
[10]
DIGITAL

RESEARCH

Pascal/MT+"
Language

Reference Manual

Copyright © 1983

All Rights Reserved

Digital Research
P.O. Box 579

801 Lighthouse Avenue
Pacific Grove, CA 93950

(408) 649-3896
TWX 910 360 5001

Pascal/MT+™
Language

Reference Manual

COPYRIGHT

DISCLAIMER

TRADEMARKS
Of
Of

CP/M and CP/M-86
Digital Research.
Digital Research.

This manual is, however, tutorial in nature. Thus,
the reader is granted permission to include the
example programs, either in whole or in part, in his
or her own programs.

* First Edition: February 1983 * ***********************************

are registered trademarks
Pascal/MT+ is a trademark

Digital Research makes no representations or
warranties with respect to the contents hereof and
specifically disclaims any implied warranties of
merchantability or fitness for any particular
purpose. Further, Digital Research reserves the
right to revise this publication and to make changes
from time to time in the content hereof without
obligation of Digital Research to notify any person
of such revision or changes.

Copyright © 1983 by Digital Research. All rights
reserved. No part of this publication may be
reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language or
computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical,
manual or otherwise, without the prior written
permission of Digital Research, Post Office Box 579,
Pacific Grove, California, 93950.

T he Pascal/MT+ Language Reference
prepared using the Digital
Formatter, and printed in
Amer ica.

_________ Manual was
Research TEX Text

the United States of

Foreword

iii

• enhanced I/O
• additional data types
• access to the run-time system
• modules and overlays

notation to formally
If you are not familiar

Pascal/MT+ is useful for both data processing applications and
for real-time control applications.

This manual uses Backus-Naur Form (BNF)
describe the syntax of Pascal statements,
with BNF notation, see Appendix B.

The Pascal/MT+ system, which includes a compiler, linker, and
programming tools, is implemented on a variety of operating systems
and microprocessors. Because the language is consistent among the
various implementations, Pascal/MT+ programs are easily
transportable between target processors and operating systems. The
Pascal/MT+ system can also generate software for use in a ROM-based
environment, to operate with or without an operating system.

This manual describes the Pascal/MT+ language with emphasis on
those features that are unique to Pascal/MT+. Information in this
manual covers all language-related topics independent of the
implementation.

Information about the compiler, linker, the Pascal/MT+
programming tools, and topics related to the operating system are
contained in the version of the Pascal/MT+ Language Programmer's
Guide pertinent to your specific implementation.

The Pascal/MT+™ language is a full implementation of standard
Pascal as set forth in the International Standards Organization
(ISO) standard DPS/7185. The Pascal/MT+ language also has several
additions to standard Pascal. These additions make Pascal/MT+ more
suitable for commercial programming, and increase its power to
develop high-quality, efficiently maintainable software. The
additions fall into four categories:

This manual assumes you are already familiar with the Pascal
language in general. If you are not familiar with Pascal, refer to
Appendix C for a bibliography of textbooks.

Table of Contents

Pascal/MT+ Programs1
1-11.1 Program Structure

1.2 1-5Scope
1.3 1-6Commen ts

2 Identifiers and Constants
Iden ti f iers 2-12.1

2-22.2 Constan ts

Variables and Data Types3
3-1Type Definition 3.1

3.2 Variable Declaration 3-1
Simple Types 3-23.3

3.4 Structured Types 3-6

v

1.1.1
1.1.2
1.1.3
1.1.4

2.2.1
2.2.2
2.2.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7

Numeric Literals
String Literals
Named Constants

Arrays
Str ings
Sets
Records

1-2
1-2
1-4
1-4

2-2
2-3
2-3

3-3
3-3
3-4
3-4
3-5
3-5
3-6

Program Heading
Declarations and Definitions
Statement Body
Modules

BOOLEAN
CHAR
INTEGER and LONGINT . . .
REAL
BYTE and WORD
User-defined Ordinal Types
Pointers

3-7
3— 8
3-9

3-10

3.4.1
3.4.2
3.4.3
3.4.4

Table of Contents
(continued)

Operators and Expressions4
Arithmetic Expressions 4-34.1

4-3Boolean Expressions 4.2
4-4Logical Expressions 4.3
4-5Set Expressions 4.4

5 Statements
The Assignment Statement 5-15.1

5-25.2 The CASE Statement
5-35.3 The Empty Statement

5-35.4 The FOR Statement
5-55.5 The GOTO Statement
5-65.6 The IF Statement
5-75.7 The REPEAT Statement
5-85.8 The WHILE Statement
5-8The WITH Statement 5.9

Procedures and Functions6
6-2Procedure Definitions 6.1
6-36.2 Parameters
6-56.3 Conformant Arrays
6-8Predefined Functions and Procedures 6.4

vi

6-11
6-12
6-13
6-14
6-16
6-17
6-18

ABS Function
ADDR Function
ARCTAN Function
ASSIGN Function
BLOCKREAD, BLOCKWRITE Function.
CHAIN Function
CHR Function

vii

Table of Contents
(continued)

6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-40
6-41
6-42
6-43
6-44
6-45
6-46
6-47
6-48
6-49
6-50
6-51
6-52
6-53
6-54
6-55
6-56
6-57
6-58
6-59
6-60
6-61
6-62
6-63
6-64
6-65
6-66
6-67

CLOSE Function
CONCAT Function
COPY Function
COS Function
DELETE Function
DISPOSE Function
EOLN, EOF Function
EXIT Function
EXP Function
FILLCHAR Function
GET Function
HI, LO, SWAP Function
INLINE Function
INSERT Function
IORESULT Function
LENGTH Function
LN Function
MAXAVAIL, MEMAVAIL Function
MOVE, MOVERIGHT, MOVELEFT Function .
NEW Function
ODD Function
OPEN Function
ORD Function
PACK, UNPACK Function
PAGE Function
POS Function
PRED Function
PURGE Function
PUT Function
READ, READLN Function
READHEX, WRITEHEX, LWWRITEHEX Function
RESET Function
REWRITE Function
RIM85, SIM85 Function
ROUND Function
SEEKREAD, SEEKWRITE Function
SHL, SHR Function
SIN Function
SIZEOF Function
SQR Function
SQRT Function
SUCC Function
TRUNC Function
TSTBIT, SETBIT, CLRBIT Function . . .
WAIT Function
WNB, GNB Function
WRITE, WRITELN Function

7-1Input and Output 7
Fundamentals of Pascal/MT+ I/O 7-17.1

7-2Regular I/O 7.2
7-5INP and OUT Arrays 7.3

Redirected I/O 7-57.4
7-9Sequential I/O 7.5

7-12Random Access I/O7.6

viii

7.5.1
7.5.2

Table of Contents
(continued)

6-69
6-70
6-71
6-72
6-73
6-74
6-75
6-76

7-9
7-12

@BDOS Function
@BDOS86 Function
@CMD Function .
@ERR Function .
@HLT Function .
@HERR Function
@MRK Function .
@RLS Function .

TEXT Files
Writing to the printer

Appendixes

Reserved Words and Predefined Identifiers A-lA

B-lBNF NotationB

C-lDifferences from ISO Standard C

Bibliography D-lD

ix

Figures, Tables and Listings

Figures

Block Structure in Pascal/MT+ 1-11-1

Tables
3-2Predefined Data Types 3-1

Listings

3-10Program Using Sets 3-1
4-7Set Expressions 4-1

6-1

x

A-l
A-2

7-1
7-2

4-1
4-2
4-3
6-1
6-2
6-3
6-4

1-1
1-2
1-3
1-4

6-3
6-4
7-1
7-2
7-3
7-4
7-5

Summary of Pascal/MT+ Operators
Boolean Operations
Logical Operators

Lines in a TEXT File
Records in a File

Pascal/MT+ Reserved Words
Pascal/MT+ Predefined Identifiers

Simple Pascal/MT+ Program . .
Declarations and Definitions
Example of Scope Rules . . .Example Program with Comments

A-l
A-l

4-1
4-4
4-5

6-3
6-4

 6-4
6-5

 6-7

1-2
1-4
1-6
1-7

7-9
7-14

6-8
6-13
6-26
6-26

7-4
7-8

7-11
7-12
7-15

File Input and Output
Redirected I/O
TEXT File Processing
Writing to a Printer and Number Formatting
Random File I/O

Predefined Functions and Procedures .
Device Names
EOLN, EOF Valuses for a TEXT File . .
EOF Values for a Non-TEXT File . . .

FORWARD Declarations . .
6-2a Parameter Passing
6-2b Output from VALVAR Program

Procedural Parameters . .
Conformant Array Example

1.1 Program Structure

[—BEGIN

— BEGIN

— END;

I— END.
AN 059

Block-structure in Pascal/MT+Figure 1-1.

1-1

Section 1
Pascal/MT+ Programs

PROGRAM
VAR

PROCEDURE ;
VAR

PROCEDURE ;
|—BEGIN

I— END;

|—BEGIN

I— END

■—BEGIN

I—END;

Pascal/MT+ is a block-structured language. That is, you group
one or more statements into logically related units called blocks.
Every block has a heading, an optional declaration and definition
section, and a set of statements. In every Pascal/MT+ program, the
outermost block is the main program.

You can nest blocks inside your program. That is, you can put
one block inside another block, but not overlap them. Inside
blocks, you can also nest procedures and functions (see Section 6).
Figure 1-1 illustrates the typical block-structure of Pascal/MT+.

Pascal/MT+ Reference Manual 1.1 Program Structure

a

PROGRAM FIRST-1;

PROCEDURE RESPOND (ST : STRING);

' r ST) SHIFTS NAME TO RIGHT

Listing 1-1. Simple Pascal/MT+ Program

1.1.1 Program Heading
A program heading has the following form:

PROGRAM <program name> {(<program parameters>)};

1-2

Listing 1-1 shows
nested block.

VAR
NAME : STRING;

)(

BEGIN
WRITELN (MESSAGE);
WRITELN (’WHAT IS YOUR NAME?');
READLN (NAME);
RESPOND (NAME);
WRITELN (’FINISHED ’, MESSAGE)

END.

BEGIN
FOR I := 1 TO LIMIT DO

BEGIN
WRITELN (ST) ;
ST := CONCAT (’

END
END;

CONST
LIMIT = 10;
MESSAGE = ’TESTING PASCAL/MT+’;

VAR
I : INTEGER;

The <program name> has no significance inside the program, but you
should not use the name for any other data item in the program. The
optional <program parameters> have no special meaning in Pascal/MT+,
as they do in some other versions of Pascal.

a small Pascal/MT+ program containing

Pascal/MT+ Reference Manual 1.1 Program Structure

Declarations and Definitions1.1.2

Section 3 describes the various kinds of data type definitions.

1-3

1)
2)
3)
4)
5)

LABEL declarations
CONSTANT declarations
TYPE definitions
VAR declarations
PROCEDURE and FUNCTION definitions

Note that LABEL, CONSTANT, TYPE, and VAR declarations can be in
any order, and there can be multiple occurrences of each type in a
module. PROCEDURE and FUNCTION declarations must appear last, and
there can be only one section of these per module.

You must define an identifier before you use it in a program,
unless the identifier is predefined by the language (see Appendix
A) . Listing 1-2 shows an example of the declaration and definition
part of a program illustrating each of the major kinds of
declarations as shown in the following list.

Pascal/MT+ Reference Manual 1.1 Program Structure

OF PERPT;

1 r ST)

Declarations and DefinitionsListing 1-2.

1.1.3 Statement Body

1.1.4 Modules

1-4

PROCEDURE ECHO (ST : STRING);
BEGIN
WRITELN (ST, 1

END?

CONST
TOP
BOTTOM
LIMIT
MESSAGE

= (RED, YELLOW, BLUE, GREEN, ORANGE);
= BOTTOM .. TOP ?

STRING;
STRING[8]

= 100;
= -TOP;
= 1.0E-16;
= ’THANK YOU FOR NOT SMOKING’;

VAR
COLR : COLOR;
I, J : INTEGER?
LIST : ARRAY [INDEX]

LABEL
34, 356, 755, 1000;

The words BEGIN and END surround the body of statements in a
block, which can contain zero or more statements. If the block is
the main program block, you must put a period after the word END.
Within the statement body, separate each statement with a semicolon.

TYPE
COLOR
INDEX
PERPt = "PERSON?
PERSON = RECORD

NAME,
ADDRESS :
PHONE :

END;

A module is a portion of a program that you compile separately,
and then link to the main program. The general form of a module is
the same as a program, except that a module does not have a main
statement body. The only executable code in a module is contained
in procedures and functions. The following example illustrates a
simple single-procedure module.

Pascal/MT+ Reference Manual 1.1 Program Structure

MODULE SIMPLE;

’, CALL_NUM)

MODEND.

1.2 Scope
The

The declarations

1-5

program containing nested blocks with
The comments in the

A variable is
Inside a

Notice that the word MODULE replaces the word PROGRAM and that the
word MODEND replaces the main statement body.

Listing 1-3 shows a
multiple definitions for the same identifiers,
program explain which definitions apply at various points.

However, when a nested block redefines the same identifier, the
outer variable is inaccessible from the inner block. When the same
identifier has multiple definitions, the innermost definition is the
one that applies.

Every identifier in a Pascal/MT+ program has a scope,
scope of an identifier is the set of all blocks where you can make a
valid reference to the identifier. The normal scope of an
identifier is anywhere inside its defining block, starting from its
actual definition.

This manual uses the terms global and local,
at the outermost level in the program are the global declarations.
Declarations in a block are local to that block,
local to a block if its declaration is in that same block,
nested block, a variable declared in a containing block is usable,
but it is not local to that nested block. Within a contained block,
a reference to a variable in a containing block is called an "up-
level reference".

Refer to the Pascal/MT+ Language Programmer’s Guide for your
implementation for more information about modules and modular
programs.

PROCEDURE MARK (CALL_NUM : INTEGER);
BEGIN
WRITELN (’IN MODULE SIMPLE, CALLED FROM:

END?

Pascal/MT+ Reference Manual 1.2 Scope

PROGRAM SHOWSCOPE;

X,Y,Z ARE GLOBALY,

Y & Z FROM MAIN BLOCK

:= X DIV 3

Example of Scope RulesListing 1-3.

1.3 Comments

and

1-6

W LOCAL TO PROC2
Y LOCAL TO PROC2

X FROM MAIN BLOCK
X FROM MAIN BLOCK

PROCEDURE PROCI?
VAR
BEGIN

X := Y / Z
END?

VAR
X,

X, Y,
IN THIS BLOCK
*)
*)

(*
(*

(*
(*

(*
(*

*)
*)

*)

*)

(*

*)

PROCEDURE PROC2;
VAR
W : INTEGER?
Y : STRING?

BEGIN
Y : = 'ABCDEFG'?
W := X?
Z

END;

(*
(*

CHANGES X
CHANGES Z

(X, Y, Z)

& Z ARE ALL INTEGERS
*)

*)
*)

BEGIN
Y := 35?
Z := 12?
PROCI?
PROC2?
WRITELN

END.

• Surround the comment with the characters { and }.
• Surround the comment with the character pairs (*

Z : INTEGER? (*

The compiler differentiates between the two sets of comment
delimiters, so you can nest comments. You can use one set of
delimiters for regular comments in your program, and use the other
set of delimiters to comment out sections of code for debugging or
development, as shown in the following program fragment.

*) .

You can put a comment anywhere in a program that you can put a
blank space? the compiler ignores comments. There are two ways to
write a comment in a Pascal/MT+ program:

Pascal/MT+ Reference Manual 1.3 Comments

PROCEDURE WALKTREE (TREE : TREEPT);

DO
{PRE-ORDER WALK OF tree}

LINK ERROR IN TREE1);

Listing 1-4. Example Program with Comments

End of Section 1

1-7

BEGIN
WITH TREE
BEGIN
WALKTREE (LEFTREE);
WRITELN (INFO.NAME);

WALKTREE (RIGHTREE)
END

END;

(*

*)

WRITELN ('**** IN WALKTREE
IF MARKED(NODE) THEN

BEGIN
WRITELN (’

****•) .
{ LOOK FOR LOOPS IN TREE }

**** REMOVE THIS LINE FOR DIAGNOSTICS

****** REMOVE THIS LINE FOR DIAGNOSTICS

TREEDUMP (TREE) { WILL NOT RETURN }
END

ELSE
MARK (NODE); { TREE OK SO FAR }

2.1 Identifiers

A b C
is the same as

abc

The following are examples of valid Pascal/MT+ identifiers:

The last two examples are indistinguishable to the compiler.

2-1

Section 2
Identifiers and Constants

X
@CPMRD
file_name
LA225prefix
Thisfile
Thisfile_for_91803_zip-only

represent a variable,
or an entire program.

You can also use an @ as the first character in an identifier,
as long as you do not use the @ compiler option. You cannot use the
@ inside an identifier. The compiler allows the @ character, so you
can access the run-time routines whose name begins with @.

Identifiers can contain any combination of letters, digits, and
underscores. They must begin with a letter, and they cannot contain
any blank spaces. The compiler ignores underscores and typecase.
For example,

However, if you use the @ compiler option, then the compiler
interprets the @ character as the standard pointer character, *, and
does not allow the @ as part of an identifier.

A Pascal/MT+ identifier can be any length, as long as it fits
on one line. However, the compiler uses only the first eight
characters to distinguish one identifier from another. Only the
first seven characters are significant in external identifiers.

A Pascal/MT+ identifier can represent a variable, a type, a
constant, a procedure or function, or an entire program. The same
rules apply to all Pascal/MT+ identifiers, regardless of what kind
of objects they represent.

This section describes Pascal/MT+ identifiers, and the rules
for forming literal constants. It also describes how to define
named constants.

Pascal/MT+ Reference Manual Identifiers2.1

are examples of invalid identifiers:The following

you inadvertently

2.2 Constants

Numeric Literals2.2.1

2-2

value.
or scalar types.

You can express a constant as a literal value, or you can give
the constant a name and then use the name anywhere you need that

Pascal/MT+ constants can be strings, integers, real numbers,

-3456
$FF00
32767
$EFFF

Contains an illegal character
Begins with a digit
Reserved word
@ not first character
Contains a blank space

any
The

X!2
123x
program
STY@HM
X 22

32767.
commas.

Appendix A lists the Pascal/MT+ reserved words and predefined
identifiers. The Pascal MT+ Language Programmer’s Guide for your
implementation contains the list of the run-time entry-point names,
as well as information about external identifiers.

a decimal integer, a hexadecimal
The form of the constant

You cannot use reserved words, such as BEGIN and IF, as
identifiers. However, you can use predefined identifiers such as
WRITELN and BOOLEAN, to name any object in your program. Predefined
identifiers are defined one level above the global level in your
program, so changing the definition of a predefined identifier makes
the old object inaccessible from within the scope of the new
definition.

An integer literal is any whole number in the range -32768 to
An integer literal cannot have a decimal point or

To write an integer in hexadecimal, start it with a $.
following are examples of valid integer literals:

use aNote: if you inadvertently use a run-time entry-point name as an
external identifier, your program might not link properly.

Note: long integers are not available with the 8-bit versions of
Pascal/MT+.

A numeric literal can be
integer, a long integer, or a real number,
determines its type.

Pascal/MT+ Reference Manual 2.2 Constants

6.3E5
is 6.3 times ten to the power of five (10^) r or 630000.

2.2.2 String Literals
A

The following are examples of valid string literals:
***•

’Steve’'s Program1

2-3

If you need to define a string that is longer than you can fit
or if you need to put control characters in a string,

#6234343
#0
-#678988

of printable
, You write a

Everything

64.78E-13
-65.3
-33.677E+10

on one line, <
use the string functions described in Section 6.

In floating-point format, the E is interpreted as "times 10 to
the power of." For example,

string literal
characters,

A real-number literal can be either in fixed- or floating-point
format. In fixed-point format, at least one digit must proceed and
follow the decimal point. The form for a floating-point literal is
a number with or without a decimal point, followed by an E, followed
by an optionally signed integer. Neither format can contain any
blanks or commas. The following are examples of valid real-number
literals:

can contain any number <
as long as the string fits on one line,

string literal by enclosing it in single apostrophes,
between the apostrophes, including blanks, is part of the string.
Use two single apostrophes to represent one single apostrophe inside
a string. Inside strings upper- and lower-case letters are
distinct.

'*** INVALID EDIT COMMAND

A long-integer constant must start with a pound sign, #. For
negative numbers, put the minus sign before the #. The following
are examples of long-integer literals:

Pascal/MT+ Reference Manual 2.2 Constants

2.2.3 Named Constants

Notice that Pascal/MT+ allows the null string.

End of Section 2

2-4

a
You can use a named constant anywhere that you can

The following is an example of a constant definition

= ’VERSION 3.3';
size = 100;
limit = -size;
esc = $1B;
conv_fact = 3.27E-3;
null_str = ’’;

A constant definition defines an identifier as a synonym for
constant value,
use a literal,
section:

CONST
message

Integers, characters, and pointers

not discuss files; Section 7 forsee

Type Definition3.1

= ’A’

3.2 Variable Declaration

can

If you

to be compatible.

3-1

Section 3
Variables and Data Types

Th is
Pascal/MT+.
and structured.

item.
types.

TYPE
NUMBERS = ARRAY [1..10] OF INTEGER;
STRPT = "STRING;
LETTER = ’A' .. ’ Z ’ ;

: INTEGER;
: LIST;
: 0..200;
: 0..200;

This section does
information about files.

type definition to determine how to
The type definition section of a

as in the

The compiler uses a
allocate space for a variable,
block associates names with specific type definitions,
following example:

name with a particular type definition,
explicit type definition instead of just a type name.

the compiler is using strong type checking, you must
declare variables with the same type name if you want the variables

Strong type checking requires that compatible

section describes the data types supported by
There are two general categories of data types: simple

Simple data types, also called scalar types, have
only one element per data item,
are examples of simple types.

VAR
X, Y, Z
NAMES
NUM1
NUM2

A variable declaration establishes the type of a variable,
and determines its scope. You must declare all variables before you
can use them in a program. The following is an example of a
variable declaration section in a block.

Structured types contain more than one element within a data
Records, strings, and arrays are examples of structured

Notice in the example above how you group more than one
and that you can use an

Pascal/MT+ Reference Manual Variable Declaration3.2

NUM1,NUM2

in formation about how themore

That

That is,

Simple Types3.3

Predefined Data TypesTable 3-1.
S ize RangeData type

3-2

CHAR
BOOLEAN
INTEGER
LONGINT
BYTE
WORD
BCD REAL
FLOATING REAL

10 8-bit-bytes
8 8-bit-bytes

1 8-bit-byte
1 8-bit-byte
2 8-bit-bytes
4 8-bit-bytes
1 8-bit-byte
2 8-bit-bytes

see Programmer’s
Guide

can
an

for

can declare
modules.

force a
abso lu te
details.

at a
See

Pascal/MT+ provides four "pseudo-functions" or type
conversion operators to convert from one simple type to another.
These pseudo-functions do not generate any code, but simply direct
the compiler to treat the following 8- or 16-bit item as a different
type. The four pseudo-functions are

Pascal/MT+ has !
summarized in Table 3-1.
reals, are ordinal types,
possible value is countable with integers,
is an example of an ordinal type.

Pascal/MT+ supports absolute variables. That is, you
variable to be stored at a specific location using
variable declaration. See the Programmer's Guide

Pascal/MT+ also supports external variables. That is, you
variables in one module and reference them in other

See the programmer's guide for
compiler performs type checking.

You can define your own enumerated or subrange data types.
An enumerated type is an ordinal type whose complete set of values
you explicitly specify. A subrange type is a contiguous portion of
some other ordinal type.

0 to 255
true or false
-32768 to 32767
232 -l to 2 ”32
0 to 255
0 to 65535

several predefined simple data types,
, All of the simple data types, except the

An ordinal type is one in which each
The ASCII character set

variables have exactly the same type, not just the same internal
structure. In the above example, NUM1 and NUM2 are not compatible
under strong type checking. To make them compatible, you could use
the declaration,

: 0..200;

Pascal/MT+ Reference Manual 3.3 Simple Types

• ORD(x) The

3.3.1 BOOLEAN

3.3.2 CHAR

PROGRAM CHR_ORD;

- ORD(’O’);

3-3

® ODD(x) returns the BOOLEAN value TRUE if the expression is odd,
otherwise it returns the BOOLEAN value FALSE.

(* *)

• WORD(x) directs the compiler to treat the specified expression
as a native machine word.

• CHR(x) returns the character whose ASCII value is the specified
expression.

returns
ordinal value
representation.

the ordinal value of
of a character is

the expression.
its ASCII numeric

To express a CHAR value in a program, enclose the character in
single apostrophes if it is a printable character, or use the CHR
pseudo-function. Use two single apostrophes to represent the single
apostrophe character.

The BOOLEAN type has two values: TRUE and FALSE. The ordinal
value of FALSE is 0, and the ordinal value of TRUE is 1.

VAR
I, J : INTEGER;
C, D : CHAR;
BELL : CHAR;

BEGIN
I := 7;
C : = ' 8 ' ;
D := CHR(I + ORD('0'));
J := ORD(C)
BELL := CHR(7)

END.

Variables of type CHAR use one byte. The internal
representation of a character is the ASCII value of the character.
The range for CHAR variables is CHR(O) to CHR(255).

A BOOLEAN variable uses one byte, even in a packed structure
(see Section 3.4). Within the byte, only the least-significant bit
matters in determining the value. If the bit is set, the value of
the variable is TRUE, if not, the value is FALSE. However, logical
operations use the whole byte.

ASCII VALUE OF ’O’ IS 48

The following example program demonstrates the CHR and ORD
pseudo-functions.

Pascal/MT+ Reference Manual Simple Types3.3

3.3.3 INTEGER and LONGINT

#6234343

or

3.3.4 REAL
numbers inreal to support

scientific and engineering

A command-line option tells the compiler which format to use.

3-4

There are three functions for converting between the LONGINT
and other data types:

Pascal/MT+ handles
different applications:

You can define LONGINT subranges, but you cannot use them as indexes
for arrays.

See your programmer’s guide for specific information about the
internal representation of the INTEGER and LONGINT data types.

• BCD for business applications
• Binary floating point for

applications.

FUNCTION SHORT(L:
FUNCTION LONG (S:
FUNCTION XLONG(S:

Integers can range from -
An integer literal in the range 0 to 255 takes up

): LONGINT?
): LONGINT?

INTEGER variables are 2 bytes long.
32768 to +32767.
only one byte in the code.

LONGINT): INTEGER;
SHORT
SHORT

The internal representation and range of real numbers depends
on the processor. See your programmer’s guide for details about the
internal representation of real numbers.

BOOLEAN, INTEGER, or WORD,
with zeros,
the high-order word.

Note: the LONGINT type is not available in the 8-bit versions of
Pascal/MT+.

LONGINT variables are 4 bytes long. The range for long
integers is 2“32 to You can write a LONGINT literal only in
decimal? write it like a regular integer literal, but start the
number with the # character. For example,

two ways

A short data type is any 8- or 16-bit type, such as CHAR,
The function LONG pads the short value

The function XLONG sign-extends the short value into

Simple TypesPascal/MT+ Reference Manual 3.3

1i terals,examples of real-number as

3.3.5 BYTE and WORD

types.

3.3.6 User-defined Ordinal Types
enumerated types

3-5

212.3E-16
-22.454
2.0E+4

TYPE
COLOR = (RED, YELLOW, BLUE, GREEN, ORANGE);
SCORE = (LOST, TIED, WON);
SKILL = (BEGINNER, NOVICE, ADVANCED, EXPERT, WIZARD);

The following are
explained in Section 2.

The WORD data type uses a native machine word, except in the 8-
bit implementation where it uses two bytes. All arithmetic and
comparison operations on WORD expressions are unsigned, whereas
operations using INTEGER are signed.

You can define two kinds of ordinal types:
and subranges.

The BYTE data type uses a single byte. It is compatible in
expressions and assignment statements with the CHAR and INTEGER

BYTE accepts any bit pattern and is useful for handling
control characters, and performing character arithmetic.

An enumerated type is one in which you explicitly list each
value in the type. The names for the values must be valid
Pascal/MT+ identifiers. The following example shows some type
definitions for enumerated types.

Pascal/MT+ Reference Manual Simple Types3.3

The left constant must

Pointers3.3.7
variable whose

examples.

3-6

Note: if you use the @ compiler command-line option, the compiler
accepts the character @ as a substitute for the " character.

Both bounds in a subrange definition must be either literals or
named constants of the same ordinal type,
have an ordinal value less than that of the right constant.

TYPE
GOOD

"INTEGER;
"TREE_NODE;
"STRING;

You can assign the value NIL to any type pointer to represent a
null pointer.

If the compiler is using strong type checking, two pointers
must be of the same type to be compatible. When the compiler is
using weak type checking, all pointer types are compatible, allowing
you to treat the same object as more than one data type.

address of a
To define a

, followed by a type name,

TYPE
INTPT :
LINK :
NAMEPTR :

NEWREC := NEXT";
NAME" := ’ALPHA FIVE’;
EMPLOYEE".AGE := 32;

A pointer is a variable whose value is the
dynamically allocated variable of some specific type,
pointer type, use the pointer character, ", -- J
as in the following

= ADVANCED .. WIZARD;
PRIMARY = RED .. BLUE;
NUMERAL = ’0’ .. '9’;
INDEX = 1 .. 100;

To reference the object whose address a pointer contains,
follow the pointer’s name with the " character, as in the following
examples.

The ordinal value of an enumerated-type constant is the same as
its position in the type definition. The first constant has an
ordinal value of 0. In the example above, YELLOW has an ordinal
value of 1, and EXPERT has an ordinal value of 3.

A subrange is a set of values ranging between two specified
values of some previously defined ordinal type. The following are
examples of subrange definitions.

Pascal/MT+ Reference Manual 3.4 Structured Types

3.4 Structured Types

Section 7

3.4.1 Arrays

ARRAY [<index type> {,<index type>}] OF <element type>

functionally

PACKED ARRAY [1 . . n] OF CHAR;
the word PACKED causes the compiler to treat

3-7

You can use the reserved word PACKED in an array definition of
the form:

TYPE
LIST = ARRAY [FIRST .. LAST] OF STRING;
GRID1 = ARRAY [1 .. 20] OF ARRAY [1 .. 20] OF INTEGER;
GRID2 = ARRAY [1 .. 20, 1 .. 20] OF INTEGER;
TABLE = PACKED ARRAY [INDEX] OF PERPT;

Note that
identical.

When determining the internal layout of a structured type, the
compiler sometimes leaves gaps between elements, putting the
elements at word boundaries to speed up access. If you want to
sacrifice speed for space, you can use the reserved word PACKED. In
the context of a structure type definition, the word PACKED causes
the compiler to eliminate any wasted space.

In this context,
the array as a static string.

Structured types are a composite of other types. A simple-type
variable only has one value, whereas a structure-type variable can
be a collection of values of different types. Arrays, records,
sets, and files are the major kinds of structured types,
discusses filetypes.

An array is a collection of a fixed number of elements of the
same type. Arrays can have any type element, including other
structured types. An array type definition has the general format:

The <index type> can be any subrange type except LONGINT. You
can either use the name for a subrange type, or specify the bounds
explicitly. For the <element type>, you can either use a type name,
or define the type right in the array definition. The following are
examples of array type definitions.

When accessing an array, the array’s name by itself represents
the entire array; the name followed by an index references an
individual element in the array, as in the following example.

the definitions for GRID1 and GRID2 are

Pascal/MT+ Reference Manual 3.4 Structured Types

PROCEDURE WORTHLESS;

Strings3.4.2

The length byte of

3-8

string, put the
example:

bytes are undefined,
the

VAR
I
NAMESA
NAMESB

: INTEGER;
: LIST;
: LIST;

: STRING[16]
: STRING;

TYPE
LIST = ARRAY [1..20] OF STRING;

BEGIN
FOR I := FIRST TO LAST DO

NAMESA[I] := 1 ’;
NAMESB := NAMESA

END;

The predefined function LENGTH returns the dynamic length of a
string. Section 6 describes several other predefined string
routines.

To access individual characters in a string, you index the
string like an array.

VAR
TITLE
LINE
LONGLINE : STRING[255];

The predefined type STRING is like a packed array of characters
in which byte 0 contains the dynamic length of the string and bytes
1 through n contain the characters. When you declare a string, the
compiler allocates a predetermined number of bytes for the string.
The default length is 80, but you can specify from 1 to 255 bytes.
The dynamic length is the length of the string actually in use, not
the total available space. To specify the maximum length of a

length in square brackets, as in the following

CONST
FIRST = 1;
LAST = 20;

You can assign a string of any length to a string variable.
You can also assign a CHAR value to a string.
the string variable reflects the new dynamic length, and the extra

However, if the assigned string is longer than
maximum length of the string variable, errors can occur.

Assigning individual characters to a string does not change the
declared length.

Pascal/MT+ Reference Manual Structured Types3.4

PACKED ARRAY [l..n] OF CHAR

where n is an integer constant in the range 1 to 255.

Keep in mind the following points about static strings:

string literal to

3.4.3 Sets

A set type definition has the general form:

SET OF <base type>

Listing 3-1 is an example program that uses sets.

3-9

Pascal/MT+ stores string literals as dynamic strings, and the
string routines work only with dynamic strings.

• You can write static strings to TEXT files using the WRITE and
WRITELN procedures.

• You can compare static strings to string literals of exactly
the same length.

which have a preset,
define it as:

A set is a structured type that contains elements of the same
base type. Unlike arrays or records, in which each element has a
value, the elements of a set are only significant in their presence
or absence from the set. Each element in a set has a corresponding
bit. If an element is in a set, its bit is set, if the element is
not in the set, its bit is 0.

Pascal/MT+ supports static strings,
static length. To declare a static string,

Set operations are the standard mathematical operations like
union, intersection, and difference. Section 4 describes the set
operators and expressions.

• You can assign a string literal to a static string if the
string literal is exactly the same length as the static string.

In Pascal/MT+, the <base type> can be any ordinal type. The
ordinal value of the upper and lower bounds of the base type must be
in the range 0 to 255. A set-type variable always takes up 32
bytes.

Pascal/MT+ Reference Manual 3.4 Structured Types

PROGRAM USE_SETS;

I . I
f ft

» I 1 r

IN (LOWER + UPPER) THEN

• * »
END.

Listing 3-1. Program Using Sets

3.4.4 Records

3-10

a collection of distinct elements called fields,
Records are useful for describing

*)

FOR I := 1 TO LENGTH(LINE) DO
IF LINE[I]

BEGIN
NUMLETS := NUMLETS + 1;
IF LINE[I] IN LOWER THEN (

LINE[I] := CHR(ORD(LINE[I])

A record is
each of which can be of any type,
logically related data items that are of different types.

END
ELSE

IF LINE[I] IN DIGIT THEN
NUMDIGS := NUMDIGS +1

ELSE
IF LINE[I] IN DELIMIT THEN

LINE[I] :=

The type definition for a nonvariant record has the general
form:

RECORD
<field list> : <field type>
<field list> : <field type>

END;

VAR
LOWER, UPPER : SET OF CHAR;
DIGIT, DELIMIT : SET OF CHAR;
I, NUMLETS, NUMDIGS : INTEGER;
LINE : STRING;

* MAKE UPPERCASE
32)

Pascal/MT+ records can either be variant, or nonvariant. Any
two nonvariant records of a particular type always have the same
internal structure whereas variant records can vary in internal
structure.

BEGIN
LOWER := [' a' . . ' z '] ;
UPPER := [’A'..'Z,J;
DIGIT := ['O'..'9'];
DELIMIT := [' ', '.',
NUMLETS := 0;
NUMDIGS := 0;
READLN(LINE);

Pascal/MT+ Reference Manual 3.4 Structured Types

The following is an example of a nonvariant record definition:

<record name>.<field name>
For

and However,

The type definition for a variant record has the general form:

3-11

Notice that the field definitions have the same format as variable
declarations.

where the dot operator connects the record name and field name,
example,

(<field list>)
(<field list>)

NEWPART.PRICE := 29.95;
WRITELN(PARTLIST[I].NAME);

TYPE
PART = RECORD

NAME, SOURCE : STRING[10];
ID_NUMBER : INTEGER;
PRICE : REAL

END;

identical in form to the list of
If a

The <field list> consists of one or more identifiers separated by
Within any given record, each field name must be a unique

the field names can be used for
Therefore, two different record types can

VAR
PARTLIST : ARRAY [NUMPARTS] OF PART;
NEWPART : PART;

The variant part of the record’s definition acts like a CASE
statement (see Section 5.2) because each option in the definition is
labeled with one or more values, and the only option whose label
matches the value of a selector is used.

A variant record is a record whose internal structure varies
depending on how you use the record. That is, you can have two or
more records of the same type that have different types of fields.

RECORD
{<field name list> : <field type> ;}
CASE <case selector> OF

<case label list> :
<case label list> :

commas.
identifer. Outside the record,
different identifers.
have identical field names.

The variant part of a record must follow the nonvariant part,
a record can have only one variant part. However, a field

within the variant can also be a variant record, so it is possible
to nest variants.

You can reference each element in record by its field name
using the following form:

where the <field name list> is
fields in a record definition and can have a variant part.

Pascal/MT+ Reference Manual 3.4 Structured Types

If the <case selector> is a <tag field>, it has the form:

The following example shows a variant record definition:

START OF VARIANT PART

)
)

END;

3-12

RECORD
CASE INTEGER OF

1 :
2 :

(* *)

RECORD
NAME : RECORD

FIRST : STRING[15];
: CHAR;
: STRING[15]

It is
as in the

This kind of variant is called a free variant.

: ();
: (SALARY : REAL;

CASE EMP_BY : EMP_TYPE OF
SELF : (YEARS : INTEGER);
GOV, BUSI : (TITLE : STRING[12];

NUMYRS : INTEGER

field has a variant part, it must be the last field in the list. To
indicate that a variant has no fields, use an empty parentheses
pair.

Both the main variant and the nested variant in the preceding
example have a field that controls which variant applies,
also possible to use a type name to control the variant,
following example.

(A, B, C, D : CHAR);
(X, Y : INTEGER);

3 : (Z : LONGINT)
END;

MID
LAST

END;
AGE, BIRTH : INTEGER;
SEX : CHAR;
CASE EMPLOYED : BOOLEAN OF

FALSE
TRUE

The <case selector> is either a <tag field> or simply a type
name. In either case, the type must be some previously defined
simple (scalar) type. The case labels are constants of the type of
the selector. If there are more than one, separate them with
commas.

<field name> : <type name>
and is one of the regular fields in the record. The field list, or
variant with the correct case label, is selected depending on the
value of the <tag field>.

Pascal/MT+ Reference Manual 3.4 Structured Types

End of Section 3

3-13

fields
().

Every field name in a record must be distinct, even if the
fields are in different variants. Surround each variant with
parentheses; if there are no fields in the variant for a given
label, use empty parentheses,

4 3 + 1 = 2 whereas 4 (3 + 1) = 0

Summary of Pascal/MT+ OperatorsTable 4-1.
OperationOperator Operands Result Precedence

Arithmetic
unary identity 3rd highest+

addition r 3rd highest+

3rd highest

subtraction, 3rd highest

* multiplication integer 2nd highest

div integer integer 2nd highest

/
2nd highestreal

mod modulus integer integer 2nd highest

4-1

Section 4
Operators and Expressions

same as
operand

integer
division
real
division

unary sign
inversion

integer or
real

large assortment of operators
Table

for
4-1

same as
operand

same as
operand

same as
operand

Pascal/MT+ provides a
building expressions in several general categories,
briefly describes each of the operators.

integer or
real

integer,real
or pointer

integer or
real

integer or
real

integer or
real

Pascal/MT+ evaluates every expression to result in a value of
some specific type. The type of the result depends on the operator
and the kind of operands in the expression.

The simplest expression is a single operand, which can be a
constant, variable, function call, or sub-expression. In an
expression with more than one operator, the precedence of the
operators determines how Pascal/MT+ evaluates the expression. If
two or more operators have the same precedence, they are evaluated
from left to right unless you use parentheses to override the normal
order of evaluation. For example,

Pascal/MT+ Reference Manual 4 Operators and Precedence

Table 4-1. (continued)
Operator Operation Operand Result Precedence

Relational
equality

boolean lowest
inequality

boolean lowest

boolean lowest
less or equal< =

boolean lowest
boolean lowestset

> =
boolean lowest

(see 4.4) boolean lowest
set membershipIN (see 4.4) boolean lowest

Boolean
negationNOT boolean boolean highest
disjunctionOR boolean boolean 3rd highest
conj unctionAND boolean boolean 2nd highest

Logical

highest
logical OR

3rd highest
logical AND&

2nd highest
Set

union 3rd highestset set
set difference 3rd highestset set

* intersection 3rd highestset set

4-2

one’s comple­
ment of operand

or
set inclusion
greater or
equal

or
set inclusion

less than
greater than

scalar,str ing
set, pointer
record

~ ?
or \

same as
operand
same as
operand

same as
operand

scalar or
str ing

integers and
pointers

integers and
pointers

integers and
pointers

scalar or
str ing

scalar,string
set, pointer
record
scalar or
str ing

! or

Arithmetic ExpressionsPascal/MT+ Reference Manual 4.1

4.1 Arithmetic Expressions

For

DIV and MOD work with regular and long integers.

4.2 Boolean Expressions

• Boolean operators work only with Boolean operands.

4-3

Be
integers.

• Relational operators produce Boolean results, but take operands
of many different types.

ope r a tors
division.

(*
(* *)

The relational operators
with any type except files. mu
only work with simple types and strings.

> for equality and inequality work
The operators that test for ordering
J Some relational operators

also have special meanings in the context of set expressions, which
are described in Section 4.4.

6 / 3 = 2.0
6 DIV 3=2
44 DIV 7 = 6
44 MOD 7=2
-3 MOD 2 = -1

careful with multiplying large numbers, particularly
The results of overflows are unpredictable.

subtraction,
operator for

REAL RESULT *)
INTEGER RESULT

for addition,
There is no

All the relational operators have the same meaning that they
do in standard algebraic equations. When testing structures for
equality, both structures must have identical contents to be equal.

Pascal/MT+ has
multiplication, and
exponentiation.

Boolean expressions have either the Boolean value TRUE or
FALSE. Two kinds of operators form Boolean expressions:

The arithmetic operators work with integers and reals, and
you can mix integers with reals. If both operands are integers, the
result is an integer, except with division. Otherwise, the result
is a real. A long integer mixed with a regular integer produces a
long integer. In an expression, the compiler treats an integer
subrange type like an integer.

The real-number division operator, /, always produces a real-
number result. For integer division, use the DIV and MOD operators.
DIV gives the integer quotient, and MOD gives the remainder,
example,

Pascal/MT+ Reference Manual 4.2 Boolean Expressions

Leading and trailing blanks are significant. For example,
'THIS ’THIS’ 'XXZZY'and XXZZY*

the

’AAAB1 'AAAAAAAAA'

the ordinalon

FALSE < TRUE
’C1

X < 3 OR X > 15
as

(3 OR X) > 15X <
invalid expression. to writeThe theproper way

(X < 3) OR (X > 15)

Table 4-2. Boolean Operations
A B A AND B A OR B NOT A

4-4

in
Boolean operations.

The ordering for
values of the items.

T
T
F
F

T
F
T
F

T
F
F
F

T
T
T
F

F
F
T
T

The
For

enumerated types is based
For example,

The Boolean operators AND, OR, and NOT have the same effect as
standard Boolean algebra. Table 4-2 shows the results from

T and F stand for TRUE and FALSE.

which is an
expression is

Remember that relational operators have the lowest precedence.
You often have to use parentheses around relational expressions to
make them evaluate the way you want. Failure to do so is a common
cause of compilation errors. For example, the compiler interprets
the expression

When testing strings for ordering, the evaluator checks
character by character, from left to right until it either reaches
the end of a string or finds two characters that do not match,
ordering is based on the ASCII values of the characters,
example,

’o’ >

Pascal/MT+ Reference Manual Logical Expressions4.3

Logical Expressions4.3

Logical OperatorsTable 4-3.

UseOperator

logical AND&

! (or |) logical OR

one's complement NOT

following example uses the logical operators to invert

Set Expressions4.4

The set constructor,
[cmember list>]

by commas.

4-5

The
four bits in a variable.

MIDBITS := ~ (FLAGS & $00F0);
:= FLAGS & $FF0F;
:= FLAGS ! MIDBITS;

FLAGS
FLAGS

(*
(*
(*

*)
*)
*)

*)

ISOLATE AND INVERT
MASK OUT BITS
PUT IN NEW FIELD

Logical expressions perform bitwise logical operations on
simple data items. Table 4-3 shows the three logical operators.

[1, 3, 5, 7..20, 22, 34]
[1..10, x..y, i+j]
[89, 3, 54, 4..13]
[] (* THIS IS THE EMPTY SET

There are two classes of operators for sets. One class of
operator forms relational expressions that produce Boolean results.
The other class of operator forms expressions that build sets.

(or ? or \)

specifies the values of a set. The <member list> can be any
combination of individual elements and closed intervals, separated

The following examples demonstrate the set constructor:

To form valid expressions, the sets must be of compatible
types. Sets are of compatible types if either they are the same
type or if the base types for the sets are assignment compatible, as
described in Section 5.

Pascal/MT+ Reference Manual 4.4 Set Expressions

There are three operators that build sets from other sets:

• The

The following examples demonstrate these set operators:

[RED, YELLOW, BLUE] * [RED, GREEN] = [RED]
[1..20] + [3, 5, 11..34] = [1..34]

There are five relational operators that operate on sets:

set.

Both sets must

• The <> operator tests for inequality.

Listing 4-1 demonstrates several of the set operators.

4-6

LETTERS
CLOSED
OPENED

• The = operator tests for equality of two sets,
have exactly the same members.

• The IN operator tests for membership of an individual item in a
The item on the left must be of a compatible type with

the base type of the set.

= [’A’..'Z'J;
= [’A1, ’B1, ’D1, ’O’.-'R'];
= LETTERS - CLOSED;

• The <= operator tests for inclusion of the set on the left in
the set on the right.

• The >= operator tests for inclusion of the set on the right in
the set on the left.

The members do not have to be in any order, and they do not
have to be constants. You can specify individual members and
intervals with variables or expressions. All of the members listed
must be in the declared range of values for the set, and the left­
hand bound of an interval must not be greater than the right-hand
bound.

• The + operator produces the union of two sets.
* operator produces the intersection of two sets.

• The - operator produces a set equal to the set on the left,
minus all the elements that are in the set on the right.

Pascal/MT+ Reference Manual 4.4 Set Expressions

PROCEDURE CHECKLINE (ST : STRING);

'0'..'9' , ’

END;

Listing 4-1. Set Expressions

End of Section 4

4-7

BEGIN
ALLOWED :=
FOUND :=

END
ELSE

IF FOUND >= ALLOWED THEN
BEGIN
WRITELN (’ALL CHARACTERS USED, BUT SOME EXTRA:');
FOR CH := CHR(32) TO CHR(126) DO

IF (CH IN FOUND) AND NOT (CH IN ALLOWED) THEN
WRITELN (CH)

['A'..'Z',
[] ;

FOR I := 1 TO LENGTH(ST) DO
FOUND := FOUND + [ST[I]];

IF FOUND = ALLOWED THEN
WRITELN (’ALL USED, NO EXTRAS')

ELSE
IF FOUND <= ALLOWED THEN

BEGIN
WRITELN ('NO EXTRA CHARACTERS IN STRING, BUT');
WRITELN ('THE FOLLOWING CHARACTERS ARE MISSING:');
FOR CH := CHR(32) TO CHR(126) DO

IF (CH IN ALLOWED) AND NOT (CH IN FOUND) THEN
WRITELN (CH)

VAR
CH : CHAR;
I : INTEGER;
ALLOWED, FOUND : SET OF CHAR;

END
ELSE

WRITELN ('NOT EVEN IN THE BALLPARK!')

<sta temen t>

The Assignment Statement5.1

The

<variable> := <expression>

The left and

as the assigned value

e You cannot assign files or structures containing files.

5-1

Section 5
Statements

An assignment statement assigns a value to a variable,
general form is

e You can assign different set types if all members of the right
set can be members of the left set.

• You can assign expressions of type CHAR to variables of type
STRING or BYTE.

the
The
it

The expression assigned can be of any type,
right sides of the assignment statement must be of the same type,
with the following exceptions:

• If the variable is REAL the right can be an INTEGER or INTEGER
subrange expression.

This section describes the syntax for each of the Pascal/MT+
statements in alphabetical order. Anywhere in a syntax description
that

appears, you can use one of the statements described in this
section, or you can use a procedure call or compound statement. A
compound statement is zero or more statements enclosed by a BEGIN
and an END.

The assignment
right and gives
statement does

sta temen t
that value to

not change the
evaluates the whole expression,
both sides of the assignment operator,
value in the expression.

• The variable’s type can be a subrange of the expression as long
is in the range of the variable.

evaluates the expression on
the variable on the left,
value of the variable until
If you use the same variable on

the statement uses the old

Pascal/MT+ Reference Manual Assignment Statement5.1

Examples:

COUNT := COUNT + 1;
[’ a ’ . . ’ z’ , 'A'..'Z'] ;LETTER :=

LIST[I] .VALUE := 163000.0;

5.2 The CASE Statement
The general

<statement> ; }

or

<statement> ; }

5-2

The CASE statement is a multiple-path branch,
form is

<expression> and executes
If no

If there is
the program flow continues at

CASE <expression> OF
{ <constant> {, <constant>} :

END

The CASE labels are different from declared labels. The
scope of a CASE label is confined to the body of the CASE statement.
Note also that you cannot reference CASE labels in a GOTO statement.

CASE <expression> OF
{ <constant> {, <constant>} :
ELSE

<sta temen t>
END

The constants labeling the selectable statements must be the
same type as the expression, which can be any ordinal type. The
same value cannot label more than one path.

The CASE statement evaluates the
the <statement> that is labeled with the matching value,
label matches, the <statement> after the ELSE executes,
no match and there is no ELSE part,
the next statement after the CASE statement.

Pascal/MT+ Reference Manual 5.2 The CASE Statement

Examples:

SEMICOLON OPTIONAL

END

5.3 The Empty Statement

1 ’ DO ; MISPLACED SEMICOLON

it

5.4 The FOR Statement
specified number of

DO

or

5-3

The
times.

FOR statement repeats
The general form is

: WRITELN (’A’)?
: WRITELN (’Q1);

WHILE LIST[I]
BEGIN
WRITELN (LIST[I]);
I := I + 1

END;

(*

)(

*)

FOR <control variable> := <expression> DOWNTO <expression> DO
<statement>

FOR ccontrol variable> := <expression> TO <expression>
<statement>

CASE COMPARE(N[I], N[I+1]) OF
LESS : ; (* DO NOTHING *)
SAME : DUPLICATES := DUPLICATES + 1;
GREATER :

BEGIN
SWITCHED := SWITCHED + 1?
INTERCHANGE(N[I], N[I+1])

END
END

A semicolon by itself is a valid Pascal/MT+ statement called
the empty statement. However, if you misplace a semicolon, you can
end up with a program that acts differently than you expect. For
example, in the following program fragment, the semicolon after the
reserved word DO causes an infinite loop. Because the semicolon is
misplaced, the only statement in the WHILE loop is the empty
statement, and the control variable never changes.

CASE CH OF
’a’, ’A’
’q', ’Q’
ELSE
WRITELN (’NOT A OR Q’)

an action a

The correct form is to omit the semicolon after DO. In general,
is incorrect to put a semicolon before a BEGIN statement.

Pascal/MT+ Reference Manual 5.4 The FOR Statement

valuesa
the value of the

Examples:

' , CH)

FOR I

5-4

:= LENGTH(LINE) DOWNTO 1 DO
WRITE(LINE[I])

cannot be
structure.

FOR CH := ’ ' TO 'z1 DO
WRITELN(ORD(CH):3, 1

succession of values to the
the statement body once for each
TO statements,

In FOR DOWNTO statements, the value of the <control variable>
decrements by one after each repetition. Note that the value of the
<control variable> is undefined after the last repetition.

The FOR statement evaluates both expressions and stores the
values before it executes the statement body. It evaluates the
first <expression> before it evaluates the second <expression>. If
the first <expression> contains a function reference that changes
the value of a variable in the second <expression> , the new value is
the one that applies. Evaluating the second <expression> has no
effect on the first <expression>.

FOR X := LEFT TO RIGHT DO
FOR Y := BOTTOM TO TOP DO
IF GRID[X, Y] IN THEN

BEGIN
STORELOC(X, Y) ;
CHECKPATTERN(X, Y)

END

The <control variable> must be a simple (scalar) variable; it
a pointer-referenced variable or an element of a
The scope of the <control variable> must be local to the

block containing the FOR statement, and its value must not change
inside the statement body.

The expressions that control the FOR statement must be of the
same ordinal type as the <control variable>. In the FOR TO
statement, if the first <expression> is greater than the second
<expression>, the statement body does not execute. The same thing
happens in a FOR DOWNTO statement if the first <expression> is less
than the second.

The FOR statement assigns
<control variable> and executes
value of the variable. In FOR
<control variable> increments by one after each repetition.

Pascal/MT+ Reference Manual 5.5 The GOTO Statement

5.5 The GOTO Statement

labeledprogram control to a

GOTO <label>

Examples:

PROGRAM USE_GOTO;

’QUIT';

END;

INFINITE LOOP

5-5

CONST
MAGIC WORD =

VAR
INP : STRING;

PROCEDURE BAILOUT (INST : STRING);
BEGIN

IF INST <> MAGIC_WORD THEN
WRITELN('NO, THAT''S NOT RIGHT')

ELSE
GOTO 9999

LABEL
9999;

BEGIN
WHILE TRUE DO

BEGIN
WRITELN('WHAT IS THE MAGIC WORD?');
READLN (INP) ;
BAILOUT (INP)

END;
9999 :

END.

(* *)

The label can be any positive integer literal of one to four
digits. You must declare the label in the label declaration section
of the block that includes both the GOTO statement and the labeled
sta temen t.

The labeled statement must be in the same block as the GOTO
statement or at a higher nesting level. The Pascal/MT+ run-time
system can transfer control out of routines and structures,
including deeply nested recursive routines, to any higher level that
meets the scope requirements for the label. However, transferring
control into procedures, functions, or structured statements
produces unpredictable results.

The GOTO statement transfers
statement. The general form is

Pascal/MT+ Reference Manual 5.6 The IF Statement

5.6 The IF Statement

or

In a statement of the form,

the compiler associates the ELSE part with the closest IF.

5-6

IF <Boolean expression> THEN
<sta temen t>

IF <exp> THEN
IF <exp> THEN

< state men t>
ELSE

<sta temen t>

IF <Boolean expression> THEN
< statemen t>

ELSE
<sta temen t>

The IF statement controls program flow based on the value of
a Boolean expression. The general form is

If the <Boolean expression> is TRUE, the first statement
executes. If the <Boolean expression> is FALSE and there is an ELSE
part, the second statement executes. If the <Boolean expression> is
FALSE and there is no ELSE part, the program flow continues at the
next statement.

Pascal/MT+ Reference Manual 5.6 The IF Statement

Examples:

• F '

’A'

5.7 The REPEAT Statement

BEGIN-END pair is required around thenota

Examples:

5-7

REPEAT
READ LN (INP) ;
WRITELN (F , INP);
LINECNT := LINECNT + 1

UNTIL INP = ' . '

IF HELP_REQUEST THEN
BEGIN

HELP_DISP;
GET_LEVEL(LEV);
MESG_DISP(LEV)

END

Notice that
statement body.

REPEAT
<statement> {;
<statement> }

UNTIL <Boolean expression>

group of statements
The general form is

The REPEAT statement executes a <
repeatedly until the exit condition is true.

IF SCORE <60 THEN
GRADE :=

ELSE
IF SCORE <70 THEN

GRADE := ’D'
ELSE

IF SCORE < 80 THEN
GRADE := 'C’

ELSE
IF SCORE < 90 THEN

GRADE := *B’
ELSE

GRADE :=

The REPEAT statement executes the statement body before it
evaluates the <Boolean expression> in the UNTIL part. If the
<Boolean expression> is TRUE, the REPEAT statement is finished.
Note that if the controlling condition does not change in the
statement body, the statement loops indefinitely.

Pascal/MT+ Reference Manual 5.8 The WHILE Statement

5.8 The WHILE Statement

Examples:

5.9 The WITH Statement

The general form is

is equivalent to the three assignment statements,

5-8

WITH EMPLOYEE DO
BEGIN

NAME
AGE
TITLE

END

EMPLOYEE.NAME
EMPLOYEE.AGE
EMPLOYEE.TITLE

WHILE NOT EOF(FN) DO
BEGIN

READLN(FN, INP);
SCAN(INP)

END

= ’John Doe’;
= 47;
= ’Programmer IV’;

= ’John Doe’;
= 47;
= 'Programmer IV’

The WITH statement creates a context for referencing record
fields by their individual names.

WITH <record variable> {, <record variable>} DO
<statement>

WHILE <Boolean expression> DO
<statement>

WHILE (I < LENGTH(ST)) AND NOT FOUND DO
BEGIN

FOUND := ST [I] =
I := I + 1

END

Inside the statement body, you can reference any field of a
specified <record variable> by the field's name. For example, the
WITH statement,

The WHILE statement evaluates the <Boolean expression> before
executes the statement body. If the <Boolean expression> is

intitially FALSE, the statement body does not execute. As long as
the <Boolean expression> is TRUE, the statement body executes.

The WHILE statement repeatedly executes its statement body, as
long as the controlling condition is true. The general form is

Pascal/MT+ Reference Manual 5.9 The WITH Statement

is equivalent to:

Example:
PROGRAM SHOW_WITH;

: CHAR
MEMBER

End of Section 5

5-9

FULLNAME;
STRING[8];
INTEGER

WITH R1 DO
WITH R2 DO

WITH R3 DO
<statement>

WITH Rl, R2, R3 DO
<statement>

If you specify more than one record, and if two records have a
field with the same name, the compiler associates the field name
with the innermost <record variable>.

BEGIN
WITH NEWMEM, NAME DO

BEGIN
FIRST :=
MIDDLE:=
LAST :=

VAR
NEWMEM : MEMBER;

TYPE
FULLNAME = RECORD

FIRST, LAST : STRING[15];
MIDDLE

END;
= RECORD

NAME :
JOINED :
ID :

END;

'JOHN';
'Q' ;
'PUBLIC1;

JOINED := '02/27/53';
ID := 0

END
END.

A WITH statement having more than one <record variable> is
equivalent to a series of nested WITH statements with one <record
variable> specified at each level. A <record variable> can be a
field in a previously specified record. For example, the single
WITH statement:

6-1

Section 6
Procedures and Functions

In the rest of this section, the word procedure refers to both
functions and procedures, unless the context makes it exclude
functions.

Pascal/MT+ functions and procedures can be recursive. They can
contain calls to themselves. They can also be mutually recursive.
Two procedures or functions can reference each other.

Pascal/MT+ also supports a special type of procedure called an
interrupt procedure. See your programmer's guide for details.

In Pascal/MT+, you call (invoke) a procedure by simply using
its name. That is, a procedure call is the procedure name, followed
by the required parameters. A procedure call is like any valid
statement. Anywhere that you can use a statement, you can use a
procedure call.

You can put a function reference anywhere that you can put an
expression. The function reference is part of the process of
evaluating the expression. A function reference, like a procedure
call, is just the function name, followed by the required
parameters.

Pascal/MT+ is a block-structured, procedure-oriented language.
It contains all the necessary control structures you need to write
understandable, and maintainable code. The underlying concept of
any procedural language is designing the program as a series of
small, logically distinct units that are easy to code, debug, and
maintain.

Procedures and functions are essential building blocks in a
structured programming language. A procedure is like a
parameterized statement, and a function is like a parameterized
expression.

Procedure DefinitionsPascal/MT+ Reference Manual 6.1

Procedure Definitions6.1

PROCEDURE INTERCHANGE(VAR I, J : INTEGER);

The following is

FUNCTION MIN (L, R : INTEGER) : INTEGER;

END?

<procedure heading> ; FORWARD ;

6-2

If you have to reference a procedure before its definition, use
a FORWARD declaration, that has the following form:

• You must specify the data type for the function.
• At least once in the statement body, you must have a special

assignment statement that returns the function value.

Listing 6-1 is an example of a
The two functions are mutually

The definition of the procedure, later in the program, does not have
the parameter list in the heading,
program with a FORWARD declaration,
recursive.

The data type for a function must be a simple or string type.
Put the type name after a colon at the end of the function heading.

VAR
TEMP : INTEGER;

BEGIN
IF L < R THEN

MIN := L
ELSE

MIN := R

BEGIN
TEMP := I;
I : = J;
J := TEMP

END;

A procedure definition, like a program, has a heading followed
by a declaration section and a statement body. The following is an
example of a procedure definition.

A function definition is like a procedure definition, with the
following additions:

To specify the value that a function returns, use an assignment
statement with the function name on the left side. You can put more
than one of the special assignment statements in the function body,
in which case the last value assigned before the function returns
control is the value the function returns. The following is an
example of a function definition.

Pascal/MT+ Reference Manual Procedure Definitions6.1

PROGRAM RECURSE;

: INTEGER;
FUNCTION G (X : INTEGER) : INTEGER; FORWARD;

INTEGER;

END;
NO PARAMETER LIST OR FUNCTION TYPE *)

’) = F(I))

Listing 6-1. FORWARD Declarations

6.2 Parameters

6-3

The
parameters.
parameters,
value and variable parameters,
the way that the parameters are passed at run-time.

VAR
I

(*

)BEGIN (MAIN PROGRAM
FOR I := 1 TO 10 DO
WRITELN (’FC*, 1:2,

END.

parameters in the procedure heading are called formal
The parameters in the procedure call are called actual
There are two types of formal parameters in Pascal/MT+:

The difference between the two is

Changing a variable parameter inside a procedure body changes
the actual parameter. During a procedure call, the address of the
formal parameter, instead of its value, passes into the procedure.
The actual parameter in the procedure call must be a variable whose
type is compatible with the formal parameter. A variable parameter
cannot be a constant or an element of a packed structure. A file
parameter must be a variable parameter.

A value parameter is like a local variable in the procedure.
During a procedure call, the value of the actual parameter passes
into the procedure. If you change the value of the formal parameter
inside the procedure body, it does not effect the value of the
actual parameter. In the procedure call, the actual parameter can
be any expression whose type is compatible with the formal
parameter.

FUNCTION F (X : INTEGER) :
BEGIN

IF X < 2 THEN
F : = 1

ELSE
F := F(X-l) + G(X-2)

FUNCTION G;
BEGIN

IF X < 2 THEN
G := 1

ELSE
G := (X*X) + G(F(X-1) MOD X)

END;

Pascal/MT+ Reference Manual 6.2 Parameters

PROGRAM VALVAR?

MUDDLE

1, MVAL, 1 1, MVAR)

MAIN PROGRAM

', XVAR);
1, XVAL, ' 1, XVAR)

Listing 6-2a. Parameter Passing Program

Listing 6-2b. Output from VALVAR Program

PROCEDURE X (VAR I, J, K : INTEGER? M, N : INTEGER);
and M and N

6-4

VAR
XVAL, XVAR : INTEGER?

11 33
1 33

*)

*)

IN MAIN BEFORE CALL 1 2
IN MUDDLE AT END
IN MAIN AFTER CALL

BEGIN (*
MVAL := 11;
MVAR := 33?
WRITELN(’IN MUDDLE AT END

END;
BEGIN (*

XVAL := 1?
XVAR := 2;
WRITELN(’IN MAIN BEFORE CALL XVAL, ’
MUDDLE(XVAL, XVAR);
WRITELN(’IN MAIN AFTER CALL

END.

The following example demonstrates the difference between
variable and value parameters. Listing 6-2a shows the program and
Listing 6-2b shows the output from the program.

also pass procedures and functions.
procedural parameter has the same form as a procedure heading.

in the procedural parameter declaration have

To specify that a parameter is a variable parameter, place the
word VAR in the parameter declaration. The VAR applies to all of
the parameters grouped together with one type name. In the
following procedure heading,

I, J, and K are all variable parameters,
parameters.

PROCEDURE MUDDLE (MVAL : INTEGER; VAR MVAR : INTEGER);

are value

Besides passing values and variables into procedures, you can
procedures and functions. The declaration for a

The
parameter names in the procedural parameter declaration have no
scope outside of the declaration. The formal name for the procedure
is the name that the main procedure uses in the statement body.

Pascal/MT+ Reference Manual 6.2 Parameters

Listing 6-3 shows a program that uses procedures as parameters.

PROGRAM PASSPROC;

(

Listing 6-3. Procedural Parameters

6-5

A procedure or function passed as a parameter can only have
value parameters and must be declared in the outermost block.

PROCEDURE INIT (PT : PTR);
BEGIN
WRITELN(’ENTER A NAME’);
READLN(PT".NAME);
WRITELN(’PHONE NUMBER?’);
READLN(PT".NUMBER)

END;
PROCEDURE DISPLAY (P : PTR);
BEGIN
WRITELN(P".NAME, ’

END;

INIT);
DISPLAY)

BEGIN (*
FOR J := 1 TO 10
NEW(LIST[J]);
WALKLIST(LIST,
WALKLIST(LIST,

END.

*)

*)MAIN PROGRAM
DO

: ’ , P".NUMBER)

PROCEDURE WALKLIST (VAR LS : LST; PROCEDURE WORK(A:PTR));
VAR

I : INTEGER;
BEGIN

FOR I := 1 TO 10 DO
WORK(LS[I]) (* FORMAL PROCEDURAL PARAMETER

END;

TYPE
REC = RECORD

NAME, PHONE : STRING
END;

PTR = "REC;
LST = ARRAY [1..10] OF PTR;

VAR
LIST : LST;
J : INTEGER;

Pascal/MT+ Reference Manual 6.3 Conformant Arrays

6.3 Conformant Arrays

[<low>..<high>:<type>] OF <type>VAR <name> : ARRAY

6-6

you
is

for a
parameter,
Instead,
procedure
following form:

Inside the procedure body,
control access to the

The declaration for a conformant array is like the declaration
static array parameter, except that it must be

and you do not specify the upper- and
supply variables that hold
called. A

You can define an array parameter for a procedure without
specifying the upper- or lower-bounds of the array. This lets you
pass different sized arrays to the same procedure. The arrays must
have the same number of dimensions, the same element type, and
compatible index types.

you can use the boundary variables to
array. Listing 6-4 is an example of a

procedure that has a conformant array.

except that it must be a VAR
upper- and lower-bounds,

the values when the
conformant array declaration has the

Pascal/MT+ Reference Manual 6.3 Conformant Arrays

PROGRAM DEMOCOM;

: INTEGER] OF INTEGER);
THE DECLARATION ABOVE DEFINES THREE VARIABLES:

HI

: INTEGER;
DISPLAYIT

'] = ', ARI[I])

DISPLAYIT(Al);

WRITELN(’DISPLAYING UNINITIALIZED ARRAY A2’);
DISPLAYIT(A2)

END.

Listing 6-4. Conformant Array Example

6-7

VAR
Al : ARRAY [1..10] OF INTEGER;
A2 : ARRAY [2..20] OF INTEGER;

ARI : THE PASSED ARRAY
LOW : LOWER BOUND OF ARI,

: UPPER BOUND OF ARI,

PASS A2 EXPLICITLY, PASS
2 AND 20 IMPLICITLY

PASSED AT RUN TIME
PASSED AT RUN TIME

VAR
I

*)

(*****

)(

*)

PROCEDURE DISPLAYIT
(VAR ARI : ARRAY [LOW..HI

(*

BEGIN (* MAIN PROGRAM *)
WRITELN(’DISPLAYING UNINITIALIZED ARRAY Al’);

PASS Al EXPLICITLY, PASS
1 AND 10 IMPLICITLY

BEGIN (* DISPLAYIT *)
FOR I := LOW TO HI DO
WRITELN(’INPUT ARRAY[’, I,

END;

Functions and ProceduresPascal/MT+ Reference Manual 6.4

Predefined Functions and Procedures6.4

Note:

Predefined Functions and ProceduresTable 6-1.

Arithmetic Functions
Parameter List ReturnsFunction

Bit and byte manipulation routines
Parameter ListFunction Returns

)

Byte and Character manipulation routines
Parameter ListFunction

6-8

in the parameter lists for the routines, NUM is an integer or
real expression.

FUNCTION ABS
FUNCTION ARCTAN
FUNCTION COS
FUNCTION EXP
FUNCTION LN
FUNCTION SIN
FUNCTION SQR
FUNCTION SQRT

PROCEDURE FILLCHAR
PROCEDURE MOVE
PROCEDURE MOVELEFT
PROCEDURE MOVERIGHT

(NUM)
(NUM)
(NUM)
(NUM)
(NUM)
(NUM)
(NUM)
(NUM)

(DESTINATION, LENGTH, CHARACTER)
(SOURCE, DESTINATION, NUM_BYTES)
(SOURCE, DESTINATION, NUM_BYTES)
(SOURCE, DESTINATION, NUM_BYTES)

REAL
REAL
REAL
REAL
REAL
REAL
REAL
REAL

INTEGER
INTEGER
INTEGER
BOOLEAN

INTEGER
INTEGER

PROCEDURE CLRBIT
FUNCTION
FUNCTION

SHL
SHR
SWAP
TSTBIT

PROCEDURE UNPACK

HI
LO

PROCEDURE PACK
PROCEDURE SETBIT
FUNCTION
FUNCTION
FUNCTION
FUNCTION

(BASIC_VAR, BIT_NUM)
(BASIC_VAR)
(BASIC_VAR)
(ARRAY, INTEGER, ARRAY)
(BASIC-VAR, BIT_NUM)
(BASIC_VAR, INTEGER)
(BASIC-VAR, INTEGER)
(BASIC_VAR)
(BASIC_VAR, BIT-NUM)
(ARRAY, INTEGER, ARRAY

This section describes the predefined functions and procedures
of Pascal/MT+. Table 6-1 summarizes these predefined routines.

Pascal/MT+ Reference Manual 6.4 Functions and Procedures

Table 6-1. (continued)

Dynamic allocation routines
Function Parameter List

Input/Output routines
Func tion Parameter List Returns

...)

...)

BOOLEAN
...)

does not apply to the 8080 implementation*

6-9

PROCEDURE DISPOSE
PROCEDURE NEW

EOF
EOLN
GNB
IORESULT

(POINTER, TAG, TAG,
(POINTER, TAG, TAG,

CHAR
INTEGER

BOOLEAN
BOOLEAN

...)...)

(FILE, NAME)
(FILE, BUF, IOR, NUMBYTES, RELBLK)
(FILE,BUF,IOR,NUMBYTES,RELBLN)
(FILE, RESULT)
(FILE, RESULT)
(FILE)
(FILE)
(FILE)
(FILE)
(FILE, TITLE, RESULT)
(FILE, TITLE, RESULT, EXTENT)
(FILE)
(FILE)
(FILE)
(FILE, VARIABLE, VARIABLE,
(FILE, VAR, SIZE);
(FILE, VARIABLE, VARIABLE,
(FILE)
(FILE)
(FILE, RECORD_NUMBER)
(FILE, RECORD_NUMBER)
(FILE, CHAR)
(FILE, VARIABLE, VARIABLE,
(FILE, EXPRESSION, SIZE)
(FILE, VARIABLE, VARIABLE,
(FILE, EXPRESSION, SIZE)

PROCEDURE ASSIGN
PROCEDURE BLOCKREAD
PROCEDURE BLOCKWRITE
PROCEDURE CLOSE
PROCEDURE CLOSEDEL
FUNCTION
FUNCTION
PROCEDURE GET
FUNCTION
FUNCTION
PROCEDURE OPEN
PROCEDURE OPENX
PROCEDURE PAGE
PROCEDURE PURGE
PROCEDURE PUT
PROCEDURE READ
PROCEDURE READHEX
PROCEDURE READLN
PROCEDURE RESET
PROCEDURE REWRITE
PROCEDURE SEEKREAD
PROCEDURE SEEKWRITE
FUNCTION WNB
PROCEDURE WRITE
PROCEDURE WRITEHEX
PROCEDURE WRITELN
PROCEDURE LWRITEHEX

...)*

Functions and ProceduresPascal/MT+ Reference Manual 6.4

(continued)Table 6-1.

String handling routines
Parameter List ReturnsFunction

Transfer Functions
Parameter ListFunction Returns

Miscellaneous routines
Parameter ListFunction Returns

(INTEGER)

INTEGER
INTEGER

(see Programmer's Guide)

(X)

**
type as X

6-10

* ** does not apply to the 8080 implementation
does not apply to the 8086 implementation

INTEGER
INTEGER

PTR TO STRING

FUNCTION CHR
FUNCTION ODD
FUNCTION ORD
FUNCTION ROUND
FUNCTION TRUNC

FUNCTION
FUNCTION
FUNCTION

CONCAT
COPY

LENGTH
POS

@BDOS
@BDOS86
@CMD

(INTEGER)
(ORDINAL)
(ORDINAL)
(NUM)
(NUM)

CHAR
BOOLEAN
INTEGER
INTEGER
INTEGER

STRING
STRING

INTEGER
INTEGER

(VARIABLE OR TYPE NAME)
(VAL : BYTE)
(X)
(PORTNUM , MASK, POLARITY)

INTEGER
INTEGER

type as X
BYTE
INTEGER

same**

same* *

(SOURCE1, SOURCE2,...,SOURCEn)
(SOURCE, LOCATION, NUM_BYTES)
(TARGET, INDEX, SIZE)
(SOURCE, DESTINATION, INDEX)
(STRING)
(PATTERN, SOURCE)

(INTEGER)
(VARIABLE REFERENCE)

FUNCTION
FUNCTION
PROCEDURE DELETE
PROCEDURE INSERT
FUNCTION
FUNCTION

FUNCTION
FUNCTION
FUNCTION
PROCEDURE @ERR
FUNCTION @HERR
PROCEDURE @HLT

@MRK
@RLS
ADDR

PROCEDURE CHAIN
PROCEDURE EXIT
PROCEDURE INLINE

MAXAVAIL
MEMAVAIL
PRED
RIM85
SIZEOF

FUNCTION
FUNCTION
FUNCTION
FUNCTION
FUNCTION
PROCEDURE SIM85
FUNCTION SUCC
PROCEDURE WAIT

(INTEGER, WORD)**
(INTEGER, POINTER)*

Pascal/MT+ Reference Manual ABS Function

ABS Function

Syntax:
FUNCTION ABS(X);

Explanation:

Examples:

6-11

ABS(-5.789) = 5.789
ABS(56) = 56

ABS returns the absolute value of X.
integer expression.

X must be a real or
The result has the same type as X.

ADDR FunctionPascal/MT+ Reference Manual

ADDR Function

Syntax;
FUNCTION ADDR(VARIABLE OR ROUTINE) : POINTER;

Explanation:

externals,

Example:

6-12

:= ADDR(ADDR_DEMO);
:= ADDR(PARAM);
:= ADDR(REC);
:= ADDR(REC.J);

BEGIN
P
P
P
P

END;

PROCEDURE ADDR_DEMO(PARAM : INTEGER);
VAR

REC : RECORD
J : INTEGER;
BOOL : BOOLEAN;

END;
ADDRESS : INTEGER;
R : REAL;
SI : ARRAY[1..10] OF CHAR;
P : "INTEGER;

You can reference externals, including those in overlays.
However, you must keep in mind the scope of the referenced item.
For example, you cannot use ADDR in the main program to find the
address of a variable you declare in a nested procedure.

ADDR returns the address of a variable, function, or procedure.
Variable references can include subscripted variables and record
fields. ADDR does not work with constants, user-defined ordinal
types, or any item that does not take code or data space.

Pascal/MT+ Reference Manual ARCTAN Function

ARCTAN Function

Syntax:
FUNCTION ARCTAN(X);

Explanation:

Example:
THE ANGLE IS PI / 4ARCTAN(1) = 0.

6-13

(* *)

ARCTAN returns the angle, expressed in radians, whose tangent
is X. X must be a real or integer expression. The result is real
number.

ASSIGN FunctionPascal/MT+ Reference Manual

ASSIGN Function

Syntax:
PROCEDURE ASSIGN(FILE, NAME);

Explanation:

PASTMPxx.$$$
starting at from thezero,

Table 6—2. Device Names
DefinitionName

CON:

KBD: No echo or

device only.TRM: ou tpu t No

CP/M printer, dev iceLST: No

6-14

Pascal/MT+ implements the Pascal local file facility using
temporary filenames in the form

CP/M console,
interpretation.

As output, echoes CR as CR/LF and CP/M expands
tabs to every 8 character positions. Line-feed
cannot be output.

output device only,
interpretation, including no tab expansion.

CP/M console, input device only,
interpretation. Cannot be used with CON: input
or output.

where xx is sequentially assigned,
beginning of each program.

If an ASSIGN does not precede an external file REWRITE, a
temporary filename attaches before creation. Locally declared files
cannot be used as temporary files unless you initialize the file
with ASSIGN(<file>,11) .

The following table defines the device names supported in the
CP/M® run-time environment.

ASSIGN attaches an external filename to a file variable before
using a RESET or REWRITE procedure. FILE is a filename; NAME is a
literal or a variable string containing the name of the file to
create. FILE can be of any type, but must be of type TEXT to use
the special device names listed in Table 6-2.

As input, echoes input characters, CR as
CR/LF, and backspace [CHR(8)] as backspace,
space, backspace.

Pascal/MT+ Reference Manual ASSIGN Function

(continued)Table 6-2.
DefinitionName

RDR:

PUN:

Examples:

6-15

ASSIGN(CONIN,'CON:');
ASSIGN(KEYBOARD,'KBD: ') ;
ASSIGN (CRT,'TRM:') ;
ASSIGN(PRINTFILE,'LST:');

CP/M reader, input device only. Call auxiliary
input routine in the BIOS via the BDOS, using
Function 3.

Function 6, used by KBD:, goes directly to the BIOS for input,
ignoring any character in this internal buffer. Therefore, your
program might appear to be losing characters when in fact CP/M is
storing them internally.

CP/M punch, output device only. Call auxiliary
output routine in the BIOS via the BDOS, using
Function 4.

Note that using CON: and KBD: together can create problems
because of the way they are implemented. To implement CTRL-S, CP/M
checks for typed characters when performing BDOS Function 2, writing
to CON:. If you type a character other than CTRL-S, CP/M stores it
internally, anticipating a subsequent call using Function 1.

BLOCKREAD, BLOCKWRITE FunctionPascal/MT+ Reference Manual

BLOCKREAD, BLOCKWRITE Function

Syntax:

Explanation:

6-16

bytes to transfer .
multiple of 128.

If BUF is 128 bytes, SZ must be 128.
can be as large as 4096.
be in the range -1 to 32767.
assume sequential block transfer.

BLOCKREAD (F:FILEVAR; BUF:ANY; VAR IOR:INTEGER; SZ,RB:INTEGER);
BLOCKWRITE(F:FILEVAR; BUF:ANY; VAR IOR:INTEGER; SZ,RB:INTEGER);

The data transfers either to or from your BUF variable for the
specified number of bytes.

These procedures enable direct disk access,
untyped file (FILE;). 1
hold the data. It can be indexed,
the returned value from the operating system.

SZ is related to the size of BUF;

FILEVAR is an
BUF is any array variable large enough to

IOR is an integer that receives
SZ is the number of

it must be a

If BUF is 4096 bytes, SZ
RB is the relative block number, which can

When RB is -1, the run-time routines
When RB is greater than -1, the

routine calculates the correct file location and opens new extents
as needed.

CHAIN FunctionPascal/MT+ Reference Manual

CHAIN Function

Syntax:
PROCEDURE CHAIN(FILE);

Explanation:
CHAIN allows you to chain from one program to another.

6-17

See Section 3.3 in the Pascal/MT+ Language Programmer’s Guide
for more information.

Pascal/MT+ Reference Manual CHR Function

CHR Function

Syntax:
FUNCTION CHR(X) : CHAR;

Explanation:
CHR returns the character whose ASCII value is the integer X.

Examples:
WRITELN(CHR(7)); BEEP THE TERMINAL

CONVERT TO UPPERCASE

6-18

IF C IN [1 a'..'z’] THEN
C := CHR(ORD(C) - 32)?

(* *)

(* *)

Pascal/MT+ Reference Manual CLOSE Function

CLOSE Function

Syntax;

Explanation:
The CLOSE procedure closes files.

6-19

You must use it to guarantee
that data written to a file is purged from the buffer to the disk.

The
For

Files are implicitly closed when an open file is RESET,
number of files that can be open at a time is CPU-dependent.
CP/M systems, this number is limited only by the amount of memory
available for File Control Blocks (FCBs).

PROCEDURE CLOSE (FILE, RESULT);
PROCEDURE CLOSEDEL (FILE, RESULT);

CLOSEDEL closes and deletes temporary files after use. FILE is
any filetype variable. RESULT is a VAR INTEGER parameter that has
the same value as IORESULT upon return from CLOSE.

Pascal/MT+ Reference Manual CONCAT Function

CONCAT Function

Syntax:
FUNCTION CONCAT(SOURCE1, SOURCE2, . . , SOURCEn) : STRING;

Explanation:

Example;

: STRING?

’,S2, '!!!!!!’) ;

Output:

6-20

left link, right link/root root root
left link, right link root root root!!!!!!

’left link, right link’;
’root root root’;

CONCAT returns a string in which all strings in the parameter
list are concatenated. The strings can be string variables, string
literals, or characters. You can concatenate a string of zero
length. The total length of all strings truncates at 256 bytes.
See the COPY function for restrictions when using both CONCAT and
COPY.

PROCEDURE CONCAT_DEMO;
VAR

S1,S2
BEGIN

51 : =
52 : =
WRITELN(S1,’/’,S2);
SI := CONCAT(SI,’
WRITELN(Sl);

end;

Pascal/MT+ Reference Manual COPY Function

COPY Function

Syntax:
FUNCTION COPY(SOURCE, LOCATION, NUM_BYTES) : STRING;

Explanation:

in

NUM_BYTES plus LOCATION exceeds the length of the SOURCE.

Example:

Output:
Cardiff-by-the-sea

CONCAT(A,STRING1) = CONCAT(A,STRING2)

WRITELN(COPY(STRING1,1,4), COPY(STRING1,5,4))

writes the second set of four characters in STRING1 twice.

6-21

PROCEDURE COPY_DEMO;
BEGIN
LONG_STR := ’Hi from Cardiff-by-the-sea1;
WRITELN(COPY(LONG_STR,9,LENGTH(LONG_STR)-9+1));

END?

is always true, because the concatenation of A and STRING2 replaces
that of A and STRING1. As a further example,

Note: COPY and CONCAT are string returning pseudo-functions and
have only one statically allocated buffer for the return value.
Therefore, if you use these functions more than once within the same
expression, the value of each occurrence becomes the value of the
last occurrence. For example,

COPY returns a string with the number of characters specified
NUM_BYTES from SOURCE, beginning at the index specified in

LOCATION. SOURCE must be a string. LOCATION and NUM_BYTES are
integer expressions.

The COPY routine does not check whether LOCATION is out of
bounds or negative. Truncation occurs if NUM_BYTES is negative or

Pascal/MT+ Reference Manual COS Function

COS Function

Syntax;
FUNCTION COS(X) : REAL;

Explanation:

Example;

6-22

COS returns the cosine of X.
real or integer.

IF COS(ANG) = SIN(ANG) THEN
WRITELN('45 DEGREES’);

X, the angle in radians, must be
The result is real.

Pascal/MT+ Reference Manual DELETE Function

DELETE Funct ion

Syntax:

Explanation;

if SIZE is negative.

Example:

Output:

6-23

get rid of the leading blanks
get rid of the leading blanks

WRITELN(LONG_STR);
END;

PROCEDURE DELETE_DEMO;
VAR

LONG_STR : STRING;
BEGIN

LONG_STR := ' get rid of the leading blanks’;
WRITELN(LONG_STR);
DELETE(LONG—STR,1,POS(’g ’,LONG_STR)-1);

TARGET is a string. INDEX and SIZE
No action occurs if SIZE is zero.

DELETE removes SIZE characters from TARGET beginning at the
byte named in INDEX. TARGET is a string. INDEX and SIZE are
integer expressions.

PROCEDURE DELETE(TARGET, INDEX, SIZE);

Note: serious errors result if SIZE is negative. The data and
surrounding memory can be destroyed if the INDEX plus the SIZE is
greater than the TARGET, or the TARGET is empty.

DISPOSE FunctionPascal/MT+ Reference Manual

DISPOSE Function

Syntax:

Explanation;

6-24

See NEW for an example of using DISPOSE and more information
about deallocating variant records.

PROCEDURE DISPOSE(VAR P : POINTER);
PROCEDURE DISPOSE(VAR P : POINTER, VARIANTS);

DISPOSE deallocates space that NEW allocates. When DISPOSE
returns, the value of the pointer variable is undefined. If you are
using the FULLHEAP memory manager, the space is available for reuse.
Otherwise, the space is not available for reallocation.

Pascal/MT+ Reference Manual EOLN, EOF Function

EOLN, EOF Function

Syntax:

: BOOLEAN;
: BOOLEAN;

Explanation:

it can crash.

Suppose the

C EA B DfEOLNj

6-25

nonconsole files,
of-file indicator is entered.

FUNCTION EOLN : BOOLEAN;
FUNCTION EOLN(VAR F : TEXT)
FUNCTION EOF : BOOLEAN;
FUNCTION EOF(VAR F : FILE)

cha rac te r
nonconsole

CH := F";
GET (F) ;

The following example illustrates these concepts,
input stream for a TEXT file consists of

EOLN
reads the
statements for a READ on

returns TRUE on disk TEXT files when
last valid character on a line.

files is,

For
after the
nonconsole

EOF, like EOLN, returns TRUE when the last character is read on
On console files, EOF is TRUE only when the end-

The system does not support reading
past the end-of-file on console or disk files; it can crash. The
window variable returns a blank when EOF is TRUE.

EOF does not become TRUE at the end of the valid data in non-
TEXT files if the data does not fill up the entire last sector of
the file.

a READ statement
The sequence of

This positions the window variable over the end-of-file character.
Thus, EOLN returns TRUE on nonconsole TEXT files when the last
character is read, and a blank returns instead of the end-of-line
charac ter.

On console files, this sequence reverses; READ has an initial
call to GET followed by an assignment from the window variable,
this reason, EOLN returns TRUE in console files
carriage/return line-feed is read. EOLN returns TRUE in
files after the last character is read. A blank still returns in
the character.

EOLN returns TRUE when the window variable is over the end-of-
line character in a file. EOF returns TRUE when the window variable
is over an end-of-file character. If you do not specify a file, the
default input file is assumed.

EOLN, EOF FunctionPascal/MT+ Reference Manual

EOLN, EOF Values for a TEXT FileTable 6-3.
NonconsoleConsole

EOLN EOFEOLN EOF

For a non-TEXT file, suppose the input stream consists of

3 ®21

Table 6-4. EOF Values for a Non—TEXT File
Value returned EOF

6682 T
(Note that 6682 is the end of the sector)

5-26

Table 6-4 shows the values of EOF when you repeatedly read integers
from the input stream.

Character
returned

F
F
F
T
F
F
T
T

1
2
3

6682

F
F
F
F
F
F
F
T

Character
returned

F
F
F
F

F
F
T
F
F
T
T
T

F
F
F
F
F
F
T
T

A
B
C

space
D
E

space
space

A
B
C

space
D
E

space
space

If you repeatedly read characters from this stream, EOLN and EOF
return the values summarized in Table 6-3.

Pascal/MT+ Reference Manual EXIT Function

EXIT Function

Syntax:
PROCEDURE EXIT;

Explanation:

Example:
PROCEDURE EXITTEST;
{ EXIT THE CURRENT FUNCTION OR MAIN PROGRAM. }
PROCEDURE EXITPROC(BOOL : BOOLEAN);

’) ;

Output:

6-27

EXIT
program.

EXITTEST
EXITING EXITPROC
IN EXITTEST AFTER 1ST CALL TO EXITPROC
STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY
IN EXITTEST AFTER 2ND CALL TO EXITPROC

leaves the current procedure or
If used in an INTERRUPT procedure,

registers and reenables interrupts before exiting,
equivalent of the RETURN statement in FORTRAN or BASIC,
execute it as a statement following a test.

function, or the main
EXIT also loads the

EXIT is the
You usually

BEGIN
IF BOOL THEN

BEGIN
WRITELN(’EXITING EXITPROC');
EXIT;

END;
WRITELN(’STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY');

END;
BEGIN
WRITELN('EXITTEST
EXITPROC(TRUE);
WRITELN('IN EXITTEST AFTER 1ST CALL TO EXITPROC');
EXITPROC(FALSE);
WRITELN('IN EXITTEST AFTER 2ND CALL TO EXITPROC');
EXIT;
WRITELN('THIS LINE WILL NEVER BE PRINTED');

END;

Pascal/MT+ Reference Manual EXP Function

EXP Function

Syntax:
FUNCTION EXP(X) : REAL;

Explanation:

Examples;

i ** « , V, 1= ’, EXP(YWRITELN(X,

6-28

IF (EXP(LN(X) + LN(Y)) - (X * Y) <= TOLERANCE THEN
WRITELN(’LOGARITHM FUNCTIONS PASS TEST’);

X must be real or integer,
a value that is the

of X. Use this
EXP returns the exponential of X.

The result is real. The function returns
natural logarithm (base e) , raised to the power
function with the natural logarithm function, LN.

* LN(X)));

Pascal/MT+ Reference Manual FILLCHAR Function

FILLCHAR Function

Syntax:
PROCEDURE FILLCHAR(DESTINATION, LENGTH, CHARACTER);

Explanation:

Example:
PROCEDURE FILL_DEMO?

{BLANK THE buffer}’) ;

6-29

BEGIN
FILLCHAR(BUFFER,256, '

END;

the length of
CHARACTER is a

VAR
BUFFER : PACKED ARRAY[1..256] OF CHAR;

is negative or greater than
it overwrites adjacent code or data.

Fill the DESTINATION with the
Note: if LENGTH
DESTINATION,
literal or variable of type CHAR,
number of characters specified by LENGTH.

DESTINATION is a variable reference, but need not be a packed
array of characters as in UCSD Pascal. It can be subscripted.
LENGTH is an integer expression.

FILLCHAR is a fast way to fill in large data structures with
the same data. For example, FILLCHAR can blank out a buffer.

Pascal/MT+ Reference Manual GET Function

GET Function

Syntax;
PROCEDURE GET(VAR F : FILE VARIABLE);

Explanation:

6-30

GET advances the window variable by one element and moves the
contents of the indicated file into the window variable. EOF must
be FALSE before GET executes. When there is no next element, EOF
becomes TRUE and the value of the window variable becomes undefined.
See Section 7 for more details on GET and TEXT files.

Pascal/MT+ Reference Manual HI, LO, SWAP Function

HI, LO, SWAP Function

Syntax:

Explanation:
the upper 16-bitor

LO returns the lower 8 bits, with the upper 8 bits forced to zero.

Passing 8 bits

The following example shows the results of these functions.

Example:

END;

Output:

6-31

Passing an 8-bit variable to HI results in 0.
to LO does nothing.

HI(BASIC_VAR)
LO(BASIC_VAR)

: INTEGER;
: INTEGER;
: INTEGER;

FUNCTION
FUNCTION
FUNCTION SWAP(BASIC_VAR)

HI_LO_SWAP...
HL=260
HI(HL)=1
LO(HL)=4
SWAP(HL)=1025

HL := $104;
WRITELN('HL=', HL);
IF HI(HL) = 1 THEN

WRITELN('HI(HL)=',HI(HL));
IF LO(HL) = 4 THEN

WRITELN('LO(HL)=',LO(HL));
IF SWAP(HL) = $0401 THEN

WRITELN('SWAP(HL)=’,SWAP(HL));

SWAP returns the upper 8 bits of BASIC_VAR in the lower 8 bits of
the result and the lower 8 bits of BASIC_VAR in the upper 8 bits of
the result.

HI returns the upper 8 bits of BASIC_VAR (an 8-
variable) in the lower 8 bits of the result.

PROCEDURE HI—LO_SWAP;
VAR

HL : INTEGER;
BEGIN
WRITELN(1HI_LO_SWAP

INLINE FunctionPascal/MT+ Reference Manual

INLINE Function

Syntax:
PROCEDURE INLINE(arg/arg/.. .) ;

Explanation:

6-32

Section 4.3.2 of the Pascal/MT+ Language Programmer’s Guide has
examples of using INLINE.

INLINE is a built-in feature that allows you to insert data in
the middle of a Pascal/MT+ procedure or function. You can insert
small machine-code sequences and constant tables into a Pascal/MT+
program without using externally-assembled routines.

Pascal/MT+ Reference Manual INSERT Function

INSERT Function

Syntax:
PROCEDURE INSERT(SOURCE, DESTINATION, INDEX);

Explanation:

INDEX

into

Example:

Luke 1?

Output:

6-33

Remember the Force, Luke
Remember to use the Force, Luke

is
If

PROCEDURE INSERT_DEMO;
VAR

LONG_STR : STRING;
SI : STRING[10];

BEGIN
LONG_STR := ’Remember
SI := ’the Force,’;
INSERT(SI,LONG_STR,10);
WRITELN(LONG_STR);
INSERT('to use ',LONG_STR,10);
WRITELN(LONG_STR);

end;

Note: if INDEX
destroys data.
DESTINATION too long,

out of bounds or DESTINATION is empty, it
inserting SOURCE into DESTINATION makes
it is truncated.

INSERT puts SOURCE into DESTINATION at the location specified
in INDEX. DESTINATION is a string. SOURCE is a character or
string, literal or variable. INDEX is an integer expression.
SOURCE can be empty.

IORESULT FunctionPascal/MT+ Reference Manual

IORESULT Function

Syntax:
IORESULT : INTEGER;FUNCTION

Explanation:

Example:

6-34

ASSIGN(F,1C:HELLO’) ;
RESET(F);
IF IORESULT = 255 THEN

WRITELN(’C:HELLO IS NOT PRESENT');

Refer to the Pascal/MT+ Language Programmer's Guide for more
information about IORESULT.

After each I/O operation, the run-time library routines set the
value returned by the IORESULT function. In general, the value of
IORESULT is system-dependent. Never attempt to WRITE the IORESULT
because it resets to 0 before any I/O operation.

Pascal/MT+ Reference Manual LENGTH Function

LENGTH Function

Syntax;
FUNCTION LENGTH(STRING) : INTEGER;

Explanation;
LENGTH returns the integer value of the length of the string.

Example:

Output:

6-35

LENGTH OF This string is 33 characters long=33
LENGTH OF EMPTY STRING = 0

PROCEDURE LENGTH_DEMO;
VAR

SI : STRING[40];
BEGIN

SI : = 'This string is 33 characters long';
WRITELN('LENGTH OF ',SILENGTH(SI));
WRITELN('LENGTH OF EMPTY STRING = ',LENGTH(''));

END;

Pascal/MT+ Reference Manual LN Function

LN Function

Syntax:
FUNCTION LN(X) : REAL;

Explanation:

6-36

LN
integer.

returns the natural logarithm of X.
The result is real.

X must be real or

Pascal/MT+ Reference Manual MAXAVAIL, MEMAVAIL Function

MEMAVAIL FunctionMAXAVAIL

Syntax:

Explanation:

integer.
Guide for more

6-37

FUNCTION
FUNCTION

MAXAVAIL : INTEGER;
MEMAVAIL : INTEGER;

If the result of these functions displays as a negative number,
the amount of memory remaining is too large to express as a positive

You can display the return value with WRITEHEX.

The functions MAXAVAIL and MEMAVAIL work with NEW and DISPOSE
to manage the heap memory area in Pascal/MT+.

See your Pascal/MT+ Language Programmer’s
information on the use of dynamic memory.

MEMAVAIL returns the
regardless of fragmentation,
available.

available memory at any given time,
MAXAVAIL reports the largest block

Pascal/MT+ Reference Manual MOVE, MOVERIGHT, MOVELEFT Function

MOVE, MOVERIGHT, MOVELEFT Function

Syntax:

Explanation:

When you use these procedures keep in mind the following:

• Moving 0 bytes moves nothing.
• There is no type checking.

6-38

PROCEDURE MOVE (SOURCE, DESTINATION, NUM_BYTES)
PROCEDURE MOVELEFT (SOURCE, DESTINATION, NUM_BYTES)
PROCEDURE MOVERIGHT(SOURCE, DESTINATION, NUM_BYTES)

• These procedures do not check whether the number of bytes is
greater than the size of the destination. If the destination
is not large enough, bytes spill into the adjacent data storage
area.

The source and destination can be variables of any type, and
they need not be of the same type. They can be pointers to

The number of bytes

MOVELEFT can transfer bytes from one array to another, delete
characters from a buffer, or move the values in one data structure
to another.

type,
variables, but not named or literal constants,
is an integer expression between 0 and 64K.

These procedures move the number of bytes contained in
NUM_BYTES from the SOURCE location to the DESTINATION location.
MOVE and MOVELEFT are synonyms. They move from the left end of the
source to the left end of the destination. MOVERIGHT moves from the
right end of the source to the right end of the destination. The
parameters passed to MOVERIGHT specify the left end of the source
and destination.

MOVELEFT and MOVERIGHT transfer bytes from one data structure
to another or move data within a data structure. These procedures
move on a byte level, ignoring the data structure type. MOVERIGHT
transfers bytes from the low end of an array to the high end.
Without this procedure, you would need a FOR loop to pick up each
character and put it down at a higher address. MOVERIGHT is much
faster. You can use MOVERIGHT in an insert character routine to
make room for characters in a buffer.

Pascal/MT+ Reference Manual MOVE, MOVERIGHT, MOVELEFT Function

Example:

STRINGSZ - LENGTH(DEST) THEN

335 Drive/ Lovely, Ca. 95666';

Output:

95666

6-39

PROCEDURE MOVE_DEMO;
CONST

STRINGSZ = 80;
VAR

BUFFER : STRING[STRINGSZ];
LINE : STRING;

MOVE_DEMO
Judy J. Smith/
Judy J. Smith/

BEGIN
WRITELN (' MOVE_DEMO..... ') ;
BUFFER := 'Judy J. Smith/
WRITELN(BUFFER);
LINE := 'Roland ';
INSRT(BUFFER, POS('5',BUFFER)+2,LINE);
WRITELN(BUFFER);

END;

355 Drive/ Lovely, Ca. 95666
355 Roland Drive/ Lovely, Ca.

PROCEDURE INSRT(VAR DEST : STRING; INDEX : INTEGER; VAR SOURCE : STRING);
BEGIN

IF LENGTH(SOURCE)
BEGIN
MOVERIGHT(DEST[INDEX], DEST[INDEX+LENGTH(SOURCE)],

LENGTH(DEST)-INDEX+1);
MOVELEFT(SOURCE[1], DEST[INDEX], LENGTH(SOURCE));
DEST[0] :=CHR(ORD(DEST[0]) + LENGTH(SOURCE))

END;
END;

Pascal/MT+ Reference Manual NEW Function

NEW Function

Syntax;

Explanation;

Example:
PROGRAM NEWDEMO;

ORANGE, PURPLE);

GREEN

END;

6-40

PROCEDURE NEW (VAR P : POINTER);
PROCEDURE NEW (VAR P : POINTER; VARIANTS);

DISPOSE(GENERAL);
DISPOSE(SMALL, RED);
DISPOSE(BIG, BLUE, PURPLE)

END.

Z : INTEGER);
K : REAL)

*)
(*

(*

NEW(GENERAL); (* FOR ANY VARIANT *)
NEW(SMALL, RED); (* FOR SMALLEST VARIANT *)
NEW(BIG, BLUE, PURPLE); (* FOR LARGER VARIANT

BEGIN
WRITELN(1 THIS PROGRAM DOES NOTHING BUT TWEAK THE HEAP');

Specify the variant by its tag value. If the record has nested
variants, specify the variants in the order of nesting. When you
deallocate a record with DISPOSE, use the same parameter list.

TYPE
COL = (RED, YELLOW, BLUE, GREEN,
PTR = "REC;
REC = RECORD

A : INTEGER;
CASE LIGHT

RED :
YELLOW :
BLUE :

CASE TINT : COL OF
: (W, X, '

PURPLE : (H,
)

FOR ANY VARIANT
(*

: COL OF
0 ;
(R : REAL);
(

NEW dynamically allocates space for a record of the pointer's
type, and sets the value of the pointer to the new record. For
variant records, the procedure allocates enough space to hold the
largest variant, unless you specify which variant you want.

Y,
I, J,

VAR
GENERAL, SMALL, BIG : PTR;

ODD FunctionPascal/MT+ Reference Manual

ODD Function

Syntax:
FUNCTION ODD(INTEGER) : BOOLEAN?

Explanation:

Example:

6-41

IF ODD(LENGTH(ANSWER)) THEN
WRITELN(1 THAT1 1S ODD!')

ELSE
WRITELN('EVEN I BELIEVE THAT')

ODD returns TRUE if the expression is odd and FALSE if it is
not.

Pascal/MT+ Reference Manual OPEN Function

OPEN Function

Syntax:
PROCEDURE OPEN (FILE, FILENAME, RESULT);

Explanation:

The OPEN procedure is the same as the sequence:

Example:
’A:FNAME.DAT’, RESULT);OPEN (INFILE,

6-42

ASSIGN(FILE, FILENAME);
RESET(FILE);
RESULT := IORESULT;

The OPEN procedure opens an existing file for input. FILE is
any file variable. Filename is a string that contains the CP/M
filename. RESULT is an integer variable, which on return from OPEN,
has the same value as IORESULT.

Pascal/MT+ Reference Manual ORD Function

ORD Function

Syntax:
FUNCTION ORD(SCALAR) : INTEGER;

Explanation:

For an enumerated type, the

Example:

FUNCTION DIG2DEC (C : CHAR) : INTEGER;
C MUST BE IN THE RANGE 'O’ . . ’ 9’

- ORD(’O’);

6-43

BEGIN
DIG2DEC := ORD(C)

END;

(* *)

ORD returns the ordinal value of a scalar or enumerated type
expression. The result is an integer,
ordinal value is the same as the order of declaration, starting with
0.

Pascal/MT+ Reference Manual PACK, UNPACK Function

PACK, UNPACK Function

Syntax:

Explanation:

6-44

PROCEDURE PACK(A : ARRAY[M...N] OF T; Z : ARRAY[U...V] OF T;
PROCEDURE UNPACK(A : ARRAY[M...N] OF T; Z : ARRAY[U...V] OF T;

The Pascal/MT+ compiler accepts PACK and UNPACK but does not
execute them. Because Pascal/MT+ is byte-oriented, these procedures
are unnecessary.

Pascal/MT+ Reference Manual PAGE Function

PAGE Function

Syntax:
PROCEDURE PAGE(FILE VARIABLE);

Explanation:

6-45

PAGE skips to the top of a new page when a TEXT file is
printing by inserting a begin-page character in the output file. If
you do not specify the output file, it defaults to standard output.

Pascal/MT+ Reference Manual POS Function

POS Function

Syntax:
FUNCTION POS(PATTERN, SOURCE) : INTEGER;

Explanation:

Example:

in
in

Output;

' z'

6-46

the function returns 0.
character, or literal.

is ' , POS (PATTERN,STR)) ;
is ',POS(CH,STR));

' ,POS (’ z' ,STR)) ;

POS
occurrence of PATTERN in SOURCE.

SOURCE is a string.

position of Love in Ada Lovelace is 5
position of v in Ada Lovelace is 7
position of 1 z1 in Ada Lovelace is 0

returns the integer value of the position of the first
If PATTERN is not in the string,

PATTERN is a string,

PROCEDURE POS_DEMO;
VAR

STR,PATTERN : STRING;
CH : CHAR;

BEG IN
STR := 'Ada Lovelace';
PATTERN := 'Love';
CH := 'v';
WRITELN('position of ',PATTERN,' in ',STR,'
WRITELN('position of ' ,CH , ' in ’,STR,'
WRITELN ('pos of ' ' z' ' in ' ,STR,' is

END;

Pascal/MT+ Reference Manual PRED Function

PREP Function

Syntax:
FUNCTION PRED(SCALAR) : SCALAR;

Explanation:

Example:

6-47

PRED
expression.

= THURSDAY
= 3
= ’C’

returns the value of the predecessor of a scalar
The ordinal value of the predecessor is 1 less than the

ordinal value of the expression.

PRED(FRIDAY)
PRED(2 * 2)
PRED(’D’)

TYPE
WEEKDAY = (SUNDAY, MONDAY, TUESDAY, WEDNESDAY,

THURSDAY, FRIDAY, SATURDAY);

Pascal/MT+ Reference Manual PURGE Function

PURGE Function

Syntax:
PROCEDURE PURGE(FILE);

Explanation:

The

Example:
ASSIGN(F,’BADFILE.BAD’);
PURGE(F); DELETE BADFILE.BAD

6-48

PURGE deletes the file associated with the file variable,
file is deleted from the disk directory.

)(

Pascal/MT+ Reference Manual PUT Function

PUT Function

Syntax:
PROCEDURE PUT(FILE VARIABLE);

Explanation:

6-49

PUT transfers the contents of the window variable associated
with F to the next available record in the file. You must assign to
the window variable before executing a PUT. You can use this
procedure only if EOF is TRUE. After execution, EOF remains TRUE
and the window variable becomes undefined.

Pascal/MT+ Reference Manual READ, READLN Function

READ, READLN Function

Syntax;

Explanation:

F";

F\-

6-50

When reading from non-console files, the sequence of operations
for each data item is equivalent to:

<variable> :=
GET(F);

GET(F);
<variable> :=

. • •) ;

. . .) ;

These procedures read from the file associated with the file
variable into the variables listed. If you do not specify a file,
the procedures default to the standard input.

READLN reads the data and then sets the file pointer at the
beginning of the next line. READ does not skip over data. When
reading strings, both procedures read from the current position to
the end of the line. Use READLN to read strings.

PROCEDURE READ (FILE VARIABLE, variable, variable,
PROCEDURE READLN(FILE VARIABLE, variable, variable,

READLN works with TEXT files only, but both routines, when
reading from TEXT files, convert Booleans, reals, and integers from
their ASCII representations. All numbers convert on input, but the
formatting is lost. Therefore, you should separate numbers from
each other and from other data types by a blank or a carriage
return/line-feed.

For non-TEXT files, the variables in the parameter list must be
the same type as the data read from the file. The compiler does not
typecheck, however. You must construct a parameter list compatible
with your file’s format.

When reading from the console, the sequence is

Pascal/MT+ Reference Manual READHEX, WRITEHEX, Function

READHEX, WRITEHEX, LWRITEHEX Function

Syntax:
(VAR F

Explanation;

6-51

LWRITEHEX is like WRITEHEX, except that it only works with long
integers, and it can handle up to four bytes.

1..4) ;
1..
1..

The 8-bit version of Pascal/MT+ does not have LWRITEHEX, and
its maximum data size for READHEX is 2 bytes.

PROCEDURE READHEX
PROCEDURE WRITEHEX
PROCEDURE LWRITEHEX (VAR F

: TEXT; VAR W : ANYTYPE; SIZE :
(VAR F : TEXT; EXPRESSION : ANYTYPE; SIZE:

: TEXT; EXPRESSION : LONGINT; SIZE:

These
representation.
write.

WRITEHEX writes two characters for each byte. It does not
output any leading or trailing blanks or a carriage return/line
feed.

READHEX reads two characters for each byte, then it skips to
the next carriage return/line feed. You cannot read more than one
hexadecimal number from a single line.

routines read and write text in hexadecimal
SIZE specifies the number of bytes to read or

Pascal/MT+ Reference Manual RESET Function

RESET Function

Syntax:
PROCEDURE RESET(FILE VARIABLE);

Explanation:

6-52

The initial GET does not perform on console or untyped files
because GET waits for a character, and you would have to type a
character before your program could execute.

RESET moves the window pointer to the beginning of a file so
that you can read it. The window variable is set to the first
element of F. If you try to reset a file that does not exist,
IORESULT returns a value of 255. Any other value means success.
RESET calls CLOSE if the file is already open.

The file is open to reading and writing for random access.
With nonconsole typed files, the procedure RESET does an initial
GET. This process moves the first element of the file into the
window variable.

Pascal/MT+ Reference Manual REWRITE Function

REWRITE Function

Syntax:
PROCEDURE REWRITE(FILE VARIABLE);

Explanation:

an

6-53

output file,
ready to receive data into its first element.

you no longer need after executing the program,
in the name make every temporary file unique,
100 temporary files.

The EOF and EOLN functions return TRUE because the file is
The file is open for sequential writing only and is

Temporary files are useful for scratch pad memory and data that
The last two digits

so you can have up to

REWRITE creates a file on disk using the name associated with
the file variable, deleting any existing file by that name. If the
variable has no associated filename, specified with ASSIGN, REWRITE
creates a temporary file.

Pascal/MT+ Reference Manual RIM85, SIM85 Function

RIM85, SIM85 Function

Syntax:

Explanation:

6-54

FUNCTION RIM85 : BYTE;
PROCEDURE SIM85(VAL : BYTE);

These routines use the special 8085 instructions RIM and SIM.
They call the procedure that contains the instruction. Under CP/M,
the heap grows from the end of the data area, and the stack frame
(for recursion) grows from the top of memory down. CP/M preloads
the hardware stack register with the contents of absolute location
0006, unless the $Z option overrides it. The stack frame grows
starting at 512 bytes below the initialized hardware value.
Note: these routines are only supported in the 8-bit version of
Pascal/MT+.

ROUND FunctionPascal/MT+ Reference Manual

ROUND Function

Syntax;
FUNCTION ROUND(REAL) : INTEGER;

Explanation:

Examples:

6-55

ROUND converts a real to an integer by rounding it up or down
to the nearest integer value.

ROUND(2.67) = 3
ROUND(45.49) = 45

Pascal/MT+ Reference Manual SEEKREAD, SEEKWRITE Function

SEEKREAD, SEEKWRITE Function

Syntax;

Explanation;

The records are numbered

link in the library RANDOMIO,

6-56

Section 7 has examples of these procedures and more information
about random-access I/O.

To use SEEKREAD and SEEKWRITE,
which supports random access.

SEEKREAD reads
SEEKWRITE
You must

record size.
not without executing a CLOSE before changing access modes.

These procedures support random access I/O.
from the specified record into the window variable,
writes from the window variable to the specified record,
assign to the window variable prior to a SEEKWRITE or assign from
the window variable after a SEEKREAD,
sequentially, starting with record 0.

Files written using SEEKWRITE are contiguous, regardless of the
A file can be accessed sequentially or randomly, but

PROCEDURE SEEKREAD (F : ANYFILE; RECORD_NUM: 0..MAXINT);
PROCEDURE SEEKWRITE(F : ANYFILE; RECORD_NUM : 0..MAXINT);

Pascal/MT+ Reference Manual SHL, SHR Function

SHL, SHR Function

Syntax;

Explanation:
inserting 0

NUM is an integer

from two separate input

X := SHL(INP[8] & $1F, 3) (INP[9] & $1F) ;!

Example;

Output;

6-57

Suppose you obtain
ports.

bits.
bits .
expression.

SHR shifts BASIC_VAR by NUM bits to the right,
SHL shifts the BASIC_VAR by NUM bits to the left, inserting 0

. BASIC VAR is an 8- or 16-bit variable.

FUNCTION SHL(BASIC_VAR, NUM)
FUNCTION SHR(BASIC_VAR, NUM)

: INTEGER;
: INTEGER;

SHIFT DEMO.
1 = 4
SHR(I,2)=1
SHL(I,4)=64

PROCEDURE SHIFT—DEMO;
VAR I : INTEGER;
BEGIN
WRITELN (' SHIFT_DEMO
I : = 4 ;
WRITELN(’I=’,I);
WRITELN('SHR(I,2)=’,SHR(I,2));
WRITELN('SHL(1,4)=’,SHL(1,4));

END;

The example reads from port number 8, masks out the three high
bits returned from the INP array, and shifts the result left. Next,
this result logically OR’s with the input from port number 9, which
has also been masked.

a 10-bit value
Use SHL to read them in:

Pascal/MT+ Reference Manual SIN Function

SIN Function

Syntax:
FUNCTION SIN(ANGLE) : REAL;

Explanation:
Express the angle in

6-58

SIN returns the sine of the angle,
radians, as an integer or real expression.

Pascal/MT+ Reference Manual SIZEOF Function

SIZEOF Function

Syntax:
FUNCTION SIZEOF (VARIABLE OR TYPE NAME) : INTEGER;

Explanation;

or

to SIZEOF.

Example:
PROCEDURE SIZE_DEMO;

B

MOVE(A, B, SIZEOF(A));

HIR_DATE, EMP_NUM)

6-59

CONST
NAMELN = 10;
ADDRLN = 30;

VAR
A : RECORD

NAME
ADDR

END;
: RECORD

NAME
ADDR
HIRE_DATE
EMP_NUM

END;

(*

SIZEOF is a compile-time function that returns the size of the
parameter in bytes,
bytes to be moved,
constants as the j--

user-defined ordinal type.

STRING[NAMELN];
STRING[ADDRLN];
INTEGER;
INTEGER

STRING[NAMELN];
STRING[ADDRLN]

MOVES THE NAME AND ADDR
INTO B *)

Use it in MOVE statements for the number of
With SIZEOF you do not need to keep changing

program evolves. The parameter can be any variable

WITH B DO
WRITELN (NAME, ADDR,

END;

BEGIN
READLN(A.NAME);
READLN(A.ADDR);
B.HIRE_DATE := 0;
B.EMP_NUM := 0;

SIZEOF is a compile-time function. Only the size of items that
do not generate code to calculate their address can be a parameter

The compiler must know the size of the item.

Pascal/MT+ Reference Manual SIZEOF Function

6-60

In this example, if you change the value for NAMELN or ADDRLN,
you do not have to change the parameters to MOVE, because the SIZEOF
function always returns the current size of record A.

Pascal/MT+ Reference Manual SQR Function

SQR Function

Syntax:
FUNCTION SQR(X) : REAL or INTEGER

Explanation:
X must be real or integer. The

Example:

6-61

SQR returns the square of X.
result has the same type as X.

SQR(5)
SQR(4.0) =

25
16.0

Pascal/MT+ Reference Manual SQRT Function

SQRT Function

Syntax:
FUNCTION SQRT(X) : REAL;

Explanation:
X must be real or integer.

6-62

SQRT returns the square root of X.
The result is real.

Pascal/MT+ Reference Manual SUCC Function

SUCC Function

Syntax:
FUNCTION SUCC(X) : SCALAR;

Explanation:
SUCC returns the value

Examples:

6-63

X is a scalar or subrange expression,
of X’s successor.

SUCC(’A*) = 'B1
SUCC(FALSE) = TRUE
SUCC (23) = 24

Pascal/MT+ Reference Manual TRUNC Function

TRUNC Function

Syntax:
FUNCTION TRUNC(REAL) : INTEGER;

Explanation;

Examples:

6-64

TRUNC converts a real number to an integer by dropping the
digits to the right of the decimal point.

= 4
= 37

TRUNC(4.99)
TRUNC(36.2 + 1.11)

Pascal/MT+ Reference Manual TSTBIT, SETBIT, CLRBIT Function

TSTBIT, SETBIT, CLRBIT Function

Syntax:

Explanation;

SETBIT sets the designated bit in the parameter.
CLRBIT clears the designated bit in the parameter.
BASIC_VAR is any 8-or 16-bit variable. BIT NUM is 0..15 with

bit 0 on the right.

Example:
PROCEDURE TST_SET_CLR_BITS;

’) ;

END;

Output:

6-65

TSTBIT returns TRUE if the designated bit is on, and returns
FALSE if the bit is off.

TST_SET_CLR_BITS
1 = 32
1 = 0

VAR
I : INTEGER;

BEGIN
WRITELN('TST_SET_CLR_BITS...
I : = 0 ;
SETBIT(I,5);
IF I = 32 THEN

IF TSTBIT(1,5) THEN
WRITELN(,I=I, I) ;

CLRBIT(I,5);
IF I = 0 THEN

IF NOT (TSTBIT(I,5)) THEN
WRITELN('!=', I) ;

If BIT_NUM is out of range, results are unpredictable but the
program continues. For example, trying to set or clear bit 10 of an
8-bit variable causes unpredictable results, but no error message.

FUNCTION TSTBIT(BASIC_VAR, BIT_NUM) : BOOLEAN;
PROCEDURE SETBIT(VAR BASIC_VAR, BIT_NUM);
PROCEDURE CLRBIT(VAR BASIC_VAR, BIT_NUM);

Pascal/MT+ Reference Manual WAIT Function

WAIT Function

Syntax:
PROCEDURE WAIT(PORTNUM , MASK, POLARITY);

Explanation:

IN

Example:
PROCEDURE WAIT_DEMO;

for EXPO NOBUS-Z COMPUTER

6-66

CONST
CONSPORT = $F7;
CONSMASK = $01;

BEGIN
WRITELN (’WAIT_DEMO....... ’) ;
WRITELN(’WAITING FOR A CHARACTER’);
WAIT(CONSPORT,CONSMAXK,TRUE);
WRITELN('THANKS’);

END;

(*

portnum
ANI mask
J?? $-4

Pascal/MT+. PORTNUM and MASK
POLARITY is a Boolean constant,
loop:

*)

The WAIT procedure is only available in the 8-bit version of
PORTNUM and MASK are literal or named constants.

WAIT generates a tight status wait

The WAIT procedure does not generate in-line code for the
status loop. A status loop is constructed in the DATA area and
called by the WAIT run-time subroutine. Thus, the loop is fast, but
the call and return from the loop add a small amount of execution
time. Use INLINE if time is critical.

Pascal/MT+ Reference Manual WNB, GNB Function

WNB, GNB Function

Syntax:

: BOOLEAN;

Explanation:

The optimum

file.

6-67

GNB and WNB are faster than using F~, GET/PUT combinations,
because of their larger buffer.

FUNCTION GNB(FILEVAR: FILE OF PAOC):CHAR;
FUNCTION WNB(FILEVAR: FILE OF CHAR; CH:CHAR)

WNB requires a
The function returns a Boolean value

WNB lets you write a file one byte at a time,
file and a character to write.
that is TRUE if there was an error while writing that byte to the

Written bytes are not interpreted.

GNB lets you read a file one byte at a time. GNB returns a
value of type CHAR. The EOF function is valid when the physical
end-of-file is reached but not based upon any data in the file.
Attempts to read past the end of the file return $FF.

These functions give you byte-level, high-speed access to a
file. PAOC is any type that is a Packed Array Of Char,
size of the packed array is in the range 128..4095.

Pascal/MT+ Reference Manual WRITE, WRITELN Function

WRITE, WRITELN Function

Syntax:

Explanation:

If

WRITE(F, DATA);

is equivalent to

starting a new one.

the procedures default to the

They

The field

<real or non-real variable> : <field width>
or

<real variable> : <field width> : <fraction length>

6-68

WRITE and WRITELN treat strings as arrays of characters,
do not write the length byte to the file.

If you do not specify a file,
standard output file.

. • •) ;

. ..) ;

You can specify the field format for any data type,
format is

F~ := DATA;
PUT(F);

PROCEDURE WRITE (FILE VARIABLE, EXPR, EXPR,
PROCEDURE WRITELN(FILE VARIABLE, EXPR, EXPR,

WRITELN works only with TEXT files, ending an old line and
The procedure is like WRITE, except it puts a

carriage return and line feed after the data. A WRITELN with no
expressions outputs only a carriage return/line-feed.

These procedures write data to the file associated with F.
the file is a TEXT file, they convert numbers to ASCII and write the
Boolean values as the strings TRUE and FALSE.

Data
subranges, enumerated, Booleans,
characters, but cannot be structured types,

The minimum <field width>, which is optional, is a natural
number that specifies the smallest number of characters to write.
The optional <fraction length> specifies the number of digits to
follow the decimal point in a real number. For non-real numbers,
specify only the field width. The data is right-justified in the
field. A number is always expressed in exponential notation if a
number is larger or smaller than the significant digits can
represent.

can be literal and named constants, integers, reals,
enumerated, Booleans, strings, and packed arrays of

such as records.

Pascal/MT+ Reference Manual WRITE, WRITELN Function

Example:

PROGRAM DO_WRITE;

• * •) ;

) ;

Output:

6-69

If you do not specify a <field width>, real numbers are output
in exponential format, and other types are output without any extra
leading or trailing blanks.

CONST
STR
BUL
I NT
REL

WRITELN(F,
WRITELN(F,
WRITELN(F,
WRITELN(F,
WRITELN(F,
CLOSE(F, I)

END.

2:
3:
4:
5:
6:

*
*

'2:
'3:
’4:
’5:
'6:

* i
* i
* >
* i
* i

9876* 2.3456E+03*
2345.7*

= ’COLORLESS GREEN IDEAS';
= TRUE;
= 9876;
= 2345.678;

VAR
F : TEXT;
I : INTEGER;

123456
♦COLORLESS GREEN IDEAS*
* COLORLESS GREEN IDEAS*
*TRUE*9876* 2.34567E+03*

TRUE*
2345.678*

, REL, '*’);
,REL:10,’*'

’*') ;

, STR, '*'
, STR:40,
, BUL, '*'
,BUL:10,'*'
, REL:10:3,

) ;
, INT, '*'
,INT:10,'*'
'*', REL:8:1,

BEGIN
ASSIGN(F, 'SAMPLE.TXT');
REWRITE(F);
WRITE(F, ’*', 1, 2, 3);
WRITE(F, 4, 5, 6);
WRITELN(F,

Pascal/MT+ Reference Manual @BDOS Function

@BDOS Function

Syntax:
FUNCTION @BDOS;

Explanation:
@BDOS enables direct access to the CP/M operating system.

Guide for more

6-70

See the Pascal/MT+ Language Programmer's
information.

Pascal/MT+ Reference Manual @BDOS86 Function

@BDOS86 Function

Syntax:
FUNCTION @BDOS86;

Explanation;

6-71

enables direct access to the CP/M-86® operating
the Pascal/MT+ Language Programmer's Guide for more

@BDOS86
system. See
information.

@CMD FunctionPascal/MT+ Reference Manual

@CMD Function

Syntax;
FUNCTION @CMD : STRING;

Explanation;

Example:

STRING?

EXTERNAL FUNCTION @CMD : PSTRG;

6-72

BEGIN
PTR := @CMD;
S := PTR~;
ASSIGN(F,S)?
RESET(F)

END.

PROGRAM @CMD_DEMO;
TYPE

PSTRG =

@CMD lets you access the command tail of a command line. The
function retrieves the information from the command tail, moves it
to a string, and returns a pointer to this string. The command tail
starts with a blank. You can call @CMD only once, at the beginning
of the program before you open any files.

VAR S : STRING[16];
PTR : PSTRG;
F : FILE OF INTEGER;

Pascal/MT+ Reference Manual @ERR Function

@ERR Function

Syntax;
PROCEDURE @ERR;

Explanation:

6-73

@ERR is the default error handling routine in PASLIB. You can
replace @ERR with your own error handling routines. See Section
4.6.3 of the Pascal/MT+ Language Programmer’s Guide for more
information.

@HLT FunctionPascal/MT+ Reference Manual

@HLT Function

Syntax;
PROCEDURE @HLT;

Explanation:

6-74

@HLT unconditionally halts your program, and returns control to
the operating system. Section 7.6 contains an example of using
@HLT.

Pascal/MT+ Reference Manual @HERR Function

@HERR Function

Syntax:
FUNCTION @HERR;

Explanation:

6-75

You should always use @HERR in conjunction with NEW, because
the heap management system in PASLIB does not signal an error if
there is no space available when you make an allocation request.

@HERR is a predefined BOOLEAN variable that the NEW procedure
uses to return the result of an allocation request. @HERR returns
FALSE if space is available, or TRUE when there is no space.

Pascal/MT+ Reference Manual @MRK Function

0MRK Function

Syntax;
FUNCTION @MRK : INTEGER;

Explanation:

and then use

6-76

You can use @MRK to mark more than one address,
@RLS to return to any of them.

See Section 4.3.5 of the Pascal/MT+ Language Programmer's Guide
for more information.

@MRK returns the address of the top of the heap. You must save
the address if you want to use @RLS to restore the heap to its
previous state.

Pascal/MT+ Reference Manual @RLS Function

@RLS Function

Syntax:
FUNCTION @RLS (INTEGER);

Explanation:

End of Section 6

6-77

See Section 4.3.5 of the Pascal/MT+ Language Programmer’s Guide
for more information.

@RLS resets the top of the heap to the address returned by
@MRK.

Pascal/MT+ provides both sequential

Fundamentals of Pascal/MT+ I/O7.1

has Filetwo parts: a

REC

7-1

Section 7
Input and Output

*)

You declare a file variable like any other variable, as in the
following example:

VAR
Fl, F2
F3
F4
F5

section describes the Pascal/MT+ I/O (input/output)
The I/O system is hardware-independent, and allows a

In Pascal/MT+, a file variable
Information Block (FIB), and a buffer.

• The File Information Block contains information about the file
such as the file’s name and type, whether the file is open for
reading or writing, and the end-of-file and end-of-line flags.
The file named FIBDEF.LIB on your distribution disk contains a
complete description of the FIB.

: INTFILE;
: FILE OF REC;
: FILE OF ARRAY[1..10] OF CHAR;
: FILE; (* UNTYPED FILE FOR BLOCK I/O

This
system. The I/O system is hardware-independent, and
program to transfer data between memory and external devices such as
a console, printer, or disk,
and random access I/O.

TYPE
INTFILE = FILE OF INTEGER;

= RECORD
X, Y,
I, J,

END;

A file is like an open-ended array that can contain elements of
any simple or structured type. The size of a file is limited by
your operating system or by the capacity of your disk.

• The buffer holds one item of the file’s base type. The I/O
routines read data into or write data from the buffer, and it
is the only part of the file variable that you can directly
access. This buffer is sometimes called the "window variable"
because you can visualize it as a window into the file.

Z : REAL;
K : INTEGER

Pascal/MT+ Reference Manual Fundamentals of Pascal/MT+ I/O7 .1

not

ASSIGN (F3 , ' TEST .DAT’) ;

associates the name TEST.DAT with the file variable F3, and

puts the integer value 45 in the buffer of the file variable F2.

Regular I/O7.2

PUT.

The newly written item is the last element in the file.

7-2

file,
pointer character.

To write data to a file using PUT, you have to assign the data
to the buffer and then call PUT as in the following sequence:

ITEM := F";
GET (F) ;

Note however, that
, the first element

Calling GET

After that,
through the file variable.

To read data with GET, you take the data from the buffer and
then call GET, as in the following sequence:

The two basic routines for reading and writing data are GET and
GET reads the next file element into the buffer. PUT writes

the contents of the buffer to the next position in the file.

In general, you use the file variable’s name to refer to the
If you want to reference the buffer, follow the name with the

For example,

Each file must have an explicit end-of-file indicator. Most
operating systems use a control character to indicate the end-of-
file. When the I/O system encounters this character, the predefined
function EOF returns TRUE.

F2" := 45;

The reason for this sequence is not intuitive,
when you call RESET to open the file for reading,
in the file is automatically placed in the buffer,
places the next item in the buffer.

Under some conditions, however, the valid data ends before the
operating system signals an end-of-file condition. This can happen,
for example, when the data does not fill the last sector in the
file. In this case, EOF does not detect the actual end of the Data
file. Therefore, you must use a dummy record as the last record, or
save the number of records in a separate file.

F" := ITEM;
PUT(F) ;

When you declare a file variable, the I/O system does
associate a physical disk file with that variable. You have to use
the ASSIGN or OPEN procedure to associate an actual filename with
the variable. After that, all input and output to the file is

Pascal/MT+ Reference Manual Regular I/O7.2

Stmt Nest Source Statement
PROGRAM WRITE_READ_FILE_DEMO;

’O' TO ' 9 ' DO

Listing 7-1. File Input and Output

7-3

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0
0
0
1
1
1
1
1
1
1
1
2
2
2
3
3
3
2
1
1
1
2
2
2
2
3
3
3
3
2

F~;
GET(F);
WRITELN(CH);

END;
END?

PROCEDURE WRITEFILE(VAR F : CHFILE);
VAR CH : CHAR?
BEGIN

FOR CH :=
BEGIN

F" := CH?
PUT(F)

END;
END;

The program shown in Listing 7-1 demonstrates the GET and PUT
routines. The program creates a file, writes some data to it, and
then reads the data back from the file. Notice that you have to
explicitly move data in and out of the buffer.

TYPE
CHFILE = FILE OF CHAR?

VAR
OUTFILE : CHFILE;
RESULT : INTEGER;
FILENAME: STRING[16]?

You usually do not have to use GET and PUT. The procedures
READ and WRITE allow you to read and write data without worrying
about the buffer. Both routines can handle any filetype. You do
not have to treat the console and other devices differently when you
use READ and WRITE.

If you are reading from the console, you have to call GET
before you access the buffer, because initially there is nothing in
the buffer, and the program would wait indefinitely for the first
character.

PROCEDURE READFILE(VAR F : CHFILE);
VAR I : INTEGER;

CH : CHAR;
BEGIN

FOR I := 0 TO 9 DO
BEGIN

CH : =

Pascal/MT+ Reference Manual Regular I/O7.2

Stmt Source StatementNest

Listing 7-1. (continued)

7.3 INP and OUT Arrays

7-4

31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

1) Two predeclared arrays, INP and OUT, of type BYTE, can be
subscripted with port number constants and expressions.

1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
3
3
3
3
3
3
3
2
1

Pascal/MT+ allows direct manipulation of input and output
hardware ports through two features.

You can subscript these arrays with integer expressions in
the range 0 to 255. Two types of syntax are used with this
feature. The code is always generated in-line for INP and
OUT, but always uses variable port I/O instructions.

The INP array can be used only in expressions. The OUT
array can be used only on the LEFT side of an assignment
statement. The most significant byte of INP contains 00 if
the values from INP are assigned to variables of type
INTEGER.

BEGIN
FILENAME := 'TEST.DAT';
ASSIGN(OUTFILE,FILENAME);
REWRITE(OUTFILE);
IF IORESULT = 255 THEN
WRITELN('Error creating ',FILENAME)

ELSE
BEGIN
WRITEFILE(OUTFILE);
CLOSE(OUTFILE,RESULT);
IF RESULT = 255 THEN

WRITELN('Error closing ',FILENAME)
ELSE

BEGIN
WRITELN('Successful close of ',FILENAME);
RESET(OUTFILE)?
IF IORESULT = 255 THEN

WRITELN('Cannot open ',FILENAME)
ELSE

READFILE(OUTFILE)
END;

END;
END.

Pascal/MT+ Reference Manual 7.3 INP and OUT Arrays

Examples:

Examples:

Redirected I/O7.4

Example;

When you use this mechanism, keep in mind the following points:

• You must show the declaration of these routines.

7-5

READ([ADDR(getch)], ...);
WRITELN([ADDR(putch)], ...);

FUNCTION getch : CHART­
PROCEDURE putch(outputch: CHAR);

OUT[(PORTNUM +1)] := $88;
OUT[0] := $88;
J := INP[(PORTNUM)];

INCHAR := INPORT_W(PORTNUM);
OUTPRT_W(PORTNUM,OUTCHAR);
OUTPRT_W($004F,OUTCHAR);

2) A function INPORT_W, and a procedure OUTPRT_W manipulate I/O
ports. Although they are present in the standard library,
you must declare them as:

You can write the "gatch" and "putch" routines in Pascal/MT+ or
in assembly language. The parameter requirements for these routines
are

EXTERNAL FUNCTION INPORT_W (PORTNUM:INTEGER):WORD;
EXTERNAL PROCEDURE OUTPRT_W(PORTNUM:INTEGER; DATA:WORD);

Pascal/MT+ has a mechanism you can use to write your own
character-level I/O drivers. This facility lets a ROM-based program
be system-independent. It also works with user-written character
input and output routines that get their data from, or write it to,
strings or I/O ports. It lets them use the conversion routines built
into the system Read-Write code.

Redirected I/O is an alternative to the GET-character and PUT-
character routines in the run-time package. Redirected I/O is
useful when you do not want the regular I/O from your operating
system. Also, this feature works well for converting numbers into
strings and strings into numbers. The sample program shown in
Listing 7-2 demonstrates this application.

Pascal/MT+ Reference Manual 7.4 Redirected I/O

You can

2438 .

44 demonstrates the concept of redirected I/O in this

WRITELN([ADDR(WIR)] ,1) ;

7-6

the test variable I is assigned the value
line 43 the regular WRITELN statement writes it to the

you want for the target-system console device,
programs that do not use redirected I/O.

Line
program.

CONV.
is 0.

On
Then ,
console.

The reason is that the @RST (read string) routine tries to read
directly from the console device when no file is specified,
rewrite the @RST routine to perform any input and editing functions

This does not affect

I/O because EOLN and EOF both operate on files,
cannot read into STRING variables requiring
because READLN uses EOLN.

Referring to the program in Listing 7-2, note that WIR, the PUT
character routine, (line 8) writes to a global string, named CONV,
and GETCH, the GET character function, (line 28) gets its character
input from this global string.

Note that READLN and EOF/EOLN cannot be used with redirected
Note also that you

the use of READLN,

• You can assign the address of the procedure to a pointer using
the ADDR function and then specify this pointer. For example,
READ([P],...). This saves typing time, but not execution time.

• The names need not be getch/putch, but the GET character
routine must not have parameters, and the PUT character routine
must have one parameter of type CHAR.

The test program code begins on line 39.
initialize the variables required by WIR and GETCH.
Boolean
CONV is

The first statements
CONVERTING is a

value that is TRUE when WIR is writing a number to
initialized to the empty string, so its length byte

Here, WIR’s address is passed to the WRITELN routine so that
WIR is used instead of the PUT character routine in the run-time
package. The run-time routines convert the number I into characters
that are passed to WIR for output to the string, CONV. In this way,
the contents of I are converted to a string. Note that WIR must
always be called with a WRITELN because it uses the carriage return
to signal that the number is complete.

line 42,
on

Redirected I/OPascal/MT+ 7.4Reference Manual

Stmt Source StatementNest
PROGRAM CONV_DEMO;

0 THEN (* SOMETHING LEFT TO CONVERT *)

(* RETURN BLANK-NO MORE CHARACTERS

(* FIELD WIDTH MAY BE GIVEN *)

(* READLN MAY NOT BE USED *)

Listing 7-2. Redirected I/O

7-7

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

VAR
I : INTEGER;
CONV : STRING;
CONVERTING : BOOLEAN;

0
0
0
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
3
3
3
4
4
4
4
2
1
1
1
2
2
3
3
3
3
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1

*)
)BEGIN (MAIN PROGRAM

CONVERTING := FALSE;
CONV := ’';
I := 2438;
WRITELN(’1=' ,1) ;
WRITELN([ADDR(WIR)],I);
I := 0;
WRITELN('!=' ,1) ;
WRITELN(’CONV=',CONV);
READ([ADDR(GETCH)] , I) ;
WRITELN('!=', I);

END.

ELSE
BEGIN

CONV := '';
IF CH <> CHR($0D) THEN

BEGIN
CONV := CONCAT(CONV,CH);
CONVERTING := TRUE

END
END;

END;
FUNCTION GETCH : CHAR;
BEGIN

IF LENGTH(CONV)
BEGIN
GETCH := CONV[1];
DELETE(CONV,1,1);

END
ELSE

GETCH :=
END;

PROCEDURE WIR(CH : CHAR);
BEGIN

IF CH = CHR($0A) THEN (* DONE,IGNORE LINEFEED *)
EXIT;

IF CONVERTING THEN
IF CH <> CHR($0D) THEN (* NOT AT END OF STRING *)

CONV := CONCAT(CONV,CH)
ELSE

CONVERTING : = FALSE (* REACHED END-DONE *)

Pascal/MT+ Reference Manual Sequential I/O7.5

Sequential I/O7.5

TEXT Files7.5.1

files differ from files of type CHAR in the following

• TEXT files are subdivided into lines.
andOF CHAR, PACKED

• TEXT files accept STRINGS as data.

This Ja is # a h line Q This 0 is h the |zf next # line Q/\ This |zf is |zf the ty last line Q ®

Figure 7-1. Lines in a TEXT File

7-8

The
window variable,
on disk.

the data
Thus, you can read the data

TEXT
ways:

A
lines.
a
indicator,

• Boolean values convert to the ASCII sequence TRUE or FALSE on
write, but TRUE or FALSE do not convert to Boolean values.

subdivided into
A line is

format of a TEXT file in memory is a FIB and a 1-byte
Figure 7-1 illustrates the way a TEXT file appears

• You can access a TEXT file with GET and PUT for character I/O
(which do not do conversions), READ and WRITE, and READLN and
WRITELN.

Sequential I/O means that the I/O system accesses
items in a file in a serial fashion,
items one after the other, and you can add items only at the end of
the file.

• TEXT files accept both ARRAY[1..N]
ARRAY[1..N] OF CHAR as data.

A TEXT file is similar to a file of CHAR except that numbers
are automatically converted when they are read from and written to
the file. Numbers written to TEXT files convert to ASCII, and can
be formatted. Numbers read from TEXT files convert to binary.

TEXT file is a file of ASCII characters
The predefined type TEXT is used for ASCII files,

sequence of characters terminated by a nonprintable end-of-line
usually a carriage return and a line-feed.

Sequential I/OPascal/MT+ Reference Manual 7.5

results:

: 9 : 4);

Then, if

are

This # is b a b string

Within the READ_DATA procedure, lines 20 and 21 write the data
to the console in the same format as in the file.

7-9

STRINGS must always be read with
terminated with end-of-line characters.

WRITELN(F,S);
WRITELN(F,I:4, 45.6789

Referring to Listing 7-3,
line 31,
first blank terminates the number. However, the window variable
would advance past the real number to the end of the file,
you try to read the real number, you would only get the EOF.

The body of the WRITE_DATA procedure can be written in the
following manner with the same

note that if a READLN were used on
the integer value 35 would be read properly because the

However,

The main program stops after processing the call to READ_DATA
on line 43. A CLOSE is not necessary because the data in TEXT.TST
is not altered from the last CLOSE on that file.

35 © A
the value returned for S would be the entire line, including the
ASCII 35.

The program in Listing 7-3 writes data to a TEXT file and reads
it back for display on the output device. The procedure WRITE_DATA
writes to the TEXT file and READ_DATA retrieves the information
stored in the file.

The field format can be specified for any data type. For non-
real numbers only the field width is specified, not the number of
places after the decimal point. The data is right-justified in the
field. The output is always expressed in exponential notation if a
number is larger than the significant digits can represent. It is
also written in exponential notation if the field width is too small
to express the number.

a READLN because they
If the data in the file was

Pascal/MT+ Reference Manual Sequential I/O7.5

Stmt Nest Source Statement
PROGRAM TEXT_IO_DEMO;

',R:9:4);

Listing 7-3. TEXT File Processing

7-10

I
S

0
0
0
1
1
1
1
1
2
2
2
2
1
1
1
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
3
3
3
3
3
3
2
1

PROCEDURE READ_DATA;
VAR R : REAL;
BEGIN
READLN(F,S);
READ(F,I);
READ(F,R);
WRITELN(S);
WRITELN(I:4,’

END;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

VAR F : TEXT;
: INTEGER;
: STRING;

PROCEDURE WRITE_DATA;
BEGIN
WRITELN(F,S);
WRITE(F,I:4);
WRITELN(F,45.6789:9:4);

END;

BEGIN
ASSIGN(F,'TEXT.TST');
REWRITE(F);
IF IORE7SULT = 255 THEN

WRITELN('Error creating')
ELSE

BEGIN
I := 35;
S := 'THIS IS A STRING';
WRITE_DATA;
CLOSE(F,I);
IF IORESULT = 255 THEN

WRITELN('Error closing')
ELSE

BEGIN
RESET(F);
IF IORESULT = 255 THEN

WRITELN('Error opening')
ELSE

READ_DATA;
END;

END;
END.

Sequential I/O7.5Pascal/MT+ Reference Manual

Writing to the printer7.5.2
The

The

Stmt Source StatementNest

WRITE DATA AND TEXT TO THE PRINTER

Listing 7-4. Writing to a Printer and Number Formatting

7-11

Once again, note that a CLOSE is not necessary because the data
was already written and the buffer does not need to be flushed.

1LST:'
device.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2

filename
the list

writing.
Thus, on

PROGRAM PRINTER;
(* *)
VAR

F : TEXT;
I : INTEGER?
S : STRING;
R : REAL;

Listing 7-4 shows a typical way to write to the printer,
program declares a file variable of type TEXT on line 5, and then on
line 11 assigns this file variable to the printer,

passed to ASSIGN means that F is associated with
All data written to F routes to the printer.

Next, REWRITE is called to open the list device for
Lines 23 and 25 use standard Pascal formatting directives,
line 23, R is written in a field seven characters long with three
digits to the right of the decimal place.

BEGIN
ASSIGN(F,’LST:');
REWRITE(F);
IF IORESULT = 255 THEN

WRITELN('Error rewriting file')
ELSE

BEGIN
S := 'THIS LINE IS A STRING';
I := 55;
R := 3.141563;
WRITE(F,S);
WRITE(F,I);
WRITELN(F);
WRITELN(F,R:7:3)?
WRITE(F,I,R);
WRITE (F, 1: 4 , R: 7 : 3);
WRITELN(F);
WRITELN(F,'THIS IS THE END.')

END
END.

Pascal/MT+ Reference Manual 7.6 Random Access I/O

7.6 Random Access I/O

7-12

In this program, note that the procedure ERRCHK checks IORESULT
for errors encountered in the operating system.

After SEEKREAD or SEEKWRITE has accessed a file, you must CLOSE
the file and reopen it to access it with the sequential methods GET,
READ, PUT, and WRITE.

Sequential records within a file written with SEEKWRITE are
stored contiguously on the disk, regardless of the number of sectors
occupied by a record. Because of this, you can access a file
created using SEEKWRITE after a CLOSE and RESET using sequential
access methods.

With random files, a file that has been RESET can either be
read with SEEKREAD or written to with SEEKWRITE. Sequential files,
on the other hand, can be read only after a RESET. SEEKREAD can
access a new file created with REWRITE after you have written data
to the file.

The sample program in Listing
demonstrates random file access,
record file of type PERSON,
str ings:
lines 79

The procedure READRECS asks for a record number, reads the
record from the file, and writes it directly from window variable to
the screen. Line 47 calls SEEKREAD and gives it the filename and
record number. Line 51 writes the information.

Note that if record 0 and 2 contain data, you can attempt to
read record 1, even though it contains no data. Thus, you must be
careful when the system is unable to see errors in accessing
unwritten records.

The main program begins on line 69 by asking if you want to
create a file or open one. After you respond, line 78 resets the
file. The repetitive loop allows reading and writing to continue
until you stop it with a Q input.

7-5 called RANDOM_DEMO,
This program creates or uses a

Each record in the file contains two
the name and the address of a person. The loop between
and 90 allows you to read any existing record with the

procedure READRECS, or to write to any record with the procedure
WRITEREC.

A random file is a typed Pascal file accessed with the random
access procedures SEEKREAD and SEEKWRITE. You can randomly access
any file by specifying the relative record number you want. This
differs from sequential access in which you must access record 0
before record 1, and so on. In Pascal/MT+, you can randomly access
up to 65,536 records.

Random Access I/OPascal/MT+ Reference Manual 7.6

to

Izflzfb'blzftf

Record 2

Figure 7-2. Records in a File

7-13

Brown, Susan
Pacific Grove

Record 1

Smith, John
Monterey
Record 0

Jones, Alan
Carmel

Record 3

Figure 7-2 shows how the file looks after writing data
records 0, 1, and 3.

The procedure WRITERECS asks you for the data it needs to fill
a record of type PERSON (lines 56 through 61), and for the record
number it should write (lines 62 and 63). Then on line 64,
WRITERECS calls SEEKWRITE to write the data to the disk.

VAR TEMP : PERSON;
...TEMP := BF";

Note also that the window buffer works just as if it were
declared like a pointer to a record type. To save the data
elsewhere, you must make an assignment to a data structure of the
same type as the file, in this case type PERSON. For example,

Pascal/MT+ Reference Manual 7.6 Random Access I/O

Stmt Nest Source Statement

PROGRAM RANDOM_DEMO;

EXTERNAL PROCEDURE @HLT;

(★DEFAULT*)

Random File I/OListing 7-5.

7-14

END;
END;

1
2
3
4
5

0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
1
1
1
2
2
2
4
4
4
3
3
3
3
3
3
3
3
2
1

PROCEDURE HALT;
BEGIN
CLOSE (BF,I) ;

@H LT
END;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

= RECORD
NAME : STRING;
ADDRESS : STRING;

END;

: FILE OF PERSON;
: STRING;
: INTEGER;

PROCEDURE ERRCHK;
BEGIN

ERROR := TRUE;
CASE IORESULT OF

0 : BEGIN
WRITELN (' SUCCESSFUL') ;
ERROR := FALSE;

END;
: WRITELN ('READING UNWRITTEN DATA');
: WRITEIM ('CP/M ERROR') ;
: WRITELN ('SEEKING TO UNWRITTEN EXTENT');
: WRITELN ('CP/M ERROR') ;
: WRITELN('SEEK PAST PHYSICAL END OF DISK')

ELSE
WRITELN ('UNRECOGNIZABLE ERROR CODE :',IORESULT)

TYPE
PERSON

VAR
BF
S
I
ERROR : BOOLEAN;
CH : CHAR;

Pascal/MT+ Random Access I/O7.6Reference Manual

Listing 7-5. (continued)

End of Section 7

7-15

PROCEDURE READRECS;
BEGIN
WRITE('RECORD NUMBER ? ') ;
READLN(I);
SEEKREAD(BF,I);
ERRCHK;
IF ERROR THEN

EXIT;
WRITELN(BF".NAME,'/',BF".ADDRESS);

END;

END
UNTIL FALSE;

END.

ELSE
WRITELN('ENTER R, W OR Q ONLY’)

READRECS;
WRITERECS;
HALT

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

1
1
2
2
2
2
2
2
2
2
1
1
1
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
2
2
2
2
1
1
1
2
2
2
2
2
3
3
3
3
3
2
1

PROCEDURE WRITERECS;
BEGIN
WRITE('NAME?');
READLN(S);
BF".NAME := S;
WRITE('ADDRESS?');
READLN(S);
BF".ADDRESS := S;
WRITE('RECORD NUMBER?');
READLN(I);
SEEKWRITE(BF,I);
ERRCHK;

END;
BEGIN
WRITE('CREATE FILE?');
READLN(S);
IF S[1] IN ['Y',' y'] THEN

BEGIN
ASSIGN(BF,'BIG.FIL');
REWRITE(BF);
CLOSE(BF,I);

END;
ASSIGN(BF,'BIG.FIL');
RESET(BF);
REPEAT
WRITE('R)EAD,W)RITE OR Q)UIT? ');
READ(CH);
WRITELN;
CASE CH OF

'R','r'
'W','w'
'Q','q'

Pascal/MT+ Reserved Words

Pascal/MT+ Predefined Identifiers

End of Appendix A

A-l

Appendix A
Reserved Words and Predefined indentifiers

@BDOS
@BDOS86
@CMD
@ERR
@HERR
@HLT
@MRK
@RLS
ABS
ADDR
ARCTAN
ASSIGN
BLOCKREA
BLOCKWRI
BOOLEAN
BYTE
CHAIN
CHAR
CHR
CLOSE
CLOSEDEL

AND
ARRAY
BEGIN
CASE
CONST
DO
DOWNTO
ELSE

CLRBIT
CONCAT
COPY
COS
CREATE
CSP
CSPF
DELETE
DISPOSE
EOF
EOLN
EXIT
EXP
FALSE
FILLCHAR
GET
GNB
HI
INLINE
INP
INPUT

END
FILE
FOR
FORWARD
FUNCTION
GOTO
IF
IN

INSERT
INTEGER
IORESULT
LENGTH
LO
LONG
LWRITEHEX
MAXAVAIL
MAXINT
MEMAVAIL
MOVE
MOVELEFT
MOVERIGHT
NEW
ODD
OPEN
OPENX
ORD
OUT
PAGE
POS

LABEL
MOD
MODEND
MODULE
NIL
NOT
OF
OR

PRED
PURGE
PUT
READ
READHEX
READLN
REAL
RESET
REWRITE
RIM85
ROUND
SEEKREAD
SEEKWRITE
SETBIT
SHL
SHORT
SHR
SIM85
SIN
SIZEOF
SQR

PACKED
PROCEDURE
PROGRAM
RECORD
REPEAT
SET
THEN
TO

SQRT
STRING
SUCC
SWAP
TEXT
TRUE
TRUNC
TSTBIT
WAIT
WNB
WORD
WRD
WRITE
WRITEHEX
WRITELN
XIO
XLONG

TYPE
UNTIL
VAR
WHILE
WITH

Backus-Naur Form (BNF) notation uses the following conventions:

: : =

They can be repeated 0

literal; enter them as they

For example,

<iden tifier>

End of Appendix B

B—1

Appendix B
Pascal/MT+ Syntax

• { } Items within braces are optional,
or more times.

::= <letter> {<letter> | <digit
states that an identifier is a letter followed by 0 or more letters,
digits, or underscores.

A vertical bar indicates a choice between the items it
separates. Pronounce it "or."

The expression on the right of this symbol defines the
item on the left. You can pronounce the symbol "is rewritten
as" or "is defined as."

< > Items within angle brackets are self explanatory or
further defined in the syntax specifications.

• Items not in angle brackets are
appear.

(not).

differences betweenthe ISO

End of Appendix C

C-l

Appendix C
Differences From ISO Standard

- bit and byte manipulation,
- fast file I/O,
- random file access,
- move and fill procedures,
- address and size of functions,
- string manipulation,
~ heap management facilities.

• Additional predefined scalars: BYTE, WORD, LONGINT, STRING.
• Expressions can contain input from I/O ports.
® Assignments can be made to I/O ports.
• Operators on integers & (and), !,| (or), and ~,\,?
• CASE drops through on no match.
• ELSE on CASE statement.
• Interrupt, External, and Assembly Language procedures.
• BCD fixed point and binary floating-point reals.
• Long and short INTEGER data types.
• Modular compilation facilities.
• Redirectable I/O facilities (user written character I/O).
• Additional built-in procedures and functions:

The following list summarizes
standard Pascal and Pascal/MT+.

The following list summarizes the additions to ISO standard
Pascal that are implemented in Pascal/MT+.

• Identifiers are significant in only the first 8 characters.
• Variables are not packed at the bit level.
• The order of declarations can vary.
• The null string is allowed.
• CHAR is not implemented as ISO string because variable-length

strings are supported (PACKED ARRAY [l..n] OF CHAR).

Not designed for the novice. A precise language definition.

Reading, Massachusetts:

A good introduction for self-teaching.

Manual and

First definition of Pascal. Best used as a reference document.

Scientists and Engineers.

Advanced textbook.

End of Appendix D

D—1

Appendix D
Bibliography

Conway, Richard, David Gries, and E. Carl Zimmerman. A Primer on
Pascal. Cambridge, Massachusetts: Winthrop Publishers, 1976.

Wilson, I.R. and A.M. Addyman. A Practical Introduction to Pascal.
New York: Springer-Verlag, 1979.

Draft Proposal ISQ/DP 7185; Programming Languages-Pascal. Can be
obtained from American National Standards Institute,
International Sales Department, 1430 Broadway, New York, New
York, 10018.

Grogono, Peter. Programming in Pascal.
Addison-Wesley, 1978.

Miller, Alan R. Pascal Programs for
Berkeley, Ca.: Sybex, Inc. 1981.

Jensen, Kathleen, and Niklaus Wirth. Pascal User
Report. New York: Springer-Verlag, 1974.

Findlay, William, and David A. Watt. PASCAL: An Introduction to
Methodical Programming. Potomac, Maryland: Computer Science
Press, 1978.

Index

A

C

3-7, 6-6

B
6-22

D

Index-1

", 2-1, 7-2
@BDOS, 6-69
@BDOS86, 6-70
@CMD, 6-71
@ERR, 6-72
@HLT, 6-73
@HERR, 6-74
@MRK, 6-75
@RLS, 6-76

absolute value, 6-11
actual parameters, 6-3
AND,

Boolean operator, 4-4
angle,

arctangent of, 6-13
cosine of, 6-22
sine of, 6-58

arithmetic,
expressions, 4-3
functions, 6-8
operators, 4-1

array bounds,
upper, lower,
elements, 3-7
indexing, 3-4, 3-7
subrange, 3-7
type definition, 3-7

ASCII character set, 3-2, 7-9
value, 4-4, 6-18, 6-50, 6-67
value of a character, 3-3

assignment operator, 5-1
statement, 5-1, 5-9, 6-2

data conversion, 3-4
data type CHAR, 3-3
data type,

BOOLEAN, 3-3
BYTE, 3-5
compatible, 4-5,6-3
CHAR, 3-3
enumerated, 3-2
INTEGER, 3-4

BCD,
real numbers, 3-5

bit and byte manipulation
routines, 6-8

block, 1-1, 1-5, 3-1, 5-4, 6-5
BLOCKREAD, 6-16
BLOCKWRITE, 6-16
Boolean expression, 4-3, 5-6,

5-7, 5-8
Boolean operator
AND, OR, NOT, 4-4

Boolean values,
TRUE, FALSE, 3-3, 5-6, 5-7,

5- 8, 6-30, 6-41, 6-49,
6- 64, 6-66, 6-67, 7-6, 7-9

BOOLEAN,
data type, 3-3

bounds in a subrange, 3-6
interval in a set, 4-6
set’s base type, 3-9

BYTE,
data type, 3-5

CASE statement, 5-2
in a variant record, 3-11

CHAR,
data type, 3-3

character array manipulation
routines, 6-8

CHR,
pseudo-function, 3-3

command line, 6-71
command tail, 6-71

comments, 1-6
compiler, 1-6, 3-1, 3-2, 3-7,

3-8, 5-6, 5-9, 6-44, 6-50
command-line option, 3-5
command-line option @, 3-6

concatenation, 6-20
conformant arrays, 6-6
constant, 2-2
control variable in a FOR

DOWNTO statement, 5-4
control variable in a FOR

statement, 5-3
cosine,

of an angle,
CP/M filename, 6-42

5-4

7-6

E

6-53, 7-6

F

Index-2

6-41
6-43
6-46
6-47

FALSE,
BOOLEAN value, 3-3

fields,
elements of a record, 3-10
names in a record, 3-11

files, 3-1, 4-3, 5-1, 6-19
buffer, 7-1, 7-2, 7-3, 7-12
Information Block, 7-1, 7-9
variable, 6-14, 6-48, 6-50,

LONGINT, 3-4
ordinal, 3-5,
pointer, 3-6
record, 3-10
scalar, 3-1
sets, 3-9
short, 3-4
simple, 3-1, 5-4
structured, 3-1, 3-7
subrange, 3-2
WORD, 3-5

decimal integer, 2-2
declaration section, 1-1, 6-2
default length of a string, 3-8
definition section, 1-1
device names, 6-14
DIV operator, 4-3
DO,

reserved word, 5-3
dot operator, 3-11
dynamic allocation, 6-9, 6-24,

6-37,6-40
dynamic strings, 3-8, 3-9

6-42, 6-52,

6-49, 6-53, 6-66,

5-2, 5-4

6-1, 6-2,

element of a structure, 5-4
empty statement, 5-3
end-of-file indicator, 7-2
end-of-line indicator, 7-9
environment,

CP/M, 6-54, 7-13
exponentiation, 2-3, 4-3, 6-28,

6- 67, 7-10
expressions, 4-1, 5-1, 5-4
external,

devices, 7-1
filename, 6-14
EXTERNAL FUNCTION INPORT_W,

7- 5
identifiers, 2-2
EXTERNAL PROCEDURE OUTPRT_W,

7-5

6-53, 7-1, 7-2
fixed-point format, 2-3
floating-point,
format,
real numbers, 3-5

FOR DOWNTO statement,
FOR statement, 5-3
formal parameters, 6-3
FORWARD declaration, 6-2

fragmentation, 6-37
free variant, 3-12
function, 1-1, 1-4,

6- 27
FUNCTION,

@BDOS, 6-69
@BDOS86, 6-67
@CMD, 6-71
@HERR, 6-74
@MRK, 6-75
@RLS, 6-76
ABS, 6-11
ADDR, 6-12,
ARCTAN, 6-13
CHR, 6-18
CONCAT, 6-20
COPY, 6-21
COS, 6-22
EOF, 6-25,

7- 2, 7-6
EOLN, 6-25,
EXP, 6-28
GNB, 6-66
HI, 6-31
IORESULT, 6-34,

7-13
LENGTH, 6-35
LN, 6-36
LO, 6-31
MAXAVAIL, 6-37
MEMAVAIL, 6-37
ODD,
ORD,
POS,
PRED,
RIM85, 6-54
ROUND, 6-55
SHL, 6-57
SHR, 6-57
SIN, 6-58
SIZEOF, 6-59
SQR, 6-60
SQRT, 6-61
SUCC, 6-62
SWAP, 6-31
TRUNC, 6-63

5-5
H

N

I

3-4

L O

M

Index-3

main program block,
main variant, 3-12

members of a set, 4-6, 5-1
miscellaneous functions, 6-10
MOD operator, 4-3
MODEND,

reserved word, 1-5
module, 1-4
MODULE,

reserved word, 1-5
mutually recursive procedures,

6-1

garbage collection, 6-37
global,

declaration, 1-5
scope, 2-2

GOTO statement, 5-2,

hardware ports, 7-5, 7-6
heap, 6-37, 6-54
hexadecimal integer, 2-2

TSTBIT, 6-64
WNB, 6-66

G

label,
on a GOTO statement, 5-5
on CASE statements, 5-2

least-significant bit, 3-3
length of identifiers, 2-1
LENGTH,

predefined function, 3-8
local declaration, 1-5
logical expressions, 4-5
logical operators, 4-2

AND, OR, one’s complement NOT,
4-5

long integer, 2-2
long integer literal, 2-3
LONGINT,

data type, 3-4
literal

1-1, 1-4

ODD,
pseudo-function, 3-3

one's complement NOT, 4-5
operator, 4-1

arithmetic, 4-1
assignment, 5-1
Boolean, 4-2
logical, 4-2
precedence, 4-1
relational, 4-2
set, 4-3

OR,
Boolean operator, 4-4

ORD,
pseudo-function, 3-3

ordinal,
data types, 3-2, 3-5
type, 3-2, 3-6, 3-9, 5-2, 5-4,
value, 3-6, 6-43, 6-47

ordinal value of FALSE, 3-3
ordinal value of TRUE, 3-3
OUT,

named constant, 2-3, 3-6, 6-38,
6-65

named constants, 6-67
native machine word, 3-3
natural logarithm, 6-28, 6-36
nested block, 1-1, 1-5,
procedure, 6-12
variants, 3-11, 6-40

nested WITH statements, 5-9
nesting comments, 1-6
NIL,

pointer value, 3-6
nonvariant record, 3-10
NOT,

Boolean operator, 4-4
null pointer, 3-6
numeric literal, 2-2

identifier, 1-3, 1-5, 2-1, 3-11
IF statement, 5-6
indexes for arrays,
inner block, 1-5
INP,
predeclared array, 7-5

input/output routines, 6-9
INTEGER,
data type
literal, 2-2, 3-4

internal data representation,
3-4, 3-5

7-2, 7-12

P

3-3 6-40

3-7
6-66, 7-2,

7-2

3-6

Q

quotient, 4-3

Index-4

7-2,
7-9

3-3
3-3
3-3

packed structure,
PACKED,

reserved word,
parameters,

variable, 6-4
Pascal statements, 5-1
passing arrays to procedures,

6-6
passing procedures and

functions, 6-4
pointer character,

", 2-1, 3-6, 7-2
pointer type compatibility, 3-6
pointer,

data type,
null, 3-6

precedence of operators, 4-1, 4-4
predecessor of a scalar, 6-47
predeclared arrays,

INP, OUT, 7-5
predefined data type,

STRING, 3-8
predefined function,

LENGTH, 3-8
predefined functions and

procedures,
arithmetic, 6-8
bit and byte manipulation

routines, 6-8
character array manipulation

routines, 6-8
dynamic allocation routines, 6-8
input/output routines, 6-8
string handling routines, 6-8
transfer functions, 6-8
miscellaneous routines, 6-8

predefined identifier, 1-3, 2-2
predefined simple data types,

3-2
printable character,
procedure, 1-1, 1-4,
procedure definition, 6-2
procedure parameters,

actual, formal, 6-3
procedure-oriented language, 6-1
PROCEDURE,

@ERR, 6-72

NEW,
OPEN,
PACK,
PAGE,
PURGE, 6-48
PUT, 6-49, 6-66,
READ, 6-50, 7-3,
READHEX, 6-51
READLN, 6-50,
RESET, 6-14,
REWRITE, 6-14,
RIM85, 6-54
SEEKREAD, 6-56, 7-13
SEEKWRITE, 6-56, 7-13
SETBIT, 6-64
UNPACK, 6-44
WAIT, 6-65
WRITE, 6-67, 7-3, 7-9
WRITEHEX, 6-51
WRITELN, 6-67, 7-7, 7-9

program,
heading, 1-2
parameters, 1-2

pseudo-function,
CHR,
ODD,
ORD,
WORD,

pseudo-functions, 6-21

7-6, 7-9, 7-10
6-52, 7-2, 7-13

6-53, 7-12

6-52, 6-56, 7-10,

7-3, 7-9

@HLT, 6-73
ASSIGN, 6-14, 6-53,
CHAIN, 6-17
CLOSE, 6-19,

7-12, 7-13
CLOSEDEL, 6-19
CLRBIT, 6-64
DELETE, 6-23
DISPOSE, 6-24,
EXIT, 6-27
FILLCHAR, 6-29
GET, 6-30 , 6-52,

7-3, 7-9
INLINE, 6-32
INSERT, 6-33
LWRITEHEX, 6-51
MOVE, 6-38, 6-59
MOVELEFT, 6-38
MOVERIGHT, 6-38

6-40
6-42,
6-44
6-45

predeclared array, 7-5
outer block, 1-5
outermost block, 1-1
overflow, 4-3
overlays, 6-12

2-3, 3-3
6-1, 6-27

R

4-3

3-7

2-2
S

T

5-6,
4-5

4-3
3-9

6-61

Index-5

5-2
5-4

3-9, 6-20
3-9

3-6
3-1

file s,

7-1
6-58

3-1, 5-4
6-62

2-3
6-12

TEXT file, 6-14, 6-50, 6-67, 7-9
transfer functions, 6-10
TRUE,

BOOLEAN value, 3-3
FALSE, Boolean values,

5-8
type checking,type checking, 3-2, 6-38, 6-50
type conversion, 3-2
type conversion functions,
FUNCTION SHORT, 3-4
FUNCTION LONG, 3-4
FUNCTION XLONG, 3-4

type conversion operator, 3-2
type definition, 3-1
nonvariant record, 3-11
variant record, 3-12

scalar data type,
scalar type, 6-43,
scientific notation,
scope, 1-5, 2-2, 5-5,

global, 1-5
local, 1-5
of a CASE statement,
of a control variable,

semicolon
as a valid statement, as a

statement separator, 5-3
statement separator, 1-4

sequential I/O, 7-1, 7-9
set constructor, 4-5
set expressions, 4-3,
set operations,

union, intersection,
difference, 3-9

set operators, 3-9,
+ , *, -.pp, 4-6

set type definition,
sets,

data type, 3-9
short data type, 3-4
simple data type, 3-1, 5-4
simple type, 4-3,
sine of an angle,
square root of a number,
statemen ts

assignment, 5-1
statements, 1-4

CASE, 5-2
compound, 5-1
empty, 5-3
FOR, 5-3
FOR DOWNTO, 5-4
GOTO, 5-2, 5-5
IF, 5-6
Pascal, 5-1
REPEAT, 5-7
WHILE, 5-8
WITH, 5-8

str ing,
handling routines, 6-10
indexing, 3-8
literal, 2-3,
static, 2-9,
zero-length, 6-20

STRING,
predefined data type, 3-8

strong type check, 3-2,
structured data types,

arrays, records, sets,
3-7

structured type, 6-67, 7-1
subrange, 3-5, 3-6
subrange data types,

5-1, 6-62, 6-67
successor of a scalar, 6-62
syntax, 5-1

3-2, 3-9,

random access I/O, 6-56, 7-1, 7-13
random record number, 7-13
real number, 2-2, 3-5
real-number literal, 2-3
record,

data type, 3-10
recursive procedures, 6-1
redirected I/O, 7-5, 7-6
relational operators, 4-2,
relational operators on sets

IN, =, <>, <=, >=, 4-6
remainder, 4-3
REPEAT statement, 5-7
reserved word PACKED,
reserved word,

DO, 5-3
PACKED, 3-7

reserved words, 2-2
run-time entry points,

u

3-5,

V

w

3-3

Index-6

up-level reference, 1-5
user-defined ordinal type,

6-59
user-defined ordinal types,

6-12

weak type checking, 3-6
WHILE statement, 5-8
window variable, 6-25, 6-30,

6-49, 6-52, 6-56, 7-1, 7-9
WITH statement, 5-8
WORD,

data type, 3-5
pseudo-function,

value parameters, 6-3
var iable,

address, 6-12
allocation of space, 3-1
declaration, 3-1
parameter, 6-3

variant record, 3-10, 6-40

■■

■

__

_____ 1______________

MISCELLANEOUS

Licensed Program

3516-0000-00124Serial Number

Signature

Company

Address

City State Zip

Country Date

You may not sublicense, assign or transfer the license or the Program(s) except as
expressly provided in this Agreement. Any attempt otherwise to sublicense, assign or
transfer any of the rights, duties or obligations hereunder is void, and will automatically
terminate your license and right to use this program.

This Agreement will be governed by the laws of the State of Ohio where NCR Corporation
has its principle office.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT
AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREE­
MENT BETWEEN US WHICH SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN US OR
BETWEEN YOU AND ANY DEALER OR DISTRIBUTOR RELATING TO THE SUBJECT
MATTER OF THIS AGREEMENT.

Please complete and return this card. Keep the Customer Program License Agreement
in your files.
I have read t ie NCR Corporation Customer Program License Agreement and agree to
abide by the terms contained in it.

NCR CORPORATION
CUSTOMER PROGRAM LICENSE AGREEMENT

Should you have any questions concerning this Agreement, you may contact NCR by
writing to: NCR CORPORATION

P.O. Box 507
Dept. CSP-5
Dayton, Ohio 45409
USA

PASCAL/MT+™

Name
(Please type or print)

min
POSTAGE WILL BE PAID BY ADDRESSEE

DEPT CSP-5

NCR CORPORATION
P.O. BOX 507
DAYTON, OHIO 45409
USA

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 3 DAYTON, OHIO

	PascalRef1
	PascalRef2

