
NCR DECISION MATE V

NCR

MS-BASIC*

All features, functions, and operations described herein may not
be marketed by NCR in all parts of the world. In some instances,
photographs are of equipment prototypes. Therefore, before using
this document, consult your nearest dealer or NCR office for
information that is applicable and current.

Copyright ©1983 by NCR Corporation
Dayton, Ohio

All Rights Reserved
Printed in the Federal Republic of Germany

CP/M is a registered trademark of Digital Research, Inc. LINK-80
is a trademark of Digital Research, Inc. MS-BASIC and Microsoft
are registered trademarks of Microsoft Corporation. BASIC Com­
piler, MBASIC, MS-BASIC Interpreter, FORTRAN Compiler,
COBOL Compiler, BASIC-80, EDIT-80, FORTRAN-80, and
MACRO-80 are trademarks of Microsoft Corporation. Z80 is a
registered trademark of Zilog, Inc.

Second Edition, June 1983
It is the policy of NCR Corporation to improve products as new
technology, components, software, and firmware become available.
NCR Corporation, therefore, reserves the right to change speci­
fications without prior notice.

INTRODUCTION

/

The MS-BASIC Interpreter (referred to as MS-BASIC in this manual) is the
most extensive implementation of BASIC available for the 8080 and Z80
microprocessors. In its fifth major release (Release 5.0), MS-BASIC meets
the ANSI qualifications for BASIC, as set forth in document BSRX3.60-
1978. Each release of MS-BASIC consists of three upward compatible ver­
sions: 8K, Extended and Disk. This manual is a reference for all three versions
of MS-BASIC, release 5.0 and later. This manual is also a reference for the
Microsoft BASIC Compiler.

There are significant differences between the 5.0 release of MS-BASIC
and the previous releases (release 4.51 and earlier). If you have programs
written under a previous release of MS-BASIC, check Appendix A for new
features in 5.0 that may affect execution.

The manual is divided into three large chapters plus a number of appendi­
ces. Chapter 1 covers a variety of topics, largely pertaining to information
representation when using MS-BASIC. Chapter 2 contains the syntax and
semantics of every command and statement in MS-BASIC, ordered alpha­
betically. Chapter 3 describes all of MS-BASIC’s intrinsic functions, also
ordered alphabetically. The appendices contain information pertaining to
the NCR graphics extension for MS-BASIC, individual operating system, plus
lists of error messages, ASCII codes, and math functions; and helpful informa­
tion on assembly language subroutines and disk I/O.

MS-BASIC INTERPRETER REFERENCE MANUAL

CONTENTS

Introduction

General Information about MS-BASICChapter 1

Chapter 2 MS-BASIC Commands and Statements

MS-BASIC FunctionsChapter 3

Appendix A New Features in MS-BASIC, Release 5.0

Appendix B MS-BASIC Disk I/O

Appendix C Assembly Language Subroutines

Appendix D MS-BASIC with the CP/M Operating System

Appendix E Converting Programs to MS-BASIC

Summary of Error Codes and Error MessagesAppendix F

Appendix G Mathematical Functions

Appendix H Microsoft BASIC Compiler

Appendix I ASCII Character Codes

Appendix J NCR Graphics Extension for MS-BASIC

7/

CHAPTER 1

GENERAL INFORMATION ABOUT MS-BASIC

nnnnn BASIC statement [.BASIC statement...] <carriage retum>

1-1

At the programmer’s option, more than one BASIC statement may be placed
on a line, but each statement on a line must be separated from the last by a
colon.

A BASIC program line always begins with a line number, ends with a
carriage return, and may contain a maximum of:

• 72 characters in 8K MS-BASIC
• 255 characters in Extended and Disk MS-BASIC.

MODES OF OPERATION
When MS-BASIC is initialized, it types the prompt “Ok”. “Ok” means MS-
BASIC is at command level, that is, it is ready to accept commands. At this
point, MS-BASIC may be used in either of two modes: the direct mode or the
indirect mode.

In the direct mode, BASIC statements and commands are not preceded
by line numbers. They are executed as they are entered. Results of arithmetic
and logical operations may be displayed immediately and stored for later use,
but the instructions themselves are lost after execution. This mode is useful
for debugging and for using BASIC as a “calculator” for quick computations
that do not require a complete program.

The indirect mode is the mode used for entering programs. Program lines
are preceded by line numbers and stored in memory. The program stored in
memory is executed by entering the RUN command.

LINE FORMAT
Program lines in a BASIC program have the following format (square brackets
indicate optional):

INITIALIZATION
The procedure for initialization will vary with different implementations of
MS-BASIC. Check the appropriate appendix at the back of this manual to
determine how MS-BASIC is initialized with your operating system.

‘Character Name

I

1-2

In Extended and Disk versions, it is possible to extend a logical line over
more than one physical line by use of the terminal’s <line feed>key. <Line
feed> lets you continue typing a logical line on the next physical line with­
out entering a <carriage re turn >. (In the 8K version, <line feed> has no
effect.)

Line Numbers
Every BASIC program line begins with a line number. Line numbers indicate
the order in which the program lines are stored in memory and are also used
as references when branching and editing. Line numbers must be in the range
0 to 65529. In the Extended and Disk versions, a period (.) may be used in
EDIT, LIST, AUTO and DELETE commands to refer to the current line.

Blank
Equal sign or assignment symbol
Plus sign
Minus sign
Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number (our pound) sign
Dollar sign
Exclamation point
Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon
Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At-sign
Underscore

&
?

(
)
%
4
$
I

[
]

CHARACTER SET
The MS-BASIC character set is comprised of alphabetic characters, numeric
characters and special characters.

The alphabetic characters in MS-BASIC are the upper case and lower case
letters of the alphabet.

The numeric characters in MS-BASIC are the digits 0 through 9.
The following special characters and terminal keys are recognized by

MS-BASIC:

GENERAL INFORMATION ABOUT MS-BASIC

NameCharacter

<tab>

Terminates input of a line.

Integer constants

Fixed Point constants

1-3

Numeric constants are positive or negative numbers. Numeric constants
in BASIC cannot contain commas. There are five types of numeric constants:

Control-A
Control—C

Control-G
Control-H
Control-1
Control-O

Control-R
Control-S
Control-Q
Control-U

<rubout>
<escape>

< line feed>
< carriage

return>

Enters Edit Mode on the line being typed.
Interrupts program execution and returns to
BASIC-80 command level.
Rings the bell at the terminal.
Backspace. Deletes the last character typed.
Tab. Tab stops are every eight columns.
Halts program output while execution continues.
A second Control-0 restarts output.
Retypes the line that is currently being typed.
Suspends program execution.
Resumes program execution after a Control-S.
Deletes the line that is currently being typed.

Deletes last character typed.
Escapes Edit Mode subcommands.
See page 2—19.
Moves print position to next tab stop.
Tab stops are every eight columns.
Moves to next physical line.

Whole numbers between —32768 and +32767.
Integer constants do not have decimal points.

Positive or negative real numbers, i.e.,
numbers that contain decimal points.

“HELLO”
“$25,000.00”
“Number of Employees”

Control Characters
The following control characters are in MS-BASIC:

CONSTANTS
Constants are the acutal values BASIC uses during execution. There are two
types of constants: string and numeric.

A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks. Examples of string constants:

Hex constants

Octal constants

A double precision constant is any numeric constant that has:

1-4

Single And Double Precision Form For Numeric Constants
In the 8K version of MS-BASIC, all numeric constants are single precision
numbers. They are stored with 7 digits of precision, and printed with up to
6 digits.

In the Extended and Disk version, however, numeric constants may be
either single precision or double precision numbers. With double precision,
the numbers are stored with 16 digits of precision, and printed with up to
16 digits.

A single precision constant is any numeric constant that has:

• seven or fewer digits, or
• exponential form using E, or
• a trailing exclamation point (!)

• eight or more digits, or
• exponential form using D, or
• a trailing number sign (#)

Floating Point
constants

Hexadecimal numbers with the prefix &H.
Examples:
&H76
&H32F

Positive or negative numbers represented in
exponential form (similar to scientific notation).
A floating point constant consists of an optionally
signed integer or fixed point number (the mantissa)
followed by the letter E and an optionally signed
integer (the exponent). The allowable range for
floating point constants is 10—38 to 10+38.
Examples:
235.988E-7 = .0000235988
2359E6 = 2359000000
(Double precision floating point constants use the
letter D instead of E. See the next Section)

Octal numbers with the prefix &O or &.
Examples:
&0347
&1234

GENERAL INFORMATION ABOUT MS-BASIC

Double Precision

1-5

%
i

#

Examples of constants
Single Precision

Integer variable
Single precision variable
Double precision variable

46.8
-1.09E-06
3489.0
22.5!

345692811
—1.09432D-06
3489.0#
7654321.1234

The default type for a numeric variable name is single precision
Examples of MS-BASIC variable names follow.
In Extended and Disk versions:

Variable Names And Declaration Characters
MS-BASIC variable names may be any length, however, in the 8K version,
only the first two characters are significant. In the Extended and Disk ver­
sions, up to 40 characters are significant. The characters allowed in a variable
name are letters and numbers, and the decimal point is allowed in Extended
and Disk variable names. The first characters must be a letter. Special type
declaration characters are also allowed — see below.

A variable name may not be a reserved word. The Extended and Disk
versions allow embedded reserved words; the 8K version does not. If a variable
begins with FN, it is assumed to be a call to a user-defined function. Reserved
words include all MS-BASIC commands, statements, function names and
operator names.

Variables may represent either a numeric value or a string. String variable
names are written with a dollar sign ($) as the last character. For example:
A$ = “SALES REPORT”. The dollar sign is a variable type declaration char­
acter, that is, it “declares” that the variable will represent a string.

In the Extended and Disk versions, numeric variable names may declare
integer, single or double precision values. (All numeric values in 8K are single
precision.) The type declaration characters for these variable names are as
follows:

VARIABLES
Variables are names used to represent values that are used in a BASIC pro­
gram. The value of a variable may be assigned explicitly by the programmer,
or it may be assigned as the result of calculations in the program. Before a
variable is assigned a value, its value is assumed to be zero.

In 8K, Extended and Disk versions:

Extended and Disk versions of MS-BASIC, there is a second

N$
ABC

10 A% = 23.42
20 PRINT A%
RUN

23

declares a string value
represents a single precision value

Array Variables
An array is a group or table of values referenced by the same variable name.
Each element in an array is referenced by an array variable that is subscripted
with an integer or an integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For example V(10) would
reference a value in a one-dimension array, T(l,4) would reference a value
in a two-dimension array, and so on. The maximum number of dimensions
for an array is 255. The maximum number of elements per dimension is
32767.

TYPE CONVERSION
When necessary, BASIC will convert a numeric constant from one type to
another. The following rules and examples should be kept in mind.

In the
method by which variable types may be declared. The MS-BASIC statements
DEFINT, DEFSTR, DEFSNG and DEFDBL may be included in a program
to declare the types for certain variable names. These statements are described
in detail in chapter 2, page 2—15.

• If a numeric constant of one type is set equal to a numeric variable of a
different type, the number will be stored as the type declared in the
variable name. (If a string variable is set equal to a numeric value or
vice versa, a “Type mismatsch” error occurs.)
Example:

• During expression evaluation, all of the operands in an arithmetic or
relational operation are converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result of an arithmetic
operation is returned to this degree of precision.

1-6

PI# declares a double precision value
MINIMUM! declares a single precision value
LIMIT% declares an integer value

GENERAL INFORMATION ABOUT MS-BASIC

Examples:

2.039999961853027

1-7

• When a floating point value is converted to an integer, the fractional
portion is rounded.
Example:

• If a double precision variable is assigned a single precision value, only the
first seven digits, rounded, of the converted number will be valid. This is
because only seven digits of accuracy were supplied with the single pre­
cision value. The absolute value of the difference between the printed
double precision number and the original single precision value will be
less than 6.3E—8 times the original single precision value.
Example:

10D = 6#/7
20 PRINT D
RUN

.857143

10 C%= 55.88
20 PRINT C%
RUN
56

EXPRESSIONS AND OPERATORS
An expression may be simply a string or numeric constant, or a variable, or
it may combine constants and variables with operators to produce a single
value.

10D# = 6#/7
20 PRINT D#
RUN
.8571428571428571

• Logical operators (see page 1—10) convert their operands to integers
and return an integer result. Operands must be in the range -32768
to 32767 or an “Overflow” error occurs.

10 A = 2.04
20 B# = A
30 PRINT A;B#
RUN
2.04

The arithmetic was performed in double precision
and the result was returned in D# as a double
precision value.

The arithmetic was performed in double precision
and the result was returned to D (single precision
variable), rounded and printed as a single precision
value.

Operator Operation Sample Expression

Exponentiation X~Y

Negation -X

*,/

Addition, Subtraction X+Y

BASIC ExpressionAlgebraic Expression

X+Y*2X+2Y

X-Y/ZX-

X*Y/Z

(X+Y) /Z

(X~2) ~Y

X~ (Y'Z)

X(—Y)

1-8

Operators perform mathematical or logical operations on values. The oper­
ators provided by MS-BASIC may be divided into four categories:

• Arithmetic
• Relational
• Logical
• Functional

XY
Z

Multiplication, Floating
Point Division

X*Y
X/Y

Arithmetic Operators
The arithmetic operators, in order of precedence, are:

Y
Z

X* (—Y)
Two consecutive
operators must be
separated by
parantheses.

To change the order in which the operations are performed, use paren­
theses. Operations within parentheses are performed first. Inside parentheses,
the usual order of operations is maintained. +

Here are some sample algebraic expressions and their BASIC counter­
parts.

X+Y
z

(X2)Y

YZ
X

GENERAL INFORMATION ABOUT MS-BASIC

The precedence of modulus arithmetic is just after integer division.

1-9

Overflow And Division By Zero — If, during the evaluation of an expres­
sion, a division by zero is encountered, the “Division by zero” error message
is displayed, machine infinity with the sign of the numerator is supplied as
the result of the division, and execution continues. If the evaluation of an ex­
ponentiation results in zero being raised to a negative power, the “Division
by zero” error message is displayed, positive machine infinity is supplied as
the result of the exponentiation, and execution continues.

If overflow occurs, the “Overflow” error message is displayed, machine
infinity with the algebraically correct sign is supplied as the result, and
execution continues.

The precedence of integer division is just after multiplication and floating
point division.

Modulus arithmetic is denoted by the operator MOD. It gives the integer
value that is the remainder of an integer division. For example:

Relational Operators
Relational operators are used to compare two values. The result of the
comparison is either “true” (-1) or “false” (0). This result may then used
to make a decision regarding program flow. (See IF, page 2-34)

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

10\4 = 2
25.68\6.99 = 3

Integer Division And Modulus Arithmetic — Two additional operators
are available in Extended and Disk versions of MS-BASIC- Integer division and
modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are
rounded to integers (must be in the range —32768 to 32767) before the divi­
sion is performed, and the quotient is truncated to an integer.

For example:

Operator Relation Tested Expression

Equality X=Y

Inequality X<> Y

Less than X<Y

Greater than X>Y

Less than or equal to X< = Y

X> = Y

X+Y<(T—1)/Z

1-10

is true if the value of X plus Y is less than the value of T—1 divided by Z.
More examples:

When arithmetic and relational operators are combined in one expression,
the arithmetic is always performed first. For example, the expression

Logical Operators
Logical operators perform tests on multiple relations, bit manipulation, or
Boolean operations. The logical operator returns a bitwise result which is
either “true” (not zero) or “false” (zero). In an expression, logical operations
are performed after arithmetic and relational operations. The outcome of a
logical operation is determined as shown in the following table. The operators
are listed in order of precedence.

IF SIN(X) <0 GOTO 1000
IF I MOD JOO THEN K=K+1

NOTX
0
1

>= Greater than or
equal to

(The equal sign is also used to assign a value to a variable.
See LET, page 2—40)

NOT
X
1
0

GENERAL INFORMATION ABOUT MS-BASIC

OR

IMP

1-11

IF D<200 AND F<4 THEN 80
IFI>10 0RK<0 THEN 50
IF NOT PTHEN 100

X
1
1
0
0

X
1
1
0
0

Y
1
0
1
0

Y
1
0
1
0

Y
1
0
1
0

Y
1
0
1
0

X AND Y
1
0
0
0

XORY
1
1
1
0

XXORY
0
1
1
0

XIMPY
1
0
1
1

XEQV Y
1
0
0
1

Y
1
0
1
0

AND
X
1
1
0
0

Just as the relational operators can be used to make decisions regarding
program flow, logical operators can connect two or more relations and return
a true or false value to be used in a decision (see IF, page 2—34).
For example:

XOR
X
1
1
0
0

EQV
X
1
1
0
0

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

10 OR 10=10

-1 OR —2=—1

NOT X=- (X+l)

1-12

Functional Operators
A function is used in an expression to call a predetermined operation that is
to be performed on an operand.MS-BASIC has “intrinsic” functions that
reside in the system, such as SQR (square root) or SIN (sine). All of MS-
BASIC’s intrinsic functions are described in Chapter 3.

MS-BASIC also allows “user defined” functions that are written by the
programmer. See DEF FN, page 2-13.

15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

4 = binary 100 and 2 = binary 10,
so 4 OR 2=6 (binary 110)

The two’s complement of any integer is the bit
complement plus one.

10 = binary 1010, so 1010 OR 1010 =
1010(10)

63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

-1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8=8

Logical operators work by converting their operands to sixteen bit,
signed, two’s complement integers in the range -32768 to +32767. (If the
operands are not in this range, an error results.) If both operands are supplied
as 0 or —1, logical operators return 0 or — 1. The given operation is performed
on these integers in bitwise fashion, i.e., each bit of the result is determined
by the corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a particular
bit pattern. For instance, the AND operator may be used to “mask” all but
one of the bits of a status byte at a machine I/O port. The OR operator may
be used to “merge” two bytes to create a particular binary value. The follow­
ing examples will help demonstrate how the logical operators work.

-1 = binary 1111111111111111 and
-2= binary 1111111111111110,
so —1 OR —2 = — 1. The bit complement of sixteen
zeros is sixteen ones, which is the two’s complement
representation of —1.

GENERAL INFORMATION ABOUT MS-BASIC

“FILENAME”

1-13

Strings may be compared using the same relational operators that are
used with numbers:

String Operations
Strings may be concatenated using +. For example:

Thus, string comparisons can be used to test string values or to alpha­
betize strings. All string constants used in comparison expressions must be
enclosed in quotation marks.

String comparisons are made by taking one character at a time from each
string and comparing the ASCII codes. If all the ASCII codes are the same,
the strings are equal. If the ASCII codes differ, the lower code number pre­
cedes the higher. If, during string comparison, the end of one string is reached,
the shorter string is said to be smaller. Leading and trailing blanks are signifi­
cant. Examples:

INPUT EDITING
If an incorrect character is entered as a line is being typed, it can be deleted
with the RUBOUT key or with ControLH. Rubout surrounds the deleted
character(s) with backslashes, and Control-H has the effect of backspacing
over a character and erasing it. Once a character(s) has been deleted, simply
continue typing the line as desired.

To delete a line that is in the process of being typed, type Control-U. A
carriage return is executed automatically after the line is deleted.

To correct program lines for a program that is currently in memory,
simply retype the line using the same line number. MS-BASIC will auto­
matically replace the old line with the new line.

10 A$= “FILE” : B$=“NAME”
20 PRINT A$ + B$
30 PRINT “NEW” + A$ + B$
RUN
FILENAME
NEW FILENAME

“AA” < “AB”
“FILENAME” =
“X&“ > “X# ”

“CL“ > “CL”
“kg” > “KG”
“SMYTH” < “SMYTHE”
B$ < “9/12/78” where B$ = “8/12/78”

1-14

More sophisticated editing capabilities are provided in the Extended and
Disk versions of MS-BASIC. See EDIT, page 2-19.

To delete the entire program that is currently residing in memory, enter
the NEW command. (See page 2-51). NEW is usually used to clear memory
prior to entering a new program.

ERROR MESSAGES
If MS-BASIC detects an error that causes program execution to terminate, an
error message is printed. In the 8K version only the error code is printed.
In the Extended and Disk versions, the entire error message is printed. For
a complete list of MS-BASIC error codes and error messages, see Appendix F.

CHAPTER 2

MS-BASIC COMMANDS AND STATEMENTS

Versions: Lists the version of MS-BASICin which the instruction is available.

Purpose: Tells what the instruction is used for.

Remarks: Describes in detail how the instruction is used.

Example:

2-1

All of the MS-BASIC commands and statements are described in this chapter.
Each description is formatted as follows:

Format: Shows the correct format for the instruction. See below for format
notation.

• Items in capital letters must be input as shown.
• Items in lower case letters enclosed in angle brackets (< >) are to be

supplied by the user.
• Items in square brackets ([]) are optional.
• All punctuation except angle brackets and square brackets (i.e., commas,

parentheses, semicolons, hyphens, equal signs) must be included where
shown.

• Items followed by an ellipsis (...) may be repeated any number of times
up to die length of the line).

Shows sample programs or program segments that demonstrate
the use of the instruction.

FORMAT NOTATION
Wherever the format for a statement or command is given, the following rules
apply:

AUTO

Format: AUTO [<line number>[,<increment>]]

Versions: Extended, Disk

Purpose: To generate a line number automatically after every carriage return.

Example:

2-2

Remarks: AUTO begins numbering at <line number> and increments each
subsequent line number by <increment>. The default for both
values is 10. If <line number> is followed by a comma but <in-
crement> is not specified, the last increment specified in an AUTO
command is assumed.

If AUTO generates a line number that is already being used, an
asterisk is printed after the number to warn the user that any input
will replace the existing line. However, typing a carriage return
immediately after the asterisk will save the fine and generate the
next line number.

AUTO is terminated by typing Control-C. The line in which
CONTROL-C is typed is not saved. After Control-C is typed,
BASIC returns to command level.

AUTO 100,50 Generates line number 100, 150, 200 ...
AUTO Generates line numbers 10, 20, 30, 40 ...

MS-BASIC COMMANDS AND STA TEMENTS

CALL

CALL <variable name> [(<argument list>)]Format:

Extended, DiskVersion:

To call an assembly language subroutine.Purpose:

Example:

2-3

<variable name> contains an address that is the starting point in
memory of the subroutine. <variable name> may not be an array
variable name. <argument list> contains the arguments that are
passed to the assembly language subroutine. <argument list> may
not contain literals.

The CALL statements generates the same calling sequence used
by Microsoft’s FORTRAN, COBOL and BASIC compilers.

110 MYROUT=&HDOOO
120 CALL MYROUT (I,J,K)

Remarks: The CALL statement is one way to transfer program flow to an
assembly language subroutine. (See also the USR function, page
3-24)

CHAIN

Format:

DiskVersion:

Purpose:

Remarks: <filename> is the name of the program that is called. Example:

CHAIN “PR0G1”

CHAIN “PR0G1”, 1000

<line number exp> is not affected by a RENUM command.

CHAIN “ PROG1 ”, 1000, ALL

CHAIN MERGE “OVRLAY”, 1000

CHAIN MERGE “OVRLAY2”, 1000, DELETE 1000-5000

2-4

With the ALL option, every variable in the current program is
passed to the called program. If the ALL option is omitted, the
current program must contain a COMMON statement to list the
variables that are passed. See page 2—9. Example:

If the MERGE option is included, it allows a subroutine to be
brought into the BASIC program as an overlay. That is, a MERGE
operation is performed with the current program and the called
program. The called program must be an ASCII file if it is to be
MERGED. Example:

After an overlay is brougth in, it is usually desirable to delete it so
that a new overlay may be brought in. To do this, use the DELETE
option. Example:

<line number exp> is a line number or an expression that evaluates
to a line number in the called program. It is the starting point for
execution of the called program. If it is omitted, execution begins
at the first line. Example:

To call a programm and pass variables to it from the current
program.

CHAIN [MERGE] <filename>[, [Cline number exp>]
[,ALL] [,DELETE<range>]]

MS-BASIC COMMANDS AND STA TEMENTS

NOTE:

NOTE:

NOTE:

2-5

The CHAIN statements with MERGE option leaves the files open
and preserves the current OPTION BASE setting.

The Microsoft BASIC compiler does not support the ALL, MERGE,
and DELETE options to CHAIN. If you wish to maintain compat­
ibility with the BASIC compiler, it is recommended that COMMON
be used to pass variables and that overlays not be used.

The line numbers in <range> are affected by the RENUM com­
mand.

If the MERGE option is omitted, CHAIN does not preserve variable
types or user-defined functions for use by the chained program.
That is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statements containing shared variables must be restated in the
chained program.

CLEAR

CLEAR [, [<expression !>][,< expression2 >]]Format:

8K, Extended, DiskVersions:

Purpose:

NOTE:

Examples:

2-6

To set all numeric variables to zero and all string variables to null;
and, optionally, to set the end of memory and the amount of stack
space.

<expression2> sets aside stack space for BASIC. The default is
256 bytes or one-eighth of the available memory, whichever is
smaller.

In previous versions of MS-BASIC,<expression 1 > set the amount
of string space, and <expression2> set the end of memory.
MS-BASIC, release 5.0 and later, allocates string space dynamically.
An “Out of string space error” occurs only if there is no free
memory left for BASIC to use.

CLEAR
CLEAR ,32768
CLEAR,,2000
CLEAR ,32768,2000

Remarks: <expressionl > is a memory location which, if specified, sets the
highest location available for use by MS-BASIC

MS-BASIC COMMANDS AND STA TEMENTS

CLOAD

Versions: 8K (cassette), Extended (cassette)

Purpose: To load a program or an array from cassette tape into memory.

See also CSAVE, page 2-11.

NOTE:

Example:

2-7

CLOAD* loads a numeric array that has been saved on tape. The
data on tape is loaded into the array called <array name > specified
when the array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command level as
direct mode commands. CLOAD* may be entered at command
level or used as a program statement. Make sure the array has been
DIMensioned before it is loaded. MS-BASIC always returns to
command level after a CLOAD, CLOAD? or CLOAD* is executed.
Before a CLOAD is executed, make sure the cassette recorder is
properly connected and in the Play mode, and the tape is positioned
correctly.

CLOAD? verifies tapes by comparing the program currently in
memory with the file on tape that has the same filename. If they
are the same, MS-BASIC prints Ok. If not, MS-BASIC prints NO
GOOD.

CLOAD and CSAVE are not included in all implementations of
MS-BASIC.

CLOAD“MAX2”
Loads file “M” into memory.

Formats: CLOAD <filename>
CLOAD? <filename >
CLOAD* <array name>

Remarks: CLOAD executes a NEW command before it loads the program
from cassette tape. <filename> is the string expression or the first
character of the string expression that was specified when the
program was CSAVEd.

CLOSE

Format: CLOSE [[#]<file number>[, [#]<file number...>]]

Version: Disk

Purpose: To conclude I/O to a disk file.

Example: See Appendix B.

2-8

The association between a particular file and file number terminates
upon execution of a CLOSE. The file may then be reOPENed using
the same or a different file number; likewise, that file number may
now be reused to OPEN any file.

A CLOSE for a sequential output file writes the final buffer of
output.

The END statement and the NEW command always CLOSE all
disk files automatically. (STOP does not close disk files.)

Remarks: <file number> is the number under which the file was OPENed.
A CLOSE with no arguments closes all open files.

MS-BASIC COMMANDSAND STA TEMENTS

COMMON

COMMON <list of variables>Format:

Version: Disk

To pass variables to a CHAINed program.Purpose:

Example:

2-9

100 COMMON A,B,C,D(),G$
110 CHAIN “PROG3”,10

Remarks: The COMMON statement is used in conjunction with the CHAIN
statement. COMMON statements may appear anywhere in a
program, though it is recommended that they appear at the be­
ginning. The same variable cannot appear in more than one COM­
MON statement. Array variables are specified by appending “()”
to the variable name. If all variables are to be passed, use CHAIN
with the ALL option and omit the COMMON statement.

CONT

Format: CONT

Versions: 8K, Extended, Disk

See example page 2—77, STOP.Example:

2-10

Purpose: To continue program execution after a Control-C has been typed,
or a STOP or END statement has been executed.

Remarks: Execution resumes at the point where the break occurred. If the
break occurred after a prompt from an INPUT statement, execution
continues with the reprinting of the prompt (? or prompt string).

CONT is usually used in conjunction with STOP for debugging.
When execution is stopped, intermediate values may be examined
and changed using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which resumes
execution at a specified line number. With the Extended and Disk
versions, CONT may be used to continue execution after an error.

CONT is invalid if the program has been edited during the break.
In 8K MS-BASIC, execution cannot be CONTinued if a direct
mode error has occurred during the break.

MS-BASIC COMMANDS AND STA TEMENTS

CSAVE

Versions: 8K (cassette), Extended (cassette)

See also CLOAD, page 2—7.

NOTE:

Example: CSAVE “TIMER”

2-11

When the command CSAVE* <array variable name> is executed,
BASIC-80 saves the specified array on tape. The array must be a
numeric array. The elements of a multidimensional array are saved
with the leftmost subscript changing fastest.

CSAVE may be used as a program statement or as a direct mode
command.

Before a CSAVE or CSAVE* is executed, make sure the cassette
recorder is properly connected and in the Record mode.

CSAVE and CLOAD are not included in all implementations
of MS-BASIC.

Saves the program currently in memory on cassette under file­
name “T”.

Formats: CSAVE <string expression>
CSAVE* <array variable name>

Purpose: To save the program or an array currently in memory on cassette
tape.

Remarks: Each program or array saved on tape is identified by a filename.
When the command CSAVE <string expression> is executed,
MS-BASIC saves the program currently in memory on tape and
uses the first character in <string expression> as the filename.
<string expression> may be more than one character, but only
the first charater is used for the filename.

DATA

Format: DATA <list of constants>

Versions: 8K, Extended, Disk

Example: See examples in pages 2—69 and 2—70, READ.

2-12

<list of constants> may contain numeric constants in any format,
i.e., fixed point, floating point or integer. (No numeric expressions
are allowed in the list.) String constants in DATA statements must
be surrounded by double quotation marks only if they contain
commas, colons or significant leading or trading spaces. Otherwise,
quotation marks are not needed.

The variable type (numeric or string) given in the READ statement
must agree with the corresponding constant in the DATA state­
ment.

DATA statements may be reread from the beginning by use of the
RESTORE statement (page 2—73).

Purpose: To store the numeric and string constants that are accessed by the
program’s READ statement(s). (See READ, page 2-69).

Remarks: DATA statements are nonexecutable and may be placed anywhere
in the program. A DATA statement may contain as many constants
as will fit on a line (separated by commas), and any number of
DATA statements may be used in a program. The READ state­
ments access the DATA statements in order (by line number) and
the data contained therein may be thought of as one continuous
list of items, regardless of how many items are on a line or where
the lines are placed in the program. .

MS-BASIC COMMANDS AND STA TEMENTS

DEF FN

Format: DEF FN<name> [(<parameter list>)] =<function definition>

Versions: 8K, Extended, Disk

Purpose: To define and name a function that is written by the user.

2-13

Remarks: <name> must be a legal variable name. This name, preceded by
FN, becomes the name of the function. <parameter list> is com­
prised of those variable names in the function definition that are to
be replaced when the function is called. The items in the list are
separated by commas. <function definition > is an expression
that performs the operation of the function. It is limited to one
line. Variable names that appear in this expression serve only to
define the function; they do not affect program variables that have
the same name. A variable name used in a function definition may
or may not appear in the parameter list. If it does, the value of the
parameter is supplied when the function is called. Otherwise, the
current value of the variable is used.

The variables in the parameter list represent, on a one-to-one basis,
the argument variables or values that will be given in the function
call. (Remember, in the 8K version only one argument is allowed
in a function call, therefore the DEF FN statement will contain
only one variable.)

A DEF FN statement must be executed before the function it
defines may be called. If a function is called before it has been
defined, an “Undefined user function” error occurs. DEF FN
is illegal in the direct mode.

In Extended and Disk MS-BASIC,user-defined functions may be
numeric or string; in 8K, user-defined string functions are not
allowed. If a type is specified in the function name, the value of
the expression is forced to that type before it is returned to the
calling statement. If a type is specified in the function name and
the argument type does not match, a “Type mismatch” error
occurs.

Example:

2-14

410 DEF FNAB (X,Y)=X'3/Y"2
420T=FNAB (I, J)

Line 410 defines the function FNAB. The function is called in
line 420.

MS-BASIC COMMANDS AND STA TEMENTS

DEFINT/SNG/DBL/STR

Versions: Extended, Disk

Examples:

2-15

10 DEFINT I—N, W—Z
All variable beginning with the letters I, J, K, L, M, N, W, X, Y,
Z will be integer variables.

10DEFDBL L-P
All variables beginning with the letters L, M, N, O, and P will be
double precision variables.

10DEFSTR A
AH variables beginning with the letter A will be string variables.

Format: DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Purpose: To declare variable types as integer, single precision, double pre­
cision, or string.

Remarks: A DEFtype statement declares that the variable names beginning
with the letter(s) specified will be that type variable. However,
a type declaration character always takes precedence over a DEF­
type statement in the typing of a variable.

If no type declaration statements are encountered, MS-BASIC
assumes all variables without declaration characters are single
precision variables.

DEF USR

Versions: Extended, Disk

Purpose: To specify the starting address of an assembly language subroutine.

Example:

2-16

Remarks: <digit> may be any digit from 0 to 9. The digit corresponds to the
number of the USR routine whose address is being specified. If
<digit> is omitted, DEF USRO is assumed. The value of <integer
expression> is the starting address of the USR routine. See Ap­
pendix C, Assembly Language Subroutines.

Any number of DEF USR statements may appear in a program to
redefine subroutine starting addresses, thus allowing access to as
many subroutines as necessary.

200 DEF USRO = 24000
210X=USRO (Y~2/2.89)

Format: DEF USR [<digit>] = <integer expression>

MS-BASIC COMMANDS AND STA TEMENTS

DELETE

Format: DELETE[<line number>] [—<line number>]

Versions: Extended, Disk

Purpose: To delete program lines.

Examples:

2-17

DELETE 40
Deletes line 40

DELETE 40-100
Deletes lines 40 through 100, inclusive

DELETE-40
Deletes all lines up to and including line 40

Remarks: MS-BASIC always returns to command level after a DELETE is
executed. If <line number> does not exist, an “Illegal function
call” error occurs.

DIM

Format: DIM <list of subscripted variables>

Versions: 8K, Extended, Disk

Example:

2-18

Purpose: To specify the maximum values for array variable subscripts and
allocate storage accordingly.

Remarks: If an array variable name is used without a DIM statement, the
maximum value of its subscript(s) is assumed to be 10. If a sub­
script is used that is greater than the maximum specified, a “Sub­
script out of range” error occurs. The minimum value for a sub­
script is always 0, unless otherwise specified with the OPTION
BASE statement (see page 2-56).

The DIM statement sets all the elements of the specified arrays
to an initial value of zero.

10 DIM A(20)
20 FOR 1=0 TO 20
30 READ A(I)
40 NEXT I

MS-BASIC COMMANDS AND STA TEMENTS

EDIT

Format: EDIT <line number>

Versions: Extended, Disk

Purpose: To enter Edit Mode at the specified line.

NOTE:

Moving the Cursor

Space:

Rubout:

2-19

In the descriptions that follow, <ch> represents any character,
<text> represents a string of characters of arbitrary length, [i]
represents an optional integer (the default is 1), and $ represents
the Escape (or Altmode) key.

Edit Mode Subcommands
Edit Mode subcommands are used to move the cursor or to insert,
delete, replace, or search for text within a line. The subcommands
are not echoed. Most of the Edit Mode subcommands may be pre­
ceded by an integer which causes the command to be executed
that number of times. When a preceding integer is not specified,
it is assumed to be 1.

Edit Mode subcommands may be categorized according to the
following functions:

Use the space bar to move the cursor to the right, [i] Space moves
the cursor i spaces to the right. Characters are printed as you space
over them.

In Edit Mode, [i] Rubout moves the cursor i spaces to the left
(backspaces). Characters are printed as you backspace over them.

• Moving the cursor
• Inserting text
• Deleting text
• Finding text
• Replacing text
• Ending and restarting Edit Mode

Remarks: In Edit Mode, it is possible to edit portions of a line without
retyping the entire line. Upon entering Edit Mode, MS-BASIC
types the line number of the line to be edited, then it types a space
and waits for an Edit Mode subcommand.

Inserting Text

I

X

Deleting Text

D

H

Finding Text

S

K

2-20

I <text> $ inserts <text> at the current cursor position. The
inserted characters are printed on the terminal. To terminate
insertion, type Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing Escape and then
Carriage Return. During an Insert command, the Rubout or Delete
key on the terminal may be used to delete characters to the left of
the cursor. If an attempt is made to insert a character that will
make the line longer than 255 characters, a bell (Control-G) is
typed and the character is not printed.

The X subcommand is used to extend the line. X moves the cursor
to the end of the line, goes into insert mode, and allows insertion
of text as if an Insert command had been given. When you are
finished extending the line, type Escape or Carriage Return.

[i] D deletes i characters to the right of the cursor. The deleted
characters are echoed between backslashes, and the cursor is
positioned to the right of the last character deleted. If there are
fewer than i characters to the right of the cursor, iD deletes the
remainder of the line.

H deletes all characters to the right of the cursor and then auto­
matically enters insert mode. H is useful for replacing statements
at the end of a line.

The subcommand [i] S<ch> searches for the ith occurrence of
<ch> and positions the cursor before it. The character at the
current cursor position is not included in the search. If <ch>
is not found, the cursor will stop at the end of the line. All char­
acters passed over during the search are printed.

The subcommand [i] K <ch> is similar to [i] S <ch>, except all
the caracters passed over in the search are deleted. The cursor is
positioned before <ch>, and the deleted characters are enclosed
in backslashes.

MS-BASIC COMMANDS AND STA TEMENTS

Replacing Text

C

Ending and Restarting Edit Mode

<cr>

E

Q

L

A

NOTE:

Syntax Errors

The subcommand C <ch> changes the next character to <ch>.
If you wish to change the next i characters, use the subcommand
iC, followed by i characters. After the ith new character is typed,
change mode is exited and you will return to Edit Mode.

Typing Carriage Return prints the remainder of the line, saves the
changes you made and exits Edit Mode.

The E subcommand has the same effect as Carriage Return, except
the remainder of the line is not printed.

The Q subcommand returns to MS-BASIC command level, without
saving any of the changes that were made to the line during Edit
Mode.

The L subcommand lists the remainder of the line (saving any
changes made so far) and repositions the cursor at the beginning
of the line, still in Edit Mode. L is usually used to list the line when
you first enter Edit Mode.

The A subcommand lets you begin editing a line over again. It
restores the original line and repositions the cursor at the beginning.

If MS-BASIC receives an unrecognizable command or illegal char­
acter while in Edit Mode, it prints a bell (Control-G) and the com­
mand or character is ignored.

When a Syntax Error is encountered during execution of a pro­
gram,. MS-BASIC automatically enters Edit Mode at the line that
caused the error. For example:

When you finish editing the line and type Carriage Return (or the
E subcommand), MS-BASIC reinserts the line, which causes all

2-21

10 K = 2(4)
RUN
?Syntax error in 10
10

Control-A

2-22

To enter Edit Mode on the line you are currently typing, type
Control-A. MS-BASIC responds with a carriage return, an exclama­
tion point (!) and a space. The cursor will be positioned at the first
character in the line. Proceed by typing an Edit Mode subcommand.

variable values to be lost. To preserve the variable values for
examination, first exit Edit Mode with the Q subcommand. MS-
BASIC will return to command level, and all variable values will be
preserved.

NOTE: Remember, if you have just entered a line and wish to get back and
edit it, the command ”EDIT.“ will enter Edit Mode at the cunent
line. (The line number symbol always refers to the current
line.)

MS-BASIC COMMANDS AND STA TEMENTS

END

ENDFormat:

Versions: 8K, Extended, Disk

Purpose:

Remarks:

520 IF K>1000 THEN END ELSE GOTO 20Example:

2-23

To terminate program execution, close all files and return to com­
mand level.

END statements may be placed anywhere in the program to termi­
nate execution. Unlike the STOP statement, END does not cause
a BREAK message to be printed. An END statement at the end of
a program is optional. MS-BASIC always returns to command level
after an END is executed.

ERASE

Format: ERASE <list of array variables>

Versions: Extended, Disk

Purpose: To eliminate arrays from a program.

NOTE: The microsoft BASIC compiler does not support ERASE.

Example:

2-24

450 ERASE A, B
460 DIM B(99)

Remarks: Arrays may be redimensioned after they are ERASEd, or the pre­
viously allocated array space in memory may be used for other
purposes. If an attempt is made to redimension an array without
first ERASEing it, a ” Re dimensioned array “ error occurs.

MS-BASIC COMMANDSAND STA TEMENTS

ERR AND ERL VARIABLES

2-25

When an error handling subroutine is entered, the variable ERR
contains the error code for the error, and the variable ERL contains
the line number of the line in which the error was detected. The
ERR and ERL variables are usually use'd in IF...THEN statements
to direct program flow in the error trap routine.

If the statement that caused the error was a direct mode state­
ment, ERL will contain 65535. To test if an error occurred in a
direct statement, use IF 65535 = ERL THEN...

Otherwise,use

If the line number is not on the right side of the relational operator,
it cannot be renumbered by RENUM. Because ERL and ERR are
reserved variables, neither may appear to the left of the equal sign
in a LET (assignment) statement. MS-BASIC’s error codes are
listed in Appendix F.

IFF ERR = error code THEN...
IF ERL = line number THEN...

ERROR

Format: ERROR <integer expression>

Extended, DiskVersions:

Purpose:

Example 1:

Or, in direct mode:

2-26

1) To simulate the occurrence of a MS-BASIC error; or 2) to allow
error codes to be defined by the user.

(you type this line)
(MS-BASIC types this line)

Ok
ERROR 15
STRING too long
Ok

LIST
10 S = 10
20 T = 5
30 ERROR S + T
40 END
Ok
RUN
String too long in line 30

Remarks: The value of <integer expression> must be greater than 0 and less
than 255. If the value of <integer expression> equals an error
code already in use by MS-BASIC (see Appendix F), the ERROR
statement will simulate the occurrence of that error, and the
corresponding error message will be printed. (See Example 1.)

To define your own error code, use a value that is greater
than any used by MS-BASIC’s error codes. (It is preferable to use
the highest available values, so compatibility may be maintained
when more error codes are added to MS-BASIC). This user-defined
error code may then be conveniently handled in an error trap
routine. (See Example 2.)

If an ERROR statement specifies a code for which no error
message has been defined, MS-BASIC responds with the message
UNPRINTABLE ERROR. Execution of an ERROR statement for
which there is no error trap routine causes an error message to be
printed and execution to halt.

MS-BASIC COMMANDS AND STA TEMENTS

Example!:

2-27

110 ON ERROR GOTO 400
120 INPUT ”WAHT IS YOUR BET” ;B
130 IF B > 5000 THEN ERROR 210

400 IF ERR = 210 THEN PRINT ’’HOUSE LIMIT IS $5000“
410 IF ERL= 130 THEN RESUME 120

FIELD

FIELD [if] <file number>,<field width> AS <string variable>...Format:

Version: Disk

To allocate space for variables in a random file buffer.Purpose:

FIELD 1,20 AS N$, 10 AS ID$, 40 AS ADD$

Example: See Appendix B.

NOTE:

2-28

Do not use A FIELDed variable name in an INPUT or LET state­
ment. Once a variable name is FIELDed, it points to the correct
place in the random file buffer. If a subsequent INPUT or LET
statement with that variable name is executed, the variable’s
pointer is moved to string space.

allocates the first 20 positions (bytes) in the random file buffer to
the string variable N$, the next 10 positions to ID$, and the next
40 positions to ADD$. FIELD does NOT place any data in the
random file buffer. (See LSET/RSET and GET.)

The total number of bytes allocated in a FIELD statement
must not exceed the record length that was specified when the file
was OPENed. Otherwise, a ’’Field overflow44 error occurs. (The
default record length is 128.)

Any number of FIELD statements may be executed for the
same file, and all FIELD statements that have been executed are
in effect at the same time.

Remarks: To get data out of a random buffer after a GET or to enter data
before a PUT, a FIELD statement must have been executed.

<file number > is the number under which the file was OPEN­
ed. <field width> is the number of characters to be allocated to
<string variable>. For example,

MS-BASIC COMMANDS AND STA TEMENTS

FOR ... NEXT

Format: FOR <variable>=x TO y [STEP z]

Versions: 8K, Extended, Disk

2-29

NEXT [<variable>] [,<variable>...]
where x, y and z are numeric expressions.

Purpose: To allow a series of instructions to be performed in a loop a given
number of times.

Remarks: <variable> is used as a counter. The first numeric expression
(x) is the initial value of the counter. The second numeric expression
(y) is the final value of the counter. The program lines following
the FOR statement are executed until the NEXT statement is en­
countered. Then the counter is incremented by the amount specified
by STEP. A check is performed to see if the value of the counter is
now greater than the final value (y). If it is no greater, MS-BASIC
branches back to the statement after the FOR statement and the
process is repeated. If it is greater, execution continues with the
statement following the NEXT statement. This is a FOR...NEXT
loop. If STEP is not specified, the increment is assumed to be one.
If STEP is negative, the final value of the counter is set to be less
than the initial value. The counter is decremented each time
through the loop, and the loop is executed until the counter is
less than the final value.

The body of the loop is skipped if the initial value of the loop
times the sign of the step exceeds the final value times the sign of
the step.

Nested Loops
FOR...NEXT loops may be nested, that is, a FOR...NEXT loop
may be placed within the context of another FOR...NEXT loop.
When loops are nested, each loop must have a unique variable name
as its counter. The NEXT statement for the inside loop must
appear before that for the outside loop. If nested loops have the
same end point, a single NEXT statement may be used for all of
them.

The variable(s) in the NEXT statement may be omitted, in
which case the NEXT statement will match the most recent FOR
statement. If a NEXT statement is encountered before its cor-

“NEXT withour FOR” error message

Example 1:

Example 2:

Example 3:

2-30

In this example, the loop does not execute because the initial
value of the loop exceeds the final value.

In this example, the loop executes ten times. The final value
for the loop variable is always set before the initial value is set.
(Note: Previous versions of MS-BASIC set the initial value of the
loop variable before setting the final value; i.e., the above loop
would have executed six times.)

20
30
40
50
60

10 J = 0
20 FOR I = 1 TO J
30 PRINT I
40 NEXT I

10K= 10
20 FOR I = 1 TO K STEP 2
30 PRINT I;
40K = K+10
50 PRINT K
60 NEXT
RUN

1
3
5
7
9

Ok

responding FOR statement, a
is issued and execution is terminated.

101 = 5
20 FOR 1 = 1 TO 1+5
30 PRINT I;
40 NEXT
RUN

1 23456789 10
Ok

MS-BASIC COMMANDSAND STA TEMENTS

GET

Format: GET [#]<file number>[,<record number>]

Version: Disk

Purpose: To read a record from a random disk file into a random buffer.

Example: See Appendix B.

NOTE:

2-31

After a GET statement, INPUT# and LINE INPUT# may be done
to read characters from the random file buffer.

Remarks: <file number> is the number under which the file was OPENed.
If <record number> is omitted, the next record (after the last
GET) is read into the buffer. The largest possible record number is
32767.

GOSUB...RETURN

Format: GOSUB <line number>

RETURN

Versions: 8K, Extended, Disk

Purpose: To branch to and return from a subroutine.

Example:

2-32

10 GOSUB40
20 PRINT “BACK FROM SUBROUTINE”
30 END
40 PRINT “SUBROUTINE”;
50 PRINT “IN”
60 PRINT “PROGRESS”
70 RETURN
RUN
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

Remarks: <line number> is the first line of the subroutine.
A subroutine may be called any number of times in a program,

and a subroutine may be called from within another subroutine.
Such nesting of subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause MS-BASIC
to branch back to the statement following the most recent GOSUB
statement. A subroutine may contain more than one RETURN
statement, should logic dictate a return at different points in the
subroutine. Subroutines may appear anywhere in the program, but
it is recommended that the subroutine be readily distinguishable
from the main program. To prevent inadvertant entry into the
subroutine, it may be preceded by a STOP, END, or GOTO state­
ment that directs program control around the subroutine.

MS-BASIC COMMANDSAND STA TEMENTS

GOTO

Format: GOTO <line number>

Versions: 8K, Extended, Disk

Example:

2-33

Remarks: If <line number> is an executable statement, that statement and
those following are executed. If it is a nonexecutable statement,
execution proceeds at the first executable statement encountered
after <line number>.

Purpose: To branch unconditionally out of the normal program sequence to
a specified line number.

AREA = 78.5
AREA= 153.86
AREA= 452.16

LIST
10 READ R
20 PRINT “R=”;R,
30 A = 3.14*R"2
40 PRINT “AREA=”;A
50 GOTO 10
60 DATA5,7,12
Ok
RUN
R = 5
R = 7
R= 12
?Out of data in 10
Ok

IF...THEN[...ELSE] AND IF...GOTO

Versions: 8K, Extended, Disk

NOTE: The ELSE clause is allowed only in Extended and Disk versions.

2-34

Nesting of IF Statements
In the Extended and Disk versions, IF...THEN...ELSE statements
may be nested. Nesting is limited only by the length of the line.
For example:

is a legal statement. If the statement does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with
the closest unmatched THEN. For example

will not print “AOC” when AOB.
If an IF...THEN statement is followed by a line number in

the direct mode, an “Undefined line” error results unless a state­
ment with the specified line number had previously been entered
in the indirect mode.

IF A=B THEN IF B=C THEN PRINT “A=C”
ELSE PRINT “AOC”

IF X>Y THEN PRINT “GREATER” ELSE IF Y>X
THEN PRINT “LESS THAN“ ELSE PRINT “EQUAL”

Purpose: To make a decision regarding program flow based on the result
returned by an expression.

Remarks: If the result of <expression> is not zero, the THEN or GOTO
clause is executed. THEN may be followed by either a line number
for branching or one or more statements to be executed. GOTO is
always followed by a line number. If the result of <expression>
is zero, the THEN or GOTO clause is ignored and the ELSE clause,
if present, is executed. Execution continues with the next execut­
able statement. (ELSE is allowed only in Extended and Disk
versions.) Extended and Disk versions allow a comma before THEN.

Format: IF <expression> THEN <statement(s)> I <line number>
[ELSE <statement(s)> I <line number>]

Format: IF <expression> GOTO <line number>
[ELSE <statement(s)> I <line number>]

MS-BASIC COMMANDSAND STA TEMENTS

NOTE:

IF ABS (A-1.0) < 1 .OE-6 THEN...

200 IF I THEN GET# 1,1Example 1:

This statement GETs record number I if I is not zero.

Example 2:

Example3: 210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

2-35

When using IF to test equality for a value that is the result of a
floating point computation, remember that the internal represen­
tation of the value may not be exact. Therefore, the test should be
against the range over which the accuracy of the value may vary.
For example, to test a computed variable A against the value 1.0,
use:

This test returns true if the value of A is 1.0 with a relative error
of less than 1.0E-6.

In this example, a test determines if I is greater than 10 and less
than 20. If I is in this range, DB is calculated and execution branch­
es to line 300. If I is not in this range, execution continues with
line 110.

100 IF (I<20) *(I> 10) THEN DB = 1979-1 :GOTO 300
110 PRINT “OUT OF RANGE”

This statement causes printed output to go either to the terminal
or the line printer, depending on the value of a variable (IOFLAG).
If IOFLAG is zero, output goes to the line printer, otherwise out­
put goes to the terminal.

INPUT

INPUT [;] [<“prompt string”>;] <list of variables>Format:

Versions: 8K, Extended, Disk

Purpose: To allow input from the terminal during program execution.

Examples:

2-36

10 INPUT X
20 PRINT X “SQUARED IS” X~2
30 END
RUN
? 5

Remarks: When an INPUT statement is encountered, program execution
pauses and a question mark is printed to indicate the program is
waiting for data. If <“prompt string”> is included, the string is
printed before the question mark. The required data is then enter­
ed at the terminal.

A comma may be used instead of a semicolon after the prompt
string to suppress the question mark. For example, the statement
INPUT “ENTER BIRTHDATE”, B$ will print the prompt with no
question mark.

If INPUT is immediately followed by a semicolon, then the
carriage return typed by the user to input data does not echo a
carriage return/line feed sequence.

The data that is entered is assigned to the variable(s) given in
<variable list >. The number of data items supplied must be the
same as the number of variables in the list. Data items are separated
by commas.

The variable names in the list may be numeric or string variable
names (including subscripted variables). The type of each data item
that is input must agree with the type specified by the variable
name. (Strings input to an INPUT statement need not be surround­
ed by quotation marks.)

Responding to INPUT with too many or too few items, or
with the wrong type of value (numeric instead of string, etc.)
causes the message “?Redo from start“ to be printed. No assign­
ment of input values is made until an acceptable response is given.

In the 8K version, INPUT is illegal in the direct mode.

(the 5 was typed in by the user in response
to the question mark.)

5 SQUARED IS 25
Ok

MS-BASIC COMMANDSAND STA TEMENTS

(User types 7.4)

2-37

WHAT IS THE RADIUS?
etc.

LIST
10 PI=3.14
20 INPUT “WHAT IS THE RADIUS44 ;R
30 A=PI*R"2
40 PRINT “THE AREA OF THE CIRCLE IS” ;A
50 PRINT
60 GOTO 20
Ok
RUN
WHAT IS THE RADIUS? 7.4
THE AREA OF THE CIRCLE IS 171.946

INPUT#

INPUT# <file number>,<variable list>Format:

DiskVersion:

Purpose:

Example: See Appendix B.

2-38

To read data items from a sequential disk file and assign them to
program variables.

Remarks: <file number> is the number used when the file was OPENed
for input. <variable list> contains the variable names that will
be assigned to the items in the file. (The variable type must match
the type specified by the variable name.) With INPUT#, no question
mark is printed, als with INPUT.

The data items in the file should appear just as they would if
data were being typed in response to an INPUT statement. With
numeric values, leading spaces, carriage returns and line feeds are
ignored. The first character encountered that is not a space, carriage
return or line feed is assumed to be the start of a number. The
number terminates on a space, carriage return, line feed or comma.

If MS-BASIC is scanning the sequential data file for a string
item, leading spaces, carriage returns and line feeds are also ignored.
The first character encountered that is not a space, carriage return,
or line feed is assumed to be the start of a string item. If this first
character is a quotation mark (“), the string item will consist of all
characters read between the first quotation mark and the second.
Thus, a quoted string may not contain a quotation mark as a
character. If the first character of the string is not a quotation
mark, the string is an unquoted string, and will terminate on a
comma, carriage or line feed (or after 255 characters have been
read). If end of file is reached when a numeric or string item is
being INPUT, the item is terminated.

MS-BASIC COMMANDS AND STA TEMENTS

KILL

Format: KILL <filename >

Version: Disk

Purpose: To delete a file from disk.

Example:

2-39

200 KILL ”DATA1“
See also Appendix B.

Remarks: If a KILL statement is given for a file that is currently OPEN, a
’’File already open44 error occurs.

KILL is used for all types of disk files: program files, random
data files and sequential data files.

LET

Format: [LET] <variable>=<expression>

Versions: 8K, Extended, Disk

Purpose: To assign the value of an expression to a variable.

Example:

2-40

Remarks: Notice the word LET is optional, i.e., the equal sign is sufficient
when assigning an expression to a variable name.

110LETD=12
120 LET E=12*2
130 LET F= 12*4
140 LET SUM=D+E+F

or
110 D= 12
120E=12*2
130F=12*4
140 SUM=D+E+F

MS-BASIC COMMANDSAND ST A TEMENTS

LINE INPUT

Format: LINE INPUT[;] [<”prompt string“>;] <string variable>

Versions: Extended, Disk

Purpose:

Remarks:

Example: See Example, page 2—42, LINE INPUT#.

2-41

The prompt string is a string literal that is printed at the terminal
before input is accepted. A question mark is not printed unless it
is part of the prompt string. All input from the end of the prompt
to the carriage return is assigned to <string variable>.

If LINE INPUT is immediately followed by a semicolon, then
the carriage return typed by the user to end the input line does not
echo a carriage return/line feed sequence at the terminal.

A LINE INPUT may be escaped by typing Control-C. MS-
BASIC will return to command level and type Ok. Typing CONT
resumes execution at the LINE INPUT.

To input an entire line (up to 254 characters) to a string variable,
without the use of delimiters.

LINE INPUT#

Format: LINE INPUT#<file number>,<string variable>

Version: Disk

Example:

2-42

Purpose: To read an entire line (up to 254 characters), without delimiters,
from a sequential disk data file to a string variable.

Remarks: <file number> is the number under which the file was OPENed.
< string variable > is the variable name to which the line will be
assigned. LINE INPUT# reads all characters in the sequential file
up to a carriage return. It then skips over the carriage return/line
feed sequence, and the next LINE INPUT# reads all characters
up to the next carriage return. (If a line feed/carriage return se­
quence is encountered, it is preserved.)

LINE INPUT# is especially useful if each line of a data file
has been broken into fields, or if a MS-BASIC program saved in
ASCII mode is being read as data by another program.

10 OPEN “O”,1,“LIST”
20 LINE INPUT “CUSTOMER INFORMATION?” ;C$
30 PRINT #1,C$
40 CLOSE 1
50 OPEN “I”, 1,“LIST”
60 LINE INPUT #1,C$
70 PRINT C$
80 CLOSE 1
RUN
CUSTOMER INFORMATION? LINDA JONES 234.4
MEMPHIS I LINDA JONES 234.4 MEMPHIS
Ok

MS-BASIC COMMANDSAND STA TEMENTS

LIST

Format 1:LIST [<line number >]

Versions: 8K, Extended, Disk

Format 2: LIST [<line number> [- [<line number>]]]

Versions: Extended, Disk

LIST 500

LIST 150-1000

2-43

Purpose: To list all or part of the program currently in memory at the term­
inal.

Remarks: MS-BASIC always returns to command level after a LIST is executed.
Format 1: If <line number> is omitted, the program is listed

beginning at the lowest line number. (Listing is terminated either
by the end of the program or by typing Control-C.) If <line
number > is included, the 8K version will list the program beginning
at that line; and the Extended and Disk versions will list only the
specified line.

Format 2: This format allows the following options:

Lists the program currently in mem­
ory.
In the 8K version, lists all programs
lines from 500 to the end.
In Extended and Disk, lists line 500.

Lists all lines from 150 to the end.
Lists all lines from the lowest number
through 1000.
Lists lines 150 through 1000, in­
clusive.

Examples: Format 1:
LIST

Format 2:
LIST 150—
LIST -1000

• If only the first number is specified, that line and all higher-
numbered lines are listed.

• If only the second number is specified, all lines from the
beginning of the program through that line are listed.

• If both numbers are specified, the entire range is listed.

LLIST

LLIST [<line number>[- [<line number>]]]Format:

Extended, DiskVersions:

Purpose:

NOTE:

Example: See the examples for LIST, Format 2.

2-44

To list all or part of the program currently in memory at the line
printer.

LLIST and LPRINT are not included in alle implementations of
MS-BASIC.

Remarks: LLIST assumes a 132-character wide printer.
MS-BASIC always returns to command level after an LLIST

is executed. The options for LLIST are the same as for LIST,
Format 2.

MS-BASIC COMMANDS AND STA TEMENTS

LOAD

Format: LOAD <filename > [, R]

Version: Disk

Purpose: To load a file from disk into memory.

Example: LOAD “STRTRK”,R

2-45

Remarks: <filename> is the name that was used when the file wasSAVEd.
(With CP/M, the default extension .BAS is supplied.)

LOAD closes all open files and deletes all variables and pro­
gram lines currently residing in memory before it loads the design­
ated program. However, if the “R” option is used with LOAD, the
program is RUN after it is LOADed, and all open data files are kept
open. Thus, LOAD with the “R” option may be used to chain
several programs (or segments of the same program.) Information
may be passed between the programs using their disk data files.

LPRINT AND LPRINT USING

Versions: Extended, Disk

Purpose: To print data at the line printer.

NOTE:

2-46

LPRINT and LLIST are not included in all implementations of
MS-BASIC.

Remarks: Same as PRINT and PRINT USING, except output goes to the
line printer. See page 2—59 and page 2—61.

LPRINT assumes a 132-character-wide printer.

Format: LPRINT [<list of expressions>]
LPRINT USING <string exp>;<list of expressions>

MS-BASIC COMMANDSAND STATEMENTS

LSET AND RSET

Version: Disk

Examples:

See also Appendix B.

NOTE:

2-47

right-justify the string N$ in a 20-character field. This can be very
handy for formatting printed output.

LSET or RSET may also be used with a non-fielded string variable
to left-justify or right-justify a string in a given field. For example,
the program lines

150 LSET A$=MKS$ (AMT)
160 LSET D$=DESC ($)

110 A$=SPACES (20)
120 RSET A$=N$

Format: LSET <string variable> = <string expression>
RSET <string variable> = <string expression>

Remarks: If <string expression> requires fewer bytes than were FIELDed
to <string variable>, LSET left-justifies the string in the field, and
RSET right-justifies the string. (Spaces are used to pad the extra
positions.) If the string is too long for the field, characters are
dropped from the right. Numeric values must be converted to
strings before they are LSET or RSET. See the MKI$, MKS$,
MKD$ functions, page 3-16.

Purpose: To move data from memory to a random file buffer (in prepara­
tion for a PUT statement).

MERGE

MERGE <filename>Format:

Version: Disk

Purpose:

Example: MERGE “NUMBRS”

2-48

To merge a specified disk file into the program currently in mem­
ory.

Remarks: <filename> is the name used when the file was SAVEd. (With
CP/M, the default extension .BAS is supplied.) The file must have
been SAVEd in ASCII format. (If not, a “Bad file mode” error
occurs.)

If any lines in the disk file have the same line numbers as lines
in the program in memory, the lines from the file on disk will
replace the corresponding lines in memory. (MERGEing may be
thought of as “inserting” the program lines on disk into the pro­
gram in memory.)

MS-BASIC always returns to command level after executing a
MERGE command.

MS-BASIC COMMANDSAND STA TEMENTS

MID$

Versions: Extended, Disk

Purpose: To replace a portion of one string with another string.

Example:

2-49

MID$ is also a function that returns a substring of a given string.
See page 3—15.

10 A$=“KANSAS CITY, MO”
20 MID$(A$,14)=“KS”
30 PRINT A$
RUN
KANSAS CITY, KS

Format: MID$ (<string expl>,n[,m])=<string exp2>
where n and m are integer expressions and <string expl>

and <string exp2> are string expressions.

Remarks: The characters in <string expl>, beginning at position n, are
replaced by the characters in <string exp2>. The optional m refers
to the number of characters from <string exp2> that will be used
in the replacement. If m is omitted, all of <string exp2> is used.
However, regardless of whether m is omitted or included, the
replacement of characters never goes beyond the original length
of <string exp 1 >.

NAME

NAME <old filename > AS <new filename >Format:

Version: Disk

To change the name of a disk file.Purpose:

Example:

2-50

In this example, the file that was formerly named ACCTS will
now be named LEDGER.

Ok
NAME “ACCTS” AS “LEDGER”
Ok

Remarks: <old filename> must exist and <new filename> must not exist;
otherwise an error will result. After a NAME command, the file
exists on the same disk, in the same area of disk space, with the
new name.

MS-BASIC COMMANDS AND STA TEMENTS

NEW

Format: NEW

Versions: 8K, Extended, Disk

Purpose: To delete the program currently in memory and clear all variables.

2-51

Remarks: NEW is entered at command level to clear memory before entering
a new program. MS-BASIC always returns to command level after a
NEW is executed.

NULL

Format: NULL <integer expression>

Versions: 8K, Extended, Disk

Purpose: To set the number of nulls to be printed at the end of each line.

Example:

Two null characters will be printed after each line.

2-52

Ok
NULL 2
Ok
100 INPUT X
200 IF X<50 GOTO 800

Remarks: For 10-character-per-second tape punches, <integer expression>
should be >=3. When tapes are not being punched, <integer
expression> should be 0 or 1 for Teletypes and Teletype-compat­
ible CRTs. <integer expression> should be 2 or 3 for 30 cpshard
copy printers. The default value is 0.

MS-BASIC COMMANDSAND STA TEMENTS

ON ERROR GOTO

Format: On ERROR GOTO <line number>

Versions: Extended, Disk

NOTE:

Example: 10 ON ERROR GOTO 1000

2-53

If an error occurs during execution of an error handling subroutine,
the BASIC error message is printed and execution terminates.
Error trapping does not occur within the error handling subroutine.

Remarks: Once error trapping has been enabled all errors detected, including
direct mode errors (e.g., Syntax errors), will cause a jump to the
specified error handling subroutine. If <line number> does not
exist, an “Undefined line” error results. To disable error trapping,
execute an ON ERROR GOTO 0. Subsequent errors will print an
error message and halt execution. An ON ERROR GOTO 0 state­
ment that appears in an error trapping subroutine causes MS-BASIC
to stop and print the error message for the error that caused the
trap. It is recommended that all error trapping subroutines execute
an ON ERROR GOTO 0 if an error is encountered for which there
is no recovery action.

Purpose: To enable error trapping and specify the first line of the error
handling subroutine.

ON...GOSUB AND ON...GOTO

Versions: 8K, Extended, Disk

Example: 100 ON L-l GOTO 150, 300,320,390

2-54

Format: ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>

Purpose: To branch to one of several specified line numbers, depending
on the value returned when an expression is evaluated.

Remarks: The value of <expression> determines which line number in the
list will be used for branching. For example, if the value is three,
the third line number in the list will be the destination of the
branch. (If the value is a non-integer, the fractional portion is
rounded.)

In the ON...GOSUB statement, each line number in the list
must be the first line number of a subroutine.

If the value of <expression> is zero or greater than the
number of items in the list (but less than or equal to 255), BASIC
continues with the next executable statement. If the value of
<expression> is negative or greater than 255, an “Illegal function
call” error occurs.

MS-BASIC COMMANDS AND STA TEMENTS

OPEN

OPEN <mode>,[#]<file number >,<filename>,[<reclen>]Format:

DiskVersion*

To allow I/O to a disk file.Purpose:

NOTE:

Example: 10 OPEN “I”,2,“INVEN”

See also Appendix B.

2-55

<file number> is an integer expression whose value is between
one and fifteen. The number is then associated with the file for as
long as it is OPEN and is used to refer other disk I/O statements to
the file.

<filename> is a string expression containing a name that
conforms to your operating system’s rules for disk filenames.

<reclen> is an integer expression which, if included, sets
the record length for random files. The default record length is
128 bytes.

A file can be OPENed for sequential input or random access
on more than one file number at a time. A file may be OPENed
for output, however, on only one file number at a time.

Remarks: A disk file must be OPENed before any disk I/O operation can be
performed on that file. OPEN allocates a buffer for I/O to the file
and determines the mode of access that will be used with the
buffer.

<mode> is a string expression whose first character is one of
the following:

0 specifies sequential output mode
I specifies sequential input mode
R specifies random input/output mode

OPTION BASE

Versions: 8K, Extended, Disk

Purpose: To declare the minimum value for array subscripts.

Remarks: The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may have is one.

2-56

Format: OPTION BASE n
where n is 1 or 0

MS-BASIC COMMANDSAND STATEMENTS

OUT

Versions: 8K, Extended, Disk

Purpose: To send a byte to a machine output port.

Example: 100 OUT 32,100

2-57

Format: OUT I,J
where I and J are integer expressions in the range 0 to 255.

Remarks: The integer expression I is the port number, and the integer expres­
sion J is the data to be transmitted.

POKE

Versions: 8K, Extended, Disk

Example: 10 POKE &H5A00, &HFF

2-58

Purpose: To write a byte into a memory location.
Remarks: The integer ex
Remarks: The integer expression I is the address of the memory location to

be POKEd. The integer expression J is the data to be POKEd. J
must be in the range 0 to 255. In the 8K version, I must be less
than 32768. In the Extended and Disk versions, I must be in the
range 0 to 65536.

With the 8K version, data may be POKEd into memory lo­
cations above 32768 by supplying a negative number for I. The
value of I is computed by subtracting 65536 from the desired
address. For example, to POKE data into location 45000, I =
45000-65536, or -20536.

The complementary function to POKE is PEEK. The argu­
ment to PEEK is an address from which a byte is to be read. See
page 3—17.

POKE and PEEK are useful for efficient data storage, load­
ing assembly language subroutines, and passing arguments and
results to and from assembly language subroutines.

Format: POKE I,J
where I and J are integer expressions

MS-BASIC COMMANDSAND ST A TEMENTS

PRINT

PRINT [<list of expressions^*]Format:

8K, Extended, DiskVersions:

Purpose: To output data at the terminal.

2-59

Remarks: If <list of expressions> is omitted, a blank line is printed. If
<list of expressions> is included, the values of the expressions
are printed at the terminal. The expressions in the list may be
numeric and/or string expressions. (Strings must be enclosed in
quotation marks.)

Print Positions
The position of each printed item is determined by the punctuation
used to separate the items in the list. MS-BASIC divides the line
into print zones of 14 spaces each. In the list of expressions, a
comma causes the next value to be printed at the beginning of the
next zone. A semicolon causes the next value to be printed imme­
diately after the last value. Typing one or more spaces between
expressions has the same effect as typing a semicolon.

If a comma or a semicolon terminates the list of expressions,
the next PRINT statement begins printing on the same line, spacing
accordingly. If the list of expressions terminates without a comma
or a semicolon, a carriage return is printed at the end of the line.
If the printed line is longer than the terminal width, MS-BASIC
goes to the next physical line and continues printing.

Printed numbers are always followed by a space. Positive
numbers are preceded by a space. Negative numbers are preceded
by a minus sign. Single precision numbers that can be represented
with 6 or fewer digits in the unsealed format no less accurately
than they can be represented in the scaled format, are output using
the unsealed format. For example, 10* (—6) is output as .000001
and 10* (-7) is output as IE—7. Double precision numbers that
can be represented with 16 or fewer digits in the unsealed format
no less accurately than they can be represented in the scaled
format, are output using the unsealed format. For example, 10*
(-16) is output as .0000000000000001 and 10" (-17) is output
as ID-17.

A question mark may be used in place of the word PRINT
in a PRINT statement.

Example 1:

0 -25 3125

Example 2:

?

Example 3:

5015

2-60

In this example, the semicolon at the end of line 20 causes both
PRINT statements to be printed on the same line, and line 40
causes a blank line to be printed before the next prompt.

In this example, the commas in the PRINT statement cause each
value to be printed at the beginning of the next print zone.

In this example, the semicolons in the PRINT statement cause each
value to be printed immediately after the preceding value. (Don’t
forget, a number is always followed by a space and positive numbers
are preceded by a space.) In line 40, a question mark is used
instead of the word PRINT.

? 21
21 SQUARED IS 441 and 21 CUBED IS 9261

10X=5
20 PRINT X+5, X—5, X*(-5),X~5
30 END
RUN
10
Ok

LIST
10 INPUT X
20 PRINT X “SQUARED IS” X"2 “AND”;
30 PRINT X “CUBED IS” X~3
40 PRINT
50 GOTO 10
Ok
RUN
?9

9 SQUARED IS 81 AND 9 CUBED IS 729

10FORX= 1 TO 5
2OJ=J + 5
30K=K+10
40?J;K;
50 NEXT X
Ok
RUN

5 10
Ok

30 20 40 2510 20

MS-BASIC COMMANDSAND STATEMENTS

PRINT USING

Format: PRINT USING <string exp>;<list of expressions>

Versions: Extended, Disk

Purpose: To print strings or numbers using a specified format.

2-61

Specifies a variable length string field. When the field is specified
with the string is output exactly as input.

“! ” Specifies that only the first character in the given string is to be
printed.

String Fields
When PRINT USING is used to print strings, one of three form­
atting characters may be used to format the string field:

“\nspaces\”Specifies that 2+n characters from the string are to be printed. If
the backslashes are typed with no spaces, two characters will be
printed; with one space, three characters will be printed, and so on.
If the string is longer than the field, the extra characters are
ignored. If the field is longer than the string, the string will be left-
justified in the field and padded with spaces on the right.
Example:

10 A$=“LOOK”: B$= “OUT”
30 PRINT USING
40 PRINT USING “\ \”;A$;B$
50 PRINT USING “\ \”;A$;B$;“! !”
RUN
LO
LOOKOUT
LOOK OUT !!

Remarks <list of expressions> is comprised of the string expressions or
and numeric expressions that are to be printed, separated by semi­
Examples: colons. <string exp> is a string literal (or variable) comprised of

special formatting characters. These formatting characters (see
below) determine the field and the format of the printed strings
or numbers.

Example:

2-62

— A minus sign at the end of the format field will cause negative
numbers to be printed with a trailing minus sign.

A number sign is used to represent each digit position. Digit posi­
tions are always filled. If the number to be printed has fewer digits
than positions specified, the number will be right-justified (preced­
ed by spaces) in the field.

Numeric Fields
When PRINT USING is used to print numbers, the following
special characters may be used to format the numeric field:

A decimal point may be inserted at any position in the field. If
the format string specifies that a digit is to precede the decimal
point, the digit will always be printed (as 0 if necessary). Numbers
are rounded as necessary.

In the last example, three spaces were inserted at the end of the
format string to separate the printed values on the line.

PRINT USING # #”',.78
0.78

10 A$=“LOOK” :B$=“OUT”
20 PRINT USING “!”;A$;
30 PRINT USING “&”;B$
RUN
LOUT

”;10.2,5.3,66.789,.234
0.23

PRINT USING “+##.## -68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING “##.##
10.20 5.30 66.79

+ A plus sign at the beginning or end of the format string will cause
the sign of the number (plus or minus) to be printed before or after
the number.

PRINT USING 987.654
987.65

MS-BASIC COMMANDS AND STA TEMENTS

**

$$

2-63

A comma that is»to the left of the decimal point in a formatting
string causes a comma to be printed to the left of every third digit
to the left of the decimal point. A comma that is at the end of the
format string is printed as part of the string. A comma specifies
another digit position. The comma has no effect if used with the
exponential C) format.

PRINT USING “ $$# ;456.78
$456.78

PRINT USING 1234.5
1,234.50

PRINT USING 1234.5
1234.50,

PRINT USING
***$2.34

**$

“**$##.##”;2.34

A double dollar sign causes a dollar sign to be printed to the
immediate left of the formatted number. The $$ specifies two
more digit positions, one of which is the dollar sign. The expo­
nential format cannot be used with $$. Negative numbers cannot
be used unless the minus sign trails to the right.

PRINT USING “0.0-
68.95- 22.45 7.01-

“**#.# ”;12.39,—0.9,765.1
765.1

The **$ at the beginning of a format string combines the effects
of the above two symbols. Leading spaces will be asterisk-filled and
a dollar sign will be printed before the number. **$ specifies three
more digit positions, one of which is the dollar sign.

A double asterisk at the beginning of the format string causes
leading spaces in the numeric field to be filled with asterisks.
The ** also specifies positions for two more digits.

”;-68.95,22.449 ,-7.01

PRINT USING
*12.4 *-9.0

2-64

An underscore in the format string causes the next character to be
output as a literal character.

Four carats (or up-arrows) may be placed after the digit position
characters to specify exponential format. The four carats allow
space for E+xx to be printed. Any decimal point position may be
specified. The significant digits are left-justified, and the exponent
is adjustet. Unless a leading + or trailing + or — is specified, one
digit position will be used to the left of the decimal point to print
a space or a minus sign.

If the number of digits specified exceeds 24, an “Illegal function
call” error will result.

PRINT USING
2.35E+02

PRINT USING “.#### * * * * ;888888
.8889E+06

PRINT USING “ + .##**** ”;123
+.12E+03

PRINT USING 111.22
%111.22

% If the number to be printed is larger than the specified numeric
field, a percent sign is printed in front of the number. If rounding
causes the number to exceed the field, a percent sign will be print­
ed in front of the rounded number.

PRINT USING !## .## _!”;12.34
112.34!

PRINT USING 999
%1.00

***”’,234.56

The literal character itself may be an underscore by placing “ ”
in the format string.

MS-BASIC COMMANDSAND STA TEMENTS

PRINT# AND PRINT# USING

PRINT#<filenumber>,[USING<string exp>;]<list of exps>Format:

Version: Disk

To write data to a sequential disk file.Purpose:

PRINT# 1 ,A,B;C ;X;Y;Z

PRINT# 1 ,A$;B$

PRINT# 1,A$;“,”;B$

The image written to disk is

CAMERA, 93604-1

which can be read back into two string variables.

2-65

(If commas are used as delimiters, the extra blanks that are inserted
between print fields will also be written to disk.)

String expressions must be separated by semicolons in the
list. To format the string expressions correctly on the disk, use
explicit delimiters in the list of expressions.

For example, let A$=“CAMERA” and B$=“93604-l”.
The statement

would write CAMERA93604-1 to the disk. Because there are no
delimiters, this could not be input as two separate strings. To
correct the problem, insert explicit delimiters into the PRINT#
statement as follows:

Remarks: <file number > is the number used when the file was OPENed
for output. <string exp> is comprised of formatting characters as
described in page 2— 61, PRINT USING. The expressions in <list
of expressions> are the numeric and/or string expressions that will
be written to the file.

PRINT# does not compress data on the disk. An image of the
data is written to the disk, just as it would be displayed on the
terminal with a PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so that it will be input
correctly from the disk.

In the list of expressions, numeric expressions should be
delimited by semicolons. For example,

PRINT# 1

would write the following image to disk:

CAMERA, AUTOMATIC 93604-1

and the statement

INPUT# 1 ,A$,B$

PRINT# 1 ,CHR$(34); A$;CHR$(34) ;CHR$(34) ;B$;CHR$ (34)

writes the following image to disk:

93604-1”

and the statement

INPUT# 1 ,A$,B$

PRINT# 1 ,USING”$$###.##,”; J ;K;L

2-66

For more examples using PRINT#, see Appendix B.
See also WRITE#, page 2-84.

would input “CAMERA, AUTOMATIC” to A$ and “ 93604-1”
to B$.

The PRINT# statement may also be used with the USING
option to control the format of the disk file. For example:

would input “CAMERA” to A$ and “AUTOMATIC 93604—1” to
B$. To separate these strings properly on the disk, write double
quotes to the disk image using CHR$ (34). The statement

“CAMERA, AUTOMATIC” ”

If the strings themselves contain commas, semicolons, sig­
nificant leading blanks, carriage returns, or line feeds, write them
to disk surrounded by explicit quotation marks, CHR$ (34).

For example, let A$=“CAMERA, AUTOMATIC” and B$=
“ 93604—1”. The statement

MS-BASIC COMMANDSAND STATEMENTS

PUT

PUT [#]<file number>[,<record number>]Format:

DiskVersion:

Purpose: To write a record from a random buffer to a random disk file.

Example: See Appendix B.

NOTE:

2-67

PRINT#, PRINT# USING, and WRITE# may be used to put
characters in the random file buffer before a PUT statement.

In the case of WRITE#, MS-BASIC pads the buffer with
spaces up to the carriage return. Any attempt to read or write past
the end of the buffer causes a “Field overflow” error.

Remarks: <file number> is the number under which the file was OPENed.
If <record number> is omitted, the record will have the next
available record number (after the last PUT). The largest possible
record number is 32767. The smallest record number is 1.

RANDOMIZE

Format: RANDOMIZE [<expression>]

Versions: Extended, Disk

Purpose: To reseed the random number generator.

Random Number Seed (-32768 to 32767) ?

Example:

.292443 .322921.929364

.709225.586328 .119426

2-68

before executing RANDOMIZE.
If the random number generator is not reseeded, the RND

function returns the same sequence of random numbers each time
the program is RUN. To change the sequence of random numbers
every time the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the argument with
each RUN.

Remarks: If <expression> is omitted, MS-BASIC suspends program execu­
tion and asks for a value by printing

10 RANDOMIZE
20 FOR 1=1 TO 5
30 PRINT RND;
40 NEXT 1
RUN
Random Number Seed (-32768 to 32767) ? 3 (user types 3)
.88598 .484668 .586328 .119426 .709225

Ok
RUN
Random Number Seed (-32768 to 32767) ? 4 (user types 4
for new sequence)
.803506 .162462

Ok
RUN
Random Number Seed (—32768 to 32767) ? 3 (same sequence
as first RUN)
.88598 .484668

Ok

MS-BASIC COMMANDS AND STA TEMENTS

READ

Format: READ <list of variables>

Versions: 8K, Extended, Disk

Example 1:

2-69

This program segment READs the values from the DATA state­
ments into the array A. After execution, the value of A(l) will be
3.08, and so on.

80 FOR 1 = 1 TO 10
90 READA(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

Remarks: A READ statement must always be used in conjunction with a
DATA statement. READ statements assign variables to DATA
statement values on a one-to-one basis. READ statement variables
may be numeric or string, and the values read must agree with
the variable types specified. If they do not agree, a “Syntax error”
will result.

A single READ statement may access one or more DATA
statements (they will be accessed in order), or several READ
statements may access the same DATA statement. If the number
of variables in <list of variables> exceeds the number of elements
in the DATA statement(s), an OUT OF DATA message is printed.
If the number of variables specified is fewer than the number of
elements in the DATA statement(s), subsequent READ statements
will begin reading data at the first unread element. If there are no
subsequent READ statements, the extra data is ignored.

To reread DATA statements from the start, use the RESTORE
statement (see RESTORE, page 2—73)

Purpose: To read values from a DATA statement and assign them to vari­
ables. (See DATA, page 2—12)

Example 2:

2-70

STATE
COLORADO

ZIP
80211

This program READs string and numeric data from the DATA
statement in line 30.

LIST
10 PRINT “CITY”, “STATE”, “ZIP”
20 READC$,S$,Z
30 DATA “DENVER”,COLORADO, 80211
40 PRINT C$,S$,Z
Ok
RUN
CITY
DENVER,
Ok

MS-BASIC COMMANDS AND STATEMENTS

REM

Format: REM <remark>

Versions: 8K, Extended, Disk

Purpose: To allow explanatory remarks to be inserted in a program.

Remarks:

Example:

or, with Extended and Disk versions:

2-71

REM statements are not executed but are output exactly as enter­
ed when the program is listed.

REM statements may be branched into (from a GOTO or GO-
SUB statement), and execution will continue with the first execut­
able statement after the REM statement.

In the Extended and Disk versions, remarks may be added to
the end of a line by preceding the remark with a single quotation
mark instead of : REM.

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1=1 TO 20
140 SUM=SUM +V(I)

120 FOR 1= 1 TO 20 ’CALCULATE AVERAGE VELOCITY
130 SUM = SUM+V(I)
140 NEXT I

RENUM

Versions: Extended, Disk

Purpose: To renumber program lines.

NOTE:

RENUMExamples:

RENUM 300,,50

2-72

Renumbers the entire program. The
first new line number will be 10.
Lineswill increment by 10.

Renumbers the entire program. The
first new line number will be 300.
Lines will increment by 50.

Remarks: <new number> is the first line number to be used in the new
sequence. The default is 10. <old number> is the line in the
current program where renumbering is to begin. The default is the
first line of the program. <increment> is the increment to be
used in the new sequence. The default is 10.

RENUM also changes all line number references following
GOTO, GOSUB, THEN, ON...GOTO, ON...GOSUB and ERL
statements to reflect the new line numbers. If a nonexistent line
number appears after one of these statements, the error message
“Undefined line xxxxx in yyyyy” is printed. The incorrect line
number reference (xxxxx) is not changed by RENUM, but line
number yyyyy may be changed.

RENUM 1000,900,20 Renumbers the lines from 900 up so
they start with line number 1000
and increment by 20.

Format: RENUM [[<newnumber>] [,[<oldnumber>]
[,<increment>]]]

RENUM cannot be used to change the order of program lines
(for example, RENUM 15, 30 when the program has three lines
numbered 10, 20 and 30) or to crate line numbers greater than
65529. An “Illegal function call” error will result.

MS-BASIC COMMANDS AND STATEMENTS

RESTORE

Format: RESTORE [<line number>]

Versions: 8K, Extended, Disk

Purpose: To allow DATA statements to be reread from a specified line.

Example:

2-73

10 READA,B,C
20 RESTORE
30 READ, D,E,F
40 DATA 57, 68, 79

Remarks: After a RESTORE statement is executed, the next READ state­
ment accesses the first item in the first DATA statement in the
program. If <line number> is specified, the next READ state­
ment accesses the first item in the specified DATA statement.

RESUME

Formats: RESUME

RESUME 0

RESUME NEXT

RESUME <line number>

Versions: Extended, Disk

Purpose:

RESUME NEXT

RESUME <line number> Execution resumes at <linenumber>.

10 ON ERROR GOTO 900Example:

2-74

A RESUME statement that is not in an error trap routine causes
a “RESUME without error” message to be printed.

To continue program execution after an error recovery procedure
has been performed.

900 IF (ERR=230) AND (ERL=90) THEN PRINT “TRY
AGAIN” : RESUME 80

Execution resumes at the statement
which caused the error.

Execution resumes at the statement
immediately following the one which
caused the error.

RESUME
or

RESUME 0

Remarks: Any one of the four formats shown above may be used, depending
upon where execution is to resume:

MS-BASIC COMMANDS AND ST A TEMENTS

RUN

Format 1: RUN [<line number>]

Versions: 8K, Extended, Disk

Purpose: To execute the program currently in memory.

Example: RUN

Format 2: RUN <filename> [, R]

Version: Disk

Purpose: To load a file from disk into memory and run it.

Example: RUN “NEWFIL”,F

See also Appendix B.

2-75

Remarks: <filename> is the name used when the file was SAVEd. (With
CP/M, the default extension .BAS is supplied.)

RUN closes all open files and deletes the current contents
of memory before loading the designated program. However,
with the “R” option, all data files remain OPEN.

Remarks: If <line number> is specified, execution begins on that line.
Otherwise, execution begins at the lowest line number. MS-BASIC
always returns to command level after a RUN is executed.

SAVE

SAVE < file name >[, A | ,P]Format:

DiskVersion:

To save a program file on disk.Purpose:

Example:

See also Appendix B.

2-76

SAVE “COM 2”, A
SAVE “PROG ”,P

Remarks: <filename> is a quoted string that conforms to your operating
system’s requirements for filenames. (With CP/M, the default
extension .BAS is supplied.) If <filename> already exists, the
file will be written over.

Use the A option to save the file in ASCII format. Other­
wise, BASIC saves the file in a compressed binary format. ASCII
format takes more space on the disk, but some disk access requires
that files be in ASCII format. For instance, the MERGE command
requires an ASCII format file, and some operating system com­
mands such as LIST may require an ASCII format file.

Use the P option to protect the file by saving it in an encoded
binary format. When a protected file is later RUN (or LOADed),
any attempt to list or edit it will fail.

MS- BASIC COMMANDS AND STATEMENTS

STOP

Format: STOP

Versions: 8K, Extended, Disk

Purpose: To terminate program execution and return to command level.

Break in line nnnnn

Example:

2-77

Unlike the END statement, the STOP statement does not close
files.

MS-BASIC always returns to command level after a STOP is
executed. Execution is resumed by issuing a CONT command (see
page 2-10).

10 INPUT A,B,C
20 K=A''2*5.3:L=B''3/.26
30 STOP
40 M=C*K +100:PRINT M
RUN
? 1,2,3
BREAK in 30
Ok
PRINT L

30.7692
Ok
CONT

115.9
Ok

Remarks: STOP statements may be used anywhere in a program to terminate
execution. When a STOP is encountered, the following message is
printed:

SWAP

SWAP <variable>,<variable>Format:

Versions: Extended, Disk

Purpose: To exchange the values of two variables.

Example:

2-78

Remarks: Any type variable may be SWAPped (integer, single precision,
double precision, string), but the two variables must be of the same
type or a “Type mismatch” error results.

LIST
10 A$ = “ ONE ” : B$=“ ALL ” : C$ = “FOR”
20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
RUN
Ok

ONE FOR ALL
ALL FOR ONE

Ok

MS-BASIC COMMANDS AND STA TEMENTS

TRON/TROFF

Format: TRON

TROFF

Versions: Extended, Disk

Purpose: To trace the execution of program statements.

Example:

2-79

Remarks: As an aid in debugging, the TRON statement (executed in either
the direct or indirect mode) enables a trace flag that prints each
line number of the program as it is executed. The numbers appear
enclosed in square brackets. The trace flag is disabled with the
TROFF statement (or when a NEW command is executed).

TRON
Ok
LIST
10 K = 10
20 FORJ=1 TO 2
30 L=K + 10
40 PRINTJ;K;L
50 K=K+10
60 NEXT
70 END
Ok
RUN
[10][20][30][40] 1 10 20
[50][60][30][40] 2 20 30
[50][60][70]
Ok
TROFF
Ok

WAIT

Versions: 8K, Extended, Disk

Example: 100 WAIT 32,2

2-80

CAUTION: It is possible to enter an infinite loop with the WAIT statement,
in which case it will be necessary to manually restart the machine.

Format: WAIT <port number>, I[,J]
where I and J are integer expressions

Remarks: The WAIT statement causes execution to be suspended until a
specified machine input port develops a specified bit pattern. The
data read at the port is exclusive OR’ed with the integer expression
J, and then AND’ed with I. If the result is zero, MS-BASIC loops
back and reads the data at the port again. If the result is nonzero,
execution continues with the next statement. If J is omitted, it is
assumed to be zero.

Purpose: To suspend program execution while monitoring the status of a
machine input port.

MS-BASIC COMMANDS AND STA TEMENTS

WHILE...WEND

Format: WHILE <expression>

[<loop statements>]

WEND

Versions: Extended, Disk

Example:

NEXT I

2-81

FLIPS=0
FORI=1 TO J-l

IF A$(I)>A$(I+1) THEN
SWAP A$(I) ,A$(I + 1)
:FLIPS=1

Purpose: To execute a series of statements in a loop as long as a given condi­
tion is true.

Remarks: If <expression> is not zero (i.e., true), <loop statements> are
executed until the WEND statement is encountered. BASIC then
returns to the WHILE statement and checks <expression>. If
it is still true, the process is repeated. If it is not true, execution
resumes with the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each WEND
will match the most recent WHILE. An unmatched WHILE state­
ment causes a “WHILE without WEND” error, and an unmatched
WEND statement causes a “WEND without WHILE” error.

140
150 WEND

90 ’BUBBLE SORT ARRAY A$
100 FLIPS= 1 ’FORCE ONE PASS TRHU LOOP
110 WHILE FLIPS
115
120
130

WIDTH

Format: WIDTH [LPRINT] <integer expression>

Versions: Extended, Disk

Example:

2-82

10 PRINT “ABCDEFGHIJKLMNOPQRSTUVWXYZ”
RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
Ok
WIDTH 18
Ok
RUN
ABCDEFGHIJKLMNOPQR
STUVWXYZ
Ok

Remarks: If the LPRINT option is omitted, the line width is set at the
terminal. If LPRINT is included, the line width is set at the line
printer.

<integer expression> must have a value in the range 15 to
255. The default width is 72 characters.

If <integer expression> is 255, the line width is “infinite,”
that is BASIC never inserts a carriage return. However, the posi­
tion of the cursor or the print head, as given by the POS or LPOS
function, returns to zero after position 255.

Purpose: To set the printed line width in number of characters for the
terminal or line printer.

MS-BASIC COMMANDS AND STA TEMENTS

WRITE

Format: WRITE [<list of expressions>]

Version: Disk

Purpose: To output data at the terminal.

Example:

2-83

10 A=80: B= 90:C$=“THAT’S ALL”
20 WRITE A,B,C$
RUN

80, 90, “THAT’S ALL”
Ok

Remarks: If <list of expressions> is omitted, a blank line is output. If
<list of expressions> is included, the values of the expressions
are output at the terminal. The expressions in the list may be
numeric and/or string expressions, and they must be separated
by commas.

When the printed items are output, each item will be separated
from the last by a comma. Printed strings will be delimited by
quotation marks. After the last item in the list is printed, BASIC
inserts a carriage return/line feed.

WRITE outputs numeric values using the same format as the
PRINT STATEMENT, Page 2-59.

WRITE#

Format: WRITE# <file number>,<list of expressions>

Version: Disk

Purpose: To write data to a sequential file.

Example: LET A$=“CAMERA” and B$= “93604—1”. The statement:

WRITE# 1 ,A$,B$

writes the following image to disk:

“CAMERA”, “93604-1”

A subsequent INPUT# statement, such as:

INPUT# 1 ,A$,B$

would input “CAMERA” to A$ and “93604-1” to B$.

2-84

Remarks: <file number> is the number under which the file was OPENed in
“O” mode. The expressions in the list are string or numeric ex­
pressions, and they must be separated by commas.

The difference between WRITE# and PRINT# is that WRITE#
inserts commas between the items as they are written to disk and
delimits strings with quotation marks. Therefore, it is not necessary
for the user to put explicit delimiters in the list. A carriage return/
line feed sequence is inserted after the last item in the list is written
to disk.

CHAPTERS

MS-BASIC FUNCTIONS

X and Y Represent any numeric expressions

I and J Represent integer expressions

X$ and Y$ Represent string expressions

NOTE:

3-1

With the MS-BASIC interpreter f only integer and
single precision results are returned by functions. Double precision
functions are supported only by the BASIC compiler.

The intrinsic functions provided by MS-BASIC are presented in this chapter.
The functions may be called from any program without further definition.

Arguments to functions are always enclosed in parentheses. In the
formats given for the functions in this chapter, the arguments have been
abbreviated as follows:

If a floating point value is supplied where an integer is required, MS-
BASIC will round the fractional portion and use the resulting integer.

ABS

Format: ABS(X)

Versions: 8K, Extended, Disk

Returns the absolute value of the expression X.Action:

Example:

ASC

Format: ASC(X$)

Versions: 8K, Extended, Disk

Action:

Example:

See the CHR$ function for ASCII-to-string conversion.

3-2

Returns a numerical value that is the ASCII code of the first
character of the string X$. (See Appendix I for ASCII codes.)
If X$ is null, an “Illegal function call” error is returned.

PRINT ABS(7*(—5))
35

Ok

10 X$ = “TEST”
20 PRINT ASC(X$)
RUN

84
Ok

MS-BASIC FUNCTIONS

ATN

Format: ATN(X)

Versions: 8K, Extended, Disk

Action:

Example:

CDBL

Format: CDBL(X)

Versions: Extended, Disk

Converts X to a double precision number.Action:

Example:

454.6700134277344

3-3

Returns the arctangent of X in radians. Result is in the range - pi/2
to pi/2. The expression X may be any numeric type, but the
evaluation of ATN is always performed in single precision.

10 A = 454.67
20 PRINT A;CDBL(A)
RUN
454.67

Ok

10 INPUT X
20 PRINT ATN(X)
RUN
? 3

1.24905
Ok

CHR$

Format: CHR$(I)

Versions: 8K, Extended, Disk

Action:

Example:

See the ASC function for ASCtt-to-numeric conversion.

CINT

Format: CINT(X)

Versions: Extended, Disk

Action:

Example:

3-4

See the CDBL and CSNG functions for converting numbers to the
double precision and single precision data type. See also the FIX
and INT functions, both of which return integers.

Converts X to an integer by rounding the fractional portion. If
X is not in the range -32768 to 32767, an “Overflow” error
occurs.

PRINT CINT(45.67)
46

Ok

Returns a string whose one element has ASCII code I. (ASCII
codes are listed in Appendix I.) CHR$ is commonly used to send a
special character to the teminal. For instance, the BEL character
could be sent (CHR$(7)) as a preface to an error message, or a
form feed could be sent (CHR$(12)) to clear a CRT screen and
return the cursor to the home position. Besides CHR$ is used
for the positioning of the cursor as shown in the following ex­
ample.

PRINT CHR$(27)+CHR$(61)+CHR$(32+line number)
(Escape) (cursor function) (line number)
+ CHR$(32 + column);
(column)

MS-BASIC FUNCTIONS

COS

Format: COS(X)

Versions: 8K, Extended, Disk

Action:

Example:

CSNG

Format: CSNG(X)

Versions: Extended, Disk

Converts X to a single precision number.Action:

Example:

3-5

Returns the cosine of X in radians. The calculation of COS(X)
is performed in single precision.

See the CINT and CDBL functions for converting numbers to the
integer and double precision data types.

10 X = 2*COS(.4)
20 PRINT X
RUN

1.84212
Ok

10 A# = 975.3421#
20 PRINT A#; CSNG(A#)
RUN

975.3421 975.342
Ok

CVI, CVS, CVD

Format:

DiskVersion:

Action:

Example:

See also MKI$, MKS$, MKD$, page 3—16 and Appendix B.

EOF

EOF(<file number>)Format:

Version: Disk

Action:

Example:

3-6

CVI(<2-byte string>)
CVS(<4-byte string>)
CVD(<8-byte string>)

Convert string values to numeric values. Numeric values that are
read in from a random disk file must be converted from strings
back into numbers. CVI converts a 2—byte string to an integer.
CVS converts a 4—byte string to a single precision number. CVD
converts an 8-byte string to a double precision number.

70 FIELD #1,4 AS N$, 12 AS B$, ...
80 GET # 1
90Y=CVS(N$)

10 OPEN “I”, 1/‘DATA”
20 C=0
30 IF EOF(1)THEN 100
40 INPUT #1,M(C)
50 C=C+l:GOTO30

Returns -1 (true) if the end of a sequential file has been reached.
Use EOF to test for end-of-file while INPUTting, to avoid
“Input past end” errors.

MS-BASIC FUNCTIONS

EXP

Format: EXP(X)

Versions: 8K, Extended Disk

Action:

Example:

FIX

Format: FIX(X)

Versions: Extended, Disk

Action:

Examples:

3-7

Returns e to the power of X. X must be <=87.3365. If EXP over­
flows, the “Overflow” error message is displayed, machine infinity
with the appropriate sign is supplied as the result, and execution
continues.

PRINT FIX(58.75)
58

Ok

Returns, the truncated integer part of X. FIX(X) is equivalent to
SGN(X)*INT(ABS(X)). The major difference between FIX and
INT is that FIX does not return the next lower number for negative
X.

10 X=5
20 PRINT EXP (X — 1)
RUN

54.5982
Ok

PRINT FIX(—58.75)
-58
Ok

FRE

Versions: 8K, Extended, Disk

Action:

Example:

HEX$

Format: HEX$(X)

Versions: Extended, Disk

Action:

Example:

See the OCT$ function for octal conversion.

3-8

Returns a string which represents the hexadecimal value of the
decimal argument. X is rounded to an integer before HEX$(X)
is evaluated.

PRINT FRE(O)
14542

Ok

Format: FRE(O)
FRE(X$)

Arguments to FRE are dummy arguments. FRE returns the number
of bytes in memory not being used by MS-BASIC.

FRE (“”) forces a garbage collection before returning the
number of free bytes. BE PATIENT: garbage collection may take
1 to 1—1/2 minutes. BASIC will not initiate garbage collection
until all free memory has been used up. Therefore, using FRE
(“ ”) periodically will result in shorter delays for each garbage
collection.

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X “DECIMAL IS ” A$ “ HEXADECIMAL”
RUN
? 32

32 DECIMAL is 20 HEXADECIMAL
Ok

MS-BASIC FUNCTIONS

INKEYS

Format: INKEY$

Action:

Example:

INP

Format: INP(I)

Versions: 8K, Extended, Disk

Action:

100 A = INP(255)Example:

3-9

Returns the byte read from port I. I must be in the range 0 to
255. INP is the complementary function to the OUT statement,
page 2—57.

1000 ’TIMED INPUT SUBROUTINE
1010 RESPONSES = “ ”
1020 FORI%=1 TOTIMELIMIT%
1030 A$ = INKEY$: IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=0 : RETURN
1050 RESPONSES = RESPONSE$+A$
1060 NEXT I %
1070 TIMEOUT%= 1 : RETURN

Returns either a one-character string containing a character read
from the terminal or a null string if no character is pending at the
terminal. No characters will be echoed and all characters are passed
through to the program except for Control-C, which terminates the
program. (With the BASIC Compiler, Control-C is also passed
through to the program.)

INPUTS

INPUT$(X[,[#]Y])Format:

Version: Disk

Action:

Example 1:

Example 2:

3-10

100 PRINT “TYPE P TO PROCEED OR S TO STOP”
110 X$=INPUT$(1)
120 IF X$=“P” THEN 500
130 IF X$=“S” THEN 700 ELSE 100

Returns a string of X characters, read from the terminal or from
file number Y. If the terminal is used for input, no characters will
be echoed and all control characters are passed through except
Control-C, which is used to interrupt the execution of the INPUT$
function.

5 ’LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL
10 OPEN “I”, 1, “DATA”
20 IF EOF(l) THEN 50
30 PRINT HEX$(ASC(INPUT$(1 ,#1)));
40 GOTO 20
50 PRINT
60 END

MS-BASIC FUNCTIONS

INSTR

INSTR([I,]X$,Y$)Format:

Versions: Extended, Disk

Action:

Example:

NOTE:

3-11

If 1 = 0 is specified, error message “ILLEGAL ARGUMENT IN
<line number>” will be returned.

Searches for the first occurrence of string Y$ in X$ and returns
the position at which the match is found. Optional offset I sets
the position for starting the search. I must be in the range 1 to 255.
If I>LEN(X$) or if X$ is null or if Y$ cannot be found, INSTR
returns 0. If Y$ is null, INSTR returns I or 1. X$ and Y$ may be
string variables, string expressions or string literals.

10 X$ = “ABCDEB”
20 Y$ = “B”
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
RUN

2 6
Ok

I NT

Format: INT(X)

Versions: 8K, Extended, Disk

Returns the largest integer <=X.Action:

Examples:

See the FIX and CINT functions which also return integer values.

LEFTS

Format: LEFT$(X$,I)

Versions: 8K, Extended, Disk

Action:

Example:

Also see the MID$ and RIGTH$ functions.

3-12

Returns a string comprised of the leftmost I characters of X$.
I must be in the range 0 to 255. If I is greater than LEN(X$),
the entire string (X$) will be returned. If 1=0, the null string
(length zero) is returned.

PRINT INT(99.89)
99

Ok

10 A$ = “BASIC-80”
20 B$ = LEFTS (A$,5)
30 PRINT B$
BASIC
Ok

PRINT INT(—12.11)
-13
Ok

MS-BASIC FUNCTIONS

LEN

Format: LEN(X$)

Versions: 8K, Extended, Disk

Action:

Example:

LOC

LOC(<file number>)Format:

Version: Disk

Action:

200 IF LOC(1)>50 THEN STOPExample:

3-13

Returns the number of characters in X$. Non-printing characters
and blanks are counted.

With random disk files, LOC returns the next record number to be
used if a GET or PUT (without a record number) is executed. With
sequential files, LOC returns the number of sectors (128 byte
blocks) read from or written to the file since it was OPENed.

10 X$ = “PORTLAND, OREGON”
20 PRINT LEN(X$)

16
Ok

LOG

Format: LOG(X)

Versions: 8K, Extended, Disk

Returns the natural logarithm of X. X must be greater than zero.Action:

Example:

LPOS

Format: LPOS(X)

Versions: Extended, Disk

Action:

Example: 100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

3-14

Returns the current position of the line printer print head within
the line printer buffer. Does not necessarily give the physical
position of the print head. X is a dummy argument.

PRINT LOG(45/7)
1.86075

Ok

MS-BASIC FUNCTIONS

MID$

Format: MID$ (X$,I [,J])

Versions: 8K, Extended, Disk

Action:

Example:

Also see the LEFT$ and RIGTH$ functions.

NOTE:

3-15

If 1=0 is specified, error message “ILLEGAL ARGUMENT IN
<line number>” will be returned.

Returns a string of length J characters from X$ beginning with the
Ith character. I and J must be in the range 1 to 255. If J is omitted
or if there are fewer than J characters to the right of the Ith
character, all rightmost characters beginning with the Ith char­
acter are returned. If I>LEN(X$) , MID$ returns a null string.

LIST
10 A$=“GOOD ”
20 B$=“MORNING EVENING AFTERNOON”
30 PRINT A$;MID$ (B$,9,7)
Ok
RUN
GOOD EVENING
Ok

IVIKIS, MKS$, MKD$

Format:

Version: Disk

Action:

Example:

See also CVI, CVS, CVD, page 3—6 and Appendix B.

3-16

MKI$ (<integer expression>)
MKS$ (<single precision expression>)
MKD$ (<double precision expression>)

Convert numeric values to string values. Any numeric value that is
placed in a random file buffer with an LSET or RSET statement
must be converted to a string. MKI$ converts an integer to a
2-byte string. MKS$ converts a single precision number to a
4-byte string. MKD$ converts a double precision number to an
8-byte string.

90 AMT=(K+T)
100 FIELD #1, 8 AS D$, 20 AS N$
110 LSET D$ = MKS$ (AMT)
120 LSETN$ = A$
130PUT#l

MS-BASIC FUNCTIONS

OCT$

Format: OCT$(X)

Versions: Extended, Disk

Action:

Example:

See the HEX$ function for hexadecimal conversion.

PEEK

Format: PEEK(I)

Versions: 8K, Extended, Disk

Action:

Example: A=PEEK(&H5A00)

3-17

Returns a string which represents the octal value of the decimal
argument. X is rounded to an integer before OCT$(X) is evaluated.

Returns the byte (decimal integer in the range 0 to 255) read from
memory location I. With the 8K version of MS-BASIC,! must be
less than 32768. To PEEK at a memory location above 32768,
substract 65536 from the desired address. With Extended and
Disk MS-BASIC, I must be in the range 0 to 65536. PEEK is the
complementary function to the POKE statement, page 2-58.

PRINT OCT$(24)
30

Ok

POS

Format: POS(I)

Versions: 8K, Extended, Disk

Action:

Example: IF POS(X)>60 THEN PRINT CHR$(13)

Also see the LPOS function.

RIGHTS

Format: RIGHT$(X$, I)

Versions: 8K, Extended, Disk

Action:

Example:

Also see the MID$ and LEFT$ functions.

3-18

Returns the current cursor position. The leftmost position is 1.
X is a dummy argument.

Returns the rightmost I characters of string X$. If I=LEN(X$),
returns X$. If 1=0, the null string (length zero) is returned.

10 A$ = “DISK BASIC-80”
20 PRINT RIGHT$(A$,8)
RUN
BASIC-80
Ok

MS-BASIC FUNCTIONS

RND

Format: RND[(X)]

Versions: 8K, Extended, Disk

Action:

Example:

31 51 5

SGN

Format: SGN(X)

Versions: 8K, Extended, Disk

Action:

Example:

3-19

Returns a random number between 0 and 1. The same sequence of
random numbers is generated each time the program is RUN unless
the random number generator is reseeded (see RANDOMIZE, page
2-68). However, X<0 always restarts the same sequence for any
given X.

X>0 or X omitted generates the next random number in the
sequence. X=0 repeats the last number generated.

If X>0, SGN(X) returns 1.
If X=0, SGN(X) returns 0.
IfXCO, SGN(X) returns-1.

ON SGN(X)+2 GOTO 100,200,300 branches to 100 if X is
negative, 200 if X is 0 and 300 if X is positive.

10 FOR 1 = 1 TO 5
20 PRINT INT(RND* 100) ;
30 NEXT
RUN

24 30
Ok

SIN

Format: SIN(X)

Versions: 8K, Extended, Disk

Action:

Example:

SPACES

Format: SPACES (X)

Versions: Extended, Disk

Action:

Example:

Ok

Also see the SPC function.

3-20

Returns the sine of X in radians. SIN(X) is calculated in single
precision. COS(X)=SIN(X+3.14159/2).

PRINT SIN(1.5)
.997495

Ok

Returns a string of spaces of length X. The expression X is rounded
to an integer and must be in the range 0 to 255.

10 FOR I = 1 TO 5
20 XS = SPACES (I)
30 PRINT X$;I
40 NEXT I
RUN

1
2

3
4

5

MS-BASIC FUNCTIONS

SPC

Format: SPC (I)

Versions: 8K, Extended, Disk

Example:

Also see the SPACE$ function.

SQR

Format: SQR(X)

Versions: 8K, Extended, Disk

Returns the square root of X. X must be >=0.Action:

Example:

3-21

PRINT “OVER” SPC(15) “THERE”
OVER THERE
Ok

3.16228
3.87298
4.47214
5

Action: Prints I blanks on the terminal. SPC may only be used with PRINT
and LPRINT statements. I must be in the range 0 to 255.

10 FOR X = 10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
RUN

10
15
20
25

Ok

STR$

Format: STR$(X)

Versions: 8K, Extended, Disk

Returns a string representation of the value of X.Action:

Example:

Also see the VAL function.

STRINGS

Formats:

Versions: Extended, Disk

Action:

Example:

MONTHLY REPORT
Ok

3-22

Returns a string of length I whose characters all have ASCH code
J or the first character of X$.

STRING$(I,J)
STRING$(I ,X$)

5 REM ARITHMETIC FOR KIDS
10 INPUT “TYPE A NUMBER” ;N
20 ON LEN(STR$(N)) GOSUB 30,100,200,300,400,500

10 X$ = STRING$(10,45)
20 PRINT X$ “MONTHLY REPORT” X$
RUN

MS-BASIC FUNCTIONS

TAB

Format: TAB (I)

Versions: 8K, Extended, Disk

Action:

Example:

AMOUNT

$25.00

TAN

Format: TAN(X)

Versions: 8K, Extended, Disk

Action:

10 Y = Q*TAN(X)/2Example:

3-23

Spaces to position I on the terminal. If the current print position
is already beyond space I, TAB goes to that position on the next
line. Space 1 is the leftmost position, and the rightmost position is
the width minus one. I must be in the range 1 to 255. TAB may
only be used in PRINT and LPRINT statements.

G. T. JONES
Ok

Returns the tangent of X in radians. TAN(X) is calculated in single
precision. If TAN overflows, the “Overflow44 error message is
displayed, machine infinity with the appropriate sign is supplied
as the result, and execution continues.

10 PRINT “NAME” TAB(25) “AMOUNT44 : PRINT
20 READA$,B$
30 PRINT A$ TAB(25) B$
40 DATA “G. T. JONES” , “$25.00”
RUN
NAME

USR

Format: USR[<digit>] (X)

Versions: 8K, Extended, Disk

Action:

Example:

VAL

Format: VAL(X$)

Versions: 8K, Extended, Disk

Action:

VAL(“ -3)

returns —3.

Example:

See the STR$ function for numeric to string conversion.

3-24

Calls the user’s assembly language subroutine with the argument
X. <digit> is allowed in the Extended and Disk versions only.
<digit> is in the range 0 to 9 and corresponds to the digit supplied
with the DEF USR statement for that routine. If <digit> is
omitted, USRO is assumed.

Returns the numerical value of string X$. The VAL function also
strips leading blanks, tabs, and linefeeds from the argument string.
For example:

40 B = T*SIN(Y)
50 C = USR(B/2)
60 D = USR(B/3)

10 READ NAMES,CITY$,STATES,ZIPS
20 IF VAL(ZIPS)<90000 OR VAL(ZIP$) >96699 THEN
PRINT NAMES TAB(25) “OUT OF STATE”
30 IF VAL(ZIPS) >=90801 AND VAL(ZIPS) <=90815
THEN PRINT NAME$ TAB (25) “LONG BEACH”

MS-BASIC FUNCTIONS

VARPTR

Format 1: VARPTR(<variable name>)

Versions: Extended, Disk

Format 2: VARPTR(#<file number>)

Version: Disk

Action:

NOTE:

100 X=USR(VARPTR(Y))Example:

3-25

All simple variables should be assigned before calling VARPTR for
an array, because the addresses of the arrays change whenever a
new simple variable is assigned.

Format 2: For sequential files, returns the starting address
of the disk I/O buffer assigned to <file number>. For random
files, returns the address of the FIELD buffer assigned to <file
number >.

Format 1: Returns the address of the first byte of data identified
with <variable name>. A value must be assigned to <variable
name> prior to execution of VARPTR. Otherwise an “Illegal
function call” error results. Any type variable name may be used
(numeric, string, array), and the address returned will be an integer
in the range 32767 to —32768. If a negative address is returned,
add it to 65536 to obtain the actual address.

VARPTR is usually used to obtain the address of a variable
or array so it may be passed to an assembly language subroutine.
A function call of the form VARPTR(A(0)) is usually specified
when passing an array, so that the lowest-addressed element of the
array is returned.

APPENDIX A

NEW FEATURES IN MS-BASIC, RELEASE 5.0

A-l

The execution of BASIC programs written under Microsoft BASIC, release
4.51 and earlier may be affected by some of the new features in release 5.0.
Before attempting to run such programs, check for the following:

1. New reserved words: CALL, CHAIN, COMMON, WHILE, WEND, WRITE,
OPTION BASE, RANDOMIZE.

2. Conversion from floating point to integer values results in rounding, as
opposed to truncation. This affects not only assignment statements
(e.g., I%= 2.5 results in I%=3), but also affects function and statement
evaluations (e.g., TAB(4.5) goes to the 5th position, A(1.5) yields A(2),
and X= 11.5 MOD 4 yields 0 for X).

3. The body of a FOR...NEXT loop is skipped if the initial value of the
loop times the sign of the step exceeds the final value times the sign of
the step. See page 2-29.

4. Division by zero and overflow no longer produce fatal errors. See page
1-9.

5. The RND function has been changed so that RND with no argument is
the same as RND with a positive argument. The RND function generates
the same sequence of random numbers with each RUN, unless RAND­
OMIZE is used. See pages 2—68 and 3-19.

6. The rules for PRINTing single precision and double precision numbers
have changed. See page 2—59.

7. String space is allocated dynamically, and the first argument in a two-
argument CLEAR statement sets the end of memory. The second argu­
ment sets the amount of stack space. See page 2—6.

8. Responding to INPUT with too many or too few items, or with non­
numeric characters instead of digits, causes the message “?Redo from
start” to be printed. If a single variable is requested, a carriage return
may be entered to indicate the default values of 0 for numeric input or
null for string input. However, if more than one variable is requested,
entering a carriage return will cause the “?Redo from start” message
to be printed because too few items were entered. No assignment of
input values is made until an acceptable response is given.

9. There are two new field formatting characters for use with PRINT
USING. An ampersand is used for variable length string fields, and an
underscore signifies a literal character in a format string.

A-2

10. If the expression supplied with the WIDTH statement is 255, BASIC
uses an “infinite” line width, that is, it does not insert carriage returns.
WIDTH LPRINT may be used to set the line width at the line printer.
See page 2-82.

11. The at-sign and underscore are no longer used as editing characters.
12. Variable names are significant up to 40 characters and can contain

embedded reserved words. However, reserved words must now be de­
limited by spaces. To maintain compatibility with earlier versions of
BASIC, spaces will be automatically inserted between adjoining reserved
words and variable names. WARNING: This insertion of spaces may
cause the end of a line to be truncated if the line length is close to
255 characters.

13. BASIC programs may be saved in a protected binary format. See SAVE,
page 2-76.

APPENDIX B

MS-BASIC DISK I/O

SAVE <filename>[,A]

LOAD <filename > [, R]

RUN <filename> [,R]

B-l

Disk I/O procedures for the beginning MS-BASIC user are examined in this
appendix. If you are new to MS-BASIC or if you’re getting disk related errors,
read through these procedures and program examples to make sure you’re
using all the disk statements correctly.

Wherever a filename is required in a disk command or statement, use a
name that conforms to your operating system’s requirements for filenames.
The CP/M operating system will append a default extension .BAS to the
filename given in a SAVE, RUN, MERGE or LOAD command.

PROGRAM FILE COMMANDS
Here is a review of the commands and statements used in program file manip­
ulation.

Loads the program from disk into memory.
Optional R runs the program immediately.
LOAD always deletes the current contents
of memory and closes all files before LOAD-
ing. If R is included, however, open data
files are kept open. Thus program can be
chained or loaded in sections and access the
same data files.

RUN <filename> loads the program from
disk into memory and runs it. RUN deletes
the cunent contents of memory and closes
all files before loading the program. If the
R option is included, however, all open data
files are kept open.

Writes to disk the program that is currently
residing in memory. Optional A writes the
program as a series of ASCII characters.
(Otherwise, BASIC uses a compressed
binary format.)

MERGE <filename>

KILL <filename>

SAVE “MYPROG”,P

OPEN

CLOSE EOF LOC

B-2

A program saved this way cannot be listed or edited. You may also want to
save an unprotected copy of the program for listing and editing purposes.

NAME <old filename>
AS <new filename>

Deletes the file from the disk. <filename>
may be a program file, or a sequential or
random access data file.

DISK DATA FILES - SEQUENTIAL AND RANDOM I/O
There are two types of disk data files that may be created and accessed by
a MS-BASIC program: sequential filesand random access files.

Loads the program from disk into memory
but does not delete the current contents of
memory. The program line numbers on disk
are merged with the line numbers in memory.
If two lines have the same number, only the
line from the disk program is saved. After
a MERGE command, the “merged” pro­
gram resides in memory, and BASIC returns
to command level.

To change the name of a disk file, execute
the NAME statement, NAME <oldfile>
AS <newfile>. NAME may be used with
program files, random files, or sequential
files.

Sequential Files
Sequential files are easier to create than random files but are limited in flex­
ibility and speed when it comes to accessing the data. The data that is written
to a sequential file is stored, one item after another (sequentially), in the
order it is sent and is read back in the same way.

The statements and functions that are used with sequential files are:

PROTECTED FILES
If you wish to save a program in an encoded binary format, use the “Protect”
option with the SAVE command. For example:

PRINT# INPUT# WRITE#
PRINT# USING LINE INPUT#

MS-BASIC DISC I/O

INPUT# 1 ,X$,Y$,Z$

NAME? etc.

PROGRAM B-l - CREATE A SEQUENTIAL DATA FILE

B-3

The following program steps are required to create a sequential file and access
the data in the file:

1. OPEN the file in “0” mode.
2. Write data to the file using

the PRINT# statement.
WRITE# may be used instead.)

3. To access the data in the file,
you must CLOSE the file and
reOPEN it in “I” mode.

4. Use the INPUT# statement to
read data from the sequential
file into the program.

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATA HIRED? 12/03/65

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

OPEN “O”,#l ,“DATA”
PRINT# 1 ,A$;B$;C$

CLOSE# 1
OPEN “I”,#1, “DATA”

Program B-l is a short program that creates a sequential file, “DATA”,
from information you input at the terminal.

10 OPEN “O” ,# 1,“DATA”
20 INPUT “NAME” ;N$
25 IF N$=“DONE” THEN END
30 INPUT “DEPARTMENT” ;D$
40 INPUT “DATE HIRED” ;H$
50 PRINT# 1 ,N$;D$;H$
60 PRINT:GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

PROGRAM B-2 - ACCESSING A SEQUENTIAL FILE

15 IF EOF(1)THEN END

PRINT# 1,USING“####.##,”;A,B,C,D

B-4

Program B-2 reads, sequentially, every item in the file. When all the data
has been read, line 20 causes an “Input past end” error. To avoid getting this
error, insert line 15 which uses the EOF function to test for end-of-file:

and change line 40 to GOTO 1 5.
A program that creates a sequential file can also write formatted data

to the disk with the PRINT# USING statement. For example, the statement

Adding Data To A Sequential File —
If you have a sequential file residing on disk and later want to add more data
to the end of it, you cannot simply open the file in “O” mode and start
writing data. As soon as you open a sequential file in “O” mode, you destroy
its current contents. The following procedure can be used to add data to an
existing file called “NAMES”.

could be used to write numeric data to disk without explicit delimiters. The
comma at the end of the format string serves to separate the items in the disk
file.

The LOC function, when used with a sequential file, returns the number
of sectors that have been written to or read from the file since it was OPENed.
A sector is a 128-byte block of data.

Now look at Program B-2. It accesses the file “DATA” that was created in
Program B-l and displays the name of everyone hired in 1978.

10 OPEN “I”,# 1,“DATA”
20 INPUT# 1 ,N$,D$,H$
30 IF RIGHTS (H$,2)=“78” THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

MS-BASIC DISC I/O

PROGRAM B-3 - ADDING DATA TO A SEQUENTIAL FILE

B-5

Program B-3 illustrates this technique. It can be used to create or add onto a
file called NAMES. This program also illustrates the use of LINE INPUT#
to read strings with embedded commas from the disk file. Remember, LINE
INPUT# will read in characters from the disk until it sees a carriage return
(it does not stop at quotes or commas) or until it has read 255 characters.

1. OPEN “NAMES” in “1” mode.
2. OPEN a second file called “COPY” in “0” mode.
3. Read in the data in “NAMES” and write it to “COPY”.
4. CLOSE “NAMES” and KILL it.
5. Write the new information to “COPY”.
6. Rename “COPY” as “NAMES” and CLOSE.
7. Now there is a file on disk called “NAMES” that includes all the previous

data plus the new data you just added.

10 ON ERROR GOTO 2000
20 OPEN “I”,#1,“NAMES”
30 REM IF FILE EXISTS, WRITE IT TO “COPY”
40 OPEN “0”,#2,“COPY”
50 IF EOF(1)THEN90
60 LINE INPUT# 1 ,A$
70 PRINT# 2,A$
80 GOTO 50
90 CLOSE#1
100 KILL “NAMES”
110 REM ADD NEW ENTRIES TO FILE
120 INPUT “NAME” ;N$
130 IF N$=“” THEN 200 ’CARRIAGE RETURN EXITS INPUT LOOP
140 LINE INPUT “ADDRESS? ”;A$
150 LINE INPUT “BIRTHDAY?” ;B$
160 PRINT#2,N$
170 PRINT#2,A$
180 PRINT#2,B$
190 PRINT:GOTO 120
200 CLOSE
205 REM CHANGE FILENAME BACK TO “NAMES”
210 NAME “COPY” AS “NAMES”
2000 IF ERR=53 AND ERL=20 THEN OPEN “O”,#2,“COPY”

: RESUME 120
2010 ON ERROR GOTO 0

LSET/RSETOPEN FIELD GET

PUT CLOSE LOC

OPEN “R”,# 1,“FILE”,32

B-6

The error trapping routine in line 2000 traps a “File does not exist” error in
line 20. If this happens, the statement that copy the file are skipped, and
“COPY” is created as if it were a new file.

MKI$
MKS$
MKD$

CVI
CVS
CVD

FIELD #1 20ASN$
4 AS A$,8 ASP$

1. OPEN the file for random access
(“R” mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128
bytes.

2. Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be written to the random
file.

Creating A Random File —
The following program steps are required to create a random file.

Random Files
Creating and accessing random files requires more program steps than sequen­
tial files, but there are advantages to using random files. One advantage is
that random files require less room on the disk, because BASIC stores them in
a packed binary format. (A sequential file is stored as a series of ASCII
characters.)

The biggest advantage to random files is that data can be accessed ran­
domly, i.e., anywhere on the disk — it is not necessary to read through all the
information, as with sequential files. This is possible because the information
is stored and accessed in distinct units called records and each record is
numbered.

The statements and functions that are used with random files are:

MS-BASIC DISC I/O

PUT#1,CODE%

PROGRAM B-4 - CREATE A RANDOM FILE

B-7

3. Use LSET to move the data
in the random buffer.
Numeric values must be made
into strings when placed in
the buffer. To do this, use the
“make” functions: MKI$ to
make an integer value into a
string, MKS$ for a single
precision value, and MKD$ for
a double precision value.

4. Write the data from
the buffer to the disk
using the PUT statement.

10 OPEN “R” JI,“FILE”,32
20 FIELD #1,20 ASN$,4 AS A$,8 AS P$
30 INPUT “2-DIGIT CODE” ;CODE%
40 INPUT “NAME”;X$
50 INPUT 44AMOUNT44 ; AMT
60 INPUT “PHONE” ;TEL$: PRINT
70 LSETN$=X$
80 LSET A$=MKS$(AMT)
90 LSETP$=TEL$
100 PUT#1,CODE%
110 GOTO 30

LSETN$=X$
LSET A$=MKS$ (AMT)
LSETP$=TEL$

Look at Program B-4. It takes information that is input at the terminal and
writes it to a random file. Each time the PUT statement is executed, a record
is written to the file. The two-digit code that is input in line 30 becomes the
record number.

NOTE: Do not use a FIELDed string variable in an INPUT or LET state­
ment. This causes the pointer for that variable to point into string
space instead of the random file buffer.

OPEN “R”,#l,“FILE”,321. OPEN the file in “R” mode.

GET#1,CODE%

PROGRAM B-5 - ACCESS A RANDOM FILE

B-8

4. The data in the buffer may now
be accessed by the program.
Numeric values must be con­
verted back to numbers using
the “convert” functions: CVI
for integers, CVS for single
precision values, and CVD for
double precision values.

3. Use the GET statement to
move the desired record into
the random buffer.

2. Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be read from the file.

10 OPEN “R”,# 1,“FILE”,32
20 FIELD # 1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT “2-DIGIT CODE” ;CODE%
40 GET#1,CODE%
50 PRINT N$
60 PRINT USING “$$###.O ”;CVS(A$)
70 PRINT P$: PRINT
80 GOTO 30

PRINT N$
PRINT CVS(A$)

FIELD #1 20ASN$
4 AS A$,8 ASP$

Program B-5 accesses the random file “FILE” that was created in Program
B-4. By inputting the three-digit code at the terminal, the information asso­
ciated with that code is read from the file and displayed.

Access A Random File —
The following program steps are required to access a random file:

NOTE: In a program that performs both input and output on the same
random file, you can often use just one OPEN statement and one FIELD
statement.

MS-BASIC DISC I/O

IF LOC(1)>50 THEN END

B-9

The LOG function, with random files, returns the “cunent record number.”
The current record number is one plus the last record number that was used
in a GET or PUT statement. For example, the statement

120 OPEN“R”,#1, “INVEN. DAT”, 39
125 FIELD# 1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT “FUNCTIONS:”:PRINT
135 PRINT 1 /‘INITIALIZE FILE”
140 PRINT 2,“CREATE A NEW ENTRY”
150 PRINT 3 /‘DISPLAY INVENTORY FOR ONE PART”
160 PRINT 4,“ADD TO STOCK”
170 PRINT 5 /‘SUBTRACT FROM STOCK”
180 PRINT 6,“DISPLAY ALL ITEMS BELOW REORDER LEVEL”
220 PRINT: PRINT: INPUT “FUNCTION” JUNCTION
225 IF (FUNCTIONCI) OR (FUNCTIONS) THEN PRINT

“BAD FUNCTION NUMBER”: GO TO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT“OVERWRITE”;A$:

IF A$O“Y” THEN RETURN
280 LSET F$=CHR$(0)
290 INPUT “DESCRIPTION” ;DESC$
300 LSET D$=DESC$
310 INPUT “QUANTITY IN STOCK” ;Q%
320 LSET Q$ = MKI$(Q%)
330 INPUT “REORDER LEVEL” ;R%
340 LSET R$=MKI$(R%)
350 INPUT “UNIT PRICE” ;P

ends program execution if the current record number in file# 1 is higher than
50.

Program B-6 is in inventory program that illustrates random file access.
In this program, the record number is used as the part number, and it is
assumed the inventory will contain no more than 100 different part numbers.
Lines 900-960 initialize the data file by writing CHR$(255) as the first
character of each record. This is used later (line 270 and line 500) to deter­
mine whether an entry already exists for that part number.

Lines 130-220 display the different inventory functions that the program
performs. When you type in the desired function number, line 230 branches
to the appropriate subroutine.

B-10

360 LSET P$=MKS$(P)
370 PUT#1 ,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”: RETURN
420 PRINT USING “PART NUMBER ;PART%
430 PRINT D$
440 PRINT USING “QUANTITY ON HAND #####” ;CVI (Q$)
450 PRINT USING “REORDER LEVEL # # # ;CVI(R$)
460 PRINT USING “UNIT PRICE $$#O#”;CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”: RETURN
510 PRINT D$: INPUT “QUANTITY TO ADD ” ;A%
520 Q%=CVI(Q$) +A%
530 LSET Q$=MKI$(Q%)
540 PUT#1 ,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$)=255 THEN PRINT “NULL ENTRY”: RETURN
590 PRINT D$
600 PRINT “QUANTITY TO SUBTRACT” ;S%
610 Q%=CVI(Q$)
620 IF (Q%— S%)<0 THEN PRINT “ONLY” ;Q%;” IN STOCK”:

GOTO 600
630 Q%=Q%—S%
640 IF Q%=<CVI(R$) THEN PRINT “QUANTITY NOW”;Q%;

“ REORDER LEVEL” ;CVI(R$)
650 LSET Q$ = MKI$(Q%)
660 PUT#1,PART%
670 RETURN
680 DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR 1=1 TO 100
710 GET#1,I
720 IF CVI(Q$)<CVI(R$) THEN PRINT D$ QUANTITY”;

CVI(Q$) TAB(50) “REORDER LEVEL” ;CVI(R$)
730 NEXT 1
740 RETURN
840 INPUT “PART NUMBER” ,PART%
850 IF(PART%<1) OR(PART%> 100) THEN PRINT “BAD PART

NUMBER” GOTO 840 ELSE GET#1 ,PART% RETURN

MS-BASIC DISC I/O

PROGRAM B-6 - INVENTORY

B-ll

890 END
900 REM INITIALIZE FILE
910 INPUT “ARE YOU SURE’’ ;B$: IF B$O“Y” THEN RETURN
920 LSET F$=CHR$=(255)
930 FOR 1=1 TO 100
940 PUT# 1,1
950 NEXT I
960 RETURN

APPENDIX C

ASSEMBLY LANGUAGE SUBROUTINES

C-l

All versions of MS-BASIC have provisions for interfacing with assembly
language subroutines. The USR function allows assembly language sub­
routines to be called in the same way BASIC’s intrinsic functions are called.

NOTE: The addresses of the DEINT, GIVABF, MAKINT and FRCINT
routines are stored in locations that must be supplied individually for
different implementations of BASIC.

MEMORY ALLOCATION
Memory space must be set aside for an assembly language subroutine before
it can be loaded. During initialization, enter the highest memory location
minus the amount of memory needed for the assembly language subroutine(s).
BASIC uses all memory available from its starting location up, so only the
topmost locations in memory can be set aside for user subroutines.

When an assembly language subroutine is called, the stack pointer is set
up for 8 levels (16 bytes) of stack storage. If more stack space is needed,
BASIC’s stack can be saved and a new stack set up for use by the assembly
language subroutine. BASIC’s stack must be restored, however, before re­
turning from the subroutine.

The assembly language subroutine may be loaded into memory by means
of the system monitor, or the BASIC POKE statement, or (if the user has the
MACRO-80 or FORTRAN-80 package) routines may be assembled with
MACRO-80 and loaded using LINK-80.

USR FUNCTION CALLS - 8K BASIC
The starting address of the assembly language subroutine must be stored in
USRLOC, a two-byte location in memory that ist supplied individually with
different implementations of MS-BASIC.With 8K BASIC, the starting address
may be POKEd into USRLOC. Store the low order byte first, followed by
the high order byte.

The function USR will call the routine whose address is in USRLOC.
Initially USRLOC contains the address of ILLFUN, the routine that gives
the ’’Illegal function call” error. Therefore, if USR is called without changing
the address in USRLOC, an “Illegal function call” error results.

The format of a USR function call is

USR(argument)

ipass result back and RETurn

USR[<digit>] (argument)

CALL GIVABF
RET

USRSUB:CALL DEINT
XCHG
DADH
MOV A,H
MOV B,L
JMP GIVABF

where <digit> is from 0 to 9 and the argument is any numeric or string ex­
pression. <digit> specifies which USR routine is being called, and corresponds

C-2

USR FUNCTION CALLS - EXTENDED AND DISK BASIC
In the Extended and Disk versions, the format of the USR function is

;put arg in D,E
;move arg to H,L
;H,L=H,L+H,L
;move result to A,B

To return additional values to the program, load them into memory and
read them with the PEEK function.

There are several methods by which a program may call more than one
USR routine. For example, the starting address of each routine may be POKEd
into USRLOC prior to each USR call, or the argument to USR could be an
index into a table of USR routines.

Note that valid results will be obtained from this routine for arguments
in the range - 16384<=x<= 16383. The single instruction JMP G1VABF
has the same effect as:

where the argument is a numeric expression. To obtain the argument, the
assembly language subroutine must call the routine DEINT. DEINT places the
argument into the D,E register pair as a 2-byte, 2’s complement integer. (If
the argument is not in the range —32768 to 32767, an “Illegal function
call” error occurs.)

To pass the result back from an assembly language subroutine, load the
value in register pair [A,B], and call the routine GIVABF. If GIVABF is
not called, USR(X) returns X. To return to BASIC, the assembly language
subroutine must execute a RET instruction.

For example, here is an assembly language subroutine that multiplies
the argument by 2:

ASSEMBLY LANGUAGE SUBROUTINES

Value in A Type of Argument

If the argument is a single precision floating point number:

If the argument is a double precision floating point number:

C-3

with the digit supplied in the DEF USR statement for that routine. If <digit>
is omitted, OSRO is assumed. The address given in the DEF USR statement
determines the starting address of the subroutine.

When the USR function call is made, register A contains a value that
specifies the type of argument that was given. The value in A may be one of
the following:

2
3
4
8

FAC-3 contains the lower 8 bits of the argument and
FAC-2 contains the upper 8 bits of the argument.

FAC-3 contains the lowest 8 bits of mantissa and
FAC-2 contains the middle 8 bits of mantissa and
FAC-1 contains the highest 7 bits of mantissa
with leading 1 suppressed (implied). Bit 7 is the
sign of the number (0=positive, 1 = negative).
FAC is the exponent minus 128, and the binary point
is to the left of the most significant bit of the mantissa.

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

Two-byte integer (two's complement!
String
Single precision floating point number
Double precision floating point number

If the argument is a number, the [H ,L] register pair points to the Floating
Point Accumulator (FAC) where the argument is stored.

If the argument is an integer:

If the argument is a string, the [D,E] register pair points to 3 bytes
called the “string descriptor.” Byte 0 of the string descriptor contains the
length of the string (0 to 255). Bytes 1 and 2, respectively, are the lower and
upper 8 bits of the string starting address in string space.

CAUTION: If the argument is a string literal in the program, the string
descriptor will point to program text. Be careful not to alter or destroy
your program this way. To avoid unpredictable results, add +“” to the
string literal in the program. Example:

RET

LXI H

C-4

PUSH
LHLD
PCHL

SUB1:

PUSH
LHLD
XTHL

;save value to be returned
;get address of MAK1NT routine
;save return on stack and
;get back [H ,L]
;return

;get address of subroutine
continuation
;place on stack
;get address of FRCINT

H
XXX

H
XXX

A$ = “BASIC-80”+ “ ”

This will copy the string literal into string space and will prevent alter­
ation of program text during a subroutine call.

Usually, the value returned by a USR function is the same type (integer,
string, single precision or double precision) as the argument that was passed
to it. However, calling the MAKINT routine returns the integer in [H,L] as
the value of the function forcing the value returned by the function to be
integer. To execute MAKINT, use the following sequence to return from the
subroutine:

CALL STATEMENT
Extended and Disk MS-BASIC user function calls may also be made with
the CALL statement. The calling sequence used is the same as that in Micro­
soft’s FORTRAN, COBOL and BASIC compilers.

A CALL statement with no arguments generates a simple “CALL”
instruction. The corresponding subroutine should return via a simple “RET.”
(CALL and RET are 8080 opcodes — see an 8080 reference manual for
details.)

A subroutine CALL with arguments results in a somewhat more complex
calling sequence. For each argument in the CALL argument list, a parameter
is passed to the subroutine. That parameter is the address of the low byte of
the argument. Therefore, parameters always occupy two bytes each, regard­
less of type.

The method of passing the parameters depends upon the number of para­
meters to pass:

Also, the argument of the function, regardless of its type, may be forced
to an integer by calling the FRCINT routine to get the integer value of the
argument in [H ,L]. Execute the following routine:

ASSEMBL Y LANGUAGE SUBROUTINES

2. If the number of parameters is greater than 3, they are passed as follows:

;SAVE PARAMETER 1Pl

[Body of subroutine]

C-5

1. If the number of parameters is less than or equal to 3, they are passed
in the registers. Parameter 1 will be in HL, 2 in DE (if present), and 3 in
BC (if present).

RET
DS
DS
DS

;SAVE PARAMETER 2
;NO. OF PARAMETERS LEFT
POINTER TO LOCAL AREA
,TRANSFER THE OTHER 3
PARAMETERS

.RETURN TO CALLER
;SPACE FOR PARAMETER 1
; SPACE FOR PARAMETER 2
;SPACE FOR PARAMETERS 3-5

P2
A,3
H,P3
$AT

Pl:
P2:
P3:

2
2
6

SUBR: SHLD
XCHG
SHLD
MVI
LX I
CALL

Note that, with this scheme, the subroutine must know how many para­
meters to expect in order to find them. Conversely, the calling program is
responsible for passing the correct number of parameters. There are no checks
for the correct number or type of parameters.

If the subroutine expects more than 3 parameters, and needs to transfer
them to a local data area, there is a system subroutine which will perform this
transfer. This argument transfer routine is named $AT (located in the FORT­
RAN library, FORLIB.REL), and is called with HL pointing to the local
data area, BC pointing to the third parameter, and A containing the number
of arguments to transfer (i.e., the total number of arguments minus 2). The
subroutine is responsible for saving the first two parameters before calling
$AT. For example, if a subroutine expects 5 parameters, it should look like:

• Parameter 1 in HL.
• Parameter 2 in DE.
• Parameters 3 through n in a contiguous data block. BC will point

to the low byte of this data block (i.e., to the low byte of parameter
3).

A listing of the argument transfer routine $AT follows.

$AT: ;SAVE [H,L]IN [D,E]

;[H,L] = PTR TO PARAMS
ATI:

M,C
H

are

NOTE: It is entirely up to the programmer to see to it that the arguments in
the calling program match in number, type, and length with the para­
meters expected by the subroutine. This applies to BASIC subroutines, as
well as those written in assembly language.

01600
01700
01800
01900
02000
02100
02200
02300

00500
00600
00700
00800
00900
01000
01100
01200
01300
01400
01500

00100
00200
00300
00400

MOV
INX
MOV
INX
XCHG
DCR
JNZ
RET

A
ATI

;[B,C] = PARAM ADR
;[H,L] POINTS TO LOCAL
STORAGE

; STORE PARAM IN LOCAL AREA
;SINCE GOING BACK TO ATI
TRANSFERRED ALL PARAMS?
;NO, COPY MORE
;YES, RETURN

INTERRUPTS
Assembly language subroutines can be written to handle interrupts. All inter­
rupt handling routines should save the stack, register A-L and the PSW. Inter­
rupts should always be re-enabled before returning from the subroutine,
since an interrupt automatically disables all further interrupts once it is
received. The user should be aware of which interrupt vectors are free in the
particular version of BASIC that has been supplied. (Note to CP/M users: In
CP/M BASIC, all interrupt vectors are free.)

C-6

M,B
H

H,B
L,C
C,M
H
B,M
H

;[B,C]
i[H,L]
,[A]

ENTRY $AT
XCHG
MOV
MOV
MOV
INX
MOV
INX
XCHG

ARGUMENT TRANSFER
POINTS TO 3RD PARAM.
POINTS TO LOCAL STORAGE FOR PARAM 3
CONTAINS THE # OF PARAMS TO XFER
(TOTAL-2)

When accessing parameters in a subroutine, don’t forget that they
pointers to the actual arguments passed.

APPENDIX D

MS-BASIC WITH THE CP/M OPERATING SYSTEM

A> MB ASIC < carriage return >

The system will reply:

MBASIC is the same as Disk MS-BASIC as described in this manual, with the
following exceptions:

The CP/M version of MS-BASIC (MBASIC) is supplied on a diskette. The
name of the file is MBASIC.COM. (A 28K or larger CP/M system is recom­
mended.)

To run MBASIC, bring up CP/M and type the following:

If <filename> is present, MBASIC proceeds as if a RUN <filename> com­
mand were typed after initialization is complete. A default extension of
.BAS is used if none is supplied and the filename is less than 9 characters
long. This allows BASIC programs to be executed in batch mode using
the SUBMIT facility of CP/M. Such programs should include a SYSTEM
statement (see below) to return to CP/M when they have finished, allowing
the next program in the batch stream to execute.

If /F:<number of files> is present, it sets the number of disk data files
that may be open at any one time during the execution of a BASIC program.

D-l

A>MBASIC [<filename>] [/F:<number of files>] [/M:<highest
memory location>] [/S:<maximum record size>]

INITIALIZATION
The initialization dialog has been replaced by a set of options which are
placed after the MBASIC command to CP/M. The format of the command
line is:

BASIC-80 Rev. 5.21
(CP/M Version)
Copyright 1977-1981 (O by Microsoft
Created: dd-mmm-yy
xxxxx Bytes Free
Ok

MBASIC.COM

Examples:

A>MBASIC PAYROLL.BAS

A>MBASIC INVENT/F:6

A>MBASIC/M: 32768

D-2

Each file data block allocated in this fashion requires 166 bytes of memory.
If the /F option is omitted, the number of files defaults to 3.

The /M:<highest memory location> option sets the highest memory
location that will be used by MBASIC. In some cases it is desirable to set the
amount of memory well below the CP/M’s FDOS to reserve space for assem­
bly language subroutines. In all cases, <highest memory location> should be
below the start of FDOS (whose address is contained in locations 6 and 7).
If the /M option is omitted, all memory up to the start of FDOS is used.

/S:<maximum record size> may be added at the end of the command
line to set the maximum record size for use with random files. The default
record size is 128 bytes.

NOTE: <number of files>, <highest memory location>, and <maximum
record size> are numbers that may be either decimal, octal (preceded
by &O) or hexadecimal (preceded by &H).

Use all memory and 3 files, load and
execute PAYROLL.BAS.

Use first 32K of memory and 3
files.

Use all memory and 6 files, load
and execute INVENT.BAS.

DISK FILES
Disk filenames follow the normal CP/M naming conventions. All filenames
may include A: or B: as the first two characters to specify a disk drive, other­
wise the currently selected drive is assumed. A default extension of .BAS is
used on LOAD, SAVE, MERGE and RUN <filename> commands if no

appears in the filename and the filename is less than 9 characters long.
For systems with CP/M 2.x, large random files are supported. The

maximum logical record number is 32767. If a record size of 256 is specified,
then files up to 8 megabytes can be accessed.

A>MBASIC DATACK/F: 2/M: &H9000
Use first 36K of memory, 2 files, and
execute DAT ACK. BAS.

MS-BASIC WITH THE CP/M OPERA TING SYSTEM

FILES COMMAND

Format: FILES[<filename>]

Purpose: To print the names of files residing on the cunent disk.

Examples:

RESET COMMAND

Format: RESET

LOF FUNCTION

LOF(<file number>)Format:

Action:

110 IF NUM%>LOF(1) THEN PRINT “INVALID ENTRY”Example:

D-3

Returns the number of records present in the last extent read or
written. If the file does not exceed one extent (128 records), then
LOF returns the true length of the file.

FILES
FILES “*.BAS”
FILES “B:*.*”
FILES “TEST?. BAS”

Remarks: If <filename> is omitted, all the files on the currently selected
drive will be listed. <filename> is a string formula which may
contain question marks (?) to match any character in the file­
name or extension. An asterisk (*) as the first character of the file­
name or extension will match any file or any extension.

Remarks: Always execute a RESET command before removing a diskette
from a disk drive. Otherwise, when the diskette is used again, it
will not have the current directory information written on the
directory track.

RESET closes all open files on all drives and writes the direct­
ory track to every diskette with open files.

Purpose: To close all disk files and write the directory information to a
diskette before it is removed from a disk drive.

EOF

MISCELLANEOUS

D-4

With CP/M, the EOF function may be used with random files. If a GET is
done past the end of file, EOF will return -1. This may be used to find the
size of a file using a binary search or other algorithm.

• CSAVE and CLOAD are not implemented.
• To return to CP/M, use the SYSTEM command or statement. SYSTEM

closes all files and then performs a CP/M warm start. Control-C always
returns to MBASIC, not to CP/M.

• FRCINT is at 103 hex and MAKINT is at 105 hex.

APPENDIX E

CONVERTING PROGRAMS TO MS-BASIC

E-l

If you have programs written in BASIC other than MS-BASIC, some minor
adjustments may be necessary before running them with MS-BASIC.Here are
some specific things to look for when converting BASIC programs.

If the substring reference is on the left side of an assignment and X$ is
used to replace characters in A$, convert as follows:

Other BASIC

A$ (I) = X$
A$ (I,J) = X$

Other BASIC

X$=A$ (I)
X$=A$ (I,J)

A$ (I) = X$
A$(I,J9 = X$

MS-BASIC

X$=MID$ (A$,l,1)
X$=MID$ (A$,I,J —1 + 1)

8K MS-BASIC

A$=LEFT$ (AS,1-1) + X$+MID$ (A$,I +1)
A$=LEFT$ (A$,1-1) ;X$;MID$ (A$,J + 1)

Ext. and Disk MS-BASIC

MID$ (A$,1,1) = X$
MID$ (A$, I, J-1 + 1) =X$

STRING DIMENSIONS
Delete all statements that are used to declare the length of strings. A state­
ment such as DIM A$(I, J), which dimensions a string array for J elements of
length I, should be converted to the MS-BASIC statement DIM A$(J).

Some BASICs use a comma or ampersand for string concatenation. Each
of these must be changed to a plus sign, which is the operator for MS-BASIC
string concatenation.

In MS-BASIC, the MID$, RIGHT$, and LEFT# functions are used to take
substrings of strings. Forms such as A$(I) to access the Ith character in A$,
or A$(I,J) to take a substring of A$ from position I to position J, must be
changed as follows:

10LETB=C=0

10C=0:B=0

E-2

to set B and C equal to zero. MS-BASIC would interpret the second equal
sign as a logical operator and set B equal to -1 if C equaled 0. Instead, convert
this statement to two assignment statements:

MAT FUNCTIONS
Programs using the MAT functions available in some BASICs must be rewritten
using FOR...NEXT loops to execute properly.

MULTIPLE ASSIGNMENTS
Some BASICs allow statements of the form:

MULTIPLE STATEMENTS
Some BASICs use a backslash (\) to separate multiple statements on a line.
With MS-BASIC, be sure all statements on a line are separated by a colon
(:).

APPENDIX F

Code Number Message

NF 1

SN 2

RG 3

OD 4

FC 5

F-l

Syntax error
A line is encountered that contains some incorrect
sequence of characters (such as unmatched paren­
thesis, misspelled command or statement, incorrect
punctuation, etc.).

Out of data
A READ statement is executed when there are no
DATA statements with unread data remaining in the
program.

Return without GOSUB
A RETURN statement is encountered for which there
is no previous, unmatched GOSUB statement.

NEXT without FOR
A variable in a NEXT statement does not correspond
to any previously executed, unmatched FOR state­
ment variable.

Illegal function call
A parameter that is out of range is passed to a math
or string function. An FC error may also occur as the
result of:

• a negative or unreasonably large subscript
• a negative or zero argument with LOG
• a negative argument to SQR
• a negative mantissa with a non-integer exponent.
• a call to a USR function for which the starting

address has not yet been given
• an improper argument to M1D$, LEFTS, RIGHT$,

INP, OUT, WAIT, PEEK, POKE, TAB, SPC,
STRINGS,SPACES,INSTR, or ON ... GOTO.

SUMMARY OF
ERROR CODES AND ERROR MESSAGES

Code Number Message

OV 6

OM 7

UL 8

BS 9

DD 10

/0 11

ID 12

TM 13

F-2

Overflow
The result of a calculation is too large to be re­
presented in BASIC-80’s number format. If under­
flow occurs, the result is zero and execution continues
without an error.

Out of memory
A program is too large, has too many FOR loops or
GOSUBs, too many variables, or expressions that are
too complicated.

Subscript out of range
An array element is referenced either with a subscript
that is outside the dimensions of the array, or with
the wrong number of subscripts.

Redimensioned array
Two DIM statements are given for the same array, or
a DIM statement is given for an array after the default
dimension of 10 has been established for that array.

Type mismatch
A string variable name is assigned a numeric value or
vice versa; a function that expects a numeric argument
is given a string argument or vice versa.

Undefined line
A line reference in a GOTO, GOSUB, IF ... THEN ...
ELSE or DELETE is to a nonexistent line.

Illegal direct
A statement that is illegal in direct mode is entered as
a direct mode command.

Division by zero
A division by zero is encountered in an expression, or
the opration of involution results in zero being raised
to a negative power. Machine infinity with the sign
of the numerator is supplied as the result of the
division, or positive machine infinity is supplied as
the result of the involution, and execution continues.

SUMMARY OF ERROR CODESAND ERROR MESSAGES

Code Number Message

OS 14

LS 15

ST 16

CN 17

18UF

Extended and Disk Versions only

19

20

21

F-3

Out of string space
String varibales have caused BASIC to exceed the
amount of free memory remaining. BASIC will
allocate string space dynamically, until it runs out of
memory.

String too long
An attempt is made to create a string more than 255
characters long.

String formula too complex
A string expression is too long or too complex.
The expression should be broken into smaller ex­
pressions.

Can’t continue
An attempt is made to continue a program that:

Undefined user function
A USR function is called before the function defini­
tion (DEF statement) is given.

Unprintable error
An error message is not available for the error condi­
tion which exists. This is usually caused by an ERROR
with an undefined error code.

RESUME without error
A RESUME statement is encountered before an error
trapping routine is entered.

• has halted due to an error,
• has been modified during a break in execution,

or
• does not exist.

No RESUME
An error trapping routine is entered but contains no
RESUME statement.

Code Number Message

22

23

26

29

30

Disk Errors

50

51

52

53

F-4

Field overflow
A FIELD statement is attempting to allocate more
bytes than were specified for the record length of a
random file.

Bad file number
A statement or command references a file with a
file number that is not OPEN or is out of the range
of file numbers specified at initialization.

File not found
A LOAD, KILL or OPEN statement references a
file that does not exist on the current disk.

Missing operand
An expression contains an operator with no operand
following it.

Line buffer overflow
An attempt is made to input a line that has too many
characters.

WHILE without WEND
A WHILE statement does not have a matching WEND.

FOR without NEXT
A FOR was encountered without a matching NEXT.

WEND without WHILE
A WEND was encountered without a matching
WHILE.

Internal error
An internal malfunction has occured in Disk MS-
BASIC.

SUMMARY OF ERROR CODESAND ERROR MESSAGES

Message

54

55

57

58

61

62

63

64

66

F-5

File already exists
The filename specified in a NAME statement is
identical to a filename already in use on the disk.

Disk full
All disk storage space is in use.

Input past end
An INPUT statement is executed after all the data
in the file has been INPUT, or for a null (empty)
file. To avoid this error, use the EOF function to
detect the end of file.

Bad record number
In a PUT or GET statement, the record number is
either greater than the maximum allowed (32767)
or equal to zero.

Bad file name
An illegal form is used for the filename with LOAD,
SAVE, KILL, or OPEN (e.g., a filename with too
many characters).

Direct statement in file
A direct statement is encountered while LOADING
an ASCII-format file. The LOAD is terminated.

Bad file mode
An attempt is made to use PUT, GET, or LOF with
a sequential file, to LOAD a random file or to execute
an OPEN with a file mode other than I, O, or R.

File already open
A sequential output mode OPEN is issued for a file
that is already open; or a KILL is given for a file
that is open.

Disk I/O error
An I/O error occurred on a disk I/O operation. It
is a fatal error, i.e., the operating system cannot
recover from the error.

Code Number

Code Number Message

67

F-6

Too many files
An attempt is made to create a new file (using SAVE
or OPEN) when all 255 directory entries are full.

APPENDIX G

MATHEMATICAL FUNCTIONS

FUNCTION BASIC-80 EQUIVALENT

INVERSE SECANT

INVERSE COSECANT

ARCSINH (X) = LOG (X+SQR (X*X +1))

ARCCOSH (X)= LOG (X + SQR (X*X-1)

ARCTANH (X) = LOG ((1+X) / (1 —x))/2

ARCSECH (X) = LOG ((SQR (—X*X+1)+1)/X)

ARCCOTH (X) = LOG ((X+1)/ (X—1))/2

G-l

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE HYPERBOLIC
COTANGENT

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN (X)
COT(X) = 1/TAN(X)
ARCSIN (X) = ATN (X/SQR (—X*X +1))
ARCCOS(X)=-ATN (X/SQR (—X*X+1))

+ 1.5708
ARCSEC(X)=ATN (X/SQR(X*X-1))

+ SGN (SGN (X)—1) *1.5708
ARCCSC(X) = ATN (X/SQR (X*X-1))

+ (SGN (X)—1) *1.5708
ARCCOT (X) = ATN (X) +1.5708
SINH (X)= (EXP (X)—EXP (—X))/2
COSH (X) = (EXP (X) + EXP(—X))/2
TANH (X) = EXP(—X)/EXP(X)+EXP(—X))*2+1
SECH (X) = 2/(EXP (X)+EXP(—X))
CSCH (X) =2/(EXP (X) —EXP (—X))

ARCCSCH (X)= LOG ((SGN (X) *SQR (X* X+1)
+ 1)/X

DERIVED FUNCTIONS
Functions that are not intrinsic to MS-BASICmay be calculated as follows:

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT
HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1
INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT

APPENDIX H

MICROSOFT BASIC COMPILER

Because there

H-l

The Microsoft BASIC Compiler package contains the following software:
BASIC Compiler, MACRO-80 assembler, and LINK-80 loader. The follow­
ing manuals are also supplied: MS-BASIC Reference Manual, BASIC Compiler
User’s Manual, Utility Software Manual. The Utility Software Manual is the
reference manual for MACRO-80 and LINK-80. The BASIC Compiler User’s
Manual describes the use of the compiler, its command format, compilation
switches and error messages. The BASIC language that is used with the
Microsoft BASIC Compiler is the same as described in this manual for Disk
MS-BASIC with the following exceptions:

AUTO
DELETE
NEW

CLEAR
EDIT
RENUM

CLOAD
LIST
SAVE

CSAVE
LLIST

COMMON
LOAD

CONT
MERGE

is no direct mode for typing in programs or edit mode for
editing programs, use Microsoft’s EDIT-80 Text Editor or MS-BASIC inter­
preter for creating and editing programs. If you use the interpreter, be sure to
SAVE the file with the A (ASCII format) option.

The compiler cannot accept a physical line that is more than 127 char­
acters in length. A logical statement, however, may contain as many physical
lines as desired. Use line feed to start a new physical line within a logical
statement.

To reduce the size of the compiled program, there are no program line
numbers included in the object code generated by the compiler unless the
/D, /X, or /E switch is set in the compiler command. Error messages, there­
fore, contain the address where the error occurred, instead of a line number.

OPERATIONAL DIFFERENCES
The Compiler interacts with the console only to read compiler commands.
These specify what files are to be compiled. There is no “direct mode,” as
with the MS-BASIC interpreter. Commands that are usually issued in the
direct mode with the MS-BASIC interpreter are not implemented on the
Compiler.

The following statements and commands are not implemented and will
generate an error message:

The compiler listing and the map generated by LINK-80 are used to identify
the line that has the error. It is always a good idea to debug programs using
the MS-BASIC interpreter before attempting to compile them. See the BASIC
Compiler User’s Manual for more information.

LANGUAGE DIFFERENCES
Most programs that run on the Microsoft MS-BASIC interpreter will run on
the BASIC Compiler with little or no change. However, it is necessary to note
differences in the use of the following program statements:

4. DEFINT/SNG/DBL/STR
The compiler does not “execute” DEFxxx statements; it reacts to the
static occurrence of these statements, regardless of the order in which
program lines are executed. A DEFxxx statement takes effect as soon
as its line is encountered. Once the type has been defined for a given
variable, it remains in effect until the end of the program or until a
different DEFxxx statement with that variable takes effect.

3. CHAIN and RUN
The CHAIN and RUN statementshave been implemented in their simplest
form only; i.e., CHAIN filenames. For CP/M, the default extension is
.COM. BASCOM programs can chain to any COM file; however, the
command line information is not automatically passed. Command line
information can be passed by POKEing the appropriate information into
the command line area.

2. COMMON
The COMMON statement is not implemented on the compiler. It will
generate a fatal error.

The COMMON statement will be implemented in a future release
of the BASIC compiler. However, its implementation will be different
from the MS-BASIC interpreter’s version. The COMMON statement will
be similar to FORTRAN’S COMMON statement.

1. CALL
The <variable name> field in the CALL statement must contain an
External symbol, i.e., one that is recognized by LINK-80 as a global
symbol. This routine must be supplied by the user as an assembly lan­
guage subroutine or a routine from the FORTRAN-80 library.

5. USRn Functions
USRn Functions are significantly different from the interpreter versions.
The argument to the USRn function is ignored and an integer result is
returned in the HL registers. It is recommended that USRn functions be
replaced by the CALL statement.

H-2

MICROSOFT BASIC COMPILER

are both illegal.

H-3

DIM Al (I)
DIM Al (3+4)

10. STOP
The STOP statement is identical to the END statement. Open files are
closed and control returns to the operating system.

11. TRON/TROFF
In order to use TRON/TROFF, the /D compilation switch must be used.
Otherwise, TRON and TROFF are ignored and a warning message is
generated.

6. DIM and ERASE
The DIM statement is similar to the DEFxxx statement in that it is
scanned rather than executed. That is, DIM takes effect when its line is
encountered. If the default dimension (10) has already been established
for an array variable and that variable is later encountered in a DIM
statement, a “Redimensioned array” error results.

There is no ERASE statement in the compiler, so arrays cannot be
erased and redimensioned. An ERASE statement will produce a fatal
error.

Also note that the values of the subscripts in a DIM statement must
be integer constants; they may not be variables, arithmetic expressions,
or floating point values. For example,

8. ON ERROR GOTO/RESUME Cline number>
If a program contains ON ERROR GOTO and RESUME Cline number>
statements, the /E compilation switch must be used. If the RESUME
NEXT, RESUME, or RESUME 0 form is used, the /X switch must also
be included. See the BASIC Compiler User’s Manual for an explanation
of these switches.

9. REM
REM statements or remarks starting with a single quotation mark do not
take up time or space during execution, and so may be used as freely
as desired.

7. END
During execution of a compiled program, an END statement closes files
and returns control to the operating system. The compiler assumes an
END statement at the end of the program, so 4 running off the end”
produces proper program termination.

<line number> %INCLUDE <filename>

For example,

999 % INCLUDE SUB 1000. BAS

QR=J%+A!+Q#

causes J% to be converted to single precision and added to A!. This result
is converted to double precision and added to Q#.

The Compiler is more limited than the interpreter in handling numeric
overflow. For example, when run on the interpreter the following program

13. Double Precision Transcendental Functions
SIN, COS, TAN, SQR, LOG, and EXP return double precision results
if given a double precision argument. Exponentiation with double
precision operands will return a double precision result.

yields 10000 for M%. That is, it adds 1% to J% and, because the number is
too large, it converts the result into a floating point number. K% is then
converted to floating point and subtracted. The result of 10000 is found, and
is converted back to integer and saved as M%.

The compiler, however, must make type conversion decisions during
compilation. It cannot defer until the actual values are known. Thus, the
compiler would generate code to perform the entire operation in integer
mode. If the /D switch were set, the error would be detected. Otherwise, an
incorrect answer would be produced.
H-4

12. FOR/NEXT and WHILE/WEND
FOR/NEXT and WHILE/WEND loops must be statically nested.

14. % INCLUDE
The %INCLUDE <filename>statement allows the compiler to include
source from an alternate file. The %INCLUDE statement must be the last
statement on a line. The format of the %INCLUDE statement is:

I%=20000
J%=20000
K%=-30000
M%=I%+J% —K%

EXPRESSION EVALUATION
During expression evaluation, the operands of each operator are converted to
the same type, that of the most precise operand. For example,

MICROSOFT BASIC COMPILER

H-5

In order to produce optimum efficiency in the compiled program, the
compiler may perform any number of valid algebraic transformations before
generating the code. For example, the program

could produce an incorrect result when run. If the compiler actually performs
the arithmetic in the order shown, no overflow occurs. However, if the
compiler performs I%+K% first and then adds J%, an overflow will occur.
The compiler follows the rules for operator precedence and parenthetic
modification of such precedence, but no other guarantee of evaluation order
can be made.

can execute approximately 30 times faster by simply substituting “I%” for
“I”. It is especially advantageous to use integer variables to compute array
subscripts. The generated code is significantly faster and more compact.

FOR 1=1 TO 10
A(I)=0
NEXT I

I %=20000
J%=—18000
K%=20000
M%=I%+J%+K%

INTEGER VARIABLES
In order to produce the fastest and most compact object code possible, make
maximum use of integer variables. For example, this program

APPENDIX I

ASCII Character Codes

Character Character Character

DEL

1-1

NUL
SOH
STX
ETX
EOT
ENO
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESCAPE
FS
GS
RS
US
SPACE
I

(
) *

043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085

086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
i 01
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

ASCH
Code

ASCII
Code

I
0
1
2
3
4
5
6
7
8
9

?
@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U

ASCII
Code

V w
X
Y z
[
\
I

a
b
c
d
e
f
g
h

k
I
m
n
o
P
Q r
s
t
u
V
w
X
y
z
{ I
}

$%
&

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
ASCII codes are in decimal.
LF=Line Feed, FF = Form Feed, CR = Carriage Return, DEL=Rubout

APPENDIX J

INTRODUCTION

INITIALIZATION

J-l

To run NCRGRAF with MS-BASIC, bring up CP/M and type the following:

A>NCRGRAF

Note: is the carriage return key

The NCR graphics extension for MS-BASIC provides you with the ability to
draw circles, rectangles, lines, text, and other graphics pictures on the NCR
DECISION MATE V (monochrome only). It is supplied on the MS-BASIC
disk and contains 3 files:

Immediately load MS-BASIC by typing:

A>MBASIC/M:&HB000

NCRGRAF.COM,
NCRGRAF. REL, and
GRAFINIT.BAS.

NCR GRAPHICS EXTENSION
FOR MS-BASIC

The system replies:

GRAPHICS EXTENSION for NCR DECISION MATE V
Version 1.1
Copyright (C) 1983 by NCR Corporation

The system replies:

BASIC-80 Rev. 5.21
(CP/M Version)
Copyright 1977—1981 (C) by Microsoft
Created: dd-mm-yy
xxxxx Bytes free
Ok

NCRGRAF.COM

Using the CONFIG utility you can define one function key as:

NCRGRAF <-*MBASIC /M:&HBOOO*

(Refer to the NCR CP/M manual for a description of CONFIG.)

J-2

NOTE: The /M: option sets the highest memory location at B000. This saves
space for the NCRGRAF assembler routines.

NCR GRAPHICS EXTENSION FOR MS-BASIC

GRAPHICS ROUTINES

PARAMETERS

NOTE: Do not use the letter G in a DEFINT or DEFSTR statement!

PROGRAMMING GRAPHICS WITH MS-BASIC

J-3

NOTE: It is very important that the addresses are correct and that the names
used to define the addresses and to call the routines are exactly the same.
For this reason, we recommend that you always use GRAFINIT to load
these names and addresses into your programs.

Most of the graphics routines require specific parameters which are then
transferred to NCRGRAF. These parameters must be variables defined else­
where in the program. Calling a graphics routine with a constant or arithmetic
expression as a parameter causes a syntax error. All routines use integer
variables as parameters, except for GTEXT which uses a string variable.

Once the above definitions have been made, the routines may be called
anywhere in the program.

The graphics portion of your BASIC program must be initilized by calling
the GINIT routine. This routine automatically switches off the alpha mode
(normal MS-BASIC without graphics). To reenter the alpha mode, the GEXIT
routine is called.

= &HB002

= &HB00E
= &HB01D
= &HB008

= &HB026

NCRGRAF consists of a set of assembler routines. Each of these routines,
called from your BASIC program, has a specific start address which must
be stated at the beginning of every program. (The start address for each rou­
tine can be found on the page describing the routine and also on a summary
page at the end of this Appendix).

To make this job easier for you, a BASIC file named GRAFINIT
is saved on your disk. (GRAFINIT is saved in ASCII format.) At
the start of a new program, load GRAFINIT by typing LOAD
“GRAFINIT”, and line number 0, containing the address of every
graphics routine, is added to your program. Line 0 looks like this:
0 GINIT

GLINE
GTEXT
GZ00M
GARC

GPOINT = &HB005 :
GRECT = &HB014 :

GMODE = &HB01A :
GEXIT = &HB020 :

GSTAT = &HB001 :

GCIRCL = &HB00B
GBOX = &HB011
GPATT = &HB017
GPRINT = &HB023

GCLEAR = &HB029

COMPILED BASIC PROGRAMS

NCRGRAF AND ASSEMBLER PROGRAMS

J-4

When a BASIC program is compiled and linked with NCRGRAF, the routine
definitions (names and start addresses) are not required in the BASIC pro­
gram. Use NCRGRAF.REL to link compiled BASIC programs with the
graphics routines.

To program graphics on the NCR DECISION MATE V with an assembler
program, all graphics routines must be declared as externals in your program.
The address of the first parameter for a routine must be in register H, L; the
address of the second parameter must be in register D, E; and the address of
the third parameter must be in register B, C.

The integer parameters are always stored with 2 bytes, low-byte first.
The string parameters are stored with 3 bytes. The first byte is the length of
the string and the second and third bytes contain the address of the actual
text.

The program should be assembled with the MACRO-80 assembler from
MICROSOFT (or any other relocatable assembler) and then linked with
NCRGRAF.REL.

To avoid the occurrence of these unusual characters, display text on the
screen with the GTEXT routine while you are in the graphics mode and, if a
keyboard input must be made, use the INKEYS or INPUTS statements.
(These 2 statements do not echo keyboard input on the CRT.)

When a syntax error occurs while you are in the graphics mode, it is
possible that the error message can be lost. In this case, it is advisable to use
the ON ERROR GOTO and RESUME statements in your program.

It is possible to return to the alpha mode without a GEXIT call. However,
doing so causes many unusual characters to fill the CRT screen. Four events
cause this immediate switch:

1. Typing tC (hold down the CONTROL key and press C) while in the
graphics mode.

2. A STOP statement which occurs within the graphics section of a BASIC
program.

3. A syntax error which occurs within the graphics section of a BASIC
program.

4. Printing text with a BASIC PRINT statement while in the graphics mode.

NCR GRAPHICS EXTENSION FOR MS-BASIC

NCRGRAF STATEMENTS

GARC

GARC (R, S, E)Format:

Version: Extended, Disk

Purpose:

Start Address: B026

Remarks:

To draw an arc with radius (R), starting angle (S) and ending
angle (E).

The valid range of values for R is 1—255. The valid range of
values for S and E is —360 to +360. (A starting angle (S) of
+360 is equal to 0).

♦270
(-90)

♦ 90
- 270

♦ 2 70
- 90

♦ 270
(-90)

J-5

GPOINT defines the center and the arc is drawn starting at
angle S and ending at angle E. Arcs are always drawn counter­
clockwise. Refer to the following pictures as examples.

♦360 *180
(-360) (-180)

Example:

J-6

0 GINIT = &HB002 : GPOINT = &HB005 :
GARC = &HB026 : GEXIT = &HB020

10DEFINT X,Y,R,S,E
20X = 220 : Y = 200 : R = 100 : S = 0 : E = 90
30 CALL GINIT
40 CALL GPOINT (X,Y)
50 CALL GARC (R,S,E)
60 AS = INPUTS(l) ‘Wait for Keyboard input
70 CALL GEXIT
80 END

NCR GRAPHICS EXTENSION FOR MS-BASIC

GBOX

GBOX(M,N,D)Format:

Extended, DiskVersion:

Purpose:

Start Address: B011

Remarks:

Example:

J-7

The valid range of values for M and N is 1-640. The
valid range of values for D is 0-7 (see GRECT).

To draw a filled rectangle with sides of length M and N in
direction D. (M is the number of pixels in the horizontal line
and N is the number of pixels in the vertical line.)

GPOINT defines the lower left corner of the box.
The pattern that fills the box is selected with the
GPATT routine and the size of the box is affected by
the GZ00M routine. Assuming the zoom parameter
is Z, then the actual length of the sides of the box are
M=M*(Z+1) and N=N*(Z+1). Make sure the results
of these calculations do not exceed 640 for M and N.
10 GINIT = &HB002 : GPOINT = &HB005 :

GBOX = &HB011 : GEXIT = &HB020
20 DEFINT X,Y,M,N,D
30 X = 200 : Y = 100 : M = 200 : N = 150 : D = 0
40 CALL GINIT
50 CALL GPOINT (X,Y)
60 CALLGBOX(M,N,D)
70 AS = INPUTS (1) ’Wait for Keyboard input
80 CALL GEXIT
90 END

GCIRCL

GCIRCL(R)Format:

Version: Extended, Disk

Purpose: To draw a circle with the radius R.

Start Address: BOOB

Remarks:

Example:

NOTE: The name of this routine is GCIRCL not GCIRCLE!

J-8

The valid range of values for R is 1-255. The center of the
circle is defined with GPOINT.

10 GINIT = &HB002 : GPOINT = &HB005 :
GCIRCL = &HB00B : GEXIT = &HB020

20 DEFINT X, Y, R
30 X = 320: Y = 200:R=100
40 CALL GINIT
50 CALL GPOINT (X,Y)
60 CALL GCIRCL(R)
70 AS = INPUTS (1) ’Wait for Keyboard input
80 CALL GEXIT
90 END

NCR GRAPHICS EXTENSION FOR MS-BASIC

GEXIT

Format: GEXIT

Version: Extended, Disk

Purpose:

Start Address: B020

Remarks:

Example:

99 CALL GEXIT

J-9

To erase the screen, leave the graphics mode and return to the
alpha mode.

5 GEXIT = &HB020 : GINIT = &HB002
10 CALL GINIT

GEXIT should always be used to leave the graphics mode (see
the Programming Graphics with MS-BASIC section). After
GEXIT is called, the next graphics routine must begin with
GINIT.

GINIT

Format: GINIT

Extended, DiskVersion:

Purpose:

Start Address: B002

Remarks:

Example:

GCLEAR

Format: GCLEAR

Version: Extended, Disk

Purpose:

Start Address: B029

Remarks: GCLEAR can be used instead of GINIT in a program.

Example:

J-10

NOTE: If a special terminal function, for example, reverse video,
is set before starting graphics, a GINIT will reset this.

GINIT (or GCLEAR) must be the first graphics
statement in a program.

5 GCLEAR = &HB029
10 CALL GCLEAR

5 GINIT = &HB002
10 CALL GINIT

To erase the screen and initialize the graphics memory. Sets
default values for GPATT (P = 0), GZOOM (Z = 0), GMODE
(M = 0) and GSTAT (0).

To erase the screen and initialize the graphics mem­
ory without resetting the values for GPATT, GZOOM,
GMODE and GSTAT.

NCR GRAPHICS EXTENSION FOR MS-BASIC

GLINE

GLINE (X,Y)Format:

Version: Extended, Disk

To draw a line from the current cursor position to the point (X,Y).Purpose:

Start Address: BOOE

Remarks:

Example:

J-ll

The valid range of values for X is 0—639.
The valid range of values for Y is 0-399.

Call GPOINT to define the starting point for the GLINE
routine. Calling subsequent GLINE routines without defin­
ing a new starting point causes the end point of one line to be
the starting point of the next line. (The cursor is positioned
one point ahead of the end point after drawing a line. Use
GPOINT for exact cursor positioning each time GLINE is
called.) GPATT may be used in conjunction with GLINE to
draw different line patterns (see GPATT).

0 GINIT = &HB002 : GEXIT = &HB020:
GPOINT = &HB005 : GLINE = &HB00E

10 REM THIS PROGRAM DRAWS A TRIANGLE
20 DEFINTX,Y
30 CALL GINIT
40 X = 200 : Y = 100
50 CALL GPOINT (X,Y)
60 X = X+100 : Y = Y+100
70 CALL GLINE (X,Y)
80 X = X+100 : Y = Y-100
90 CALL GLINE (X,Y)

100 X = X—201
110 CALL GLINE(X,Y)
120 AS= INPUTS (1) ’Wait for Keyboard input
130 CALL GEXIT
140 END

GMODE
GMODE(M)Format:

Extended, DiskVersion:

To select the drawing mode.Purpose:

Start Address: B01A

Remarks:

NameParameter
Replace0

Complement1

Draw Black2

Draw White3

J-12

Description

Draws white character fields on a
black background. (The black
parts of a dashed line or box pat­
tern are drawn black.)

Draws white characters on a black
background and black characters
on a white background.

Draws white characters. (Printing
is visible only on a black back­
ground.))

Draws black characters. (Printing
is visible only on a white back­
ground.)

0
REPLACE

2
DRAW BLACK

3
DRAW WHITE

1
COMPLEMENT

The valid range of values for M is 0-3 (default = 0).
Once the drawing mode is set, it remains so until
another GMODE or GINIT routine is called. The
following table explains these 4 modes.

The pictures below show the effect of these drawing features.

DRAWING NODES

NCR GRAPHICS EXTENSION FOR MS-BASIC

Example:

J-13

10 REM This program draws the letters NCR in a white box
using drawing mode 0.

20 GINIT = &HB002 : GEXIT =&HB020:
GPOINT = &HB005 : GBOX = &HB011 :
GMODE = &HB01 A: GZOOM = &HB008 :
GTEXT = &HB01D

30 DEFINT X,Y,M,N,D,Z
40 CALL GINIT
50 X = 100 : Y= 100 : M= 100 : N = 100 : Z = 2 : D = 0 :

AS = “NCR”
60 CALL GPOINT (X,Y)
70 CALL GBOX(M,N,D)
80 X=113:Y=127
90 CALL GPOINT (X,Y)

100 M = 0
110 CALL GMODE (M)
120 CALL GZOOM (Z)
130 CALL GTEXT (AS,D)
140 B$=INPUTS(1)
150 CALL GEXIT
160 END

GPATT

GPATT(P)Format:

Extended, DiskVersion:

To select a pattern that fills a box or a line.Purpose:

Start Address: B017

Remarks:

Example:

J-14

The valid range of values for P is 0-15 (default = 0). Once a
specific pattern is set it remains so until another GPATT or
GINIT routine is called. See the following pages for the box
and line patterns and note that some of the line patterns are
the same. For example, when drawing a line with patterns
6, 9 or 11, the resulting lines are identical.

NOTE: Arcs, circles, and rectangles are drawn with the selected
line pattern.

0 GINIT = &HB002 : GPOINT = &HB005 :
GPATT = &HB017 : GBOX = &HB011 :
GEXIT = &HB020

10 REM This program draws a box with fill pattern 12.
20 DEFINT X,Y,P,M,N,D
30 CALL GINIT
40 X = 100 : Y = 100 : M = 200 : N = 200 : D = 0 : P = 12
50 CALL GPOINT (X,Y)
60 CALLGPATT(P)
70 CALLGBOX(M,N,D)
80 AS = INPUTS (1)
90 CALL GEXIT

100 END

NCR GRAPHICS EXTENSION FOR MS-BASIC

FILL PATTERNS FOR BONES
■ ■ ■ ■

0 1 2 3 5

8 10 11

LINE PATTERNS

J-15

JLBJLJB
4

hm
6 7

0
1
2
3

4
5
6

 7
8
9
10

1 1
12

13
14
15

9 12 13 14 15
ST

GPOINT

GPOINT (X,Y)Format:

Extended, DiskVersion:

To set the cursor at a specific point (X,Y) on the screen.Purpose:

Start Address: B005

Remarks:

Example:

J-16

The valid range of values for X is 0-639. The valid range of
values for Y = 0-399. The coordinates (0,0) set the cursor
at the lower left corner of the screen.

GPOINT should be usedin conjunction with GCIRCL, GRECT,
GBOX, GLINE and GTEXT to define the starting point of
these routines.

10 GINIT = &HB002 : GPOINT = &HB005 :
GLINE= &HB00E

20 DEFINITX,Y
30 X = 0:Y = 0
40 CALL GINIT
50 CALL GPOINT (X,Y)
60 CALL GLINE (X,Y)

Calling GPOINT sets the cursor at a specific point on the
screen, but the point remains invisible. To see the point, call
GLINE using the same X and Y coordinates as GPOINT.

NCR GRAPHICS EXTENSION FOR MS-BASIC

GPRINT

GPRINT (P,L)Format:

Extended, DiskVersion:

To output a screen image to a printerPurpose:

Start Address: B023

Remarks:

0

1

5

J-17

2
4

Some of the above printers are not capable of printing the
whole screen image horizontally. Below is a list of the maxi­
mum horizontal width for each printer.

The following printers can be used with GPRINT:
EPSON MX80
EPSON MX82
EPSON MX100
EPSON FX80
NCR 6411-8510 (ITOH M8510A)

PRINTERS (P)
The valid range of values for a printer (P) is 0,1,2,4,5.

GENERAL
GPRINT outputs an entire screen image to a printer. All white
areas on the screen are output as black on the printer, and
black areas are output as white. When the output is finished,
one additional linefeed is printed. (Printing a screen can be
interrupted only by switching off the NCR DECISION MATE
V.)

The printerparameters are assigned as follows:
EPSON MX80, MX82, MX100; single density; one direc­
tional
EPSON MX80, MX82, MX 100; double density; one­
directional
EPSON FX80, single density; one-directional
NCR 6411-8510 (ITOH M8510A); single density; bi­
directional
NCR 6411-8510 (ITOH M8510A); signle density; one­
directional (When the graphics output is completed, bi­
directional printing is automatically restored.)

Example: 0

J-18

480 pixels
576 pixels
640 pixels
640 pixels
640 pixels

EPSON MX80
EPSON MX82
EPSON MX100
EPSON FX80
NCR 6411 -8510 (ITOH M851OA)

Using the recommended linefeeds, the EPSON MX82 does not
distort the screen image on paper; the EPSON FX80, MX80,
and MX100 distort horizontally; the NCR (ITOH) printer
distorts vertically.

LINEFEED (L)
The valid range of values for the linefeed parameter (L) is
0-99. The recommended linefeed for the EPSON MX80,
MX82, and MX100 printers is 8; EPSON FX80 is 7; and NCR
6411-8510 (ITOH M8510A) is 16. These recommended
values produce the best output. Smaller values produce over­
lapped lines and larger values produce lines with a visible
distance between them. When the graphics output is complet­
ed, the normal linefeed value is automatically restored.

10 DEFINT X,Y,D,Z,P,L
20 X = 250 : Y = 180 : D = 0 : AS = “NCR” : Z = 4 :

P=2:L = 7
30 CALLGINIT
40 CALL GPOINT (X,Y)
50 CALLGZOOM(Z)
60 CALL GTEXT (A$,D)
70 CALL GPRINT(P,L) ’Print on EPSON FX80
80 BS = INPUTS(1) ’Wait for Keyboard input
90 CALLGEXIT

100 END

GINIT = &HB002 : GPOINT = &HB005:
GZOOM= &HB008 : GTEXT = &HB01D:
GEXIT = &HB020 : GPRINT = &HB023:

NCR GRAPHICS EXTENSION FOR MS-BASIC

GRECT

GRECT(M,N,D)Format:

Version: Extended, Disk

Purpose:

Start Address: BOM

Remarks:

□
6 70 2 3 4 5

Example:

J-19

The valid range of values for M is 2-640.
The valid range of values for N is 2-640.
The valid range of values for D is 0—7.

To draw a rectangle with sides of length M and N in direction
D. (M is the number of pixels in the horizontal line and N is
the number of pixels in the vertical line.)

GPOINT defines the lower left corner of the rectangle. The
direction (D) rotates the rectangle counterclockwise in steps
of 45 degrees around the cursor (see following examples).

POSSIBLE DIRECTIONS

10 GINIT = &HB002 : GPOINT = &HB005 :
GRECT = &HB014 : GEXIT = &HB020

20 CALL GINIT
30 DEFINT X,Y ,M,N,D
40 X = 200 : Y = 100 : M = 200 : N = 150 : D = 0
50 CALL GPOINT (X,Y)
60 CALL GRECT (M,N,D)
70 AS = INPUTS(l) ’wait for Keyboard input
80 CALL GEXIT
90 END

GTEXT

GTEXT(AS,D)Format:

Extended, DiskVersion:

To draw a string (AS) in a specific direction (D).Purpose:

Start Address: BOID

Remarks:

POSSIBLE DIRECTIONS

NCR
dON

0 1 2 3 4 5 6 7

J-20

GZOOM affects the size of the text. For a zoom factor of 0,
the maximum size of the character field is 16 pixels high and 8
pixels wide. The maximum size of the character itself is 9
pixels high and 6 pixels wide. Assuming the zoom parameter is
Z, the actual size of a character field is height = 16*(Z+1)
pixels by width = 8*(Z+1) pixels. For example, a text 3
characters long with a zoom parameter of 4 is height = 3*
(16*(4+1)) by width = 3*(8*(4+l)). There is no error check­
ing done on these calculations, so make sure the results do not
exceed the height and width of the screen.

GPOINT defines the lower left corner of the text string.
The direction (D) rotates the text counterclockwise in steps
of 45 degrees around the cursor (see following examples).

The valid range of values for D is 0—7.
AS may be any alphanumeric string defined in the program
(ASCII characters only).

o
’z
X)

NCR GRAPHICS EXTENSION FOR MS-BASIC

Example:

J-21

0 GINIT = &HB002 : GPOINT = &HB005 :
GZOOM = &HB008 : GTEXT = &HB01D :
GEXIT =&HB020

10 DEFINT X,Y,D,Z
20 X = 250 : Y = 180 : D = 0 : AS = “NCR” : Z = 4
30 CALL GINIT
40 CALL GPOINT (X ,Y)
50 CALLGZOOM(Z)
60 CALL GTEXT(AS,D)
70 B$= INPUTS(l) ’Wait for Keyboard input
80 CALL GEXIT
90 END

GZOOM

GZOOM(Z)Format:

Extended, DiskVersion:

Purpose: To select a zoom parameter for text and boxes.

Start Address: B008

Remarks:

ZOOM FOR BOKES

FILL PATTERN 12

Example:

“NCR”

J-22

The valid range of values for Z is 0-15 (default = 0). (Refer to
GBOX and GTEXT for the specific zoom formulas.) Once a
specific zoom parameter is set, it remains so until another
GZOOM or GINIT routine is called. Below is an example of
a filled box printed with zoom parameters 0—4.

0 GINIT = &HB002 : GPOINT = &HB005 :
GZOOM = &HB008 : GTEXT = &HB01D :
GEXIT = &HB020

10 REM This program prints the letters NCR with a zoom
parameter of 15.

20 DEFINT X,Y,Z,D
30 CALL GINIT
40 X = 0:Y = 0:Z=15:D = 0:AS =
50 CALL GPOINT(X,Y)
60 CALLGZOOM(Z)
70 CALL GTEXT(AS,D)
80 BS = INPUTS(l)
90 CALL GEXIT

100 END

NCR GRAPHICS EXTENSION FOR MS-BASIC

SUMMARY OF GRAPHICS ROUTINES

START
DESCRIPTIONNAME FORMAT

GARC GARC B026

GBOX(M,N,D)GBOX B011

GCIRCL(R) R= 1-255 Circle with radius RGCIRCL BOOB

B029 E rase screenGCLEAR GCLEAR

GEXIT GEXIT B020 Leave graphics mode

GINIT GINIT B002 Initialize graphics mode

GLINE(X.Y)GLINE BOOE Line from cursor to X,Y

GMODE(M) M = 0-3GMODE B01A Drawing mode

GPATT(P) P = 0-15 Pattern to fill box or lineGPATT B017

GPOINT(X,Y) Set cursor at X,YGPOINT B005

GPRINT(P,L) B023GPRINT

GRECT(M,N,D)GRECT B014

GTEXT(AS,D) B01DGTEXT

GZOOM(Z) B008 Z = 0-15GZOOM

J-23

M = 1-640
N = 1-640
D= 0-7

X = 0-639
Y= 0-399

X = 0-639
Y= 0-399

Arc with radius R, start­
ing angle S and ending
angle E

Filled rectangle with sides
of length M and N, drawn
in direction D.

Rectangle with sides of
length M and N, drawn in
direction D

Output screen image to
printer P with linefeed L

Zoom parameter for text
and boxes

P= 0,1,2,4,5
L= 0-99

M = 2-640
N= 2-640
D= 0-7

R= 1-255
S = -360-360
E = -360-360

PARAMETER
ADDRESS VALUES

AS = ASCII string Draw AS in direction D
D =0-7

81

J-24

A now contains the error code and you can refer to the following list to
determine the cause.

40
50
60
70
71
80

1
2
3
4
5
6
7
8

10
20
21
22
23
24
25
30

GARC
GARC
GARC
GARC
GARC
GBOX
GRECT
GPATT

GRECT
GBOX
GRECT
GBOX

GLINE
GLINE
GLINE
GLINE

SUMMARY OF ERROR CODES
AND DESCRIPTIONS

NOTE: GSTAT is not a callable graphics routine. It is only the variable name
which contains the error status byte.

The pattern parameter is out of range
GMODE The mode parameter is out of range
GTEXT The direction parameter is out of range
GPRINT The printer selector is out of range

GPRINT The linefeed parameter is out of range
The M parameter is less than 2
The M parameter is less than 1
The M parameter is greater than 640
The M parameter for a zoomed box is greater than 640

GSTAT, an error status byte, is contained at memory Icoation BOOl. The
routine GINIT sets this status byte to 0 and, when an error occurs, draw­
ing stops and this byte is changed to a number greater than 0. To find out
what the error is, read the error status byte with the BASIC PEEK statement.
For example, A = Peek (GSTAT)

Print A

Error
Code Routine Description

GPOINT The X coordinate is less than 0
GPOINT The X coordinate is greater than 639
GPOINT The Y coordinate is less than 0
GPOINT The Y coordinate is greater than 399

The X coordinate is less than 0
The X coordinate is greater than 639
The Y coordinate is less than 0
The Y coordinate is greater than 399

GZOOM The zoom parameter is out of range
GCIRCL The radius parameter is out of range

The radius parameter is out of range
The starting angle is less than —360
The starting angle is greater than 360
The ending angle is less than —360
The ending angle is greater than 360
The direction parameter is out of range

NCR GRAPHICS EXTENSION FOR MS-BASIC

82

83
GBOX

J-25

NOTE: If a picture is drawn over the edges of the CRT screen, it
will extend over the other parts of the screen and no error
status byte is set.

Error
Code Routine Description

GRECT The N parameter is less than 2
GBOX The N parameter is less than 1
GRECT The N parameter is greater than 640

The N parameter for a zoomed box is greater than 640

INDEX

% INCLUDE
ABS
Addition
ALL
Arctangent
Array variables
Arrays
ASC...
ASCII codes
ASCII format
Assembly language subroutines
ATN
AUTO
Boolean operators
CALL
Carriage return
Cassette tape
CDBL......................................
CHAIN
Character set
CHRS.............
CINT.............
CLEAR
CLOAD
CLOAD*
CLOAD?
CLOSE
Command level
COMMON
Concatenation .
Constants .
CONT
Control characters .
Control-A.............................
COS
CP/M
SCAVE
CSAVE*
CSNG
CVD
CVI
CVS

H-4
3-2
1- 8
2- 4, 2-9
3- 3
1-6, 2-9, 2-18, H-5
1- 6,2-7,2-11,2-24
3-2
3-2, 3-4
2- 4, 2-48,2-76, H-l
2- 3,2-16, 2-58, 3-24,to 3-25
3- 3
1-2, 2-2
1- 10
2- 3, C-4, H-2
1- 3,2-36, 2-41 to 2-42
2- 7,2-11
3- 3
2- 4, 2-9, H-2
1- 2
3- 4
3-4
2- 6, A-l
2-7
2-7
2-7
2-8, B-2, B-3, B-6
1-1
2-4, 2-9, H-2
1-13
1- 3
2- 10,2-41
1- 3
2- 22
3- 5, H-4
2-45, 2-48, 2-75 to 2-76
2-11
2- 11
3- 5
3-6, B-6
3-6, B-6
3-6, B-6

DATA
DEFFN
DEFUSR
DEFDBL
DEFINT
DEFSNG
DEFSTR
DEINT..
DELETE
DIM
Direct mode
Division
Double precision
EDIT
Edit mode
END
EOF
ERASE
ERL
ERR
ERROR
Error codes (NCRGRAF) J-24, 25 . . .
Error messages
Error trapping

Excape
exp.................:......................
Exponentiation
Expressions

FIELD
FILES ..
FIX
FOR ...NEXT
FRCINT
FRE
Functions
GARC
GBOX..
GCIRCL
GET
GEXIT
GINIT
GIVABF

 GLINE..
GMODE

2-12,2-73
2-13
2-16,3-24
1-6,2-15,11-2
1-6, 2-15, H-2, J-3
1-6, 2-15, H-2
1-6, 2-15, H-2, J-3
C-l
1- 2,2-4,2-17
2- 18, H-3
1-1,2-34, 2-53, H-l
1-8
1-4, 2-15,2-59, 3-3, A-l
1-2,2-19
1- 3, 2-19, H-l
2- 8,2-10, 2-23,2-32
3- 6, B-2, B-4, D-4
2-24, H-3
2-25
2-25
2-26
1-14, 2-25 to 2-26, F-l,
1- 14, F-l, H-l
2- 25 to 2-26, 2-53, 2-74
1-3, 2-19
3- 7, H-4
1-8 to 1-9, H-4
1- 7
2- 28, B-6
D-3
3- 7
2- 29, A-l, H-4
C-l,C-4, D-4
3- 8
1- 12, 2-13, 3-1, G-l
J-5 to J-6
J-7
J-8
2- 82, 2-31, B-6, D-4
J-9
J-10
C-l to C-2
J-ll
J-12 to J-13

LINE INPUT .
LINE INPUT#
Line numbers.
Line printer . ,
Lines
LIST
LLIST
LOAD
LOC
LOF
LOG

2-32
2- 32 to 2-33
J-14to J-15
J-16
J-17 to J-18
J-3
J-l to J-25
J-19
J-24
J-20 to J-21
J-22
3- 8
1- 4, 3-8
2- 34
2-25,2-34
2- 34
1-1
3- 9
3-9
2- 10,2-28,2-36, A-l
3- 10
2- 38, B-2 to B-3
3- 11
3-7,3-12
3-4, 3-7,3-12
1- 9
C-6
2- 39, B-2
3- 12
3-13
2-28, 2-40, B-7
1- 2,2-36, 2-41 to 2-42,2-83 to
2- 84, H-l
2-41
2-42, B-2
1- 2,2-2,2-72
2- 44, 2-46,2-82,3-14, A-2
1-1,H-l
1- 2, 2-43
2- 44
2- 45, 2-76, B-l
3- 13, B-2, B-4, B-6
D-3
3-14, H-4

GOSUB
GOTO
GPATT
GPOINT
GPRINT
GRAFINIT
Graphics
GRECT
GSTAT
GTEXT
GZOOM
HEXS
Hexadecimal
IF ... GOTO
IF ... THEN
IF ... THEN ... ELSE
Indirect mode
INKEYS
INP
INPUT
INPUTS
INPUT//
INSTR
INT
Integer
Integer division . . .
Interrupts
KILL
LEFTS
LEN
LET
Line feed

Logical operators .
Loops
LPOS
LPRINT
LPRINT USING . .
LSET
MAKINT
MBASIC
MERGE
MIDS
MKDS
MKIS
MKSS
MOD operator . . .
Modulus arithmetic
Multiplication . . .
NAME
NCRGRAF
Negation
NEW
NULL
Numeric constants
Numeric variables .
OCTS
Octal
ON ERROR GOTO
ON ... GOSUB . . .
ON... GOTO
OPEN
Operators
OPTION BASE . .
OUT
Overflow
Overlay
Paper tape
PEEK
POKE
POS
PRINT
PRINT USING . . .
PRINT#
PRINT# USING . .
Protected files . . .
PUT

LIO
2-29,2-81
2-82,3-14
2-46, 2-82
2-46
247, B-7
C-l,C-4, D-4
D-l
2-4, 2-48, B-2
2- 49,3-15,1-1
3- 16, B-6
3-16, B-6
3-16, B-6
1-9
1-9
1- 8
2- 50
J-l to J-25
1- 8
2- 8,2-51
2- 52
1-3
1-5
3- 17
1- 4, 3-17
2- 53, H-3
2-54
2-54
2-8, 2-28, 2-55, B-2
1- 7, 1-9, 1-13
2- 56
2-57
1- 9, 3-7, 3-23, A-l
2- 4
2-52
2-58,3-17
2-58,3-17
2-82,3-18
2-59, A-l
2-61, A-l
2-65, B-2
2-65, B-2, B-4
2-76, A-2, B-2
2-28, 2-67, B-6 to B-7

Random files

SGN
SIN
Single precision
SPACES
SPC
SQR
STOP
STRS
String constants
String functions
String operations
String space . . .
String variables.
STRINGS
Subroutines . . .
Subscripts
Subtraction . . .
SWAP
SYSTEM
TAB
Tab
TAN
TROFF
TRON

Random numbers . ,
RANDOMIZE . . .
READ
Relational operators
REM
RENUM
RESET
RESTORE
RESUME
RETURN
RIGHTS
RND
RSET
Rubout
RUN
SAVE
Sequential files. . . .

2- 28, 2-31, 2-39, 2-47, 2-55, 2-67,
3- 13, 3-16, B-6, D-4
2-68, 3-19
2-68, 3-19, A-l
2-69
1- 9,2-73
2- 71, H-3
2-4, 2-25, 2-72
D-3
2-73
2-74, H-3
2- 32
3- 18
2-68, 3-19, A-l
2-47, B-6
1- 3, 1-13,2-19
2- 75 to 2-76, B-l,H-2
2-45, 2-75 to 2-76, B-l
2- 38 to 2-39, 2-42, 2-55, 2-65, 2-84,
3- 6, 3-13, B-2
3-19
3-20, H-4
1- 4, 2-15, 2-59, 3-5, A-l
3-20
3-21
3-21, H-4
2- 10, 2-23, 2-32, 2-77, H-3
3- 22
1-3
3-6,3-11 to 3-13,3-16
1- 13
2- 6, 3-8,A-l,B-7
1- 5,2-15,2-41 to 2-42
3- 22
2- 3, 2-32, 2-54, C-l
1-6, 2-18, 2-56, H-3
1- 8
2- 78
D-4
3- 23
1- 3
3-23, H-4
2- 79, H-3
2-79, H-3

2- 16, 3-24, C-l
C-l
3- 24
1- 5, H-5
3-25
2- 80
2-81, H-4
2-81, H-4
2-82, A-2
2-82, A-2
2-83
2-84, B-2

USR
USRLOC
VAL
Variables
VARPTR
WAIT..............
WEND
WHILE
WIDTH
WIDTH LPRINT
WRITE............
WRITE#

