
NCR DECISION MATE V

NCR

MS™-MACRO
ASSEMBLER

Microsoft is a registered trademark of Microsoft Corporation.
MS is a trademark of Microsoft Corporation.
Intel is a trademark of Intel Corporation.

First Edition, July 1983
It is the policy of NCR Corporation to improve products as new
technology, components, software, and firmware become available.
NCR Corporation, therefore, reserves the right to change specifica
tions without prior notice.

All features, functions, and operations described herein may not be
marketed by NCR in all parts of the world. In some instances, photo
graphs are of equipment prototypes. Therefore, before using this
document, consult your nearest dealer or NCR office for information
that is applicable and current.

Portions of this material are licensed from Microsoft Corporation.
Copyright © 1983 by Microsoft Corporation.

Copyright © 1983 by NCR Corporation
Dayton, Ohio

Printed in Federal Republic of Germany

MACRO ASSEMBLER CONTENTS

CONTENTS

1.2
1.3
1.4
1.5
1.6

3.2.2
3.2.3

3.3
3.3.1

3.3.2
3.3.3
3.3.4
3.3.5

Creating a Macro Assembler Source File
General Facts about Source Files

Naming Your Source File................
Legal Characters.............................
Numeric Notation..........................
What’s in a Source File?

Statement Line Format
Names..
Comments..
Action..
Expressions..

Names: Labels, Variables, and Symbols
Labels..
Variables ..
Symbols...

Expressions: Operands and Operators
Memory Organization
Operands..

Immediate Operands..................
Data Items.............................
Symbols

Register Operands.....................
Memory Operands.....................

Direct Memory Operands . . .
Indexed Memory Operands . .
Structure Operands................

Operators
Attribute Operators

Override Operators
Value Returning Operators . . .
Record Specific Operators . . .

Arithmetic Operators
Relational Operators..................
Logical Operators
Expression Evaluation................

Precedence of Operators

1-1
1-1
1-2
1-3
1-4
1-5
1-6
1-8
1-9
1-10

. 2-2

. 2-5

. 2-7

. 3-2

. 3-8

. 3-9

. 3-9

. 3-9

. 3-10

. 3-13

. 3-13

. 3-14
. 3-15
. 3-17
. 3-17
. 3-18
. 3-23
. 3-29
. 3-33
. 3-34
. 3-35
. 3-36
. 3-36

Chapter 2
2.1
2.2
2.3

Chapter 1
1.1

Chapter 3
3.1
3.2
3.2.1

Action: Instructions and DirectivesChapter 4

4.2.4

Chapter 5 x Assembling a Macro Assembler Source File

6-1

4.1
4.2
4.2.1
4.2.2
4.2.3

5.1
5.1.1

5.1.2
5.2
5.3
5.4

5.5
5.5.1
5.5.2
5.5.3

Macro Assembler Messages
Operating Messages.....................
Error Messages..........................

Assembler Errors.....................
I/O Handler Errors
Runtime Errors........................
Numerical List of Error Messages

Instructions.....................
Directives

Memory Directives . . .
Conditional Directives .
Macro Directives..........

Repeat Directives . .
Special Macro Perators

Listing Directives

8087 Support
Switches . . .

4-2
4-3
4-5
4-37
4-41
4-49
4-53
4-57

. 7-1

. 7-2

. 7-2

. 7-13

. 7-14

. 7-15

Chapter 6
6.1

Chapter 7
7.1
7.2

How to Start Macro Assembler....................... 5-1
Method 1: Prompts....................................... 5-2

Summary of Command Prompts5-3
Method 2: Command Line5-3

Macro Assembler Command Characters 5-4
Macro Assembler Command Prompts......... 5-5
Macro Assembler Command Switches......... 5-7

Summary of Command Switches........ 5-9
Formats of Listings and Symbol Tables 5-10

Program Listing ..5-10
Differences Between Pass 1 and Pass 2 . . . 5-16
Symbol Table Format..................................5-17

CONTENTSMACRO ASSEMBLER

ASCII Character CodesAppendix A

Table of Macro Assembler DirectivesAppendix B

Table of 8086 and 8087 InstructionsAppendix C

C.4

B.l
B.2
B.3
B.4
B.5
B.6

C.l
C.2
C.3

Memory Directives . . .
Macro Directives
Conditional Directives .
Listing Directives
Attribute Operators . . .
Precedence of Operators

B-l
B-2
B-2
B-2
B-3
B-4

8086 Instruction Mnemonics, Alphabetical C-l
8087 Instruction Mnemonics, Alphabetical C-4
8086 Instruction Mnemonics by Argument
Type... C-6
8087 Instruction Mnemonics by Argument
Type..C-10

INTRODUCTIONMACRO ASSEMBLER

INTRODUCTION

Features of Macro Assembler

1

Microsoft’s Macro Assembler is a very powerful assembler for 8086-
based computers. Macro Assembler incorporates many features
usually found only in large computer assemblers. Macro assembly,
conditional assembly, and a variety of assembler directives provide all
the tools necessary to derive full use and full power from an 8086,
8087 or 8088 microprocessor. Although Macro Assembler is more
complex than any other microcomputer assembler, it is easy to use.
Macro Assembler produces relocatable object code. Each instruction
and directive statement is given a relative offset from its segment
base. The assembled code can then be linked using Microsoft’s MS-
LINK utility to produce relocatable, executable object code. Reloca
table code can be loaded anywhere in memory. Thus, the program
can execute where it is most efficient, instead of in some fixed range
of memory addresses.
In addition, relocatable code means that programs can be created in
modules, each of which can be assembled, tested, and perfected
individually. This saves recoding time because testing and assembly
are performed on smaller pieces of program code. Also, all modules
can be error-free before being linked together into larger modules or
into the whole program.

MOD 1 MOD 2 MOD 3

no

yes

MS-LINK

Figure 1. The Assembly Process

2

full or part
program file

Macro
Assembler

When the individual modules
are ready, they can be linked
singly or into one or more
larger modules.

Individual modules can be
edited and assembled until
they work correctly.

/Does\
'module^
assemble
.correctly,
\ ? /

INTRODUCTIONMACRO ASSEMBLER

3

Macro Assembler supports Microsoft’s complete 8080 macro facility,
which is Intel 8080 standard. The macro facility permits the writing of
blocks of code for a set of instructions used frequently. The need for
recoding these instructions each time they are required in the pro
gram is eliminated.
These blocks of code are called macros. The instructions are the
macro definition. Each time the set of instructions is needed, instead
of recoding the set of instructions, a simple “call” to a macro is placed
in the source file. Macro Assembler expands the macro call by assem
bling the block of instructions into the program automatically. The
macro call also passes parameters to the assembler for use during
macro expansion. The use of macros reduces the size of a source
module because the macro definitions are given only once; other
occurrences are one-line calls.
Macros can be “nested,” that is, a macro can be called from inside
another macro block. Nesting of macros is limited only by memory.
The macro facility includes repeat, indefinite repeat, and indefinite
repeat character directives for programming repeat block operations.
The MACRO directive can also be used to alter the action of any
instruction or directive by using its name as the macro name. When
any instruction or directive statement is placed in the program, Macro
Assembler first checks the symbol table it created to see if the instruc
tion or directive is a macro name. If it is, Macro Assembler “expands”
the macro call statement by replacing it with the body of instructions
in the macro’s definition. If the name is not defined as a macro,
Macro Assembler tries to match the name with an instruction or
directive. The MACRO directive also supports local symbols and
conditional exiting from the block if further expansion is unnecessary.

name MACRO x

ENDM

name MACRO x

name 1, 2

ENDM

Figure 2. Assembler Macros

4

statement
statement
statement
macro call
statement

When the assembler
encounters a macro call, it finds
the MACRO block and replaces the
call with the block of statements
that define the macro.

Nested MACRO call:
name defined else -
where as a macro, is
’’expanded" during
assembly, as shown
above.

INTRODUCTIONMACRO ASSEMBLER

5

Macro Assembler supports an expanded set of conditional directives.
Directives for evaluating a variety of assembly conditions can test
assembly results and branch where required. Unneeded or unwanted
portions of code will be left unassembled. Macro Assembler can test
for blank or nonblank arguments, for defined or undefined symbols,
for equivalence, for first assembly pass or second, and can compare
strings for identity or difference. The conditional directives simplify
the evaluation of assembly results, and make programming the testing
code for conditions easier.
Macro Assembler’s conditional assembly facility also supports condi
tionals inside conditionals (“nesting”). Conditional assembly blocks
can be nested up to 255 levels.

ELSE

IF

IF

IF

ENDIF

ENDIF

Figure 3. Conditional Statements

6

statement
statement
statement

IF <exp true)

Nesting of
conditionals is
allowed up to
255 levels.

If the condition —
in the expression
(shown by <exp
true)) is true,
the IF block is
assembled up to
ELSE, then skips
to ENDIF. If no
ELSE, the IF block
simply assembles
the whole condi
tional block.

ENDIF
statement
statement

If the condition
in the expression
is false, Macro
Assembler skips to
ELSE, then
resumes assembly
at the next state
ment. If ELSE is
not used, the IF
block skips to
ENDIF and
resumes assembly
with next
statement.

ENDIF
ELSE

INTRODUCTIONMACRO ASSEMBLER

MOV AL,WORDLBL

7

Macro Assembler supports all the major 8080 directives found in
Microsoft’s Macro Assembler for the 8080 processor. This means that
any conditional, macro, or rebeat blocks programmed under the 8080
Macro Assembler can be used under Macro Assembler for the 8086.
Processor instructions and some directives (e.g., .PHASE, CSEG,
DSEG) within the blocks will need to be converted to the 8086 in
struction set. All the major Macro Assembler directives (pseudo-bps)
for the 8080 that are supported under Macro Assembler for the 8086
will assemble as is, as long as the expressions to the directives are
correct for the processor and the program. The syntax of directives is
unchanged. Macro Assembler is upwardly-compatible, Macro As
sembler for the 8080 processor and with Intel’s ASM86(R), except
Intel codemacros and macros.
Some 8086 instructions take only one operand type. If a typeless
operand is entered for an instruction that accepts only one type of
operand (e.g., in the instruction PUSH [BX], [BX] has no size, but
PUSH only takes a word), it would be wasteful to return an error for a
lapse of memory or a typographical error. When the wrong type
choice is given, Macro Assembler displays an error message but
generates the “correct” code. That is, it always outputs instructions,
not just NOP instructions. For example, if you enter:

You may have
meant one of
three instructions:

\(2)
MOV AL,BYTE PTR WORDLBL

(1)/
MOV AX,WORDLBL

(3)
MOV Al,<other>

Macro Assembler generates instruction (2) because it assumes that
when you specify a register, you mean that register and that size;
therefore, the other operand is the “wrong size.” Macro Assembler
accordingly modifies the “wrong” operand to fit the register size (in
this case) or the size of whatever is the most likely “correct” operand
in an expression. This eliminates some mundane debugging chores.
An error message is still returned, however, because you may have
misstated the operand the Macro Assembler assumes is “correct.”

Overview of Macro Assembler Operation

EDLIN Ch 1 -4

Ch 5

Ch 6

Figure 4. Overview of Macro Assembler Operation

8

The first task in developing a program is to create a source file. Use
EDLIN (the resident editor in Microsoft’s MS-DOS operating sys
tem), or any other 8086 editor compatible with your operating system,
to create the Macro Assembler source file. Macro Assembler assumes
a default filename extension of .ASM for the source file. Creating the
source file involves creating instruction and directive statements that
follow the rules and constraints described in Chapter 1-4 in this
manual.
When the source file is ready, run Macro Assembler as described in
Chapter 5, “Assembling a Macro Assembler Source File.” Refer to
Chapter 7, “Macro Assembler Messages,” for explanations of any
messages displayed during or immediately after assembly.

Macro
Assembler

(messages)
?

source
.ASM

object
.ASM

INTRODUCTIONMACRO ASSEMBLER

During the second pass, the assembler

9

Macro Assembler is a two-pass assembler. This means that the source
file is assembled twice. But slightly different actions occur during each
pass. During the first pass, the assembler:

The .OBJ file is suitable for processing with the Microsoft LINK
utility (MS-LINK). The .OBJ file can be stored as part of the user’s
library of object programs, which later can be linked with one or more
.OBJ modules by MS-LINK (refer to the MS-LINK utility for further
explanation and instructions). The .OBJ modules can also be
processed with the Microsoft LIB Library Manager (refer to the
Microsoft LIB Library Manager Manual for further explanation and
instructions).
The source file can also be assembled without creating an .OBJ file.
All the other assembly steps are performed, but the object code is not
sent to disk. Only erroneous source statements are displayed on the
terminal screen. This practice is useful for checking the source code
for errors. It is faster than creating an .OBJ file because no file is
created or written. Modules can be test assembled quickly and errors
corrected before the object code is put on disk. Modules that assem
ble without errors do not clutter the disk.

evaluates the statements and expands macro call statements
calculates the amount of code it will generate
builds a symbol table where all symbols, variables, labels, and
macros are assigned values

fills in the symbol, variable, label, and expression values from
the symbol table
expands macro call statements
emits the relocatable object code into a file with the default
filename extension .OBJ

PASS 1

PASS 2

Figure 5. Pass 1 and Pass 2

10

symbol - def
symbol - def
variable - def
variable - def

label - def
macro name

Macro
Assembler

Macro
Assembler

symbol
table

exact amount
of code to
be generated

source
.ASM

source
.ASM

object
.OBJ

statement
statement
macro call

statement

INTRODUCTIONMACRO ASSEMBLER

.LSTlisting

MS-CREF

Figure 6. Files That Macro Assembler Produces

11

Macro Assembler will create, on command, a listing file and a cross
reference file. The listing file contains the beginning relative addres
ses (offsets from segment base) assigned to each instruction, the
machine code translation of each statement (in hexadecimal values),
and the statement itself. The listing also contains a symbol table
which shows the values of all symbols, labels, and variables, plus the
names of all macros. The listing file receives the default filename
extension .LST.
The cross-reference file contains a compact representation of vari
ables, labels, and symbols. The cross-reference file receives the
default filename extension .CRF. When this cross-reference file is
processed by Microsoft CREF (MS-CREF), the file is converted into
an expanded symbol table that lists all the variables, labels, and sym
bols in alphabetical order; followed by the line number in the source
program where each is defined; followed by the line numbers where
each is used in the program. The final cross-reference listing receives
the filename extension .REF. (Refer to the Microsoft CREF Cross-
Reference Utility Manual for further explanation and instructions.)
Figure 6 illustrates the files that Macro Assembler can produce.

Macro
Assembler

source
.ASM

object
.OBJ

listing
.REF

listing
.CRF

1.1 GENERAL FACTS ABOUT SOURCE FILES

1-1

To create a source file for Macro Assembler, you need to use an
editor program, such as EDLIN in Microsoft’s MS-DOS. You simply
create a program file as you would for any other assembly or high-
level programming language. Use the general facts and specific de
scriptions in this chapter and the three following chapters when
creating the file.
This chapter discusses the statement format and introduces descrip
tions of its components. In Chapter 2, you will find full descriptions of
names: variables, labels, and symbols. Chapter 3 provides full descrip
tions of expressions and their components, operands and operators.
Chapter 4 includes full descriptions of the assembler directives.

Naming Your Source File
When you create a source file, you must name it. A filename may be
any name that is legal for your operating system. When you run
Macro Assembler to assemble your source file, Macro Assembler
assumes that your source filename has the extension .ASM.
You do not need to give your source filename the .ASM extension.
However, if your source filename has an extension other than .ASM,
you must specify the extension name when you run Macro Assem
bler. (You do not need to specify the .ASM extension if your source
filename has an extension of .ASM. Macro Assembler will supply the
default extension for you.)

CHAPTER 1
CREATING A MACRO ASSEMBLER SOURCE FILE

$A-Z 0-9 ?

[]

()

7-2

Legal Characters
The legal characters for your symbol names are:

Note that Macro Assembler gives the object file it outputs the default
extension .OBJ. To avoid confusion or the destruction of your source
file, you should avoid giving a source file an extension of .OBJ. For
similar reasons, you should also avoid the extensions .EXE, .LST,
.CRF, and .REF.

Only the numerals (0-9) cannot appear as the first character of a name
(a numeral must appear as the first character of a numeric value).
Additional special characters act as operators or delimiters:

(colon) - segment override operator
(period) - operator for field name of Record or Structure;
may be used in a filename only if it is the first character
(square brackets) - around register names to indicate
value in address in register, not value (data) in register
(parentheses) - operator in DUP expressions and opera
tor to change precedence of operator evaluation
(angle brackets) - operators used around initialization
values for Records or Structure, around parameters in
IRP macro blocks, and to indicate literals

The square brackets and angle brackets are also used for syntax
notation in the discussions of the assembler directives (Section
4.2, “Directives”). When these characters are operators and not
syntax notation, you are told explicitly; for example, “angle
brackets must be coded as shown.”

CREATING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

Numeric Notation

Hexadecimal H

1-3

The default input radix for all numeric values is decimal. The output
radix for all listings is hexadecimal for code and data items and deci
mal for line numbers. The output radix can only be changed to octal
radix by giving the /0 switch when Macro Assemblers is run (see
Section 5.4, “Macro Assembler Command Switches”). There are two
ways to change the input radix:

1. With the .RADIX directive (see Section 4.2.1, “Memory
Directives”)

2. By special notation appended to a numeric value:

B
Q or 0
none or D

0-9
A-F

Radix
Binary
Octal
Decimal

Example
01110100B
735Q or 6210
9384 (default)

8149D*
OFFH -or 80H**

Range Notation
0-1
0-7
0-9

* When .RADIX directive changes default radix to not decimal
** First character must be numeral from 0-9.

What’s in a Source File?

1-4

A source file for Macro Assembler consists of instruction statements
and directive statements. Instruction statements are made of 8086
instruction mnemonics and their operands, which command specific
processes directly to the 8086 processor. Directive statements are
commands to Macro Assembler to prepare data for use in and by
instructions.
Statement line format is described in Section 1.2. The parts of a
statement are described in Sections 1.3-1.6 and in Chapters 2-4.
Statements are usually placed in blocks of code assigned to a specific
segment (code, data, stack, extra). The segments may appear in any
order in the source file. Within the segments, generally speaking,
statements may appear in any order that creates a valid program.
Some exceptions to random ordering do exist, which will be dis
cussed under the affected assembler directives.
Every segment must end with an end segment statement (ENDS);
every procedure must end with an end procedure statement (ENDP);
and every structure must end with an end structure statement
(ENDS). Likewise, the source file must end with an END statement
that tells Macro Assembler where program execution should begin.
Section 3.1, “Memory Organization,” describes how segments,
groups, the ASSUME directive, and the SEG operator relate to one
another and to your programming as a whole. This information is
important and helpful for developing your programs. The information
is presented in Chapter 3 as a prelude to the discussion of operands
and operators.

MACRO ASSEMBLER CREATING A MACRO ASSEMBLER SOURCE FILE

1.2 STATEMENT LINE FORMAT

FOO 0D5EDB

;CommentName Action Expression

;here’s the count numberMOV CX,FOO

;CommentAction Expression

1-5

Macro Assembler instruction statements usually consist of three
“fields”: Action, Expression, Comment. For example:

;create variable FOO
;containing the value 0D5EH

An instruction statement may have a Name field under certain cir
cumstances; see the discussion in Section 1.3, “Names.”

Statements in source files follow a strict format, which allows some
variation.
Macro Assembler directive statements consist of four “fields”: Name,
Action, Expression, Comment. For example:

1.3 NAMES

To make a name represent data, use:

1-6

The name field, when present, is the first entry on the statement line.
The name may begin in any column, although normally names are
started in column 1.
Names may be any length you choose. However, Macro Assembler
considers only the first 31 characters significant when your source file
is assembled.
One other significant use for names is with the MACRO directive.
Although all the rules covering names, described in Chapter 2, apply
to MACRO names, the discussion of macro names is better left to the
section describing the macro facility.
Macro Assembler supports the use of names in a statement line for
three purposes: to represent code, to represent data, and to represent
constants.
To make a name represent code, use:

NAME: followed by a directive, instruction, or nothing at all
NAME LABEL NEAR (for use inside its own segment only)
NAME LABEL FAR (for use outside its own segment)
EXTRN NAME:NEAR (for use outside its own module but
inside its own segment only)
EXTRN NAME:FAR (for use outside its own module and
segment)

NAME LABEL <size> (BYTE, WORD, etc.)
NAME Dx <exp>
EXTRN NAME:<size> (BYTE, WORD, etc.)

CREATING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

To make a name represent a constant, use:

1-7

NAME EQU <constant>
NAME = <constant>
NAME SEGMENT <attributes>
NAME GROUP <segment-names>

1.4 COMMENTS

1-8

Comments are never required for the successful operation of an
assembly language program, but they are strongly recommended.
If you use comments in your program, every comment on every line
must be preceded by a semicolon. If you want to place a very long
comment in your program, you can use the COMMENT directive.
The COMMENT directive releases you from the required semicolon
on every line (refer to COMMENT in Section 4.2.1, “Memory Direc
tives”).
Comments document the processing that is supposed to happen at a
particular point in a program. When comments are used in this man
ner, they can be useful for debugging, for altering code, or for updat
ing code. Consider putting comments at the beginning of each seg
ment, procedure, structure, module, and after each line in the code
that begins a step in the processing.
Comments are ignored by Macro Assembler. Comments do not add
to the memory required to assemble or to run your program, except
in macro blocks where comments are stored with the code.

CREATING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

1.5 ACTION

datadataoperandopcode

addraddroperand

supplied or found

1-9

opcode

supplied

The action field contains either an 8086 instruction mnemonic or a
Macro Assembler assembler directive. Refer to Section 4.1, “Instruc
tions,” for a general discussion and to Appendix C for a list of 8086
instruction mnemonics. The Macro Assembler directives are de
scribed in detail in Section 4.2, “Directives.”
If the name field is blank, the action field will be the first entry in the
statement format. In this case, the action may appear in any column,
1 through maximum line length (minus columns for action and
expression).
The entry in the action field either directs the processor to perform a
specific function or it directs the assembler to perform one of its
functions. Instructions tell the processor to perform some action. An
instruction may have the data and/or addresses it needs built into it,
or data and/or addresses may be found in the expression part of an
instruction. For example:

supplied = part of the instruction
found = assembler inserts data and/or address from the information

provided by expression in instruction statements
(opcode is the action part of an instruction)
Directives give the assembler directions for I/O, memory organiza
tion, conditional assembly, listing and cross-reference control, and
definitions.

1.6 EXPRESSIONS

source = operanddest = operandopcode

directive operand

MOV FOO[BX],AL

1-10

The expression field contains entries which are operands and/or
combinations of operands and operators.
Some instructions take no operands; some take one, and others take
two. For two-operand instructions, the expression field consists of a
destination operand and a source operand, in that order, separated by
a comma. For example:

A directive operand is a data operand, a code (addressing) operand, or
a constant, depending on the nature of the directive.
For many instructions and directives, operands may be connected
with operators to form a longer operand that looks like a mathemati
cal expression. These operands are called complex operands. Use of a
complex operand permits you to specify addresses or data derived
from several places. For example:

For one-operand instructions, the operand is a source or a destination
operand, depending on the instruction. If one or both of the operands
is omitted, the instruction carries that information in its internal
coding.
Source operands are immediate operands, register operands, memory
operands, or attribute operands. Destination operands are register
operands and memory operands.
For directives, the expression field usually consists of a single
operand. For example:

CREATING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

MOV AX,FOO+5[BX]

1-11

The destination operand is the result of adding the address represen
ted by the variable FOO and the address found in register BX. The
processor is instructed to move the value in register AL to the desti
nation calculated from these two operand elements. Another exam
ple:

In this case, the source operand is the result of adding the value
represented by the symbol FOO plus 5 plus the value found in the BX
register.

Operands Operators

segment override(:)

PTR, OFFSET, SEG, TYPE, THIS

HIGH, LOW

+, -(unary), -(binary)

EQ, NE, LT, LE, GT, GE

NOT

AND

OR, XOR

SHORT, .TYPE

NOTE

1-12

LENGTH, SIZE, WIDTH, MASK,
FIELD [],(),<>

Immediate
(incl. symbols)

Register
Memory

label
variables

simple
indexed
structures

Attribute
override

PTR
:(seg)
SHORT
HIGH
LOW

value returning
OFFSET
SEG
THIS
TYPE
.TYPE
LENGTH
SIZE

record specifying
FIELD
MASK
WIDTH

*, /, MOD, SHL, SHR

Macro Assembler supports the following operands and operators in
the expression field (shown in order of precedence):

Some operators can be used as operands or
as part of an operand expression. Refer to
Sections 3.2, “Operands,” and 3.3, “Opera
tors,” for details of operands and operators.

NAMES: LABELS, VARIABLES, AND SYMBOLSMACRO ASSEMBLER

2-1

Names are used in several ways throughout Macro Assembler,
wherever any naming is allowed or required;
Names are symbolic representations of values. The values may be
addresses, data, or constants.
Names may be any length you choose. However, Macro Assembler
will truncate names longer than 31 characters when your source file is
assembled.
Names may be defined and used in a number of ways. This chapter
introduces you to the basic way to define and use names. You will
discover additional uses as you study the chapters on Expressions and
Action, and as you use Macro Assembler.
Macro Assembler supports three types of names in statement lines:
labels, variables, and symbols. This chapter covers how to define and
use these three types of names.

CHAPTER 2
NAMES: LABELS, VARIABLES, AND SYMBOLS

2.1 LABELS

Examples:

MOV AL,20H

Examples:

2-2

FOO
GOO

LABEL
LABEL

LABEL
LABEL

PROC
PROC

NEAR
FAR

NEAR
FAR

Labels are names used as targets for IMP, CALL, and LOOP instruc
tions. Macro Assembler assigns an address to each label as it is
defined. When you use a label as an operand for JMP, CALL, or
LOOP, Macro Assembler can substitute the attributes of the label for
the label name, sending processing to the appropriate place.
Labels are defined in one of four ways:

3. <name>
<name>

1. <name>:
Use a name followed immediately by a colon. This defines
the name as a NEAR label. <name>: may be prefixed to
any instruction and to all directives that allow a Name field.
<name>: may also be placed on a line by itself.

Use the PROC directive. Refer to the discussion of the
PROC directive in Section 4.2.1, “Memory Directives.”
NEAR is optional because it is the default if you enter only
<name> PROC. NEAR and FAR are discussed under the
Type Attribute below.

CLEAR-SCREEN:
FOO: DB OFH
SUBROUTINES:

2. <name> LABEL NEAR
<name> LABEL FAR
Use the LABEL directive. Refer to the discussion of the
LABEL directive in Section 4.2.1, “Memory Directives.”
NEAR and FAR are discussed under the Type Attribute
below.

MACRO ASSEMBLER NAMES: LABELS, VARIABLES, AND SYMBOLS

Examples:

FIND-CHR PROC

Examples:

2-3

A label has four attributes: segment, offset, type, and the CS AS
SUME in effect when the label is defined. Segment is the segment
where the label is defined. Offset is the distance from the beginning of
the segment to the label’s location. Type is either NEAR or FAR.

Segment
Labels are defined inside segments. The segment must be assigned to
the CS segment register to be addressable. The segment may be
assigned to a group, in which case the group must be addressable
through CS. Macro Assembler requires that a label be addressable
through the CS register. Therefore, the segment (or group) attribute
of a symbol is the base address of the segment (or group) where it is
defined.

Offset
The offset attribute is the number of bytes from the beginning of the
label’s segment to where the label is defined. The offset is a 16-bit
unsigned number.

REPEAT
CHECKING

EXTRN FOO:NEAR
EXTRN ZOO:FAR

PROC
PROC

Use the EXTRN directive.
NEAR and FAR are discussed under the Type Attribute
below.
Refer to the discussion of the EXTRN directive in Section
4.2.1, “Memory Directives.”

4. EXTRN <name>:NEAR
EXTRN <name>:FAR

NEAR
;same as CHECKING PROC
NEAR
FAR

2-4

Type
Labels are one of two types: NEAR or FAR. NEAR labels are used
for references from within the segment where the label is defined.
NEAR labels may be referenced from more than one module, as long
as the references are from a segment with the same name and attri
butes and have the same CS ASSUME.
FAR labels are used for references from segments with a different CS
ASSUME, or when there are more than 64K bytes between the label
reference and the label definition.
NEAR and FAR cause Macro Assembler to generate slightly different
code. NEAR labels supply their offset attribute only (a 2-byte point
er). FAR labels supply both their segment and offset attributes (a
4-byte pointer).

NAMES: LABELS, VARIABLES, AND SYMBOLSMACRO ASSEMBLER

2.2 VARIABLES

Example:

START-MOVE DW ?

Examples:

CORRAL STRUC

HORSE

CAR:8=’P’GARAGE RECORD

10 DUP(<’Z’>)

2-5

Variables are names used in expressions as operands to instructions
and directives. A variable represents an address where a specified
value may be found.
Variables look much like labels and are defined alike in some ways.
The differences are important.
Variables are defined three ways:

1. <name> <define-dir> ;no colon!
<name> <struc-name> <expression>
<name> <rec-name> <expression>

<define-dir> is any of the five Define directives: DB, DW,
DD, DQ, DT

See the DEFINE, STRUC, and RECORD directives in
Section 4.2.1, “Memory Directives.”

<struc-name> is a structure name defined by the STRUC
directive.
<rec-name> is a record name defined by the RECORD
directive.

ENDS
CORRAL <’SADDLE’>

Note that HORSE will have the same size as the
structure CORRAL.

SMALL GARAGE
Note that SMALL will have the same size as the record

GARAGE.

Example:

CURSOR WORDLABEL

Example:

EXTRN FOO:DWORD

Directive SizeType

2-6

Variables also have the three attributes segment, offset, and type (as
do labels).
Segment and Offset are the same for variables as for labels. The Type
attribute is different.

BYTE
WORD
DWORD
QWORD
TBYTE

DB
DW
DD
DQ
DT

BYTE
WORD
WORD
QWORD
TBYTE

- specifies
- specifies
- specifies
- specifies

1 byte
2 bytes
4 bytes
8 bytes

10 bytes

3. EXTRN <name>:<size>
Use the EXTRN directive with one of the size specifiers
described above. See EXTRN directive in Section 4.2.1,
“Memory Directives.”

1 byte
2 bytes
4 bytes
8 bytes

- specifies 10 bytes

Type
The type attribute is the size of the variable’s location, as specified
when the variable is defined. The size depends on which Define
directive was used or which size specifier was used to define the
variable.

See LABEL directive in Section 4.2.1, “Memory Directives.”

2. <name> LABEL <size>
Use the LABEL directive with one of the size specifiers.
<size> is one of the following size specifiers:

NAMES: LABELS, VARIABLES, AND SYMBOLSMACRO ASSEMBLER

2.3 SYMBOLS

Examples:

Examples:

Example:

EXTRN BAZ:ABS

2-7

BAZ must be defined by an EQU or = directive to a valid
expression.

FOO
ZOO

EQU
EQU

7H
FOO

Symbols are names defined without reference to a Define directive or
to code. Like variables, symbols are also used in expressions as
operands to instructions and directives.
Symbols are defined three ways:

2. <name> = <expression>
Use the equal sign directive. See Equal Sign directive in
Section 4.2.1, “Memory Directives.”
<expression> may be any valid expression.

3. EXTRN <name>:ABS
Use the EXTRN directive with type ABS. See EXTRN
directive in Section 4.2.1, “Memory Directives.”

1. <name> EQU <expression>
Use the EQU directive. See EQU directive in Section 4.2.1,
“Memory Directives.”
<expression> may be another symbol, an instruction mne
monic, a valid expression, or any other entry (such as text or
indexed references).

GOO = OFH
GOO = $+2
GOO = GOO+FOO

EXPRESSIONS: OPERANDS AND OPERATORSMACRO ASSEMBLER

3-1

Chapter 1 provided a brief introduction to expressions. Basically,
expression is the term used to indicate values on which an instruction
or directive performs its functions.
Every expression consists of at least one operand (a value). An ex
pression may consist of two or more operands. Multiple operands are
joined by operators. The result is a series of elements that looks like a
mathematical expression.
This chapter describes the types of operands and operators that
Macro Assembler supports. The discussion of memory organization
in a Macro Assembler programm acts as a preface to the descriptions
of operands and operators, and as a link to topics discussed in Chap
ter 2.

CHAPTER 3 EXPRESSIONS: OPERANDS AND OPERATORS

3.1 MEMORY ORGANIZATION

3-2

Most of your assembly language program is written in segments. In
the source file, a segment is a block of code that begins with a SEG
MENT directive statement and ends with an ENDS directive. In an
assembled and linked file, a segment is any block of code that is
addressed through the same segment register and is not more than
64K bytes long.
You should note that Macro Assembler leaves everything relating to
segments to MS-LINK. MS-LINK resolves all references. For that
reason, Macro Assembler does not check (because it cannot) to see if
your references are entered with the correct distance type. Values
such as OFFSET are also left to MS-LINK to resolve.
Although a segment may not be more than 64K bytes long, you many,
as long as you observe the 64K limit, divide a segment among two or
more modules. (The SEGMENT statement in each module must be
the same.)
When the modules are linked together, the several segments become
one. References to labels, variables, and symbols within each module
acquire the offset from the beginning of the whole segment, not just
from the beginning of their portion of the whole segment. (All divi
sions are removed.)
You have the option of grouping several segments into a group using
the GROUP directive. When you group segments, you tell Macro
Assembler that you want to be able to refer to all of these segments as
a single entity. (This does not eliminate segment identity, nor does it
make values within a particular segment less immediately accessible.
It does make value relative to a group base.) The advantage of group
ing is that you can refer to data items without worrying about segment
overrides or changing segment registers.
With this in mind, you should note that references within segments
or groups are relative to a segment register. Thus, until linking is com
pleted, the final offset of a reference is relocatable. For this reason,
the OFFSET operator does not return a constant. The major purpose
of OFFSET is to cause Macro Assembler to generate an immediate
instruction; that is, to use the address of the value instead of the value
itself.

EXPRESSIONS: OPERANDS AND OPERATORSMACRO ASSEMBLER

There are two kinds of references in a program:

MOV AX,<ref>

MOV AX,OFFSET <group-name>:<ref>

MOV AX,OFFSET DS:<ref>

3-3

When you give a forward reference in a program statement, for exam
ple:

Macro Assembler first looks for the segment of the reference. Macro
Assembler scans the segment registers for the SEGMENT of the
reference, then the GROUP (if any) of the reference.
However, the use of the OFFSET operator always returns the offset
relative to the segment. If you want the offset relative to a GROUP,
you must override this restriction by using the GROUP name and the
colon operator. For Example:

If you set a segment register to a group with the ASSUME directive,
then you may also override the restriction on OFFSET by using the
register name. For example:

1. Code references - JMP, CALL, LOOPxx - These references
are relative to the address in the CS register. (You cannot
override this assignment.)

2. Data references - all other references - These references are
usually relative to the DS register, but this assignment may
be overridden.

When you enter a NEAR JMP or NEAR CALL, you are changing the
offset (IP) in CS. Macro Assembler compares the CS ASSUME of the
target (where the label is defined) with the current CS ASSUME. If
they are different, Macro Assembler returns an error (you must use a
FAR JMP or FAR CALL).

The result of both of these statements is the same.
Code labels have four attributes:

1. Segment - what segment the label belongs to
2. Offset - the number of bytes from the beginning of its

segment
3. Type - NEAR or FAR
4. CS ASSUME - the CS ASSUME the label was coded under

DGROUP

As a diagram, this arrangement could be represented as follows:

cs
CODE

DS, ES, SS
DATA

CONST<64 K

STACK

3-4

;CS initialized by entry;
;you initialize DS, do this
;as soon as possible,
^specially before any
;DS relative references

GROUP
ASSUME
MOV
MOV

DATA,CONST,STACK
CS: CODE,DS: DGROUP,SS : DGROUP,ES: DGROUP
AX,DGROUP
DS,AX

When you enter a FAR JMP or FAR CALL, you are changing both
the offset (IP) in CS and the paragraph number. The paragraph num
ber is changed to the CS ASSUME of the target address.
Let’s take a common case, a segment called CODE, and a group
(called DGROUP) that contains three segments (called DATA,
CONST, and STACK).
The program statements would be:

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

Given this arrangement, a statement like

MOV AX,<variable>

MOV AX,OFFSET <variable>

MOV AX,OFFSET DGROUP:<variable>

3-5

causes Macro Assembler to find the best segment register to reach
this variable. (The “best” register is the one that requires no segment
overrides.)
A statement like

tells Macro Assembler to return the offset of the variable relative to
the beginning of the variable’s segment.
If this <variable> is in the CONST segment and you want to refe
rence its offset from the beginning of DGROUP, you need a state
ment like the following:

Macro Assembler is a two-pass assembler. During pass 1, it builds a
symbol table and calculates how much code is generated, but does
not produce object code. If undefined items are found (including
forward references), assumptions are made about the reference so
that the correct number of bytes are generated on pass 1. Only certain
types of errors are displayed: errors involving items that must be
defined on pass 1. No listing is produced unless a /D switch is given
when you run the assembler. The /D switch produces a listing for
both passes.
On pass 2, the assembler uses the values defined in pass 1 to generate
the object code. Definitions of references during pass 2 are checked
against the pass 1 value, which is in the symbol table. Also, the
amount of code generated during pass 1 must match the amount
generated during pass 2. If either is different, Macro Assembler
returns a phase error.
Because pass 1 must keep correct track of the relative offset, some
references must be known on pass 1. If they are not known, the
relative offset will not be correct.
The following references must be known on pass 1:

1. IF/IFE <expression>
If <expression> is not known on pass 1, Macro Assembler
does not know to assemble the conditional block (or which
part to assemble if ELSE is used). On pass 2, the assembler
would know and would assemble, resulting in a phase error.

3-6

The biggest problem for the assembler is handling forward refe
rences. How can it know the kind of a reference when it still has not
seen the definition? This is one of the main reasons for two passes.
And, unless Macro Assembler can tell from the statement containing
the forward reference what the size, the distance, or any other of its
attributes are, the assembler can only take the safe route (generate the
largest possible instruction in some cases, except for segment over
ride or FAR). This results in extra code that does nothing. (Macro
Assembler figures this out by pass 2, but it cannot reduce the size of
the instructions without causing an error, so it puts out NOP instruc
tions (90H).
For this reason, Macro Assembler includes a number of operators to
help the assembler. These operators tell Macro Assembler what size
instruction to generate when it is faced with an ambiquous choice. As
a benefit, you can also reduce the size of your program by using these
operators to change the nature of the arguments to the instructions.

2. <expression> DUP(...)
This operand explicitly changes the relative offset, so <ex-
pression> must be known on pass 1. The value in parenthe
ses need not be known because it does not affect the num
ber of bytes generated.

3. .RADIX <expression>
Because this directive changes the input radix, constants
could have a different value, which could cause Macro
Assembler to evaluate IF or DUP statements incorrectly.

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

Examples:

MOV AX,FOO ;FOO = forward constant

MOV AX,OFFSET FOO

CALL FAR PTR <forward-label>

JMP SHORT <forward-label>

MOV [BX],FOO

3-7

This statement causes Macro Assembler to generate a move from
memory instruction on pass 1. By using the OFFSET operator, we
can cause Macro Assembler to generate an immediate operand in
struction.

Because OFFSET tells Macro Assembler to use the address of FOO,
the assembler knows that the value is immediate. This method saves a
byte of code.
Similarly, if you have a CALL statement that calls to a label that may
be in a different CS ASSUME, you can prevent problems by attaching
the PTR operator to the label:

At the opposite extreme, you may have a JMP forward that is less
than 127 bytes. You can save yourself a byte if you use the SHORT
operator.

However, you must be sure that the target is indeed within 127 bytes
or Macro Assembler will not find it.
The PTR operator can be used another way to save yourself a byte
when using forward references. If you defined FOO as a forward
constant, you might enter the statement:

You may want to refer to FOO as a byte immediate. In this case, you
could enter either of these statements (they are equivalent):

These statements tell Macro Assembler that FOO is a byte imme
diate. A smaller instruction is generated.

MOV BYTE PTR [BX],FOO
MOV [BX],BYTE PTR FOO

;OFFSET says use the address
;of FOO

3.2 OPERANDS

Register operands

Structure

3-8

An operand may be any one of three types: Immediate, Register, or
Memory operands. There is no restriction on combining the types of
operands.
The following list shows all the types and the items that comprise
them:

Immediate operands
Data items
Symbols

Memory operands
Direct

Labels
Variables
Offset (fieldname)

Indexed
Base register
Index register
[constant]
±displacement

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

3.2.1 Immediate Operands

MOV AX,9

Data Items

Data Form Format Example

Decimal

OFFFFH (1st digit must be 0-9)Hexadecimal xxxxH

ASCII

25.23E-7 (floating point format)10 real xx.xxE&+xx

16 real x.. .xR

3-9

Immediate operands are constant values that you supply when you
type a statement line. The value may be typed either as a data item or
as a symbol.
Instructions that take two operands permit an immediate operand as
the source operand only (the second operand in an instruction state
ment). For example:

Binary
Octal

xxxxxxxxB
xxxO
xxxQ
xxxxx
xxxxxD

8F76DEA9R (1st digit must be 0-9;
the total number of digits must be 8,
16, or 20; or 9,17,21 if first digit is 0)

01110001B
7350 (letter O)
412Q
65535 (default)
WOOD (when .RADIX changes input
radix to nondecimal)

’OM’ (more than two with DB only;
“OM” both forms are synonymous)

’xx’
“xx”

Symbols
Symbol names equated with some form of constant information (see
Section 2.3, “Symbols”) may be used as immediate operands. Using a
symbol constant in a statement is the same as using a numeric con
stant. Therefore, using the sample statement above, you could type:

Macro Assembler recognizes values in forms other than decimal
when special notation is appended. The default input radix is decimal.
Any numeric values entered without numeric notation appended will
be treated as a decimal value. These other values include ASCII
characters as well as numeric values.

MOV AX,FOO

assuming FOO was defined as a constant symbol. For example:

FOO EQU 9

3.2.2 Register Operands

3-10

The 8086 processor contains a number of registers. These registers
are identified by two-letter symbols that the processor recognizes (the
symbols are reserved).
The registers are appropriated to different tasks: general registers,
pointer registers, counter registers, index registers, segment registers,
and a flag register.
The general registers are two sizes: 8-bit and 16-bit. All other registers
are 16-bit.
The general registers are both 8-bit and 16-bit registers. Actually, the
16-bit general registers are composed of a pair of 8-bit registers, one
for the low byte (bits 0-7) and one for the high byte (bits 8-15). Note,
however, that each 8-bit general register can be used independently
from its mate. In this case, each 8-bit register contains bits 0-7.
Segment registers are initialized by the user and contain segment base
values. The segment register names (CS, DS, SS, ES) can be used
with the colon segment override operator to inform Macro Assembler
that an operand is in a different segment than specified in an AS
SUME statement. (See the segment override operator in Section
3.3.1, “Attribute Operators.)”
The flag register is one 16-bit register containing nine 1-bit flags (six
arithmetic flags and three control flags).
Each of the registers (except segment registers and flags) can be an
operand in arithmetic and logical operations.

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

Register/Memory Field Encoding:

MOD = 11 Register Mode

R/M W = 0 W = 1

EFFECTIVE ADDRESS CALCULATION

MOD = 10R/M MOD = 00 MOD = 01

Note: D 8 = a byte value; D 16 = a word value

3 1 -bit

3-11

Other Registers:
Segment: CS

000
001
010
011
100
101
110
111

[BX] + [SI]
[BX] 4- [DI]
[BP] 4- [SI]
[BP] + [DI]
[SI]
[DI]
DIRECT ADDRESS
[BX]

000
001
010
011
100
101
110
111

DS
SS
ES

AL
CL
DL
BL
AH
CH
DH
BH

[BX] 4- [SI] + D 8
[BX] 4- [DI] + D 8
[BP] 4- [SI] + D 8
[BP] 4-[DI] + D 8
[SI] + D 8
[DI] + D 8
[BP] + D 8
[BX] + D 8

AX
CX
DX
BX
SP
BP
SI
DI

DF
IF
TF

[BX] 4- [SI] + D 16
[BX] 4- [DI] + D 16
[BP] 4-[SI] 4- D 16
[BP] 4- [DI] 4- D 16
[SI] + D 16
[DI] + D 16
[BP] + D 16
[BX] + D 16

control flags

direction flag
interrupt-enable flag
trap flag

Flags: 1 — bit

CF
PF
AF
ZF
SF

code segment
data segment
stack segment
extra segment

arithmetic flags

carry flag
parity flag
auxiliary flag
zero flag
sign flag

NOTE

3-12

The BX, BP, SI, and DI registers are also
used as memory operands. The distinction
is: When these registers are enclosed in
square brackets [], they are memory
operands; when they are not enclosed in
square brackets, they are register operands
(see Section 3.2.3, “Memory Operands”).

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

3.2.3 Memory Operands

Direct Memory Operands

3-13

A memory operand represents an address in memory. When you use
a memory operand, you direct Macro Assembler to an address to find
some data or instruction.
A memory operand always consists of an offset from a base address.
Memory operands fit into three categories: those that do not use a
register (direct memory operands), those that use a base or index
register (indexed memory operands) and structure operands.

Direct memory operands do not use a register, and consist of a single
offset value. Direct memory operands are labels, simple variables, and
offsets.
Memory operands can be used as destination operands as well as
source operands for instructions that take two operands. For example:

FOV AX,FOO
MOV FOO,CX

Indexed Memory Operands

More examples of equivalent forms:

3-14

Indexed memory operands use base and index registers, constants,
displacement values, and variables, often in combination. When you
combine indexed operands, you create an address expression.
Indexed memory operands use square brackets to indicate indexing
(by a register or by registers) or subscripting (for example, FOO[5]).
The square brackets are treated like plus signs (+). Therefore,

FOO[5] is equivalent to FOO+5
5[FOO] is equivalent to 5+FOO

The only difference between square brackets and plus signs occurs
when a register name appears inside the square brackets. Then, the
operand is indexed.
The types of indexed memory operands are:

Base registers: [BX] [BP]

BP has SS as its default segment register;
all other have DS as default.

These elements may be combined in any order. The only restriction
is that two base registers and two indexed registers cannot be com
bined:

5[BX] [SI]
[BX+5][SI]
[BX+SI+5]
[BX]5[SI]

Index registers: [DI] [SI]
[constant] Immediate in square brackets [8], [FOO]

±Displacement 8- bit or 16-bit value.
Used only with another indexed operand.

[BX+BP] ;illegal
[SI+DI] ;illegal

Some examples of indexed memory operand combinations:

[BP+8]
[SI+BX] [4]
16[DI+BP+3]
8[FOO]-8

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

Structure Operands

Example:

ZOO <16>LONG-NECK

MOV AL,LONG-NECK. GIRAFFE

MOV AL,[BX].GIRAFFE ;anonymous variable

[BP].FLD6

SPBP
FLD 1

FLD 3 FLD 2
STRUG-------

FLD 4

FLD 5FLD 6

FLD 7

3-15

Structure operands take the form <variable>.<field>.
<variable> is any name you give when coding a statement line that
initializes a Structure field. The <variable> may be an anonymous
variable, such as an indexed memory operand.
<field> is a name defined by a DEFINE directive within a STRUC
block. <field> is a typed constant.
The period (.) must be included.

The use of structure operands can be helpful in stack operations. If
you set up the stack segment as a structure, setting BP to the top of
the stack (BP equal to SP), then you can access any value in the stack
structure by field name indexed through BP; for example:

ZOO
GIRAFFE
ZOO

STRUC
DB?
ENDS

3-16

This method makes all values on the stack available all the time, not
just the value at the top. Therefore, this method makes the stack a
handy place to pass parameters to subroutines.

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

3.3 OPERATORS

3.3.1 Attribute Operators

Attribute operators used as operands perform one of three functions:

The following list shows the attribute operators by type:

3-17

An operator may be one of four types: attribute, arithmetic, relational,
or logical.
Attribute operators are used with operands to override their attri
butes, return the value of the attributes, or to isolate fields of records.
Arithmetic, relational, and logical operators are used to combine or
compare operands.

Override an operand’s attributes
Return the values of operand attributes
Isolate record fields (record specific operators)

Override operators
PTR
colon: (:) (segment override)
SHORT
THIS
HIGH
LOW

Value returning operators
SEG
OFFSET
TYPE
.TYPE
LENGTH
SIZE

Record specific operators
Shift count (Field name)
WIDTH
MASK

Override Operators

Examples:

ADD BYTE PTR FOO,9

3-18

These operators are used to override the segment, offset, type, or
distance of variables and labels.

Pointer (PTR)
<attribute> PTR <expression>

CALL WORD PTR [BX] [SI]
MOV BYTE PTR ARRAY

The PTR operator overrides the type (BYTE, WORD,
DWORD) or the distance (NEAR, FAR) of an operand.
<attribute> is the new attribute; the new type or new distance.
<expression> is the operand whose attribute is to be overrid
den.
The most important and frequent use for PTR is to assure that
Macro Assembler understands what attribute the expression is
supposed to have. This is especially true for the type attribute.
Whenever you place forward references in your program, PTR
will make clear the distance or type of the expression. This way
you can avoid phase errors.
The second use of PTR is to access data by type other than the
type in the variable definition. Most often this occurs in struc
tures. If the structure is defined as WORD but you want to
access an item as a byte, PTR is the operator for this. However,
a much easier method is to enter a second statement that
defines the structure in bytes, too. This eliminates the need to
use PTR for every reference to the structure. Refer to the
LABEL directive in Section 4.2.1, “Memory Directives.”

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

Segment Override (:) (colon)

3-19

<segment-register>:<address-expression>
<segment-name>:<address-expression>
<group-name>:<address-expression>

Examples:
MOV AX,ES:[BX+SI]
MOV CSEG:FAR-LABEL,AX
MOV AX,OFFSET DGROUP: VARIABLE

The segment override operator overrides the assumed segment
of an address expression (which may be a label, a variable, or
other memory operand).
The colon operator helps with forward references by telling the
assembler to what a reference is relative (segment, group, or
segment register).
Macro Assembler assumes that labels are addressable through
the current CS register. Macro Assembler also assumes that
variables are addressable through the current DS register, or
possibly the ES register, by default. If the operand is in another
segment and you have not alerted Macro Assembler through
the ASSUME directive, you will need to use a segment over
ride operator. Also, if you want to use a nondefault relative
base (that is, not the default segment register), you will need to
use the segment override operator for forward references. Note
that if Macro Assembler can reach an operand through a non
default segment register, it will use it, but the reference cannot
be forward in this case.
<segment-register> is one of the four segment register names:
CS, DS, SS, ES.
<segment-name> is a name defined by the SEGMENT direc
tive.
<group-name> is a name defined by the GROUP directive.

REPEAT:

3-20

SHORT
SHORT <label>

SHORT overrides NEAR distance attributes of labels used as
targets for the JMP instruction. SHORT tells Macro Assembler
that the distance between the JMP statement and the <label>
specified as its operand is not more than 127 bytes either direc
tion.
The major advantage of using the SHORT operator is to save a
byte. Normally, the <label> carries a 2-byte pointer to its offset
in its segment. Because a range of 256 bytes can be handled in a
single byte, the SHORT operator eliminates the need for the
extra byte (which would carry 00 or FF anyway). However, you
must be sure that the target is within ± 127 bytes of the JMP
instruction before using SHORT.

Example:
JMP SHORT REPEAT

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

Examples:

3-21

THIS <distance> creates an operand with the distance attri
bute you specify, an offset equal to the current location count
er, and the segment attribute (segment base address) of the
enclosing segment.
THIS <type> creates an operand with the type attribute you
specify, an offset equal to the current location counter, and the
segment attribute (segment base address) of the enclosing
segment.

The THIS operator creates an operand. The value of the
operand depends on which argument you give THIS.
The argument to THIS may be:

THIS
THIS <distance>
THIS <type>

1. A distance (NEAR or FAR)
2. A type (BYTE, WORD, or DWORD)

TAG EQU THIS BYTE same as TAG LABEL BYTE
SPOT-CHECK = THIS NEAR same as
SPOT-CHECK LABEL NEAR

3-22

HIGH and LOW are provided for 8080 assembly language
compatibility. HIGH and LOW are byte isolation operators.
HIGH isolates the high 8 bits of an absolute 16-bit value or
address expression.
LOW isolates the low 8 bits of an absolute 16-bit value or
address expression.

HIGH, LOW
HIGH <expression>
LOW <expression>

Examples:
MOV AH,HIGH WORD-VALUE ;get byte with sign bit
MOV AL,LOW OFFFFH

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

3-23

SEG
OFFSET
TYPE

SEG returns the segment value (segment base address) of the
segment enclosing the label or variable.

SEG
SEG <label>
SEG <variable>

Example:
MOV AX,SEG VARIABLE-NAME
MOV AX,<segment-variable>:<variable>

Value Returning Operators
These operators return the attribute values of the operands that
follow them but do not override the attributes.
The value returning operators take labels and variables as their argu
ments.
Because variables in Macro Assembler have three attributes, you
need to use value returning operators to isolate single attributes, as
follows:

isolates the segment base address
isolates the offset value
isolates either type or distance

LENGTH and SIZE isolate the memory allocation

NOTES

MOV BX,OFFSET DGROUP:GOB

3-24

OFFSET returns the offset value of the variable or label within
its segment (the number of bytes between the segment base
address and the address where the label or variable is defined).
OFFSET is chiefly used to tell the assembler that the operand
is an immediate operand.

If you use an ASSUME to GROUP, OFFSET will not automa
tically return the offset of a variable from the base address of
the group. Rather, OFFSET will return the segment offset,
unless you use the segment override operator (group-name
version). If the variable GOB is defined in a segment placed in
DGROUP, and you want the offset of GOB in the group, you
need to enter a statement like:

You must be sure that the GROUP directive precedes any
reference to a group name, including its use with OFFSET.

OFFSET does not make the value a con
stant. Only MS-LINK can resolve the final
value.
OFFSET is not required with uses of the
DW or DD directives. The assembler ap
plies an implicit OFFSET to variables in
address expressions following DW and DD.

OFFSET
OFFSET <label>
OFFSET <variable>

Example:
MOV BX,OFFSET FOO

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

a label, the TYPE operator returns NEAR

Examples:

MOV AX,(TYPE FOO-BAR) PTR [BX+SI]

3-25

TYPE
TYPE <label>
TYPE <variable>

BYTE
WORD
DWORD
QWORD
TBYTE
STRUC

= 1
= 2
= 4
= 8
= 10
= the number of bytes declared by STRUC

If the operand is a variable, the TYPE operator returns a value
equal to the number of bytes of the variable type, as follows:

If the operand is
(FFFFH) or FAR (FFFEH).

Example:

FOO

3-26

z
IF

.TYPE

.Type <variable>

MACRO X
LOCAL Z
= .TYPE X
Z ...

The .TYPE operator returns a byte that describes two charac
teristics of the <variable>: 1) the mode, and 2) whether it is
External or not. The argument to .TYPE may be any expres
sion (string, numeric, logical). If the expression is invalid,
.TYPE returns zero.
The byte that is returned in configured as follows:
The lower two bits are the mode. If the lower two bits are:
0 the mode is Absolute
1 the mode is Program Related
2 the mode is Data Related

The high bit (80H) is the External bit. If the high bit is on, the
expression contains an External. If the high bit is off, the ex
pression is not External.
The Defined bit is 20H. This bit is on if the expression is locally
defined, and it is off if the expression is undefined or external.
If neither bit is on, the expression is invalid.
.TYPE is usually used inside macros, where an argument type
may need to be tested to make a decision regarding program
flow; for example, when conditional assembly is involved.

.TYPE tests the mode and type of X. Depending on the evalua
tion of X, the block of code beginning with IF Z ... may be
assembled or omitted.

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

Examples:

FOO DW 100 DUP(l)

BAZ DW 100 DUP(l,10 DUP(?))

3-27

LENGTH BAZ is still 100, regardless of the expression follow
ing DUP.

LENGTH accepts only one variable as its argument.
LENGTH returns the number of type units (BYTE, WORD,
DWORD, QWORD, TBYTE) allocated for that variable.
If the variable is defined by a DUP expression, LENGTH
returns the number of type units duplicated; that is, the num
ber that precedes the first DUP in the expression.
If the variable is not defined by a DUP expression, LENGTH
returns 1.

MOV CX,LENGTH FOO ;get number of elements
;in array
;LENGTH returns 100

LENGTH
LENGTH <variable>

GOO DD (?)
LENGTH GOO returns 1 because only one unit is

involved.

Example:

3-28

SIZE
SIZE <variable>

FOO DW 100 DUP(l)
MOV BX,SIZE FOO ;get total bytes in array

SIZE = LENGTH X TYPE
SIZE = 100 X WORD
SIZE = 100 X 2
SIZE =200

SIZE returns the total number of bytes allocated for a variable.
SIZE is the product of the value of LENGTH times the value of
TYPE.

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

Record Specific Operators

Shift count

WIDTH

MASK

FOO

BAZ

3-29

In the following discussions of the record specific operators, the
following symbols are used:

Number of bits from low end of record to low end of
field (number of bits to right shift the record to lowest
bits of record)
The number of bits wide the field or record is (number of
bits the field or record contains)
Value of record if field contains its maximum value and
all other fields are zero (all bits in field contain 1; all other
bits contain 0)

Record specific operators are used to isolate fields in a record.
Records are defined by the RECORD directive (see Section 4.2.1,
“Memory Directives”). A record may be up to 16 bits long. The
record is defined by fields, which may be from one to 16 bits long. To
isolate one of the three characteristics of a record field, you use one of
the record specific operators, as follows:

a record defined by the RECORD directive
FOO RECORD FIELD 1:3,FIELD2:6,FIELD3:7
a variable used to allocate FOO
BAZ FOO < >

FIELD 1, FIELD2, and FIELD3 are the fields of the record
FOO.

FIELD 1 FIELD 2 FIELD 3

Example:

FIELD2 is now right shifted, ready for access.

3-30

Shift-count - (record-fieldname)
<record-fieldname>

FIELD1 has a shift count of 13.
FIELD2 has a shift count of 7.
FIELD3 has a shift count of 0.

The shift count is derived from the record fieldname to be
isolated.
The shift count is the number of bits the field must be shifted
right to place the lowest bit of the field in the lowest bit of the
record byte or word.
If a 16-bit record (FOO) contains three fields (FIELD1,
FIELD2, and FIELD3), the record can be diagrammed as
follows:

MOV
MOV
SHR

DX,BAZ
CL,FIELD2
DX,CL

When you want to isolate the value in one of these fields, you
enter its name as an operand.

EXPRESSIONS: OPERANDS AND OPERATORSMACRO ASSEMBLER

WIDTH

WIDTH = 6

Example:

MOV CL,WIDTH FIELD2

The number of bits in FIELD2 is now in the count register.

3-31

WIDTH <record-fieldname>
WIDTH <record>

When a <record-fieldname> is given as the argument,
WIDTH returns the width of a record field as the number of
bits in the record field.
When a <record> is given as the argument, WIDTH returns
the width of a record as the number of bits in the record.
Using the diagram under shift count, WIDTH can be dia
grammed as:

The WIDTH of FIELD1 equals 3.
The WIDTH of FIELD2 equals 6.
The WIDTH of FIELD3 equals 7.

MASK

MASK <record-fieldname>

— MASKo

oF 81

The MASK of FIELD2 equals 1F80H.

Example:

FIELD2 is now isolated.

3-32

MOV DX,BAZ
AND DX,MASK FIELD2

1
I

_[
00 1

E
11

MASK accepts a field name as its only argument.
MASK returns a bit-mask defined by 1 for bit positions in
cluded by the field and 0 for bit positions not included. The
value return represents the maximum value for the record
when the field is masked.
Using the diagram used for shift count, MASK can be dia
grammed as: '

o1 1
I

0 0 0 0
~T~T
0 0

I

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

3.3.2 Arithmetic Operators

* Multiply

I Divide
MOD

Example:

MOV AX,100 MOD 17

SHR

Example:

MOV AX,1100000B SHR 5
The value moved into AX will be 1 IB (03).

SHL

Example:
MOV AX,0110B SHL 5

3-33

Eight arithmetic operators provide the common mathematical func
tions (add, subtract, divide, multiply, modulo, negation), plus two
shift operators.
The arithmetic operators are used to combine operands to form an
expression that results in a data item or an address.
Except for + and - (binary), operands must be constants.
For plus (+), one operand must be a constant.
For minus (-), the first (left) operand may be a nonconstant, or both
operands may be nonconstants. The right must be a constant if the
left is a constant.

Modulo. Divide the left operand by the right
operand and return the value of the remainder
(modulo). Both operands must be absolute.

Shift Right. SHR is followed by an integer which
specifies the number of bit positions the value is to
be shifted right.

Shift Left. SHL is followed by an integer which
specifies the number of bit positions the value is to
be shifted left.

The value moved into AX will be OFH (decimal
15).

The value moved into AX will be 011000000B
(0C0H)

+

3.3.3 Relational Operators

EQ

NE

LT

LE

GT

GE

3-34

- (Unary Minus) Indicates that following value is negative, as in a
negative integer.

Greater Than. Returns true if the left operand is
greater than the right operand.

Not Equal. Returns true if the operands are not
equal to each other.

Less Than. Returns true if the left operand is less
than the right operand.

Less than or Equal. Returns true if the left operand
is less than or equal to the right operand.

Greater than or Equal. Returns true if the left
operand is greater than or equal to the right
operand.

Add. One operand must be a constant; one may be
a nonconstant.

Subtract the right operand from the left operand.
The first (left) operand may be a nonconstant, or
both operands may be nonconstants. But the right
may be a nonconstant only if the left is also a
nonconstant and in the same segment.

Equal. Returns true if the operands equal each
other.

Relational operators compare two constant operands.
If the relationship between the two operands matches the operator,
FFFFH is returned.
If the relationship between the two operands does not match the
operator, a zero is returned.
Relational operators are most often used with conditional directives
and conditional instructions to direct program control.

MACRO ASSEMBLER EXPRESSIONS: OPERANDS AND OPERATORS

3.3.4 Logical Operators

NOT

AND

OR

XOR

3-35

Logical operators compare two constant operands bitwise.
Logical operators compare the binary values of corresponding bit
positions of each operand to evaluate the logical relationship defined
by the logical operator.
Logical operators can be used two ways.

Logical NOT. Returns true if left operand is true
and right is false or if right is true and left is false.
Returns false if both are true or both are false.
Logical AND. Returns true if both operators are
true. Returns false if either operator is false or if
both are false. Both operands must be absolute
values.
Logical OR. Returns true if either operator is true
or if both are true. Returns false if both operators
are false. Both operands must be absolute values.
Exclusive OR. Returns true if either operator is
true and the other is false. Returns false if both
operators are true or if both operators are false.
Both operands must be absolute values.

1. To combine operands in a logical relationship. In this case, all bits
in the operands will have the same value (either 0000 or FFFFH).
In fact, it is best to use these values for true (FFFFH) and false
(0000) for the symbols you will use as operands, because in condi
tionals anything nonzero is true.

2. In bitwise operations. In this case, the bits are different, and the
logical operators act the same as the instructions of the same
name.

3.3.5 Expression Evaluation: Precedence of Operators

For example:

3-36

Expressions are evaluated higher precedence operators first, then left
to right for equal precedence operators.
Parentheses can be used to alter precedence.

MOV AX,101B SHL 2*2 = MOV AX,00101000B
MOV AXJOIB SHL (2*2) = MOV AX,01010000B

Precedence of Operators
All operators in a single item have the same precedence, regardless of
the order listed within the item. Spacing and line breaks are used for
visual clarity, not to indicate functional relations.

SHL and * are equal precedence. Therefore, their functions are
performed in the order the operators are encountered (left to right).

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: parentheses ()

angle brackets < >
square brackets []

Structure variable operand: <variable>.<field>
2. Segment override operator: colon (:)
3. PTR, OFFSET, SEG, TYPE, THIS
4. HIGH, LOW
5. *, /, MOD, SHL, SHR
6. +, - (both unary and binary)
7. EQ, NE, LT, LE, GT, GE
8. Logical NOT
9. Logical AND

10. Logical OR, XOR
11. SHORT,.TYPE

CUSTOMER PROGRAM LICENSE AGREEMENT

LICENSE

You may:

use the Program(s) only on a single machine at a single location;a.

b.

c.

d.

NCR

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS
BEFORE OPENING THIS DISKETTE(S) PACKAGE. OPENING THIS DISKETTE(S)
PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF
YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACK
AGE UNOPENED; AND YOUR MONEY WILL BE REFUNDED.

NCR provides this Program(s) and licenses its use under these terms and conditions and
under Copyright Law: You assume responsibility for the selection of the Program(s) to
achieve your intended results, and for the installation, use and results obtained from the
Program(s). This program is confidential, proprietary to and a trade secret of the owner,
and should be safeguarded by you as such.

copy the program into any machine readable or printed form for backup or modification
purposes only, to support your use of the Program(s) on the single machine (Certain
programs, however, may include mechanisms to limit or inhibit copying. They are
marked “copy protected.’’);

transfer the Program(s) and license to another party only if the other party agrees to
accept the terms and conditions of this Agreement. You must advise NCR of the name
and address of the other party and the other party must sign a copy of the NCR
Customer Program License Agreement and have the same received by NCR. If you
transfer the Program(s), you must at the same time either transfer all copies whether in
printed or machine readable form to the same party or destroy any copies not trans
ferred; this includes all modifications and portions of the Program(s) contained or
merged into other programs.

modify the Program(s) and/or merge it into another program for your use on the single
machine (Any portion of this Program(s) merged into another program will continue to
be subject to the terms and conditions of this Agreement.); and

You must reproduce and include any copyright notice and serial number on any copy,
modification or portion merged into another program.

TERM

EXCLUSION OF WARRANTY

LIMITED WARRANTY

NCR’s entire liability and your exclusive remedy shall be:

This warranty gives you specific legal rights and you may also have other rights which vary
from state to state.

Some states do not allow limitations on how long an implied warranty lasts, so the above
exclusion may not apply to you.

IN NO EVENT WILL NCR BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY
LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGESARISING OUTOFTHEUSEOR INABILITY TO USE THE DISKETTE(S) EVEN
IF NCR OR AN AUTHORIZED NCR DEALER OR DISTRIBUTOR HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

Some states do not allow the limitation or exclusion of liability for incidental or consequen
tial damages so the above limitation or exclusion may not apply to you.

1. the replacement of any diskette(s) not meeting NCR’s “Limited Warranty” and which is
returned to NCR or an authorized NCR dealer or distributor, with a copy of your receipt,
or

2. if NCR or its authorized dealer or distributor is unable to deliver a replacement
diskette(s) and repair is not practicable or cannot be timely made, you may terminate
this Agreement by returning the program and your money will be refunded.

NCR warrants the diskette(s) on which the program is furnished to be free from defects in
materials and workmanship under normal use for a period of ninety (90) days from the date
of delivery to you as evidenced by a copy of your receipt.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION OR MERGED POR
TION OF THE PROGRAM TO ANOTHER PARTY, YOUR LICENSE IS AUTOMATICALLY
TERMINATED.

The license is effective until terminated. You may terminate it at any time by destroying the
program together with all copies, modifications and merged portions in any form. It will
also terminate upon conditions set forth elsewhere in this Agreement or if you fail to
comply with any term or condition of this Agreement. You agree upon such termination to
destroy the Program(s) together with all copies, modifications and merged portions in any
form.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PROGRAM(S), OR ANY
COPY, MODIFICATION OR MERGED PORTION, IN WHOLE OR IN PART, EXCEPT AS
EXPRESSLY PROVIDED FOR IN THIS LICENSE.

THE PROGRAM(S) IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM(S) PROVE DEFECTIVE, YOU (AND NOT NCR OR
ITS DEALER OR DISTRIBUTOR) ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION. NCR does not warrant that the functions con
tained in the Program(s) will meet your requirements or that the operation of the program
will be uninterrupted or error free.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

4-1

CHAPTER 4
ACTION: INSTRUCTIONS AND DIRECTIVES

The action field contains either an 8086 instruction mnemonic or a
Macro Assembler assembler directive.
Following a name field entry (if any), action field entries may begin
in any column. Specific spacing is not required. The only benefit of
consistent spacing is improved readability. If a statement does not
have a name field entry, the action field is the first entry.
The entry in the action field either directs the processor to perform a
specific function or directs the assembler to perform one of its func
tions.

4.1 INSTRUCTIONS

operand data dataopcode

operand addr addropcode

supplied supplied or found

4-2

Appendix C contains both an alphabetical listing and a grouped listing
of the instruction mnemonics. The alphabetical listing shows the full
name of the instruction. Following the alphabetical list is a list that
groups the instruction mnemonics by the number and type of argu
ments they take. Within each group, the instruction mnemonics are
arranged alphabetically.

Note that this manual does not contain detailed descriptions of the
8086 instruction mnemonics and their characteristics. For this, you
will need to consult other texts. The following texts are recommend
ed:

Instructions tell the command processor to perform some action. An
instruction may have the data and/or addresses it needs built into it,
or data and/or addresses may be found in the expression part of an
instruction. For example:

1. Morse, Stephen P. The 8086 primer. Rochelle Park, NJ:
Hayden Publishing Co., 1980.

2. Rector Russelland George Alexy. The 8086 Book. Berkeley,
CA: Osbourne/McGraw-Hill, 1980.

3. The 8086 Family User’s Manual. Santa Clara, CA: Intel
Corporation, 1980.

supplied = part of the instruction
found = assembler inserts data and/or address from the informa

tion provided by expressions in instruction statements.
(opcode equates to the binary code for the action of an
instruction)

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

4.2 DIRECTIVES

4-3

Directives give the assembler directions and information about input
and output, memory organization, conditional assembly, listing and
cross-reference control, and definitions.
The directives have been divided into groups by the function they
perform. Within each group, the directives are described alphabetical
ly-
The groups are:

Memory Directives
Directives in this group are used to organize memory.
Because there is no “miscellaneous” group, the memory
directives group contains some directives that do not,
strictly speaking, organize memory (for example, COM
MENT).

Conditional Directives
Directives in this group are used to test conditions of
assembly before proceeding with assembly of a block of
statements. This group contains all of the IF (and relat
ed) directives.

Macro Directives
Directives in this group are used to create blocks of code
called macros. This group also includes some special
operators and directives that are used only inside macro
blocks. The repeat directives are considered macro
directives for descriptive purposes.

Listing Directives
Directives in this group are used to control the format
and, to some extent, the content of listings that the
assembler produces.

ASSUME IRPC

GROUP

MACRO

NAME

4-4

ELSE
END
ENDIF
ENDM
ENDP
ENDS
EQU

COMMENT
.CREF

DB
DD
DQ
DT
DW

EVEN
EXUM
EXTERN

IF
IFB
IFDEF
IFDIF
IFE
IFIDN
IFNB
IFNDEF

IF1
IF2
IRP

ORG
°/oOUT

LABEL
.LALL
.LFCOND
.LIST

PAGE
PROC
PUBLIC
PURGE

.RADIX
RECORD
REPT

.TFCOND
TITLE

.SALL
SEGMENT
.SECOND
STRUC
SUBTTL

.XALL

.XCREF

.XLIST

Appendix B contains a table of assembler directives, also grouped by
function. Below is an alphabetical list of all the directives that Macro
Assembler supports:

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

4.2.1 Memory Directives

CS, DS, ES, and SS.

The possible entries for <seg-name> are:

4-5

ASSUME tells the assembler that the symbols in the segment
or group can be accessed using this segment register. When the
assembler encounters a variable, it automatically assembles the
variable reference under the proper segment register. You may
enter from 1 to 4 arguments to ASSUME.
The valid <seg-reg> entries are:

If ASSUME is not used or if NOTHING is typed for <seg-
name>, each reference to variables, symbols, labels, and so
forth in a particular segment must be prefixed by a segment
register. For example, type DS:FOO instead of simply FOO.

Example:
ASSUME DS: DATA,SS:DATA,CS: CGROUP,ES :NOTHING

ASSUME
ASSUME <seg-reg>:<seg-name>[,...]

or
ASSUME NOTHING

1. The name of a segment declared with the SEGMENT
directive

2. The name of a group declared with the GROUP directive
3. An expression: either SEG <variable-name> or SEG

<label-name> (see SEG operator, Section 3.3)
4. The key word NOTHING. ASSUME NOTHING cancels all

register assignements made by a previous ASSUME state
ment

* ;return to normal mode

4-6

COMMENT
COMMENT<delimXtextXdelim>

The first non-blank character encountered after COMMENT is
the delimiter. The following <text> comprises a comment
block which continues until the next occurrence of <delimi-
ter>.
COMMENT permits you to enter comments about your pro
gram without entering a semicolon (;) before each line.
If you use COMMENT inside a macro block, the comment
block will not appear on your listing unless you also place the
.LALL directive in your source file.
Example:
Using an asterisk as the delimiter, the format of the comment
block would be:

COMMENT *
any amount of text entered
here as the comment block

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

<exp> may be one or more of the following:

4-7

<varname>
<varname>
<varname>
<varname>
<varname>

DB
DW
DD
DQ
DT

<exp>[,<exp>,.
<exp>[,<exp>,.
<exp>[,<exp>,.
<exp>[,<exp>,.
<exp>[,<exp>,.

DEFINE BYTE
DEFINE WORD
DEFINE DOUBLEWORD
DEFINE QUADWORD
DEFINE TENBYTES

1. A constant expression
2. The character ? for indeterminate initialization. Usually the

? is used to reserve space without placing any particular
value into it. (It is the equivalent of the DS pseudo-op in
MACRO-80).

3. An address expression (for DW and DD only)
4. An ASCII string (longer than two characters for DB only)
5. <exp>DUP(?)

When this type of expression is the only argument to a
define directive, the define directive produces an uninitia
lized data block. This expression with the ? instead of a value
results in a smaller object file because only the segment
offset is changed to reserve space.

The DEFINE directives are used to define variables or to
initialize portions of memory.
If the optional <varname> is entered, the DEFINE directives
define the name as a variable. If <varname> has a colon, it
becomes a NEAR label instead of a variable. (See also, Section
2.1, “Labels,” and Section 2.2, “Variables.”)
The DEFINE directives allocate memory in units specified by
the second letter of the directive (each DEFINE directive may
allocate one or more of its units at a time):

DB allocates one byte (8 bits)
DW allocates one word (2 bytes)
DD allocates two words (4 bytes)
DQ allocates four words (8 bytes)
DT allocates ten bytes

Example - Define Byte (DB):

DB

DB

DISTANCE

4-8

initialize with
indeterminate value

NUM-BASE
FILLER

BUFFER
TABLE

NEW-PAGE
ARRAY

ITEMS
SEGVAL
BSIZE
LOCATION
AREA
CLEARED
SERIES

DB
DB

DB
DB

DB
DB

OCH
1,2,3,4,5,67

16
?

6. <exp> DUP(<exp> [,...])
This expression, like item 5, produces a data block, but ini
tialized with the value of the second <exp>. The first
<exp> must be a constant greater than zero and must not
be a forward reference.

10 DUP(?)
100 DUP(5 DUP(4),7)

;100 copies of bytes
;with values 4,4,4,4,4,7
;form feed character

ONE-CHAR
MULT-CHAR DB
MSG

DW
DW
DW
DW
DW
DW
DW
;two words with the byte values
;2,BSIZE,BSIZE,BSIZE,2,BSIZE,BSIZE,BSIZE
DW START-TAB-END-TAB
;difference of two labels is a constant

Example - Define Word (DW):
TABLE,TAB LE+10,TABLE+20
0FFF0H
4 * 128
TOTAL + 1
100 DUP(?)
50 DUP(0)
2 DUP(2,3 DUP(BSIZE))

“M”
“TOM JEROME EDWARD BOB DEAN”
“MSGTEST”,13,10 ;message, carriage return

;and linefeed
indeterminate block

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

Example - Define Doubleword (DD):

DBPTR DD TABLE

60*60*24DD

3.141597

STRING DQ

0FDCBA9A98765432105RDQHEX-REAL

Example - Define Tenbytes (DT):

4-9

;no more than 2
characters

SEC-PER-
DAY

LIST
HIGH
FLOAT

HIGH
LOW
SPACER
FILLER

ACCUMULATOR
STRING

PACKED-DECIMAL
FLOATING-POINT

DD
DD
DD

DQ
DQ
DQ
DQ

18446744073709661615
-18446744073709661615
2 DUP(?)
1 DUP(?,?)

DT
DT

DT
DT

1234567890
3.1415926

;decimal makes
;it real
;not more than 2
Characters
;maximum
;minimum
;uninit.data
;initalized w-/
indeterminate
;value

;16-bit OFFSET,
;then 16-bit
;SEG base value

;maximum
;floating point

EXAMPLE - Define Quadword (DQ):
LONG-REAL DQ

“AB”

9

“CD”

arithmetic is performed
;by the assembler

“XY”,2 DUP(?)
4294967295
6.735E2

Example:

END START

4-10

;START is a label somewhere in the
;program

END
END [<exp>]

The END statement specifies the end of the program.
If <exp> is present, it is the start address of the program. If
several modules are to be linked, only the main module may
specify the start of the program with the END <exp> state
ment.
If <exp> is not present, then no start address is passed to MS-
LINK for that program or module.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

1.

2.

3.

4.

Example:

FOO EQU BAZ

EQUCBD AAD

EQUALL

4-11

B
P8

EMP
FPV

EQU
EQU

EQU
EQU

[BP+8]
DS:[BP+8]

6
6.3E7

EQU
<name> EQU <exp>

EQU assigns the value of <exp> to <name>. If <exp> is an
external symbol, an error is generated. If <name> already has
a value, an error is generated. If you want to be able to redefine
a <name> in your program, use the equal sign (=) directive
instead.
In many cases, EQU is used as a primitive text substitution, like
a macro.
<exp> may be any one of the following:

A symbol. <name> becomes an alias for the symbol in
<exp>. Shown as an Alias in the symbol table.
An instruction name. Shown as an Opcode in the symbol
table.
A valid expression. Shown as a Number or L (label) in the
symbol table.
Any other entry, including text, index references, segment
prefix and operands. Shown as Text in the symbol table.

;must be defined in this
;module or an error
;results
;index reference (Text)
;segment prefix
;and operand (Text)
;an instruction name
;(Opcode)

DEFREC<2,3,4> ;DEFREC = record name
;<2,3,4> = initial values
;for fields of record
;constant value
;floating point (text)

Example:

EQU

FOO 7

FOO FOO+3

4-72

FOO
FOO

;the same as FOO EQU 5
;error, FOO cannot be
;redefined by EQU
;FOO can be redefined
;only by another =
Redefinition may refer
;to a previous definition

5
6;

Equal Sign
<name> = <exp>

<exp> must be a valid expression. It is shown as a Number or
L (label) in the symbol table (same as <exp> type 3 under the
EQU directive above).
The equal sign (=) allows the user to set and to redefine sym
bols. The equal sign is like the EQU directive, except the user
can redefine the symbol without generating an error. Redefini
tion may take place more than once, and redefinition may refer
to a previous definition.

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

Example:

4-13

EVEN
EVEN

The EVEN directive causes the program counter to go to an
even boundary; that is, to an address that begins a word. If the
program counter is not already at an even boundary, EVEN
causes the assembler to add a NOP instruction so that the
counter will reach an even boundary.
An error results if EVEN is used with a byte-aligned segment.

Before: The PC points to 0019 hex (25 decimal)
EVEN
After: The PC points to 1A hex (26 decimal)
0019 hex now contains a NOP instruction

3.

ASSUME <seg-reg>: SEG <name>

or an explicit segment prefix.

NOTE

4-14

1.
2.

Unlike the 8080 assembler, placement of the EXTRN directive
is significant. If the directive is given with a segment, the as
sembler assumes that the symbol is located within that seg
ment. If the segment is not known, place the directive outside
all segments, then use either

If a mistake is made and the symbol is not in
the segment, MS-LINK will take the offset
relative to the given segment, if possible. If
the real segment is less than 64K bytes away
from the reference, MS-LINK may find the
definition. If the real segment is more than
64K bytes away, MS-LINK will fail to make
the link between the reference and the
definition and will return an error message.

BYTE, WORD, or DWORD
NEAR or FAR for labels or procedures (defined under a
PROC directive)
ABS for pure numbers (implicit size is WORD, but includes
BYTE)

EXTRN
EXTRN <name>:<type>[,...]

<name> is a symbol that is defined in another module.
<name> must have been declared PUBLIC in the module
where <name> is defined.
<type> may be any one of the following, but must be a valid
type for <name>:

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

Example:

CSEG

TAGF:TAGN:

CSEGA ENDSCSEG ENDS

In Module 2:In Module 2:

CSEG

JMP TAGF
CSEGB ENDSCSEG

4-15

SEGMENT
PUBLIC TAGN

SEGMENT
EXTRN TAGN:NEAR

JMP TAGN
ENDS

CSEGA SEGMENT
PUBLIC TAGF

EXTRN TAGF:FAR
CSEGB SEGMENT

In Another Segment:
In Module 1:

In Same Segment:
In Module 1:

Once you have defined a group name, you can use the name:

4-16

The GROUP directive collects the segments named after
GROUP (<seg-name>s) under one name. The GROUP is
used by MS-LINK so that it knows which segments should be
loaded together (the order the segments are named here does
not influence the order in which the segments are loaded. The
order in which the segments are loaded is determined by the
CLASS designation of the SEGMENT directive, or by the
order you name object modules in response to the MS-LINK
Object Module: prompt).
All segments in a GROUP must fit into 64K bytes of memory.
The assembler does not check this at all, but leaves the check
ing to MS-LINK.
<seg-name> may be one of the following:

1. A segment name, assigned by a SEGMENT directive. The
name may be a forward reference.

2. An expression: either SEG <var>
or SEG <label>

Both of these entries resolve themselves to a segment name
(see SEG operator, Section 3.3).

The DS register can now be used to reach any symbol in any
segment of the group.

GROUP
<name> GROUP <seg-name>[,...]

DGROUP is the paragraph address of the base of DGROUP.
2. In ASSUME statements:

ASSUME DS:DGROUP

1. As an immediate value:
MOV AX,DGROUP
MOV DS,AX

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

3. As an operand prefix (for segment override):

Example (Using GROUP to combine segments):

In Module A:

XXX,YYY

CS: CGROUP

YYY

In Module B:

zzz
CS: CGROUP

ZZZ

4-17

DGROUP: forces the offset to be relative to DGROUP, instead of
to the segment in which FOO is defined.

CGROUP
XXX

XXX
YYY

CGROUPZZZ

GROUP SEGMENT
ASSUME

ENDS
SEGMENT

ENDS
END

GROUP
SEGMENT
ASSUME

ENDS
END

MOV BX,OFFSET DGROUP:FOO
DW DGROUP:FOO
DD DGROUP: FOO

Example:

4-18

The INCLUDE directive inserts source code from an alternate
assembly language source file into the current source file
during assembly. Use of the INCLUDE directive eliminates the
need to repeat an often-used sequence of statements in the
current source file.
The <filename> is any valid file specification for the operating
system. If the device designation is other than the default, the
source filename specification must include it. The default
device designation is the currently logged drive or device.
The included file is opened and assembled into the current
source file immediately following the INCLUDE directive
statement. When end-of-file is reached, assembly resumes with
the next statement following the INCLUDE directive.
Nested INCLUDES are allowed (the file inserted with an
INCLUDE statement may contain an INCLUDE directive).
However, this is not a recommended practice with small sy
stems because of the amount of memory that may be required.
The file specified must exist. If the file is not found, an error is
displayed, and the assembly aborts.
On a Macro Assembler listing, the letter C is printed between
the assembled code and the source line on each line assembled
from an included file. See Section 5.5, “Formats of Listings and
Symbol Tables,” for a description of listing file formats.

INCLUDE ENTRY
INCLUDE B:RECORD.TST

INCLUDE
INCLUDE <filename>

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

Example - For Code:

;colon = NEAR label

4-19

By using LABEL to define a <name>, you cause the assembler
to associate the current segment offset with <name>.
The item is assigned a length of 1.
<type> varies depending on the use of <name>. <name>
may be used for code or for data.

1. For code (for example, as a JMP or CALL operand):
<type> may be either NEAR or FAR. <name> cannot be
used in data manipulation instructions without using a type
override.
If you wish, you can define a NEAR label using the
<name>: form (the LABEL directive is not used in this
case). If you are defining a BYTE or WORD NEAR label,
you can place the <name>: in front of a Define directive.
When using a LABEL for code (NEAR or FAR), the seg
ment must be addressable through the CS register.

SUBRTF
SUBRT:

LABEL
<name> LABEL <type>

LABEL FAR
(first instruction)

Example - For Data:

4-20

2. For data:
<type> may be BYTE, WORD, DWORD, <structure-
name>, or <record-name>. When STRUC or RECORD
name is used, <name> is assigned the size of the structure
or record.

ADD
ADD

BYTE
100 DUP(O)

By defining the array two ways, you can access entries either
by byte or by word. Also, you can use this method for
STRUC. It allows you to place your data in memory as a
table, and to access it without the offset of the STRUC.
Defining the array two ways also permits you to avoid using
the PTR operator. The double defining method is especially
effective if you access the data different ways. It is easier to
give the array a second name than to remember to use PTR.

BARRAY LABEL
ARRAY DW

AL,BARRAY[99] ;ADD 100th byte to AL
AX,ARRAY[98] ;ADD 50th word to AX

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

Example:

NAME CURSOR

4-21

<module-name> must not be a reserved word. The module
name may be any length, but Macro Assembler uses only the
first six characters and truncates the rest.
The module name is passed to MS-LINK, but otherwise has no
significance for the assembler. Macro Assembler does check to
see if more than one module name has been declared.
Every module has a name. Macro Assembler derives the
module name from:

1. A valid NAME directive statement
2. If the module does not contain a NAME statement, Macro

Assembler uses the first six characters of a TITLE directive
statement. The first six characters must be legal as a name.

NAME
NAME <module-name>

Example:

ORG 120H

$+2ORG

Example - ORG to a boundary (conditional):

ENDIF

4-22

CSEG
BEGIN

See section 4.2.2, “Conditional Directives,” for an explanation
of conditional assembly.

;2-byte absolute value
;maximum=OFFFFH
;skip two bytes

ORG
ORG <exp>

IF ($-BEGIN) MOD 256 ;if not already on
;256-byte boundary

ORG ($-BEGIN)+256-(($-BEGIN) MOD 256)

SEGMENT PAGE
$

The location counter is set to the value of <exp>, and the
assembler assigns generated code starting with that value.
All names used in <exp> must be known on pass 1. The value
of <exp> must either evaluate to an absolute or must be in the
same segment as the location counter.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

PROC

<procname> PROC

The default, if no operand is specified, is NEAR. Use FAR if:

4-23

[NEAR]
or [FAR]

1. The procedure name is an operating system entry point
2. The procedure will be called from code which has another

ASSUME CS value

Each PROC block should contain a RET statement.
The PROC directive serves as a structuring device to make
your programs more understandable.
The PROC directive, through the NEAR/FAR option, informs
CALLs to the procedure to generate a NEAR or a FAR CALL,
and RETs to generate a NEAR or a FAR RET. PROC is used,
therefore, for coding simplification so that the user does not
have to worry about NEAR or FAR for CALLs and RETs.
A NEAR CALL or RETURN changes the IP but not the CS
register. A FAR CALL or RETURN changes both the IP and
the CS registers.
Procedures are executed either in line, from a JMP, or from a
CALL.
PROCs may be nested, which means that they are put in line.
Combining the PUBLIC directive with a PROC statement
(both NEAR and FAR), permits you to make external CALLs
to the procedure or to make other external references to the
procedure.

RET
<procname> ENDP

Example:

PUBLIC
FAR-NAME

FAR-NAME ENDP

ENDP

CALL NEAR-NAME

CALL FAR-NAME

4-24

A FAR segment (that is, any other segment that is not a NEAR
segment) must call to the first subroutine, which then calls the
second (an indirect call):

CALL
RET

The second subroutine above can be called directly from a
NEAR segment (that is, a segment addressable through the
same CS and within 64K):

FAR-NAME
PROC FAR

NEAR-NAME

NEAR-NAME
PROC NEAR

PUBLIC
NEAR-NAME

RET
NEAR-NAME

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

PUBLIC

PUBLIC <symbol>[,...]

Example:

GETINFO

BP

GETINFO

Example - illegal PUBLIC:

4-25

PIE-BALD EQU
HIGH-VALUE EQU 999999999

PUBLIC
PROC
PUSH
MOV

POP
RET
ENDP

GETINFO
FAR
BP
BP,SP

;save caller’s register
;get address parameters
;body of subroutine
;restore caller’s reg
;return to caller

Place a PUBLIC directive statement in any module that con
tains symbols you want to use in other modules without defin
ing the symbol again. PUBLIC makes the listed symbol(s),
which are defined in the module where the PUBLIC statement
appears, available for use by other modules to be linked with
the module that defines the symbol(s). This information is
passed to MS-LINK.
<symbol> may be a number, a variable, a label (including
PROC labels).
<symbol> may not be a register name or a symbol defined
(with EQU) by floating point numbers or by integers larger
than two bytes.

PUBLIC PIE-BALD,HIGH-VALUE
3.1416

.RADIX

.RADIX <exp>

Example:

Example:

4-26

.RADIX
NUM-HAND
HOT-HAND
COOL-HAND

MOV
.RADIX
MOV

BX,0FFH
16
BX,0FF

16
DT
DQ
DD

The default input base (or radix) for all constants is decimal.
The .RADIX directive permits you to change the input radix to
any base in the range 2 to 16.
<exp> is always in decimal radix, regardless of the current
input radix.

The two MOVS in this example are identical.
The .RADIX directive does not affect the generated code
values placed in the .OBJ, .LST, or .CRF output files.
The .RADIX directive does not affect the DD, DQ, or DT
directives. Numeric values entered in the expression of these
directives are always evaluated as decimal unless a data type
suffix is appended to the value.

773 ;773 = decimal
773Q ;773 = octal here only
773H ;now 773 = hexadecimal

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

RECORD

<recordname> RECORD <fieldname>:<width>[=<exp>],[...]

Example:

FOO RECORD HIGH:4,MID:3,LOW:3

Initially, the bit map would be:

4-27

<fieldname> is the name of the field. <width> specifies the
number of bits in the field defined by <fieldname>. <exp>
contains the initial (or default) value for the field. Forward
references are not allowed in a RECORD statement.
<fieldname> becomes a value that can be used in expressions.
When you use <fieldname> in an expression, its value is the
shift count to move the field to the far right. Using the MASK
operator with the <fieldname> returns a bit mask for that field.
<width> is a constant in the range 1 to 16 that specifies the
number of bits contained in the field defined by <fieldname>.
The WIDTH operator returns this value. If the total width of all
declared fields is larger than 8 bits, then the assembler uses two
bytes. Otherwise, only one byte is used.
The first field you declare goes into the most significant bits of
the record. Successively declared fields are placed in the suc
ceeding bits to the right. If the fields you declare do not total
exactly 8 bits or exactly 16 bits, the entire record is shifted right
so that the last bit of the last field is the lowest bit of the record.
Unused bits will be in the high end of the record.

Total bits >8 means use a word; but total bits <16 means right
shift, place undeclared bits at high end of word. Thus:

TT
<LOW>

n
<MID>

KO
(HIGH ->

KO

0 1 1 0 01 o — MASK

Example:

HIGH: 7=’ Q’

For example:

FOO <„7>

4-28

<exp> contains the initial value for the field. If the field is at
least 7 bits wide, you can use an ASCII character as the <exp>.

To initialize records, use the same method used for DB. The
format is:

The name is optional. When given, name is a label for the first
byte or word of the record storage area.
The recordname is the name used as a label for the RECORD
directive.
The [exp] (both forms) contains the values you want placed
into the fields of the record. In the latter case, the parentheses
and angle brackets are required only around the second [exp]
(following DUP). If [exp] is left blank, either the default value
applies (the value given in the original record definition), or the
value is indeterminate (when not initialized in the original
record definition). For fields that are already initialized to
values you want, place consecutive commas to skip over (use
the default values of) those fields.

From the previous example, the 7 would be placed into the
LOW field of the record FOO. The fields HIGH and MID
would be left as declared (in this case, uninitialized).

[<name>] <recordname> <[exp][,.. .]>
or
[<name>] <recordname> [<exp> DUP(<[exp][,.. .]>)

o
T~T
<MID>

shift count

0 0 0

~T
0 0

<LOW>

1

r~r~f
(HIGH ->
WIDTH

0 0

not
declared

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

recordname<[value[,. . .]]>

Example:

HIGH:5,MID:3,LOW:3FOO RECORD

MOV

4-29

Records may be used in expressions (as an operand) in the
form:

The value entry is optional. The angle brackets must be coded
as shown, even if the optional values are not given. A value
entry is the value to be placed into a field of the record. For
fields that are already initialized to values you want, place
consecutive commas to skip over (use the default values of)
those fields, as shown above.

BAX
JANE

FOO
FOO

AND
MOV
SHR
MOV

DX,OFFSET JANE[2]
;get beginning record address
DX,MASK MID
CL,MID
DX,CL
CL,WIDTH MID

< > ;leave undeterminate here
10 DUP (<16,8>) ;HIGH=16,MID=8,
;LOW=?

SEGMENT

SEGMENT [<align>] [<combine>] [<’class’>]<segname>

<segname> ENDS

4-30

At runtime, all instructions that generate code and data are in
(separate) segments. Your program may be a segment, part of a
segment, several segments, parts of several segments, or a
combination of these. If a program has no SEGMENT state
ment, an MS-LINK error (invalid object) will result at link time.
The <segment name> must be a unique, legal name. The
segment name must not be a reserved word.
<align> may be PARA (paragraph - default), BYTE, WORD,
or PAGE.
<combine> may be PUBLIC, COMMON, AT <exp>,
STACK, MEMORY, or no entry (which defaults to not com
binable, called Private in the Microsoft LINK section of the
Macro Assembler Manual).
<class> name is used to group segments at link time.
All three operands are passed to MS-LINK.
The alignment type tells the Linker on what kind of boundary
you want the segment to begin. The first address of the seg
ment will be, for each alignment type:

PAGE - address is xxxOOH (low byte is 0)
PARA - address is xxxxOH (low nibble is 0)

bit map -IxlxlxlxIOIOIOIOI
WORD - address is xxxxeH (e = even number;

low bit is 0)
bit map - IxlxlxlxlxlxlxIOI

BYTE - address is xxxxxH (place anywhere)

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

None (not combinable or Private)

o
A A

o
A’A’

Public and Stack
0

A
— A —

A’

Common
O

A

A’

4-31

The combine type tells MS-LINK how to arrange the segments
of a particular class name. The segments are mapped as follows
for each combine type:

Private segments are loaded separately and
remain separate. They may be physically
contiguous but not logically, even if the
segments have the same name. Each private
segment has its own base address.

Common segments of the same name and
class name are loaded overlapping one
another. There is only one base address for
all common segments of the same name.
The length of the common area is the length
of the longest segment.

Public segments of the same name and class
name are loaded contiguously. Offset is
from beginning of first segment loaded
through last segment loaded. There is only
one base address for all public segments of
the same name and class name. (Combine
type stack is treated the same as public.
However, the Stack Pointer is set to the first
address of the first stack segment. MS-LINK
requires at least one stack segment.)

Memory

NOTE

AT <exp>

NOTE

4-32

The memory combine type causes the segment(s) to be placed
as the highest segments in memory. The first memory com
binable segment encounter is placed as the highest segment in
memory. Subsequent segments are treated the same as Com
mon segments.

The segment is placed at the PARAGRAPH address specified
in <exp>. The expression may not be a forward reference.
Also, the AT type may not be used to force loading at fixed
addresses. Rather, the AT combine type permits labels and
variables to be defined at fixed offsets within fixed areas of
storage, such as ROM or the vector space in low memory.

Class names must be enclosed in quotation marks. Class names
may be any legal name. Refer to Chapter 9 in the MS-DOS
User’s Guide for more discussion.
Segment definitions may be nested. When segments are nest
ed, the assembler acts as if they are not and handles them
sequentially by appending the second part of the split segment
to the first. At ENDS for the split segment, the assembler takes
up the nested segment as the next segment, completes it, and
goes on to subsequent segments. Overlapping segments are not
permitted.

This feature is not supported by MS-LINK.
MS-LINK treats Memory segments the
same as Public segments.

This restriction is imposed by MS-LINK
and MS-DOS.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

For example:

SEGMENT A SEGMENTA

B SEGMENT
SEGMENT

B ENDS

ENDSA

A ENDS

SEGMENT

B SEGMENT

ENDS ;This is illegal!A

B ENDS

Example:

SEGA

SEGA

4-33

ENDS
END

ENDS
END

PUBLIC ’CODE’
CS:SEGA

PUBLIC ’CODE’
CS:SEGA
;MS-LINK adds this segment to same
;named segment in module A (and
;others) if class name is the same.

B
A

ENDS
SEGMENT

A ENDS
B

The following arrangement is not allowed:
A

In module B:
SEGA SEGMENT

ASSUME

In module A:
SEGA SEGMENT

ASSUME

STRUC

STRUC<structurename>

ENDS<structurename>

1,2 ;is not

10 DUP(?) ;is not

5 ;is overridable

4-34

The STRUC directive is very much like RECORD, except
STRUC has a multiple byte capability. The allocation and
initialization of a STRUC block are the same as for RECORDS.
Inside the STRUC/ENDS block, the Define directives (DB,
DW, DD, DQ, DT) may be used to allocate space. The Define
directives and Comments set off by semicolons (;) are the only
statement entries allowed inside a STRUC block.
Any label on a Define directive inside a STRUC/ENDS block
becomes a <fieldname> of the structure. (This is how struc
ture fieldnames are defined.) Initial values given to fieldnames
in the STRUC/ENDS block are default values for the various
fields. These field values are of two types: overridable or not
overridable. A simple field, a field with only one entry (but not
a DUP expression), is overridable. A multiple field, a field with
more than one entry, is not overridable.
For example:

FOO DB
overridable
BAZ DB
overridable
ZOO DB

If the <exp> following the Define directive contains a string, it
may be overridden by another string. However, if the overrid
ing string is shorter than the initial string, the assembler will
pad with spaces. If the overriding string is longer, the assembler
will truncate the extra characters.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

<variable>.<field>

STRUCTUREFOO

FOO ENDS

GOO FOO <,7„’JOE’>

Example:

To define a structure:

To allocate the structure:

DBAREA S

4-35

Usually, structure fields are used as operands in some expres
sion. The format for a reference to a structure field is:

DB
DB
DB
DB
ENDS

;not overridable
;not overridable
;overridable
;overridable

1,2
10 DUP (?)
5
’DOBOSKY’

:„7,’ANDY’> ;overrides 3rd and
4th
;fields only

<variable> represents an anonymous variable, usually set up
when the structure is allocated. To allocate a structure, use the
structure name as a directive with a label (the anonymous
variable of a structure reference) and any override values in
angle brackets:

,<field> represents a label given to a DEFINE directive inside
a STRUC/ENDS block (the period must be coded as shown).
The value of <field> will be the offset within the addressed
structure.

S STRUC
FIELD 1
FIELD2
FIELD3
FIELD4
S

The Define directives in this example define the fields of the
structure, and the order corresponds to the order values that
are given in the initialization list when the structure is allocated.
Every Define directive statement line inside a STRUC block
defines a field, whether or not the field is named.

To refer to a structure:

4-36

MOV
MOV

AL,[BX].FIELD3
AL,DBAREA.FIELD3

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

4.2.2 Conditional Directives

IFxxxx [argument]

[ELSE

4-37

Conditional directives allow users to design blocks of code which test
for specific conditions.
All conditionals follow the format:

•]
ENDIF

Each IFxxxx must have a matching ENDIF to terminate the condi
tional. Otherwise, an “Unterminated conditional” message is genera
ted at the end of each pass. An ENDIF without a matching IF causes
a Code 8, “Not in conditional block” error.
Each conditional block may include the optional ELSE directive,
which allows alternate code to be generated when the opposite condi
tion exists. Only one ELSE is permitted for a given IF. An ELSE is
always bound to the most recent, open IF. A conditional with more
than one ELSE or an ELSE without a conditional will cause a Code 7,
“Already had ELSE clause” error.
Conditionals may be nested up to 255 levels. Any argument to a
conditional must be known on pass 1 to avoid Phase errors and incor
rect evaluation. For IF and IFE the expression must involve values
which were previously defined, and the expression must be absolute.
If the name is defined after an IFDEF or IFNDEF, pass 1 considers
the name to be undefined, but it will be defined on pass 2.
The assembler evaluates the conditional statement to TRUE (which
equals any non-zero value), or to FALSE (which equals 0000H). If the
evaluation matches the condition defined in the conditional state
ment, the assembler either assembles the whole conditional block or,
if the conditional block contains the optional ELSE directive, assem
bles from IF to ELSE; the ELSE to ENDIF portion of the block is
ignored. If the evaluation does not match, the assembler either ig
nores the conditional block completely or, if the conditional block
contains the optional ELSE directive, assembles only the ELSE to
ENDIF portion; the IF to ELSE portion is ignored.

IF1

IF2

4-38

The following is a list of Macro Assembler conditional directives: IF
<exp>

IFE <exp>
If <exp> evaluates to 0, the statements in the conditional
block are assembled.

IFDEF <symbol>
If the <symbol> is defined or has been declared External, the
statements in the conditional block are assembled.

If <exp> evaluates to nonzero, the statements within the
conditional block are assembled.

Pass 1 Conditional
If the assembler is in pass 1, the statements in the conditional
block are assembled. IF1 takes no expression.

Pass 2 Conditional
If the assembler is in pass 2, the statements in the conditional
block are assembled. IF2 takes no expression.

IFNDEF <symbol>
If the <symbol> is not defined or not declared External, the
statements in the conditional block are assembled.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

4-39

IFNB <arg>
The angle brackets around <arg> are required.
If <arg> is not blank, the statements in the conditional block
are assembled.
IFNB (and IFB) are normally used inside macro blocks. The
expression following the IFNB directive is typically a dummy
symbol. When the macro is called, the dummy will be replaced
by a parameter passed by the macro call. If the macro call
specifies a parameter to replace the dummy following IFNB,
the expression is not blank, and the block will be assembled.
(IFB is the opposite case.) Refer to Section 4.2.3, “Macro Direc
tives,” for a full explanation.

IFB <arg>
The angle brackets around <arg> are required.
If the <arg> is blank (none given) or null (two angle brackets
with nothing in between, < >), the statements in the condi
tional block are assembled.
IFB (and IFNB) are normally used inside macro blocks. The
expression following the IFB directive is typically a dummy
symbol. When the macro is called, the dummy will be replaced
by a parameter passed by the macro call. If the macro call does
not specify a parameter to replace the dummy following IFB,
the expression is blank, and the block will be assembled. (IFNB
is the opposite case.) Refer to Section 4.2.3, “Macro Directives,”
for a full explanation.

4-40

IFDIF <argl>,<arg2>
The angle brackets around <argl> and <arg2> are required.
If the string <argl> is different from the string <arg2>, the
statements in the conditional block are assembled.
IFDIF (and IFIDN) are normally used inside macro blocks.
The expression following the IFDIF directive is typically two
dummy symbols. When the macro is called, the dummys will
be replaced by parameters passed by the macro call. If the
macro call specifies two different parameters to replace the
dummys, the block will be assembled. (IFIDN is the opposite
case.)

IFIDN <argl>,<arg2>
The angle brackets around <argl> and <arg2> are required.
If the string <argl> is identical to the string <arg2>, the state
ments in the conditional block are assembled.
IFIDN (and IFDIF) are normally used inside macro blocks.
The expression following the IFIDN directive is typically two
dummy symbols. When the macro is called, the dummys will
be replaced by parameters passed by the macro call. If the
macro call specifies two identical parameters to replace the
dummys, the block will be assembled. (IFDIF is the opposite
case.) Refer to Section 4.2.3, “Macro Directives,” for a full
explanation.

ENDIF
This directive terminates a conditional block. An ENDIF
directive must be given for every IFxxxx directive used. ENDIF
takes no expression. ENDIF closes the most recent, untermi
nated IF.

ELSE
The ELSE directive allows you to generate alternate code when
the opposite condition exists. ELSE may be used with any of
the conditional directives. Only one ELSE is allowed for each
IFxxxx conditional directive. ELSE takes no expression.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

4.2.3 Macro Directives

The macro directives also include some special macro operators:

4-41

The macro directives allow you to write blocks of code which can be
repeated without recoding. The blocks of code begin with either the
macro definition directive or one of the repetition directives, and end
with the ENDM directive. All of the macro directives may be used
inside a macro block. In fact, nesting of macros is limited only by
memory.
The macro directives of the Macro Assembler include:

repetitions:
REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

& (ampersand)
;; (double semicolon)
! (exclamation mark)
°/o (percent sign)

macro definition:
MACRO

termination:
ENDM
EXITM

unique symbols within macro blocks:
LOCAL

undefine a macro:
PURGE

Macro Definition

<name> MACRO [<dummy>,...]

ENDM

One alternative is to list no <dummy>s:

<name> MACRO

4-42

This type of macro block allows you to call the block repeated
ly, even if you do not want or need to pass parameters to the
block. In this case, the block will not contain any <dummy>s.
A macro block is not assembled when it is encountered. Rath
er, when you call a macro, the assembler “expands” the macro
call statement by bringing in and assembling the appropriate
macro block.
MACRO is an extremely powerful directive. With it, you can
change the value and effect of any instruction mnemonic,
directive, label, variable, or symbol. When Macro Assembler

The block of statements from the MACRO statement line to
the ENDM statement line comprises the body of the macro, or
the macro’s definition.
<name> is like a label and conforms to the rules for forming
symbols. After the macro has been defined, <name> is used to
invoke the macro.
A <dummy> is formed as any other name is formed. A <dum-
my> is a place holder that is replaced by a parameter in a one-
for-one text substitution when the macro block is used. You
should include all <dummy>s used inside the macro block on
this line. The number of <dummy>s is limited only by the
length of a line. If you specify more than one <dummy>, they
must be separated by commas. Macro Assembler interprets a
series of <dummy>s the same as any list of symbol names.

NOTE
A <dummy> is always recognized exclu
sively as a dummy. Even if a register name
(such as AX or BH) is used as a <dummy>,
it will be replaced by a parameter during
expansion.

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

4-43

evaluates a statement, it first looks at the macro table it builds
during pass 1. If it sees a name there that matches an entry in a
statement, it acts accordingly. (Remember: Macro Assembler
evaluates macros, then instruction mnemonics/directives.)
If you want to use the TITLE, SUBTTL, or NAME directives
for the portion of your program where a macro block appears,
you should be careful about the form of the statement. If, for
example, you enter SUBTTL MACRO DEFINITIONS, Macro
Assembler will assemble the statement as a macro definition
with SUBTTL as the macro name and DEFINITIONS as the
dummy. To avoid this problem, alter the word MACRO in
some way; e.g., - MACRO, MACROS, and so on.

Calling a Macro

passes only one.

Example:
Gen

GEN

4-44

To use a macro, enter a macro call statement:
<name> [<parameter>,...]

<name> is the <name> of the macro block. A <parameter>
replaces a <dummy> on a one-for-one basis. The number of
parameters is limited only by the length of a line. If you enter
more than one parameter, they must be separated by commas,
spaces, or tabs. If you place angle brackets around parameters
separated by commas, the assembler will pass all the items
inside the angle brackets as a single parameter. For example:

FOO 1,2,3,4,5
passes five parameters to the macro, but

FOO <1,2,3,4,5>

AX,XX
AX,YY
ZZ,AX

The number of parameters in the macro call statement need
not be the same as the number of <dummy>s in the MACRO
definition. If there are more parameters than <dummy>s, the
extras are ignored. If there are fewer, the extra <dummy>s will
be made null. The assembled code will include the macro block
after each macro call statement.

AX,DUCK
AX,DON
FOO,AX

On your program listing, these statements will be preceded by a
plus sign (+) to indicate that they came from a macro block.

MACRO XX, YY,ZZ
MOV
ADD
MOV
ENDM

If you then enter a macro call statement:
DUCK,DON,FOO

the assembler generates the statements:
MOV
ADD
MOV

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

End Macro

4-45

ENDM
ENDM tells the assembler that the MACRO or Repeat block is
ended.
Every MACRO, REPT, IRP, and IRPC must be terminated
with the ENDM directive. Otherwise, the “Unterminated
REPT/IRP/IRPC/MACRO” message is generated at the end
of each pass. An unmatched ENDM also causes an error.
If you wish to be able to exit from a MACRO or repeat block
before expansion is completed, use EXITM.

Exit Macro

EXITM

Example:

MACRO

REPT
X

X

4-46

IFE
EXITM
ENDIF
DB
ENDM
ENDM

FOO
X

X
0
X
X+l
X-OFFH ;test X
;if true, exit REPT

The EXITM directive is used inside a MACRO or Repeat block
to terminate an expansion when some condition makes the
remaining expansion unnecessary or undesirable. Usually
EXITM is used in conjunction with a conditional directive.
When an EXITM is assembled, the expansion is exited im
mediately. Any remaining expansion or repetition is not gener
ated. If the block containing the EXITM is nested within
another block, the outer level continues to be expanded.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

4-47

0000
0001
0002
0003
0005
0007
0009
000A
000B
000C
000E
0010
0012

07
08
BE
OOBF
0C01
EB F7

07
08
FF
0100
03C1
EB F7

+
+
+
+
+
+

+
+
+
+
+
+

A:
B:
C:
D:
E:

7
8
00FFH
0FFH+1
03C0H+1

7
8
0BEH
0BEH+1
0C00H+1

NUM,Y
A,B,C,D,E
7
8
Y
Y+l
NUM+1
A

LOCAL
LOCAL <dummy>[,<dummy>...]

The LOCAL directive is allowed only inside a macro definition
block. A LOCAL statement must precede all other types of
statements in the macro definition.
When LOCAL is executed, the assembler creates a unique
symbol for each <dummy> and substitutes that symbol for
each occurrence of the <dummy> in the expansion. These
unique symbols are usually used to define a label within a
macro, thus eliminating multiple-defined labels on successive
expansions of the macro. The symbols created by the assem
bler range from ??0000 to ??FFFF. Users should avoid the form
??nnnn for their own symbols.

Example:
0000

0C00H,0BEH
DB
DB
DB
DW
DW
??0000
03C0H,0FFH
DB
DB
DB
DW
DW
??0005

FUN SEGMENT
ASSUME CS:FUN,DS:FUN

FOO MACRO
LOCAL
DB
DB
DB
DW
DW
IMP
ENDM
FOO

??0000:
??0001:
??0002:
??0003:
??0004:

JMP
FOO

??0005:
??0006:
??0007:
??0008:
??0009:

JMP
FUN ENDS

END
Notice that Macro Assembler has substituted LABEL names in
the form ??nnnn for the instances of the dummy symbols.

PURGE

PURGE <macro-name>[,...]

PURGE deletes the definition of the macro(s) listed after it.

PURGE provides three benefits:

Example:

4-48

;tries to invoke purged macro
;returns a syntax error

1. It frees text space of the macro body.
2. It returns any instruction mnemonics or directives that were

redefined by macros to their original function.
3. It allows you to “edit out” macros from a macro library file.

You may find it useful to create a file that contains only
macro definitions. This method allows you to use macros
repeatedly with easy access to their definitions. Typically,
you would then place an INCLUDE statement in your
program file. Following the INCLUDE statement, you could
place a PURGE statement to delete any macros you will not
use in this program.
It is not necessary to PURGE a macro before redefining it.
Simply place another MACRO statement in your program,
reusing the macro name.

INCLUDE MACRO.LIB
PURGE MAC1
MAC1

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

4-49

Repeat Directives
The directives in this group allow the operations in a block of code to
be repeated for the number of times you specify. The major differ
ences between the Repeat directives and MACRO directive are:

1. MACRO gives the block a name by which to call in the code
wherever and whenever needed; the macro block can be used in
many different programs by simply entering a macro call state
ment.

2. MACRO, allows parameters to be passed to the macro block when
a MACRO is called; hence, parameters can be changed.

Repeat directive parameters must be assigned as a part of the code
block. If the parameters are known in advance and will not change,
and if the repetition is to be performed for every program execution,
then Repeat directives are convenient. With the MACRO directive,
you must call in the MACRO each time it is needed.
Note that each Repeat directive must be matched with the ENDM
directive to terminate the repeat block.

Repeat

REPT <exp>

ENDM

Example:

X
REPT

10
X

assembles as:

0000 X
REPT

10
X

4-50

0000’
0001’
0002’
0003’
0004’
0005’
0006’
0007’
0008’
0009’

01
02
03
04
05
06
07
08
09
0A

+
+
+
+
+
+
+
+
+
+

DB
ENDM

DB
ENDM
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
END

0
10

0
10

X
X
X
X
X
X
X
X
X
X

generates
;DB 1 - DB

generates
;DB 1 - DB

X+l
X

X+l
X

Repeat block of statements between REPT and ENDM <exp>
times. <exp> is evaluated as a 16-bit unsigned number. If
<exp> contains an External symbol or undefined operands, an
error is generated.

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

Indefinite Repeat
IRP <dummy>,<parameters inside angle brackets>

ENDM

Example:

FOO

When the macro call statement

4-51

The angel brackets around the parameters will be removed, and
all items are passed as a single parameter.

IRP
DB
ENDM

IRP
DB
ENDM

MACRO
IRP
DB
ENDM
ENDM

X
Y,<x>
Y

X,<l,2,3,4,5,6,7,8,9,10>
X

FOO <1,2,3,4,5,6,7,8,9,10>
is assembled, the macro expansion becomes:

Y,<l,2,3,4,5,6,7,8,9,10>

Parameters must be enclosed in angle brackets. Parameters may
be any legal symbol, string, numeric, or character constant. The
block of statements is repeated for each parameter. Each repeti
tion substitutes the next parameter for every occurrence of
<dummy> in the block. If a parameter is null (i.e., <>), the
block is processed once with a null parameter.

This example generates the same bytes (DB 1 to DB 10) as the
REPT example.
When IRP is used inside a MACRO definition block, angle
brackets around parameters in the macro call statement are
removed before the parameters are passed to the macro block.
An example, which generates the same code as above, il
lustrates the removal of one level of brackets from the param
eters:

Indefinite Repeat Character

IRPC <dummy>,<string>

ENDM

Example:

4-52

IRPC
DB
ENDM

X,0123456789
X+l

The statements in the block are repeated once for each charac
ter in the string. Each repetition substitutes the next character
in the string for every occurrence of <dummy> in the block.

This example generates the same code (DB 1 to DB 10) as the
two previous examples.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

Special Macro Operators

&

BX

The call ERRGEN A will then generate:

4-53

Several special operators can be used in a macro block to select addi
tional assembly functions.

ERRORA: PUSH
MOV
JMP

B
BX,’A’
ERROR

X
PUSH
BX,’&X’
ERROR

In Macro Assembler, the ampersand will not appear in the
expansion. One ampersand is removed each time a
dummy& or &dummy is found. For complex macros, where
nesting is involved, extra ampersands may be needed. You
need to supply as many ampersands as there are levels of
nesting.

Ampersand concatenates text or symbols. (The ampersand
may not be used in a macro call statement.) A dummy
parameter in a quoted string will not be substituted in ex
pansion unless preceded immediately by an ampersand. To
form a symbol from text and a dummy, put an ampersand
between them.
For example:

ERRGEN MACRO
ERROR&X:

MOV
JMP
ENDM

For example:

FOO FOO

X&Z

1. MACRO build, find <dummy>s and change to dl

IRP Z,<1,2,3>

2. MACRO expansion, substitute parameter text for dl

IRP Z,<1,2,3>
BAZ&Z

DB dl

4-54

BAZ1
BAZ2
BAZ3

IRP
DB
ENDM

1
2
3

Z,<1,2,3>
Z dlZ DB Z

ENDM

Z,<1,2,3>
ZBAZZ DB Z

ENDM

Correct form
MACRO X
IRP Z,<1,2,3>

X&&Z DB Z
ENDM
ENDM

IRP
dl&Z DB

ENDM

DB 1
DB 2<-+
DB 3 I
------ +

When called, for example, by FOO BAZ, the expansion would
be (correctly in the left column, incorrectly in the right):

BAZZ
BAZZ
BAZZ
4-------
+ ;here it’s an error,

;multi-defined symbol

3. IRP build, find dummys and change to dl
BAZ&dl DB dl BAZZ

4. IRP expansion, substitute parameter text for dl
DB
DB
DB

Incorrect form
MACRO X
IRP Z,<1,2,3>
DB Z
ENDM
ENDM

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

99

4-55

<text> Angle brackets cause Macro Assembler to treat the text
between the angle brackets as a single literal. Placing
parameters to a macro call inside angle brackets; or placing
the list of parameters following the IRP directive inside
angle brackets causes two results:

1. All text within the angle brackets is seen as a single
parameter, even if commas are used.

2. Characters that have special functions are taken as literal
characters. For example, the semicolon inside angle
brackets <;> becomes a character, not the indicator that
a comment follows.

One set of angle brackets is removed each time the parame
ter is used in a macro. When using nested macros, you will
need to supply as many sets of angle brackets around
parameters as there are levels of nesting.

In a macro or repeat block, a comment preceded by two
semicolons is not saved as a part of the expansion.
The default listing condition for macros is .XALL (see
Section 4.2.4, “Listing Directives,” below). Under the in
fluence of .XALL, comments in macro blocks are not listed
because they do not generate code.
If you decide to place the .LALL listing directive in your
program, then comments inside macro and repeat blocks
are saved and listed. This can be the cause of an “out of
memory error.” To avoid this error, place double semico
lons before comments inside macro and repeat blocks,
unless you specifically want a comment to be retained.

An exclamation point may be entered in an argument to
indicate that the next character is to be taken literally.
Therefore, !; is equivalent to <;>.

%

PRINTE

4-56

Normally, the macro call statement would cause the string (SYM1 +
SYM2) to be substituted for the dummy N. The result would be:

SYM1
SYM2

MACRO
%OUT
ENDM
EQU
EQU
PRINTE

100
200
<SYM1 + SYM2 = >,°/o(SYMl +
SYM2)

When the % is placed in front of the parameter, the assembler
generates:

The percent sign is used only in a macro argument to con
vert the expression that follows it (usually a symbol) to a
number in the current radix. During macro expansion, the
number derived from converting the expression is substi
tuted for the dummy. Using the % special operator allows a
macro call by value. (Usually, a macro call is a call by refe
rence, with the text of the macro argument substituting ex
actly for the dummy.)
The expression following the °/o must evaluate to an abso
lute (non-relocatable) constant.
Example:

%OUT * SYM1 + SYM2 = (SYM1 + SYM2) *

%OUT * SYM1 + SYM2 = 300 *

MSG,N
*MSG,N *

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

4.2.4 Listing Directives

Example:

PAGE + ;increment major,set minor to 1

PAGE 58,60

4-57

Listing directives perform two general functions: format control and
listing control. Format control directives allow the programmer to
insert page breaks and direct page headings. Listing directives turn on
and off the listing of all or part of the assembled file.

PAGE
PAGE [<length>] [,<width>]
PAGE +

PAGE with no arguments or with the optional [,+] argument
causes the assembler to start a new output page. The assembler
puts a form feed character in the listing file at the end of the
page.
The PAGE directive with either the length or width arguments
does not start a new listing page.
The value of <length>, if included, becomes the new page
length (measured in lines per page) and must be in the range 10
to 255. The default page length is 50 lines per page.
The value of <width>, if included, becomes the new page
width (measured in characters) and must be in the range 60 to
132. The default page width is 80 characters.
The plus sign (+) increments the major page number and resets
the minor page number to one. Page numbers are in the form
major-minor. The PAGE directive without the + increments
only the minor portion of the page number.

;page length = 58 lines,
;width = 60 characters

Example:

TITLE PR0G1 - 1st Program

4-58

TITLE
TITLE <text>

TITLE specifies a title to be listed on the first line of each page.
The <text> may be up to 60 characters long. If more than one
TITLE is given, an error results. The first six characters of the
title, if legal, are used as the module name, unless a NAME
directive is used.

If the NAME directive is not used, the module name is now
PROG1 - 1st Program. This title text will appear at the top of
every page of the listing.

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

Example:

SUBTTL SPECIAL I/O ROUTINE

SUBTTL

4-59

SUBTITLE
SUBTTL <text>

SUBTTL specifies a subtitle to be listed in each page heading
on the line after the title. The <text> is truncated after 60
characters.
Any number of SUBTTLs may be given in a program. Each
time the assembler encounters SUBTTL, it replaces the <text>
from the previous SUBTTL with the <text> from the most
recently encountered SUBTTL. To turn off SUBTTL for part
of the output, enter a SUBTTL with a null string for <text>.

The first SUBTTL causes the subtitle SPECIAL I/O ROU
TINE to be printed at the top of every page. The second
SUBTTL turns off subtitle (the subtitle line on the listing is left
blank).

Example:

4-60

%OUT
%OUT <text>

The text is listed on the terminal during assembly. °/o OUT is
useful for displaying progress through a long assembly or for
displaying the value of conditional assembly switches.
%OUT will output on both passes. If only one printout is
desired, use the IF1 or IF2 directive, depending on which pass
you want displayed. See Section 4.2.2, “Conditional Direc
tives,” for descriptions of the IF1 and IF2 directives.

The assembler will send this message to the terminal screen
when encountered.

IF1
%OUT *Pass 1 started*
ENDIF

IF2
%OUT *Pass 2 started*
ENDIF

%OUT *Assembly half done*

ACTION: INSTRUCTIONS AND DIRECTIVESMACRO ASSEMBLER

Example:

.XLIST ;listing suspended here

.LIST ;listing resumes here

4-61

.LIST

.XLIST

.LIST lists all lines with their code (the default condition).

.XLISt suppresses all listing.
If you specify a listing file following the Listing: prompt, a
listing file with all the source statements included will be print
ed.
When .XLIST is encountered in the source file, source and
object code will not be listed. .XLIST remains in effect until a
.LIST is encountered.

.XLIST overrides all other listing directives. Nothing will be
listed, even if another listing directive (other than .LIST) is
encountered.

4-62

.SECOND
.SFCOND suppresses portions of the listing that contain condi
tional false expressions.

.LFCOND
.LFCOND assures the listing of conditional expressions that
evaluate false. This is the default condition.

.TFCOND
.TFCOND toggles the current setting. .TFCOND operates
independently from .LFCOND and .SFCOND. .TFCOND
toggles the default setting, which is set by the presence or
absence of the /X switch when the assembler is running. When
/X is used, .TFCOND will cause false conditionals to list.
When /X is not used, .TFCOND will suppress false condition
als.

.LALL
.LALL lists the complete macro text for all expansions, includ
ing lines that do not generate code. Comments preceded by
two semicolons (;;) will not be listed.

.SALL
.SALL suppresses listing of all text and object code produced
by macros.

.XALL
.XALL is the default.
.XALL lists source code and object code produced by a macro,
but source lines which do not generate code are not listed.

MACRO ASSEMBLER ACTION: INSTRUCTIONS AND DIRECTIVES

4-63

.CREF is the default condition. .CREF remains in effect until
Macro Assembler encounters .XCREF.
.XCREF without arguments turns off the .CREF (default)
directive. .XCREF remains in effect until Macro Assembler
encounters .CREF. Use .XCREF to suppress the creation of
cross-references in selected portions of the file. Use .CREF to
restart the creation of a cross-reference file after using the
.XCREF directive.
If you include one or more variables following .XCREF, these
variables will not be placed in the listing or cross-reference file.
All other cross-referencing, however, is not affected by an
.XCREF directive with arguments. Separate the variables with
commas.
Neither .CREF or .XCREF without arguments takes effect
unless you specify a cross-reference file when running the
assembler. .XCREF <variable list> suppresses the variables
from the symbol table listing regardless of the creation of a
cross-reference file.

.CREF

.XCREF

.CREF

.XCREF [<variable list>]

Example:
.XCREF CURSOR,FOO,GOO,BAZ,ZOO

;these variables will not be
;in the listing or cross-reference file

MACRO ASSEMBLER ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

5.1 HOW TO START MACRO ASSEMBLER

Summary of Methods to Start Macro Assembler

Method 1 MASM

Method 2

5-1

Macro Assembler may be started in two ways. By the first method,
you type the commands in response to individual prompts. By the
second method, you type all commands on the line used to start
Macro Assembler.

CHAPTER 5
ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

MASM <source>,<object>,<listing>,
<cross-ref>[/switch ...]

Assembling a program with Macro Assembler requires two types of
commands: a command to start Macro Assembler, and answers to
command prompts. In addition, four switches control alternate Macro
Assembler features. Usually, you will type all the commands to
Macro Assembler on the terminal keyboard. As an option, answers to
the command prompts and any switches may be contained in re
sponse (batch) file. Two command characters are provided to assist
you while entering assembler commands. These command characters
are described in Section 5.2, “Command Characters.”

5.1.1 Method 1: Prompts

Type:

MASM

Object filename [source.OBJ]: I

Source listing [NUL.LST]: I

Cross reference [NUL.CRF]: I

5-2

Summary of Command Prompts
I
F

PROMPT
Source filename [.ASM]:

RESPONSES
List .ASM file to be assembled.
(There is no default: a filename
response is required.)
List filename for relocatable
object code. (The default is
source-filename.OBJ)
List filename for listing. (The
default is no listing file.)
List filename for cross-refe
rence file (used with MS-CREF
to create a cross-reference list
ing). (The default is no cross
reference file.)

Macro Assembler will be loaded into memory. Then, Macro Assem
bler returns a series of four text prompts that appear one at a time.
You answer the prompts as commands to Macro Assembler to per
form specific tasks.
At the end of each line, you may specify one or more switches, each
of which must be preceded by a forward slash (/).
The command prompts are summarized here and described in more
detail in Section 5.3, “Macro Assembler Command Prompts.”

MACRO ASSEMBLER ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

5.1.2 Method 2: Command Line

Type:

MASM <source>,<object>,<listing>,<cross-ref>[/switch ...]

where:

Example:

MASM FUN„FUN/D/X,FUN

5-3

Macro Assembler will be loaded into memory. Then Macro Assem
bler immediately begins assembly. The entries following MASM are
responses to the command prompts. The entry fields for the different
prompts must be separated by commas.

To select the default for a field, simply enter a second comma without
space in between (see the example below).

This example causes Macro Assembler to be loaded, then causes the
source file FUN.ASM to be assembled. Macro Assembler then out
puts the relocatable object code to a file named FUN.OBJ (default
caused by two commas in a row), creates a listing file named
FUN.LST for both assembly passes but with false conditionals sup
pressed, and creates a cross-reference file named FUN.CRF. If names
were not listed for listing and cross-reference, these files would not be
created. If listing file switches are given but no filename, the switches
are ignored.

source is the source filename
object is the name of the file to receive the relocatable out
put
listing is the name of the file to receive the listing
cross-ref is the name of the file to receive the cross-ref
erence output
/switch are obtional switches, which may be placed fol
lowing any of the response entries (just before any of the
commas or after the <cross-ref>, as shown).

5.2 MACRO ASSEMBLER COMMAND CHARACTERS
Macro Assembler provides two command characters.

Semicolon

NOTE

Example:

To achieve the same result, you could type:

Source filename [.ASM]:FUN ;

5-4

CONTROL-C Use <CONTROL-C> at any time to abort the assem
bly. If you enter an erroneous response, such as the
wrong filename or an incorrectly spelled filename,
you must press <CONTROL-C> to exit Macro
Assembler. You can then restart Macro Assembler. If
the error has been typed and not entered, you may
delete the erroneous characters, but for that line only.

The remaining prompts will not appear, and Macro
Assembler will use the default values (including no
listing file and no cross-reference file).

This response produces the same files as the previous
example.

Use a single semicolon (;), followed immediately by a
carriage return, at any time after responding to the
first prompt (from Source filename: on) to select
default responses to the remaining prompts. This
feature saves time and eliminates the need to enter a
series of carriage returns.

Once the semicolon has been entered, you
can no longer respond to any of the prompts
for that assembly. Therefore, do not use the
semicolon to skip over some prompts. For
this, use the <RETURN> key.

Source filename [.ASM]: FUN
Object filename [FUN.OBJ]: ;

MACRO ASSEMBLER ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

5.3 MACRO ASSEMBLER COMMAND PROMPTS

5-5

Macro Assembler is commanded by entering responses to four text
prompts. When you have typed a response to the current prompt, the
next appears. When the last prompt has been answered, Macro As
sembler begins assembly automatically without further command.
When assembly is finished, Macro Assembler exits to the operating
system. When the operating system prompt is displayed, Macro
Assembler has finished successfully. If the assembly is unsuccessful,
Macro Assembler displays the appropriate error message.
Macro Assembler prompts you for the names of source, object,
listing, and cross-reference files.
All command prompts accept a file specification as a response. You
may type:

A filename only
A device designation only
A filename and an extension
A device designation and filename, or
A device designation, filename, and extension.
Do not type only a filename extension.

The following is a discussion of the command prompts that are dis
played when you start Macro Assembler with Method 1:

Source filename [.ASM):
Type the filename of your source program. Macro Assembler
assumes by default that the filename extension is .ASM, as
shown in square brackets in the prompt text. If your source
program has any other filename extension, you must specify it
along with the filename. Otherwise, the extension may be
omitted.

Object filename [source.OBJJ:
Type the filename you want to receive the generated object
code. If you simply press the carriage return key when this
prompt appears, the object file will be given the same name as
the source file, but with the filename extension .OBJ. If you
want your object file to have a different name or a different
filename extension, you must type your choice in response to
this prompt. If you want to change only the filename but keep
the .OBJ extension, type the filename only. To change the
extension only, you must type both the filename and the exten
sion.

5-6

Source listing [NUL.LSTJ:
Type the name of the file you want to receive the source listing.
If you press the carriage return key, Macro Assembler does not
produce this listing file. If you type a filename only, the listing is
created and placed in a file with the name you type plus the
filename extension .LST. You may also type your own exten
sion.
The source listing file will contain a list of all the statements in
your source program and will show the code and offsets gen
erated for each statement. The listing will also show any error
messages generated during the session.

Cross reference [NUL.CRF]:
Type the name of the file you want to receive the cross-ref
erence file. If you press only the <RETURN> key, Macro As
sembler does not produce this cross-reference file. If you type a
filename only, the cross-reference file is created and placed in a
file with the name you type plus the filename extension .CRF.
You may also type your own extension.
The cross-reference file is used as the source file for the Micro
soft CREF Cross-Reference Utility (MS-CREF). MS-CREF
converts this cross-reference file into a cross-reference listing,
which you can use to aid you during program debugging.
The cross-reference file contains a series of control symbols
that identify records in the file. MS-CREF uses these control
symbols to create a listing that shows all occurrences of every
symbol in your program. The occurrence that defines the
symbol is also identified.

MACRO ASSEMBLER ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

5.4 MACRO ASSEMBLER COMMAND SWITCHES

/O

/X

5-7

Function
Produces a source listing on both assembler passes. The
listings will, when compared, show where in the program
phase errors occur and will, possibly, give you a clue to why
the errors occur. The /D switch does not take effect unless
you command Macro Assembler to create a source listing
(type a filename in response to the Source listing: command
prompt).

Suppresses the listing of false conditionals. If your program
contains conditional blocks, the listing file will show the
source statements, but no code if the condition evaluates
false. To avoid the clutter of conditional blocks that do not
generate code, use the /X switch to suppress the blocks that
evaluate false from your listing.
The /X switch does not affect any block of code in your file
that is controlled by either the .SFCOND or .LFCOND
directives.

Outputs the listing file in octal radix. The generated code
and the offsets shown on the listing will all be given in octal.
The actual code in the object file will be the same as if the
/O switch were not given. The /O switch affects only the
listing file.

Switch
/D

The three Macro Assembler switches control assembler functions.
Switches must be typed at the end of a prompt response, regardless of
which method is used to start Macro Assembler. Switches may be
grouped at the end of any one of the responses, or may be scattered at
the end of several. If more than one switch is typed at the end of one
response, each switch must be preceded by a forward slash (/). Do not
specify only a switch as a response to a command prompt.

5-8

If your source program contains the .TFCOND directive,
the /X switch has the opposite effect. That is, normally the
.TFCOND directive causes listing or suppressing of blocks
of code that it controls. The first .TFCOND directive sup
presses false conditionals, the second restores listing of false
conditionals, and so on. When you use the /X switch, false
conditionals are already suppressed. When Macro Assem
bler encounters the first .TFCOND directive, listing of false
conditionals is restored. When the second .TFCOND is
encountered (and the /X switch is used), false conditionals
are again suppressed from the listing.
Of course, the /X switch has no effect if no listing is created.
See additional discussion under the .TFCOND directive in
Section 4.2.4, “Listing Directives.”
The following chart illustrates the various effects of the
conditional listing directives in combination with the /X
switch.

MACRO ASSEMBLER ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

Pseudo-oo No /X /X

(none) ON OFF

SFCOND OFF OFF

ONLFCOND ON

ONTFCOND OFF

OFFTFCOND ON

OFFOFFSFCOND

ONOFF.TFCOND

I

I

5-9

TFCOND
TFCOND

OFF
ON

ON
OFF

Produce a listing on both assembler passes.
Show generated object code and offsets in
octal radix on listing.
Suppress the listing of false conditionals.
Also used with the .TFCOND directive.

Summary of Command Switches
I SWITCH I ACTION
I /D

I /X

I /O

5.5 FORMATS OF LISTINGS AND SYMBOL TABLES

The first part of the listing shows:

The second part of the listing shows:

5.5.1 Program Listing

5-10

The source listing produced by Macro Assembler (created when you
specify a filename in response to the Source listing: prompt) is
divided into two parts.

The program portion of the listing is essentially your source program
file with the line numbers, offsets, generated code, and (where appli
cable) a plus sign to indicate that the source statements are part of a
macro block, or a letter C to indicate that the source statements are
from a file input by the INCLUDE directive.
If any errors occur during assembly, the error message will be printed
directly below the statement where the error occurred.

The line number for each line of the source file, if a cross
reference file is also being created.
The offset of each source line that generates code.
The code generated by each source line.
A plus sign (+), if the code came from a macro, or a letter C, if
the code came from an INCLUDE file.
The source statement line.

Macros- name and length in bytes
Structures and records- name, width and fields
Segments and groups- name, size, align, combine, and class
Symbols- name, type, value, and attributes
The number of warning errors and severe errors

MACRO ASSEMBLER ASSEMBLING A MACRO ASSEMBLER SOURCE FILE

5-11

Part of a listing file follows this discussion, with notes explaining what
the various entries represent.
The comments have been moved down one line because of format
restrictions. If you print your listing on 132 column-paper, the com
ments shown here will easily fit on the same line as the rest of the
statement.

Summary of Listing Symbols

+■ •+

[
xx

]

5-12

Explanatory notes are spliced into the listing at points of special
interest.

R
E

nn:
nn/

= DUP expression;xx is the value in parentheses fol
lowing DUP; for example: DUP(?) places ??
where xx is shown here

= Line comes from a macro expansion
= Line comes from file named in INCLUDE directive

statement

+
C

= Linker resolves entry to left of R
= External
= Segment name, group name, or segment variable used

in MOV AX,<---->, DD <—->, JMP <---->, and so
on.

= Statement has an EQU or = directive
= Statement contains a segment override
= REPxx or LOCK prefix instruction. Example:

003CF3/ A5 REP MOVSW ;moveDS:SI toES:DI
;until CX=0

ASSEMBLING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

PAGE 1-3Microsoft Macro Assembler l-Dec-81

EXTX PASCAL entry for initializing programs

THIS BYTE

0000 14 [DB

0000

PUBLIC BEGXQQ ;Main entry

MOV

0003 8E D8 MOV

8C 06 0022 R CESXQQ,ES0005 MOV

Generated Name Action Expression Comment
Offset

000C 26: 8B IE 0002 MOV

Segment override

5-13

BX,ES:2 ;Highest
paragraph

0000
0000

DATA, STACK<CONST, HEAP, MEMORY
CS :M AINST ARTUP,DS: DGROUP,
ES: DGROUP, SS: DGROUP

FAR
AX,DGROUP
;Get data segment value
DS,AX ;Set DS seg

= 0014
0014

BEGXQQ PROC
B8 -- R

0000 STACK SEGMENT WORD STACK ’STACK’
= 0000 HEAPbeg EQU

Indicates EQU or = directive
;Base of heap before init
20 DUP (?)

?? Shows value in parentheses
]

MAINSTARTUP SEGMENT ’MEMORY’
DGROUP GROUP

ASSUME

Indicates DUP expression
SKTOP EQU THIS BYTE
STACK ENDS

Microsoft Macro Assembler l-Dec-81 PAGE 1-4
ENTX PASCAL entry for initializing programs

001C 4 <■ ■+

to offset

001C D1E3 SHL
to offset

001E DI E3 SHL
to offset

0020 DI E3 SHL
to offset

0022 DI E3 SHL
to offset

0024 8BE3 SP,BX

0069 EA 0000 FAR PTR STARTmain—- R JMP

+-segment variable+-signal to linker

BEGXQQ ENDP

ENDS007E MAIN-STARTUP

0000

5-14

macro
directive

macro
block

2B D8
81 FB 1000

these lines
from macro

SMLSTK: +>
SHL

SUB
CMP
JLE
MOV

BX,AX ;Get # paras for DS
BX,4096 ;More than 64K?
SMLSTK ;No, use what we have
BX,4096 ;Can only address 64k

SEGMENT WORD ’CODE’
CS:ENTXCM
ENDXQQ,DOSXQQ

number of
repetitions

.si
006E

ENTXCM
ASSUME
PUBLIC

MOV
;Set stack to top of memory

REPT
BX,1

;Convert para
ENDM

BX,1
;Convert para

BX,1
;Convert para

BX,1
;Convert para

BX,1
;Convert para

V

0011
0013
0017 7E03
0019 BB 1000

+-

-l-linker resolves: indicates segment name, group name,
or segment variable used in MOV AX,<-—>;
DD JMP <-—>,etc. (See other examples in this listing.)

ASSEMBLING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

Microsoft Macro Assembler l-Dec-81 PAGE 1-5

PASCAL entry for initializing programsENTX

PROC

0005 ENDXQQ

0005 9A 0000 -- E

000A 9A 0000 -- E

CALL000F 9A 0000 -- E

MOV DOSDFF, 0R 0000C 7 06 0020

00 2E 0020 R JMP

ENDP001E STARTmain

ENDS0037

5-15

0014

offset

DWORD PER DOSOFF
;return to DOS

= External
symbol

STARTmain
0000 -- E

0000
0000 9A

ENTXCM
END BEGXQQ

linker
signal;
goes with
number to left; shows DOSOFF is in segment

FAR ;This code remains
CALL ENTGQQ

;call main program

LABEL FAR
germination entry point

CALL ENDOQQ
;user system termination

CALL ENDYQQ
;close all open files

<-+ CALL ENDUQQ
;file system
termination

5.5.2 Differences Between Pass 1 And Pass 2 Listings

Example:

During Pass 1 a jump with a forward reference produces:

001C

5-76

If you specify the /D switch when you run Macro Assembler to
assemble your file, the assembler produces a listing for both passes.
The option is especially helpful for finding the source of phase errors.
The following example was taken from a source file that assembled
without reporting any errors. When the source file was reassembled
using the /D switch, an error was produced on pass 1, but not on pass
2 (which is when errors are usually reported).

SMLSTK
BX,4096

;No, use what we have
;Can only address 64k

0017 7E00
Error —

0019 BB 1000
001C

0017 7E03
0019 BB 1000

SMLSTK: Rept

JLE
MOV

4

Notice that the JLE instruction’s code now contains 03 instead of 00;
this is a jump of 3 bytes.
The same amount of code was produced during both passes, so there
was no phase error. The only difference in this case is one of content
instead of size.

During Pass 2 this same instruction is fixed up and does not return an
error

JLE SMLSTK ;No, use what we have
9: Symbol not defined
MOV BX,4096 ;can only address 64k

SMLSTK: REPT 4

ASSEMBLING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

5.5.3 Symbol Table Format

5-17

The symbol table portion of a listing separates all “symbols” into their
respective categories, showing appropriate descriptive data. This data
gives you an idea how your program is using various symbolic values,
and is useful when you debug.
Also, you can use a cross-reference listing, produced by MS-CREF, to
help you locate uses of the various “symbols” in your program.
On the next page is a complete symbol table listing. Following the
complete listing, sections from different symbol tables are shown with
explanatory notes.
For all sections of symbol tables, this rule applies: if there are no
symbolic values in your program for a particular category, the heading
for the category will be omitted from the symbol table listing. For
example, if you use no macros in your program, you will not see a
macro section in the symbol table.

Macros:

Structures and records:

Name
Mask Initial

001B

Segments and groups:

Symbols:

Name Value
Length =000E

CSEG

5-18

fields
Width
0004

Attr
CSEG

Microsoft Macro Assembler MACRO
Assembler date PAGE Symbols-1
CALLER - SAMPLE ASSEMBLER ROUTINE (EXMP1M.ASM)

Name
BIDSCALL . .
DISPLAY.............. 0005
DOSCALL 0002
KEYBOARD 0003
LOCATE 0003
SCROLL................. 0004

Length
. . 0002

Number
L BYTE
LOGIC
L FAR
F PROC

align
PARA
PARA
PARA

combine
PUBLIC
STACK
PUBLIC

class
’CODE’
’STACK’
’DATA’

Errors
0

Warning Severe
Errors
0

CLS
MAXCHAR
MESSG . .
PARMS ..
RECEIVR .
START . .

WORKAREA
WORKAREA

External
Length =0036

Width
Shift

PARMLIST............ 001C
BUFSIZE............ 0000
NAMESIZE . . . 0001
NAMETEXT . . . 0002
TERMINATOR

Type
N PROC 0036

0019
001C
0000
0000
0000

Name Size
CSEG.................... 0044
STACK................. 0200
WORKAREA 0031

ASSEMBLING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

Macros:

Name Length

names of macros

5-19

-—number of 32-byte blocks
macro occupies in memory

BIDSCALL . . .
DISPLAY
DOSCAL
KEYBOARD ..
LOCATE
SCROLL..........

0002
0005
0002
0003
0003
0004

This section of the symbol table tells you the names of your macros
and how big they are in 32-byte block units. In this listing, the macro
DISPLAY is 5 blocks long or (5 x 32 bytes =) 160 bytes long.

Name
Width Initial <-**

0004

field names of

Example for Records

Name
Mask Initial <-*

BAZ >0008 0003

0003 0003

0008 07F8

BZ2 0000 + 0003 0007

5-20

Structures and records:
Example for Structures

FLD3
BAZ1

BZ1

This section lists your Structures and/or Records and their fields. The
upper line of column headings applies to Structure names, Record
names, and field names of Structures. The lower line of column
headings applies to field names of Records.

FLD1
FLD2

Width
Shift

0006
0003

Width
Shift

0002
+ 0003

fields <--*
Mask

The number of bytes
wide of Structure

fields
Width

0040
0000<—initial

value

Offset of field
PARMLIST Structure into structure

shift
count

to right
This line applies to Structure Names (begin in column 1).

number of
bits in field

number of
bits in Record

0000
->000B 0002
0003

<--number of fields
in Record

00C0
+ 0038

0007
-MASK of field

0400 maximum
value
0002

*
** This line for fields of Records (indented).
***Number of fields in Structure.

PARMLIST 001C
BUFSIZE............ 0000
NAMESIZE......... 0001
NAMETEXT 0002
TERMINATOR . . . 001B

ASSEMBLING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

For Structures:

For Records:

For Fields of Structures:

For Fields of Records:

□
4

WIDTH = 0008

5-21

Width (upper line) shows the number of bytes your Structure
occupies in memory.
fields shows how many fields comprise your Structure.

Width (upper line) shows the number of bits the Record occu
pies.
fields shows how many fields comprise your Record.

Shift shows the number of bytes the fields are offset into the
Structure.
The other columns are not used for fields of Structures.

Shift is the shift count to the right.
Width (lower line) shows the number of bits this field occupies.
Mask shows the maximum value of the record, expressed in
hexadecimal, if one field is masked and ANDed (the field is set
to all 1’s and all other fields are set to all 0’s).
Using field BZ1 of the Record BAZ1 above to illustrate:

1 1 1o 10
MASK = 07F8
10 0 0

3 0

shift count = 0003

1

E
0

O
15

1 1

10

0 0

11

Initial shows the value specified as the initial value for the field, if any.

Fieldname is the name of the field

is the width of the field in bits

Initial = 0400

0 0 0 0 0

decimal

Segments and groups:

Name Size align

5-22

When naming the field, you specified:
fieldname:# = value

length statement line entries
of
segment

combine class
—called Private

in MS-LINK manual
’CODE’<-segment
-------------group

Value is the initial value you want this field to hold. The sym
bol table shows this value as if it is placed in the field and all
other fields are masked (equal 0). Using the example and dia
gram from above:

WORD
WORD
WORD
WORD
WORD
WORD
PARA

PUBLIC
STACK
PUBLIC
PUBLIC
PUBLIC
NONE
NONE

’DATA’
’STACK’
’CONST’
’MEMORY’
’MEMORY’
’CODE’
’MEMORY’

Initial = 80 H
80 H = 128

□
]

Segments
of
DGROUP

0 0 00 00n 0□0 n 00

EZ
1

AAAXQQ 0000 WORD NONE
DGROUP GROUP <---------------

DATA 0024
STACK.............0014
CONST............. 0000
HEAP................ 0000
MEMORY 0000

ENTXCM............. 0037
MAIN-STARTUP 007E

ASSEMBLING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

For Groups:

For Segments:

For all Segments, whether a part of a group or not:

5-23

The name of the group will appear under the Name column, begin
ning in column 1 with the applicable Segment names indented 2
spaces. The word Group will appear under the Size column.

The segment names may appear in column 1 (as here) if you do not
declare them part of a group. If you declare a group, the segment
names will appear indented under their group name.

Size is the number of bytes the Segment occupies.
Align is the type of boundary where the segment begins:

PAGE = page - address is xxxOOH (low byte = 0);
begins on a 256-byte boundary

PARA = paragraph - address is xxxxOH
(low nibble = 0); default

Combine describes how the Microsoft LINK Linker Utility will
combine the various segments. (See the Microsoft LINK Linker
Utility Manual for a full description.)
Class is the class name under which MS-LINK will combine
segments in memory. (See MS-LINK Linker Utility Manual
and Chapter 9 of the MS-DOS User’s Guide for a full descrip
tion.)

WORD = word-address is xxxxeH
(e = even number;
low bit of low byte = 0)

bit map - IxlxlxlxlxlxlxIOI
BYTE = byte - address is xxxxxH (anywhere)

Type Value Attr

Symbols:

DATA

5-24

Number
Text
Number
Alias
Text
Opcode

all formed by
EQU or =
directive

FOO
FOO1
FOO2
FOO3
FOO4
FOO5

DATA
DATA
STACK

DATA
DATA

0005
1.234
0008
FOO
5[BP] [DI]

~l-------
+-length

of PROC

Symbols:
Name

+-If Macro Assembler knows this length as one of the type lengths
(BYTE, WORD, DWORD, QWORD, TBYTE), it shows that type
name here.

DATA
DATA
DATA
DATA
DATA
STACK <------------- 1
MAIN-STARTUP
ENTXCM Length=001E

Global
Global

Name Type
BEGHQQ L WORD
BEGOQQ L FAR
BEGXQQ F PROC
CESXQQ L WORD
CLNEQQ L WORD
CRCXQQ L WORD
CRDXQQ L WORD
CSXEQQ L WORD
CURHQQ L WORD
DOSOFF L WORD
DOSXQQ F PROC
ENDHQQ L WORD
ENDOQQ L FAR
ENDUQQ L FAR
ENDXQQ L FAR
ENDYQQ L FAR
ENTGQQ L FAR
FREXQQ F PROC
HDRFQQ L WORD
HDRVQQ L WORD
HEAPBEG BYTE
HEAPLOW . . . BYTE
INIUQQ L FAR
PNUXQQ L WORD
RECEQQ L WORD
REFEQQ L WORD
REPEQQ L WORD
RESEQQ L WORD
SKTOP BYTE
SMLSTK L NEAR
STARTMAIN F PROC
STKBQQ L WORD
STKHQQ L WORD

Value Attr
DATA

0006
0008
0000
0000 HEAP
0000
0004
0010
oooc
000E
000A
0014
001C
0000
0018
001A

DATA
DATA
DATA
DATA
DATA
DATA
DATA
ENTXCM Global Length =0019

Global
External
External

ENTXCM Global
External
External

0012
0000
0000
0022
0002
001C
001E
0000
0014
0020
001E
0016
0000
0000
0005
0000
0000
006E MAIN-STARTUP Global Length=0010

Global
Global
<-—I--EQU statements
<—4- showing segment
External /
Global /
Global /
Global /
Global /
Global /

Global
External

MAIN-STARTUP Global Length=006E
Global
Global
Global
Global
Global
Global

ASSEMBLING A MACRO ASSEMBLER SOURCE FILEMACRO ASSEMBLER

•all defined by EQU or = directive

L 0031

This entry results from code such as the following:

5-25

This section lists all other symbolic values in your program that do
not fit under the other categories.

Value (usually) shows the numeric value the symbol represents. (In
some cases, the Value column will show some text - when the sym
bol was defined by EQU or = directive.)
Attr always shows the segment of the symbol, if known. Otherwise,
the Attr column is blank. Following the segment name, the table will
show either External, Global, or a blank (which means not declared
with either the EXTRN or PUBLIC directive). The last entry applies
to PROC types only. This is a length = entry, which is the length of
the procedure.

These entries may be combined to form the various types
shown in the example.
For all procedures, the length of the procedure is given after its
attribute (segment).
You may also see an entry under Type like:

BAZ will be shown in the symbol table with the L 0031 entry.
Basically, Number (and some other similar entries) indicates
that the symbol was defined by an EQU or = directive.

Type shows the symbol’s type:
L = Label
F = Far
N = Near
PROC = Procedure
Number
Alias
Text
Opcode

BAZ LABEL FOO
where FOO is a STRUC that is 31 bytes long.

Each of the four types shows a value as follows:

Number shows a constant numeric value.

Sample directive statement: FOO EQU ADD

Alias shows a symbol name which the named symbol equals.

Sample directive statement: FOO EQU BAX

Sample directive statements:

5-26

If Type is Number, Opcode, Alias, or Text, the Symbols section of the
listing will be structured differently. Whenever you see one of these
four entries under Type, the symbol was created by an EQU directive
or an = directive. All information that follows one of these entries is
considered its “value,” even if the “value” is simple text.

Text shows the “text” the symbol represent. “Text” is any other
operand to an EQU directive that does not fit one of the other
three categories above.

Opcode shows a blank. The symbol is an alias for an instruction
mnemonic.

GOO EQU ’WOW’
BAZ EQU DS:8[BX]
ZOO EQU 1.234

8087 SUPPORTMACRO ASSEMBLER

6.1 SWITCHES

Switch Function

/R

/E

6-7

Use the /R switch when the code being produced by Macro
Assembler is going to be run on a real 8087 machine (not an
emulated machine). Code produced with the /R switch will
only run on real 8087 machines.

Use the /E switch when the code being produced by Macro
Assembler is going to be run on an emulated 8087 machine.
Code produced with the /E switch will also run on real 8087
machines with the appropriate emulator library.

CHAPTER 6
8087 SUPPORT

Macro Assembler supports standard Intel 8087 instructions and
operands. A list of the instructions and opcodes can be found in
Appendix C of this manual.

There are two switches that are used when running Macro Assembler
with an 8087. These switches are /R (for Real) and /E (for Emulate).
The /R and /E switches are described below.

The emulator library is provided with some MS-DOS language prod
ucts. It contains specific 8087 emulation routines. Refer to your
language compiler user’s guide for information on the emulator
library that has been provided. If your code is going to run on an
emulated 8087 machine, you must specify the appropriate emulator
library when you link your code with MS-LINK. If the library is not
specified, MS-LINK will return errors for those unresolved symbols
that are defined in the emulator library.

MACRO ASSEMBLER MESSAGESMACRO ASSEMBLER

7.1 OPERATING MESSAGES

Banner Message and Command Prompts:

Macro Assembler v2.0 Copyright (C) Microsoft, Inc.

End of Assembly Message:

(n=number of errors)

(your disk operating system’s prompt)

Most of the messages output by Macro Assembler are error mes
sages. The nonerror messages output by Macro Assembler are the
banner Macro Assembler displays when first started, the command
prompt messages, and the end of (successful) assembly message.
These nonerror messages are classified here as operating messages.
The error messages are classified as assembler errors, I/O handler
errors, and runtime errors.

Source filename [.ASM]:
Object filename [source.OBJ]:
Source listing [NUL.LST]:
Cross reference [NUL.CRF]:

Warning
Errors
n

CHAPTER 7 MACRO ASSEMBLER MESSAGES

Fatal
Errors
n

7.2 ERROR MESSAGES

Assembler Errors

Already defined locally (Code 23)

Already had ELSE clause (Code 7)

Already have base register (Code 46)

Trying to double base register.

Already have index register (Code 47)

Trying to double index address

Block nesting error (Code 0)

7-2

If the assembler encounters errors, error messages are output, along
with the numbers of warning and fatal errors, and control is returned
to your disk operating system. The message is output either to your
terminal screen or to the listing file if you command one to be created.

Error messages are divided into three categories: assembler errors,
I/O handler errors, and runtime errors. In each category, messages
are listed in alphabetical order with a short explanation where neces
sary. At the end of this chapter, the error messages are listed in a
single numerical order list but without explanations.

Tried to define a symbol as EXTERNAL that had already been
defined locally.

Nested procedures, segments, structures, macros, IRC, IRP, or
REPT are not properly terminated. An example of this error is
the close of an outer level of nesting with inner level(s) still
open.

Attempt to define an ELSE clause within an existing ELSE
clause (you cannot nest ELSE without nesting If.. .ENDIF).

MACRO ASSEMBLER MESSAGESMACRO ASSEMBLER

Can’t override ES segment (Code 67)

Can’t reach with segment reg (Code 68)

There is no ASSUME that makes the variable reachable.

Can’t use EVEN on BYTE segment (Code 70)

Circular chain of EQU aliases (Code 83)

An alias EQU eventually points to itself.

Constant was expected (Code 42)

Expecting a constant and received something else.

CS register illegal usage (Code 59)

Directive illegal in STRUC (Code 78)

Division by 0 or overflow (Code 29)

An expression is given that results in division by 0.

7-3

Byte register is illegal (Code 58)
Use of one of the byte registers in context where it is illegal. For
example, PUSH AL.

Trying to override the ES segment in an instruction where this
override is not legal. For example, store string.

Segment was declared to be byte segment and attempt to use
EVEN was made.

All statements within STRUC blocks must either be comments
preceded by a semicolon (;), or one of the Define directives.

Trying to use the CS register illegally. For example, XCHG
CS,AX.

DUP is too large for linker (Code 74)

8087 opcode can’t be emulated (Code 84)

Extra characters on line (Code 1)

Field cannot be overridden (Code 80)

Forward needs override (Code 71)

This message is not currently used.

Forward reference is illegal (Code 17)

Illegal register value (Code 55)

Illegal size for item (Code 57)

Illegal use of external (Code 32)

7-4

Nesting of DUP’s was such that too large a record was created
for the linker.

Either the 8087 opcode or the operands you used with it pro
duce an instruction that the emulator cannot support.

This occurs when sufficient information to define the instruc
tion directive has been received on a line and superfluous
characters beyond are received.

In a STRUC initialization statement, you tried to give a value to
a field that cannot be overridden.

Attempt to forward reference something that must be defined
in pass 1.

Size of referenced item is illegal. For example, shift of a double
word.

The register value specified does not fit into the “reg” field (the
reg field is greater than 7).

Use of an external in some illegal manner. For example, DB M
DUP(?) where M is declared external.

MACRO ASSEMBLER MESSAGESMACRO ASSEMBLER

Illegal use of register (Code 49)

Illegal value for DUP count (Code 72)

DUP counts must be a constant that is not 0 or negative.

Improper operand type (Code 52)

Use of an operand such that the opcode cannot be generated.

Improper use of segment reg (Code 61)

Index displ. must be constant (Code 54)

Illegal use of index display.

Label can’t have seg. override (Code 65)

Illegal use of segment override.

Left operand must have segment (Code 38)

More values than defined with (Code 76)

Too many fields given in REC or STRUC allocation.

Must be associated with code (Code 45)

Use of data related item where code item was expected.

7-5

Use of a register with an instruction where there is no 8086 or
8088 instruction possible.

Specification of a segment register where this is illegal. For
example, an immediate move to a segment register.

Used something in right operand that required a segment in the
left operand. (For example, “:.”)

Must be associated with data (Code 44)

Must be AX or AL (Code 60)

Must be index or base register (Code 48)

Must be declared in pass 1 (Code 13)

Must be in segment block (Code 69)

Attempt to generate code when not in a segment.

Must be record field name (Code 33)

Expecting a record field name but got something else.

Must be record or field name (Code 34)

Must be register (Code 18)

Must be segment or group (Code 20)

Expecting segment or group and something else was specified.

7-6

Register unexpected as operand but you furnished a symbol -
was not a register.

Assembler expecting a constant value but got something else.
An example of this might be a vector size being a forward
reference.

Expecting a record name or field name and received something
else.

Specification of some register other than AX or AL where only
these are acceptable. For example, the IN instruction.

Instruction requires a base or index register and some other
register was specified in square brackets, [].

Use of code related item where data related item was expected.
For example, MOV AX,<code-label>.

MACRO ASSEMBLER MACRO ASSEMBLER MESSAGES

Must be structure field name (Code 37)

Expecting a structure field name but received something else.

Must be symbol type (Code 22)

Must be var, label or constant (Code 36)

Must have opcode after prefix (Code 66)

Near JMP/CALL to different CS (Code 64)

No immediate mode (Code 56)

No or unreachable CS (Code 62)

Trying to jump to a label that is unreachable.

Normal type operand expected (Code 41)

Not in conditional block (Code 8)

7-7

Must be WORD, DW, QW, BYTE, or TB but received
something else.

Expecting a variable, label, or constant but received something
else.

Use of one of the prefix instructions without specifying any
opcode after it.

Immediate mode specified or an opcode that cannot accept the
immediate. For example, PUSH.

An ENDIF or ELSE is specified without a previous conditional
assembly directive active.

Attempt to do a NEAR jump or call to a location in a different
CS ASSUME.

Received STRUCT, FIELDS, NAMES, BYTE, WORD, or
DW when expecting a variable label.

Not proper align/combine type (Code 25)

SEGMENT parameters are incorrect.

One operand must be const (Code 39)

This is an illegal use of the addition operator.

Only initialize list legal (Code 77)

Attempt to use STRUC name without angle brackets, < >.

Operand combination illegal (Code 63)

Operands must be same or 1 abs (Code 40)

Illegal use of the subtraction operator.

Operand must have segment (Code 43)

Illegal use of SEG directive.

Operand must have size (Code 35)

Expected operand to have a size, but it did not.

Operand not in IP segment (Code 51)

Operand types types must match (Code 31)

Operand was expected (Code 27)

7-8

Specification of a two-operand instrucion where the combina
tion specified is illegal.

Access of operand is impossible because it is not in the current
IP segment.

Assembler gets different kinds or sizes of arguments in a case
where they must match. For example, MOV.

Assembler is expecting an operand but an operator was
received.

MACRO ASSEMBLER MESSAGESMACRO ASSEMBLER

Operator was expected (Code 28)

Override is of wrong type (Code 81)

Override with DUP is illegal (Code 79)

Phase error between passes (Code 6)

Redefinition of symbol (Code 4)

Reference to mult defined (Code 26)

Register already defined (Code 2)

This will only occur if the assembler has internal logic errors.

Register can’t be forward ref (Code 82)

7-9

Assembler was expecting an operator but an operand was
received.

In a STRUC initialization statement, you tried to use the wrong
size on override. For example, ’HELLO’ for DW field.

IN a STRUC initialization statement, you tried to use DUP in
an override.

The program has ambiguous instruction directives such that
the location of a label in the program changed in value between
pass 1 and pass 2 of the assembler. An example of this is a
forward reference coded without a segment override where one
is required. There would be an additional byte (the code seg
ment override) generated in pass 2 causing the next label to
change. You can use the /D switch to produce a listing to aid in
resolving phase errors between passes (see Section 5.4, “Macro
Assembler Command Switches”).

This error occurs on pass 2 and succeeding definitions of a
symbol.

The instruction references something that has been multi
defined.

Relative jump out of range (Code 53)

Segment parameters are changed (Code 24)

Shift count is negative (Code 30)

Should have been group name (Code 12)

Symbol already different kind (Code 15)

Symbol already external (Code 73)

Attempt to define a symbol as local that is already external.

Symbol has no segment (Code 21)

Symbol is multi-defined (Code 5)

This error occurs on a symbol that is later redefined.

Symbol is reserved word (Code 16)

7-10

A shift expression is generated that results in a negative shift
count.

Expecting a group name but something other than this was
given.

Attempt to define a symbol differently from a previous defini
tion.

Relative jumps must be within the range -128 +127 of the
current instruction, and the specific jump is beyond this range.

List of arguments to SEGMENT were not identical to the first
time this segment was used.

Trying to use a variable with SEG, and the variable has no
known segment.

Attempt to use an assembler reserved word illegally. (For
example, to declare MOV as a variable.)

MACRO ASSEMBLER MESSAGESMACRO ASSEMBLER

Symbol not defined (Code 9)

A symbol is used that has no definition.

Symbol type usage illegal (Code 14)

Illegal use of a PUBLIC symbol.

Syntax error (Code 10)

Type illegal in context (Code 11)

The type specified is of an unacceptable size.

Unknown symbol type (Code 3)

Usage of ? (indeterminate) bad (Code 75)

Improper use of the “?” For example, ?+5.

Value is out of range (Code 50)

Wrong type of register (Code 19)

7-11

The syntax of the statement does not match any recognizable
syntax.

Symbol statement has something in the type field that is unre
cognizable.

Directive or instruction expected one type of register, but
another was specified. For example, INC CS.

Value is too large for expected use. For example, MOV
AL,5000.

I/O Handler Errors

7-12

These error messages are generated by the I/O handlers. These
messages appear in a different format from the Assembler Errors:

The filename is the name of the file being handled when the error
occurred.
The error-message-text is one of the following messages:

MASM Error - error-message-text
in: filename

Data format (Code 114)
Device full (Code 108)
Device name (Code 102)
Device offline (Code 105)
File in use (Code 112)
File name (Code 107)
File not found (Code 110)
File not open (Code 113)
File system (Code 104)
Hard data (Code 101)
Line too long (Code 115)
Lost file (Code 106)
Operation (Code 103)
Protected file (Code 111)
Unknown device (Code 109)

MACRO ASSEMBLER MESSAGESMACRO ASSEMBLER

Runtime Errors

7-13

These messages may be displayed as your assembled program is
being executed.

Internal Error
Usually caused by an arithmetic check. If it occurs, notify
Microsoft Corporation.

Out of Memory
This message has no corresponding number. Either the source
was too big or too many labels are in the symbol table.

Numerical Order List of Error Messages

7-14

Code Message
0 Block nesting error
1 Extra characters on line
2 Register already defined
3 Unknown symbol type
4 Redefinition of symbol
5 Symbol is multi-defined
6 Phase error between passes
7 Already had ELSE clause
8 Not in conditional block
9 Symbol not defined

10 Syntax error
11 Type illegal in context
12 Should have been group name
13 Must be declared in pass 1
14 Symbol type usage illegal
15 Symbol already different kind
16 Symbol is reserved word
17 Forward reference is illegal
18 Must be register
19 Wrong type of register
20 Must be segment or group
21 Symbol has no segment
22 Must be symbol type
23 Already defined locally
24 Segment parameters are changed
25 Not proper align/combine type
26 Reference to mult defined
27 Operand was expected
28 Operator was expected
29 Division by 0 or overflow
30 Shift count is negative
31 Operand types must match
32 Illegal use of external
33 Must be record field name
34 Must be record or field name
35 Operand must have size
36 Must be var, label or constant
37 Must be structure field name
38 Left operand must have segment
39 One operand must be const
40 Operands must be same or 1 abs

MACRO ASSEMBLER MESSAGESMACRO ASSEMBLER

7-15

48
49

70
71

41 Normal type operand expected
42 Constant was expected
43 Operand must have segment
44 Must be associated with data
45 Must be associated with code
46 Already have base register
47 Already have index register

Must be index or base register
Illegal use of register

50 Value is out of range
51 Operand not in IP segment
52 Improper operand type
53 Relative jump out of range
54 Index displ. must be constant
55 Illegal register value
56 No immediate mode
57 Illegal size for item
58 Byte register is illegal
59 CS register illegal usage
60 Must be AX or AL
61 Improper use of segment reg
62 No or unreachable CS
63 Operand combination illegal
64 Near JMP/CALL to different CS
65 Label can’t have seg. override
66 Must have opcode after prefix
67 Can’t override ES segment
68 Can’t reach with segment reg
69 Must be in segment block

Can’t use EVEN on BYTE segment
Forward needs override

72 Illegal value for DUP count
73 Symbol already external
74 DUP is too large for linker
75 Usage of ? (indeterminate) bad (Code 75)
76 More values than defined with
77 Only initialize list legal
78 Directive illegal in STRUC
79 Override with DUP is illegal
80 Field cannot be overridden
81 Override is of wrong type
82 Register can’t be forward ref
83 Circular chain of EQU aliases
84 8087 opcode can’t be emulated

7-16

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

Hard data
Device name
Operation
File system
Device offline
Lost file
File name
Device full
Unknown device
File not found
Protected file
File in use
File not open
Data format
Line too long

ASCII CHARACTER CODESMACRO ASSEMBLER

CHR

A-1

APPENDIX A
ASCII CHARACTER CODES

CHR
NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESCAPE
FS
GS
RS
US
SPACE

I
0
1
2
3
4
5
6
7
8
9

Dec
000
001
002
003
004
005
006
007
008
009
010
Oil
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032

Hex
OOH
01H
02H
03H
04H
05H
06H
07H
08H
09H
0AH
0BH
0CH
0DH
0EH
0FH
10H
11H
12H
13H
14H
15H
16H
17H
18H
19H
1AH
1BH
1CH
1DH
1EH
1FH
20H

Dec
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064

Hex
21H
22H
23H
24H
25H
26H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H @

(
)*
+

44

#
$
%
&

Dec=decimal, Hex=hexadecimal (H), CHR=character.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

J
DEL

A-2

Dec
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096

Hex
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH
50H
51H
52H
53H
54H
55H
56H
57H
58H
59H
5AH
5BH
5CH
5DH
5EH
5FH
6OH

Dec
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
128

Hex
61H
62H
63H
64H
65H
66H
67H
68H
69H
6AH
6BH
6CH
6DH
6EH
6FH
70H
71H
72H
73H
74H
75H
76H
77H
78H
79H
7AH
7BH
7CH
7DH
7EH
7FH

CHR
A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
Z
[
X

CHR
a
b
c
d
e
f
g
h

j
k
1
m
n
o
P
q
r
s
t
u
V
w
X

y
z

Dec=decimal, Hex=Hexadecimal (H), CHR=character.
LF=Line Feed, FF=Form Feed, CH=Carriage Return, DEL=Rubout

TABLE OF MACRO ASSEMBLER DIRECTIVESMACRO ASSEMBLER

B.1 MEMORY DIRECTIVES

B-1

<name> STRUC
I

<struc-name> ENDS

APPENDIX B
TABLE OF MACRO ASSEMBLER DIRECTIVES

<name> PROC [NEAR]
<name> PROC [FAR]

I
<proc-name> ENDP

<name> DB <exp>
<name> DD <exp>
<name> DQ <exp>
<name> DT <exp>
<name> DW <exp>

ASSUME <seg-reg>:<seg-name>[,<seg-reg> :
<seg-name>...]

ASSUME NOTHING
COMMENT <delim><text><delim>

.RADIX <exp>
<name> RECORD <field>:<width>[=<exp>][,...]

<name> GROUP <segment-name>[,...]
<name> SEGMENT [<align>] [<combine>] [<class>]

I
<seg-name> ENDS

EVEN
ORG <exp>

END [<exp>]
<name> EQU <exp>
<name> = <exp>

EXTRN <name>:<type>[,<name>:<type>...]
PUBLIC <name>[,<name>...]

<name> LABEL <type>
NAME <module-name>

B-2

B.2 MACRO DIRECTIVES
ENDM
EXITM
IRP <dummy>,<parameters in angle brackets>
IRPC <dummy>,string
LOCAL <parameter>[,<parameter>...]

<name> MACRO <parameter>[,<parameter>...]
PURGE <macro-name>[,...]
REPT <exp>
Special Macro Operators
& (ampersand) - concantenation
<text> (angle brackets - single literal)
;; (double semicolons) - suppress comment
! (exclamation point) - next character literal
°/o (percent sign) - convert expression to number

B.3 CONDITIONAL DIRECTIVES
ELSE
IF <exp>
IFB <arg>
IFDEF <symbol>
IFDIF <argl>,<arg2>
IFE <exp>
IFIDN <argl>,<arg2>
IFNB <arg>
IFNDEF <symbol>
IF1
IF2

B.4 LISTING DIRECTIVES
.CREF
.LALL
.LFCOND
.LIST
%OUT <text>
PAGE <exp>
.SALL
.SECOND
SUBTTL <text>
.TFCOND
TITLE <text>
.XALL
XCREF
.XLIST

TABLE OF MACRO ASSEMBLER DIRECTIVESMACRO ASSEMBLER

B.5 ATTRIBUTE OPERATORS

B-3

Override operators
Pointer (PTR)

<attribute> PTR <expression>
Segment Override (:) (colon)

<segment-register>:<address-expression>
<segment-name>: <address-expression>
<group-name>:<address-expression>

SHORT
SHORT <label>

THIS
THIS <distance>
THIS <type>

Value Returning Operators
SEG

SEG <label>
SEG <variable>

OFFSET
OFFSET <label>
OFFSET <variable>

TYPE
TYPE <label>
TYPE <variable>

.TYPE
.TYPE <variable>

LENGTH
LENGTH <variable>

SIZE
SIZE <variable>

Record Specific operators
Shift-count - (Record fieldname)

<record-fieldname>
MASK

MASK <record-fieldname>
WIDTH

WIDTH <record-fieldname>
WIDTH <record>

B.6 PRECEDENCE OF OPERATORS

2. segment override operator: colon (:)

3. PTR, OFFSET, SEG, TYPE, THIS

4. HIGH, LOW

5.

6. +, - (both unary and binary)

7. EQ, NE, LT, LE, GT, GE

8. Logical NOT

9. Logical AND

10. Logical OR, XOR

11. SHORT,.TYPE

B-4

*, /, MOD, SHL, SHR

All operators in a single item have the same precedence, regardless of
the order listed within the item Spacing and line breaks are used for
visual clarity, not to indicate functional relations.

1. LENGTH, SIZE, WIDTH, MASK
Entries inside: parenthesis ()

angle brackets < >
square brackets []

structure variable operand: <variable>.<field>

TABLE OF 8086 AND 8087 INSTRUCTIONSMACRO ASSEMBLER

C.1 8086 INSTRUCTION MNEMONICS, ALPHABETICAL

Mnemonic Full Name

C-1

Macro Assembler supports both the 8086 and 8087 mnemonics. The
mnemonics are listed alphabetically with their full names. The 8086
instructions are also listed in groups based on the type of arguments
the instruction takes.

AAA
AAD
AAM
AAS
ADC
ADD
AND
CALL
CBW
CLC
CLD
CLI
CMC
CMP
CMPS
CMPSB
CMPSW
CWD
DAA
DAS
DEC
DIV
ESC
HLT
IDIV
IMUL
IN
INC
INT

APPENDIX C
TABLE OF 8086 AND 8087 INSTRUCTIONS

ASCII adjust for addition
ASCII adjust for division
ASCII adjust for multiplication
ASCII adjust for subtraction
Add with carry
Add
AND
CALL
Convert byte to word
Clear carry flag
Clear direction flag
Clear interrupt flag
Complement carry flag
Compare
Compare byte or word (of string)
Compare byte string
Compare word string
Convert word to double word
Decimal adjust for addition
Decimal adjust for subtraction
Decrement
Divide
Escape
Halt
Integer divide
Integer multiply
Input byte or word
Increment
Interrupt

C-2

INTO
IRET
JA
JAE
JB
JBE
JC
JCXZ
JE
JG
JGE
JL
JLE
IMP
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO
JS
JZ
LAHF
LDS
LEA
LES
LOCK
LODS
LODSB
LODSW
LOOP
LOOPE

Interrupt on overflow
Interrupt return
Jump on above
Jump on above or equal
Jump on below
Jump on below or equal
Jump on carry
Jump on CX zero
Jump on equal
Jump on greater
Jump on greater or equal
Jump on less than
Jump on less than or equal
Jump
Jump on not above
Jump on not above or equal
Jump on not below
Jump on not below or equal
Jump on no carry
Jump on not equal
Jump on not greater
Jump on not greater or equal
Jump on not less than
Jump on not less than or equal
Jump on not overflow
Jump on not parity
Jump on not sign
Jump on not zero
Jump on overflow
Jump on parity
Jump on parity even
Jump on parity odd
Jump on sign
Jump on zero
Load AH with flags
Load pointer into DS
Load effective address
Load pointer into ES
LOCK bus
Load byte or word (of string)
Load byte (string)
Load word (string)
LOOP
LOOP while equal

TABLE OF 8086 AND 8087 INSTRUCTIONSMACRO ASSEMBLER

C-3

LOOPNE
LOOPNZ
LOOPZ
MOV
MOVS
MOVBS
MOVSW
MUL
NEG
NOP
NOT
OR
OUT
POP
POPF
PUSH
PUSHF
RCL
RCR
REP
RET
ROL
ROR
SAHF
SAL
SAR
SBB
SCAS
SCASB
SCASW
SHL
SHR
STC
STD
STI
STOS
STOSB
STOSW
SUB
TEST
WAIT
XCHG
XLAT
XOR

LOOP while not equal
LOOP while not zero
LOOP while zero
Move
Move byte or word (or string)
Move byte (string)
Move word (string)
Multiply
Negate
No operation
NOT
OR
Output byte or word
POP
POP flags
PUSH
PUSH flags
Rotate through carry left
Rotate through carry right
Repeat
Return
Rotate left
Rotate right
Store AH into flags
Shift arithmetic left
Shift arithmetic right
Subtract with borrow
Scan byte or word (of string)
Scan byte (string)
Scan word (string)
Shift left
Shift right
Set carry flag
Set direction flag
Set interrupt flag
Store byte or word (of string)
Store byte (string)
Store word (string)
Subtract
TEST
WAIT
Exchange
Translate
Exclusive OR

C-4

F2XM1
FABS
FADD
FADDP
FBLD
FBSTP
FCHS
FCLEX
FCOM
FCOMP
FCOMPP

FDISI
FDIV
FDIVP
FDIVR
FDIVRP
FENI
FFREE
FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FILD
FIMUL

FINIT
FIST
FISTP
FISUB
FISUBR
FLD
FLD1
FLDCW
FLDENV
FLDL2E
FLDL2T

C.2 8087 INSTRUCTION MNEMONICS, ALPHABETICAL
Mnemonic Full Name

Calculate 2X-1
Take absolute value of top of stack
Add real
Add real and pop stack
Load packed decimal onto top of stack
Store packed decimal and pop stack
Change sign on the top stack element
Clear exceptions after WAIT
Compare real
Compare real and pop stack
Compare real and pop stack twice

FDECSTP Decrement stack pointer
Disable interrupts after WAIT
Divide real
Divide real and pop stack
Reversed real divide
Reversed real divide and pop stack twice
Enable interrupts after WAIT
Free stack element
Add integer
Integer compare
Integer compare and pop stack
Integer divide
Reversed integer divide
Load integer onto top of stack
Integer multiply

FINCSTP Increment stack pointer
Initialize processor after WAIT
Store integer
Store integer and pop stack
Integer subtract
Reversed integer subtract
Load real onto top of stack
Load +1.0 onto top of stack
Load control word
Load 8087 environment
Load log 2 e onto top of stack
Load log 2 10 onto top of stack

TABLE OF 8086 AND 8087 INSTRUCTIONSMACRO ASSEMBLER

FNSTSW

FRSTOR

FTST
FWAIT

C-5

FLDLG2
FLDLN2
FLDPI
FLDZ
FMUL
FMULP
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE
FNSTCW

FPATAN
FPREM
FPTAN

FSAVE
FSCALE
FSQRT
FST
FSTCW
FSTENV
FSTP
FSTSW
FSUB
FSUBP
FSUBR
FSUBRP

FXAM
FXCH

FYL2X
FYL2PI

Calculate Y: log 2 X
Calculate Y:log 2 (x+1)

Load log 10 2 onto top of stack
Load log e 2 onto top of stack
Load pi onto top of stack
Load +0.0 onto top of stack
Multiply real
Multiply real and pop stack
Clear exceptions with no WAIT
Disable interrupts with no WAIT
Enable interrupts with no WAIT
Initialize processor, with no WAIT
No operation
Save 8087 state with no WAIT
Store control word without WAIT

FNSTENV Store 8087 environment with no WAIT
Store 8087 status word with no WAIT
Partial arctangent function
Partial remainder
Partial tangent function

FRNDINT Round to integer
Restore state
Save 8087 state after WAIT
Scale
Square root
Store real
Store control word with WAIT
Store 8087 environment after WAIT
Store real and pop stack
Store 8087 status word after WAIT
Subtract real
Subtract real and pop stack
Reversed real subtract
Reversed real subtract and pop stack
Test top of stack
Wait for last 8087 operation to complete
Examine top of stack element
Exchange contents of stack element and stack top

FXTRACT Extract exponent and significand from number in top of
stack

C.3 8086 INSTRUCTION MNEMONICS BY ARGUMENT TYPE

The following abbreviations are used in these lists:

General 2 operand instructions

Mnemonics Argument Types

In addition, add to the arguments a sign extent for word immediate.

Call and JUMP type instructions

Mnemonics Argument Types

C-6

CALL
JMP

In this section, the instructions are grouped according to the type of
argument(s) they take. In each group the instructions are listed al
phabetically in the first column. The formats of the instructions with
the valid argument types are shown in the second column. If a format
shows OP, that format is legal for all the instructions shown in that
group. If a format is specific to one mnemonic, the mnemonic is
shown in the format instead of OP.

ADC
ADD
AND
CMP
OR
SBB
SUB
TEST
XOR

OP = opcode; instruction mnemonic
reg = byte register (AL,AH,BL,BH,CL,CH,DL,DH)

or word register (AX,BX,CX,DX,SI,DI,BP,SP)
r/m = register or memory address or indexed and/or based

accum = AX or AL register
immed = immediate

mem = memory operand
segreg = segment register (CS,DS,SS,ES)

OP reg,r/m
OP r/m,reg
OP accum,immed
OP r/m,immed

OP mem {NEAR} {FAR} direction
OP r/m (indirect data -
DWORD, WORD)

TABLE OF 8086 AND 8087 INSTRUCTIONSMACRO ASSEMBLER

Relative jumps

Argument Type

Mnemonics

Loop instructions : same as Relative jumps

LOOP LOOPNE LOOPNZLOOPE LOOZ

No operand instructions

Mnemonics

Load instructions

Mnemonics Agument Type

OP r/m (except that OP reg is illegal)

C-7

JA
JNBE
JAE
JNB
JNC
JB

AAA
AAD
AAM
AAS
CBW
CLC

LDS
LEA
LES

CLD
CLI
CMC
CMPSB
CMPSW
CWD

JC
JNAE
JBE
JNA
JCXZ
JE

DAA
DAS
HLT
INTO
IRET
LAHF

JZ
JG
JNLE
JGE
JNL
JL

LODSB
LODSW
MOVSB
MOVSW
NOP
POPF

JNGE
JLE
JNG
JNE
JNZ
JNO

PUSHF
SAHF
SCASB
SCASW
STC
STD

JNP
JPO
JNS
JO
JP
JPE
JS

STI
STOSB
STOSW
WAIT
XLATB

OP addr (+129 or -126 of IP at a start, or
±127 at end of jump instruction)

Return instruction
Mnemonic Argument Type
RET [immed] (optional, number of words to POP)

Move instructions

Argument TypesMnemonic

MOV

Push and pop instructions

Mnemonics Argument Types

Shift/rotate type instructions

Argument TypesMnemonics

Input/output instructions

Mnemonics Argument Types

IN

OUT

C-8

PUSH
POP

RCL
RCR
ROL
ROR
SAL
SHL
SAR
SHR

OP mem,accum
OP accum,mem
OP segreg,r/m
(except CS is illegal)
OP r/m,segreg
OP r/m,reg
OP reg,r/m
OP reg,immed
OP r/m,immed

OP word-reg
OP segreg
(POP CS is illegal)
OP r/m

OP r/m,l
OP r/m,CL

IN accum,byte-immed
(immed = port 0-255)
IN accum,DX
OUT immed,accum
OUT DX,accum

TABLE OF 8086 AND 8087 INSTRUCTIONSMACRO ASSEMBLER

Increment/decrement instructions

Mnemonics Argument Types

Arith. multiply/division/negate/not

Argument TypeMnemonics

(NEG implies AX OP NOP)

Interrupt instruction

Mnemonic Argument Types

INT

Exchange instruction

Mnemonic Argument Types

XCHG

C-9

INC
DEC

DIV
IDIV
MUL
IMUL
NEG
NOT

OP word-reg
OP r/m

OP r/m (implies AX OP
r/m, excempt NEG)

INT 3 (value 3 is
one-byte instruction)
INT byte-immed

XCHG accum,reg
XCHG reg,accum
XCHG reg,r/m
XCHG r/m,reg

ESC ESC 6-bit-number,r/m

LCDS

MOVS

SCAS

STOS

C.4 8087 INSTRUCTION MNEMONICS BY ARGUMENT TYPE

No operands

C-10

String primitives
These instructions have bits to record only their operand(s), if they
are byte or word, and if a segment override is involved.

Argument Types
CMPS byte-word,byte-word
(CMPS right operand is ES)
LODS byte/word,byte/word
(LODS one argument = no ES)
MOVS byte/word,byte/word
(MOVS left operand is ES)
SCAS byte/word,byte/word
(SCAS one argument = ES)
STOS byte/word,byte/word
(STOS one argument = ES)

FABS
FENI
FLDLG2
FNENI

FLDPI
FNOP

Mnemonics
CMPS

Miscellaneous instructions
Mnemonics Argument Types
XLAT XLAT byte-mem (only checks argument, not in

opcode)

Repeat prefix to string instructions
Mnemonics
LOCK
REP
REPE
REPZ
REPNE
REPNZ

F2XM1
FDISI
FLD2T
FNDISI
FPTAN
FXTRACT FYL2X

FCHS FCLEX
FINCSTP FINIT
FLDLN2
FNINIT

FRNDINT FSCALE FSQRT
FYL2XP1 FWAIT

FCOMPP FDECSTP
FLD1 FLD2E
FLDZ FNCLEX
FPATAN FPREM
FTST FXAM

TABLE OF 8086 AND 8087 INSTRUCTIONSMACRO ASSEMBLER

Stack
Mnemonics

C-11

Argument Types
mem 2,4 bytes

Integer arithmetic
Mnemonics

FADD
FDIV
FDIVR
FMUL
FSUB
FSUBR

FADDP
FDIVP
FDIVRP
FMULP
FSUBP
FSUBRP

FCOM
FCOMP
FST

FFREE
FXCH

FIADD
FICOM
FICOMP
FIDIV
FIDIVR
FIMUL
FIST
FISUB
FISUBR

Argument Types
Blank
mem 4,8 bytes
St,ST(i)
ST(i),ST

Argument Types
ST(i)
ST

Argument Types
ST
ST(i)
blank

Argument Types
ST(i)
blank

2-Argument Floating Arithmetic
Mnemonics

Stack only floating point arithmetic
Mnemonics

Compare and store using stack
Mnemonics

Load/store control or status
Mnemonics

Save/Restore 8087 environment
Mnemonics

BCD load/store
Mnemonics

C-12

Argument Types
mem 2 bytes

FLD
FSTP

FILD
FISTP

FLDCW
FNSTCW
FNSTSW
FSTCW
FSTSW

FLDENV
FNSTENV
FSTENV

FNSAVE
FRSTOR
FSAVE

FBLD
FBSTP

Argument Types
mem 14 bytes

Argument Types
mem 94 bytes

Argument Types
mem 10 bytes

Floating point load/store memory
Mnemonics Argument Types

mem 4, 8, or 10 bytes

Integer load/store memory
Mnemonics Argument Types

mem 2, 4, or 8 bytes

94-Byte memory (8087 Save/Restore entire state)
Mnemoncis

INDEXMACRO ASSEMBLER

INDEX

i

CONTROL-C

1

Action
Arithmetic operators
Assembler errors . .

Calling a Macro.............................
Colon (: - segment override operator)
Command Characters

4-53
4-56
4-60
4-53
4-63
4-62
4-62
4-61
4-26
4-62
4-62
4-62
3- 26
4- 62
4-63
4- 61
5- 9
7-9
5-9
5- 9
6- 1
3- 19
5-4
4- 53

3- 30
4- 12

4- 44
3-19
5- 4
5-4
5-4

%..
%OUT..
&..
.CREF..
.LALL..
.LFCOND.....................................
.LIST...
.RADIX..
.SALL..
.SECOND.....................................
.TFCOND.....................................
.TYPE..
.XALL..
.XCREF..
.XLIST..
/D (assembler switch)..................
/D (MACRO-86)..........................
/D (assembler switch)..................
/X (assembler switch)..................
8087 support..................................
: (colon - segment override operator)
; (command character)..................

<record-fieldname>
(shift count)

= (equal sign directive)

1-9, 4-1
. 3-33
. 7-2

2

5-2
5-2
5-2
5-2
5-2
4- 6
1-8
5- 4

... 3-9
4-7 to 4-8
... 4-9
... 4-7
. . . 3-13

. . 4-1, 4-3
. . . 4-60
. . . 4-63
. . . 4-62
. . . 4-62
. . . 4-61
. . . 4-26
. . . 4-62
. . . 4-62
. . . 4-62
. . . 4-62
. . . 4-63
. . . 4-61
. . . 4-12
... 4-6
. . . 4-37

4-7 to 4-8
... 4-9
... 4-9

. 4-7, 4-9
... 4-8
. . . 4-40
. . . 4-10
. . . 4-40
. . . 4-40
. . . 4-45
. . . 4-23
. . . 4-11
. . . 4-13

Command Prompts
Cross-reference........................
Object filename
Source filename.....................
Source listing..........................
Summary of..........................

COMMENT................................
Comments..................................
CONTROL-C (command character)

Data items........................
DB - Define Byte.............
DD - Define Doubleword .
DD = Define Doubleword
Direct memory operands .
Directives

%OUT..........................
.CREF..........................
.LALL..........................
.LFCOND
.LIST..........................
.RADIX........................
.SALL..........................
.SECOND.....................
.TFCOND
.XALL...........................
.XCREF........................
.XLIST........................
= (equal sign)................
COMMENT
Conditional..................
DB - Define Byte...........
DD - Define Doubleword
DQ - Define Quadword .
DT - Define Tenbytes . .
DW - Define Word . . .
ELSE..........................
END.............................
ENDC..........................
ENDIF........................
ENDM
ENDP..........................
EQU.............................
EVEN..........................

INDEXMACRO ASSEMBLER

3

ELSE
END

. . . 4-46

. . . 4-14

. . . 4-16

. . . 4-38

. . . 4-38

. . . 4-38

. . . 4-39

. . . 4-38

. . . 4-40

. . . 4-38

. . . 4-40

. . . 4-39

. . . 4-38

. . . 4-18

. . . 4-51

. . . 4-52

. . . 4-19

. . . 4-57

. . . 4-47

. . . 4-42

. . . 4-5

. . . 4-21
. . . 4-57
. . . 4-23
. . . 4-25
. . . 4-48
. . . 4-27
. . . 4-50
. . . 4-30
. . . 4-34
. . . 4-59
4-21, 4-58

4-40
4-10

... 4-7

... 4-7

... 4-7

... 4-9

... 4-7
. 4-7,4-9
... 4-8
... 4-7

EXITM.............................
EXTRN
GROUP
IF...................................
IF1...................................
IF2...................................
IFB
IFDEF
IFDIF.............................
IFE
IFIDN.............................
IFNB
IFNDEF
INCLUDE
IRP
IRPC
LABEL
Listing.............................
LOCAL
MACRO
Memory..........................
NAME
PAGE.............................
PROC.............................
PUBLIC..........................
PURGE
RECORD
REPT.............................
SEGMENT....................
STRUCTURE..............
SUBTTL
TITLE.............................

Directives
DD = Define Doubleword .
DQ = Define Quadword . .
DW = Define Word

DQ - Define Quadword . . .
DQ - Define Quadword . . .
DT - Define Tenbytes . . .
DW - Define Word
DW - Define Word..............

3-22HIGH

4

Formats
program listing................................
symbol table..................................

Formats of listings and symbol tables .

4-40
4-40
4-45
4-23
4-34
4-11
4-12

5-10
5-17
5-10

General Facts about Source Files
GROUP

1-1
4-16

I/O Handler errors..................................
IF...
IF1..
IF2..
IFB..
IFDEF...
IFDIF...
IFE..
IFIDN...
IFNB..
IFNDEF..
Immediate operands................................
INCLUDE ..
Indexed memory operands
Instructions...
Instructions by argument type (Appendices)
Instructions, alphabetical (Appendices) . .
IRP..
IRPC..

. . 7-14

. . 4-13
. . 4-46
. . 3-36
1-10, 3-1

. . 4-14

. . . 7-12
. . . 4-38
. . . 4-38
. . . 4-38
. . . 4-39
. . . 4-38
. . . 4-40
. . . 4-38
. . . 4-40
. . . 4-39
. . . 4-38
. . . 3-9
. . . 4-18
. . . 3-14
4-1 to 4-2

. . C-6

. . C-l
. . . 4-51
. . . 4-52

ENDC.....................
ENDIF.....................
ENDM.....................
ENDP.....................
ENDS.....................
EQU........................
Equal sign directive (=)
Error messages

numerical list
EVEN.....................
EXITM
Expression evaluation
Expressions................
EXTRN

INDEXMACRO ASSEMBLER

. 8

5

4-19
2- 2
1-2
3- 27
4- 47
3-35
3-22

3-24
2- 3
1-12
3- 8
1-12
3- 17
4- 22
3-18

4- 57
5- 16
3-18
3- 36
4- 23
5- 10
3- 18
4- 25
4-48

4-27
3-10
3- 34
4- 50
7-13

NAME.............
Names.............
Numeric notation

LABEL
Labels.............
Legal characters .
LENGTH
LOCAL
Logical operators
LOW................

MACRO
MASK..................
Memory directives .
Memory operands .
Memory organization

OFFSET
Offset attribute..........
Operand summary . . .
Operands
Operator summary . . .
Operators
ORG..........................
Override operators . . .
Overviews

MACRO-86 operation

PAGE.....................................
Pass 1 listing versus pass 2 listing
Pointer (PTR)..........................
Precedence of operators...........
PROC.....................................
Program listing format.............
PTR..
PUBLIC..................................
PURGE

RECORD
Register operands . . .
Relational operators .
REPT
Runtime errors

. 4-42

. 3-32

. 4-5

. 3-13

. 3-2

. 4-21
1-6,2-1
1-3,3-9

5-9

6

THIS .
TITLE
TYPE

1-12
1-12
5-12
5-1

1-9
1-8
1-5
1-10
1-5
1-6
1-5
4-34
3- 15
4- 59

SEG..................................
SEGMENT
Segment attribute................
Segment override operator (:)
Shift count
SHORT
SIZE..................................
Source file contents
Source file naming.............
Special Macro Operators . . .

i

Statement Format
Action..
Comments..
Directives...
Expressions..
Instructions..
Names..

Statement line format
STRUCTURE..
Structure operands..................................
SUBTTL ..
Summary

Operands...
Operators...

Summary of listing symbols.....................
Summary of methods to invoke MACRO-86
Switches

MACRO-86
Summary of.....................................

MACRO-86
/D...
/O...
/X...

Switches (MACRO 86).............................
Symbol table format................................
Symbols..

%
&

3- 23
4- 30
2- 3
3- 19
3-30
3-20
3- 28
1-4
1-1
4- 53
4-53
4-56
4-53
4-53

. . . 3-21
4-21, 4-58
. . . 3-25

5-9, 7-9
. . 5-9
. . 5-9
. . 5-7
. . 5-17
. . 2-7

INDEXMACRO ASSEMBLER

2-4, 2-6Type attribute

3-31WIDTH

7

Value returning operators
Variables.......................

3-23
2-5

NCR DECISION MATE V

MS™-CREF

NCR

MS-CREF CONTENTS

1.2.2

Chapter 2 ERROR MESSAGES

3.2

1

MS-CREF
Contents

3-1
3-2

FORMAT OF MS-CREF COMPATIBLE FILES
General Description of MS-CREF File
Processing..
Format of Source File.....................................

RUNNING MS-CREF
Creating a Cross Reference File
Invoking MS-CREF..........................

Method 1: CREF..........................
Command Prompts.....................
Special Command characters . . .

Method 2: CREF <crffile>,<listing>

1-1
1-2
1-2
1-3
1-4
1-5

Chapter 3
3.1

Introduction
Features and Benefits of MS-CREF
Overview of MS-CREF Operation 4

Chapter 1
1.1
1.2
1.2.1

MS-CREF INTRODUCTION

Features and Benefits

3

Introduction
System Requirements

The MS-CREF Cross Reference Facility requires:
24K bytes of memory minimum:

14K bytes for code
10K bytes for run space

The MS-CREF Cross Reference Facility can aid you in debugging
your assembly language programs. MS-CREF produces an alpha
betical listing of all the symbols in a special file produced by your
assembler. With this listing, you can quickly locate all occurrences of
any symbol in your source program by line number.
The MS-CREF produced listing is meant to be used with the symbol
table produced by your assembler.
The symbol table listing shows the value of each symbol, and its type
and length, and its value. This information is needed to correct erro
neous symbol definitions or uses.
The cross reference listing produced by MS-CREF provides you the
locations, speeding your search and allowing faster debugging.

1 disk drive
1 disk drive if and only if output is sent to the same physical
diskette from which the input was taken. None of the utility
programs in this package allow time to swap diskettes during
operation on a one-drive configuration. Therefore, two disk
drives is a more practical configuration.

Overview of MS-CREF Operation

4

MS-CREF produces a file with cross references for symbolic names
in your program.
First, you must create a cross reference file with the assembler. Then,
MS-CREF takes this cross reference file, which has the filename
extension .CRF, and turns it into an alphabetical listing of the sym
bols in the file. The cross reference listing file is given the default
filename extension .REF.
Beside each symbol in the listing, MS-CREF lists the line numbers in
the source program where the symbol occurs in ascending sequence.
The line number where the symbol is defined is indicated by a pound
sign (#).

INTRODUCTIONMS-CREF

Assembler

MS-CREF

5

123# 145 ...
49 120 ...

source
.ASM

listing
.CRF

listing
.REF

FOO 20 64
GAD 21 45#

MS-CREF RUNNING MS-CREF

1.1 CREATING A CROSS REFERENCE FILE

Cross reference [NUL.CRF]:

1-1

Running MS-CREF requires two types of commands: a command to
invoke MS-CREF and answers to command prompts. You will enter
all the commands to MS-CREF on the terminal keyboard. Some
special command characters exist to assist you while entering MS-
CREF commands.
Before you can use MS-CREF to create the cross reference listing,
you must first have created a cross reference file using your assem
bler. This step is reviewed in Section 1.1.

A cross reference file is created during an assembly session.
To create a cross deference file, answer the fourth assembler com
mand prompt with the name of the file you want to receive the cross
reference file.
The fourth assembler prompt is:

If you do not enter a filename in response to this prompt, or if you in
any other way use the default response to this prompt, the assembler
will not create a cross reference file. Therefore, you must enter a
filename. You may also specify which drive or device you want to
receive the file and what filename extension you want the file to have,
if different from .CRF. If you change the filename extension from
.CRF to anything else, you must remember to specify the filename
extension when naming the file in response to the first MS-CREF
prompt (see Section 1.2.1).

CHAPTER 1
RUNNING MS-CREF

1.2 INVOKING MS-CREF

Method 1 CREF

CREF <crffile> ,<listing>Method 2

1-2

When you have given a filename in response to the fourth assembler
prompt, the cross reference file will be generated during the assembly
session.
You are now ready to convert the cross reference file produced by the
assembler into a cross reference listing using MS-CREF.

MS-CREF my be invoked two ways. By the first method, you enter
the commands as answers to individual prompts. By the second
method, you enter all commands on the line used to invoke MS-
CREF.
Summary of Methods to invoke MS-CREF

MS-CREF RUNNING MS-CREF

1.2.1 Method 1:CREF

Command Prompts

1-3

Cross reference [.CRF]:
Enter the name of the cross reference file you want MS-CREF
to convert into a cross reference listing. The name of the file is
the name you gave your assembler when you directed it to
produce the cross reference file.
MS-CREF assumes that the filename extension is .CRF. If you
do not specify a filename extension when you enter the cross
reference filename, MS-CREF will look for a file with the name
you specify and the filename extension .CRF. If your cross
reference file has a different extension, specify the extension
when entering the filename.
See Chapter 3, Format of MS-CREF Compatible Files, for a
description of what MS-CREF expects to see in the cross
reference file. You will need this information only if your cross
reference file was not produced by a Microsoft assembler.

Listing Icrffile.REF]:
Enter the name you want the cross reference listing file to have.
MS-CREF will automatically give the cross reference listing the
filename extension .REF.
If you want your cross reference listing to have the same file
name as the cross reference file but with the filename extension
.REF, simply press the carriage return key when the Listing
prompt appears. If you want your cross reference listing file to
be named anything else and/or to have any other filename
extension, you must enter a response following the Listing
prompt.
If you want the listing file placed on a drive or device other than
the default drive, specify the drive or device when entering
your response to the Listing prompt.

Enter:
CREF

MS-CREF will be loaded into memory. Then, MS-CREF returns a
series of two text prompts that appear one at a time. You answer the
prompts to command MS-CREF to convert a cross reference file into
a cross reference listing.

Special Command Characters

1-4

Use a single semicolon (;) followed immediately by a carriage
return at any time after responding to the Cross reference
prompt to select the default response to the Listing prompt.
This feature saves time and overrides the need to answer the
Listing prompt.

If you use the semicolon, MS-CREF gives the listing file the
filename of the cross reference file and the default filename
extension .REF.

Example:
Cross reference [.CRF]: FUN;

MS-CREF will process the cross reference file named
FUN.CRF and output a listing file named FUN.REF.

Control-C Use Control-C at any time to abort the MS-CREF
session. If you enter an erroneous response, (the wrong file
name), or an incorrectly spelled filename, you must press
Control-C to exit MS-CREF then reinvoke MS-CREF and start
over. If the error has been typed but not entered, you may
delete the erroneous characters, but for that line only.

RUNNING MS-CREFMS-CREF

1.2.2 Method 2: CREF <crffile>,<listing>

CREF <crffile>,<listing>Enter:

CREF FUN,B: WORK.ARG

1-5

MS-CREF will be loaded into memory. Then, MS-CREF immedia
tely proceeds to convert your cross reference file into a cross refe
rence listing.
The entries following CREF are responses to the command prompts.
The crffile and listing fields must be separated by a comma.

where: crffile is the name of a cross reference file produced by your
assembler. MS-CREF assumes that the filename extension
is .CRF, which you may override by specifying a different
extension. If the file named for the crffile does not exist,
MS-CREF will display the message:

Control then returns to your operating system.
listing is the name of the file you want to receive the cross
reference listing of symbols in your program.
To select the default filename and extension for the listing
file, enter a semicolon after you enter the crffile name.

This example causes MS-CREF to process the cross refe
rence file named RUN.CRF and to produce a listing file
named WORK.ARG, which will be placed on the diskette in
drive B:.

Fatal I/O Error 110
in File: <crffile>.CRF

Example:
CREF FUN;<CR>

This example causes MS-CREF to process the cross refe
rence file FUN.CRF and to produce a listing file named
FUN.REF.
To give the listing file a different name, extension, or desti
nation, simply specify these differences when entering the
command line.

1.3 FORMAT OF CROSS REFERENCE LISTINGS

1-6

The cross reference listing is an alphabetical list of all the symbols in
your program.
Each page is headed with the title of the program or program module.
Then comes the list of symbols. Following each symbol name is a list
of the line numbers where the symbol occurs in your program. The
line number for the definition has a pound sign (#) appended to it.
The following example is a cross reference listing.

MS-CREF RUNNING MS-CREF

MS-CREF (vers no.) (date)

ENTX

(# is definition) Cref-1Symbol Cross Reference

AAAXQQ 37# 38

176154

164 223

129

172127 153 171

158

221

169 178FREXQQ 170#

161INIUQQ 31

1-7

110
215

BEGHQQ
BEGOQQ
BEGXQQ

CESXQQ
CLNEQQ
CODE . .
CONST .
CRCXQQ
CRDXQQ
CSXEQQ
CURHQQ

DATA..
DGROUP
DOSOFF
DOSXQQ

ENDHQQ
ENDOQQ
ENDUQQ
ENDXQQ
ENDYQQ
ENTGQQ
ENTXCM

HDRFQQ...
HDRVQQ ..
HEAP
HEAPBEG . .
HEAPLOW . .

83
33
113
97
67
37
104
93
95
65
85
64#
110#
98#
184
87
33#
31#
184
32#
30#
182#

71
73
42
54#
43

84#
162
126#

64
111
198
204#

99#
68#
182
104

88#
195
197
194#
196
187
183

72#
74#
44
153
171

96#
66#
86#

100
111
199
219

151
152
110
172

110
111

PASCAL entry for initializing programs «- comes from
TITLE directive

105
94# 210

216
149
155

49 109 110

PNUXQQ 69 70 150

148

110

1-8

RECEQQ .
REFEQQ .
REPEQQ .
RESEQQ .

SKTOP
SMLSTK..........
STACK
STARTMAIN . .
STKBQQ
STKHQQ

MAIN-STARTUP
MEMORY

59#
135
53#
163
89
91

109#
42

81
77
79
75

137#
53
186#
90#
92#

111
48#

82#
78#
80#
76#

60
200
146
160

180
48

MS-CREF ERROR MESSAGES

where: filename is the name of the file where the error occurs

2-1

CHAPTER 2
ERROR MESSAGES

All errors cause MS-CREF to abort. Control is returned to your
operating system.
All error messages are displayed in the format:

Fatal I/O Error <error number>
in File: <filename>

error number is one of the numbers in the following list of
errors.

101

102

103 Internal error*

104 Internal error*

105

106 Internal error*

Disk full108

File not found110

111 Disk is write protected

112 Internal error*

113 Internal error*

114 Internal error*

115 Internal error*

*Should this error occur, report it to your NCR representative.

2-2

Device offline
disk drive door open, no printer attached, and so on.

Device name error
Illegal device specification (for example,
X:FOO.CRF)

Number Error
Hard data error

Unrecoverable disk I/O error

FORMAT OF MS-CREF COMPATIBLE FILESMS-CREF

3.1 GENERAL DESCRIPTION OF MS-CREF FILE PROCESSING

3-1

MS-CREF will process files other than those generated by Microsoft’s
assembler as long as the file conforms to the format that MS-CREF
expects.

In essence, MS-CREF reads a stream of bytes from the cross refe
rence file (or source file), sorts them, then emits them as a printable
listing file (the .REF file). The symbols are held in memory as a sorted
tree. References to the symbols are held in a linked list.
MS-CREF keeps track of line numers in the source file by the num
ber of end-of-line characters it encounters. Therefore, every line in
the source file must contain at least an end-of-line character (see
following chart).
MS-CREF attempts to place a heading at the top of every page of the
listing. The name it uses as a title is the text passed by your assembler
form a TITLE (or similar) directive in your source program. The title
must be followed by a title symbol (see following chart). If MS-CREF
encounters more than one title symbol in the source file, it uses the
last title read for all page headings. If MS-CREF does not encounter a
title symbol in the file, the title line on the listing is left blank.

CHAPTER 3
FORMAT OF MS-CREF COMPATIBLE FILES

3.2 FORMAT OF SOURCE FILES

3-2

MS-CREF uses the first three bytes of the source file as format speci
fication data. The rest of the file is processed as a series of records that
either begin or end with a byte that identifies the type of record.

First Three Bytes
(The PAGE directive in your assembler, which takes arguments for
page length and line length, will pass this information to the cross
reference file.)

First Byte
The number of lines to be printed per page (page length range
is from 1 to 255 lines).

Third Byte
The Page Symbol (07) that tells MS-CREF that the two prece
ding bytes define listing page size.

If MS-CREF does not see these first three bytes in the file, is uses
default values for page size (page length: 58 lines; line length: 80
characters).

Control Symbols
The two charts show the types of records that MS-CREF recognizes
and the byte values and placement it uses to recognize record types.
Records have a Control Symbol (which identifies the record type)
either as the first byte of the record or as the last byte.

Second Byte
The number of characters per line (line length range is from 1
to 132 characters).

MS-CREF FORMAT OF MS-CREF COMPATIBLE FILES

Records That Begin with a Control Symbol

Control Symbol Subsequent BytesByte value
Reference symbol01

Define symbol02

End of line (none)04
End of file 1AH05

Records That End with a Control Symbol

Preceding BytesControl SymbolByte value
Title defined06

07

3-3

01
02
04
05
06
07

Control-A
Control-B
Control-D
Control-E
Control-F
Control-G

Page length/
line length

Record is title text
(1 to 80 characters)
One byte for page length
followed by one byte for
line length

Record is a reference to a
symbol name
(1 to 80 characters)
Record is a definition of a
symbol name
(1 to 80 characters)

For all record types, the byte value represents a control character, as
follows:

01

2-81 bytes02 symbol name

1 byte04

2 bytes05 1 A

2-81 bytestitle text 06

3 bytesPL LL 07

3-4

length of record
2-81 bytes

The Control Symbols are defined as follows:
Reference symbol

Record contains the name of a symbol that is referenced. The
name may be from 1 to 80 ASCII characters long. Additional
characters are truncated.

Define symbol
Record contains the name of a symbol that is defined. The
name may be from 1 to 80 ASCII characters long. Additional
characters are truncated.

End of line
Record is an end of line symbol character only (04H or Con-
trol-D)

End of file
Record is the end of file character (1AH)

Title defined
ASCII characters of the title to be printed at the top of each
listing page. The title may be from 1 to 80 characters long.
Additional characters are truncated. The last title definition
record encountered is used for the title placed at the top of all
pages of the listing. If a title definition record is not encounte
red, the title line on the listing is left blank.

Page length/line length
The first byte of the record contains the number of lines to be
printed per page (range is from 1 to 255 lines). The second byte
contains the number of characters to be printed per line (range
is from 1 to 132 characters). The default page length is 58 lines.
The default line length is 80 characters.

Summary of CRF File Record Contents
byte contents

symbol name

