS

A>LINKMT DEMOPROG,PASLIB/S/D:1000/VI:4000/R:5000

To link overlay 1, enter this command:
A>LINKMT DEMOPROG=DEMOPROG/O:1,MOD1,PASLIB/S/P:4000/L

To link overlay 2, enter this command:
A>LINKMT DEMOPROG=DEMOPROG/O:2,MOD2,PASLIB/S/P:4000/L

3-13

After
together.

This creates the files DEMOPROG.CMD and DEMOPROG.SYM with the data
size set to 1000 (this is arbitrary). The overlay areas, 1 to 16,
are at 4000 (again arbitrary) , and the total code size is estimated
to be 5000.

VAR
I : EXTERNAL INTEGER;

PROCEDURE OVL2;
BEGIN

WRITELN ('In overlay 2, I=',I)
END;

Now run the program. Notice that if you enter the same letter
more than once in succession, for example, A, A, A, the overlay does
not reload. However, when you enter the letters in alternate order,
for example, A, B, A, ..., the overlays load for each call.

This creates the overlay file DEMOPROG.001. The /O:l option tells
the linker to read DEMOPROG.SYM, and this is overlay #1. 4000 is
the address of the overlay area for this overlay. The linker
searches PASLIB to load only those modules required by this overlay
but not present in DEMOPROG.CMD.

The options are the same as above. Note that /X is not needed when
linking the overlays because they do not have any local data.

you compile the three modules, you must link them
Link the main program using the command:

Pascal/MT+ (86) Programmer’s Guide Chaining3.3

Chaining3.3

can communicate:

3-14

With the shared global variable method, you must guarantee that
at least the first section of global variables is the communication
area. You must declare the the shared variables identically so that
they have the same location and size in all the chained programs.
The remainder of the global variables do not need to be the same in
each program.

Chaining allows one program to call another program into memory
and transfer control to that program. Chaining is an
implementation-dependent feature that might not be available on all
implementations of Pascal/MT+.

There are two ways that chained programs
shared global variables, and absolute variables.

The run-time library routine performs the appropriate functions
to load in the file opened with the RESET statement,
the /R and /D linker options, see Section 2.3,
space
chain.
80H, and the /D value
requirement plus 80H.

Using the absolute variable method, you typically define a
record that is used as a communication area, and then define this
record at an absolute location in each module.

name of the new program,
procedure passing the
parameter.

To chain programs, you must declare an untyped file (FILE;) and
use the ASSIGN and RESET procedures to initialize the file to the

You can then execute a call to the CHAIN
name of the file variable as a single

Listings 3-6a and 3-6b list two example programs that
communicate with each other using absolute variables. The first
program chains to the second program, which prints the results of
the first program’s execution.

When one program chains to another, the run-time routine loads
the new program into the code area and starts execution. Programs
pass information by leaving it in the data area.

You must use
to reserve enough

in the first program in the chain for all programs in the
The /R value should be the size of the largest program plus

should be the size of the largest data

No special facilities are needed to maintain the heap across
the chain as are necessary in 8-bit versions of Pascal/MT+. Unlike
the 8-bit versions, files cannot remain open across a chain. If you
want to leave something open, you must use overlays, not chaining.

Pascal/MT+ (86) Programmer’s Guide 3.3 Chaining

(* PROGRAM #1 IN CHAIN DEMONSTRATION *)

J

Listing 3-6a. Chain Demonstration Program 1

3-15

(*
(*
CHAINFIL: FILE;

*)

PROGRAM CHAIN1;
TYPE
COMMAREA = RECORD

I,J,K : INTEGER
END;

*)

*)

BEGIN (* MAIN PROGRAM #1
WITH GLOBALS DO

BEGIN
I := 3;
J := 3;
K := I *

END;
ASSIGN (CHAINFIL,’CHAIN 2.CMD’);
RESET(CHAINFIL);
IF IORESULT =255 THEN

BEGIN
WRITELN(’UNABLE TO OPEN CHAIN2.CMD’);
EXIT

END;
CHAIN(CHAINFIL)

END. (* END CHAIN1

VAR
GLOBALS : ABSOLUTE [$40:$8000] COMMAREA;

this address is arbitrary and might not work
on your system *)

ChainingPascal/MT+ (86) Programmer’s Guide 3.3

(* PROGRAM #2 IN CHAIN DEMONSTRATION *)

IS = ’, K)
RETURNS TO OPERATING SYSTEM WHEN COMPLETEEND.

Chain Demonstration Program 2Listing 3-6b.

End of Section 3

3-16

VAR
GLOBALS : ABSOLUTE ($40:$8000] COMMAREA;

PROGRAM CHAIN 2;
TYPE
COMMAREA = RECORD

I,J,K : INTEGER
END;

(* *)

BEGIN (* PROGRAM #2 *)
WITH GLOBALS DO

WRITELN (’RESULT OF TIMES ',J,'

Section 4
Run-time Interface

4.1 Run-time Environment

CODE SEGMENT

7 T
0

DATA SEGMENT

$
0 100H

EXTRA SEGMENT

4 $
HEAP DATA

4
0

STACK SEGMENT

4
LOCAL VARIABLES, RETURN VALUES, AND PARAMETERS

4 $
0

AN 044

Figure 4-1. Memory Layout

4-1

BASE
PAGE

DEFAULT SIZE IS 8K
OVERRIDE USING /Z OPTION

DEFAULT SIZE ISO
MUST SPECIFY BY /X OPTION

DEFAULT SIZE
OR/R VALUE

DEFAULT SIZE
OR/D VALUE

---------- s <1----------
PROGRAM CODE AREA INCLUDING THE

RUN-TIME LIBRARY ROUTINES

This section explains how to interface Pascal/MT+ programs with
the run-time environment, with assembly-language routines, and with
the operating system. It also explains how to write stand-alone
programs that run without an operating system.

Figure 4-1 shows the memory layout for a Pascal/MT+ program.
The heap grows towards high memory from the low end of the Extra
segment. The local-variable stack grows towards low memory from the
high end of the Stack segment.

Pascal/MT+ (86) Programmer’s Guide Run-time Environment4.1

4.1.1 Stack

4.1.2 Program Structure

overlay

4.2 Assembly-language Routines

Accessing Variables and Routines4.2.1

4-2

To access assembly-language variables or routines from a Pascal
program, you must perform the following steps:

Programs
information.

The hardware and local-variable stacks are separate in 8-bit
implementations of Pascal/MT+. In the 8086/8088 implementations,
they are the same. If your program fails due to insufficient stack
area, you can enlarge the stack with the /Z linker option.

Under CP/M-86, the linker bases code for loading the stack
pointer and segment on the contents of the DS-relative locations 15H
and 12H. With ROM-based object code, use the $Z compiler option to
set the initial stack pointer for your ROM requirements. The
compiler calls the @INI routine that initializes INPUT and OUTPUT
text files. If you use ROM, you can rewrite the @INI routine to
suit your needs.

The ASMT-86 assembler and the Pascal/MT+ compiler generate
entry-point and external-reference records in the same relocatable
file format. These records contain external symbol names. The
Pascal/MT+ relocatable format allows up to 7 characters in a name.

The Pascal/MT+ compiler generates program modules containing
simple structures. A jump table at the beginning of each module has
jumps to each procedure or function in the module. The main module
also has a jump to the beginning of the code.

have sixteen bytes of header code for
In nonoverlayed programs, these are NOPs.

The Pascal/MT+ compiler ignores the underscore character in
names. For example, A_B is the same as AB. The Intel standard ASM-
86 language treats an underscore as a significant character.
Therefore, do not use underscores in labels in assembly-language
modules if the names resolve to entry points in a Pascal program.

Note: if you are using an interrupt-driven system, you often need
to enlarge the stack.

Pascal/MT+ (86) Programmer’s Guide 4.2 Assembly Routines

in the Data segment of the assembly-

• Declare them EXTERNAL in the Pascal/MT+ program.

and routines from

the

• Compile the program using the $E+ option.

SEGMENT PUBLIC
PQR:WORD

DATA
CODE SEGMENT PUBLIC

MOV AX,PQR ;GET contents OF PASCAL VARIABLE

CODE ENDS
END

(* PASCAL PROGRAM FRAGMENT

4-3

The following example shows how an assembly-language module
references a variable that is declared in a Pascal/MT+ module.

• Declare the variable or routine at the global level in
Pascal program.

VAR (* IN GLOBALS
PQR : INTEGER;

EXTRN
ENDS

*)
(* ACCESSIBLE BY ASM ROUTINE *)

*)

• Declare them PUBLIC
language module.

To access Pascal/MT+ global variables and routines from an
assembly-language routine, you must perform the following steps:

NAME DEMO
ASSUME CS-.CODE, DS:DATA

; ASSEMBLY LANGUAGE PROGRAM FRAGMENT
DATA

• Declare the name EXTRN in the Data segment of an assembly­
language program.

Assembly RoutinesPascal/MT+ (86) Programmer’s Guide 4.2

Data Allocation4.2.2

order.

A,B,C : INTEGER
C is allocated first, then B, then A.

the following storage layout appears:

byte # contents

in row-major order.stored For example, the

A: ARRAY [1..3, 1..3] OF CHAR

is stored in the following way:

4-4

no
For example, given

0
1
2
3
4
5
6
7
8
9

10
11

INTEGER;
CHAR;
BYTE ;
INTEGER;
"INTEGER;

In memory, Pascal/MT+ stores variables contiguously with
space left between one declaration and the next,
the declaration:

A :
B :
I,J,K :
L :
P :

In the global data area, variables are allocated in the order
you declare them. The exception is variables appearing in an
identifier list before a type. These are allocated in reverse

For example, given the declaration:

A LSB (least significant byte)
A MSB (most significant byte)
B
K
J
I
L LSB
L MSB
P offset LSB
P offset MSB
P segment LSB
P segment MSB

Arrays are
declaration:

Pascal/MT+ (86) Programmer’s Guide 4.2 Assembly Routines

byte # contents

this is In

Sets are stored as

Byte number
00 01 02 03 04 08 0905 06 07 0A 0B 0C 0D 0E OF 10 ... IF
00 00 00 00 00 00 00 00 07 00 00 00 00 00 ... 00FE FF FF

Figure 4-2. Storage for the Set A..Z

4-5

0
1
2
3
4
5
6
7
8

A[l,l]
A[l,2]
A[l,3]
A[2,l]
A[2,2]
A[2,3]
A[3,l]
A[3,2]
A[3,3]

Logically,
Pascal/MT+, all arrays are logically one-dimensional arrays of some
type.

Records are stored like global variables,
follows:

• Sets are stored as 32-byte items.
• Each element of the set uses one bit.
• Sets are byte oriented.
• The low-order bit of each byte is the first bit in that byte of

the set.
In this figure, the

The last bit, bit 90,
(Bit 0 is the least significant bit in the

Figure 4-2 shows the storage for the set A..Z.
first bit, bit 65 ($41), is in byte 8, bit 1.
is in byte 11, bit 2. n -- a-1--
byte.

a one-dimensional array of vectors.

Assembly RoutinesPascal/MT+ (86) Programmer’s Guide 4.2

Size and Range of Pascal/MT+ Data TypesTable 4-1.
Size RangeData Type

0. .255

Parameter Passing4.2.3

If

the

typical parameter listThe a

4-6

Table 4-1 summarizes the size and range of Pascal/MT+ data
types.

data area.
with the lowest memory address.

CHAR
BOOLEAN
INTEGER
INTEGER
LONGINT
BYTE
WORD
BCD REAL
FLOATING REAL
STRING
SET

1 8-bit-byte
1 8-bit-byte
1 8-bit-byte
2 8-bit-bytes
4 8-bit-bytes
1 8-bit-byte
2 8-bit-bytes

10 8-bit-bytes
8 8-bit-bytes
1. . . 256 bytes

32 8-bit-bytes

If passed by value,
Sets are stored on

the most

Nonscalar parameters, except sets, always pass by address,
the parameter is a value parameter, the compiler generates code in a
Pascal routine to call @MVL to move the data.

following example shows how
appears on the stack on entry to a procedure:

Each parameter requires at least
space.
order byte of 00.

Address operands and pointers use two words of stack space.
They are stored as offset word on top of segment word, just as in a

The address represents the byte of the actual variable

When you call an assembly-language routine from Pascal or a
Pascal routine from assembly-language, parameters pass on the stack.

On entry to the routine, the top of the stack is a single word
containing the return address. The parameters are below the return
address, in reverse order from declaration.

The @SS2 routine handles set parameters,
the actual value of the set goes on the stack,
the stack with the least significant byte on top and
significant byte on bottom.

0. .255
false..true
0. .255
-32768..327672^2—1 2~32
0. .255
0. .65535
18 digits, 4 decimal
10 ’307 . . 10 307

one 16-bit word of stack
A character or Boolean passes as a 16-bit word with a high-

VAR parameters pass by address.

Pascal/MT+ (86) Programmer's Guide Assembly Routines4.2

INTEGER; VAR Q:STRING; C,D:CHAR);PROCEDURE DEMO(I,J :
STACK

This is usually
In the example above,

4.2.4 Assembly-language Interface Example

4-7

Listings 4-1 and 4-2 illustrate the interface between a Pascal
program and some assembly-language routines.

J
J
I
I

0
+ 1
+ 2
+ 3
+ 4
+ 5
+ 6
+ 7
+ 8
+ 9
+ 10
+ 11
+ 12
+ 13

The Pascal program performs the PEEK and POKE functions found
in BASIC. The assembly-language module simulates the PEEK and POKE.
PEEK returns the byte found at the address passed to it, and POKE
puts the bytes in the specified address.

RETURN ADDRESS
RETURN ADDRESS
D
BYTE OF 00
C
BYTE OF 00
offset
offset

Real values return on the stack. They are placed below the
return address before the function returns. Therefore, they remain
on the top of the stack when the calling program reenters after the
return.

Assembly-language functions return only simple types, such as
enumerations, INTEGER, REAL, BOOLEAN, LONGINT, pointers, and CHAR,
but not arrays, STRINGS, or records.

The assembly-language program must remove all parameters from
the stack before returning to the calling routine.
done with an RET n instruction, where n is the number of bytes of
parameters. In the example above, n is 12.

ADDRESS OF ACTUAL STRING LSB
ADDRESS OF ACTUAL STRING MSB

segment ADDRESS OF ACTUAL STRING LSB
segment ADDRESS OF ACTUAL STRING MSB

(LSB)
(MSB)
(same as J)
(same as J)

Single-byte and
the AX register. If a pointer or

word, the high order/segmen t value

Nonreal function values return in registers,
single-word values return in
LONG—INT requires a second
returns in the BX register.

Pascal/MT+ (86) Programmer’s Guide Assembly Routines4.2

PROGRAM PEEK_POKE;
TYPE

BYTEPTR = BYTE;

END;
VAR

') ;

');

Listing 4-1. Pascal PEEK—POKE Program

4-8

(P : BYTEPTR);
(OFFSET : INTEGER;
SEGMENT: INTEGER)

*)
*)

ADDRESS : INTEGER;
CHOICE : INTEGER;
BBB : BYTE;
PPP : POINTERKLUDGE;

EXTERNAL PROCEDURE POKE (B : BYTE; P : BYTEPTR);
EXTERNAL FUNCTION PEEK (P : BYTEPTR) : BYTE;

(* THIS IS VERY 8086 SPECIFIC AND IS NOT PORTABLE!
(* BUT ON THE OTHER HAND IT IS EXTREMELY VALUABLE!
POINTERKLUDGE = RECORD

CASE BOOLEAN OF
TRUE :
FALSE:

BEGIN
REPEAT
WRITE('Address? (input as segment< space> offset)
READLN(PPP.SEGMENT,PPP.OFFSET);
WRITE(’1) Peek OR 2) Poke ’);
READLN(CHOICE);
IF CHOICE = 1 THEN

WRITELN(ADDRESS,’ contains ’,PEEK(PPP.P))
ELSE

IF CHOICE = 2 THEN
BEG IN

WRITE (’Enter byte of data:
READLN (BBB) ;
POKE(BBB,PPP.P)

END
UNTIL FALSE

END.

Pascal/MT+ (86) Programmer's Guide Assembly Routines4.2

SEGMENT PUBLICCODE

returns the byte found in the address passed on the stack

PEEK

PEEK

POKE

; AND RETURN
POKE
CODE ENDS

END

Assembly-language PEEK and POKE RoutinesListing 4-2.

4-9

DATA
DATA

SEGMENT PUBLIC
ENDS

PUBLIC PEEK
PUBLIC POKE

;GET RETURN ADDRESS INTO BX
;GET OFFSET
;GET SEGMENT
;GET BYTE TO STUFF

NAME PEEK_POKE_MODULE
ASSUME CS:CODE,DS:DATA

PROC NEAR
POP BX
POP DI
POP ES
POP AX
MOV ES:BYTE PTR [DI],AL ;STUFF BYTE AWAY
JMP BX
ENDP

;RETURN ADDRESS INTO BX
; GET OFFSET INTO DI
; GET SEGMENT INTO ES

;Poke places a byte into memory
;It is declared as an external in a Pascal program as:
;EXTERNAL PROCEDURE POKE (B : BYTE; P : BYTEPTR);

; Peek
;It is declared as an external in a Pascal program as:
;EXTERNAL FUNCTION PEEK(P : BYTEPTR) : BYTE

PROC NEAR
POP BX
POP DI
POP ES
MOV AL,ES: BYTE PTR [DI] ;GO GET THE BYTE
XOR AH,AH ; MAKE HI ORDER AX = 0
JMP BX ;AND EXIT LEAVING FUNCTION VALUE IN AX
ENDP

Interface FeaturesPascal/MT+ (86) Programmer’s Guide 4.3

Pascal/MT+ Interface Features4.3

Direct Operating System Access4.3.1

EXTERNAL FUNCTION @BDOS86(FUNC:INTEGER; PARM:PTR):INTEGER;

FUNCTION KEYPRESSED : BOOLEAN;

0)

4-10

The second operand is of type PTR, which is any user-declared
pointer type, usually the result of the ADDR function.

To stay compatible with the 8080 version of Pascal/MT+, @BDOS86
translates a single call with Function 26 into a call to set DMA
segment and a call to set DMA offset.

• direct access to the operating system
• machine code inserted into Pascal source
• variables with absolute addresses
• interrupt procedures
• heap management

BEGIN
KEYPRESSED := (@BDOS86(11,ADDR(KEYPRESSED))

END;

Listings 4-3 and 4-4 illustrate calls to BDOS Functions 6 and
23 respectively.

The following example shows KEYPRESSED, a function that uses
the @BDOS86 function. KEYPRESSED returns TRUE if a key is pressed,
and FALSE if not.

Pascal/MT+ provides several features that let you control your
program’s run-time environment. The following features are
explained in this section:

You can make BDOS function calls to the operating system by
using the @BDOS86 routine. You declare it in a Pascal program as
follows:

The first parameter is the BDOS function number. Refer to your
specific operating system’s manual for the list of functions. The
second parameter is a generic pointer (PTR). You can use the ADDR
function to generate the value.

Pascal/MT+ (86) Programmer’s Guide 4.3 Interface Features

(* DEMO OF THE USE OF BDOS FUNCTION CALL 6 FOR CONSOLE IO *)

RECORD

CH : CHAR;

I : INTEGER;

EXTERNAL FUNCTION @BDOS86(FUNC:INTEGER; PARM:PTR):INTEGER;

(READ CHARACTER *)

: ' THEN

Listing 4-3. Calling BDOS Function 6

4-11

)(THE BDOS CALL REQUIRES A POINTER PARM.
(* THIS RECORD ALLOWS US TO PASS AN *)
(* INTEGER AS A POINTER TYPE *)

(* THIS POINTER OCCUPIES THE SAME *)
(* MEMORY AS THE TWO INTEGERS ABOVE. *)

PROGRAM BDOS6;
TYPE

PTR = "INTEGER;
VAR

INTEG_TO_PTR :
CASE BOOLEAN OF

TRUE : (LO : INTEGER;
HI : INTEGER) ;

FALSE:(POINTR : PTR);
END;

BEGIN (* ECHO ANY INPUT CHARACTER TO THE CONSOLE UNTIL A : IS READ *)
INTEG_TO_PTR .HI: = 0;

REPEAT
INTEG-TO-PTR.LO:=$FF;
REPEAT

CH: =CHR (@BDOS86 (6 , INTEG_TO_PTR .POINTR)) ;
UNTIL CH <> CHR(O) ;
IF CH <
BEGIN
INTEG_TO_PTR.LO: =ORD(CH) ; (*CONVERT CH TO INTEGER, PASS AS POINTER *)
I: = @BDOS 86 (6 , INTEG_TO_PTR . POINTR) ; (* WRITE CHARACTER *)
END;

UNTIL CH= ' : ' ;
END.

Pascal/MT+ (86) Programmer’s Guide 4.3 Interface Features

(* DEMO OF THE USE OF BDOS FUNCTION CALL 23 TO RENAME FILES *)

EXTERNAL FUNCTION @BDOS 86 (FUNC : INTEGER; PARM: PTR) : INTEGER;

’); (* GET THE OLD FILE NAME *)

(* GET THE NEW FILE NAME *)

MOVE (F2,F1[16] ,12) ; (* CREATE THE FCB REQUIRED BY BDOS CALL 23 *)

',OLDNAME,' NOT FOUND.’)

RENAMED TO ’ ,NEWNAME);

END.

Calling BDOS Function 23Listing 4-4.

4.3.2 INLINE

INLINE syntax is similar to that of a procedure call:

• The word INLINE is followed by a left parenthesis.
• After the parenthesis come any number of arguments.

variable references thator

4-12

BEGIN
WRITE (’ENTER OLD FILE NAME:
READ 124 (OLDNAME) ;
SPARSE (Fl, OLD NAME) ;

WRITE (’ENTER NEW FILE NAME:
READ LN (NEWNAME) ;
SPARSE (F 2,NEWNAME) ;

(* PARSE IS A PROCEDURE TO CONVERT STRINGS INTO INTERNAL *)
(* CP/M FILE NAME FORMAT *)
EXTERNAL PROCEDURE SPARSE (VAR F:FCBLK; S:STRING);

PROGRAM BDOS23;
TYPE
PTR = "INTEGER;
FCBLK = PACKED ARRAY [0..36] OF CHAR;

VAR
Fl,F2 : FCBLK;
I : INTEGER;
OLD NAME,NEWNAME : STRING;

Arguments must be constants,
evaluate to constants.

INLINE is a built-in feature that lets you insert data in the
middle of a Pascal/MT+ procedure or function. You can insert small
machine-code sequences and constant tables into a Pascal/MT+ program
without using externally-assembled routines.

(* CALL THE RENAME FUNCTION. PASS A POINTER TO THE FCB *)
(* CONTAINING THE OLD AND NEW FILE NAMES *)
IF @BDOS 86 (23 , ADDR (Fl)) = 255 THEN
WRITELN ('RENAME FAILED.

ELSE
WRITELN ('FILE ', OLD NAME,'

Pascal/MT+ (86) Programmer’s Guide 4.3 Interface Features

STRING, BOOLEAN, INTEGER,

• Separate the arguments with slashes (/).
• The arguments end with a right parenthesis.

a

EXTERNAL FUNCTION @BDOS86 (FUNC : INTEGER; PARM:PTR):INTEGER;

)
)

Listing 4-5. Using INLINE to Store Values in ES Register

4-13

Because of the complexity of the assembly language, Pascal/MT+
does not have a built-in mini-assembler.

Note that a string in single apostrophes does not generate
length byte, but simply the data for the string.

The listing on the next page demonstrates how INLINE constructs
compile-time tables.

The following listing shows how to use INLINE to store values
in the ES register after calling @BDOS86.

inline ($8C/
$86/
ESVAL);

ES_REG:= ESVAL;
END;

TYPE
PTR = "INTEGER;

FUNCTION ES_REG (FUNC: INTEGER; PARM: PTR) : INTEGER;
VAR

ESVAL : INTEGER; (* SO WE CAN STORE IT HERE *)
(* ASSUME A GLOBAL VARIABLE CALLED BDOSVAL *)
(* IN WHICH TO STORE THE RESULT FROM @BDOS86 *)

• Arguments can be of types CHAR,
LONGINT, or REAL.

*-n of 8-bit versions of Pascal/MT+ are unnecessary
because all jumps are relative to the base of the

The *+n and
on the 8086 ,
segment.

Literal constants of type integer are allocated one byte if the
value falls in the range 0 to 255. Named and declared integer
constants always get two bytes.

On the 8086, local variables specified by name evaluate to a
word containing the offset into the appropriate Stack segment (based
upon BP). Global variables evaluate into a word containing their
offset in the Data segment (from the DS register).

BEG IN
BDOSVAL := @BDOS86 (FUNC , PARM) ;
(* NOW USE INLINE TO STORE THE VALUE OF ES

(* MOV large_offset[BP],ES opcode
(* second byte of opcode *)
(* referencing var places a word of offset here *)

(* SET FUNCTION VALUE *)

Interface FeaturesPascal/MT+ (86) Programmer’s Guide 4.3

PROGRAM DEMO_ INLINE;

END;

TABLE;

END;

WRITELN (TPTR" [3]) ; (* SHOULD WRITE ’POWER
END.

Using INLINE to Construct Compile-time TablesListing 4-6.

Note:

Absolute Variables4.3.3

4-14

I : ABSOLUTE [$40:$8000] INTEGER;
SCREEN: ABSOLUTE [$2000:$C0] ARRAY[0..15, 0..63] OF CHAR;

PROCEDURE
BEG IN

INLINE(

TRUE
FALSE:

the table must be in the same module as the statement that
takes the ADDR of TABLE.

IDPTR
(*

*)

*)

*)

VAR
TPTR : IDPTR;
P : POINTERKLUDGE;

You can declare ABSOLUTE variables if you know the address at
compile time. The following examples show the special syntax for
declaring absolute variables.

Here, the ADDR of TABLE must be added to its offset. This is
because ADDR does not give the address of TABLE, due to additional
code that recursion management produces. An extra eight bytes of
code is generated.

BEGIN (* MAIN PROGRAM
P.P := ADDR(TABLE);
P.LOWORD ;= P.LOWORD + WRD(8);
TPTR := P.P;

TYPE
IDFIELD = ARRAY [1..4] OF ARRAY [1..10] OF CHAR;

= "IDFIELD;
THIS WORKS ONLY ON THE 8086

POINTERKLUDGE = RECORD
CASE BOOLEAN OF

: (P : IDPTR);
(LOWORD : WORD;
HIWORD : WORD)

’MTMICROSYS’ /
'SOFTWARE ’ /
'POWER ’ /
’ TOOLS.... ') ;

Pascal/MT+ (86) Programmer’s Guide 4.3 Interface Features

4.3.4 Interrupt Procedures

You declare an interrupt procedure as follows:
PROCEDURE INTERRUPT [<vec num>] <identifier> ;

an

4-15

Interrupt procedures are not restricted to the main program; modules
can also contain interrupt procedures.

Interrupt procedures cannot have parameter lists, but can have
local variables and can access global variables.

Unlike most 8-bit implementations, the 8086 implementation of
Pascal/MT+ generates reentrant code. However, some language
facilities, specifically Console I/O, File I/O, COPY, and CONCAT,
require statically-allocated data. While you can access these facilities from an interrupt procedure, nothing prevents
interrupting a program segment that uses these facilities.

The compiler does not allocate space in your Data segment for
ABSOLUTE variables. Make sure no compiler-allocated variables
conflict with the absolute variables.

The compiler generates code to push the registers on entering
interrupt procedure, and to pop the registers and reenable

interrupts on exiting the procedure.

CP/M-86 is not reentrant; therefore Console I/O and File I/O
cannot be used in an interrupt procedure. If you use CP/M-86, note
that I/O through the CP/M-86 BDOS reenables interrupts only if they
were enabled when BDOS was entered.

Note: you must initialize the interrupt vectors. The compiler does
not generate code to store in the absolute locations occupied by the
interrupt-vector table.

Note that you must put the address of the variable in brackets
[...].

String variables might not exist at all locations. On the
8086, strings must not be in segment OFFFFH, in order that the run­
time subroutines can distinguish between a string address and a
character on top of the stack.

Pascal/MT+ has a special procedure type to handle interrupts.
When an interrupt occurs, the procedure associated with that
particular interrupt is invoked; you do not call interrupt
procedures from the program. When the interrupt procedure finishes,
control returns to where it was interrupted. You select the vector
to be associated with each interrupt.

Pascal/MT+ (86) Programmer’s Guide Interface Features4.3

(* DEFINE I/O PORT CONSTANTS)

(* DEFINE INTERRUPT VECTORS *)

FOR USING ADDR FUNCTION

(* define the low memory we want toVAR)use

LIGHT1 .. LIGHT 4;I :

Listing 4-7. Using Interrupt Procedures

4-16

To disable
INLINE to place CLI
code.

PROGRAM INT_DEMO;
CONST

LIGHT1 = 0;
LIGHT2 = 1;
LIGHT 3 = 2;
LIGHT4 = 3;

VEC22 : ABSOLUTE
VEC23 : ABSOLUTE
VEC24 : ABSOLUTE
VEC25 : ABSOLUTE

PTR;
PTR;
PTR;
PTR;

(* *)

use
($FB) instructions around the

TYPE
PTR = "INTEGER;

SWITCH1 = $22
SWITCH2 = $23;
SWITCH3 = $24;
SWITCH 4 = $25;

[0: $ 88]
[0: $8C]
[0: $90]
[0: $94]

interrupts around sections of Pascal code,
($FA) and STI

The following program waits for
switches, and then
switch.

PROCEDURE INTERRUPT [SWITCH4] INT4;
BEGIN

SWITCH_PUSH [LIGHT4] := TRUE
END;

PROCEDURE INTERRUPT [SWITCH2] INT2;
BEGIN

SWITCH_PUSH [LIGHT2] : = TRUE
6 END;

PROCEDURE INTERRUPT [SWITCH3] INT3;
BEG IN

SWITCH—PUSH [LIGHT3] := TRUE
END;

LIGHT_STATE : ARRAY [LIGHT1..LIGHT4] OF BOOLEAN;
SWITCH_PUSH : ARRAY [LIGHT1..LIGHT4] OF BOOLEAN;

PROCEDURE INTERRUPT [SWITCH1] INTI;
BEGIN

SWITCH_PUSH [LIGHT 1] := TRUE
END;

an interrupt on one of four
toggles the state of a light attached to the

The I/O ports for the lights are 0 to 3, and the switches
use interrupts $22, $23, $24 and $25.

Pascal/MT+ (86) Programmer’s Guide 4.3 Interface Features

MAIN PROGRAM *)

(* FIRST INITIALIZE THE INTERRUPT VECTORS *)

(* INITIALIZE BOTH ARRAYS *)

)(LET THE USERS HAVE AT IT!INLINE ($FB) ; (* STI INSTRUCTION *)

REPEAT

(* TOGGLE IT *)

(* DO THIS LOOP FOREVER *)UNTIL FALSE;

(* OF MAIN PROGRAM *)END.

(continued)Listing 4-7.

4.3.5 Heap Management
You can manage the heap two ways.

the NEW routine uses a standard heap.

the DISPOSE routine disposes the item passed to it.

4-17

• dynamic data goes to the smallest space that can hold the
requested item.

(* ALL LIGHTS OFF *)
(* NO INTERRUPTS YET *)

BEGIN (*

VEC22 := ADDR(INTl);
VEC23 := ADDR(INT2);
VEC24 := ADDR(INT3);
VEC25 := ADDR(INT4);

FOR I := LIGHT1 TO LIGHT4 DO
BEG IN

LIGHT_STATE[I] := FALSE;
SWITCH_PUSH [I] : = FALSE ;

END;

FOR I := LIGHT1 TO LIGHT4 DO (* SWITCH LIGHTS *)
IF SWITCH_PUSH [I] THEN

BEG IN
SWITCH_PUSH [I] : = FALSE ;
LIGHT_STATE[I] := NOT LIGHT_STATE[I];
OUT [I] := LIGHT_STATE [I]

END

REPEAT (* UNTIL INTERRUPT *)
UNTIL SWITCH_PUSH[LIGHT1] OR SWITCH_PUSH[LIGHT2] OR

SWITCH_PUSH [LIGHT3] OF SWITCH_PUSH[LIGHT4];

1) Use the ISO standard routines as they are implemented in
FULLHEAP. R86. When you use this method,

Interface FeaturesPascal/MT+ (86) Programmer’s Guide 4.3

thereturns

MODULE UCSDHEAP;

MODEND.

Recursion/Nonrecursion4.4

are
stored on the hardware stack.
or global data as recursion continues.

4-18

Pascal/MT+ always produces recursive code, because degradation
in code size and execution speed is minimal on the 8086.

• when necessary, MAXAVAIL or NEW gathers free memory into
a free list, combines adjacent blocks, and reports the
largest available block of memory.

• MEMAVAIL
space.

• you can simulate UCSD Pascal’s MARK and RELEASE routines
by using the built-in routines @MRK and @RLS, as shown in
this example:

EXTERNAL FUNCTION @MRK : LONGINT;
EXTERNAL FUNCTION @RLS (L:LONGINT);
PROCEDURE MARK(VAR P:LONGINT);
BEGIN

P := @MRK
END;
PROCEDURE RELEASE(P:LONGINT);
BEGIN

@RLS(P)
END;

• you treat the heap as a stack, and NEW puts the dynamic
data on top of the stack.

• the stack grows from the end of the static data towards
the hardware stack.

Return addresses and local variables for all procedures
If recursion is deeply nested, and

the default stack size is too small, the program can overwrite local
You can solve this problem

by specifying a larger hardware stack, using the /Z linker option.

• DISPOSE performs no function, but is included for symbol­
table use.

2) Use NEW, DISPOSE, and MEMAVAIL, which are part of the
PASLIB.R86 run-time library. When you use this method,

largest never-allocated memory

Pascal/MT+ (86) Programmer’s Guide 4.5 Stand-alone Operation

4.5 Stand-alone Operation

2) If the program performs I/O you have three choices:

If you are

in

Note:

4-19

If you want to run Pascal/MT+ programs in a ROM-based system,
perform the following steps:

Functions 1:
List Output.

this is just a suggestion; Digital Research does
not give detailed application support for this method.

The function number is in the CL register; the data for
output is in DL.

You must rewrite GET because the read-integer and read-
real routines call it.

• Use redirected I/O for all READ and WRITE statements.
This replaces the run-time character I/O routines with
user-written I/O routines. Refer to the Pascal/MT+
Language Reference Manual.

3) If you use a ROM-based system, you might shorten or
eliminate the INPUT and OUTPUT FIB (File Information Block)
storage in the @INI module. You need this storage for TEXT
file I/O compatibility, but you might not need it in a ROM­
based environment.

data in the AL
and the stack

• Build a simulated CP/M-86 BDOS in your PROM.
constructing your program to run in a totally stand-alone
environment such as an Intel SBC-86/12 board, you can
write an assembly-language module to link in front of
your program.

• Rewrite GET and the run-time subroutines @RNC and @WNC.
@RNC is the read-next-character routine; @WNC is the
write-next-character routine.

This routine can jump around the standard code that
simulates the BDOS and can simulate the CP/M-86 BDOS for

Console Input, 2: Console Output, and 5:

For input, Function 1, return the
register. All registers are free to use,
contains nothing but the return address.

1) Use the $Z compiler option to tell the compiler not to
initialize the hardware stack pointer.

Stand-alone OperationPascal/MT+ (86) Programmer's Guide 4.5

the /M linkerinterrupt routines withfind the

A> LINKMT USERPROG,MYWNC,MYRNC,MYGET,MYINI,PASLIB/S

4.6 Error and Range Checking

4-20

PROCEDURE @INI;
BEGIN
END;

Make sure any changes to INPUT and OUTPUT are also handled
in @RST (read a string from a file) and @CWT (wait for EOLN
to be TRUE on a file).

Note:
option.

If your program does not do READLN or WRITELN calls and
does not use the heap or overlays, you can rewrite the @INI
procedure in your program as:

run-time
run-time

5) Link
PASLIB.R86,
references.
example.

so @ERR exits to the
If an error occurs, @ERR

The Pascal/MT+ system supports two types of run-time checking:
range and exception. The default state of the compiler disables
range checks and enables exception checks.

These flags,
and call the

Error checks and routines set Boolean flags,
along with an error code, load onto the stack
predefined routine @ERR that tests the Boolean flag.

The distribution disk includes three outlines for the @INI,
@RNC, GET, and @WNC routines that you can use in ROM
environments.

4) In ROM environment, you cannot use the PROCEDURE INTERRUPT
[vector] construct to handle interrupts. You must
construct an assembly-language module and link it as the
main program (first file). This module must contain JMP
instructions at the interrupt vector locations to jump to
the Pascal/MT+ interrupt routines.

If no error occurs, the flag is false,
compiled code and continues execution,
takes appropriate action, as described in Table 4-2.

any changed run-time routines before you link
the run-time library, to resolve the

Use the /S linker option, as in the following

Pascal/MT+ (86) Programmer’s Guide 4.6 Error and Range Checking

Table 4-2. @ERR Routine Error Codes
Va lue Meaning

1 divide by 0 check
2 heap overflow check (unused, see below)
3 string overflow check (unused, see below)

4 array and subrange check
floating point underflow5

6 floating point overflow

4.6.1 Range Checking

If an

For

Exception Checking4.6.2

The conditions

In the current release, $X- does not disable exception checking.

The various exceptions produce the following results:

The

4-21

Exception checking is enabled by default,
checked for are the following:

• integer and real numbers divided by 0
• real number underflow and overflow
• string overflow

• Floating-point overflow: @ERR prints FLOATING-POINT OVERFLOW.
The result of the operation is a large number.

array
wh en

When range checking is disabled and an array subscript falls
outside the valid range, you get unpredictable results,
subrange assignments, the value truncates at the byte level.

subscr ipts
you read into

and subrange
a subrange

• Floating-point underflow: @ERR does not print a message,
result of the operation is 0.0.

Range checking monitors
assignments. It does not check
variable.

When range checking is enabled, the compiler generates calls to
@CHK for each array subscript and subrange assignment. The @CHK
routine leaves a Boolean value on the stack and error code number 4.
The compiler generates calls to @ERR after the @CHK call,
error occurs, @ERR asks you whether it should continue or abort.

Error and Range CheckingPascal/MT+ (86) Programmer’s Guide 4.6

You should test the value of

the string is truncated.• String overflow:

User-supplied Handlers4.6.3

PROCEDURE @ERR(ERROR:BOOLEAN; ERRNUM: INTEGER) ;

The values of

I/O Error Handling4.6.4

End of Section 4

4-22

You can write your own @ERR routine instead of using the system
routine. Declare the routine as follows:

• Heap overflow: nothing happens.
@HERR to detect heap overflow.

• Division by zero: @ERR prints DIVIDE BY ZERO DETECTED. The
result is a representation of the largest-possible number.

Your version of @ERR should check the ERROR variable and exit
if it is FALSE. If the value is TRUE, you can decide what action to
take.

To use @ERR instead of the routine in PASLIB, link your routine
ahead of PASLIB to resolve the references to @ERR.
ERRNUM are in Table 4-2.

The run-time routine, @BDOS86, does not handle I/O errors.
However, it returns the CP/M-86 error code in IORESULT. You can
rewrite @BDOS86, using the supplied assembly-language source, to
check further for disk I/O errors.

5.1 ASMT-86, the Assembler

5-1

Section 5
Pascal/MT+ Programming Tools

• DIS-86 is a disassembler that combines a relocatable file with
a corresponding PRN file to produce a file showing the assembly
code for each Pascal/MT+ source line.

• LIB/MT+86 is a software librarian utility that concatenates
relocatable files into a searchable library file.

• ASMT86.CMD
• ASMT86.001
• ASMT86.002
• ASMT86.003
• ASMT86.004

four
the

Pascal/MT+ provides four programming tools designed to increase
programming productivity: an assembler, a disassembler, a debugger,
and a librarian.

• ASMT-86 is an assembler that is upward-compatible with the
Intel MCS-86™ assembler. The ASMT-86 assembly language is a
subset of the MCS-86 language, see Section 6.

The ASMT-86 assembler supports a subset of the MCS-86 assembly
language. ASMT-86 does not provide codemacros, macros, records, or
structures. There are other restrictions to the ASMT-86 language
that are summarized at the end of Appendix F. For a detailed
description of the MCS-86 language, see the MCS-86 Macro Assembly
Language Reference Manual.

When assembling, all five files must be on one logged-in
logical drive. The assembler has an error-message file, ASMERS.TXT,
that you can place on any logical drive.

ASMT-86 consists of an executable command file and
overlays. Your Pascal/MT+ distribution disk #3 contains
following five files:

• The debugger is a relocatable file that you link into a
program, enabling you to step through the program as it runs.

Pascal/MT+ (86) Programmer’s Guide Assembler, ASMT-865.1

Assembler Operation5.1.1

During assembly, ASMT-

If you

ASMT-86

AN 042

ASMT-86 OperationFigure 5-1.

5-2

• ASMTMP.TOK
• ASMTMP.LST
• ASMTMP.ERS

OPTIONAL
INCLUDE FILES

SOURCE FILE
FILENAME.186

RELOCATABLE
OBJECT FILE

FILENAME.R86

OPTIONAL
PRINT FILE

FILENAME.PRN

TEMPORARY
WORK FILES

ASMT-86 takes assembly-language programs as input and generates
a relocatable object file and a print file. During assembly, ASMT-
86 creates the following temporary work files:

J
[

ASMT-86 automatically erases these temporary files when the
assembly reaches a normal completion. ASMT-86 also erases the
temporary files if they are on disk before you start the assembly.

ASMT-86 generates a relocatable object file with filetype R86
and the same filename as the assembly-language source file. If you
specify the P option in the command line, ASMT-86 generates a print
file with filetype PRN and the same filename as the source file.
Figure 5-1 illustrates the operation of ASMT-86.

Pascal/MT+ (86) Programmer's Guide 5.1 Assembler, ASMT-86

5.1.2 Invoking ASMT-86
You invoke ASMT-86 with a command line of the following format:

ASMT86 <filespec> {$<options>}

5.1.3 ASMT-86 Command Line Options

ASMT-86 Command Line OptionsTable 5-1.
Option Meaning

The defaultC

Ed

Pd

Q

TheRd

Td

DIS-86, the Disassembler5.2

5-3

The ASMT-86 supports six command line options, as described in
the following table.

The Pascal/MT+ disassembler consists of one executable file,
DIS86.CMD which is on distribution disk #1.

The assembler continues on errors,
is to wait for your response.

The print file goes on drive d.
disk Z, produces no print file,
console.

and
the

The default,
X refers to the

The relocatable object file goes on drive d.
default is the logged-in drive.

where the <filespec> must be a standard Digital Research filespec
with filetype 186, and <options> are optional parameters that
control the assembly.

The assembler assumes an 186 filetype if you omit it in the
filespec. The dollar sign separates the <options> from the rest of
the command line. You can also use a pound sign, #, instead of the
dollar sign. You do not have to use either sign if you do not
specify any options.

The error list file ASMERS.TXT is on drive d.
The default is the logged-in drive.

The temporary files ASMTMP.TOK, ASMTMP.LST,
ASMTMP.ERS go on drive d. The default is
logged-in drive.

Quiet operation. The assembler
messages to the console.

writes fewer

Disassembler, DIS-86Pascal/MT+ (86) Programmer’s Guide 5.2

DIS-86

AN 041

Figure 5-2. DIS-86 Operation

disassembler with line of the

DIS86 <filename> [destination name>][,L=nnn]

L=nnn

5-4

EXTENDED RELOCATABLE
OBJECT FILE

FILENAME.R86

PRINT FILE
FILENAME.PRN

DISASSEMBLED
LISTING FILE

The disassembler
files with the specified

You do not have
searches for both the
<filename>.

When the disassembler finds something unexpected in the R86
file, it generates an error message. Continuing at this point
produces more errors because the sequence is off. An R86 file
should have no errors. To correct errors, recompile the program.
Be sure you are disassembling Pascal code only.

When you compile a program using the P option, the compiler
generates print files with filetype PRN. Used together, these files
enable the disassembler to investigate code the compiler produces.
The files provide the information necessary to debug the program at
the machine-code level. Appendix C contains a listing of a sample
disassembly. Figure 5-2 illustrates the operation of DIS-86.

to specify a filetype.
R86 and PRN

Note that both files must be on one logical disk drive.

DIS-86 generates a file showing the assembly language for each
Pascal/MT+ source line. When you compile a program using the X
option, the Pascal/MT+ compiler generates an extended relocatable
file that contains assembly-language coding interspersed with
Pascal/MT+ statements.

You invoke the
following format:

The destination name> can be a filename or a Pascal/MT+
logical device, CON: or LST:. The default destination is CON:. The
L=nnn parameter enables you to specify the number of lines per page
for the output device. nnn is an integer value. The L=nnn
parameter requires that you specify a destination name>.

a command

Pascal/MT+ (86) Programmer’s Guide LIB/MT+865.3

LIB/MT+86, the Software Librarian5.3

Invoking LIB/MT+865.3.1
You invoke the librarian with a command of the form:

LIBMT <filename>

A filetype of BLD

a

It

5.3.2 Searching a Library

5-5

This file first deletes any existing copy of MYLIB.R86.
then concatenates the files MYMOD1.R86, MYMOD2.R86 and MYMOD3.R86
and places the output into the file MYLIB.R86.

MYLIB.R86
MYMOD1.R86
MYMOD2.R86
MYMOD3.R86

LINK/MT+86 is a one-pass linker, so when you use the /S option
to signify that a file is a library, the linker loads only those
modules that have been referenced by previous modules. Therefore,
the order of modules in your library is important. If the modules

and appropriate assembly-
You must specify the filetype

If the output file is to be processed by

LIB/MT+86 is the Pascal/MT+ software librarian that logically
concatenates R86 files together to construct a searchable library
such as PASLIB.

Remember that the linker can only extract entire modules from a
library. Single procedures from a module cannot be extracted. All
entry points, both code and data, are used as a basis for searching
when the /S option is used. Only one entry point in a module need
be referenced to force loading that entire module.

Pascal/MT+ modules, libraries,
language modules are valid as input,
but it need not be R86.
LINK/MT+86, it must be of type R86.
Note: LIB/MT+86 cannot process a Pascal module compiled with the X
(EXTENDED Relocatable file) option. To process such a module, you
must recompile it without the X option.

> modules.
the order of modules in your library is important.
are concatenated as A, B, C, then modules B and C cannot contain
references to module A unless they are guaranteed that module A is
loaded. Module A, however, can contain references to B or C because
this causes the linker to load them.

The following is an example of
LINK/MT+86 compatible library:

where <filename> contains only the name, not the type of the file.
LIB/MT+86 accepts an input file of type BLD.
contains an output filename followed by a list of input filenames,
with each name on a separate line.

a BLD file for creating

LIB/MT+865.3Pascal/MT+ (86) Programmer’s Guide

5.4 Debugger

Debugging Programs5.4.1

5-6

• display variables
• set symbolic breakpoints
• step through the program one statement at a time
• display symbol tables
• display entry and exit points for procedures and functions

source program along with the run-time subroutine library,
debugger then takes charge of the source program execution,
debugger can perform the following tasks:

To use the debugger, you must link the DEBUGGER.R86 file into a
The
The

The compiler generates a PSY file containing debugger
information when you specify the D option in the command line. You
must compile all modules that you want to debug with the D option.
The compiler writes the PSY file onto the disk containing the
corresponding R86 file.

You cannot use LIB/MT+86 to alter PASLIB because of its special
construction. If you want to replace modules in PASLIB, link the
replacement modules before linking PASLIB. This resolves references
to those routines before PASLIB is searched. If the replacement
routines are in a library, it is a good idea not to search it
because the references to the replacement routines sometimes are not
made until PASLIB is processed.

The linker uses the R86 and PSY file to create a SYP file that
contains absolute addresses for each procedure, function, and
variable. The debugger uses the SYP file to perform the various
debugging tasks.

The debugger displays line numbers in trace mode. However, in
programs consisting of modules, line numbers repeat in each module.
The debugger only works on programs without overlays.

You can use the debugger in a stand-alone environment. When
the debugger requests the filename of the symbol table, press RETURN
to disable the symbolic facilities. The display-by-address
facilities remain in effect.

The PSY file contains records for each procedure, function, and
variable in the program. The compiler generates code at the
beginning and end of each procedure or function for debugger
breakpoint logic. Address fields for each item are module relative.

The Pascal/MT+ debugger simplifies program maintenance. The
debugger consists of one relocatable object file, DEBUGGER.R86,
which is on distribution disk #2.

Pascal/MT+ (86) Programmer’s Guide 5.4 Debugger

A> LINKMT USERPROG=DEBUGGER ,USERPROG , PASLIB/S

the

5.4.2 Debugger Commands
Debugger commands use the following rules and syntax elements.

• <parm> refers to a parameter.
• Specify an offset from the primary The

Use underscores to make

5-7

symbol table,
command.

• The debugger ignores underscoresr
commands easier to read.

_r address with a + or
debugger assumes + if not specified in the command.

Hexadecimal
0 to FFFF.

You must place the DEBUGGER.R86 file first in the list of files
in the LINK/MT+86 command line. The following example links the
debugger, a user program, and run-time library into an executable
file named USERPROG.CMD.

• <name> refers to a variable name, a procedure or function name,
or a prefixed variable name. A prefixed variable name is a
variable identifier prefixed with a procedure or function name.
Names are from 1 to 8 characters long and follow the same
syntax as the compiler.

• <num> refers to a decimal or hexadecimal number,
numbers are prefixed with a $ and range from
Decimal numbers range from 0 to 32767.

To start the debugging session, run the program. The debugger
takes control of the program, and requests the name of the symbol
table file. You must enter the user program SYP file. You must

Press RETURN if there is no

The example above generates two undefined symbols required to write
real numbers, @XOP and @WRL. The undefined symbols cause no problem
if USERPROG does not use real numbers. If USERPROG uses real
numbers, you must link the real number run-time library file with
the other files in the command line.

• The ~ is an indirection character used with pointer variables.
The * tells the debugger to display the data pointed to, not
the contents of the pointer itself. Pointers are 32-bit
segment pairs. For example, A refers to the four-byte pointer
at A, not just two bytes as in 8-bit versions of Pascal/MT+.

enter both the filename and filetype.
The debugger then prompts you for the BEgin or TRace

You can then proceed to debug the program using
breakpoints and the other debugger commands.

5.4 DebuggerPascal/MT+ (86) Programmer’s Guide

Parameters

| $<numlA> : <numlB>] {'} {[+|-] <num2>}<parm>

Table 5-2. Examples of Parameters
MeaningParameter

5-8

Several commands require an additional parameter,
have the following syntax:

ABC
PTR
PTR"
ABC+10
PTR"+10
ABC-3
PTR"—3
$3FFD
$423B"
$3FFD+$5B
$423B"+49
$34F:2500
PROC1:I
PROC2:J"+9

TYPE
PAOC = ARRAY [1..40] OF CHAR;

an integer
contents of PTR
entire array
10 bytes past ABC location
PTR"[11]
3 bytes before ABC
3 bytes before the array, PAOC
data segment relative location
32 bytes pointed to by DS:$423B
32 bytes at DS:$4058
32 bytes pointed to by contents of
DS:$423B + 49
absolute location
local variable in PROCI
offset from local pointer

The command to display a variable by <name> is DV <parm>{"}.
If <name> is a pointer variable, DV displays the contents of the
pointer. If you use <name>A, DV displays the contents of the
location addressed by the pointer.

If you do not use a <name>, you can specify an address in Data-
segment relative or absolute mode. A single <num> indicates an
address that is relative to the value of the DS register. If you
use two numbers, <numlA> is the segment number and <numlB> is the
offset from that segment. <num2> specifies the number of bytes to
add or subtract from the address already attained in the parameter.
Table 5-2 shows examples of parameters given the following
declarations:

VAR
ABC : INTEGER;
PTR : "PAOC;

= [<name> | <num>

Pascal/MT+ (86) Programmer’s Guide 5.4 Debugger

Table 5-3. Debugger Display Commands
Command Syntax Meaning

5-9

The following table describes the other commands that enable
control of your program in a debugging session.

Table 5-3 shows commands used when symbols are not available or
when you want to display fields within record or array elements.

The
SE<parm>.
decimal.
RETURN.

num}

DI <parm>
DC <parm>
DL <parm>
DR <parm>
DB <parm>
DW <parm>
DS <parm>
DX <parm> {,

Display Integer
Display Character
Display Logical (Boolean)
Display Real
Display Byte
Display Word
Display String
Display extended (structures) . This
is always displayed in HEX/ASCII
format. Num is the size, in bytes,
for memory dump. The default value
is 320 bytes.

command to alter the contents of a memory address is
The command displays the byte at the specified address in
Enter a new value in either decimal or hex then, press
The new value replaces the displayed value, and the

debugger displays the next byte of memory. If you enter a value
that does not fit in two bytes, the debugger uses the last two
digits. To end the SE<parm> command, enter a period and press
RETURN.

Pascal/MT+ (86) Programmer’s Guide Debugger5.4

Table 5-4. Debugger Control Commands
Command Syntax Meaning

BE fromstart program

E+

Disable entry / exit display.E-
Continue execution from a breakpoint.GO
Display procedure names from SYP file.PN
Remove breakpoint at procedure <name>.RB <name>

SB <name>

SE <parm>

Execute one line and return.TR or T Trace
Trace <num> lines and return.T<num>

assoc i a tedVN <name> with

?? o f command s found in

End of Section 5

5-10

Modify contents of memory at <parm>. A ’.
terminates this command.

Display variables
procedure <name>.

Set breakpoint at beginning of procedure
<name>.

BEgin execution,
beginning.

Enable display entry and exit of each
procedure or function during execution
(default on).

HELP! List
DBUGHELP.TXT.

and strings

<label identifier>[:]<opcode><arguments>

6.1 Pseudo-opcodes

Refer to Appendix F for the pseudo-opcode

• SEGMENT/ENDS:

forms of the

6-1

Section 6
ASMT-86 Assembly Language

You can create assembly-language source files using any text
editor or word processor that produces standard CP/M-86 text files.

An assembly-language program
followed by an end-of-file mark,
the following general format:

CODE
DATA
OTHER NAME

SEGMENT PUBLIC
SEGMENT PUBLIC
SEGMENT AT <number>

The SEGMENT directive
r and

The following examples are commonly used

Identifiers can be any length, but only the first 31 characters
distinguish one identifier from another. Lower-case characters are
equivalent to upper-case characters except when enclosed in single
apostrophes.

A source line cannot exceed 132 characters,
enclosed in apostrophes must fit one physical line.

is a sequence of statements
Assembly-language statements use

the SEGMENT statement and the ENDS statement
control assembly-program segmentation.
includes an optional alignment type, optional combine mode,
a class name string. -i--- ------- -------1 -- •

SEGMENT directive:

ASMT-86 assembly language supports several pseudo-opcodes,
described as follows,
syntax diagrams.

ASMT-86 assembly language is a subset of the Intel MCS-86
assembly language. Appendix F lists the syntax and reserved words
for the ASMT-86 language.

The <label identified must begin in column 1. Certain
<opcodes> require a <label identified and others require that you
do not specify one. Use the colon only when declaring a label for a
machine opcode.

The symbolic opcode names are the instruction mnemonics used to
generate the corresponding bit patterns in the object file. Opcodes
that are not standard 8086 machine opcodes are called pseudo­
opcodes .

Pascal/MT+ (86) Programmer’s Guide 6.1 Pseudo-opcodes

• ASSUME:

for thea new name

• PUBLIC:

• ORG:

6-2

the PUBLIC statement declares certain labels PUBLIC.
Other modules can reference PUBLIC labels.

• END:
program.
Code segment.

the ASSUME statement indicates which segment register
points to a specified segment.

expression
constant-expression DUP (expression or ?)

the END directive establishes a starting address for the
The identifier following END must be a label in the

the LABEL statement creates a label in the current
Specify the type or distance of the

You
The

• PROC:
can ;
distance defaults to NEAR.
with an ENDP statement,
statement must match the
statement.
labels,

• LABEL:
location of the program.
label following the keyword LABEL.

the ORG directive establishes
offset within the current segment,
in a defined value.

a new location counter
The expression must result

DW, and DD statements allocate and
Place the initializing data after the

: the PROC statement enables procedure declarations,
specify the distance following the keyword PROC.

You must match each PROC statement
ENDP statement. The label preceding each ENDP

: must match the label on the corresponding PROC
Declaring procedures, as opposed to simply calling

informs the assembler about the distance needed to
determine how to assemble the RET instruction.

• EXTRN: the EXTRN statement
modules that are PUBLIC,
label followed by a type.

• DB, DW, DD: the DB,
initialize data space,
keyword. The following examples show the types of initializing
data.

can reference labels in other
The EXTRN statement includes the

The label on an ENDS statement must match the label on the
corresponding SEGMENT statement. You cannot nest segments.
However, you can code a portion of a segment, start and end a
second segment, then continue coding the first segment. The
resulting code does not actually contain nested segments; the
assembler puts the separate parts back together.

The question mark indicates that the data space is to be
allocated, but not initialized. An expression initializes the
data space with the value of the expression. The DUP form

• NAME: the NAME statement specifies
assembled relocatable object file.

, Following the key word ASSUME,
enter the segment register and the segment name with an
optional variable.

Pascal/MT+ (86) Programmer’s Guide 6.1 Pseudo-opcodes

you

DW and DD

DW

• INCLUDE:

The following examples show proper

INCLUDE ’incfile’
’b:2ndfile.txt *INCLUDE

6.2 Fundamental Values

or

6-3

• EQUATE:
EQUATE statement.

• Decimal numbers must start and end with a digit from 0-9.
• Binary numbers end with B.
• Decimals end with D.
• Hexadecimals end with H.
• Octals end with 0 or Q.
• A $ is a break character that does not effect the number.

DB accepts strings enclosed in single apostrophes,
only accept strings enclosed in single apostrophes up to 2

DB allocates characters in low-to-high order.characters.
and DD allocate characters in high-to-low order.
Note that the linker currently permits only uninitialized data
in the Data segment.

you can equate identifiers to expressions using the
The form using ON and OF is for conditional

assembly options in IF, ELSE, and ENDIF.

;drive and filetype are the
;same as the main input file.
;drive is b and filetype is .txt

the number of times
The constant expression

IF, ELSE, and ENDIF let you assemble
You must equate the identifier following IF
If the identifier equals on, the text up to

Fundamental values are expressed as numbers, character strings,
variables. Numbers can be binary, decimal, octal, or

hexadecimal.

The string following INCLUDE is the
If you do not specify a

you can textually include a separate file in the
assembly with INCLUDE.
name of the file you want to include.
drive name, the assembler uses that of the original filename.
If you do not specify a filetype, the original filetype is
used.
You cannot nest INCLUDE files, nor can an included file contain
other INCLUDE files.
INCLUDE statements.

enables space allocation to repeat
indicated by the constant-expression.
can be any expression that evaluates to an absolute number.
Unlike MCS-86 assembly language, you cannot nest DUP
expressions.

• IF, ELSE, ENDIF:
cond itionally.
with ON or OFF.
ELSE assembles and the text between ELSE and ENDIF is ignored.
If the identifier equals OFF, the text between ELSE and ENDIF
assembles and the text up to else is ignored. ELSE is
optional. IF, ELSE, and ENDIF sets cannot be nested.

Pascal/MT+ (86) Programmer’s Guide 6.2 Fundamental Values

as

Variables contain attribute information.

The

15 DUP (0)Byte_var iable DB
’ hi *Word variable DW

LENGTH = 15, and SIZE = 15; For Byte_variable, TYPE = 1,
and SIZE = 21,; For Word_variable, TYPE = 2, LENGTH =

6-4

You can use this information with expressions of the form TYPE
id, LENGTH id, or SIZE id.

’A’
’AB’

When an identifier appears in an expression, its value is the
offset of a variable or label or the base value of a segment,
the segment with the identifier declaration is relocatable,
value is relocatable.

1111$0000$0000$1101B
10000H
65537
377777g

= 0041H
= 4142H

If
the

= -4083
= 0
= 1
= -1

A variable’s type is 1 if you declare it with DB, 2 with DW,
with DD. The size of a variable is the number of bytes

Variable size equals length times type.
following examples show variable declarations:

All numbers are stored internally as 16-bit signed two’s
complement numbers. Only the low-order 16-bits of their
representation is kept for numbers greater than 32767 or less than -
32768. The following examples show valid numbers:

A variable’s length
is the number of units, not necessarily bytes, allocated for the
variable. This value derives from the repeat factor that declares
the variable in a DB, DW, or DD statement.

You can use strings of 2 or fewer characters as numbers. The
characters convert to their ASCII numerical representation. For a
single-character string, the character goes in the low-order byte of
the word. The high-order byte is 0. For a 2-character string, the
first character goes in the high-order byte of the word and the
second goes in the low-order part. The following examples show
numbers expressed as literal character strings:

and 4
allocated for it.

The

Pascal/MT+ (86) Programmer’s Guide 6.3 Operators

6.3 Operators

For example,

The $ operator is equivalent to THIS NEAR.

’B’

logicals, the

The operation of MOD is undefined for negative numbers.

high- or low-order byte

6-5

JMP
MOV

MOV
MOV
MOV
MOV
MOV

DB
DB
DW
8DW

DW
DW
DW

0 LT 1
-1 GT 0
A LT B

THIS NEAR
AL,THIS BYTE

The expressions must be absolute numbers or
The following examples

;result
; result
;result

shift and multiplicative operators
These dyadic infix operators are

Examples of each are shown below.

;result is 42H =
;result is -1

;put 4
;put 1
;put 1
;put 20
;put 1

;infinite loop
;moves a MOV opcode byte into
;AL (assuming DS points to
;this segment)

in AX
in AX
in AX
in AX
in AX

OR, XOR,
The

A:
B:

AX,2*2
AX,2/2
AX,5 MOD 2
AX,5 SHL 2
AX,5 SHR 2

is OFFH for TRUE
is 0 for FALSE
is TRUE Since OFFSET A < OFFSET B

HIGH and
expression.

You can compare expressions with the comparison operators LT,
LE, GE, GT, EQ, and NE.
relocatable relative to the same segment,
show the use of comparison operators.

Logical operators operate only on absolute numbers,
and AND are infix dyadic operators. NOT is a monadic operator,
following examples show the use of logical operators.

Like the
operate only on absolute numbers.

SHL , and SHR.

0 OR OFFH ;result is OFFH
0101B XOR 0001B ;result is 0100B
’AB’ AND 00FFH
NOT 0

LOW extract the
You can evaluate absolute or relocatable expressions,

but the code generation cannot handle relocatable high or low bytes.
The following examples show the HIGH and LOW operators.

You can use the value of a current assembly-location counter as
a fundamental value through the THIS operator. Follow THIS with a
type, BYTE, WORD, DWORD, NEAR, or FAR. The offset of the resulting
expression has the indicated type and an offset equal to the current
location counter.

from an

* , / , MOD ,

Pascal/MT+ (86) Programmer’s Guide 6.3 Operators

A:

subtract expressions.You can add and

The

6.4 Expressions
ofA sequence

• A constant such as 2 is a number expression.

Attribute Overrides6.5

segment-name : expression.

6-6

A:
B:

;result is OFFH
yresult is 0

DW
DW
DW
DW

DB
DW

2
A

; result
; result
;result
; result

HIGH 0FF00H
HIGH LOW OFFSET A

is
is
is
is

a number,
a

2
relocatable and equivalent to B
relocatable and equivalent to A
2

You can override the segment attribute of an expression two
ways.

5-3
A + 2
B
B

variable or
be absolute,

• You can use a segment name to override the owner of an
expression. The offset of the resulting expression is the same
as in the original, but its relocation base is the named
segment. The form of this override is

it can be
variable must be

At least one of the
expressions must be absolute or an index register in brackets, see
Section 6.6. To subtract, the second expression must be either
absolute or relocatable relative to the same base as the first,
following examples show the addition and subtraction operators.

To be relocatable, a number must derive from a relocatable
number through OFFSET, HIGH, LOW, or SEG operators on a relocatable
variable or segment identifier. The expression computation allows
all these forms of relocatable numbers. The object format, however,
allows only offset relocatability.

• The label on a LABEL statement or
statement is a variable expression.

on a data-initialization

fundamental values and operators is an
expression. Operators connect fundamental values and expressions to
form new expressions. ASMT-86 classifies expressions by the kind of
information they represent; an expression is either a variable or a
number.

Whether an expression is a
relocatable or absolute. To
declared in an absolute segment.

Pascal/MT+ (86) Programmer’s Guide Attribute Overrides6.5

• You can override a segment attribute with the form:
segment-register : expression

inuse
For example,

CODE

CODE ENDS

It does not

The
distance PTR expression. For example,

;A goes to AL, B goes to AHMOV AX,WORD PTR A_BYTE
NEAR LABEL:

CALL FAR PTR NEAR LABEL

6.6 Indexing Expressions
They follow other

[expression]

6-7

SEG lets you find
label.

A_BYTE
B BYTE

EXTRA_SEGMENT
A_VARIABLE
EXTRA SEGMENT

DB
DB

MOV
MOV

WORD PTR 0 , 9999H
9999H

0
1

generates a long call
;to NEAR—LABEL

OFFSET converts a variable or label to a number,
change the relocatability of the expression.

PTR changes an expression’s type or distance attribute,
form is type or

This form lets you choose which segment register to
accessing the expression.

the value of a segment with a variable or
In the example above, SEG A_VARIABLE returns OFFFOH.

Put indexing expressions in brackets, [].
expressions to indicate an index or base register for accessing
those expressions. The form is

SEGMENT PUBLIC
MOV AX,EXTRA_SEGMENT
MOV ES,AX

; move 9999H into the word ES points to
; (in two slightly different ways)

EXTRA_SEGMENT : 1
ES : WORD PTR 0 ,

ASSUME ES:EXTRA_SEGMENT
SEGMENT AT OFFFOH
DW ?
ENDS

Indexing ExpressionsPascal/MT+ (86) Programmer’s Guide 6.6

You
For example,

200 DUP (0)A DB

MOV

Use

DB 2*(3+5)

End of Section 6

6-8

An expression within brackets can contain BX, BP, SI, and DI.
can use multiple indexing expressions. Only one base, BP or BX, and
one index, SI or DI, are allowed for each expression.

MOV
MOV

;do the addition before the multiply
;result is 16

parentheses to specify the precedence of operations in an
expression, as in the following example.

A[BX],0 ;move a 0 into the BX’th byte of A
A[BP+SI],0 ;move a 0 into the BP+SI ’th

;byte of A
AL,A[DI+5] ;fetch the DI + 5 ’th byte of A

Compiler Error MessagesTable A-l.
Mean ingMessage

Recursion stack overflow

Self-explanatory.

Self-explanatory.

Self-explanatory.

Self-explanatory.

Possibly a = used in a VAR declaration.

in the

A-l

Appendix A
Compiler Error Messages

Error # 3
'PROGRAM’ expected

Error # 4
')' expected

Error # 5
’ : 1 expected

Error # 6
Illegal symbol (possibly missing on line above)

Error # 1
Error in simple type

E r r or # 2
Identifier expected

Symbol encountered is
syntax at this point.

Evaluation stack collision with symbol table.
Correct by reducing symbol table size,
simplifying expressions.

not allowed

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

Table A—1. (continued)

Mean ingMessage

in listparametererror

Self-explanatory.

Self-explanatory.

Syntactic error in TYPE declaration.

Self-explanatory.

Self-explanatory.

Statement separator required here.

A-2

Error # 12
']' expected

Error # 9
’(' expected

Error # 8
’OF' expected

Error # 13
’END’ expected

Error # 10
Error in type

Error # 11
' [' expec ted

Error # 7
Error in parameter list

Syntactic
declaration.

Error # 14
expected (possibly on line above)

All procedures, functions, and
statements must have an ’END’ .
mismatched BEGIN/ENDs.

blocks of
Check for

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

(continued)Table A—1.
Mean ingMessage

Self-explanatory.

in TYPE CONSTa or

Self-explanatory.

Syntactic error in a record declaration.

Self-explanatory.

Self-explanatory.

A-3

Error # 17
'BEGIN' expected

Error # 20
'.' expected

Error # 15
Integer expected

Error # 16
'=' expected

Typically an illegal backward reference to a
type in a pointer declaration.

Error # 50
Error in constant

Error # 19
error in <field-list>

Syntactic error in a literal constant, also
when using recursion and improperly using INP
and OUT.

Error # 18
Error in declaration part

Error # 21
'*' expected

Possibly a : used
declaration.

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

(continued)Table A-l.

MeaningMessage

Self-explanatory.

Self-explanatory.

beg in/endfrom mismatched

Syntactic error.

Self-explanatory.

Self-explanatory.

in expression fac torat

A-4

Error # 57
’FILE’ expected

Error # 58
Error in <factor> (bad expression)

Error # 53
’UNTIL’ expected

Error # 54
’DO' expected

Error # 56
'IF' expected

Error # 51
' =' expected

Error # 52
•THEN' expected

Syntactic error
level.

Can result
sequences.

Probably an error in a TYPE declaration.

Error # 55
’TO’ or 'DOWNTO' expected in FOR statement

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

(continued)Table A-l.
Mean ingMessage

in expression at variable

Each MODULE must end with MODEND.

Name already in visible symbol table.

is in theno t

A-5

Error # 104
Undeclared identifier

Error # 59
Error in variable

Error # 99
MODEND expected

Error # 103
Identifier is not of the appropriate class

Error # 105
Sign not allowed

Error # 101
Identifier declared twice

Error # 102
Low bound exceeds high bound

Syntactic error
level.

For subranges,
high bound.

Signs are not allowed on noninteger/nonreal
constants.

type
this

The specified identifier
visible symbol table.

A variable name used as a type, or a
used as a variable, etc. can cause
error.

the lower bound must be <=

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

Table A-l. (continued)
Mean ingMessage

is not compatible with 0..9).’ A’ . .'Z'(e.g.

File is not

Self-explanatory.

Self-explanatory.

not

be declared with real

A-6

Error # 112
Index type must not be real

Error # 111
Incompatible with <tagfield> part

Error # 109
Type must not be real

Error # 108
File not allowed here

Error # 110
<tagfield> type must be scalar or subrange

Error # 106
Number expected

Error # 107
Incompatible subrange types

comparison and assignment
allowed.

This error often occurs from making the
compiler totally confused in an expression as
it checks for numbers after all other
possibilities have been exhausted.

Selector in a CASE-variant record is
compatible with the <tagfield> type.

An array cannot
dimensions.

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

(continued)Table A-l.
Mean ingMessage

Self-explanatory.

Base type of a set can be scalar or subrange.

Self-explanatory.

Self-explanatory.

wa s never

declaredforwardforOKno t a

Self-explanatory.

A-7

Error # 114
Base type must not be real

Error # 117
Unsatisfied forward reference

Error # 115
Base type must be a scalar or a subrange

Error # 116
Error in type of standard procedure parameter

Error # 113
Index type must be a scalar or a subrange

Error # 118
Forward reference type identifier in variable declaration

Error # 119
Respecified params
procedure

Error # 120
Function result type must be scalar, subrange or pointer

You attempted to declare a variable as a
pointer to a type that was not yet declared.

A function was declared with a !
other nonscalar type as its value,
not allowed.

string or
. This is

A forwardly declared pointer
defined.

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

Table A-l. (continued)
Mean ingMessage

Files must be passed as VAR parameters.

function’s result type cannot be

Self-explanatory.

Self-explanatory.

Self-explanatory.

result, the

A-8

Error # 123
Missing result type in function declaration

Error # 126
Number of parameters does not agree with declaration

Error # 128
Result type does not agree with declaration

Error # 127
Illegal parameter substitution

Error # 121
File value parameter not allowed

Type of parameter does not exactly match the
corresponding formal parameter.

This is often caused by not having the
parameters in the proper order for built-in
procedures or by attempting to read/write
pointers, enumerated types, etc.

Error # 125
Error in type of standard procedure parameter

Error # 122
A forward declared
respec ified

When assigning to a function
types must be compatible.

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

(continued)Table A—1.
Mean ingMessage

Self-explanatory.

Self-explanatory.

for other thansets

OR,

Self-explanatory.

Self-explanatory.

A-9

Error # 133
File comparison not allowed

The operands do not match those required for
this operator.

Error # 130
Expression is not of set type

Error # 129
Type conflict of operands

Error # 131
Tests on equality allowed only

Error # 134
Illegal type of operand(s)

Error # 135
Type of operand must be boolean

Error # 136
Set element type must be scalar or subrange

Error # 137
Set element types must be compatible

Occurs when comparing
equality.

The operands to AND,
BOOLEAN.

File control blocks cannot be compared
because they contain multiple fields that are
not available to the user.

and NOT must be

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

(continued)Table A-l.

MeaningMessage

specified on nonarraywas a

Self-explanatory.

be only localcan

A-10

Error # 138
Type of variable is not array

Error # 140
Type of variable is not record

Error # 141
Type of variable must be file or pointer

Error # 144
Illegal type of expression

Error # 142
Illegal parameter solution

Error # 143
Illegal type of loop control variable

Error # 139
Index type is not compatible with the declaration

A subscript
variable.

The expression used as a selecting expression
in a CASE statement must be a nonreal scalar.

Occurs when indexing into an array with the
wrong type of indexing expression.

Loop control variables
nonreal scalars.

a nonrecord data
form or the ’with’

Attempting to access
structure with the ’dot’
statement.

Occurs when an up arrow follows a variable
that is not of type pointer or file.

Pascal/MT+ (86) Programmer's Guide Compiler Error MessagesA

Table A-l. (continued)
Mean ingMessage

Self-explanatory.

Self-explanatory.

Self-explanatory.

Self-explanatory.

Self-explanatory.

Self-explanatory.

A—LI

Error # 152
No such field in this record

Error # 151
Assignment to formal function is not allowed

Error # 150
Assignment to standard function is not allowed

Error # 148
Subrange bounds must be scalar

Error # 149
Index type must be integer

Error # 146
Assignment of files not allowed

Error # 147
Label type incompatible with selecting expression

Error # 145
Type conflict

Case selector is not the same type as the
selecting expression.

Case selector is not the same type as the
selecting expression.

Compiler Error MessagesPascal/MT+ (86) Programmer’s Guide A

(continued)Table A-l.
Mean ingMessage

Self-explanatory.

Self-explanatory.

case

Self-explanatory.

Self-explanatory.

A-12

Error # 155
Control variable cannot be formal or nonlocal

Error # 154
Actual parameter must be a variable

Error # 156
Multidefined case label

Error # 158
No such variant in this record

Error # 160
Previous declaration was not forward

Error # 159
Real or string tagfields not allowed

Occurs when attempting to pass an expression
as a VAR parameter.

The control variable in a FOR loop must be
LOCAL.

Error # 153
Type error in read

Occurs when jump table generated for
overflows its bounds.

Error # 157
Too many cases in case statement

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

Table A-l. (continued)
Message Meaning

than statement withmore one same

Declare same label more than once.

Label on statement was not declared.

label not used labeltowas a

A-13

Error # 167
Undeclared label

Error # 163
Missing variant in declaration

Error # 170
Value parameter expected

Error # 168
Undefined label

Error # 169
Error in base set

Error # 166
Multideclared label

Error # 165
Multidefined label

Error # 162
Parameter size must be constant

Occurs when using NEW/DISPOSE and a variant
does not exist.

Label
label.

A declared
statement.

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

(continued)Table A-l.
MeaningMessage
Pascal function or procedure expectedError 3= 174

Self-explanatory.

Self-explanatory.

Self-explanatory.

Range on integer constants are -32768..32767

is

A-14

Error £ 253
Procedure (or program body) too long

Error # 250
Too many scopes of nested identifiers

Error # 251
Too many nested procedures or functions

Error # 183
External declaration not allowed at this nesting level

Error t 201
Error in real number - digit expected

Error 3 202
String constant must not exceed source line

Error # 203
Integer constant exceeds range

There is a limit of 15 nesting levels at
execution time. Also occurs when more than
200 routines are in one compiled module.

A procedure generated code that overflowed
the internal procedure buffer. Reduce the
size of the procedure and try again. The
limit is 4096 bytes.

There is a limit of 15 nesting levels at
compile time. This includes WITH and
procedure nesting.

Pascal/MT+ (86) Programmer’s Guide Compiler Error MessagesA

Table A-l. (continued)
MeaningMessage

A-15

Error # 407
Symbol Table Overflow

Error # 500
Non ISO Standard feature. Not fatal.

Error # 497
Error in closing code file.

Error # 397
Too many FOR or WITH statements in a procedure

Error # 496
Invalid operand to INLINE

Error f 259
Expression too complicated

Error # 398
Implementation restriction

Only 16 FOR or WITH statements are allowed in
a single procedure.

Usually due to reference that requires
address calculation at run-time.

Your expression is too complicated (that is,
too many recursive calls needed to compile
it) . You should reduce the complication
using temporary variable.

Normally used for arrays and sets that are
too big to be manipulated or allocated.

An error occurred when the .OBJ file was
closed. Make more room on the destination
disk and try again.

Pascal/MT+ (86) Programmer's Guide Compiler Error MessagesA

Table A-l. (continued)
MeaningMessage

End of Appendix A

A-16

Error # 999
Compiler confused due to previous errors.

It is
is

the

Make some corrections and try again,
also possible that while your program
syntactically correct, it can confuse
compiler if semantic errors exist. The
compiler aborts early with this error number.
Look carefully at the line on which the
compilation halts.

are

Run-time Library RoutinesTable B-l.
Routine Purpose

Program chaining routine@CHN
Long Integer multiply@MUL

B-l

Appendix B
Library Routines

@EQD
@NED
@GTD
@LTD
@GED
@LED
@EQS
@NES
@GES
@LES

Set equality
Set inequality
Set superset
Set subset

String comparison routine for =
String comparison routine for <>
String comparison routine for
String comparison routine for
String comparison routine for
String comparison routine for

I/O is performed and set variables
Only the run-time routines

particular program are actually loaded when you link

The table below lists the names of the run-time library
routines and their purposes. This table clarifies what these
routines do, so that when you disassemble a program you have some
information about what is happening in your program. They are not
here so that you can call these routines from your program, because
Digital Research does not guarantee parameter list compatibility
between releases.

In Pascal/MT+, all
manipulated with library routines,
needed for a i‘ '
the program with LINK/MT+86 and use the /S option.

The Pascal/MT+ compiler generates native machine code. Each
processor requires a library of run-time routines to support files
and any other features that are not supported by the native
hardware, but that are required to implement the entire Pascal
language. The following information is specific to the 8086 version
of Pascal/MT+.

Note that console I/O is assumed by the initialization routine,
@INI. This causes the input/output routines to be loaded even when
you are not using them. If you want to avoid this, you can write a
replacement @INI routine and link it before linking the run-time
library to resolve the @INI reference.

Pascal/MT+ (86) Programmer’s Guide Library RoutinesB

Table B-l. (continued)
Routine Purpose
@HLT

@XJP Table case jump routine

Run-time initialization@INI
@STR String store
@WCH Write a string to a file

@DVL 32-bit DIV software routine

B-2

TSTBIT
SETBIT
CLRBIT
SHL
SHR
@SFB
@DWD
@SIA
@SOA
@DIO

@EQA
@NEA
@GTA
@LTA
@GEA
@LEA

@LBA
@ISB
@CNC
@CCH
@RCH
@CRL
@CWT
@WIN
@RST

@SAD
@SSB
@SML
@SIN
@BST
@BSR

Test for a bit on
Turn a bit on
Turn a bit off

Set global FIB address
Set default width and decimal places
Reset input vector
Reset output vector
Set I/O vectors to default addresses

Array comparison routine for =
Array comparison routine for <
Array comparison routine for >
Array comparison routine for <
Array comparison routine for >=
Array comparison routine for <

Shift a word left
Shift a word right

Write an integer to a file
Read a string from a file

End of program halt routine;
return to operating system
Set union
Set difference
Set intersection
Set membership
Build singleton set
Build subrange set

Read a character from a file
Write a newline (CR) to a file
Read until EOLN is TRUE on a file

Load concat string buffer address
Initialize string buffer
Concatenate a string to the buffer
Concatenate a character to the buffer

Pascal/MT+ (86) Programmer’s Guide Library RoutinesB

(continued)Table B-l.
Routine Purpose
@MDL 32-bit MOD software routine
MOVELE Block move left end to left end
MOVERI Block move right end to right end
@CHW Write a character to a file

SQRT Real square root

Pascal interface for @CHNCHAIN

B-3

Pascal built-in truncate function
Pascal built-in round function

OPEN
BLOCKR
BLOCKW
CREATE
CLOSE
CLOSED
GNB
WNB
PAGE
EOLN
EOF
RESET
REWRIT
GET

TRUNC
ROUND

@EQR
@NER
@GTR
@LTR
@GER
@LER
@RRL
@WRL
@RAD
@RSB
@RML
@RDV
@RNG
@RAB
@RDL
@RTL

Read a long integer from a file
Write a long integer to a file

Real comparison for =
Real comparison for
Real comparison for
Real comparison for
Real comparison for
Real compasison for

Real add
Real subtract
Real multiply
Real divide
Real negate
Real absolute value

Read a real from a file
Write a real to a file

File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine

Pascal/MT+ (86) Programmer’s Guide Library RoutinesB

(continued)Table B-l.
Routine Purpose

Run-time support for stringsPOS

Call operating system directly@BDOS86

End of Appendix B

B-4

@NEW
@DSP
MEMAVA
MAXAVA

PUT
ASSIGN
PURGE
IORESU
COPY
INSERT
DELETE

@WNC
@RNC
@RIN
@RNB
@WNB

Allocate memory for NEW procedure
Deallocate memory for DISPOSE procedure
MEMAVAIL function
MAXAVAIL function

File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine
File handling routine

Write next character to a file
Read next character from a file
Read integer from a file
Read n bytes from a file
Write n bytes to a file

the object

C-l

Appendix C
Sample Disassembly

This appendix contains the Pascal/MT+ program, PPRIME, which
was compiled with /X and /P options and then disassembled, producing
the following output.

References to program locations are followed by a single
apostrophe (1000'), and references to data locations are followed by
a quotation mark (0000”).

Note: the object code generated in this example does not
necessarily indicate the level of optimization present in the
current release of the Pascal/MT+ compiler. To determine the level
of optimization, compile programs yourself and use the disassembler
to examine the output.

The operand of instructions that reference external variables
points to the previous reference and the final reference contains
absolute 0000. The list of external chains follows the disassembly
of the program.

Pascal/MT+ (86) Programmer's Guide Sample DisassemblyC

Output from compiler:

Copyright (c) 1982 Digital ResearchRelease 3.0

Source StatementStmt Nest

FILLCHAR(FLAGS ,SI ZEOF (FLAGS),CHR(TRUE));

Normal End of Input Reached

Listing C-l. Compilation of PPRIME

C-2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
34
34

0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
3
3
3
3
4
4
4
3
3
3
1
1
0
0

ARRAY[0..SIZE] OF BOOLEAN;
INTEGER;
INTEGER;

END;
writeln(count,' primes');

END.

FOR I:=0 TO SIZE DO
IF FLAGS[I] THEN

BEGIN
PRIME:=1+1+3;
K:=I+PRIME;
WHILE K<=SIZE DO

BEGIN
FLAGS[K]:=FALSE;
K:=K+PRIME;

END;
COUNT:=COUNT + 1;

END

Pascal/MT+86
Page # 1
Compilation of: PPRIME

PROGRAM PPRIME;
USES SIEVE OF ERATOSTHENES(*

CONST
SIZE=8190;

VAR
FLAGS:
I,PRIME,K,ITER:
COUNT:

BEGIN
COUNT := 0;
writeln('10 iterations');
FOR ITER := 1 TO 10 DO

BEGIN
COUNT:=0;

*)

Pascal/MT+ (86) Programmer’s Guide Sample DisassemblyC

Output from disassembler:

Copyright (c) 1982 by Digital Research

Source Statement / Symbolic Object CodeStmt Nest

PROGRAM PPRIME;

USES SIEVE OF ERATOSTHENES

BEGIN

12 1 COUNT := 0;

MOV WORD PTR 2008”,0000001B

Listing C-2. Disassembly of PPRIME

C-3

0000
0008
0010

0013
0016
0018
0019
001A

3
4
5
6
7
8
9

10
11

1
2

FLAGS
ITER
K
PRIME
I
COUNT

0
0

0
0
1
1
1
1
1
1
1

EQU
EQU
EQU
EQU
EQU
EQU

CALL 0000
MOV BP,SP
DEC BP
DEC BP
PUSH BP

0000
2000
2002
20 04
2006
2008

ARRAY[0..SIZE] OF BOOLEAN;
INTEGER;
INTEGER;

(*
CONST

SIZE=8190;
VAR

FLAGS:
I,PRIME,K,ITER:
COUNT:

*)

DB 90,90,90,90,90,90,90,90
DB 90,90,90,90,90,90,90,90
JMP 0013

Pascal/MT+86 Release 3.1
Disassembly of: PPRIME

Pascal/MT+ (86) Programmer’s Guide Sample DisassemblyC

write In ('10 iterations');13 1

14 1 := 1 TO 10 DOFOR ITER

MOV WORD PTR 2008",00000062

FILLCHAR (FLAGS,SIZEOF(FLAGS),CHR(TRUE)) ;

Listing C-2. (continued)

C-4

0068
0069
006C
006D
0070
0071
0074
0075

0 049
004F
0055
0059
00 5D
00 5F

0021
0022
0025
0026
0029
00 2A
00 2D
0035
003B
003E
003F
0042
0043
0046

15
16

17
18

1
2

2
2

PUSH DS
MOVI AX,0000"
PUSH AX
MOVI AX,1FFF
PUSH AX
MOVI AX,0001
PUSH AX
CALL 0000

BEG IN
COUNT:=0;

PUSH DS
MOVI AX,0000
PUSH AX
CALL 0000
PUSH CS
CALL 000E
DB 0D,31,30,20,69 ,74,65,72
DB 61,74,69,6F,6E,73
MOVI AX,FFFF
PUSH AX
MOVI AX,FFFF
PUSH AX
CALL 0000
CALL 0000

MOV WORD PTR 2000",0000
MOV WORD PTR 202A",000A
INC WORD PTR 2000"
DEC WORD PTR 202A"
JGE 0062
JMP 00E8

Pascal/MT+ (86) Programmer’s Guide Sample DisassemblyC

FOR I:=0 TO SIZE DO

2 IF FLAGS[I] THEN21

24 3 K:=I+PRIME;

25 3 WHILE K<=SIZE DO

Listing C-2. (continued)

C-5

MOV AX,2006"
ADD AX,2006"
ADDI AX,0003
MOV 2004",AX

MOV AX,2006"
ADD AX,2004"
MOV 200 2",AX

00AF
00B2
00B6

0091
0092
0095
0099
009A
009D
009F

0 0A2
00A5
00A9
00AC

00B9
00BF
00C1

0 0C4
00C5
00C8
OOCC
00CD

0078
007E
0084
0088
008C
008E

22
23

26
27

19
20

3
4

2
2

2
3

BEG IN
PRIME:=1+1+3?

NOP
MOVI AX,0000"
ADD AX,2006"
XCHG AX,DI
TEST BYTE [DI],01
JNZ 00A2
JMP 00E3

CMP 2OO2",1FFE
JLE 00C4
JMP OODC

BEGIN
FLAGS[K]:=FALSE;

NOP
MOVI AX,0000"
ADD AX,2002"
XCHG AX,DI
MOVE BYTE PTR [DI],00

MOV WORD PTR 2006",FFFF
MOV WORD PTR 2O2C",1FFF
INC WORD PTR 2006"
DEC WORD PTR 202C"
JGE 0091
JMP 00E5

Pascal/MT+ (86) Programmer’s Guide Sample DisassemblyC

28 4 K:=K+PRIME;

29 4 END;
OODA JMPS 00B9

30 3 COUNT:=COUNT + 1;

END
END;

writein(count,' primes’);33 1

34 1 END.
0119 CALL 0000

(continued)Listing C-2.

C-6

00DC
00DF
00E0

00E3
00E5

00E8
OOEC
OOED
00F0
00F1
00F4
00F7
00F8
OOFB
OOFC
OOFF
0100
0103
010B
010E
010F
0112
0113
0116

00D0
00D3
00D7

31
32

3
3

MOV AX,2008"
INC AX
MOV 2008",AX

JMPS 0084
JMP 0055

MOV AX,2002"
ADD AX,2004"
MOV 2002",AX

PUSH 2008"
PUSH DS
MOVI AX,0023'
PUSH AX
CALL 0027'
MOVI AX,FFFF
PUSH AX
MOVI AX,FFFF
PUSH AX
CALL 0000
PUSH CS
CALL 0008
DB 07,20,70,72,69,6D,65,73
MOVI AX,FFFF
PUSH AX
MOVI AX,FFFF
PUSH AX
CALL 0044'
CALL 0047'

Pascal/MT+ (86) Programmer’s Guide Sample DisassemblyC

Listing C-2. (continued)

End of Appendix C

C-7

External reference chain @WIN
External reference chain @CRL
External reference chain @SFB
External reference chain @INI
External reference chain @WRS
External reference chain @HLT
External reference chain OUTPUT
External reference chain FILLCH

—> OOFD
— > 0117
—> 00F2
—-> 0014
—> 0114
—> 011A
—> 00EE
—> 0076

Source StatementStmt Nest

EXAMPLE TO ILLUSTRATE DEBUGGER

DUMMY PROC TO ALLOW SETTING BREAKPOINT

FUNCTION TO CONVERT FROM INTEGER TO HEX CHARACTER
: CHAR;

’); READ(I);

END.

DEBUG.PAS Source FileListing D-l.

D-l

Appendix D
Sample Debugging Session

i
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
2324
25
26
27
28
29
30
31
32
33
34
35

0
0
0
0
0
1
1
1
1
1
1
1
1
2
1
1
1
1
1
2
2
1
1
1
1
1
2
3
3
3
3
3
3
1
1

PROCEDURE BREAK;
BEG IN
END;

FUNCTION CONVERT(I : INTEGER)
BEG IN

CONVERT := HEXARR [1];
END;

(*

(*

(*

*)

*)

*)

*)

PROGRAM DEBUG;
VAR

HEXARR : STRING[16];
CH : CHAR;
I : INTEGER;

This appendix supplies a sample debugging session that uses the
source file DEBUG.PAS, shown below.

REPEAT
BEG IN
WRITELN(1 ENTER INTEGER TO CONVERT:
CH:=CONVERT (I) ;
BREAK; (* BREAK ON RETURN FROM CONVERT
WRITELN(’HEX DIGIT IS: ',CH);
END

UNTIL FALSE;

BEGIN
HEXARR:= '0123456789ABCDEF’;

Pascal/MT+ (86) Programmer’s Guide Sample Debugging SessionD

Compile the program with the Debug option.A>MT+86 B:DEBUG $D

System displays banner.Serial. No. XXXX-0000-100001
All Rights Reserved

Link the object file with the debugger.A > LIHKMT B:DEBUG=DEBUGGER,B:DEBUG,PASLIB/S

Serial No. XXXX-0000-654321
All Rights Reserved

Run program.A>B:DEBUG

System displays banner.
All Rights Reserved

Load the symbols.Symbol table filename (<return> only for none)? B:DEBUG.SYP

to start a program

Enter data.

Examine I. It is correct.

3D4B:0270 Contains: 0 == 30

Examine HEXARR[5]. is not 5.It
4 == 34

:or

Appendix DEnd of

D-2

ENTER INTEGER TO CONVERT:
5
Breakpoint reached

In
simple program,
on the right provides an explanation of

Use I
+ >SB
+ >BE

Set breakpoint, then
start the program.

i have determined the problem,
JR, and go back to the source and

MT+86 -
Copyr igi
Digital

.0123456789ABCDE
F.O

: ing
.eld.
this.

Examine all of HEXARR.
off by
thereft
code for convert

LINKMT •
Copyrigl
Digital

the following sample session, you interactively debug a
Your input is shown in boldface print; the column

each step.

+ >DC HEXARR+5
Address: 3D4B:0263 Contains:

BEgin or TRace
i BREAK

It is wrong,
not returning

the source shot
+ >DV CH
Address:

Now that you
exit DEBUGGEI

- MT+86 V3.1 !
|ht (C) 1982
. Research, Inc.

All the digits are
r 1. Note that HEXARR is a string and
:ore HEXARR[0) is the length field. The

does not allow f<

+ >DV I
Address: 3D4B:0272 Contains: 5

+ >DX HEXARR
Address: 3D4B:025E Contains:
3D4B:025E= 10 30 31 32 33 34 35 36 37 38 39 41 42 43 44 45
3D4B:026E= 46 00 30 00 05 00 00 00 00 00 00 00 00 00 00 00

MT+DEBUGGER V3.1 Serial No. XXXX-0000-654321
COPYRIGHT (C) 1982
Digital Research, Inc

- Pascal V3.1 !
jht (C) 1982
L Research, Inc.

Examine CH. It is wrong. Why? Because
convert is not returning the correct value.
Reviewing the source shows that a 1 was typed
when an I was intended on line 16. Before
recompiling check for other errors.

System displays banner.
Note: the linker might display @WRL as an
undefined symbol. If your program does not
use real numbers, you can ignore it.

• Avoid INLINE.

• Avoid I/O ports (hardware dependent).

• Avoid redirected I/O (hardware dependent).

• Avoid device names such as CON:, RDR:, etc.

• Avoid ABSOLUTE addressing (hardware dependent) .

• Avoid INTERRUPT procedures (hardware dependent).

• Avoid the use of variant records that circumvent type checking.

• Avoid chaining. Chaining is implementation dependent.

This

E-l

Appendix E
Interprocessor Portability

If you want to write portable programs, you should avoid the
following features:

• Avoid scattering calls to
Isolate the calls,
system.

IORESULT throughout the program.
IORESULT values depend on the operating

• Avoid having overlays call other overlays,
possible on other operating systems.

This appendix describes the features of Pascal/MT+ that are not
portable to versions for other microprocessors and operating
systems. A program without the following features should compile
with another Pascal/MT+ compiler with little or no changes to the
source code.

This does not mean that all of the features listed below are
not implemented on any other target processors. It only indicates
that they are hardware dependent and if implemented, are implemented
differently in different versions of the compiler. If you use any
of these hardware dependent features, isolate them so that they are
easy to modify when you port the program.

While every effort is made to support compatibility, Digital
Research does
implementations.
without notice.

not guarantee complete portability to all
The guidelines that follow are subject to change
There is no additional information concerning

portability to other Pascal/MT+ compilers.

is not

E Interprocessor PortabilityPascal/MT+ (86) Programmer’s Guide

it is

• Avoid using temporary files.

End of Appendix E

E-2

• Avoid dependence upon EOF for non-TEXT files because
implementation dependent. Some operating systems keep track of
how much information is in the file to the exact byte, while
others only keep track to the sector/block level, and the last
sector/block contains garbage information.

• Avoid BLOCKREAD/BLOCKWRITE because
implemented on all operating systems,
instead.

these might not be
Use SEEKREAD/SEEKWRITE

Syntax DiagramsF.l

86.

prog ram

end of filesta temen t

statement {note 1}

end of lined irectiveid

directive

-SEGMENT

ENDS

idsegment register ------- :ASSUME
SEG

idGROUP

F-l

Appendix F
Syntax of ASMT-86

The following diagrams represent the complete syntax of ASMT-
The structure of each syntactic item listed on the left can be

determined by following the path, making decisions at each branch.

PARA —
BYTE
WORD
PAGE
INPAGE

■PUBLIC ---------------------
COMMON ---------------------
AT— expression —
STACK -----------------------
MEMORY----------------------

For example, a program is one or more statements followed by
the end of the file.

LABEL ----- ----- NEAR ------
---- FAR ------ -
---- BYTE ------
---- WORD ------
----- DWORD-----

str ing-y

Pascal/MT+ (86) Programmer’s Guide Syntax DiagramsF.l

------- PROC

ENDP

id------- NAME

PUBLIC

id -----EXTRN

id------- END

ORG----------------- expression

data-initializerE
EQU

--------- idIF

ELSE

END IF

str ingINCLUDE

opcode operandSHORT operandrr' ~tj
ope r and

F-2

DB
DW
DD

register —
expression

-- NEAR --
-- FAR ----
-- BYTE --
-- WORD --
-- DWORD —

ON---------j-
OFF ---------f
expression —J

---- NEAR
>---- FAR

Pascal/MT+ (86) Programmer’s Guide Syntax DiagramsF.l

expression

exp2

exp2
exp3E AND

exp3
 exp4

NOT
exp4

exp5

exp5
exp6

exp6
---- j— exp7

exp7
exp8

F-3

OR
XOR

-- HIGH --
-- LOW -- -«

 *

-- mod ----
--- SHL -----
--- SHR -----

LT ------- --- exp5
LE -------
GE -------
GT -------
EQ -------
NE -------

Syntax DiagramsF.lPascal/MT+ (86) Programmer’s Guide

(attribute overrides)exp8

exp9

{note 2}(fundamental values and indexing)exp9

[expression]

(----- expression -----)

id

$

constant

------ string

str ing
11 111any character except J

F-4

BX
BP
SI
DI

--- SEG --
--- OFFSET

--- id —r- :
--- CS —
--- DS —
--- ES —
— SS —

--- BYTE ----- PTR —J
—— WORD -----
--- DWORD ----
--- NEAR -----
--- FAR ------

--- LENGTH ----
--- SIZE ------
--- TYPE ------

THIS ---- --- BYTE ----
--- WORD ---- -
--- DWORD ---
--- NEAR ----
--- FAR -----

Pascal/MT+ (86) Programmer’s Guide Syntax DiagramsF.l

jump-operand {for all jump, call and loop instructions}

operand

SHORT

da ta-in itializer

in it ializer

initializerexpression ----- DUP)(

initializer

expression

?

label identifiers must start in column 1.Note:

Reserved WordsF.2

F-5

AH
AL
AND
AT
AX
BH
BL
BP
BYTE
BX
CH
CL

CS
CX
DH
DI
DL
DS
DUP
DWORD
DX
EQ
ES
FAR

GE
GT
HIGH
INPAGE
LE
LENGTH
LOW
LT
MASK
MEMORY
OD
NE

NEAR
NOT
NOTHING
OFFSET
OR
PAGE
PARA
PTR
PUBLIC
SEG
SHL
SHORT

SHR
SI
SIZE
SP
SS
STACK
THIS
TYPE
WIDTH
WORD
XOR

The following are reserved words in the assembly language,
ASMT-86 and cannot be used as identifiers.

Reserved WordsF.2Pascal/MT+ (86) Programmer’s Guide

Object Format RestrictionsF.3

F-6

AAA
AAD
AAM
AAS
ADC
ADD
AND
ASSUME
CALL
CBW
CLC
CLD
CL I
CMC
CMP
CMPS
CMPSB
CMPSW
COMMON
CWD
DAA
DAS
DB
DD
DEC
DIV
DWL
ELSE
END
END IF

END
ENDS
EQU
ESC
EXTRN
GROUP
HLT
IDIV
IF
IMUL
IN
INC
INCLUDE
I NT
INTO
I RET
JA
JAE
JB
JBE
JC
JCXZ
JEL
JG
JGE
JL
JLE
JMP
JNA
JNAE

JNB
JNC
JNBE
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ
LABEL
LAHF
LDS
LEA
LES
LOCK
LODS
LODSB
LODSW
LOOP
LOOPE
LOOPNE

LOOPNZ
LOOPZ
MOV
MOVS
MOVSB
MOVSW
MUL
NAME
NEG
NIL
NOP
NOT
OR
ORG
OUT
POP
POPF
PROC
PUBLIC
PUSH
PUSHF
RCL
RCR
RECORD
REP
REPE
REPNE
REPNZ
REPZ
RET

ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB
SCASW
SEGMENT
SHL
SHR
STC
STD
STI
STOS
STOSB
STOSW
STRUC
SUB
TEST
WAIT
XCHG
XL AT
XLATB
XOR

The relocatable object format output by the assembler has the
following restrictions:

The following words are reserved for use in the operator
field. Although you can use these words as identifiers, it is not
recommended because of potential confusion.

Relocatable quantities must be words. That is, relocatable
segment base address, low-order bytes of words, or high-order
bytes of words are not allowed.

Pascal/MT+ (86) Programmer’s Guide Object RestrictionsF.3

End of Appendix F

F-7

• A segment not declared PUBLIC is not combinable with other
segments of the same name because variables and labels are
assembled having absolute offsets within the segment.

• The only segment that can have initialized data is the segment
named CODE. This means that all DB, DW, and DD directives in
the DATA, or any other segment must use the indeterminate
initializer ?. Furthermore, segments CODE and DATA must be
declared PUBLIC as in the sample program.

’ ,NAME) ;

Main Program Body for File Transfer ProgramsListing G-l.

of the source file is 9K,

for

G-l

Appendix G
Comparison of I/O Methods

TRANSFER (A,B)
END.

WRITE(’Destination? ');
READLN (NAME) ;
ASSIGN (B,NAME) ;
REWRITE (B) ;
IF IORESULT = 255 THEN

BEG IN
WRITELN(’Cannot open
EXIT

END;

The program shown in Listing G-3 uses the GNB and WNB routines
byte-level access to the file.

This appendix illustrates four different ways to implement a
single file procedure named TRANSFER. Listing G-l shows the main
statement body that calls the transfer routine in each of four
separate programs.

BEGIN
WRITE('Source? ');
READLN(NAME);
ASSIGN (A,NAME) ;
RESET(A);
IF IORESULT = 255 THEN

BEGIN
WRITELN(1 Cannot open ’ ,NAME);
EXIT

END;

Listing G-2 shows a transfer program using the BLOCKREAD and
BLOCKWRITE procedures. This program uses untyped files, and a large
2K buffer to transfer data. Note that the program only works for
files whose size is an even multiple of 2K bytes. Thus, if the size

the last IK is not written because the
variable RESULT is nonzero after the call to BLOCKREAD on line 25.
Using a 128-byte buffer guarantees that all the data is transferred.

I/O ComparisonPascal/MT+ (86) Programmer’s Guide G

This method

Size and Speed of Transfer ProceduresTable G-l.
BLOCK I/O GNB/WNB SEEK I/OTransfer Method GET/PUT

Total Size 10893 10738 14940 8258
Speed 7.8 18.4 8.6 35.1

G-2

Total Code
Total Data

7317
3576

520
2532

7161
3577

519
2534

9243
5697

530
4584

6764
1494

477
482

In
file

Listing G-5 uses GET and PUT to transfer files,
is slower than the buffered methods.

Compiled Code
Compiled Data

the window variable for
However, the end portion of code

is never written to the

Note: these numbers are not identical for all releases of the
compiler. Your version might not produce the same size and speed.
However, the relative size and speed differences should be roughly
the same.

Table G-l shows the code, data size, and execution speed for
each of the file transfer procedures when run on a 4MHz Z80
processor with no wait states, and a single-density, single-sided,
8-inch floppy disk. The values reflected in Table G-l indicate the
approximate values you can expect from the 8086 implementation. The
sizes are in decimal bytes, the speed is in seconds, and the size of
the file is 8K bytes.

The program shown in Listing G-4 performs the file transfer
using the SEEKREAD and SEEKWRITE procedures. Notice that IORESULT
returns a 1 to indicate end-of-file if the last portion of data from
the source file does not fill the sector, just as in BLOCK I/O.
this case, the 2K bytes that are
variable A do not fill the sector,
that does not fill up the 2K buffer
destination file.

Pascal/MT+ (86) Programmer’s Guide I/O ComparisonG

Stmt Nest Source Statement

PROGRAM FILE_TRANSFER;

: FYLE);

END;
MAIN PROGRAM IN LISTING G-l

Listing G-2. File Transfer with BLOCKREAD and BLOCKWRITE

G-3

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
3
3
3
4
4
4
4
3
3
2
2
2
2
1

CONST
BUFSZ = 2047;

TYPE
PAOC = ARRAY[1..BUFSZ] OF CHAR;
FYLE = FILE;

: INTEGER;
: BOOLEAN;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

--*)
Transfer A to B using BLOCKREAD and BLOCKWRITE *)--*)

(*
(*
(*

(*

VAR
A,B : FYLE;
NAME : STRING;
BUF : PAOC;

*)

PROCEDURE TRANSFER(VAR SRC: FYLE; VAR DEST
VAR

RESULT , I
QUIT

BEGIN
I : = 0;
REPEAT
BLOCKREAD (SRC ,BUF ,RESULT ,SIZEOF (BUF) ,1) ;
IF RESULT = 0 THEN

BEGIN
BLOCKWRITE(DEST,BUF,RESULT,SIZEOF (BUF),I);
I := I + SIZEOF(BUF) DIV 128

END
ELSE

QUIT := TRUE;
UNTIL QUIT;
CLOSE(DEST,RESULT);
IF RESULT = 255 THEN

WRITELN(’Error closing destination file')

I/O ComparisonG(86) Programmer’s GuidePascal/MT+

Source StatementStmt Nest

PROGRAM FILE_TRANSFER;

Transfer file A to file B using GNB and WNB

MAIN PROGRAM IN LISTING G-l

File Transfer with GNB and WNBListing G-3.

G-4

*)
*)
*)

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
3
3
3
4
4
4
3
2
2
2
2
1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

CONST
BUFSZ = 2047;

TYPE
PAOC = ARRAY[1..BUFSZ] OF CHAR;
TFILE = FILE OF PAOC;
CHFILE = FILE OF CHAR;

VAR
A : TFILE;
B : CHFILE;
NAME : STRING;

(*■

(*
(*

(* *)

PROCEDURE TRANSFER(VAR SRC: TFILE; VAR DEST : CHFILE);
VAR

CH : CHAR;
RESULT : INTEGER;
ABORT : BOOLEAN;

BEG IN
ABORT := FALSE;
WHILE (NOT EOF(SRC)) AND (NOT ABORT) DO

BEGIN
CH := GNB(SRC);
IF WNB (DEST,CH) THEN

BEGIN
WRITELN(’Error writing character');
ABORT := TRUE;

END;
END;

CLOSE(DEST,RESULT);
IF RESULT = 25 5 THEN

WRITELN('Error closing ')
END;

Pascal/MT+ (86) Programmer's Guide I/O ComparisonG

Stmt Nest Source Statement

PROGRAM FILE_TRANSFER;

END?
MAIN PROGRAM IN LISTING G-l

Listing G-4. File Transfer with SEEKREAD and SEEKWRITE

G-5

0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
3
3
3
3
4
4
4
3
3
2
2
2
2
2
1

CONST
BUFSZ = 2047?

CLOSE(DEST,RESULT);
IF RESULT = 255 THEN

WRITELN('Error closing destination file')

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

--
Transfer A to B using SEEKREAD and SEEKWRITE*)--

(*
(*
(*

(*

TYPE
PAOC = ARRAY[0..BUFSZ] OF CHAR;
TFILE = FILE OF PAOC;
CHFILE = FILE OF PAOC?

VAR
A : TFILE;
B : TFILE;
NAME : STRING?

PROCEDURE TRANSFER(VAR SRC: TFILE; VAR DEST : TFILE)?
VAR

CH : CHAR;
RESULT 2, RESULT, I : INTEGER?
ABORT : BOOLEAN;

BEGIN
CH := 'A';
RESULT := 0?
I : = 0;
WHILE RESULT <> 1 DO

BEGIN
SEEKREAD(SRC,I);
RESULT := IORESULT;
IF RESULT = 0 THEN

BEGIN
DEST" := SRC"?
SEEKWRITE(DEST,I);

END;
I := I + 1;

END?

I/O Comparison(86) Programmer’s GuidePascal/MT+ G

Source StatementStmt Nest

PROGRAM FILE_TRANSFER;

Transfer file A to file B using GET and PUT

MAIN PROGRAM IN LISTING G-l

Listing G-5. File Transfer with GET and PUT

End of Appendix G

G-6

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

0
0
0
0
0
0
0
1
1
1
1
1
1
1
2
2
2
2
3
3
3
3
2
2
2
2
2
1

TYPE
CHFILE = FILE OF CHAR;

VAR
A,B : CHFILE;
NAME : STRING;

(*
(*
(*

(*

*)
*)
*)

*)

PROCEDURE TRANSFER (VAR SRC: CHFILE; VAR DEST : CHFILE);
VAR

RESULT : INTEGER;
BEGIN

WHILE NOT EOF (SRC) DO
BEG IN

DEST" := SRC";
PUT(DEST);
GET (SRC) ;

END;

CLOSE(DEST,RESULT);
IF RESULT = 25 5 THEN

WRITELN(’Error closing destination file')
END;

Index

A

D

B

C

E

Index-1

BDOS
function calls, 4-10/4-12
function number, 4-10/4-12
functions, 4-19/4-20

binary numbers, 6-3
BLD, LIB/MT+86 input filetype,

5-5

E option
compiler command-line option,

4-3
compiler source-code option,

2-5, 3-6
linker command-line option,

2-12
entry-point records, 2-6, 4-2

absolute variables, 4-14
in chained programs, 3-14

AND, ASMT-86 operator, 6-5
arrays

storage allocation for, 4-4
subscripts, 4-21

ASMT-86, 4-2, 5-1
command-line options, 5-3
expressions in, 6-6/6-7
pseudo-opcodes, 6-1
relocating assembler, 1-1

assembly-language routines
accessing from Pascal/MT+,
4-2

available memory space at
Phase 1, 2-2

*, ASMT-86 operator, 6-5
/, ASMT-86 operator, 6-5

communication among chained
programs, 3-14

compilation data, 2-2
compiler

disk, 1-4
errors, 2-3
overlays, 2-3
passes, 2-1

converting object files, 2-15
CP/M-86, 1-1, 1-5, 2-9, 2-12,

4-2, 4-15, 4-19, 4-22, 6-1

calling an overlay from another
overlay, 3-7

chaining, 3-1, 3-14
@CHK array subscript checking

routine, 4-21
code size in the root program,

3-10
command line
compiler, 2-1
for linking a root program,

3-9
for linking an overlay, 3-10
LINK/MT+86, 2-9

command-line options
compiler, 2-3

D linker command-line option,
2- 12

Data segment, 4-3, 4-12/4-15,
5-8, 6-3

data size in the root program,
3- 10

debugger, 5-6
control commands, 5-10
display commands, 5-9
Pascal/MT+ programming tools,

1-1
debugging programs, 5-6
decimal numbers, 6-3
default value

size of Extra segment, 2-13
size of Stack segment, 2-13

default values
compiler command-line options,

2-4
compiler source-code options,

2-5
DIS-86, disassembler, 1-1/1-2,

5-3
disassembler, See DIS-86
division by zero, 4-22
dynamic debugger, 1-1

2-3

F

G K

L

H

I

Index-2

4-19
4-1

EQ, ASMT-86 operator, 6-5
@ERR error handling routine,

4-21, 4-22
error identification number,
expressions in ASMT-86, 6-6
EXTERNAL declaration directive,

3-2, 4-3
Extra segment, 4-1

controlling the size of, 2-13
extracting a module from a

library, 5-5

K compiler source-code option,
2-7

KMD, linker input command file,
2-12

GE, ASMT-86 operator, 6-5
generating

a SYM file, 2-12
entry-point records, 2-6
recursive code, 4-18
stand-alone programs,

global variables, 3-2, 4-4,
GT, ASMT-86 operator, 6-5

handling interrupts, 4-15
hardware stack, 4-2, 4-5, 4-18,

4-19
header code, 4-2

for a module, 3-3
heap, 3-14, 4-1, 4-17, 4-20,

4-22
heap size in the root program,

3-10
hexadecimal

filetype, 3-5
numbers, 6-3

HIGH, ASMT-86 operator, 6-5

INCLUDE file, 2-6
indexed expressions in ASMT-86,

6-7
INLINE, 4-12
inserting code, 4-12
Intel

format object file, 2-15
MCS-86 assembler, 5-1
MCS-86 assembly language, 6-1

interrupt
procedures, 4-15
vector, 4-15, 4-20

invoking
ASMT-86, 5-1/5-2
DIS-86, 5-3
LIB/MT+86, 5-5
LINK/MT+86, 2-9
the assembler, 5-2
the compiler, 2-1
the disassembler, 5-4
the librarian, 5-5
the linker, 2-9

F linker command-line option,
2-12

filespec, 2-2, 2-6, 5-3
floating-point
overflow, 4-21
underflow, 4-21

functions, 3-2, 3-5/3-7, 3-11,
4-12, 5-6

I compiler source-code option,
2-6

I/O errors, 4-22

L option
linker command-line option,

2-12
compiler source-code option,

2-9
LE, ASMT-86 operator, 6-5
length of identifiers, 6-1
LIB/MT+86, 1-1, 2-11, 5-5
LINK/MT+86, 2-9/2-10
linkage editor, 2-9
linker, 2-9, 3-5
command-line, 5-7
directing output to a file,

2- 13
error messages, 2-15
input command file, 2-12
overlay options, 2-14, 3-8

linking
a root program, 3-9
an overlay, 3-10
programs that use overlays,

3- 8
required files, 2-14

4-2

M
P

N

O

Index-3

NE, ASMT-86 operator, 6-5
nonrecursion, 4-18
nonsyntax error, 2-3
NOT, ASMT-86 operator, 6-5
numbering overlays, 3-6
numbers

binary, decimal, hexadecimal,
octal, 6-3

overriding the segment
attribute, 6-6

@OVL overlay manager routine,
3-7

OVLMGR3.I86, 3-6
@OVS overlay manager routine,

3-7, 3-11

object file
conversion, 2-15
Intel format, 2-15

octal numbers, 6-3
opertors in ASMT-86, 6-5
OR, ASMT-86 operator, 6-5
overlay, 3-1/3-5, 4-20, 5-6

area, 3-4/3-5, 3-10/3-11
as assembly-language modules,

3-8
error messages, 3-11
manager, 3-5/3-6, 3-10
number, 3-6/3-11
reloading version, 3-7
source file, 3-6

Load Maps, 2-12
local variables, 4-18
local-variable stack, 4-1
LOW, ASMT-86 operator, 6-5
LT, ASMT-86 operator, 6-5

M linker command-line option,
2-11, 4-20

maximum code size of a program,
2-12

maximum data size of a program,
2-12

memory management, 4-18
Memory Map, 2-11
minimum size of a program, 1-1
MOD, ASMT-86 operator, 6-5
MODEND, reserved word, 3-1
MODULE, reserved word, 3-1
modules, 3-1
MT2INT, object file converison

utility, 2-15
multiple overlay areas, 3-5

P option
compiler command-line option,

2-8, 5-2, 5-4
linker command-line option,

2- 12
parameter passing in

Pascal/MT+, 4-6
PAS, 2-6

source filetype, 2-2
Pascal/MT+ compiler

command line, 2-1
command-line options, 2-4
compilation data, 2-2
compiler errors, 2-3
controlling the listing, 2-8
object file, 2-2
organization of, 2-1
overlays, 2-1
source file, 2-2
source-code options, 2-5

Pascal/MT+ overlay system, 3-5,
3- 6

Pascal/MT+ system, 1-1
distribution disks, 1-2/1-5,

2- 14
filetypes, 1-3
relocatable format, 4-2
suggested configuration, 1-5

PASLIB, 5-6
Pascal/MT+ run-time system

module, 2-11, 2-14, 3-6/3-7,
3- 13, 4-18/4-22

Phase 0, 2-1/2-2, 2-8
Phase 1, 2-1
Phase 2, 2-1/2-2
PIP, 1-6
PROCEDURE, reserved word, 3-2
procedures, 3-1/3-7, 3-11,

4- 12, 5-6
program

initialization, 4-2
PPRIME sample, 1-1
size, 1-1

PROGRAM, reserved word, 3-1
programming tools, 1-1, 5-1

R

T

U
4-21

S

V

Index-4

S option
linker command-line option,

2-11, 4-20, 5-5
compiler source-code option,

2-8
searching a library, 5-5
with LIB/MT+86, 2-11

segmented programs, 3-1
set variables, 4-5

error, 2-3
debugger commands, 5-7

T compiler source-code option,
2-8

temporary work files
created by ASMT-86, 5-2

text editor, 1-5, 6-1
THIS, ASMT-86 operator, 6-5
type checking, 3-3

strict, weak, 2-8

variables
absolute, 4-14
global, 3-2, 4-3, 4-13
set, 4-5

R option
linker command-line option,

2-12
compiler source-code option,

2-8
range checking at run-time,

2- 8, 4-21
records

storage allocation for, 4-5
recursion, 4-18
reducing symbol table space, 2-7
relocatable object file, 2-2
relocating assembler
Pascal/MT+ programming tool,

1-1
ROM-based system, 4-19/4-20
root program, 2-14, 3-5,

3- 8/3-12
run-time

environment, 4-10
exception checking, 2-9, 4-21
library, 1-1, 2-11
range checking, 2-8, underscore character, 4-2, 5-7

user-supplied error handlers,
4-22

using the debugger, 5-6

pseudo-opcode
ASSUME, 6-2
DB, DW, and DD, 6-2
ELSE, 6-3
END, 6-2
ENDIF, 6-3
ENDS, 6-1
EQUATE, 6-3
EXTRN, 6-2
IF, 6-3
INCLUDE, 6-3
LABEL, 6-2
NAME, 6-2
ORG, 6-2
PROC, 6-2
PUBLIC, 6-2
SEGMENT, 6-1

setting the stack pointer, 2-9,
4-2, 4-19

shared global variables in
chained programs, 3-J4

SHL, ASMT-86 operator, 6-5
SHR, ASMT-86 operator, 6-5
software development process, 1-1
software librarian, 2-11, 5-5
Pascal/MT+ programming tool,

1-1
source filetypes

SRC, PAS, 2-2, 2-6
SRC, 2-2, 2-6
stack frame allocation, 2-8
stack pointer, 2-9

initialization, 4-2, 4-19
Stack segment, 2-13, 4-1, 4-13
stand-alone environment, 5-6
static data, 3-5, 3-10/3-11
static variables in an overlay, 3-5
strict type checking, 2-8
SYM file, 2-15, 3-8/3-11
generation with the linker,

2-12
symbol table, 2-1/2-2, 2-7
syntax

w

I..' •'?

X

6-5
Y

Z

Index-5

W option
linker command-line option,

2-12
compiler source-code option,

2-8
weak type checking, 2-8
writing

error handlers, 4-22
large programs, 3-1

Z option
compiler source-code option,

2-9, 4-2, 4-19
linker command-line option,

2-13, 4-2, 4-19

Y linker command-line option,
2-13

X option
compiler command-line option,

5-4/5-5
compiler source-code option,

2-9, 4-21
linker command-line option,

2-13
XOR, ASMT-86 operator,

/

Reader Comment Card
provide you with better

First Edition: February 1983Date

especially helpful?

COMMENTS AND SUGGESTIONS BECOME THE PROPERTY OF DIGITAL RESEARCH.

Pascal/MT+™ Language Programmer’s Guide for the CP/M-86
Family of Operating Systems

We welcome your comments and suggestions. They help us
product documentation.

1. What sections of this manual are

3. Did you find errors in this manual? (Specify section and page number.)

2. What suggestions do you have for improving this manual? What information
is missing or incomplete? Where are examples needed?

o

111111111111111111111 I

o
CD

O
CD

m
0)
CD

5
>

>
0
m

£

CD

U
O
ZD
m
CD
CD

m

I
I
I
I

I
I

I

I
I
I
I
I
I
I
I

I

I

O
3

CD "0
CO 0
CD ‘cn

i
I
I
I
I

I
I
I
I
I
I
I
I
I
I

I

>

"0 c
CT

2
□
CD

O
CL
C o

□
OU

< CD

£

II
i

0 X
o
Q

o

o
3
&5’

nn

3
5 Vi
CD z
s
ZD i

! 3J
" m

■o

I <
6
0
ZD

2 m __
0 I—

