
DEBUG Utility

NCR

DEBUG UTILITY INTRODUCTION

1

DEBUG UTILITY
CONTENTS

2-1
2-3
2-36

INTRODUCTION
Overview of DEBUG
How to Start DEBUG

COMMANDS
Command Information
Parameters................
Error Messages

Chapter 1
1.1
1.2

Chapter 2
2.1
2.2
2.3

1-1
1-1

DEBUG UTILITY INTRODUCTION

1.1 OVERVIEW OF DEBUG

1.2 HOW TO START DEBUG

Summary of Methods to Start DEBUG

1-1

The Microsoft DEBUG Utility (DEBUG) is a debugging program that
provides a controlled testing environment for binary and executable
object files. Note that EDLIN is used to alter source files; DEBUG is
EDLIN’s counterpart for binary files. DEBUG eliminates the need to
reassemble a program to see if a problem has been fixed by a minor
change. It allows you to alter the contents of a file or the contents of a
CPU register, and then to immediately reexecute a program to check
on the validity of the changes.
All DEBUG commands may be aborted at any time by pressing
<CONTROL-C>. <CONTROL-S> suspends the display, so that
you can read it before the output scrolls away. Entering any key other
than <CONTROL-C> or <CONTROL-S> restarts the display. All of
these commands are consistent with the control character functions
available at the MS-DOS command level.

Method 1
Method 2

CHAPTER 1
INTRODUCTION

DEBUG
DEBUG [<filespec> [<arglist>]]

DEBUG may be started two ways. By the first method, you type all
commands in response to the DEBUG prompt (a hyphen). By the
second method, you type all commands on the line used to start
DEBUG.

1.2.1 Method 1: DEBUG

To start DEBUG using method 1, type:

DEBUG

Warnings

1.2.2 Method 2: Command Line

To start DEBUG using a command line, type:

DEBUG [<filespec> [<arglist>]]

DEBUG FILE.EXE

1-2

For example, if a <filespec> is specified, then the following is a
typical command to start DEBUG:

DEBUG then loads FILE.EXE into memory starting at 100 hexadeci
mal in the lowest available segment. The BX:CX registers are loaded
with the number of bytes placed into memory.
An <arglist> may be specified if <filespec> is present. The <arg-
list> is a list of filename parameters and switches that are to be passed
to the program <filespec> . Thus, when <filespec> is loaded into
memory, it is loaded as if it had been started with the command:

DEBUG responds with the hyphen (-) prompt, signaling that it is
ready to accept your commands. Since no filename has been speci
fied, current memory, disk sectors, or disk files can be worked on by
using other commands.

1. When DEBUG (Version 2.0) is started, it sets up a program
header at offset 0 in the program work area. On previous
versions of DEBUG, you could overwrite this header. You
can still overwrite the default header if no <filespec> is
given to DEBUG. If you are debugging a .COM or .EXE file,
however, do not tamper with the program header below
address 5CH, or DEBUG will terminate.

2. Do not restart a program after the “Program terminated
normally” message is displayed. You must reload the pro
gram with the N and L commands for it to run properly.

DEBUG UTILITY INTRODUCTION

<filespec> <arglist>

1-3

Here, <filespec> is the file to be debugged, and the <arglist> is the
rest of the command line that is used when <filespec> is invoked
and loaded into memory.

DEBUG UTILITY COMMANDS

2.1 COMMAND INFORMATION

For example:

2-1

Any combination of uppercase and lowercase letters may be used in
commands and parameters.

The DEBUG commands are summarized in Table 2.1 and are de
scribed in detail, with examples, following the description of com
mand parameters.

des: 100 cs: 110
''' error

CHAPTER 2
COMMANDS

Each DEBUG command consists of a single letter followed by one or
more parameters. Additionally, the control characters and the special
editing functions described in the MS-DOS User’s Guide, apply inside
DEBUG.

If a syntax error occurs in a DEBUG command, DEBUG reprints the
command line and indicates the error with an up-arrow (") and the
word “error.”

Table 2.1 DEBUG COMMANDS

DEBUG Command Function

2-2

Assemble
Compare
Dump
Enter
Fill
Go
Hex
Input
Load
Move
Name
Output
Quit
Register
Search
Trace
Unassemble
Write

A[<address>]
C<range> <address>
D[<range>]
E<address> [<list>]
F<range> <list>
G[=<address> [<address>...]]
H<value> <value>
Kvalue>
L[<address> [<drive> <record> <record>]]
M<range> <address>
N<filename> [<filename>]
0<value> <byte>
Q
R[<register-name>]
S<range> <list>
T[=<address>] [<value>]
U[<range>]
W[<address> [<drive> <record> <record>]]

DEBUG UTILITY COMMANDS

2.2 PARAMETERS

<byte>

<record>

<value>

<address>

For example:

2-3

The colon is required between a segment designation
(whether numeric or alphabetic) and an offset.

CS:0100
04BA:0100

A one-digit hexadecimal value to indicate which
drive a file will be loaded from or written to. The
valid values are 0-3. These values designate the
drives as follows: 0=A:, 1=B:, 2=C:, 3=D:.
A two-digit hexadecimal value to be placed in or read
from an address or register.
A 1- to 3-digit hexadecimal value used to indicate the
logical record number on the disk and the number of
disk sectors to be written or loaded. Logical records
correspond to sectors. However, their numbering
differs since they represent the entire disk space.
A hexadecimal value up to four digits used to specify
a port number or the number of times a command
should repeat its functions.
A two-part designation consisting of either an al
phabetic segment register designation or a four-digit
segment address plus an offset value. The segment
designation or segment address may be omitted, in
which case the default segment is used. DS is the
default segment for all commands except G, L, T, U,
and W, for which the default segment is CS. All
numeric values are hexadecimal.

All DEBUG commands accept parameters, except the Quit com
mand. Parameters may be separated by delimiters (spaces or com
mas), but a delimiter is required only between two consecutive hexa
decimal values. Thus, the following commands are equivalent:

des:100 110
d cs:100 110
d,cs: 100,110

PARAMETER DEFINITION
<drive>

<range<

The following is illegal:

<list>

Example:

fcs:100 42 45 52 54 41

<string>

2-4

The limit for <range> is 10 000 hex. To specify a
<value> of 10 000 hex within four digits, type 0000
(or 0).
A series of <byte> values or of <string>s. <list>
must be the last parameter on the command line.

Two <address>es: e.g., <address> <address>; or
one <address>,anL,and a<value>: e.g., <adress>
L <value> where <value> is the number of lines
the command should operate on, and LB0 is as
sumed. The last form cannot be used if another hex
value follows the <range>, since the hex value
would be interpreted as the second <address> of the
<range>.
Examples:

CS:100 110
CS:100 L 10
CS:100

CS:100 CS:110
" error

Any number of characters enclosed in quote marks.
Quote marks may be either single (’) or double (“). If
the delimiter quote marks must appear within a
<string>, the quote marks must be doubled. For
example, the following strings are legal:

’This is a “string” is okay.’
’This is a “string” is okay.’

However, this string is illegal:
’This is a ’string’ is not.’

Similarly, these strings are legal:
“This is a ’string’ is okay.”
“This is a ““string”” is okay.”

COMMANDSDEBUG UTILITY

However, this string is illegal:

2-5

Note that the double quote marks are not necessary
in the following strings:

The ASCII values of the characters in the string are
used as a <list> of byte values.

“This is a ’’string” is not necessary.”
’This is a ““string”” is not necessary.’

“This is a “string” is not.”

NAME Assemble

PURPOSE

SYNTAX A[<address>]

COMMENTS If a syntax error is found, DEBUG responds with

"Error

2-6

Assembles 8086/8087/8088 mnemonics directly into
memory.

and redisplays the current assembly address.
All numeric values are hexadecimal and must be
entered as 1-4 characters. Prefix mnemonics must be
specified in front of the opcode to which they refer.
They may also be entered on a separate line.
The segment override mnemonics are CS:, DS:, ES:,
and SS:. The mnemonic for the far return is RETF.
String manipulation mnemonics must explicitly state
the string size. For example, use MOVSW to move
word strings and MOVSB to move byte strings.
The assembler will automatically assemble short,
near or far jumps and calls, depending on byte dis
placement to the destination address. These may be
overridden with the NEAR or FAR prefix. For exam
ple:

NEG
DEC

BYTE PTR [128]
WO [SI]

0100:0500 JMP 502 ; a 2-byte short jump
0100:0502 JMP NEAR 505 ; a 3-byte near jump
0100:505 JMP FAR 50A ; a 5-byte far jump

The NEAR prefix may be abbreviated to NE, but the
FAR prefix cannot be abbreviated.
DEBUG cannot tell whether some operands refer to
a word memory location or to a byte memory loca
tion. In this case, the data type must be explicitly
stated with the prefix “WORD PTR” or “BYTE
PTR”. Acceptable abbreviations are “WO” and “BY”.
For example:

DEBUG UTILITY COMMANDS

DW

LD TBYTE PTR [BX]

2-7

FWAIT FADD ST,ST(3) ; This line will assemble
; an FWAIT prefix
; This line will not

MOV
MOV

DB
DB
DB

ADD
POP
PUSH

LOOPZ 100
LOOPE 100

JA
JNBE

BX,34[BP+2].[SI-1]
[BP+DI]
[SI]

200
200

1000,2000,3000,“BACH”

Two popular pseudo-instructions are available with
Assemble. The DB opcode will assemble byte values
directly into memory. The DW opcode will assemble
word values directly into memory. For example:

DEBUG also cannot tell whether an operand refers
to a memory location or to an immediate operand.
DEBUG uses the common convention that operands
enclosed in square brackets refer to memory. For
example:

Assemble supports all forms of register indirect
commands. For example:

All opcode synonyms are also supported. For exam
ple:

For 8087 opcodes, the WAIT or FWAIT must be
explicitly specified. For example:

1,2,3,4,“THIS IS AN EXAMPLE”
’THIS IS A QUOTE: “ ’
“THIS IS A QUOTE: ’ ”

AX,21 ; Load AX with 21H
AX,[21] ; Load AX with the

; contents
; of memory location 21H

NAME Compare

PURPOSE

SYNTAX C<range> <address>

<addressl> <bytel> <byte2> <address2>

EXAMPLE The following commands have the same effect:

2-8

Compares the portion of memory specified by
<range> to a portion of the same size beginning at
<address>.

Each command compares the block of memory from
100 to 1FFH with the block of memory from 300 to
3FFH.

C100,lFF 300
or

C100L100 300

COMMENTS If the two areas of memory are identical, there is no
display and DEBUG returns with the MS-DOS
prompt. If there are differences, they are displayed in
this format:

COMMANDSDEBUG UTILITY

NAME Dump

PURPOSE

SYNTAX D[<range>]

COMMENTS

If you type the command:

des:100 110

DEBUG displays the dump in the following format:

04BA:0100 42 45 52 54 41... 4E 44 TOM SAWYER

If you type the following command:

D

2-9

Displays the contents of the specified region of
memory.

If a range of addresses is specified, the contents of
the range are displayed. If the D command is typed
without parameters, 128 bytes are displayed at the
first address (DS: 100) after the address displayed by
the previous Dump command.
The dump is displayed in two portions: a hexadeci
mal dump (each byte is shown in hexadecimal value)
and an ASCII dump (the bytes are shown in ASCII
characters). Nonprinting characters are denoted by a
period (.) in the ASCII portion of the display. Each
display line shows 16 bytes with a hyphen between
the eighth and ninth bytes. At times, displays are split
in this manual to fit them on the page. Each dis
played line begins on a 16-byte boundary.

the display is formatted as described above. Each line
of the display begins with an address, incremented by
16 from the address on the previous line. Each subse
quent D (typed without parameters) displays the
bytes immediately following those last displayed.

If you type the command:

DCS:100L20

DCS:100 115

2-10

the display is formatted as described above, but 20H
bytes are displayed.
If then you type the command:

the display is formatted as described above, but all
the bytes in the range of lines from 100H to 115H in
the CS segment are displayed.

DEBUG UTILITY COMMANDS

NAME Enter

PURPOSE

SYNTAX E<address> [<list>]

COMMENTS

2-11

Enters byte values into memory at the specified
<address>.

If the optional <list> of values is typed, the replace
ment of byte values occurs automatically. (If an error
occurs, no byte values are changed.)
If the <address> is typed without the optional
<list>, DEBUG displays the address and its con
tents, then repeats the address on the next line and
wait for your input. At this point, the Enter com
mand waits for you to perform one of the following
actions:

1. Replace a byte value with a value you type. Simply
type the value after the current value. If the value
typed in is not a legal hexadecimal value or if more
than two digits are typed, the illegal or extra
character is not echoed.

2. Press the <SPACE> bar to advance to the next
byte. To change the value, simply type the new
value as described in (1.) above. If you space
beyond an 8-byte boundary, DEBUG starts a new
display line with the address displayed at the
beginning.

3. Type a hyphen (-) to return to the preceding byte.
If you decide to change a byte behind the current
position, typing the hyphen returns the current
position to the previous byte. When the hyphen is
typed, a new line is started with the address and its
byte value displayed, !*/t

4. Press the <RETURN> key to terminate the Enter
command. The <RETURN> kev may be pressed
at any byte position.

Assume that the following command is typed:EXAMPLE

ECS:100

DEBUG displays:

04BA:0100 EB.-

04BA:0100 EB.41 10. 00. BC.-

To change BC to 42:

EB.41 10. 00. BC.42-04BA.-0100

00. BC.42-10.

2-12

04BA:0100
04BA:0102
04BA:0101

To change this value to 41, type 41 as shown:
04BA:0100 EB.41-

EB.41
00.-
10.6F-

Pressing the <R£TURN> key ends the Enter com
mand and returns to the DEBUG command level.

To step through the subsequent bytes, press the
<SPACE> bar to see:

Now, realizing that 10 should be 6F, type the hyphen
as many times as needed to return to byte 0101
(value 10), then replace 10 with 6F:

DEBUG UTILITY COMMANDS

NAME Fill

PURPOSE

SYNTAX F<range> <list>

EXAMPLE Assume that the following command is typed:

F04BA:100 L 100 42 45 52 54 41

2-13

Fills the addresses in the <range> with the values in
the <list>.

DEBUG fills memory locations 04BA:100 through
O4BA:1FF with the bytes specified. The five values
are repeated until all 100H bytes are filled.

COMMENTS If the <range> contains more bytes than the number
of values in the <list>, the <list> will be used
repeatedly until all bytes in the <range> are filled. If
the <list> contains more values than the number of
bytes in the <range>, the extra values in the <list>
will be ignored. If any of the memory in the <range>
is not valid (bad or nonexistent), the error will occur
in all succeeding locations.

NAME Go

PURPOSE Executes the program currently in memory.

SYNTAX G [=<address> [<address>...]]

2-14

COMMENTS If only the Go command is typed, the program exe
cutes as if the program had run outside DEBUG.
If = <address> is set, execution begins at the address
specified. The equal sign (=) is required, so that
DEBUG can distinguish the start = <address> from
the breakpoint <address>es.
With the other optional addresses set, execution
stops at the first <address> encountered, regardless
of that address’ position in the list of addresses to halt
execution or program branching. When program
execution reaches a breakpoint, the registers, flags,
and decoded instruction are displayed for the last
instruction executed. (The result is the same as if you
had typed the Register command for the breakpoint
address.)
Up to ten breakpoints may be set. Breakpoints may
be set only at addresses containing the first byte of an
8086 opcode. If more than ten breakpoints are set,
DEBUG returns the BP Error message.
The user stack pointer must be valid and have 6 bytes
available for this command. The G command uses an
IRET instruction to cause a jump to the program
under test. The user stack pointer is set, and the user
flags, Code Segment register, and Instruction Pointer
are pushed on the user stack. (Thus, if the user stack
is not valid or is too small, the operating system may
crash.) An interrupt code (OCCH) is placed at the
specified breakpoint address(es).
When an instruction with the breakpoint code is
encountered, all breakpoint addresses are restored to
their original instructions. If execution is not halted
at one of the breakpoints, the interrupt codes are not
replaced with the original instructions.

DEBUG UTILITY COMMANDS

EXAMPLE Assume that the following command is typed:

GCS:7550

2-15

The program currently in memory executes up to the
address 7550 in the CS segment. DEBUG then
displays registers and flags, after which the Go com
mand is terminated.
After a breakpoint has been encountered, if you type
the Go command again, then the program executes
just as if you had typed the filename at the MS-DOS
command level. The only difference is that program
execution begins at the instruction after the break
point rather than at the usual start address.

NAME Hex

PURPOSE

SYNTAX H<value> <value>

COMMENTS

Assume that the following command is typed:EXAMPLE

H19F 10A

02A9 0095

2-16

Performs hexadecimal arithmetic on the two parame
ters specified.

First, DEBUG adds the two parameters, then sub
tracts the second parameter from the first. The
results of the arithmetic are displayed on one line;
first the sum, then the difference.

DEBUG performs the calculations and then displays
the result:

DEBUG UTILITY COMMANDS

NAME Input

PURPOSE

SYNTAX Kvalue>

COMMENTS A 16-bit port address is allowed.

Assume that you type the following command:EXAMPLE

I2F8

42

2-17

Inputs and displays one byte from the port specified
by <value>.

Assume also that the byte at the port is 42H.
DEBUG inputs the byte and displays the value:

NAME Load

Loads a file into memory.PURPOSE

SYNTAX L[<address> [<drive> <record> <record>]]

COMMENTS

EXAMPLE Assume that the following commands are typed:

Now, to load FILE.COM, type:

L

L04BA:100 2 0F 6D

2-18

DEBUG loads the file and then displays the DEBUG
prompt. Assume that you want to load only portions
of a file or certain records from a disk. To do this,
type:

DEBUG then loads 109 (6D hex) records beginning
with logical record number 15 into memory begin
ning at address 04BA:0100. When the records have
been loaded, DEBUG simply returns the - prompt.

A>DEBUG
-NFILE.COM

Set BX:CX to the number of bytes read. The file
must have been named either when DEBUG was
started or with the N command. Both the DEBUG
invocation and the N command format a filename
properly in the normal format of a file control block
at CS:5C.
If the L command is typed without any parameters,
DEBUG loads the file into memory beginning at
address CS:100 and sets BX:CX to the number of
bytes loaded. If the L command is typed with an
address parameter, loading begins at the memory
<address> specified. If L is typed with all parame
ters, absolute disk sectors are loaded, not a file. The
<record>s are taken from the <drive> specified (the
drive designation is numeric here-0=A:, 1=8:, 2=C:,
etc.); DEBUG begins loading with the first <record>
specified, and continues until the number of sectors
specified in the second <record> have been loaded.

FILE.COM
NFILE.COM

COMMANDSDEBUG UTILITY

2-19

If the file has a .EXE extension, it is relocated to the
load address specified in the header of the .EXE file:
the <address> parameter is always ignored for .EXE
files. The header itself is stripped off the .EXE file
before it is loaded into memory. Thus the size of an
.EXE file on disk will differ from its size in memory.
If the file named by the Name command or specified
when DEBUG is started is a .HEX file, then typing
the L command with no parameters causes DEBUG
to load the file beginning at the address specified in
the .HEX file. If the L command includes the option
<address>, DEBUG adds the <address> specified
in the L command to the address found in the .HEX
file to determine the start address for loading the file.

NAME Move

PURPOSE

SYNTAX M<range> <address>

COMMENTS

EXAMPLE Assume that you type:

MCS:100 110 CS:500

2-20

Overlapping moves (i.e., moves where part of the
block overlaps some of the current addresses) are
always performed without loss of data. Addresses
that could be overwritten are moved first. The
sequence for moves from higher addresses to lower
addresses is to move the data beginning at the block’s
lowest address and then to work towards the highest.
The sequence for moves from lower addresses to
higher addresses is to move the data beginning at the
block’s highest address and to work towards the
lowest.
Note that if the addresses in the block being moved
will not have new data written to them, the data there
before the move will remain. The M command
copies the data from one area into another, in the
sequence described, and writes over the new addres
ses. This is why the sequence of the move is impor
tant.

Moves the block of memory specified by <range> to
the location beginning at the <address> specified.

DEBUG first moves address CS:110 to address
CS:510, then CS:10F to CS:50F, and so on until
CS:100 is moved to CS:500. You should type the D
command, using the <address> typed for the M
command, to review the results of the move.

DEBUG UTILITY COMMANDS

NAME Name

PURPOSE Sets filenames.

N<filename> [<filename> . . .]SYNTAX

COMMENTS

1.

2.

2-21

The Name command performs two functions. First,
Name is used to assign a filename for a later Load or
Write command. Thus, if you start DEBUG without
naming any file to be debugged, then the N<file-
name> command must be typed before a file can be
loaded. Second, Name is used to assign filename
parameters to the file being debugged. In this case,
Name accepts a list of parameters that are used by
the file being debugged.
These two functions overlap. Consider the following
set of DEBUG commands:

3.
4.

-NFILE1.EXE
-L
-G

Because of the effects of the Name command, Name
will perform the following steps:

(N)ame assigns the filename FILE1.EXE to the
filename to be used in any later Load or Write
commands.
(N)ame also assigns the filename FILE1.EXE to
the first filename parameter used by any program
that is later debugged.
(L)oad loads FILE1.EXE into memory.
(G)o causes FILE1.EXE to be executed with
FILE1.EXE as the single filename parameter (that
is, FILE1.EXE is executed as if FILE1.EXE had
been typed at the command level).

EXAMPLE

2-22

CS:5C
CS:6C
CS:80
CS:81

A File Control Block (FCB) for the first filename
parameter given to the Name command is set up at
CS:5C. If a second filename parameter is typed, then
an FCB is set up for it beginning at CS:6C. The
number of characters typed in the Name command
exclusive of the first character, “N”) is given at loca
tion CS:80. The actual stream of characters given by
the Name command (again, exclusive of the letter
“N”) begins at CS:81. Note that this stream of
characters may contain switches and delimiters that
would be legal in any command typed at the MS-
DOS command level.
A typical use of the Name command is:

DEBUG PROG.COM
-NPARAM1 PARAM2/C
-G

A more useful chain of commands might look like
this:

-NFILE1.EXE
-L
-NFILE2.DAT FILE3.DAT
-G

Here, Name sets FILE1.EXE as the filename for the
subsequent Load command. The Load command
loads FILE1.EXE into memory, and then the Name
command is used again, this time to specify the
parameters to be used by FILE1.EXE. Finally, when
the Go command is executed, FILE1.EXE is exe
cuted as if FILE1 FILE2.DAT FILE3.DAT had been
typed at the MS-DOS command level. Note that if a
Write command were executed at this point, then
FILE1.EXE - the file being debugged - would be
saved with the name FILE2.DAT! To avoid such
undesired results, you should always execute a Name
command before either a Load or a Write.
There are four regions of memory that can be affec
ted by the Name command:

FCB for file 1
FCB for file 2
Count of characters
All characters typed

PROG.COM

DEBUG UTILITY COMMANDS

PROG PARAMI PARAM2/C

2-23

In this case, the Go command executes the file in
memory as if the following command line had been
typed:

Testing and debugging therefore reflect a normal
runtime environment for PROG.COM.

PROG.COM

NAME Output

PURPOSE

SYNTAX 0<value> <byte>

COMMENTS A 16-bit port address is allowed.

EXAMPLE Type:

02F8 4F

2-24

Sends the <byte> specified to the output port speci
fied by <value>.

DEBUG outputs the byte value 4F to output port
2F8.

DEBUG UTILITY COMMANDS

NAME Quit

PURPOSE Terminates the DEBUG utility.

SYNTAX Q

COMMENTS

EXAMPLE

2-25

The Q command takes no parameters and exits
DEBUG without saving the file currently being
operated on. You are returned to the MS-DOS
command level.

DEBUG has been terminated, and control returns to
the MS-DOS command level.

To end the debugging session, type:

Q<RETURN>

NAME Register

Displays the contents of one or more CPU registers.PURPOSE

SYNTAX R[<register-name>]

2-26

AX
BX
CX
DX
SP

BP
SI
DI
DS
ES

SS
CS
IP
PC
F

(IP and PC both refer to
the Instruction Pointer.)

COMMENTS If no <register-name> is typed, the R command
dumps the register save area and displays the con
tents of all registers and flags.
If a register name is typed, the 16-byte value of that
register is displayed in hexadecimal, and then a colon
appears as a prompt. You then either type a <value>
to change the register, or simply press the <RE-

Aje tj TURN> key if no change is wanted.
The only valid <register-name>s are:

Any other entry for <register-name> results in a BR
Error message.
If F is entered as the <register-name>, DEBUG dis
plays each flag with a two-character alphabetic code.
To alter any flag, type the opposite two-letter code.
The flags are either set or cleared.

DEBUG UTILITY COMMANDS

FLAG NAME SET CLEAR
Overflow OV NV
Direction DN Decrement UP Increment

El Enabled DI Disabled
NG Negative PL Plus

Zero ZR NZ
NA

PE Even PO Odd
Carry CY NC

2-27

The flags are listed below with their codes for SET
and CLEAR:

Whenever you type the command RF, the flags are
displayed in the order shown above in a row at the
beginning of a line. At the end of the list of flags,
DEBUG displays a hyphen (-). You may enter new
flag values as alphabetic pairs. The new flag values
can be entered in any order. You do not have to leave
spaces between the flag entries. To exit the R com
mand, press the <RFTTJLRN> key. Flags for which
new values were not entered remain unchanged.
If more than one value is entered for a flag, DEBUG
returns a DF Error message. If you enter a flag code
other than those shown above, DEBUG returns a BF
Error message. In both cases, the flags up to the error
in the list are changed; flags at and after the error are
not.
At startup, the segment registers are set to the bot
tom of free memory, the Instruction Pointer is set to
01 OOH, all flags are cleared, and the remaining regis
ters are set to zero.

Interrupt
Sign

Auxiliary Carry AC
Parity

EXAMPLE Type:

R

21

If you type:

RF

DEBUG will display the flags:

NV UP DI NG NZ AC PE NC - -

For example:

NV UP DI NG NZ AC PE NC - PLEICY<RETURN>

2-28

AX=0E00 BX=00FF CX=0007 DX=01FF SP=039D
BP=0000 SI=005C D1=0000 DS=04BA ES=04BA
SS=04BA CS=04BA IP=011A
NV UP DI NG NZ AC PE NC
04BA:0UA CD21 INT

Now, type any valid flag designation, in any order,
with or without spaces.

DEBUG responds only with the DEBUG prompt. To
see the changes, type either the R or RF command:

DEBUG displays all registers, flags, and the decoded
instruction for the current location. If the location is
CS:11A, then the display will look similar to this:

RF
NV UP El PL NZ AC PECY--

Press <RETURN> to leave the flags this way, or to
specify different flag values.

DEBUG UTILITY COMMANDS

NAME Search

PURPOSE

SYNTAX S<range> <list>

EXAMPLE If you type:

SCS:100 110 41

DEBUG will display a response similar to this:

2-29

Searches the <range< specified for the <list> of
bytes specified.

04BA:0104
04BA:010D
-type:

COMMENTS The <list> may contain one or more bytes, each se
parated by a space or comma. If the <list> contains
more than one byte, only the first address of the byte
string is returned. If the <list> contains only one
byte, all addresses of the byte in the <range> are
displayed.

NAME Trace

PURPOSE

SYNTAX T[=<address>] [<value>]

COMMENTS

EXAMPLE TYPE:

T

21

If you type

T=011A 10

2-30

Executes one instruction and displays the contents of
all registers and flags, and the decoded instruction.

If the optional =<address> is typed, tracing occurs at
the =<address> specified. The optional <value>
causes DEBUG to execute and trace the number of
steps specified by <value>.
The T command uses the hardware trace mode of
the 8086 or 8088 microprocessor. Consequently, you
may also trace instructions stored in ROM (Read
Only Memory).

DEBUG returns a display of the registers, flags, and
decoded instruction for that one instruction. Assume
that the current position is 04BA:011A; DEBUG
might return the display:
AX=0E00 BX=00FF CS=0007 DX=01FF SP=039D
BP=0000 SI=005C DI=0000 DS=04BA ES=04BA
SS=04BA CS=04BA IP=011A
NV UP DI NG NZ AC PE NC
04BA:011A CD21 INT

DEBUG UTILITY COMMANDS

2-31

DEBUG executes sixteen (10 hex) instructions
beginning at Oil A in the current segment, and then
displays all registers and flags for each instruction as
it is executed. The display scrolls away until the last
instruction is executed. Then the display stops, and
you can see the register and flag values for the last
few instructions performed. Remember that <CON-
TROL-S> suspends the display at any point, so that
you can study the registers and flags for any instruc
tion.

NAME Unassemble

PURPOSE

SYNTAX U[<range>]

EXAMPLE Type:

U04BA:100 LIO

If you type

004ba:0100 0108

2-32

Disassembles bytes and displays the source state
ments that correspond to them, with addresses and
byte values.

DB
JBE

DB
DB
DB
DB
DB
DB
DB

65
63
69
66
69
63
61

COMMENTS The display of disassembled code looks like a listing
for an assembled file. If you type the U command
without parameters, 20 hexadecimal bytes are disas
sembled at the first address after that displayed by
the previous Unassemble command. If you type the
U command with the <range> parameter, then
DEBUG disassembles all bytes in the range. If the
<range> is given as an <address> only, then 20H
bytes are disassembled instead of 80H.

DEBUG disassembles 16 bytes beginning at address
04BA.-0100:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69
04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH
04BA:0109 65
04BA:010A 63
04BA:010B 69
04BA:010C 66
04BA:010D 69
04BA:010E 63
04BA:010F 61

DEBUG UTILITY COMMANDS

The display'Will show:

2-33

04BA:0100 206472
04BA:0103 69
04BA:0104 7665
04BA:0106 207370

AND
DB
JBE
AND

[SI+72],AH
69
016B
[BP+Dl+70],DH

If the bytes in some addresses are altered, the disas
sembler alters the instruction statements. The U
command can be typed for the changed locations, the
new instructions viewed, and the disassembled code
used to edit the source file.

NAME Write

PURPOSE Wirtes the file being debugged to a disk file.

SYNTAX W[<address> [<drive> <record> <records>]]

WARNING

2-34

Writing to absolute sectors is EXTREMELY
dangerous because the process bypasses the
file handler.

COMMENTS If you type W with no parameters, BX:CX must al
ready be set to the number of bytes to be written; the
file is written beginning from CS: 100. If the W com
mand is typed with just an address, then the file is
written beginning at that address. If a G or T com
mand has been used, BX:CX must be reset before
using the Write command without parameters. Note
that if a file is loaded and modified, the name, length,
and starting address are all set correctly to save the
modified file (as long as the length has not changed).
The file must have been named either with the
DEBUG invocation command or with the N com
mand (refer to the Name command earlier in this
manual). Both the DEBUG invocation and the N
command format a filename properly in the normal
format of a file control block at CS:5C.
If the W command is typed with parameters, the
write begins from the memory address specified; the
file is written to the <drive> specified (the drive
designation is numeric here-0=A:, 1=B:, 2=C:, etc.);
DEBUG writes the file beginning at the logical record
number specified by the first <record>; DEBUG
continues to write the file until the number of sectors
specified in the second <record> have been written.

DEBUG UTILITY COMMANDS

EXAMPLE Type:

W

W

WCS:100 1 37 2B

WCS:100 1 37 2B

2-35

DEBUG will write the file to disk and then display
the DEBUG prompt. Two examples are shown
below.

DEBUG writes out the contents of memory, begin
ning with the address CS:100 to the disk in drive B:.
The data written out starts in disk logical record
number 37H and consists of 2BH records. When the
write is complete, DEBUG displays the prompt:

2.3 ERROR MESSAGES

ERROR CODE DEFINITION

BF

BP

BR

DF

2-36

Too many breakpoints
You specified more than ten breakpoints as
parameters to the G command. Retype the
Go command with ten or fewer breakpoints.

Bad flag
You attempted to alter a flag, but the charac
ters typed were not one of the acceptable
pairs of flag values. See the Register com
mand for the list of acceptable flag entries.

Bad register
You typed the R command with an invalid
register name. See the Register command
for the list of valid register names.

Double flag
You typed two values for one flag. You may
specify a flag value only once per RF com
mand.

During the DEBUG session, you may receive any of the following
error messages. Each error terminates the DEBUG command under
which it occurred, but does not terminate DEBUG itself.

