
N C R

NCR DECISION MATE V

MS™- DOS
Programmer’s Manual

MACRO-86, MS-CREF, MS-LINK, MS-LIB, and MS-DOS (and its
constituent program names EDLIN and DEBUG are trademarks of
Microsoft Corporation. Microsoft is a registered trademark of Micro
soft Corporation.

Copyright © 1983,1984 by N CR Corporation
Dayton, Ohio

All Rights Reserved
Printed in the Federal Republic of Germany

Third Edition, August 1984
It is the policy of NCR Corporation to improve products as new
technology, componentes, software, and firmware become avail
able. NCR Corporation, therefore, reserves the right to change
specifications without prior notice.

All features, functions, and operations described herein may not
be marketed by NCR in all parts of the world. In some instances,
photographs are of equipment prototypes. Therefore, before using
this document, consult your nearest dealer or NCR office for in
formation that is applicable and current.

General Introduction

Chapter 1 System Calls
1.1 Introduction...1-1
1.2 Programming Considerations..........................1-1
1.2.1 Calling From Macro Assembler 1-1
1.2.2 Calling From a High-Level Language 1 - 1
1.2.3 Returning Control to M S-DOS.................... 1-2
1.2.4 Console and Printer Input/Output Calls . . . 1-3
1.2.5 Disk I/O System Calls................................... 1-3
1.3 File Control Block (FCB)1-3
1.3.1 Fields of the FCB ...1-4
1.3.2 Extended F C B ...1-6
1.3.3 Directory E ntry ...1-6
1.3.4 Fields of the FCB ...1-7
1.4 System Call Descriptions...................................1-9
1.4.1 Programming Exam ples................................1-10
1.5 Xenix-Compatible Calls 1-11
1.6 Interrupts .. 1-14

16H Keyboard Character Code R e a d1-16
20H Program Term inate.....................................1-17
21H Function R equest..................................... 1-18
22H Terminate A ddress...................................1-19
23H CONTROL-C Exit A d d ress1-19
24H Fatal Error Abort A ddress.......................1-20
25H Absolute Disk Read1-23
26H Absolute Disk W r ite 1-25
27H Terminate But Stay R esid en t................. 1-27

1.7 Function R eq u ests ..1-28
1.7.1 CP/M-Compatible Calling Sequence 1-28
1.7.2 Treatment of Registers1-29

Function Requests
00H Terminate Program.............................. 1-33
01H Read Keyboard and E c h o1-34
02H Display Character................................. 1-35
03H Auxiliary I n p u t1-36
04H Auxiliary Output 1-37
05H Print C h arac te r....................................1-38
06H Direct Console I / O1-40
07H Direct Console In p u t........................... 1-42
08H Read K eyboard.................................... 1-43
09H Display S tring1-44
OAH Buffered Keyboard Input1-45
OBH Check Keyboard Status1-47

1

OCH Flush Buffer, Read Keyboard 1-48
ODH Disk R e s e t 1-49
OEH Select D isk 1-50
OFH Open F ile .. 1-50
10H Close File 1-53
11H Search for First E n try 1-55
12H Search for Next E ntry 1-57
13H Delete F i l e 1-59
14H Sequential R e a d1-61
15H Sequential W rite1-63
16H Create F i l e 1-65
17H Rename F i l e 1-67
19H Current D isk1-69
1AH Set Disk Transfer A d d re ss1-70
21H Random R e a d1-72
22H Random W rite1-74
23H File Size .. 1-76
24H Set Relative R eco rd1-78
25H Set V e c to r 1-80
27H Random Block Read 1-81
28H Random Block W r i te1-84
29H Parse File N am e1-87
2AH Get D a te .. 1-90
2BH Set Date .. 1-92
2CH Get T im e .. 1-94
2DH Set T im e .. 1-95
2EH Set/Reset Verify F la g 1-97
2FH Get Disk Transfer A ddress............. 1-99
30H Get DOS Version N um ber................1-100
31H Keep Process....................................... 1-101
33H CONTROL-C C h e c k1-102
35H Get Interrupt Vector1-104
36H Get Disk Free Space1-105
38H Return Country-Dependent

Information .. 1-106
39H Create Sub-Directory.........................1-109
3AH Remove a Directory E n t r y1-110
3BH Change Current D irec to ry1-111
3CH Create a F i l e 1-112
3DH Open a F ile ..1-113
3EH Close a File H an d le1-115
3FH Read From File/Device......................1-116
40H Write to a F ile /D ev ice1-117
41H Delete a Directory E n t ry1-118

MS-DOS PROGRAMMER’S MANUAL CONTENTS

42H Move a File Poin ter..........................1-119
43 FI Change Attributes............................... 1-120
44H I/O Control for Devices 1-121
45H Duplicate a File Flandle.......................1-125
46H Force a Duplicate of a Handle 1-126
47H Return Text of Current Directory . . 1-127
48H Allocate Memory 1-128
49H Free Allocated Memory.......................1-129
4AH Modify Allocated Memory Blocks . . 1-130
4BH Load and Execute a Program........... 1-131
4CH Terminate a Process............................ 1-134
4DH Retrieve the Return Code of a Child 1-135
4EH Find Match F i l e 1-136
4FH Step Through a Directory

Matching F ile s 1-138
54H Return Current Setting of Verify . . 1-139
56H Move a Directory Entry1-140
57H Get/Set Date/Time of F ile1-141

1.8 Macro Definitions for MS-DOS System
Call Examples (00H-57H) 1-142

1.9 Extended Example of MS-DOS System Calls 1-149
Chapter 2 MS-DOS Device Drivers

2.1 What is a Device D river?................................2-1
2.2 Device H e a d e rs ..2-3
2.2.1 Pointer to Next Device Field 2-3
2.2.2 Attribute Field ... 2-4
2.2.3 Strategy and Interrupt Routines................. 2-5
2.2.4 Name F ie ld ...2-5
2.3 How to Create a Device D r iv e r 2-5
2.4 Installation of Device Drivers2-6
2.5 Request H e a d e r ..2-6
2.5.1 Unit C o d e ..2-7
2.5.2 Command Code F ie ld2-7
2.5.3 MEDIA CHECK and BUILD B P B 2-8
2.5.4 Status W o rd ...2-9
2.6 Function Call Parameters................................2-11
2.6.1 I N I T ...2-12
2.6.2 MEDIA C H E C K .. 2-12
2.6.3 BUILD B P B ...2-13
2.6.4 Media Descriptor B y te2-15
2.6.5 READ OR W R IT E 2-16
2.6.6 NON DESTRUCTIVE READ NO WAIT 2-17
2.6.7 STATUS...2-18
2.6.8 FLUSH ...2-18

3

Chapter 3 MS-DOS Technical Information
3.1 MS-DOS Initialization ...3-1
3.2 The Command Processor.................................... 3-1
3.3 MS-DOS Disk Allocation3-3
3.4 MS-DOS Disk D irectory................................... 3-3
3.5 File Allocation T a b le ...3-7
3.5.1 How to Use the File Allocation Table3-8
3.6 IBM 5 1 /4“ MS-DOS Disk Formats3-9

Chapter 4 MS-DOS Control Blocks and Work Areas
4.1 Typical MS-DOS Memory M ap........................... 4-1
4.2 MS-DOS Program Segment..................................4-2

Chapter 5 EXE File Structure and Loading

Chapter 6 Special Features... 6-1
6.1 Timer Interrupt Support 6-1
6.1.1 Basis Concepts of the Timer Interrupt Support 6-1
6.1.2 Initilaization ...6-5
6.2 I/O Control F unctions...6-6
6.2.1 How to Write the Selected Values 6-6
6.2.2 How to Check the Selected Values..................... 6-7
6.2.3 Pattern of the “Console Flags“ Byte6-8

A. Keyboard Code C harts ..A-l

2.7 The CLOCK Device ...2-19

Index

4

MS-DOS PROGRAMMER'S M ANUAL

General Introduction

The Microsoft (R) MS(tm)-DOS Programmer’s Reference Manual
is a technical reference manual for system programmers. This
manual contains a description and examples of all MS-DOS system
calls and interrupts (Chapter 1). Chapter 2, “MS-DOS Device
Drivers” contains information on how to install your own device
drivers on MS-DOS. Chapter 3 through 5 contain technical infor
mation about MS-DOS, including MS-DOS disk allocation (Chapter
3), MS-DOS control blocks and work areas (Chapter 4) and EXE
file structure and loading (Chapter 5). Chapter 6 describes special
features, such as the timer interrupt support and I/O control
functions. Appendix A provides keyboard code charts.

The term “MS-DOS” in this manual refers to MS-DOS versions
that are 2.0 or higher.

5

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Chapter 1
System Calls

1.1 INTRODUCTION

MS-DOS provides two types of system calls: interrupts and function
requests. This chapter describes the environments from which these
routines can be called, how to call them, and the processing perfor
med by each.

1.2 PROGRAMMING CONSIDERATIONS

The system calls mean you don’t have to invent your own ways to
perform these primitive functions, and make it easier to write ma
chine-independent programs.

1.2.1 Calling From Macro Assembler

The system calls can be invoked from Macro Assembler simply by
moving any required data into registers and issuing an interrupt.
Some of the calls destroy registers, so you may have to save registers
before using a system call. The system calls can be used in macros
and procedures to make your programs more readable; this technique
is used to show examples of the calls.

1.2.2 Calling From A High-Level Language

The system calls can be invoked from any high-level language whose
modules can be linked with assembly-language modules.

Calling from Microsoft Basic: Different techniques are used to invoke
system calls from the compiler and interpreter. Compiled modules
can be linked with assembly-language modules; from the interpreter,
the CALL statement or USER function can be used to execute the
appropriate 8086 object code.

1-1

Calling from Microsoft Pascal: In addition to linking with an assembly-
language module, Microsoft Pascal includes a function (DOSXQQ)
that can be used directly from a Pascal program to call a function
request.

Calling from Microsoft FORTRAN: Modules compiled with Microsoft
FORTRAN can be linked with assembly-language modules.

1.2.3 Returning Control To MS-DOS

Control can be returned to MS-DOS in any of four ways:

1. Call Function Request 4CH

MOV AH,4CH
1NT 21H

This is the preferred method.

2. Call Interrupt 20H:

INT 20H

3. Jump to location 0 (the beginning of the Program Segment Prefix):

JMP 0

Location 0 of the Program Segment Prefix contains an INT 20 H
instruction, so this technique is simply one step removed from the
first.

4. Call Function Request 00H:

MOV AH.OOH
INT 21H

This causes a jump to location 0, so it is simply one step removed
from technique 2, or two steps removed from technique 1.

1-2

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

1.2.4 Console And Printer Input/Output Calls

The console and printer system calls let you read from and write to
the console device and print on the printer without using any ma
chine-specific codes. You can still take advantage of specific capa
bilities (display attributes such as positioning the cursor or erasing the
screen, printer attributes such as double-strike or underline, etc.) by
using constants for these codes and reassembling once with the
correct constant values for the attributes.

1.2.5 Disk I/O System Calls

Many of the system calls that perform disk input and output require
placing values into or reading values from two system control blocks:
the File Control Block (FCB) and directory entry.

1.3 FILE CONTROL BLOCK (FCB)

The Program Segment Prefix includes room for two FCBs at offsets
5CH and 6CH. The system call descriptions refer to unopened and
opened FCBs. An unopened FCB is one that contains only a drive
specifier and filename, which can contain wild card characters (* and
?). An opened FCB contains all fields filled by the Open File system
call (Function OFH). Table 1.1 describes the fields of the FCB.

1-3

Table 1.1 Fields of File Control Block (FCB)

Size Offset
Name (bytes) Hex Decimal
Drive number 1 00H 0
Filename 8 01-08H 1-8
Extension 3 09-0BH 9-11
Current block 2 0CH,0DH 12,13
Record size 2 OEH,OFH 14,15
File size 4 10-13H 16-19
Date of last write 2 14H,15H 20,21
Time of last write 2 16H,17H 22,23
Reserved 8 18-1FH 24-31
Current record 1 20H 32
Relative record 4 21-24H 33-36

1.3.1 Fields Of The FCB

Drive Number (offset 00H): Specifies the disk drive; 1 means drive A:
and 2 means drive B:. If the FCB is to be used to create or open a file,
this field can be set to 0 to specify the default drive; the Open File
system call Function (OFH) sets the field to the number of the default
drive.

Filename (offset 01H): Eight characters, left-aligned and padded (if
necessary) with blanks. If you specify a reserved device name (such as
LPT1), do not put a colon at the end.

Extension (offset 09H): Three characters, left-aligned and padded (if
necessary) with blanks. This field can be all blanks (no extension).

Current Block (offset OCH): Points to the block (group of 128 records)
that contains the current record. This field and the Current Record
field (offset 20H) make up the record pointer. This field is set to 0 by
the Open File system call.

Record Size (offset OEH): The size of a logical record, in bytes. Set to
128 by the Open File system call. If the record size is not 128 bytes,
you must set this field after opening the file.
1-4

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

File Size (offset 10H): The size of the file, in bytes. The first word of
this 4-byte field is the low-order part of the size.

Date of Last Write (offset 14H): The date the file was created or last
updated. The year, month, and day are mapped into two bytes as
follows:

Offset 15H
I Y I Y I Y I Y I Y I Y I Y I M I
15 9 8

Offset 14H
I M I M I M I D I D I D I D I D I

5 4 0

Time of Last Write (offset 16H): The time the file was created or last
updated. The hour, minutes, and seconds are mapped into two bytes
as follows:

Offset 17H
I H I H I H
15

1 H 1 H
11

1 M
10

1 M 1 M

Offset 16H
1 M 1 M 1 M

5
1 S
4

1 S 1 s I S 1 S
0

Reserved (offset 18H): These fields are reserved for use by MS-DOS.

Current Record (offset 20H): Points to one of the 128 records in the
current block. This field and the Current Block field (offset OCH)
make up the record pointer. This field is not initialized by the Open
File system call. You must set it before doing a sequential read or
write to the file.

Relative Record (offset 21H): Points to the currently selected record,
counting from the beginning of the file (starting with 0). This field is
not initialized by the Open File system call. You must set it before
doing a random read or write to the file. If the record size is less than
64 bytes, both words of this field are used; if the record size ist 64
bytes or more, only the first three bytes are used.

1-5

NOTE

If you use the FCB at offset 5CH of the
Program Segment Prefix, the last byte of the
Relative Record field is the first byte of the
unformatted parameter area that starts at
offset 80H. This is the default Disk Transfer
Address.

1.3.2 Extended FCB

The Extended File Control Block is used to create or search for
directory entries of files with special attributes. It adds the following
7-byte prefix to the FCB:

Name
Flag byte (255, or FFH)
Reserved
Attribute byte:

02H = Hidden file
04H = System file

Size Offset
(bytes) (Decimal)

1 -7
5 -6
1 -1

1.3.3 Directory Entry

A directory contains one entry for each file on the disk. Each entry is
32 bytes; Table 1.2 describes the fields of an entry.

Table 1.2 Fields of Directory Entry

Size Offset
Name (bytes) Hex Decimal
Filename 8 00-07H 0-7
Extension 3 08-0AH 8-10
Attributes 1 OBH 11
Reserved 10 0C-15H 12-21
Time of last write 2 16H,17H 22,23
Date of last read 2 18H,19H 24,25
Reserved 2 1AH,1BH 26,27
File size 4 1C-1FH 28-31
1-6

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

1.3.4 Fields Of The FCB

Filename (offset 00H): Eight characters, left-aligned and padded (if
necessary) with blanks. MS-DOS uses the first byte of this field for
two special codes:

00H (0) End of allocated directory
E5H (229) Free directory entry

Extension (offset 08H): Three characters, left-aligned and padded (if
necessary) with blanks. This field can be all blanks (no extension).

Attributes (offset OBH): Attributes of the file:

Value
Hex Binary Dec Meaning
01H 0000 0001 1 Read-only
02H 0000 0010 2 Hidden
04H 0000 0100 4 System
07H 0000 0111 7 Changeable with CHGMOD
08H 0000 1000 8 Volume-ID
10H 0001 0000 16 Directory
16H 0001 0110 22 Hard attributes for FINDENTRY
20H 0010 0000 32 Archive

Reserved (offset OCH): Reserved for MS-DOS.

Time of Last Write (offset 16H): The time the file was created or last
updated. The hour, minutes, and seconds are mapped into two bytes
as follows:

Offset 17H
I H I H I H I H I H I M I M I M I
15 11 10

Offset 16H
I M I M I M I S I S I S I S I S I

5 4 0

Date of Last Write (offset 18H): The date the file was created or last
updated. The year, month, and day are mapped into two bytes as
follows:

1-7

Offset 19H
l Y l Y l Y l Y l Y l Y l Y l M l
15 9 8

Offset 18H
I M I M I M I D I D I D I D I D I

5 4 0

File Size (offset ICH): The size of the file, in bytes. The first word of
this 4-byte field is the low-order part of the size.

1-8

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

1.4 SYSTEM CALL DESCRIPTIONS

Many system calls require that parameters be loaded into one or
more registers before the call is issued; most calls return information
in the registers (usually a code that describes the success or failure of
the operation). The description of system calls 00H-2EH includes the
following:

A drawing of the 8088 registers that shows their contents before
and after the system call.

A more complete description of the register contents required
before the system call.

A description of the processing performed.

A more complete description of the register contents after the
system call.

An example of its use.

The description of system calls 2FH-57H includes the following:

A drawing of the 8088 registers that shows their contents before
and after the system call.

A more complete description of the register contents repuired
before the system call.

A description of the processing performed.

Error returns from the system call.

An example of its use.

Figure 1 is an example of how each system call is described. Function
27H, Random Block Read, is shown.

1-9

Call
AH = 27H
DS.DX

Opened FCB
CX

Number of blocks to read

Return
AL

0 = Read completed successfully
1 = EOF
2 = End of segment
3 = EOF, partial record

CX
Number of blocks read

Figure 1. Example of System Call Description

1.4.1 Programming Examples

A macro is defined for each system call, then used in some examples.
In addition, a few other macros are defined for use in the examples.
The use of macros allows the examples to be more complete pro
grams, rather than isolated uses of the system calls. All macro defini
tions are listed at the end of the chapter.
The examples are not intended to represent good programming
practice. In particular, error checking and good human interface
design have been sacrificed to conserve space. You may, however,
find the macros a convenient way to include system calls in your
assembly language programs.
A detailed description of each system call follows. They are listed in
numeric order; the interrupts are described first, then the function
requests.

NOTE

Unless otherwise stated, all numbers in the
system call descriptions - both text and
code - are in hex.

1-10

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

1.5 XENIX COMPATIBLE CALLS

MS-DOS supports hierarchical (i.e., tree-structured) directories,
similar to those found in the Xenix operating system. (For informa
tion on tree-structured directories, refer to the MS-DOS User’s
Guide.)

The following system calls are compatible with the Xenix system:

Function 39H
Function 3AH
Function 3BH
Function 3CH
Function 3DH
Function 3FH
Function 40H
Function 41H
Function 42H
Function 43H
Function 44H
Function 45H
Function 46H
Function 4BH
Function 4CH
Function 4DH

Create Sub-Directory
Remove a Directory Entry
Change the Current Directory
Create a File
Open a File
Read From File/Device
Write to a File or Device
Delete a Directory Entry
Move a File Pointer
Change Attributes
I/O Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Load and Execute a Program
Terminate a Process
Retrieve Return Code of a Child

There is no restriction in MS-DOS on the depth of a tree (the
length of the longest path from root to leaf) except in the number of
allocation units available. The root directory will have a fixed number
of entries (64 for the single sided disk). For non-root directories, the
number of files per directory is only limited by the number of alloca
tion units available.
Pre-2.0 disks will appear to MS-DOS as having only a root directo
ry with files in it and no subdirectories.
Implementation of the tree structure is simple. The root directory is
the pre-2.0 directory. Subdirectories of the root have a special attri
bute set indicating that they are directories. The subdirectories them
selves are files, linked through the FAT as usual. Their contents are
identical in character to the contents of the root directory.
Pre-2.0 programs that use system calls not described in this chapter
will be unable to make use of files in other directories. Those files not
necessary for the current task will be placed in other directories.

1-11

Attributes apply to the tree-structured directories in the following
manner:

1-12

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Attribute Meaning/Function
for files

Meaning/Function
for directories

volume-id Present at the root.
Only one file may have
this set.

Meaningless.

directory Meaningless. Indicates that the direc
tory entry is a directory.
Cannot be changed with
43H.

read-only Old fcb-create, new
Create,
new open (for write or
read/write) will fail.

Meaningless.

archive Set when file is written.
Set/reset via Function
43H.

Meaningless.

hidden/
system

Prevents file from being
found in search first/se-
arch next. Old open will
fail.

Prevents directory entry
from being found. Func
tion 3BH will still work.

1-13

1.6 INTERRUPTS

MS-DOS reserves interrupts 20H through 3FH for its own use. The
table of interrupt routine addresses (vectors) is maintained in loca
tions 80H-FCH. Table 1.3 lists the interrupts in numeric order; Table
1.4 lists the interrupts in alphabetic order (of the description). User
programs should only issue Interrupts 20H, 21H, 25H, 26H, and 27H.
(Function Requests 4CH and 31H are the preferred method for
Interrupts 20H and 27H for versions of MS-DOS that are 2.0 and
higher.)

NOTE

Interrupts 22H, 23H, and 24H are not inter
rupts that can be issued by user programs;
they are simply locations where a segment
and offset address are stored.

1-14

MS-DOS PROGRAMMER'S M ANUAL SYSTEM CALLS

Table 1.3 MS-DOS Interrupts, Numeric Order

Interrupt
Hex Dec Description

16H 22 Keyboard Character Code Read
20H 32 Program Terminate
21H 33 Function Request
22H 34 Terminate Address
23 H 35 <CTRL-C> Exit Address
24 H 36 Fatal Error Abort Address
25H 37 Absolute Disk Read
26 H 38 Absolute Disk Write
27H 39 Terminate But Stay Resident

28-40H 40-64 RESERVED - DO NOT USE

Table 1.4 MS-DOS Interrupts, Alphabetic Order

Interrupt
Description Hex Dec

Absolute Disk Read 25H 37
Absolute Disk Write 26H 38
<CTRL-C> Exit Address 23 H 35
Fatal Error Abort Address 24H 36
Function Request 21H 33
Keyboard Character Code Read 16H 22
Program Terminate 20H 32
RESERVED - DO NOT USE 28-40H 40-64
Terminate Address 22H 34
Terminate But Stay Resident 27H 39

1-15

Keyboard Character Code Read (Interrupt 16H)

1. Normal Read

Call
AH=00H

Return
AH=AL
Character code from keyboard

2. Non-destructive Read

Call
AH=01H

Return
AH=AL
Character code from keyboard

Zero flag set means there was not a character to get; Zero flag
not set means AL and AH contain the character code from the
keyboard.

Interrupt 16H allows keyboard read. 00 in register AH leads to a
normal read — that means the program waits for a character to be
typed, then returns it in AL and AH. 01 in Register AH leads to a
non-destructive read, that is, the code read remains in the key
board buffer.

NOTE

Interrupt 16H gets the original keyboard
codes (No translation to ASCII is made;
the function keys are disabled). Turn to
Appendix A for the US-English and Inter
national English + UK keyboard code charts.
All registers except AX are preserved. There
is no check for CONTROL-C.

1-16

MS-DOS PROGRAM M ER’S M ANUAL SYSTEM CALLS

Program Terminate (Interrupt 20H)
Call
CS

Segment address of Program Segment
Prefix

Return
None

Interrupt 20H causes the current process to terminate and returns
control to its parent process. All open file handles are closed and
the disk cache is cleaned. This interrupt is almost always used in
old .COM files for termination.
The CS register must contain the segment address of the Program
Segment Prefix before you call this interrupt.
The following exit addresses are restored from the Program Seg
ment Prefix:

Exit Address Offset
Programm Terminate OAH
CONTROL-C OEH
Critical Error 12H

All file buffers are flushed to disk.

NOTE
Close all files that have changed in length
before issuing this interrupt. If a changed
file is not closed, its length is not recorded
correctly in the directory. See Functions
10H and 3EH for a description of the
Close File system calls.

Interrupt 20H is provided for compatibility with versions of MS-
DOS prior to 2.0. New programs should use Function Request
4CH, Terminate a Process.
Macro Definition: terminate macro

int 20H
endm

Example
; CS must be equal to PSP values given at program start
•,(ES and DS values)

INT 20H
; There is no return from this interrupt

1-17

Function Request (Interrupt 21H)

Call
AH

Function number
Other registers as specified in individual
function

Return
As specified in individual function

The AH register must contain the number of the system function.
See Section 1.7. ’’Function Requests”, for a description of the
MS-DOS system functions.

NOTE

No macro is defined for this interrupt,
because all function descriptions in this
chapter that define a macro include Inter
rupt 21H.

Example
To call the Get Time function:

mov ah,2CH ;Get Time is Function 2CH
int 21H ;THIS INTERRUPT

1-18

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Terminate Address (Interrupt 22H)
CONTROL-C Exit Address (Interrupt 23H)
Fatal Error Abort Address (Interrupt 24H)

These are not true interrupts, but rather storage locations for a seg
ment and offset address. The interrupts are issued by MS-DOS under
the specified circumstance. You can change any of these addresses
with Function Request 25H (Set Vector) if you prefer to write your
own interrupt handlers.

Interrupt 22H - - Terminate Address
When a program terminates, control transfers to the address at offset
OAH of the Program Segment Prefix. This address is copied into the
Program Segment Prefix, from the Interrupt 22H vector, when the
segment is created.

Interrupt 23H - CONTROL-C Exit Address
If the user types CONTROL-C during keyboard input or display
output, control transfers to the INT 23H vector in the interrupt table.
This address is copied into the Program Segment Prefix, from the
Interrupt 23H vector, when the segment is created.
If the CONTROL-C routine preserves all registers, it can end with an
IRET instruction (return from interrupt) to continue program execu
tion. When the interrupt occurs, all registers are set to the value they
had when the original call to MS-DOS was made. There are no re
strictions on what a CONTROL-C handler can do - including
MS-DOS function calls - so long as the registers are unchanged if
IRET is used.
If Function 09H or OAH (Display String of Buffered Keyboard Input)
is interrupted by CONTROL-C, the three-byte sequence 03H-0DH-
OAH (ETX-CR-LF) is sent to the display and the function resumes at
the beginning of the next line.
If the program creates a new segment and loads a second program
that changes the CONTROL-C address, termination of the second
program restores the CONTROL-C address to its value before execu
tion of the second program.

1-19

Interrupt 24H - Fatal Error Abort Address
If a fatal disk error occurs during execution of one of the disk I/O
function calls, control transfers to the INT 24H vector in the vector
table. This address is copied into the Program Segment Prefix, from
the Interrupt 24H vector, when the segment is created.
BP:SI contains the address of a Device Header Control Block from
which additional information can be retrieved.

NOTE

Interrupt 24H is not issued if the failure
occurs during execution of Interrupt 25H
(Absolute Disk Read) or Interrupt 26H
(Absolute Disk Write). These errors are
usually handled by the MS-DOS error
routine in COMMAND.COM that retries
the disk operation, then gives the user the
choice of aborting, retrying the operation, or
ignoring the error. The following topics give
you the information you need about inter
preting the error codes, managing the regi
sters and stack, and controlling the system’s
response to the error in order to write your
own error-handling routines.

Error Codes
When an error-handling program gains control from Interrupt 24H,
the AX and DI registers can contain codes that describe the error. If
Bit 7 of AH is 1, the error is either a bad image of the File Allocation
Table or an error occurred on a character device. The device header
passed in BP:SI can be examined to determine which case exists. If
the attribute byte high order bit indicates a block device, then the
error was a bad FAT. Otherwise, the error is on a character device.

1-20

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

The following are error codes for Interrupt 24H:

Error Code Description
0 Attempt to write on write-protected disk
1 Unknown unit
2 Drive not ready
3 Unknown command
4 Data error
5 Bad request structure length
6 Seek error
7 Unknown media type
8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure

The user stack will be in effect (the first item described below is at the
top of the stack), and will contain the following from top to bottom:

IP MS-DOS registers from
CS issuing INT 24H
FLAGS

AX User registers at time of original
BX INT 21H request
CX
DX
SI
DI
BP
DS
ES

IP From the original INT 21H
CS from the user to MS-DOS
FLAGS

The registers are set such that if an IRET is executed, MS-DOS will
respond according to (AL) as follows:

(AL) = 0 ignore the error
= 1 retry the operation
= 2 terminate the program via INT 23H

1-21

Notes:

1. Before giving this routine control for disk errors, MS-DOS per
forms five retries.

2. For disk errors, this exit is taken only for errors occurring during
an Interrupt 21H. It is not used for errors during Interrupts 25H or
26H.

3. This routine is entered in a disabled state.
4. The SS, SP, DS, ES, BX, CX, and DX registers must be preserved.
5. This interrupt handler should refrain from using MS-DOS func

tion calls. If necessary, it may use calls 01H through OCH. Use of
any other call will destroy the MS-DOS stack and will leave MS-
DOS in an unpredictable state.

6. The interrupt handler must not change the contents of the device
header.

7. If the interrupt handler will handle errors rather than returning to
MS-DOS, it should restore the application program’s registers
from the stack, remove all but the last three words on the stack,
then issue an IRET. This will return to the program immediately
after the INT 21H that experienced the error. Note that if this is
done, MS-DOS will be in an unstable state until a function call
higher than OCH is issued.

1-22

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Absolute Disk Read (Interrupt 25H)

Call
AL

Drive number
DS:BX

Disk Transfer Address
CX

Number of sectors
DX

Beginning relative sector

Return
AL

Error code if CF = 1
FlagsL

CF = 0 if successful
— 1 if not successful

The registers must contain the following:

AL Drive number (0 = A, 1 = B, etc.).
BX Offset of Disk Transfer Address (from segment address

in DS).
CX Number of sectors to read.
DX Beginning relative sector.

This interrupt transfers control to the MS-DOS BIOS. The number of
sectors specified in CX is read from the disk to the Disk Transfer
Address. Its requirements and processing are identical to Interrupt
26H, except data is read rather than written.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing
the interrupt.

The system pushes the flags at the time of the call; they are still there
upon return. (This is necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to prevent uncontrolled
growth.

1-23

If the disk operation was successful, the Carry Flag (CF) is 0. If the
disk operation was not successful, CF is 1 and AL contains the MS-
DOS error code (see Interrupt 24H earlier in this section for the codes
and their meaning).

Macro Definition:
abs-disk-read macro disk,buffer,num-sectors,start

mov al, disk
mov bx,offset buffer
mov cx,num-sectors
mov dh,start
int
endm

25H

Example

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:. It uses a buffer of 32K bytes:

prompt db “Source in A, target in B”,13,10
db “Any Key to start. $”

start dw 0
buffer db 64 dup (512 dup (?)) ;64 sectors

int-25H: display prompt ;see Function 09H
read-kbd ;see Function 08H
mov cx,5 ;copy 5 groups of

;64 sectors
copy: push cx ;save the loop counter

abs-disk-read 0,buffer,64,start ;THIS INTERRUPT
abs-disk-write 1,buffer,64,start ;see INT 26H
add start,64 ;do the next 64 sectors
pop cx ;restore the loop counter
loop copy

1-24

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Absolute Disk Write (Interrupt 26H)

Call
AL

Drive number
DS:BX

Disk Transfer Address
CX

Number of sectors
DX

Beginning relative sector

Return
AL

Error code if CF = 1
FLAGSL

CF = 0 if successful
= 1 if not successful

The registers must contain the following:

AL Drive number (0 = A, 1 = B, etc.).
BX Offset of Disk Transfer Address

(from segment address in DS).
CX Number of sectors to write.
DX Beginning relative sector.

This interrupt transfers control to the MS-DOS BIOS. The number of
sectors specified in CX is written from the Disk Transfer Address to
the disk. Its requirements and processing are identical to Interrupt
25H, except data is written to the disk rather than read from it.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing
the interrupt.

The system pushes the flags at the time of the call; they are still there
upon return. (This is necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to prevent uncontrolled
growth.

1-25

If the disk operation was successful, the Carry Flag (CF) is 0. If the
disk operation was not successful, CF is 1 and AL contains the MS-
DOS error code (see Interrupt 24H for the codes and their meaning).

Macro Definition:
abs-disk-write macro disk,buffer,num-sectors,start

mov al,disk
mov bx,offset buffer
mov cx,num-sectors
mov dh,start
int
endm

26H

Example

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:, verifying each write. It uses a buffer of
32K bytes:

off equ 0
on equ 1

prompt db “Source in A, target in B”,13,10
db “Any key to start. $”

start dw 0
buffer db 64 dup (512 dup (?)) ;64 sectors

int-26H: display prompt ;see Function 09H
read-kbd ;see Function 08H
verify on ;see Function 2EH
mov cx,5 ;copy 5 groups of 64 sectors

copy: push cx ;save the loop counter
abs-disk-read 0,buffer,64,start ;see INT 25H
abs-disk-write 1,buffer,64,start ;THIS INTERRUPT
add start,64 ;do the next 64 sectors
pop cx ;restore the loop counter
loop copy
verify off ;see Function 2EH

1-26

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Terminate But Stay Resident (Interrupt 27H)

Call
CS:DX

First byte following
last byte of code

Return
None

The Terminate But Stay Resident call is used to make a piece of code
remain resident in the system after its termination. Typically, this call
is used in .COM files to allow some device-specific interrupt handler
to remain resident to process asynchronous interrupts.
DX must contain the offset (from the segment address in CS) of the
first byte following the last byte of code in the program. When Inter
rupt 27H is executed, the program terminates but is treated as an
extension of MS-DOS; it remains resident and is not overlaid by
other programs when it terminates.
This interrupt is provided for compatibility with versions of MS-DOS
prior to 2.0. New programs should use Function 31H, Keep Process.

Macro Definition:
stay-resident macro

mov
inc
int
endm

last-instruc
dx,offset last-instruc
dx
27H

Example

;CS must be equal to PSP values given at program start
; (ES and DS values)

mov DX,LastAddress
int 27H

;There is no return from this interrupt

1-27

1.7 FUNCTION REQUESTS

Most of the MS-DOS function calls require input to be passed to
them in registers. After setting the proper register values, the function
may be invoked in one of the following ways:

1. Place the function number in AH and execute a long call to offset
50H in your Program Segment Prefix. Note that programs using
this method will not operate correctly on versions of MS-DOS that
are lower than 2.0.

2. Place the function number in AH and issue Interrupt 21H. All of
the examples in this chapter use this method.

3. An additional method exists for programs that were written with
different calling conventions. This method should be avoided for
all new programs. The function number is placed in the CL register
and other registers are set according to the function specification.
Then, an intrasegment call is made to location 5 in the current
code segment. That location contains a long call to the MS-DOS
function dispatcher. Register AX is always destroyed if this me
thod is used; otherwise, it is the same as normal function calls.
Note that this method is valid only for Function Requests 00H
through 024H.

1.7.1 CP/M(R)-Compatible Calling Sequence

A different sequence can be used for programs that must conform to
CP/M calling conventions:

1. Move any required data into the appropriate registers Gust as in the
standard sequence).

2. Move the function number into the CL register.
3. Execute an intrasegment call to location 5 in the current code

segment.

This method can only be used with functions 00H through 24H that
do not pass a parameter in AL. Register AX is always destroyed when
a function is called in this manner.

1-28

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

1.7.2 Treatment Of Registers

When MS-DOS takes control after a function call, it switches to an
internal stack. Registers not used to return information (except AX)
are preserved. The calling program’s stack must be large enough to
accommodate the interrupt system - at least 128 bytes in addition to
other needs.

IMPORTANT NOTE

The macro definitions and extended exam
ple for MS-DOS system calls 00H through
2EH can be found at the end of this chapter.

Table 1.5 lists the function requests in numeric order; Table 1.6 lists
the function requests in alphabetic order (of the description).

Table 1.5 MS-DOS Function Requests, Numeric Order

Function
Number Function Name
00H Terminate Program
01H Read Keyboard and Echo
02H Display Character
03H Auxiliary Input
04H Auxiliary Output
05H Print Character
06H Direct Console I/O
07H Direct Console Input
08H Read Keyboard
09H Display String
OAH Buffered Keyboard Input
OBH Check Keyboard Status
OCH Flush Buffer, Read Keyboard
ODH Disk Reset
OEH Select Disk
OFH Open File
10H Close File
11H Search for First Entry
12H Search for Next Entry
13H Delete File
14H Sequential Read
15H Sequential Write

1-29

16H
17H
19H
1 AH
21H
22H
23H
24H
25H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
33H
35H
36H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH

Create File
Rename File
Current Disk
Set Disk Transfer Address
Random Read
Random Write
File Size
Set Relative Record
Set Vector
Random Block Read
Random Block Write
Parse File Name
Get Date
Set Date
Get Time
Set Time
Set/Reset Verify Flag
Get Disk Transfer Address
Get DOS Version Number
Keep Process
CONTROL-C Check
Get Interrupt Vector
Get Disk Free Space
Return Country-Dependent Info.
Create Sub-Directory
Remove a Directory Entry
Change the Current Directory
Create a File
Open a File
Close a File Handle
Read From File/Device
Write to a File/Device
Delete a Directory Entry
Move a File Pointer
Change Attributes
I/O Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Return Text of Current Directory
Allocate Memory
Free Allocated Memory
Modify Allocated Memory Blocks
Load and Execute a Program
Terminate a Process

1-30

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

4DH Retrieve the Return Code of a Child
4EH Find Match File
4FH Step Through a Directory Matching Files
54H Return Current Setting of Verify
56H Move a Directory Entry
57H Get/Set Date/Time of File

Table 1.6 MS-DOS Function Requests, Alphabetic Order

Function Name Number

Allocate Memory 48H
Auxiliary Input 03H
Auxiliary Output 04H
Buffered Keyboard Input OAH
Change Attributes 43H
Change the Current Directory 3BH
Check Keyboard Status OBH
Close a File Handle 3EH
Close File 10H
CONTROL-C Check 33H
Create a File 3CH
Create File 16H
Create Sub-Directory 39H
Current Disk 19H
Delete a Directory Entry 41H
Delete File 13H
Direct Console Input 07 H
Direct Console I/O 06H
Disk Reset ODH
Display Character 02H
Display String 09H
Duplicate a File Handle 45H
File Size 23H
Find Match File 4EH
Flush Buffer, Read Keyboard OCH
Force a Duplicate of a Handle 46H
Free Allocated Memory 49H
Get Date 2AH
Get Disk Free Space 36H
Get Disk Transfer Address 2FH
Get DOS Version Number 30H
Get Interrupt Vector 35H

1-31

Get Time 2CH
Get/Set Date/Time of File 57H
I/D Control for Devices 44H
Keep Process 31H
Load and Execute a Program 4BH
Modify Allocated Memory Blocks 4AH
Move a Directory Entry 56H
Move a File Pointer 42H
Open a File 3DH
Open File OFH
Parse File Name 29H
Print Character 05H
Random Block Read 27H
Random Block Write 28H
Random Read 21H
Random Write 22H
Read From File/Device 3FH
Read Keyboard 08H
Read Keyboard and Echo 01H
Remove a Directory Entry 3AH
Rename File 17H
Retrieve the Return Code of a Child 4DH
Return Current Setting of Verify 54H
Return Country-Dependent Info. 38H
Return Text of Current Directory 47H
Search for First Entry 11H
Search for Next Entry 12H
Select Disk OEH
Sequential Read 14H
Sequential Write 15H
Set Date 2BH
Set Disk Transfer Address 1 AH
Set Relative Record 24H
Set Time 2DH
Set Vector 25H
Set/Reset Verify Flag 2EH
Step Through a Directory Matching 4FH
Terminate a Process 4CH
Terminate Program 00H
Write to a File/Device 40H

1-32

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Terminate Program (Function 00H)
Call
AH = 00H
CS

Segment address of
Program Segment Prefix

Return
None

Function 00H is called by Interrupt 20H; it performs the same proces
sing.
The CS register must contain the segment address of the Program
Segment Prefix before you call this interrupt.
The following exit addresses are restored from the specified offsets in
the Program Segment Prefix:

Program terminate OAH
CONTROL-C OEH
Critical error 12H

All file buffers are flushed to disk.

Warning: Close all files that have changed in length before calling this
function. If a changed file is not closed, its length is not recorded
correctly in the directory. See Function 10H for a description of the
Close File system call.

Macro Definition: terminate-program macro
xor ah,ah
int 21H
endm

Example

;CS must be equal to PSP values given at program start
;(ES and DS values)

mov ah,0
int 21H

;There are no returns from this interrupt

1-33

Read Keyboard and Echo (Function 01H)
Call
AH = 01H

Return
AL

Character typed

Function 01H waits for a character to be typed at the keyboard, then
echoes the character to the display and returns it in AL. If the charac
ter is CONTROL-C, Interrupt 23H is executed.

Macro Definition: read-kbd-and-echo macro

Example

The following program boths displays and prints characters as they
are typed. If <NEW LINE> is pressed, the program sends Line
Feed-Carriage Return to both the display and the printer:

mov ah, 01H
int 21H
endm

func-01H: read-kbd-and-echo
print-char al
cmp al,0DH
jne func-01H
print-char 10
display-char 10
jmp func-01H

;THIS FUNCTION
;see Function 05H
;is it a CR?
;no, print it
;see Function 05H
;see Function 02H
;get another character

1-34

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Display Character (Function 02H)

Call
AH - 02H
DL

Character to be displayed

Return
None

Function 02H displays the character in DL. If CONTROL-C is typed,
Interrupt 23H is issued.

Macro Definition: display-char

Example

macro character
mov dl,character
mov ah, 02H
int 21H
endm

The following program converts lowercase characters to uppercase
before displaying them:

func-02H: read-kbd
cmp al,“a”

;see Function 08H

jl
cmp

uppercase
al,“z”

;don’t convert

jg uppercase ;don’t convert
sub al,20H ;convert to ASCII code

;for uppercase
uppercase: display-char al ;THIS FUNCTION

jmp func-02H: ;get another character

1-35

Auxiliary Input (Function 03H)

Call
AH == 03H

Return
AL

Character from auxiliary device

Function 03H waits for a character from the auxiliary input device,
then returns the character in AL. This system call does not return a
status or error code.
If a CONTROL-C has been typed at console input, Interrupt 23H is
issued.

Macro Definition: aux-input macro

Example

The following program prints characters as they are received from the
auxiliary device. It stops printing when an end-of-file character
(ASCII 1AH, or CONTROL-Z) is received:

mov ah,03H
int 21H
endm

func-03H: aux-input ;THIS FUNCTION
;end of file?
;yes, all done
;see Function 05H
;get another character

cmp al,lAH
je continue
print-char al
jmp func-03H

continue:

1-36

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Auxiliary Output (Function 04H)

Call
AH = 04H
DL

Character for auxiliary device

Return
None

Function 04H sends the character in DL to the auxiliary output
device. This system call does not return a status or error code.
If a CONTROL-C has been typed at console input, Interrupt 23H is
issued.

Macro Definition: aux-output macro character
mov dl,character
mov ah,04H
int 21H
endm

Example

The following program gets a series of strings of up to 80 bytes from
the keyboard, sending each to the auxiliary device. It stops when a
null string (CR only) is typed:

string db 81 dup(?) ;see Function OAH

func-04H:

send-it:

continue:

get-string 80,string
cmp string[l],0
je continue
mov cx, word ptr string[l]
mov bx,0
aux-output string[bx+2]
inc bx
loop send-it
jmp func-04H

;see Function OAH
;null string?
;yes, all done
;get string length
;set index to 0
;THIS FUNCTION
;bump index
;send another character
;get another string

1-37

Print Character (Function 05H)

Call
AH = 05H
DL

Character for printer

Return
None

Function 05H prints the character in DL on the standard printer
device. If CONTROL-C has been typed at console input, Interrupt
23H is issued.

Macro Definition: print-char macro character
mov dl,character
mov ah,05H
int 21H
endm

Example

The following program prints a walking test pattern on the printer. It
stops if CONTROL-C is pressed.

line-num db 0

func-05H: mov cx,60 ;print 60 lines
start-line: mov bl,33 ;first printable ASCII

character (!)
add bl,line-num ;to offset ne character
push cx ;save number-of-lines counter
mov cx,80 ;loop counter for line

print-it: print-char bl ;THIS FUNCTION
inc bl ;move to next ASCII character
cmp bl,126 ;last printable ASCII

character (~)
jl no-reset ;not there yet
mov bl,33 ;start over with (!)

1-38

no-reset: loop print-it
print-char 13
print-char 10
inc line-num
pop cx
loop start-line;

MS-DOS PROGRAMMER'S MANUAL

;print another character
;carriage return
;line feed
;to offset 1st char, of line
;restore #-of-lines counter
;print another line

SYSTEM CALLS

1-39

Direct Console I/O (Function 06H)

Call
AH = 06H
DL

See text

Return
AL

If DL = FFH (255) before call, then Zero
flag not set means AL has character from
keyboard.
Zero flag set means there was not a cha
racter to get, and AL = 0

The processing depends on the value in DL when the function is
called:

DL is FFH (255) - If a character has been typed at the key
board, it is returned in AL and the Zero flag is 0; if a character
has not been typed, the Zero flag is 1.
DL is not FFH - The character in DL is displayed.

This function does not check for CONTROL-C.

Macro Definition: dir-console-io macro switch
mov dl, switch
mov ah,06H
int 21H
endm

1-40

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Example

The following program sets the system clock to 0 and continuously
displays the time. When any character is typed, the display stops
changing; when any character is typed again, the clock is reset to 0 and
the display starts again:

time db “00:00:00.00”,13,10,“$” ;see Function 0
;for explanation of $

ten db 10

func-06H: set-time 0,0,0,0 ;see Function 2DH
read-clock: get-time ;see Function 2CH

convert ch,ten,time ;see end of chapter
convert cl,ten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dl,ten,time[9] ;see end of chapter
display time ;see Function 09H
dir-console-io FFH ;THIS FUNCTION
jne stop ;yes, stop timer
jmp read-clock ;no, keep timer

;running
stop: read-kbd ;see Function 08H

jmp func-06H ;start over

1-41

Call
AH = 07H

Return
AL

Character from keyboard

Function 07H waits for a character to be typed, then returns it in AL.
This function does not echo the character or check for CONTROL-C.
(For a keyboard input function that echoes or checks for CONTROL-
C, see Functions 01H or 08H.)

Macro Definition: dir-console-input macro
mov ah,07H
int 21H
endm

Example

The following program prompts for a password (8 characters maxi
mum) and places the characters into a string without echoing them:

password db 8 dup(?)
prompt db “Password: $” ;see Function 09H for

explanation of $

Direct Console Input (Function 07H)

func-07H:

get-pass:

continue:

display prompt ;see Function 09H
mov cx,8 ;maximum length of password
xor bx,bx ;so BL can be used as index
dir-console-input ;THIS FUNCTION
cmp al,0DH ;was it a CR?
je continue ;yes, all done
mov password[bx],al ;no, put character in string
inc bx ;bump index
loop get-pass ;get another character

;BX has length of password+1

1-42

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Read Keyboard (Function 08H)

Call
AH = 08H

Return
AL

Character from keyboard

Function 08H waits for a character to be typed, then returns it in AL.
If CONTROL-C is pressed, Interrupt 23H is executed. This function
does not echo the character. (For a keyboard input function that
echoes the character or does not check for CONTROL-C, see Func
tions 01H or 07H.)

Macro Definition: read-kbd macro
mov ah,08H
int 21H
endm

Example

The following program prompts for a password (8 characters max
imum) and places the characters into a string without echoing them:

password db 8 dup(?)
prompt db “Password: $” ;see Function 09H

;for explanation of $

func-08H: display prompt
mov cx,8
xor bx,bx

get-pass: read-kbd
cmp al,0DH
je continue
mov passwordfbx]
inc bx
loop get-pass

continue:

;see Function 09H
;maximum length of password
;BL can be an index
;THIS FUNCTION
;was it a CR?
;yes, all done

,al ;no, put char, in string
;bump index
;get another character
;BX has length of password-l-1

1-43

Display String (Function 09H)

Call
AH = 09H
DS:DX

String to be displayed

Return
None

DX must contain the offset (from the segment address in DS) of a
string that ends with The string is displayed (the $ is not dis
played).

Macro Definition: display macro string
mov dx,offset string
mov ah,09H
int 21H
endm

Example

The following program displays the hexadecimal code of the key that
is typed:

table db “0123456789ABCDEF”
sixteen db 16
result db “ - 00H”,13,10,“$” ;see text for

explanation of $

func-09H: read-kbd-and-echo ;see Function 01H
convert al, sixteen, result[3] ;see end of chapter
display result ;THIS FUNCTION
jmp func-09H ;do it again

1-44

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Buffered Keyboard Input (Function OAH)

Call
AH = OAH
DS:DX

Input buffer

Return
None

DX must contain the offset (from the segment address in DS) of an
input buffer of the following form:

Byte Contents
1 Maximum number of characters in buffer, including the

CR (you must set this value).
2 Actual number of characters typed, not counting the CR

(the function sets this value).
3-h Buffer; must be at least as long as the number in byte 1.

This function waits for characters to be typed. Characters are read
from the keyboard and placed in the buffer beginning at the third
byte until <NEW LINE> is typed. If the buffer fills to one less
than the maximum, additional characters typed are ignored and
ASCII 7 (BEL) is sent to the display until <NEW LINE> is pressed.
The string can be edited at it is being entered. If CONTROL-C is
typed, Interrupt 23H is issued.
The second byte of the buffer is set to the number of characters
entered (not counting the CR).

Macro Definition: get-string macro limit,string
mov dx,offset string
mov string,limit
mov ah,OAH
int 21H
endm

1-45

Example

The following program gets a 16-byte (maximum) string from the
keyboard and fills a 24-line by 80-character screen with it:

buffer label byte
max-length db ? ;maximum length
chars-entered db 9 ;number of chars.
string db \1 dup (?) ;16 chars + CR
strings-per-line dw 0 ;how many strings

;fit on line
crlf db 13,10,”$“

func-OAH: get-string 17,buffer ;THIS FUNCTION
xor bx,bx ;so byte can be

;used as index
mov bl,chars-entered ;get string length
mov buffer[bx+2],”$“ ;see Function 09H
mov al,50H ;columns per line
cbw
div chars-entered ;times string fits

;on line
xor ah,ah ;clear remainder
mov strings-per-line,ax ;save col. counter
mov cx,24 ;row counter

display-screen: push cx ;save it
mov cx, strings-per-line ;get col. counter

display-line: display string ;see Function 09H
loop display-line
display crlf ;see Function 09H
pop cx ;get line counter
loop display-screen ;display 1 more line

1-46

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Check Keyboard Status (Function OBH)

Call
AH = OBH

Return
AL

255 (FFH) = characters in type-ahead
buffer
0 = no characters in type-ahead

buffer

Checks whether there are characters in the type-ahead buffer. If so,
AL returns FFH (255); if not, AL returns 0. If CONTROL-C is in the
buffer, Interrupt 23H is executed.

Macro Definition: check-kbd-status macro
mov ah,OBH
int 21H
endm

Example
The following program continuously displays the time until any key is
pressed.

time db ”00:00:00.00“,13,10,”$“
ten db 10

func-OBH: get-time
convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
check-kbd-status
cmp al, FFH
je all-done
jmp func-OBH

;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;THIS FUNCTION
;has a key been typed?
;yes, go home
;no, keep displaying
;time

1-47

Flush Buffer, Read Keyboard (Function OCFI)

Call
AH = OCH
AL

1, 6, 7, 8, or OAH = The corresponding
function is called.
Any other value = no further processing.

Return
AL

0 = Type-ahead buffer was flushed; no
other
processing performed.

The keyboard type-ahead buffer is emptied. Further processing
depends on the value in AL when the function is called:

1, 6, 7, 8, or OAH - The corresponding MS-DOS
function is executed.

Any other value - No further processing; AL returns 0.

Macro Definition: 'flush-and-read-kbd macro switch

Example
The following program both displays and prints characters as they
are typed. If <NEW LINE> is pressed, the program sends Carriage
Return-Line Feed to both the display and the printer.

mov al,switch
mov ah,0CH
int 21H
endm

func-OCH: flush-and-read-kbd 1
print-char al
cmp al,0DH
jne func-OCH
print-char 10
display-char 10
jmp func-OCH

;THIS FUNCTION
;see Function 05H
;is it a CR?
;no, print it
;see Function 05H
;see Function 02H
;get another character

1-48

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Disk Reset (Function ODH)

Call
AH = ODH

Return
None

Function ODH is used to ensure that the internal buffer cache mat
ches the disks in the drives. This function writes out dirty buffers
(buffers that have been modified), and marks all buffers in the inter
nal cache as free.
Function ODH flushes all file buffers. It does not update directory
entries; you must close files that have changed to update their directo
ry entries (see Function 10H, Close File). This function need not be
called before a disk change if all files that changed were closed. It is
generally used to force a known state of the system; CONTROL-C
interrupt handlers should call this function.

Macro Definition: disk-reset macro disk
mov ah,ODH
int 21H
endm

Example
mov ah,ODH
int 21H

;There are no errors returned by this call.

1-49

Select Disk (Function OEH)

Call
AH = OEH
DL

Drive number
(0 = A:, 1 = B:, etc.)

Return
AL

Number of logical drives

The drive specified in DL (0 = A:, 1 = B:, etc.) is selected as the
default disk. The number of drives is returned in AL.

Macro Definition: select-disk macro disk

Example
The following program selects the drive not currently selected in a
2-drive system:

mov dl,disk[-64]
mov ah, OEH
int 21H
endm

func-OEH: current-disk ;see Function 19H
;drive A: selected?
;yes, select B

cmp al,00H
je select-b
select-disk ”A“
jmp continue

;THIS FUNCTION

select-b: select-disk ”B“
Continue: •

;THIS FUNCTION

1-50

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Open File (Function OFH)

Call
AH = OFH
DS:DX

Unopened FCB

Return
AL

0 = Directory entry found
255 (FFH) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened File Control Block (FCB). The disk directory is searched
for the named file.
If a directory entry for the file is found, AL returns 0 and the FCB is
filled as follows:

If the drive code was 0 (default disk), it is changed to the actual
disk used (1 = A:, 2 = B:, etc.). This lets you change the default
disk without interfering with subsequent operations on this file.
The current Block field (offset OCH) is set to zero. (This is
true only for MS-DOS versions that are higher than 2.0.)
The Record Size (offset OEH) is set to the system default of 128.
The File Size (offset 10H), Date of Last Write (offset 14H), and
Time of Last Write (offset 16H) are set from the directory
entry.

Before performing a sequential disk operation on the file, you must
set the Current Record field (offset 20H). Before performing a ran
dom disk operation on the file, you must set the Relative Record field
(offset 21H). If the default record size (128 bytes) is not correct, set it
to the correct length.

1-51

If a directory entry for the file is not found, AL returns FFH (255).

Macro Definition: open macro fcb
mov dx,offset fcb
mov ah,0FH
int 2.1 H
endm

Example
The following program prints the file named TEXTFILE.ASC that is
on the disk in drive B:. If a partial record is in the buffer at end-of-file,
the routine that prints the partial record prints characters until it
encounters an end-of-file mark (ASCII 26, or CONTROL-Z):

fcb db 2,”TEXTFILEASC”
db 25 dup (?)

buffer db 128 dup (?)

func-OFH: set-dta buffer ;see Function 1AFI
open fcb ;THIS FUNCTION

read-line: read-seq fcb ;see Function 14H
cmp al,02H ;end of file?
je all-done ;yes, go home
cmp al,00H ;more to come?
jg check-more ;no, check for partial

;record
mov cx,128 ;yes, print the buffer
xor si,si ;set index to 0

print-it: print-char buffer[si] ;see Function 05H
inc si ;bump index
loop print-it ;print next character
jmp read-line ;read another record

check-more: cmp al,03H ;part. record to print?
jne all-done ;no
mov cx,128 ;yes, print it
xor si,si ;set index to 0

fmd-eof: cmp buffer[si],26 ;end-of-file mark?
je all-done ;yes
print-char buffer[si] ;see Function 05H
inc si ;bump index to next

character
loop fmd-eof

all-done: close fcb ;see Function 10H
1-52

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Close File (Function 10H)

Call
AH = 10 H
DS:DX

Opened FCB

Return
AL

0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (to the segment address in DS) of an
opened FCB. The disk directory is searched for the file named in the
FCB. This function must be called after a file is changed to update the
directory entry.
If a directory entry for the file is found, the location of the file is
compared with the corresponding entries in the FCB. The directory
entry is updated, if necessary, to match the FCB, and AL returns 0.
If a directory entry for the file is not found, AL returns FFH (255).

Macro Definition: close macro fcb
mov dx,offset fcb
mov ah,10H
int 21H
endm

Example
The following program checks the first byte of the file named MOD 1.-
BAS in drive B: to see if it is FFH, and prints a message if it is:

message db
fcb db

db
buffer db

’’Not saved in ASCII format“, 13,10,”$“
2,’’MODI BAS“
25 dup (?)
128 dup (?)

func-10H: set-dta buffer
open fcb
read-seq fcb

;see Function 1AH
;see Function OFH
;see Function 14H

1-53

cmp buffer,FFH ;is first byte FFH?
jne all-done ;no
display message ;see Function 09H

all-done: close fcb ;THIS FUNCTION

1-54

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Search for First Entry (Function 11H)

Call
AH = 11H
DS:DX

Unopened FCB
Return
AL

0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened FCB. The disk directory is searched for the first matching
name. The name can have the ? wild card character to match any
character. To search for hidden or system files, DX must point to the
first byte of the extended FCB prefix.
If a directory entry for the filename in the FCB is found, AL returns 0
and an unopened FCB of the same type (normal or extended) is
created at the Disk Transfer Address.
If a directory entry for the filename in the FCB is not found, AL
returns FFH (255).

Notes:
If an extended FCB is used, the following search pattern is used:

1. If the FCB attribute is zero, only normal file entries are found.
Entries for volume label, sub-directories, hidden, and system files
will not be returned.

2. If the attribute field is set for hidden or system files, or directory
entries, it is to be considered as an inclusive search. All normal file
entries plus all entries matching the specified attributes are retur
ned. To look at all directory entries except the volume label, the
attribute byte may be set to hidden + system -I- directory (all 3 bits
on).

1-55

3. If the attribute field is set for the volume label, it is considered an
exclusive search, and only the volume label entry is returned.

Macro Definition: search-first macro fcb
mov dx,offset fcb
mov ah,llH
int 21H
endm

Example
The following program verifies the existence of a file named
REPORT.ASM on the disk in drive B::

yes db ’’FILE EXISTS.$“
no db ’’FILE DOES NOT EXIST.$“
fcb db 2,’’REPORT ASM“

db 25 dup (?)
buffer db 128 dup (?)

func-llH: set-dta buffer ;see Function 1AH
search-first fcb ;THIS FUNCTION
cmp al,FFH directory entry found?
je not-there ;no
display yes ;see Function 09H
jmp continue

not-there: display no ;see Function 09H
continue: display crlf ;see Function 09H

1-56

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Search for Next Entry (Function 12H)

Call
AH = 12H
DS:DX

Unopened FCB

Return
AL

0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
FCB previously specified in a call to Function 11H. Function 12H is
used after Function 11H (Search for First Entry) to find additional
directory entries that match a filename that contains wild card charac
ters. The disk directory is searched for the next matching name. The
name can have the ? wild card character to match any character. To
search for hidden or system files, DX must point to the first byte of
the extended FCB prefix.
If a directory entry for the filename in the FCB is found, AL returns 0
and an unopened FCB of the same type (normal or extended) is
created at the Disk Transfer Address.
If a directory entry for the filename in the FCB is not found, AL
returns FFH (255).

Macro Definition: search-next macro fcb
mov dx,offset fcb
mov ah,12H
int 21H
endm

Example
The following program displays the number of files on the disk in
drive B:

message db ”No files“,10,13,”$'
files db 0
ten db 10
fcb db 1 ” 9 7 9 9 9 9 9 9 9 9 9 “

db 25 dup (?)
buffer db 128 dup (?)

1-57

func-12H: set-dta buffer ;see Function 1AFI
search-first fcb ;see Function 11H
cmp al,FFH directory entry found?
je all-done ;no, no files on disk
inc files ;yes, increment file

;counter
search-dir: search-next fcb ;THIS FUNCTION

cmp al,FFH directory entry found?
je done ;no
inc files ;yes, increment file

;counter
jmp search-dir ;check again

done: convert files,ten,message ;see end of chapter
all-done: display message ;see Function 09H

1-58

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Delete File (Function 13H)

Call
AH = 13H
DS:DX

Unopened FCB
Return
AL

0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened FCB. The directory is searched for a matching filename.
The filename in the FCB can contain the ? wild card character to
match any character.
If a matching directory entry is found, it is deleted from the directory.
If the ? wild card character is used in the filename, all matching direc
tory entries are deleted. AL returns 0.
If no matching directory entry is found, AL returns FFH (255).

Macro Definition: delete macro fcb
mov dx,offset fcb
mov ah,13H
int 21H
endm

Example
The following program deletes each file on the disk in drive B: that
was last written before December 31, 1982:

year dw 1982
month db 12
day db 31
files db 0
ten db 10
message db ”NO FILES DELETED.”, 13,10,!T

;see Function 09H
explanation of $

fcb db ? ” 9 9 9 9 9 9 9 9 9 9 ? “

db 25 dup (?)

1-59

buffer db 128 dup (?)

func-13H: set-dta buffer ;see Function 1AFI
search-first fcb ;see Function 11H
cmp al,FFH directory entry found?
je all-done ;no, no files on disk

compare: convert-date buffer ;see end of chapter
cmp cx,year ;next several lines
jg next ;check date in directory
cmp dl,month ;entry against date
jg next ;above & check next file
cmp dh,day ;if date in directory
jge next ;entry isn’t earlier.
delete buffer ;THIS FUNCTION
inc files ;bump deleted-files

;counter
next: search-next fcb ;see Function 12H

cmp al,00H directory entry found?
je compare ;yes, check date
cmp files,0 ;any files deleted?
je all-done ;no, display NO FILES

;message.
convert files,ten,message ;see end of chapter

all-done: display message ;see Function 09H

1-60

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Sequential Read (Function 14H)

Call
AH = 14H
DS:DX

Opened FCB

Return
AL

0 = Read completed successfully
1 = EOF
2 = DT A too small
3 = EOF, partial record

DX must contain the offset (from the segment address in DS) of an
opened FCB. The record pointed to by the current block (offset OCH)
and Current Record (offset 20H) fields is loaded at the Disk Transfer
Address, then the Current Block and Current Record fields are
incremented.
The record size is set to the value at offset OEH in the FCB.
AL returns a code that describes the processing:

Code Meaning
0 Read completed successfully.
1 End-of-file, no data in the record.
2 Not enough room at the Disk Transfer Address to read

one record; read canceled.
3 End-of-file; a partial record was read and padded to the

record length with zeros.

Macro Definition: read-seq macro fcb
mov dx,offset fcb
mov ah,14H
int 21H
endm

Example
The following program displays the file named TEXTFILE.ASC that
is on the disk in drive B:; its function is similar to the MS-DOS TYPE
command. If a partial record is in the buffer at end of file, the routine
that displays the partial record displays characters until it encounters
an end-of-file mark (ASCII 26, or CONTROL-Z):

1-61

fcb db 2,”TEXTFILEASC“
db 25 dup (?)

buffer db 128 dup (?),”$“

func-14H: set-dta buffer ;see Function 1AH
open fcb ;see Function OFH

read-line: read-seq fc ;THIS FUNCTION
cmp al,02H ;end-of-file?
je all-done ;yes
cmp al,02H ;end-of-file with partial

;record?
jg check-more ;yes
display buffer ;see Function 09H
jmp read-line ;get another record

check-more: cmp al,03H ;partial record in buffer?
jne all-done ;no, go home
xor si,si ;set index to 0

find-eof: cmp buffer[si],26 ;is character EOF?
je all-done ;yes, no more to display
display-char buffer[si] ;see Function 02H
inc si ;bump index to next

character
jmp find-eof ;check next character

all-done close fcb ;see Function 10H

1-62

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Sequential Write (Function 15H)

Call
AH = 15H
DS:DX

Opened FCB

Return
AL

00H = Write completed successfully
01H = Disk full
02H = DTA too small

DX must contain the offset (from the segment address in DS) of an
opened FCB. The record pointed to by Current Block (offset OCH)
and Current Record (offset 20H) fields is written from the Disk
Transfer Address, then the current block and current record fields are
incremented.
The record size is set to the Value at offset OEH in the FCB. If the
Record Size is less than a sector, the data at the Disk Transfer Ad
dress is written to a buffer; the buffer is written to disk when it con
tains a full sector of data, or the file is closed, or a Reset Disk system
call (Function ODH) is issued.
AL returns a code that describes the processing:

Code Meaning
0 Transfer completed successfully.
1 Disk full; write canceled.
2 Not enough room at the Disk Transfer Address to write

one record; write canceled

Macro Definition: write-seq macro fcb
mov dx,offset fcb
mov ah,15H
int 21H
endm

1-63

Example
The following program creates a file named DIR.TMP on the disk in
drive B: that contains the disk number (0 = A:, 1 = B:, etc.) and
filename from each directory entry on the disk:

record-size equ 14 ;offset of Record Size
;field in FCB

fehl db 2,”DIR TMP“
db 25 dup (?)

fcb2 db ? ” 9 9 9 9 9 9 9 9 9 9 9 “

db 25 dup (?)
buffer db 128 dup (?)

func-15H: set-dta buffer ;see Function 1AH
search-first O

*
CT

h

O ;see Function 11H
emp al,FFH directory entry found?
je all-done ;no, no files on disk
create fcbl ;see Function 16H
mov fcbl[record-size],12

;set record size to 12
write-it: write-seq fcbl ;THIS FUNCTION

search-next fcb2 ;see Function 12H
emp al,FFH directory entry found?
je all-done ;no, go home
jmp write-it ;yes, write the record

all-done: close fcbl ;see Function 10H

1-64

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Create File (Function 16H)

Call
AH = 16H
DS:DX

Unopened FCB

Return
AL

00H = Empty directory found
FFH (255) = No empty directory

available

DX must contain the offset (from the segment address in DS) of an
unopened FCB. The directory is searched for an empty entry or an
existing entry for the specified filename.
If an empty directory entry is found, it is initialized to a zero-length
file, the Open File system call (Function OFH) is called, and AL
returns 0. You can create a hidden file by using an extended FCB
with the attribute byte (offset FCB-1) set to 2.
If an entry is found for the specified filename, all data in the file is
released, making a zero-length file, and the Open File system call
(Function OFH) is issued for the filename (in other words, if you try to
create a file that already exists, the existing file is erased, and a new,
empty file is created).
If an empty directory entry is not found and there is no entry for the
specified filename, AL returns FFH (255).

Macro Definition: create macro fcb
mov dx,offset fcb
mov ah,16H
int 21H
endm

Example
The following program creates a file named DIR.TMP on the disk in
drive B: that contains the disk number (0 = A:, 1 = B:, etc.) and
filename from each directory entry on the disk:

1-65

record-size equ 14 ;offset of Record Size
;field of FCB

fehl db 2,”DIR TMP“
db 25 dup (?)

fcb2 db 9 ” 9 9 9 9 9 9 9 9 9 9 9 “

db 25 dup (?)
buffer db 128 dup (?)

func-16H: set-dta buffer ;see Function 1AH
search-first fcb2 ;see Function 11H
cmp al,FFH directory entry found?
je all-done ;no, no files on disk
create fcbl ;THIS FUNCTION
mov fcbl[record-size],12

;set record size to 12
write-it: write-seqfcbl ;see Function 15H

search-next fcb2 ;see Function 12H
cmp al,FFH directory entry found?
je all-done ;no, go home
jmp write-it ;yes, write the record

all-done: close fcbl ;see Function 10H

1-66

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Rename File (Function 17H)

Call
AH = 17H
DS:DX

Modified FCB

Return
AL

00H = Directory entry found
EFH (255) = No directory entry
found or destination already exists

DX must contain the offset (from the segment address in DS) of an
FCB with the drive number and filename filled in, followed by a
second filename at offset 11H. The disk directory is searched for an
entry that matches the first filename, which can contain the ? wild
card character.
If a matching directory entry is found, the filename in the directory
entry is changed to match the second filename in the modified FCB
(the two filenames cannot be the same name). If the ? wild card
character is used in the second filename, the corresponding charac
ters in the filename of the directory entry are not changed. AL returns
0 .
If a matching directory entry is not found or an entry is found for the
second filename, AL returns FFH (255).

Macro Definition: rename macro fcb,newname
mov dx,offset fcb
mov ah,17H
int 21H
endm

Example
The following program prompts for the name of a file and a new
name, then renames the file:

fcb db 37 dup (?)
promptl db ’’Filename: $“
prompt2 db ’’New name: $'
reply db 17 dup(?)
crlf db 13,10,”$“

1-67

fimc-17H: display promptl
get-string 15,reply
display crlf
parse reply[2],fcb
display prompt2
get-string 15,reply
display crlf
parse reply[2],fcb[16]

rename fcb

;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 09H
;see Function OAH
;see Function 09 H

;see Function 29H
;THIS FUNCTION

1-68

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Current Disk (Function 19H)

Call
AH = 19H

Return
AL

Currently selected drive
(0 = A, 1 = B, etc.)

AL returns the currently selected drive (0 = A:, 1 = B:, etc.).

Macro Definition: current-disk macro
mov ah,19H
int 21H
endm

Example
The following program displays the currently selected (default) drive
in a 2-drive system:

message db ’’Current disk is $“ ;see Function 09H
;for explanation of $

crlf db 13,10,”$“

func-19H: display message ;see Function 09H
current-disk ;THIS FUNCTION
cmp al,00H ;is it disk A?
jne disk-b ;no, it’s disk B:
display-char ”A“
jmp all-done

;see Function 02H

disk-b: display-char ”B“ ;see Function 02H
all-done: display crlf ;see Function 09H

1-69

Call
AH = 1AH
DS:DX

Disk Transfer Address

Return
None

DX must contain the offset (from the segment address in DS) of the
Disk Transfer Address. Disk transfers cannot wrap around from the
end of the segment to the beginning, nor can they overflow into
another segment.

Set Disk Transfer Address (Function 1AH)

NOTE

If you do not set the Disk Transfer Address,
MS-DOS defaults to offset 80H in the
Program Segment Prefix.

Macro Definition: set-dta macro buffer
mov dx,offset buffer
mov ah,lAH
int 21H
endm

Example
The following program prompts for a letter, converts the letter to its
alphabetic sequence (A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file named ALPHABET.DAT on the
disk in drive B:. The file contains 26 records; each record is 28 bytes
long:

record-size equ 14 ;offset of Record Size
;field of FCB

relative-record equ 33 ;offset of Relative Record
;field of FCB

1-70

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

fcb db 2 “ALPHABETDAT”
db 25 dup (?)

buffer db 34 dup (?),“$”
prompt db “Enter letter: $55

crlf db 13,10,“$”

func-lAH: set-dta buffer ;THIS FUNCTION
open fcb ;see Function OFH
mov fcb[record-size],28 ;set record size

get-char: display prompt ;see Function 09H
read-kbd-and-echo ;see Function 01H
cmp al,0DH just a CR?
je all-done ;yes, go home
sub al,41H ;convert ASCII

;code to record #
mov fcb[relative-record],al

;set relative record
display crlf ;see Function 09H
read-ran fcb ;see Function 21H
display buffer ;see Function 09H
display crlf ;see Function 09H
jmp get-char ;get another character

all-done: close fcb ;see Function 10H

1-71

Call
AH = 21H
DS:DX

Opened FCB

Return
AL

00H = Read completed successfully
01H = EOF
02H = DTA too small
03H = EOF, partial record

DX must contain the offset (from the segment address in DS) of an
opened FCB. The Current Block (offset OCH) and Current Record
(offset 20H) fields are set to agree with the Relative Record field
(offset 21H), then the record addressed by these fields is loaded at the
Disk Transfer Address.
AL returns a code that describes the processing:

Code Meaning

0 Read completed successfully.

1 End-of-file; no data in the record.

2 Not enough room at the Disk Transfer Address to read
one record; read canceled.

3 End-of-file; a partial record was read and padded to the
record length with zeros.

Macro Definition: read-ran macro fcb
mov dx,offset fcb
mov ah,21H
int 21H
endm

Example

The following program prompts for a letter, converts the letter to its
alphabetic sequence (A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file namedALPHABET.DAT on the disk
in drive B:. The file contains 26 records; each record is 28 bytes long:

Random Read (Function 21H)

1-72

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

record-size equ 14 ;offset of Record Size
jfield of FCB

relative-record equ 33 ;offset of Relative Record
jfield of FCB

fcb db 2,“ALPHABETDAT”
db 25 dup (?)

buffer db 34 dup (?),“$”
prompt db “Enter letter: $’
crlf db 13,10,“$”

func-21H: set-dta buffer ;see Function IAH
open fcb ;see Function OFH
mov fcb[record-size],28 ;set record size

get-char: display prompt ;see Function 09H
read-kbd-and-echo ;see Function 01H
cmp al,0DH jjust a CR?
je all-done ;yes, go home
sub al,41H ;convert ASCII code

;to record #
mov fcb[relative-record],al ;set relative

jrecord
display crlf ;see Function 09H
read-ran fcb ;THIS FUNCTION
display buffer ;see Function 09H
display crlf ;see Function 09H
jmp get-char ;get another char.

all-done: close fcb ;see Function 10H

1-73

Call
AH = 22H
DS:DX

Opened FCB

Return
AL

00H = Write completed successfully
01H = Disk full
02H = DTA too small

DX must contain the offset from the segment address in DS of an
opened FCB. The Current Block (offset OCH) and Current Record
(offset 20H) fields are set to agree with the Relative Record field
(offset 21H), then the record addressed by these fields is written from
the Disk Transfer Address. If the record size is smaller than a sector
(512 bytes), the records are buffered until a sector is ready to write.
AL returns a code that describes the processing:

Code Meaning

0 Write completed successfully.

1 Disk is full.

2 Not enough room at the Disk Transfer Address to write
one record; write canceled.

Macro Definition: write-ran macro fcb
mov dx,offset fcb
mov ah,22H
int 21H
endm

Random Write (Function 22H)

Example
The following program prompts for a letter, converts the letter to its
alphabetic sequence (A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file named ALPHABET.DAT on the
disk in drive B:. After displaying the record, it prompts the user to
enter a changed record. If the user types a new record, it is written to
the file; if the user just presses <NEW LINE>, the record is not re
placed. The file contains 26 records,- each record is 28 bytes long:
1-74

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

record-size equ 14 ;offset of Record Size
;field of FCB

relative-record equ 33 ;offset of Relative Record
;field of FCB

fcb db 2,“ALPHABETDAT”
db 25 dup (?)

buffer db 26 dup (?),13,10,“$ ”
promptl db “Enter letter: 3159

prompt2 db “New record (<NEW LINE> for no change). $
crlf db 13,10,“$”
reply db 28 dup (32)
blanks db 26 dup (32)

func-22H: set-dta buffer ;see Function 1AH
open fcb ;see Function OFH
mov fcb[record-size],32 ;set record size

get-char: display promptl ;see Function 09H
read-kbd-and-echo ;see Function 01H
cmp al,0DH just a CR?
je all-done ;yes, go home
sub al,41H ;convert ASCII

;code to record #
mov fcb[relative-record],al

;set relative record
display crlf ;see Function 09H
read-ran fcb ;THIS FUNCTION
display buffer ;see Function 09H
display crlf ;see Function 09H
display prompt2 ;see Function 09H
get-string 27,reply ;see Function OAH
display crlf ;see Function 09H
cmp reply[l],0 ;was anything typed

;besides CR?
je get-char ;no

;get another char.
xor bx,bx ;to load a byte
mov bl,reply[l] ;use reply length as

;counter
move-string blanks,buffer,26 ;see chapter end
move-string reply[2],buffer,bx ;see chapter end
write-ran fcb ;THIS FUNCTION .
jmp get-char ;get another character

all-done: close fcb ;see Function 10H

1-75

File Size (Function 23H)

Call
AH = 23H
DS:DX

Unopened FCB

Return
AL

00H = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened FCB. You must set the Record Size field (offset OEH) to
the proper value before calling this function. The disk directory is
searched for the first matching entry.
If a matching directory entry is found, the Relative Record field
(offset 21H) is set to the number of records in the file, calculated from
the total file size in the directory entry (offset ICH) and the Record
Size field of the FCB (offset OEH). AL returns 00.
If no matching directory is found, AL returns FFH (255).

NOTE

If the value of the Record Size field of the
FCB (offset OEH) doesn’t match the actual
number of characters in a record, this
function does not return the correct file size.
If the default record size (128) is not correct,
you must set the Record Size field to the
correct value before using this function.

1-76

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Macro Definition: file-size macro fcb
mov dx,offset fcb
mov ah,23H
int 21H
endm

Example

The following program prompts for the name of a file, opens the file
to fill in the Record Size field of the FCB, issues a File Size system
call, and displays the file size and number of records in hexadecimal:

fcb db 37 dup (?)
prompt db “File name: $”
msgl db “Record length: “,13,10,“$”
msg2 db “Records: “,13,10,“$”
crlf db 13,10,“$”
reply db 17 dup (?)
sixteen db 16

func-23H: display prompt ;see Function 09H
get-string 17,reply ;see Function OAH
cmp reply[l],0 just a CR?
jne get-length ;no, keep going
jmp all-done ;yes, go home

get-length: display crlf ;see Function 09H
parse reply[2],fcb ;see Function 29H
open fcb ;see Function 0FF1
file-size fcb ;THIS FUNCTION
mov si,33 ;offset to Relative

;Record field
mov di,9 ;reply in msg-2

convert-it: cmp fcb[si],0 ;digit to convert?
je show-it ;no, prepare message
convert fcb[si],sixteen,msg-2[di]
inc si ;bump n-o-r index
inc di ;bump message index
jmp convert-it ;check for a digit

show-it: convert fcb[14],sixteen,msg-l[15]
display msg-1 ;see Function 09H
display msg-2 ;see Function 09H
jmp func-23H ;get a filename

all-done: close fcb ;see Function 10H
1-77

Set Relative Record (Function 24H)

Call
AH = 24H
DS:DX

Opened FCB

Return
None

DX must contain the offset (from the segment address in DS) of an
opened FCB. The Relative Record field (offset 21H) is set to the same
file address as the Current Block (offset OCH) and Current Record
(offset 20H) fields.

Macro Definition: set-relative-record macro fcb
mov dx,offset fcb
mov ah,24H
int 21H
endm

Example

The following program copies a file using the Random Block Read
and Random Block Write system calls. It speeds the copy by setting
the record length equal to the file size and the record count to 1, and
using a buffer of 32K bytes. It positions the file pointer by setting the
Current Record field (offset 20H) to 1 and using Set Relative Record
to make the Relative Record field (offset 21H) point to the same
record as the combination of the Current Block (offset OCH) and
Current Record (offset 20H) fields:

current-record equ 32 ;offset of Current Record
;field of FCB

file-size equ 16 ;offset of File Size
;field of FCB

fcb db 37 dup (?)
filename db 17 dup (?)
promptl db “File to copy: $” ;see Function 09H for
prompt2 db “Name of copy: $” explanation of $
crlf db 13,10,“$”

1-78

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

file-length dw ?
buffer db 32767 dup (?)

func-24H: set-dta buffer ;see Function 1AH
display promptl ;see Function 09H
get-string 15, filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFFI
mov fcb[current-record],0 ;set Current Record

;field
set-relative-record fcb ;THIS FUNCTION
mov ax,word ptr fcbffile-size] ;get file size
mov file-length,ax ;save it for

;ran-block-write
ran-block-read fcb,l,ax ;see Function 27H
display prompt2 ;see Function 09H
get-string 15,filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
create fcb ;see Function 16H
mov fcb[current-record],0 ;set Current Record

;field
set-relative-record fcb ;THIS FUNCTION
mov ax,file-length ;get original file

;length
ran-block-write fcb,l,ax ;see Function 28H
close fcb ;see Function 10H

1-79

Set Vector (Function 25H)

Call
AH = 25H
AL

Interrupt number
DS:DX

Interrupt-handling routine

Return
None

Function 25H should be used to set a particular interrupt vector. The
operating system can then manage the interrupts on a per-process
basis. Note that programs should never set interrupt vectors by wri
ting them directly in the low memory vector table.
DX must contain the offset (to the segment address in DS) of an
interrupt-handling routine. AL must contain the number of the
interrupt handled by the routine. The address in the vector table for
the specified interrupt is set to DS:DX.

Macro Definition: set-vector macro interrupt, seg-addr,off-addr
push ds
mov ax,seg-addr
mov ds,ax
mov dx,off-addr
mov ah,25H
mov al,interrupt
int 21H
pop
endm

ds

Example

Ids dx,intvector
mov ah,25H
mov al,intnumber
int 21H
;There are no errors returned

1-80

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Random Block Read (Function 27H)

Call
AH = 27H
DS:DX

Opened FCB
CX

Number of blocks to read

Return
AL

00H = Read completed successfully
01H - EOF
02H = End of segment
03H = EOF, partial record

CX
Number of blocks read

DX must contain the offset (to the segment address in DS) of an
opened FCB. CX must contain the number of records to read; if it
contains 0, the function returns without reading any records (no
operation). The specified number of records - calculated from the
Record Size field (offset OEH) - is read starting at the record specified
by the Relative Record field (offset 21H). The records are placed at
the Disk Transfer Address.
AL returns a code that describes the processing:

Code Meaning

0 Read completed successfully.

1 End-of-file; no data in the record.

2 Not enough room at the Disk Transfer Address to read
one record; read canceled.

3 End-of-file; a partial record was read and padded to the
record length with zeros.

CX returns the number of records read; the Current Block (offset
OCH), Current Record (offset 20H), and Relative Record (offset 21H)
fields are set to address the next record.

1-81

Macro Definition: ran-block-read macro fcb,count,rec-size
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],rec-size
mov ah,27H
int
endm

21H

Example

The following program copies a file using the Random Block Read
system call. It speeds the copy by specifying a record count of 1 and a
record length equal to the file size, and using a buffer of 32 K bytes;
the file is read as a single record (compare to the sample program for
Function 28H that specifies a record length of 1 and a record count
equal to the file size):
current-record equ 32 ;offset of Current Record field
file-size equ 16 ;offset of File Size field

fcb db 37 dup (?)
filename db 17 dup(?)
prompt 1 db ’’File to copy: $” ;see Function 09H :
prompt2 db ’’Name of copy: $” explanation of $
crlf db 13,10,”$”
file-length dw ?
buffer db 32767 dup(?)

func-27H: set-dta buffer ;see Function 1AH
display promptl ;see Function 09H
get-string 15,filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current-record],0 ;set Current

;Record field
set-relative-record fcb ;see Function 24H
mov ax,word ptr fcb[file-size]

;get file size
mov file-length,ax ;save it for

;ran-block-write
ran-block-read fcb,1,ax ;THIS FUNCTION

1-82

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

display prompt2
get-string 15,filename
display crlf
parse filename[2],fcb
create fcb
mov fcb[current-record]

set-relative-record fcb
mov ax, file-length

ran-block-write fcb,l,ax
close fcb

;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H

,0
;set Current Record
;field
;see Function 24H
;get original file
;size
;see Function 28H
;see Function 10H

1-83

Call
AH = 28H
DS.DX

Opened FCB
CX

Number of blocks to write
(0 = set File Size field)

Return
AL

00H = Write completed successfully
01H = Disk full
02H = End of segment

CX
Number of blocks written

DX must contain the offset (to the segment address in DS) of an
opened FCB; CX must contain either the number of records to write
or 0. The specified number of records (calculated from the Record
Size field, offset OEH) is written from the Disk Transfer Address. The
records are written to the file starting at the record specified in the
Relative Record field (offset 21H) of the FCB. If CX is 0, no records
are written, but the File Size field of the directory entry (offset ICH) is
set to the number of records specified by the Relative Record field of
the FCB (offset 21H); allocation units are allocated or released, as
required.
AL returns a code that describes the processing:

Code Meaning

0 Write completed successfully.

1 Disk full. No records written.

2 Not enough room at the Disk Transfer Address to read
one record; read canceled.

CX returns the number of records written; the current block (offset
OCH), Current Record (offset 20H), and Relative Record (offset 21H)
fields are set to address the next record.

Random Block Write (Function 28H)

1-84

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Macro Definition: ran-block-write macro fcb,count,rec-size
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],

rec-size
mov ah,28H
int 21H
endm

Example

The following program copies a file using the Random Block Read
and Random Block Write system calls. It speeds the copy by speci
fying a record count equal to the file size and a record length of 1, and
using a buffer of 32K bytes; the file is copied quickly with one disk
access each to read and write (compare to the sample program of
Function 27H, that specifies a record count of 1 and a record length
equal to file size):

current-record equ 32 ;offset of Current Record field
file-size equ 16 ;offset of File Size field

fcb db 37 dup (?)
filename db 17 dup(?)
promptl db “File to copy: $” ;see Function 09H for
prompt2 db “Name of copy: $” explanation of $
crlf db 13,10,“$”
num-recs dw ?
buffer db 32767 dup(?)

func-28H: set-dta buffer ;see Function 1AH
display promptl ;see Function 09H
get-string 15, filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcbjcurrent-record] ,0

;set Current Record
;field

set-relative-record fcb ;see Function 24H
mov ax, word ptr fcb[file-size]

;get file size
1-85

mov num-recs,ax ;save it for
;ran-block-write

ran-block-read fcb,num-recs,l ;THIS FUNCTION
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H

display prompt2
get-string 15,filename
display crlf
parse filename[2],fcb
create fcb
mov fcb[current-record],0 ;set Current

;Record field
set-relative-record fcb ;see Function 24H
mov ax, file-length ;get size of original
ran-block-write fcb,num-recs,l ;see Function 28H
close fcb ;see Function 10H

MS-DOS PROGRAMMERS MANUAL SYSTEM CALLS

Parse File Name (Function 29H)

Call
AH = 29H
AL

Controls parsing (see text)
DS:SI

String to parse
ES:DI

Unopened FCB

Return
AL

00H = No wild card characters
01H = Wild-card characters used
FFH (255) = Drive letter invalid

DS:SI
First byte past string that was parsed

ES:DI
Unopened FCB

SI must contain the offset (to the segment address in DS) of a string
(command line) to parse; DI must contain the offset (to the segment
address in ES) of an unopened FCB. The string is parsed for a file
name of the form d:filename.ext; if one is found, a corresponding
unopened FCB is created at ES:DI.
Bits 0-3 of AL control the parsing and processing. Bits 4-7 are ignored:

Bit Value Meaning

0 0 All parsing stops if a file separator is encountered.
1 Leading separators are ignored.

1 0 The drive number in the FCB is set to 0 (default
drive) if the string does not contain a drive num
ber.

1 The drive number in the FCB is not changed if the
string does not contain a drive number.

2 1 The filename in the FCB is not changed if the
string does not contain a filename.

0 The filename in the FCB is set to 8 blanks if the
string does not contain a filename.

3 1 The extension in the FCB is not changed if the
string does not contain an extension.

0 The extension in the FCB is set to 3 blanks if the
string does not contain an extension.

1-87

If the filename or extension includes an asterisk (*), all remaining
characters in the name or extension are set to question mark (?).

Filename separators:

: . ; , = + / “ [] \ < > l space tab

Filename terminators include all the filename separators plus any
control character. A filename cannot contain a filename terminator; if
one is encountered, parsing stops.

If the string contains a valid filename:

1. AL returns 1 if the filename or extension contains a wild
card character (* or ?); AL returns 0 if neither the filename
nor extension contains a wild card character.

2. DS:SI point to the first character following the string that
was parsed.
ES:DI point to the first byte of the unopened FCB.

If the drive letter is invalid, AL returns FFH (255). If the string does
not contain a valid filename, ES :DI+1 points to a blank (ASCII 20H).

Macro Definition: parse macro string,fcb
mov si,offset string
mov di,offset fcb
push es
push ds
pop es
mov al,0FH ;bits 0,1,2,3 on
mov ah,29H
int 21H
pop
endm

es

Example

The following program verifies the existence of the file named in
reply to the prompt:

fcb db 37 dup (?)
prompt db “Filename: $”
reply db 17 dup(?)
yes db “FILE EXISTS”,13,10,“$:
1-88

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

no db “FILE DOES NOT EXIST”,13,10,“$”

func-29H:

not-there:
continue:

display prompt
get-string 15,reply
parse reply[2],fcb
search-first fcb
cmp al,FFH
je not-there
display yes
jmp continue
display no

;see Function 09H
;see Function OAH
;THIS FUNCTION
;see Function 11H
;dir. entry found?
;no
;see Function 09H

1-89

Get Date (Function 2AH)

Call
AH - 2AH

Return
CX

Year (1980 - 2099)
DH

Month (1 - 12)
DL

Day (1 -31)
AL

Day of week (0=Sun., 6=Sat.)

This function returns the current date set in the operating system as
binary numbers in CX and DX:

CX Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)
AL Day of week (0 = Sunday, 1 = Monday, etc.)

Macro Definition: get-date macro
mov ah,2AH
int 21H
endm

Example

The following program gets the date, increments the day, increments
the month or year, if necessary, and sets the new date:

month db 31,28,31,30,31,30,31,31,30,31,30,31

func-2AH: get-date ;see above
inc dl increment day
xor bx,bx ;so BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp dl,month[bx] ;past end of month?
jle month-ok ;no, set the new date
mov dl,l ;yes, set day to 1

1-90

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

inc dh ;and increment month
cmp dh,12 ;past end of year?

jle month-ok ;no, set the new date
mov dh,l ;yes, set the month to
inc cx ;increment year

month-ok: set-date cx,dh,dl ;THIS FUNCTION

1-91

Set Date (Function 2BH)

Call
AH - 2BH
CX

Year (1980 - 2099)
DH

Month (1 - 12)
DL

Day (1 -31)

Return
AL

00H = Date was valid
FFH (255) = Date was invalid

Registers CX and DX must contain a valid date in binary:

CX Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)

If the date is valid, the date is set and AL returns 0. If the date is not
valid, the function is canceled and AL returns FFH (255).

Macro Definition: set-date macro year,month,day
mov cx,year
mov dh,month
mov dl,day
mov ah,2BH
int 21H
endm

Example

The following program gets the date, increments the day, increments
the month or year, if necessary, and sets the new date:

func-2BH: get-date ;see Function 2AH
increment day
;so BL can be used as index

inc
xor

dl
bx,bx

1-92

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

mov bl,dh
dec bx
cmp dl,month[bx]
jle month-ok
mov dl,l
inc dh
cmp dh,12
jle month-ok
mov dh,l
inc cx

month-ok: set-date cx,dh,dl

;move month to index register
;month table starts with 0
;past end of month?
;no, set the new date
;yes, set day to 1
;and increment month
;past end of year?
;no, set the new date
;yes, set the month to 1
increment year
;THIS FUNCTION

1-93

Call
AH - 2CH

Return
CH

Hour (0 - 23)
CL

Minutes (0 - 59)
DH

Seconds (0 - 59)
DL

Hundredths (0 - 99)

This function returns the current time set in the operating system as
binary numbers in CX and DX:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

Macro Definition: get-time macro

Get Time (Function 2CH)

The following program continuously displays the time until any key is
pressed:

mov ah,2CH
int 21H
endm

Example

time db “00:00:00.00”,13,10,“$:
ten db 10

func-2CH: get-time ;THIS FUNCTION
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;see Function 0BH

convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
check-kbd-status
cmp al,FFH
je all-done
jmp func-2CH

;has a key been pressed?
;yes, terminate
;no, display time

1-94

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Set Time (Function 2DH)

Call
AH = 2DH
CH

Hour (0 - 23)
CL

Minutes (0 - 59)
DH

Seconds (0 - 59)
DL

Hundredths (0 - 99)

Return
AL

00H = Time was valid
FFH (255) = Time was invalid

Registers CX and DX must contain a valid time in binary:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

If the time is valid, the time is set and AL returns 0. If the time is not
valid, the function is canceled and AL returns FFH (255).

Macro Definition: set-time macro
mov
mov
mov
mov
mov
int
endm

hour,minutes,seconds,hundredths
ch,hour
cl,minutes
dh,seconds
dl,hundredths
ah,2DH
21H

Example

The following program sets the system clock to 0 and continuously
displays the time. When a character is typed, the display freezes;
when another character is typed, the clock is reset to 0 and the display
starts again:

1-95

time db “00:00:00.00”,13,10,“$”
ten db 10

func-2DH: set-time 0,0,0,0 ;THIS FUNCTION
read-clock: get-time ;see Function 2CH

convert ch,ten,time ;see end of chapter
convert cl,ten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dl,ten,time[9] ;see end of chapter
display time ;see Function 09H
dir-console-io FFH ;see Function 06H
cmp al,00H ;was a char, typed?
jne stop ;yes, stop the timer
jmp read-clock ;no keep timer on

stop: read-kbd ;see Function 08H
jmp func-2DH ;keep displaying time

1-96

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Set/Reset Verify Flag (Function 2EH)

Call
AH = 2EH
AL

00H = Do not verify
01H = Verify

Return
None

AL must be either 1 (verify after each disk write) or 0 (write without
verifying). MS-DOS checks this flag each time it writes to a disk.
The flag is normally off; you may wish to turn it on when writing
critical data to disk. Because disk errors are rare and verification slows
writing, you will probably want to leave it off at other times.

Macro Definition: verify macro switch
mov al,switch
mov ah,2EH
int 21H
endm

Example

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:, verifying each write. It uses a buffer of
32K bytes:

on equ 1
off equ 0

prompt db “Source in A, target in B”,13,10
db “Any key to start. $”

start dw 0
buffer db 64 dup (512 dup(?)) ;64 sectors

func-2DH: display prompt ;see Function 09H
read-kbd ;see Function 08H
verify on ;THIS FUNCTION
mov cx,5 ;coby 64 sectors

;5 times
1-97

copy: push cx ;save counter
abs-disk-read 0,buffer,64,start

;see Interrupt 25H
abs-disk-write 1,buffer,64,start

add start,64
;see Interrupt 26H
;do next 64 sectors

pop cx ;restore counter
loop copy ;do it again
verify off ;THIS FUNCTION

disk-read 0,buffer,!54,start ;see Interrupt 25H
abs-disk-write 1,buffer,64,start

add start,64
;see Interrupt 26H
;do next 64 sectors

pop cx ;restore counter
loop copy ;do it again
verify off

1-98

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Get Disk Transfer Address (Function 2FH)

Call
AH = 2FH

Return
ES:BX

Points to Disk Transfer Address

Function 2FH returns the Disk Transfer Address.

Error returns:
None.

Example
mov ah,2FH
int 21H

;es:bx has current Disk Transfer Address

1-99

Get DOS Version Number (Function 30H)

Call
AH = 30H

Return
AL

Major version number
AH

Minor version number

This function returns the MS-DOS version number. On return,
AL.AH will be the two-part version designation; i.e., for MS-DOS
1.28, AL would be 1 and AH would be 28. For pre-1.28, DOS AL = 0.
Note that version 1.1 is the same as 1.10, not the same as 1.01.

Error returns:
None.

Example

mov ah,30
int 21H

; al is the major version number
; ah is the minor version number
; bh is the OEM number
; bl:cx is the (24 bit) user number

1-100

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Keep Process (Function 31H)

Call
AH = 31H
AL

Exit code
DX

Memory size, in paragraphs

Return
None

This call terminates the current process and attempts to set the initial
allocation block to a specific size in paragraphs. It will not free up any
other allocation blocks belonging to that process. The exit code
passed in AX is retrievable by the parent via Function 4DH.
This method is preferred over Interrupt 27H and has the advantage of
allowing more than 64K to be kept.

Error returns:
None.

Example

mov al, exitcode
mov dx, parasize
mov ah, 31H
int 21H

1-101

CONTROL-C Check (Function 33H)

Call
AH = 33H
AL

Function
00H =Request current state
01H = Set state

DL (if setting)
00H = Off
01H = On

Return
DL

00H = Off
01H = On

MS-DOS ordinarily checks for a CONTROL-C on the controlling
device only when doing function call operations 01H-0CH to that
device. Function 33H allows the user to expand this checking to
include any system call. For example, with the CONTROL-C trapping
off, all disk I/O will proceed without interruption; with CONTROL-C
trapping on, the CONTROL-C interrupt is given at the system call
that initiates the disk operation.

Programs that wish to use calls 06H or 07H
to read CONTROL-Cs as data must ensure
that the CONTROL-C check is off.

Error return:
AL = FF

The function passed in AL was not in the range 0:1.

NOTE

Example

mov
mov
mov

dl,val
ah,33H
al,func

1-102

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

int 21H
; If al was 0, then dl has the current value
;of the CONTROL-C check

1-103

Call
AH = 35H
AL

Interrupt number

Return
ES:BX

Pointer to interrupt routine

This function returns the interrupt vector associated with an inter
rupt. Note that programs should never get an interrupt vector by
reading the low memory vector table directly.

Error returns:
None.

Example

mov ah,35H
mov al,interrupt
int 21H

; es:bx now has long pointer to interrupt routine

Get Interrupt Vector (Function 35H)

1-104

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Get Disk Free Space (Function 36H)

Call
AH = 36H
DL

Drive (0 = Default,
1 = A, etc.)

Return
BX

Available clusters
DX

Clusters per drive
CX

Bytes per sector
AX

FFFF if drive number is invalid;
otherwise sectors per cluster

This function returns free space on disk along with additional infor
mation about the disk.

Error returns:
AX = FFFF

The drive number given in DL was invalid.

Example

mov ah,36H
mov dl,Drive ;0 = default, A = 1
int 21H

; bx = Number of free allocation units on drive
; dx = Total number of allocation units on drive
; cx = Bytes per sector
; ax = Sectors per allocation unit

1-105

Return Country-Dependent Information (Function 38H)
Call
AH = 38H
DS:DX

Pointer to 32-byte memory area
AL

Function code. In MS-DOS 2.0,
must be 0

Return
Carry set:
AX

2 = file not found
Carry not set:

DX:DS filled in with country data

The value passed in AL is either 0 (for current country) or a country
code. Country codes are typically the international telephone prefix
code for the country.
If DX = -1, then the call sets the current country (as returned by the
AL = 0 call) to the country code in AL. If the country code is not
found, the current country is not changed.

NOTE

Applications must assume 32 bytes of infor
mation. This means the buffer pointed to by
DS:DX must be able to accommodate 32
bytes.

This function is fully supported only in versions of MS-DOS 2.01 and
higher. It exists in MS-DOS 2.0, but is not fully implemented.
This function returns, in the block of memory pointed to by DS:DX,
the following information pertinent to international applications:

1-106

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

WORD Date/time format

5 BYTE ASCIZ String currency symbol

2 BYTE ASCIZ String thousands separator

2 BYTE ASCIZ String decimal separator

2 BYTE ASCIZ String date separator

2 BYTE ASCIZ string time separator

1 BYTE Bit field -______________________

1 BYTE Currency places

1 BYTE time format

DWORD Case Mapping call

2 BYTE ASCIZ string data list separator

The format of most of these entries is ASCIZ (a NUL terminated
ASCII string), but a fixed size is allocated for each field for easy
indexing into the table.
The date/time format has the following values:

0 - USA standard h:m:s m /d/y
1 - Europe standard h:m:s d/m /y
2 - Japan standard y/m /d h:m:s

The bit field contains 8 bit values. Any bit not currently defined must
be assumed to have a random value.

Bit 0 = 0 If currency symbol precedes the currency amount.
= 1 If currency symbol comes after the currency amount.

Bit 1 = 0 If the currency symbol immediately precedes the
currency amount.

= 1 If there is a space between the currency symbol and
the amount.

1-107

0 - 12 hour time
1 - 24 hour time

The currency places field indicates the number of places which
appear after the decimal point on currency amounts.
The Case Mapping call is a FAR procedure which will perform coun
try specific lower-to-uppercase mapping on character values from
80H to FFH. It is called with the character to be mapped in AL. It
returns the correct upper case code for that character, if any, in AL.
AL and the FLAGS are the only registers altered. It is allowable to
pass this routine codes below 80H; however nothing is done to cha
racters in this range. In the case where there is no mapping, AL is not
altered.

Error returns:
AX

2 = file not found
The country passed in AL was not found (no table for
specified country).

The time format has the following values:

Example

Ids dx, blk
mov ah, 38H
mov al, Country-code
int 21H

;AX = Country code of country returned

1-108

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Create Sub-Directory (Function 39H)

Call
AH = 39H
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
5 = access denied

Carry not set:
No error

Given a pointer to an ASCIZ name, this function creates a new
directory entry at the end.

Error returns:
AX

3 = path not found
The path specified was invalid or not found.

5 = access denied
The directory could not be created (no room in parent
directory), the directory/file already existed or a device
name was specified.

Example

Ids dx, name
mov ah, 39H
int 21H

1-109

Call
AH = 3 AH
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
5 = access denied
16 = current directory

Carry not set:
No error

Function 3AH is given an ASCIZ name of a directory. That directory
is removed from its parent directory.

Error returns:
AX

3 = path not found
The path specified was invalid or not found.

5 = access denied
The path specified was not empty, not a directory, the root
directory, or contained invalid information.

16 = current directory
The path specified was the current directory on a drive.

Remove a Directory Entry (Function 3AH)

Example

Ids dx, name
mov ah, 3AH
int 21H

1-110

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Change the Current Directory (Function 3BH)

Call
AH = 3BH
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
Carry not set:

No error

Function 3BH is given the ASCIZ name of the directory which is to
become the current directory. If any member of the specified path
name does not exist, then the current directory is unchanged. Other
wise, the current directory is set to the string.

Error returns:
AX

3 = path not found
The path specified in DS:DX either indicated a file or
the path was invalid.

Example
Ids dx, name
mov ah, 3BH
int 21H

1-111

Create a File (Function 3CH)

Call
AH = 3CH
DS:DX

Pointer to pathname
CX

File attribute

Return
Carry set:
AX

5 = access denied
3 = path not found
4 = too many open files

Carry not set:
AX is handle number

Function 3CH creates a new file or truncates an old file to zero length
in preparation for writing. If the file did not exist, then the file is
created in the appropriate directory and the file is given the attribute
found in CX. The file handle returned has been opened for
read/write access.

Error returns:
AX
5 = access denied

The attributes specified in CX contained one that
could not be created (directory, volume ID), a file
already existed with a more inclusive set of attribu
tes, a directory existed with the same name, or the
path was not found.

3 = path not found
The path specified had a syntax error.

4 = too many open files
The file was created with the specified attributes,
but there were no free handles available for the
process, or the internal system tables were full.

Example
Ids dx, name

ah’ 3CHmov
mov
int 21H

cx, attribute

; ax now has the handle
1-112

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Open a File (Function 3DH)

Call
AH = 3DH
AL

Access
0 = File opened for reading
1 = File opened for writing
2 = File opened for both
reading and writing

Return
Carry set:
AX

12 = invalid access
2 = file not found
5 = access denied
4 = too many open files

Carry not set:
AX is handle number

Function 3DH associates a 16-bit file handle with a file.
The following values are allowed:

ACCESS Function
0 file is opened for reading
1 file is opened for writing
2 file is opened for both reading and writing.

DS:DX point to an ASCIZ name of the file to be opened.

The read/write pointer is set at the first byte of the file and the record
size of the file is 1 byte. The returned file handle must be used for
subsequent I/O to the file.

1-113

Error returns:
AX
12 = invalid access

The access specified in AL was not in the range 0:2.
2 = file not found

The path specified was invalid or not found.
5 = access denied

The user attempted to open a directory or volume-id, or
open a read-only file for writing.

4 = too many open files
There were no free handles available in the current
process or the internal system tables were full.

Example
Ids dx, name
mov ah, 3DH
mov al, access
int 21H

; ax has error or file handle
; If successful open

1-114

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Close a File Handle (Function 3EH)

Call
AH = 3 EH
BX

File handle

Return
Carry set:
AX

6 = invalid handle
Carry not set:

No error

In BX is passed a file handle (like that returned by Functions 3DH,
3CH, or 45H), Function 3EH closes the associated file. Internal buf
fers are flushed.

Error return:
AX

6 = invalid handle
The handle passed in BX was not currently open.

Example
mov bx, handle
mov ah, 3EH
int 21H

1-115

Read From File/Device (Function 3FH)

Call
AH = 3FH
DS:DX

Pointer to buffer
CX

Bytes to read
BX

File handle

Return
Carry set:
AX

Number of bytes read
6 = invalid handle
5 = error set:

Carry not set:
AX = number of bytes read

Function 3FH transfers count bytes from a file into a buffer location.
It is not guaranteed that all count bytes will be read; for example,
reading from the keyboard will read at most one line of text. If the
returned value is zero, then the program has tried to read from the
end of file.
All I/O is done using normalized pointers; no segment wraparound
will occur.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently open.

5 = access denied
The handle passed in BX was opened in a mode that
did not allow reading.

Example
Ids dx, buf
mov cx, count
mov bx, handle
mov ah, 3FH
int 21H

; ax has number of bytes read
1-116

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Write to a File or Device (Function 40H)

Call
AH = 40H
DS:DX

Pointer to buffer
CX

Bytes to write
BX

File handle

Return
Carry set:
AX

Number of bytes written
6 = invalid handle
5 = access denied

Carry not set:
AX = number of bytes written

Function 40H transfers count bytes from a buffer into a file. It should
be regarded as an error if the number of bytes written is not the same
as the number requested.
The write system call with a count of zero (CX = 0) will set the file
size to the current position. Allocation units are allocated or released
as required.
All I/O is done using normalized pointers; no segment wraparound
will occur.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently open.

5 = access denied
The handle was not opened in a mode that allowed
writing.

Example
Ids d x , buf
mov CX, count
mov bx, handle
mov ah, 40H
int 21H

;ax has number of bytes written
1-117

Call
AH = 41H
DS:DX

Pointer to pathname

Return
Carry set:
AX

2 = file not found
5 = access denied

Carry not set:
No error

Function 41H removes a directory entry associated with a filename.
Error returns:
AX

2 = file not found
The path specified was invalid or not found.

5 = access denied
The path specified was a directory or read-only.

Delete a Directory Entry (Function 41H)

Example
Ids dx, name
mov ah, 41H
int 21H

1-118

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Move File Pointer (Function 42H)
Call
AH = 42H
CX:DX

Distance to move, in bytes
AL

Method of moving:
(see text)

BX
File handle

Return
Carry set:
AX

6 = invalid handle
1 = invalid function

Carry not set:
DX:AX = new pointer location

Function 42H moves the read/write pointer according to one of the
following methods:

Method Function
0 The pointer is moved to offset bytes from the be

ginning of the file.
1 The pointer is moved to the current location plus

offset.
2 The pointer is moved to the end of file plus offset.

Offset should be regarded as a 32-bit integer with CX occupying the
most significant 16 bits.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently open.

1 = invalid function
The function passed in AL was not in the range 0:2.

Example
mov dx, offsetlow
mov cx, offsethigh
mov al, method
mov bx, handle
mov ah, 42H
int 21H

; dx:ax has the new location of the pointer
1-119

Change Attributes (Function 43H)

Call
AH = 43H
DS:DX

Pointer to pathname
CX (if AL = 01)

Attribute to be set
AL

Function
01 Set to CX
00 Return in CX

Return
Carry set:
AX

3 = path not found
5 = access denied
1 = invalid function

Carry not set:
CX attributes (if AL = 00)

Given an ASCIZ name, Function 42H will set/get the attributes of
the file to those given in CX.
A function code is passed in AL:

AL Function
0 Return the attributes of the file in CX.
1 Set the attributes of the file to those in CX.

Error returns:
AX

3 = path not found
The path specified was invalid.

5 = access denied
The attributes specified in CX contained one that could
not be changed (directory, volume ID).

1 = invalid function
The function passed in AL was not in the range 0:1.

Example
Ids dx, name
mov cx, attribute
mov al, func
int ah, 43H
int 21H

1-120

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

I/O Control for Devices (Function 44H)
Call
AH = 44H
BX

Handle
BL

Drive (for calls AL = 4, 5
0 = default, 1 = A, etc.)

DS:DX
Data or buffer

CX
Bytes to read or write

AL
Function code; see text

Return
Carry set:
AX

6 = invalid handle
1 = invalid function

13 = invalid data
5 = access denied

Carry not set:
AL = 2,3,4,5
AX = Count transferred
AL = 6,7

00 = Not ready
FF - Ready

Function 44H sets or gets device information associated with an open
handle, or send/receives a control string to a device handle or device.
The following values are allowed for function:
Request Function

0 Get device information (returned in DX)
1 Set device information (as determined by DX)
2 Read CX number of bytes into DS:DX from device control

channel.
3 Write CX number of bytes from DS:DX to device control

channel.
4 Same as 2 only drive number in BL 0=default,A:=l,B:=2,...
5 Same as 3 only drive number in BL 0=default,A:=l,B :=2,,..
6 Get input status
7 Get output status

This function can be used to get information about device channels.
Calls can be made on regular files, but only calls 0,6 and 7 are defined
in that case (AL=0,6,7). All other calls return an invalid function error.

1-121

Calls AL=0 and AL=1
The bits of DX are defined as follows for calls
AL=0 and AL=1. Note that the upper byte MUST be zero on a
set call.

ISDEV = 1 if this channel is a device
= 0 if this channel is a disk file (Bits 8-15 = 0 in this

case)

If ISDEV = 1
EOF = 0
RAW - 1

= 0
1SCLK = 1
ISNUL = 1
ISCOT = 1
ISCIN - 1
SPECL = 1

if End Of File on input
if this device is in Raw mode
if this device is cooked
if this device is the clock device
if this device is the null device
if this device is the console output
if this device is the console input
if this device is special

CTRL = 0 if this device can not do control strings via
calls AL=2 and AL=3.

CTRL = 1 if this device can process control strings via
calls AL=2 and AL=3.

NOTE that this bit cannot be set.

If ISDEV = 0
EOF = 0 if channel has been written
Bits 0-5 are the block device number for the channel
(0 = A:, 1 = B:, ...)

Bits 15,8-13,4 are reserved and should not be altered.

Calls 2..5:
These four calls allow arbitrary control strings to be sent or
received from a device. The call syntax is the same as the read
and write calls, except for 4 and 5, Which take a drive number in
BL instead of a handle in BX.

1-122

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

An invalid function error is returned if the CTRL bit (see
above) is 0.
An access denied is returned by calls AL=4,5 if the drive num
ber is invalid.

Calls 6,7:
These two calls allow the user to check if a file handle is ready
for input or output. Status of handles open to a device is the
intended use of these calls, but status of a handle open to a disk
file is allowed, and is defined as follows:
Input:

Always ready (AL=FF) until EOF reached, then always
not ready (AL=0) unless current position changed via
LSEEK.

Output:
Always ready (even if disk full).

IMPORTANT

The status is defined at the time the system
is CALLED. On future versions, by the time
control is returned to the user from the
system, the status returned may NOT cor
rectly reflect the true current state of the
device or file.

Error returns:
AX
6 = invalid handle

The handle passed in BX was not currently open.
1 = invalid function

The function passed in AL was not in the range 0:7.
13 = invalid data
5 = access denied (calls AL=4..7)

1-123

Example
mov bx, Handle

(or mov bl, drive for calls AL=4,5
0=default, A :=1..,)

mov dx, Data
(or Ids dx, buf and

mov cx, count for calls AL=2,3,4,5)
mov ah, 44H
mov al, func
int 21H

; For calls AL=2,3,4,5 AX is the number of bytes
; transferred (same as READ and WRITE).
; For calls AL=6,7 AL is status returned, AL=0 if
; status is not ready, AL=0FFH otherwise.

1-124

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Duplicate a File Handle (Function 45H)

Call
AH = 45H
BX

File handle

Return
Carry set:
AX

6 = invalid handle
4 = too many open files

Carry not set:
AX = new file handle

Function 45H takes an already opened file handle and returns a new
handle that refers to the same file at the same position.

Error returns:
AX

6 = Invalid handle
The handle passed in BX was not currently open.

4 = too many open files
There were no free handles available in the current
process or the internal system tables were full.

Example
mov bx, fh
mov ah, 45H
int 21H

; ax has the returned handle

1-125

Call
AH = 46H
BX

Existing file handle
CX

New file handle

Return
Carry set:
AX

6 = invalid handle
4 = too many open files

Carry not set:
No error

Function 46H takes an already opened file handle and returns a new
handle that refers to the same file at the same position. If there was
already a file open on handle CX, it is clösed first.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently open.

4 = too many open files
There were no free handles available in the current
process or the internal system tables were full.

Example

Force a Duplicat of a Handle (Function 46H)

mov bx, fh
mov cx, newfh
mov ah, 46H
int 21H

1-126

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Return Text of Current Directory (Function 47H)

Call
AH = 47 H
DS:SI

Pointer to 64-byte memory area
DL

Drive number

Return
Carry set:
AX

15 = invalid drive
Carry not set:

No error

Function 47H returns the current directory for a particular drive. The
directory is root-relative and does not contain the drive specifier or
leading path separator. The drive code passed in DL is 0=default,
1=A:, 2=B:, etc.

Error returns:
AX
15 = invalid drive

The drive specified in DL was invalid.

Example
mov ah, 47H
Ids si,area
mov dl,drive
int 21H

; ds: si is a pointer to 64 byte area that
; contains drive current directory.

1-127

Allocate Memory (Function 48H)

Call
AH = 48H
BX

Size of memory to be allocated

Return
Carry set:
AX

8 = not enough memory
7 = arena trashed

BX
Maximum size that could be allocated

Carry not set:
AX:0

Pointer to the allocated memory

Function 48H returns a pointer to a free block of memory that has the
requested size in paragraphs.

Error return:
AX

8 = not enough memory
The largest available free block is smaller than that
requested or there is no free block.

7 = arena trashed
The internal consistency of the memory arena has been
destroyed. This is due to a user program changing me
mory that does not belong to it.

Example
mov bx,size
mov ah,48H
int 21H

; ax :0 is pointer to allocated memory
; if alloc fails, bx is the largest block available

1-128

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Free Allocated Memory (Function 49H)

Call
AH = 49H
ES

Segment address of memory
area to be freed

Return
Carry set:
AX

9 = invalid block
7 = arena trashed

Carry not set:
No error

Function 49H returns a piece of memory to the system pool that was
allocated by Function Request 48H.

Error return:
AX

9 = invalid block
The block passed in ES is not one allocated via Function
Request 48H.

7 = arena trashed
The internal consistency of the memory arena has been
destroyed. This is due to a user program changing me
mory that does not belong to it.

Example
mov es,block
mov ah,49H
int 21H

1-129

Call
AH = 4 AH
ES

Segment address of memory area
BX

Requested memory area size

Return
Carry set:
AX

9 = invalid block
7 = arena trashed
8 = not enough memory

BX
Maximum size possible

Carry not set:
No error

Function 4AH will attempt to grow/shrink an allocated block of
memory.

Error return:
AX

9 = invalid block
The block passed in ES is not one allocated via this
function.

7 = arena trashed
The internal consistency of the memory arena has been
destroyed. This is due to a user program changing me
mory that does not belong to it.

8 = not enough memory
There was not enough free memory after the specified
block to satisfy the grow request.

Example
mov es,block
mov bx,newsize
mov ah,4AH
int 21H

; if setblock fails for growing, BX will have the
; maximum size possible

Modify Allocated Memory Blocks (Function 4AH)

1-130

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Load and Execute a program (Function 4BH)

Call
AH = 4BH
DS:DX

Pointer to pathname
ES:BX

Pointer to parameter block
AL

00 = Load and execute program
03 = Load program

Return
Carry set:
AX

1 = invalid function
10 = bad environment
11 = bad format
8 - not enough memory
2 = file not found

Carry not set:
No error

This function allows a program to load another program into memory
and (default) begin execution of it. DS :DX points to the ASCIZ name
of the file to be loaded. ES:BX points to a parameter block for the
load.
A function code is passed in AL:

AL Function
0 Load and execute the program. A program header is

established for the program and the terminate and CON-
TROL-C addresses are set to the instruction after the
EXEC system call.

3 Load (do not create) the program header, and do not
begin execution. This is useful in loading program over
lays.

1-131

For each value of AL, the block has the following format:

AL = 0 —> load/execute program

WORD segment address of environment.

DWORD pointer to command line at 80H

DWORD pointer to default FCB to be passed
at 5CH

DWORD pointer to default FCB to be passed
a t6 C H

AL = 3 —> load overlay

WORD segment address where file will be
loaded.

WORD relocation factor to be applied to the
image.

Note that all open files of a process are duplicated in the child process
after an EXEC. This is extremely powerful; the parent process has
control over the meanings of stdin, stdout, stderr, stdaux and stdprn.
The parent could, for example, write a series of records to a file, open
the file as standard input, open a listing file as standard output and
then EXEC a sort program that takes its input from stdin and writes to
stdout.
Also inherited (or passed from the parent) is an “environment”. This
is a block of text strings (less than 32K bytes total) that convey various
configurations parameters. The format of the environment is as
follows:

1-132

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

(paragraph boundary)

Typically the environment strings have the form:
parameter = value

For example, COMMAND.COM might pass its execution search
path as:
PATH = A:XBIN ;B :XB ASICXLIB

A zero value of the environment address causes the child process to
inherit the parent’s environment unchanged.

Error returns:
AX

1 = invalid function
The function passed in AL was not 0, 1 or 3.

10 = bad environment
The environment was larger than 32Kb.

11 = bad format
The file pointed to by DS:DX was an EXE format file
and contained information that was internally inconsi
stent.

8 = not enough memory
There was not enough memory for the process to be
created.

2 = file not found
The path specified was invalid or not found.

Example
Ids dx, name
les bx, blk
mov ah, 4BH
mov al, func
int 21H

1-133

Call
AH = 4CH
AL

Return code

Return
None

Function 4CH terminates the current process and transfers control to
the invoking process. In addition, a return code may be sent. All files
open at the time are closed.
This method is preferred over all others (Interrupt 20H, JMP 0) and
has the advantage that CS:0 does not have to point to the Program
Header Prefix.

Error returns:
None.

Terminate a Process (Function 4CH)

Example
mov al, code
mov ah, 4CH
int 21H

1-134

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Retrieve the Return Code of a Child (Function 4DH)

Call
AH = 4DH

Return
AX

Exit Code

Function 4DH returns the Exit code specified by a child process. It
returns this Exit code only once. The low byte of this code is that sent
by the Exit routine. The high byte is one of the following:

0 = Terminate/abort
1 = CONTROL-C
2 = Hard error
3 = Terminate and stay resident

Error returns:
None.

Example
mov ah, 4DH
int 21H

; ax has the exit code

1-135

Find Match File (Function 4EH)

Call
AH - 4EH
DS:DX

Pointer to pathname
CX

Search attributes

Return
Carry set:
AX

2 = file not found
18 = no more files

Carry not set:
no error

Function 4EH takes a pathname with wild card characters in the last
component (passed in DS:DX), a set of attributes (passed in CX) and
attempts to find all files that match the pathname and have a subset of
the required attributes. A datablock at the current Disk Transfer
Address is written that contains information in the following form:

find-buf-reserved DB 21 DUP (?); Reserved*
find-buf-attr DB ? ; attribute found
find-buf-time DW 9 ; time
find-buf-date DW ? ; date
find-buf-size-1 DW 9 ; low(size)
find-buf-size-h DW ? ; high(size)
find-buf-pname DB i3 DUP (?) ; packed name
find-buf ENDS

*Reserved for MS-DOS use on subsequent find-nexts

To obtain the subsequent matches of the pathname, see the descrip
tion of Function 4FH.

Error returns:
AX
2 = file not found

The path specified in DS:DX was an invalid path.
18 = no more files

There were no files matching this specification.
1-136

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Example
mov ah, 4EH
Ids dx, pathname
mov cx, attr
int 21H

; Disk Transfer Address has datablock

1-137

Step Through a Directory Matching Files (Function 4FH)

Call
AH = 4FH

Return
Carry set:
AX

18 = no more files
Carry not set:

No error

Function 4FH finds the next matching entry in a directory. The
current Disk Transfer Address must point at a block returned by
Function 4EH (see Function 4EH).

Error returns:
AX
18 = no more files

There are no more files matching this pattern.
Example

; Disk Transfer Address points at area returned by Function
4EH

mov ah, 4FH
int 21H

; next entry is at Disk Transfer Address

1-138

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Return Current Setting of Verify After Write Flag (Function 54H)

Call
AH = 54H

Return
AL

Current verify flag value

The current value of the verify flag is returned in AL.
Error returns:

None.

Example
mov ah, 54H
int 21H

; al is the current verify flag value

1-139

Move a Directory Entry (Function 56H)

Call
AH = 56H
DS:DX

Pointer to pathname of
existing file

ES:DI
Pointer to new pathname

Return
Carry set:
AX

2 = file not found
17 = not same device
5 = access denied

Carry not set:
No error

Function 56H attempts to rename a file into another path. The paths
must be on the same device.

Error returns:
AX
2 = file not found

The file name specifed by DS:DX was not found.
17 = not same device

The source and destination are on different drives.
5 = access denied

The path specified in DS:DX was a directory or the file
specified by ES:DI exists or the destination directory
entry could not be created.

Example
Ids dx, source
les di, dest
mov ah, 56H
int 21H

1-140

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

Get/Set Date/Time of File (Function 57H)
Call
AH = 57H
AL

00 = get date and time
01 = set date and time

BX
File handle

CX (if AL = 01)
Time to be set

DX (if AL = 01)
Date to be set

Return
Carry set:
AX

1 = invalid function
6 = invalid handle

Carry not set:
No error
CX/DX set if function 0

Function 57H returns or sets the last-write time for a handle. These
times are not recorded until the file is closed.
A function code is passed in AL:

AL Function
0 Return the time/date of the handle in CX/DX
1 Set the time/date of the handle to CX/DX

Error returns:
AX

1 = invalid function
The function passed in AL was not in the range 0:1.

6 = invalid handle
The handle passed in BX was not currently open.

Example
mov ah, 57H
mov al, func
mov bx, handle

; if al = 1 then next two are mandatory
mov cx, time
mov dx, date
int 21H

; if al = 0 then cx/dx has the last write time/date
; for the handle.

1-141

1.8 MACRO DEFINITIONS FOR MS-DOS SYSTEM CALL EXAMPLES

NOTE

These macro definitions apply to system call
examples 00H through 57H.

.xlist
’ $$$$$$$ $
i

; Interrupts

;abs-disk-read macro
mov
mov
mov
mov
int
popf
endm

;ABS-DISK-READ
disk,buffer,num-sectors,first-sector

al,disk
bx,offset buffer
cx,num-sectors
dx,first-sector
37 interrupt 37

abs-disk-write macro
mov
mov
mov
mov
int
popf
endm

;ABS-DISK-WRITE
disk,buffer,num-sectors,first-sector

al,disk
bx,offset buffer
cx,num-sectors
dx,first-sector
38 interrupt 38

stay-resident macro last-instruc ;STAY-RESIDENT
mov dx,offset last-instruc
inc dx
int 39 interrupt 39
endm

?
; Functions

read-kbd-and-echo macro ;READ-KBD-AND-ECHO
mov ah,l function 1
int 33
endm i

9

display-char macro character ;DISPLAY-CHAR
mov dl,character
mov ah,2 function 2

1-142

MS-DOS PROGRAMMER'S MANUAL

int 33
endm

aux-input macro
mov ah,3
int 33
endm

aux-output macro
mov ah,4
int 33
endm

;; Page
print-char macro character

mov dl,character
mov ah,5
int 33
endm

9
dir-console-io macro switch

mov dl,switch
mov ah,6
int 33
endm

dir-console-input macro
mov ah,7
int 33
endm

read-kbd macro
mov ah,8
int 33
endm

display macro
mov
mov
int
endm

get-string macro
mov
mov
mov
int
endAr

check-kbd-status macro
mov ah, 11
int 33
endm

SYSTEM CALLS

;AUX-INPUT
function 3

;AUX-OUTPUT
function 4

;PRINT-CHAR

function 5

;DIR-CONSOLE-IO

function 6

;DIR-CONSOLE-INPUT
function 7

;READ-KBD
function 8

;DISPLAY

function 9

;GET-STRING

function 10

;CHECK-KBD-STATUS
function 11

string
dx,offset string
ah,9
33

limit,string
String,limit
dx,offset string
ah,10
33

1-143

flush-and-read-kbd macro switch ;FLUSH-AND-READ-KBD
mov al,switch
mov ah, 12 function 12
int 33
endm

?

reset-disk macro ;RESET DISK
mov ah,13 function 13
int 33
endm

;;page
select-disk macro disk ;SELECT-DISK

mov dl,disk[-65]
mov ah, 14 function 14
int 33
endm

9

open macro fcb ;OPEN
mov dx,offset fcb
mov ah,15 function 15
int 33
endm

close macro fcb ;CLOSE
mov dx,offset fcb
mov ah, 16 function 16
int 33
endm

search-first macro fcb ;SEARCH-FIRST
mov dx,offset fcb
mov ah,17 ;Function 17
int 33
endm

9

search-next macro fcb ;SEARCH-NEXT
mov dx,offset fcb
mov ah, 18 ;function 18
int 33
endm

delete macro fcb ;DELETE
mov dx,offset fcb
mov ah,19 function 19
int 33
endm

9

read-seq macro fcb ;READ-SEQ
mov dx,offset fcb
mov ah,20 function 20
int 33
endm

1-144

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

write-seq macro fcb ;WRITE-SEQ
mov dx,offset fcb
mov ah,21 function 21
int 33
endm

>
create macro fcb ;CREATE

mov dx,offset fcb
mov ah,22 function 22
int 33
endm

rename macro fcb,newname ;RENAME
mov dx,offset fcb
mov ah,23 function 23
int 33
endm

>
current-disk macro ;CURRENT-DISK

mov ah,25 function 25
int 33
endm

set-dta macro
mov
mov
int
endm

buffer
dx,offset buffer
ah,26
33

;SET-DTA

function 26

5
alloc-table macro

mov
int
endm

ah,27
33

; ALLOC-TABLE
function 27

read-ran macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,33
33

;READ-RAN

function 33

write-ran macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,34
33

;WRITE-RAN

function 34

file-size macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,35
33

;EILE-SIZE

;function 35

1-145

set-relative-record macro fcb ;SET-RELATIVE-RECORD
mov dx,offset fcb
mov ah,36 function 36
int 33
endm

;;page
set-vector macro interrupt,seg-addr,off-addr ;SET-VECTOR

push
mov ax,seg-addr
möv ds,ax
mov dx,off-addr
mov al,interrupt
mov ah,37 function 37
int 33
endm

create-prog-seg macro seg-addr ;CREATE-PROG-SEG
mov dx,seg-addr
mov ah,3 8 function 38
int 33
endm

ran-block-read macro fcb,count,rec-size ;RAN-BLOCK-READ

parse

get-date

mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],rec-size
mov ah,39 function 39
int
endm

33

ite macro fcb,count,rec-size ;RAN-BLOCK-
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],rec-size
mov ah,40 function 40
int
endm

33

macro filename,fcb ;PARSE
mov si,offset filename
mov di,offset fcb
push es
push ds
pop es
mov al,15
mov ah,41 function 41
int 33
pop
endm

es

macro ;GET-DATE
mov ah,42 function 42
int 33

1-146

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

;;page
set-date

get-time

set-time

verify

endm

macro year,month,day ;SET-DATE
mov cx,year
mov dh,month
mov dl,day
mov ah,43 function 43
int
endm

33

macro ;GET-TIME
mov ah,44 function 44
int
endm

33

macro hour,minutes,seconds,hundredths ;SET-TIME
mov ch,hour
mov cl,minutes
mov dh,seconds
mov dl,hundredths
mov ah,45 function 45
int
endm

33

macro switch ;VERIFY
mov al, switch
mov ah,46 function 46
int
endm

33

; General

move-string macro source,destination,num-bytes ;MOVE-STRING
push
mov
mov
assume
mov
mov

mov
rep movs

assume
pop
endm

es
ax,ds
es,ax
es: data
si,offset source
di,offset destina
tion
cx, num-bytes
es: destination,source
es: nothing
es

convert macro value,base,destination ;CONVERT
local table,start
jmp start

1-147

table
start:

db ’’0123456789ABCDEF“
mov al,value
xor ah,ah
xor bx,bx
div base
mov bl,al
mov al,cs:table[bx]
mov destination,al
mov bl,ah
mov al,cs:table[bx]
mov destination[l],al
endm

»page
convert-to-binary macro string,number,value ;CONVERT-TO-BINARY

local ten,start,calc,mult,no-mult
jmp start

ten db 10
start: mov value,0

xor cx,cx
mov cl,number
xor si,si

calc: xor ax,ax
mov al,string[si]
sub al,48
cmp cx,2
jl no-mult
push cx
dec cx

mult: mul cs:ten
loop mult
pop cx

no-mult: add value,ax
inc si
loop
endm

calc

convert-date macro
mov
mov
shr
mov
and
xor
mov
shr
add
endm

dir-entry
dx,word ptr dir-entry[25]
cl,5
dl,cl
dh,dir-entry[25]
dh,lfh
cx,cx
cl,dir-entry[26]
cl,l
cx,1980

1-148

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

1.9 EXTENDED EXAMPLE OF MS-DOS SYSTEM CALLS

title DISK DUMP
zero equ 0
disk-B equ 1
sectors-per-read equ 9
er equ 13
blank equ 32
period equ 46
tilde equ 126

INCLUDE B:CALLS.EQU

subttl DATA SEGMENT
page +
data segment

input-buffer db 9 dup(512 dup(?))
output-buffer db 77 dup(” ”)

db 0DH,0AH,”$“
start-prompt db ’’Start at sector: $“
sectors-prompt db ’’Number of sectors: $“
continue-prompt db ’’RETURN to continue $“
header db ’’Relative sector $“
end-string db 0DH,0AH,0AH,07H,”ALL DONE$‘

crlf db
;DELETE THIS
0DH,0AH,”$“

table db “0123456789ABCDEFS”
•)

ten db 10
sixteen db 16
>

start-sector dw 1
sector-num label byte
sector-number dw 0
sectors-to-dump dw sectors-per-read
sectors-read dw 0

buffer label byte
max-length db 0
current-length db 0
digits db 5 dup(?)

data ends

subttl STACK SEGMENT
page +
stack seg

ment stack
dw 100 dup(?)

stack-top label word
stack ends

subttl MACROS
page +

1-149

INCLUDE B:CALLS.MAC
;BLANK LINE
blank-line macro number

local print-it
push cx
call clear-line
mov cx,number

print-it: display output-buffer
loop print-it
pop cx
endm

subttl ADDRESSABILITY
page +
code segment

assume cs: code,ds: data,ss: stack
start: mov ax,data

mov ds,ax
mov ax,stack
mov ss,ax
mov sp,offset stack-top

>
jmp main-procedure

subttl PROCEDURES
page +

; PROCEDURES
; READ-DISK
read-disk proc;

cmp sectors-to-dump-zero
jle done
mov bx,offset input-buffer
mov dx,start-sector
mov al,disk-b
mov cx,sectors-per-read
cmp cx,sectors-to-dump
jle get-sector
mov cx,sectors-to-dump

get-sector: push cx
int
popf

disk-read

pop cx
sub sectors-to-dump,cx
add start-sector,cx
mov sectors-read,cx
xor si,si

done: ret
read-disk endp
;CLEAR-LINE
clear-line proc;

push cx
mov cx,77
xor bx,bx

move-blank: mov output-buffer[bx],“ ”
inc bx

1-150

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

clear-line

•PUT-BLANK
put-blank

put-blank
?

5
setup

setup

■CONVERT-LINE
convert-line

convert-it

display-ascii:

printable:

non-printable:

convert-line

loop move-blank
pop cx
ret
endp

proc;
mov output-buffer[di], “ ”
inc di
ret
endp

proc;
display start-prompt
get-string 4,buffer
display crlf
convert-to-binary digits,
current-length,start-sector
mov ax,start-sector
mov sector-number,ax
display sectors-prompt
get-string 4,buffer
convert-to-binary digits,
current-length,sectors-to-dump
ret
endp

proc;
push cx
mov di,9
mov cx,16
convert input-buffer[si],sixteen,
output-buffer[di]
inc si
add di,2
call put-blank
loop convert-it
sub si,16
mov cx,16
add di,4
mov output-buffer[di],period
cmp input-buffer[si],blank
jl non-printable
cmp input-buffer[si],tilde
jg non-printable
mov dl,input-buffer[si]
mov output-buffer[di],dl
inc si
inc di
loop display-ascii
pop cx
ret
endp

1-151

•DISPLAY-SCREEN
display-screen

;I WANT length header

;minus 1 in cx

move-header:

dump-it:

display-screen

proc;
push cx
call clear-line

mov cx,17

dec cx

xor di,di
mov al,header[di]
mov output-buffer[di],al
inc di
loop move-header ;FIX THIS

convert sector-num[l],sixteen,
output-buffer[di]
add di,2
convert sector-num,sixteen,
output-buffer[di]
display output-buffer
blank-line 2
mov cx,16
call clear-line
call convert-line
display output-buffer
loop dump-it
blank-line 3
display continue-prompt
get-char-no-echo
display crlf
pop cx
ret
endp

; END PROCEDURES
subttl MAIN PROCEDURE
page +
main-procedure:
check-done:

display-it:

all-done:

code

call setup
cmp sectors-to-dump,zero
jng all-done
call read-disk
mov cx,sectors-read
call display-screen
call display-screen
inc sector-number
loop display-it
jmp check-done
display end-string
get-char-no-echo
ends
end start

1-152

MS-DOS PROGRAMMER’S MANUAL DEVICE DRIVERS

CHAPTER 2
MS-DOS DEVICE DRIVERS

2.1 WHAT IS A DEVICE DRIVER?

A device driver is a binary file with all of the code in it to manipulate
the hardware and provide a consistent interface to MS-DOS. In
addition, it has a special header at the beginning that identifies it as a
device, defines the strategy and interrupt entry points, and describes
various attributes of the device.

NOTE

For device drivers, the file must not use the
ORG 100H (like .COM files). Because it
does not use the Program Segment Prefix,
the device driver is simply loaded; therefore,
the file must have an origin of zero (ORG 0
or no ORG statement).

There are two kinds of device drivers.

1. Character device drivers
2. Block device drivers

Character devices are designed to perform serial character I/O like
CON, AUX, and PRN. These devices are named (i.e., CON, AUX,
CLOCK, etc.), and users may open channels (handles or FCBs) to do
I/O to them.
Block devices are the “disk drives” on the system. They can perform
random I/O in pieces called blocks (usually the physical sector size).
These devices are not named as the character devices are, and there
fore cannot be opened directly. Instead they are identified via the
drive letters (A:,B:,C:, etc.).

Block devices also have units. A single driver may be responsible for
one or more disk drives. For example, block device driver ALPHA

2-1

may be responsible for drives A:,B:,C: and D:. This means that it has
four units (0-3) defined and, therefore, takes up four drive letters. The
position of the driver in the list of all drivers determines which units
correspond to which driver letters. If driver ALPHA is the first block
driver in the device list, and it defines 4 units (0-3), then they will be
A:,B:,C: and D:. If Beta is the second block driver and defines three
units (0-2), then they will be E:, F: and G:, and so on. MS-DOS is
not limited to 16 block device units, as previous versions were. The
theoretical limit is 63 (26 - 1), but it should be noted that after 26 the
drive letters are unconventional (such as], \ , and ").

NOTE

Character devices cannot define multiple
units because they have only one name.

2-2

MS-DOS PROGRAMMER'S MANUAL DEVICE DRIVERS

2.2 DEVICE HEADERS

A device header is required at the beginning of a device driver. A
device header looks like this:

DWORD pointer to next device (Must be set to -1)

WORD attributes
Bit 15 = 1 if char device 0 is blk
if bit 15 is 1

Bit 0 = 1 if current sti device
Bit 1 = 1 if current sto output
Bit 2 = 1 if current NUL device
Bit 3 = 1 if current CLOCK dev
Bit 4 = 1 if special
Bits 5 - 1 2 Reserved; must be set to 0

Bit 14 is the IOCTL bit
Bit 13 is the NON IBM FORMAT bit_______________________________________

WORD pointer to device strategy entry point

WORD pointer to device interrupt entry point

8-BYTE character device name field Character devices set a device name.
For block devices the first byte is the number of units.

Figure 2. Sample Device Header

Note that the device entry points are words. They must be offsets
from the same segment number used to point to this table. For exam
ple, if XXX:YYY points to the start of this table, then XXX:strategy
and XXX: interrupt are the entry points.

2.2.1 Pointer To Next Device Field

The pointer to the next device header field is a double word field
(offset followed by segment) that is set by MS-DOS to point at the
next driver in the system list at the time the device driver is loaded. It
is important that this field be set to -1 prior to load (when it is on the
disk as a file) unless there is more than one device driver in the file. If
there is more than one driver in the file, the first word of the double
word pointer should be the offset of the next driver’s Device Header.

2-3

NOTE

If there is more than one device driver in the
.COM file, the last driver in the file must
have the pointer to the next Device Header
field set to -1.

2.2.2 Attribute Field

The attribute field is used to tell the system whether this device is a
block or character device (bit 15). Most other bits are used to give
selected character devices certain special treatment. (Note that these
bits mean nothing on a block device). For example, assume that a
user has a new device driver that he wants to be the standard input
and output. Besides installing the driver, he must tell MS-DOS that
he wants his new driver to override the current standard input and
standard output (the CON device). This is accomplished by setting
the attributes to the desired characteristics, so he would set bits 0 and
1 to 1 (note that they are separate!) Similarly, a new CLOCK device
could be installed by setting that attribute. (Refer to section 2.7, “The
CLOCK Device”, in this chapter for more information.) Although
there is a NUL device attribute, the NUL device cannot be reassigned.
This attribute exists so that MS-DOS can determine if the NUL
device is being used.
The NON IBM FORMAT bit applies only to block devices and affects
the operation of the BUILD BPB (Bios Parameter Block) device call.
(Refer to section 2.5.3 for further information on this call).
The other bit of interest is the IOCTL bit, which has meaning on
character and block devices. This bit tells MS-DOS whether the
device can handle control strings (via the IOCTL system call, Func
tion 44H).
If a driver cannot process control strings, it should initially set this bit
to 0. This tells MS-DOS to return an error if an attempt is made (via
Function 44H) to send or receive control strings to this device. A
device which can process control strings should initialize the IOCTL
bit to 1. For drivers of this type, MS-DOS will make calls to the
IOCTL INPUT and OUTPUT device functions to send and receive
IOCTL strings.
The IOCTL functions allow data to be sent and received by the device
for its own use (for example, to set baud rate, stop bits, and form
length), instead of passing data over the device channel as does a
normal read or write. The interpretation of the passed information is
up to the device, but it must not be treated as a normal I/O request.
2-4

MS-DOS PROGRAMMER'S MANUAL DEVICE DRIVERS

2.2.3 Strategy And Interrupt Routines

These two fields are the pointers to the entry points of the strategy
and interrupt routines. They are word values, so they must be in the
same segment as the Device Header.

2.2.4 Name Field

This is an 8-byte field that contains the name of a character device or
the number of units of a block device. If it is a block device, the num
ber of units can be put in the first byte. This is optional, because MS-
DOS will fill in this location with the value returned by the driver’s
INIT code. Refer to Section 2.4, “Installation of Device Drivers” in
this chapter for more information.

2.3 HOW TO CREATE A DEVICE DRIVER

In order to create a device driver that MS-DOS can install, you must
write a binary file with a Device Header at the beginning of the file.
Note that for device drivers, the code should not be originated at
100H, but rather at 0. The link field (pointer to next Device Header)
should be -1, unless there is more than one device driver in the file.
The attribute field and entry points must be set correctly.
If it is a character device, the name field should be filled in with the
name of that character device. The name can be any legal 8-character
filename.
MS-DOS always processes installable device drivers before handling
the default devices, so to install a new CON device, simply name the
device CON. Remember to set the standard input device and standard
output device bits in the attribute word on a new CON device. The
scan of the device list stops on the first match, so the installable
device driver takes precedence.

2-5

NOTE

Because MS-DOS can install the driver any
where in memory, care must be taken in any
far memory references. You should not
expect that your driver will always be loaded
in the same place every time.

2.4 INSTALLATION OF DEVICE DRIVERS

MS-DOS allows new device drivers to be installed dynamically at
boot time. This is accomplished by INIT code in the BIOS, which
reads and processes the CONFIG.SYS file.
MS-DOS calls upon the device drivers to perform their function in
the following manner:

MS-DOS makes a far call to strategy entry, and passes (in a
Request Header) the information describing the functions of
the device driver.

This structure allows you to program an interrupt-driven device
driver. For example, you may want to perform local buffering in a
printer.

2.5 REQUEST HEADER

When MS-DOS calls a device driver to perform a function, it passes a
Request Header in ES:BX to the strategy entry point. This is a fixed
length header, followed by data pertinent to the operation being
performed. Note that it is the device driver’s responsibility to preserve
the machine state (for example, save all registers on entry and restore
them on exit). There is enough room on the stack when strategy or
interrupt is called to do about 20 pushes. If more stack is needed, the
driver should set up its own stack.
The following figure illustrates a Request Header.

2-6

MS-DOS PROGRAMMER'S MANUAL DEVICE DRIVERS

REQUEST HEADER - >

BYTE length of record
Length in bytes of this Request Header

BYTE unit code
The subunit the operation is for (minor device)
(no meaning on character devices)

BYTE command code

WORD status

8 bytes RESERVED

Figure 3. Request Header

2.5.1 Unit Code

The unit code field identifies which unit in your device driver the
request is for. For example, if your device driver has 3 units defined,
then the possible values of the unit code field would be 0,1, and 2.

2.5.2 Command Code Field

The command code field in the Request header can have the follo
wing values:

Command Function
Code

0 EMIT
1 MEDIA CHECK (Block only, NOP for character)
2 BUILD BPB “ “ “ “
3 IOCTL INPUT (Only called if device has IOCTL)
4 INPUT (read)
5 NON-DESTRUCTIVE INPUT NO WAIT (Char devs only)
6 INPUT STATUS
7 INPUT FLUSH “ “
8 OUTPUT (write)
9 OUTPUT (write) with verify

10 OUTPUT STATUS “ “
11 OUTPUT FLUSH “ “
12 IOCTL OUTPUT (Only called if device has IOCTL)

2-7

2.5.3 MEDIA CHECK AND BUILD BPB

MEDIA CHECK and BUILD BPB are used with block devices only.
MS-DOS calls MEDIA CHECK first for a drive unit. MS-DOS passes
its current media descriptor byte (refer to the section “Media Descrip
tor Byte” later in this chapter). MEDIA CHECK returns one of the
following results:

Media Not Changed - current DPB and media byte are OK.
Media Changed - Current DPB and media are wrong. MS-DOS
invalidates any buffers for this unit and calls the device driver to
build the BPB with media byte and buffer.
Not Sure - If there are dirty buffers (buffers with changed data,
not yet written to disk) for this unit, MS-DOS assumes the DPB
and media byte are OK (media not changed). If nothing is dirty,
MS-DOS assumes the media has changed. It invalidates any
buffers for the unit, and calls the device driver to build the BPB
with media byte and buffer.
Error - If an error occurs, MS-DOS sets the error code accor
dingly.

MS-DOS will call BUILD BPB under the following conditions:

If Media Changed is returned

If Not Sure is returned, and there are no dirty buffers

The BUILD BPB call also gets a pointer to a one-sector buffer. What
this buffer contains is determined by the NON IBM FORMAT bit in
the attribute field. If the bit is zero (device is IBM format-compatible),
then the buffer contains the first sector of the first FAT. The FAT ID
byte is the first byte of this buffer. NOTE: The BPB must be the same,
as far as location of the FAT is concerned, for all possible media
because this first FAT sector must be read before the actual BPB is
returned. If the NON IBM FORMAT bit is set, then the pointer
points to one sector of scratch space (which may be used for any
thing).

2-8

MS-DOS PROGRAMMER’S MANUAL DEVICE DRIVERS

2.5.4 Status Word

The following figure illustrates the status word in the Request Hea
der.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E B D
R RESERVED U O ERROR CODE (bit 15 on)
R S N

The Status word is zero on entry and is set by the driver interrupt
routine on return.
Bit 8 is the done bit. When set, it means the operation is complete.
For MS-DOS the driver sets it to 1 when it exits.
Bit 15 is the error bit. If it is set, then the low 8 bits indicate the error.
The errors are:

0 Write protect violation
1 Unknown Unit
2 Drive not ready
3 Unknown command
4 CRC error
5 Bad drive request structure length
6 Seek error
7 Unknown media
8 Sector not found
9 Printer out of paper
A Write fault
B Read Fault
C General failure

Bit 9 is the busy bit, which is set only by status calls.

For output on character devices: If bit 9 is 1 on return, a write
request (if made) would wait for completion of a current re
quest. If it is 0, there is no current request, and a write request
(if made) would start immediately.

2-9

For input on character devices with a buffer: If bit 9 is 1 on re
turn, a read request (if made) would go to the physical device. If
it is 0 on return, then there are characters in the device buffer
and a read would return quickly. It also indicates that some
thing has been typed. MS-DOS assumes all character devices
have an input type-ahead buffer. Devices that do not have a
type-ahead buffer should always return busy=0 so that MS-
DOS will not continuously wait for something to get into a
buffer that does not exist.

One of the functions defined for each device is INIT. This routine is
called only once when the device is installed. The INIT routine re
turns a location (DS:DX), which is a pointer to the first free byte of
memory after the device driver (similar to “Keep Process”). This
pointer method can be used to delete initialization code that is only
needed once, saving on space.
Block devices are installed the same way and also return a first free
byte pointer as described above. Additional information is also retur
ned:

The number of units is returned. This determines logical
device names. If the current maximum logical device letter is F
at the time of the install call, and the INIT routine returns 4 as
the number of units, then they will have logical names G, H, I
and J. This mapping is determined by the position of the driver
in the device list, and by the number of units on the device
(stored in the first byte of the device name field).
A pointer to a BPB (BIOS Paramter Block) pointer array is also
returned. There is one table for each unit defined. These blocks
will be used to build an internal DOS data structure for each of
the units. The pointer passed to the DOS from the driver points
to an array of n word pointers to BPBs, where n is the number
of units defined. In this way, if all units are the same, all of the
pointers can point to the same BPB, saving space. Note that this
array must be protected (below the free pointer set by the
return) since an internal DOS structure will be built starting at
the byte pointed to by the free pointer. The sector size defined
must be less than or equal to the maximum sector size defined
at default BIOS INIT time. If it isn’t, the install will fail.
The last thing that INIT of a block device must pass back is the
media descriptor byte. This byte means nothing to MS-DOS,
but is passed to devices so that they know what parameters MS-
DOS is currently using for a particular drive unit.

2-10

MS-DOS PROGRAMMER'S MANUAL DEVICE DRIVERS

Block devices may take several approaches; they may be dumb or
smart. A dumb device defines a unit (and therefore an internal DOS
structure) for each possible media drive combination. For example,
unit 0 = drive 0 single side, unit 1 = drive 0 double side. For this
approach, media descriptor bytes do not mean anything. A smart
device allows multiple media per unit. In this case, the BPB table
returned at INIT must define space large enough to accommodate the
largest possible media supported. Smart drivers will use the media
descriptor byte to pass information about what media is currently in a
unit.

2.6 FUNCTION CALL PARAMETERS

All strategy routines are called with ES:BX pointing to the Request
Header. The interrupt routines get the pointers to the Request Hea
der from the queue that the strategy routines store them in. The
command code in the Request Header tells the driver which function
to perform.

NOTE

All DWORD pointers are stored offset first,
then segment.

2-11

2.6.1 INIT

Command code = 0

INIT - ES:BX - >

13-B VTE Request Header

BYTE # of units______________

DWORD break address

DWORD pointer to BPB array
(Not set by character devices)

The number of units, break address, and BPB pointer are set by the
driver. On entry, the DWORD that is to be set to the BPB array (on
block devices) points to the character after the “=” on the line in
CONFIG.SYS that loaded this device. This allows drivers to scan the
CONFIG.SYS invocation line for arguments.

NOTE

If there are multiple device drivers in a
single .COM file, the ending address retur
ned by the last INIT called will be the one
MS-DOS uses. It is recommended that all of
the device drivers in a single .COM file
return the same ending address.

2.6.2 MEDIA CHECK

Command Code = 1
MEDIA CHECK - ES:BX -

13-B YTE Request Header

BYTE media descriptor from DPB

BYTE returned

2-12

MS-DOS PROGRAMMER'S MANUAL DEVICE DRIVERS

In addition to setting the status word, the driver must set the return
byte to one of the following:

-1 Media has been changed
0 Don’t know if media has been changed
1 Media has not been changed

If the driver can return -1 or 1 (by having a door-lock or other inter
lock mechanism) MS-DOS performance is enhanced because MS-
DOS does not need to reread the FAT for each directory access.

2.6.3 BUILD BPB (BIOS Paramter Block)

Command code = 2
BUILD BPB — ES:BX — >

13-BYTE Request Header

BYTE media descriptor from DPB

DWORD transfer address
(Points to one sector worth of scratch space or first sector of FAT
depending on the value of the NON IBM FORMAT bit)

DWORD pointer to BPB

If the NON IBM FORMAT bit of the device is set, then the DWORD
transfer address points to a one sector buffer, which can be used for
any purpose. If the NON IBM FORMAT bit is 0, then this buffer
contains the first sector of the first FAT and the driver must not alter
this buffer.
If IBM compatible format is used (NON IBM FORMAT BIT = 0),
then the first sector of the first FAT must be located at the same
sector on all possible media. This is because the FAT sector will be
read BEFORE the media is actually determined. Use this mode if all
you want is to read the FAT ID byte.
In addition to setting status word, the driver must set the Pointer to
the BPB on return.

2-13

In order to allow for many different OEMs to read each other’s disks,
the following standard is suggested: The information relating to the
BPB for a particular piece of media is kept in the boot sector for the
media. In particular, the format of the boot sector is:

3 BYTE near JUMP to boot code

8 BYTES OEM name and version

B WORD bytes per sector
P
B

I

BYTE sectors per allocation unit

WORD reserved sectors

V BYTE number of FATs

WORD number of root dir entries

I
B
P

WORD number of sectors in logical image

BYTE media descriptor
B WORD number of FAT sectors

WORD sectors per track

WORD number of heads

WORD number of hidden sectors

The three words at the end (sectors per track, number of heads, and
number of hidden sectors) are optional. They are intended to help the
BIOS understand the media. Sectors per track may be redundant
(could be calculated from total size of the disk). Number of heads is
useful for supporting different multi-head drives which have the same
storage capacity, but different numbers of surfaces. Number of hid
den sectors may be used to support drive-partitioning schemes.

2-14

MS-DOS PROGRAMMER’S MANUAL DEVICE DRIVERS

2.6.4 Media Descriptor Byte

The last two digits of the FAT ID byte are called the media descriptor
byte. Currently, the media descriptor byte has been defined for a few
media types, including 5-1/4“ and 8“ standard disks. For more infor
mation, refer to Section 3.6, “MS-DOS Standard Disk Formats.”
Although these media bytes map directly to FAT ID bytes (which are
constrained to the 8 values F8-FF), media bytes can, in general, be
any value in the range 0-FF.

2-15

2.6.5 READ OR WRITE

Command codes = 3,4,8,9, and 12

READ or WRITE - ES:BX (Including IOCTL) - >

13-BYTE Request Header

BYTE media descriptor from DPB

DWORD transfer address

WORD byte/sector count

WORD starting sector number
(Ignored on character devices)

In addition to setting the status word, the driver must set the sector
count to the actual number of sectors (or bytes) transferred. No error
check is performed on an IOCTL I/O call. The driver must correctly
set the return sector (byte) count to the actual number of bytes trans
ferred.

THE FOLLOWING APPLIES TO BLOCK DEVICE DRIVERS:

Under certain circumstances the BIOS may be asked to perform a
write operation of 64K bytes, which seems to be a “wrap around” of
the transfer address in the BIOS I/O packet. This request arises due
to an optimization added to the write code in MS-DOS. It will only
manifest on user writes that are within a sector size of 64K bytes on
files “growing” past the current EOF. It is allowable for the BIOS to
ignore the balance of the write that “wraps around” if it so chooses. For
example, a write of 10000H bytes worth of sectors with a transfer
address of XXX: 1 could ignore the last two bytes. A user program can
never request an I/O of more than FFFFH bytes and cannot wrap
around (even to 0) in the transfer segment. Therefore, in this case, the
last two bytes can be ignored.

2-16

MS-DOS PROGRAMMER’S MANUAL DEVICE DRIVERS

2.6.6 NON DESTRUCTIVE READ NO WAIT

Command code = 5

NON DESRUCTIVE READ NO WAIT - ES:BX - >

13-B YTE Request Header

BYTE read from device

If the character device returns busy bit = 0 (characters in buffer), then
the next character that would be read is returned. This character is not
removed from the input buffer (hence the term “Non Destructive
Read”). Basically, this call allows MS-DOS to look ahead one input
character.

2-17

2.6.7 STATUS

Command codes = 6 and 10

STATUS Calls - ES:BX - >

13-BYTE Request Header

All the driver must do is set the status word and the busy bit as fol
lows:

For output on character devices: If bit 9 is 1 on return, a write
request (if made) would wait for completion of a current re
quest. If it is 0, there is no current request and a write request (if
made) would start immediately.
For input on character devices with a buffer: A return of 1 means,
a read request (if made) would go to the physical device. If it is
0 on return, then there are characters in the devices buffer and
a read would return quickly. A return of 0 also indicates that the
user has typed something. MS-DOS assumes that all character
devices have an input type-ahead buffer. Devices that do not
have a type-ahead buffer should always return busy = 0 so that
the DOS will not hang waiting for something to get into a buffer
which doesn’t exist.

2.6.8 FLUSH

Command codes = 7 and 11

FLUSH Calls - ES:BX - >

13-Byte Request Header

The FLUSH call tells the driver to flush (terminate) all pending
requests. This call is used to flush the input queue on character devi
ces.

2-18

MS-DOS PROGRAMMER'S MANUAL DEVICE DRIVERS

2.7 THE CLOCK DEVICE

One of the most popular add-on boards is the real time clock board.
To allow this board to be integrated into the system for TIME and
DATE, there is a special device (determined by the attribute word),
called the CLOCK device. The CLOCK device defines and performs
functions like any other character device. Most functions will be: “set
done bit, reset error bit, return.” When a read or write to this device
occurs, exactly 6 bytes are transferred. The first two bytes are a word,
which is the count of days since 1-1-80. The third byte is minutes, the
fourth, hours, the fifth, hundredths of seconds, and the sixth, se
conds. Reading the CLOCK device gets the date and time; writing to
it sets the date and time.

2-19

MS-DOS PROGRAMMER’S MANUAL TECHNICAL INFORMATION

CHAPTER 3
MS-DOS TECHNICAL INFORMATION

3.1 MS-DOS INITIALIZATION

MS-DOS initialization consists of several steps. Typically, a ROM
(Read Only Memory) bootstrap obtains control, and then reads the
boot sector off the disk. The boot sector then reads the following files:

10.SYS
MSDOS.SYS

Once these files are read, the boot process begins.

3.2 THE COMMAND PROCESSOR

The Command processor supplied with MS-DOS (file COMMAND.-
COM.) consists of 3 parts:

1. A resident part resides in memory immediately following
MSDOS.SYS and its data area. This part contains routines
to process Interrupts 23H (CONTROL-C Exit Address), and
24H (Fatal Error Abort Address), as well as a routine to
reload the transient part, if needed. All standard MS-DOS
error handling is done within this part of COMMAND.-
COM. This includes displaying error messages and proces
sing the Abort, Retry, or Ignore messages.

2. An initialization part follows the resident part. During start
up, the initialization part is given control; it contains the
AUTOEXEC file processor setup routine. The initialization
part determines the segment address at which programs can
be loaded. It is overlaid by the first program COMMAND.-
COM loads because it is no longer needed.

3-1

3. A transient part is loaded at the high end of memory. This
part contains all of the internal command processors and the
batch file processor.
The transient part of the command processor produces the
system prompt (such as A >), reads the command from
keyboard (or batch file) and causes it to be executed. For
external commands, this part builds a command line and
issues the EXEC system call (Function Request 4BFI) to
load and transfer control to the program.

3-2

MS-DOS PROGRAMMER’S MANUAL TECHNICAL INFORMATION

3.3 MS-DOS DISK ALLOCATION

The MS-DOS area is formatted as follows:
Reserved area - variable size
First copy of file allocation table - variable size
Second copy of file allocation table - variable size
(optional)
Additional copies of file
allocation table - variable
size (optional)
Root directory - variable size
File data area

Allocation of space for a file in the data area is not pre-allocated. The
space is allocated one cluster at a time. A cluster consists of one or
more consecutive sectors; all of the clusters for a file are “chained”
together in the File Allocation Table (FAT). (Refer to Section 3.5,
“File Allocation Table.”) There is usually a second copy of the FAT
kept, for consistency. Should the disk develop a bad sector in the
middle of the first FAT, the second can be used. This avoids loss of
data due to an unusable disk.

3.4 MS-DOS DISK DIRECTORY

FORMAT builds the root directory for all disks. Its location on disk
and the maximum number of entries are dependent on the media.
Since directories other than the root directory are regarded as files by
MS-DOS, there is no limit to the number of files they may contain.
All directory entries are 32 bytes in length, and are in the following
format (note that byte offsets are in hexadecimal):

3-3

0-7 Filename. Eight characters, left aligned and padded, if
necessary, with blanks. The first byte of this field indicates
the file status as follows:

00H The directory entry has never been used. This is used
to limit the length of directory searches, for perfor
mance reasons.

2EH The entry is for a directory. If the second byte is also
2EH, then the cluster field contains the cluster num
ber of this cirectory’s parent directory (0000H if the
parent directory is the root directory). Otherwise,
bytes 01H through OAH are all spaces, and the cluster
field contains the cluster number of this directory.

E5H The file was used, but it has been erased.
Any other character is the first character of a filename.

8-OA Filename extension.
OB File attribute. The attribute byte is mapped as follows

(values are in hexadecimal):

01 File is marked read-only. An attempt to open the file
for writing using the Open File system call (Function
Request 3DH) results in an error code being returned.
This value can be used along with other values below.
Attempts to delete the file with the Delete File system
call (13H) or Delete a Directory Entry (41H) will also
fail.

02 Hidden file. The file is excluded from normal direc
tory searches.

04 System file. The file is excluded from normal direc
tory searches.

08 The entry contains the volume label in the first 11
bytes. The entry contains no other usable information
(except date and time of creation), and may exist only
in the root directory.

3-4

MS-DOS PROGRAMMER’S MANUAL TECHNICAL INFORMATION

10 The entry defines a sub-directory, and is excluded
from normal directory searches.

20 Archive bit. The bit is set to “on” whenever the file
has been written to and closed.
Note: The system files (10.SYS and MSDOS.SYS)
are marked as read-only, hidden, and system files.
Files can be marked hidden when they are created.
Also, the read-only, hidden, system, and archive
attributes may be changed through the Change Attri
butes system call (Function Request 43H).

OC-15 Reserved.
16-17 Time the file was created or last updated. The hour, minu

tes, and seconds are mapped into two bytes as follows:

Offset 17H
I H I H I H I H I H I M I M I M I

7 3 2

Offset 16H
I M I M I M I S I S I S I S I S I

5 4 0

where:

H is the binary number of hours (0-23)
M is the binary number of minutes (0-59)
S is the binary number of two-second increments

18-19 Date the file was created or last updated. The year, month,
and day are mapped into two bytes as follows:

Offset 19H
I Y I Y I Y
7

1 Y 1 Y 1 Y 1 Y 1 M
1 0

Offset 18 H
1 M 1 M 1 M

5
1 D
4

1 D 1 D I D I D
0

3-5

where:

Y is 0-119 (1980-2099)
M is 1-12
D is 1-31

1A-1B Starting cluster; the cluster number of the first cluster in the
file.

Note that the first cluster for data space on all disks is cluster
002.

The cluster number is stored with the least significant byte
first.

NOTE

Refer to Section 3.5.1, “How to Use the File
Allocation Table,” for details about conver
ting cluster numbers to logical sector num
bers.

1C-1F File size in bytes. The first word of this four-byte field is the
low-order part of the size.

3-6

MS-DOS PROGRAMMER’S MANUAL TECHNICAL INFORMATION

3.5 FILE ALLOCATION TABLE (FAT)

The following information is included for system programmers who
wish to write installable device drivers. This section explains how MS-
DOS uses the File Allocation Table to convert the clusters of a file to
logical sector numbers. The driver is then responsible for locating the
logical sector on disk. Programs must use the MS-DOS file manage
ment function calls for accessing files; programs that access the FAT
are not guaranteed to be upwardly-compatible with future releases of
MS-DOS.
The File Allocation Table is an array of 12-bit entries (1.5 bytes) for
each cluster on the disk. The first two FAT entries map a portion of
the directory; these FAT entries indicate the size and format of the
disk.
The second and third bytes currently always contain FFH.
The third FAT entry, which starts at byte 4, begins the mapping
of the data area (cluster 002). Files in the data area are not always
written sequentially on the disk. The data area is allocated one
cluster at a time, skipping over clusters already allocated. The first
free cluster found will be the next cluster allocated, regardless of
its physical location on the disk. This permits the most efficient
utilization of disk space because clusters made available by erasing
files can be allocated for new files. ^
Each FAT entry contains three hexadecimal characters:

000 If the cluster is unused and available.
FF7 The cluster has a bad sector in it. MS-DOS will not allocate

such a cluster. CHKDSK counts the number of bad clu
sters for its report. These bad clusters are not part of any
allocation chain.

FF8-FFF Indicates the last cluster of a file.
XXX Any other characters that are the cluster number of the

next cluster in the file. The cluster number of the first
cluster in the file is kept in the file’s directory entry.

The File Allocation Table always begins on the first section after the
reserved sectors. If the FAT is larger than one sector, the sectors are
continguous. Two copies of the FAT are usually written for data
integrity. The FAT is read into one of the MS-DOS buffers whenever
needed (open, read, write, etc.). For performance reasons, this buffer
is given a high priority to keep it in memory as long as possible.

3-7

3.5.1 How To Use The File Allocation Table

Use the directory entry to find the starting cluster of the file. Next, to
locate each subsequent cluster of the file:

1. Multiply the cluster number just used by 1.5 (each FAT
entry is 1.5 bytes long).

2. The whole part of the product is an offset into the FAT,
pointing to the entry that maps the cluster just used. That
entry contains the cluster number of the next cluster of the
file.

3. Use a MOV instruction to move the word at the calculated
FAT offset into a register.

4. If the last cluster used was an even number, keep the low-
order 12 bits of the register by ANDing it with FFF; other
wise, keep the high-order 12 bits by shifting the register right
4 bits with a SHR instruction.

5. If the resultant 12 bits are FF8H-FFFH, the file contains no
more clusters. Otherwise, the 12 bits contain the cluster
number of the next cluster in the file.

To convert the cluster to a logical sector number (relative sector, such
as that used by Interrupts 25H and 26H and by DEBUG):

1. Subtract 2 from the cluster number.
2. Multiply the result by the number of sectors per cluster.
3. Add to this result the logical sector number of the beginning

of the data area.

3-8

MS-DOS PROGRAMMER'S MANUAL TECHNICAL INFORMATION

3.6 MS-DOS STANDARD DISK FORMATS

On an MS-DOS disk, the clusters are arranged on disk to minimize
head movement for multi-sided media. All of the space on a track (or
cylinder) is allocated before moving on to the next track. This is
accomplished by using the sequential sectors on the lowest-numbe
red head, then all the sectors on the next head, and so on until all
sectors on all heads of the track are used. The next sector to be used
will be sector 1 on head 0 of the next track.
For disks, the following table can be used:

#
Sides

Sectors/
Track

F A T size
Sectors

D ir
Sectors

Dir
Entries

Sectors/
Cluster

1 8 1 4 64 1

2 8 1 7 112 2

1 9 2 4 64 1

2 9 2 7 112 2

Figure 4. 5-V4” Disk Format

The first byte of the FAT can sometimes be used to determine the
format of the disk. The following 5J A ” formats have been defined for
the IBM Personal Computer, based on values of the first byte of the
FAT. The formats in Table 3.1 are considered to be the standard disk
formats for MS-DOS.

3-9

Table 3.1 MS-DOS Standard Flexible Disk Formats

5-¼ 5-¼ 5-¼ 5-¼ 8 8 8
No. sides 1 1 2 2 1 1 2
Tracks/side 40 40 40 40 77 77 77
Bytes/sector 512 512 512 512 128 128 1024
Sectors/track 8 9 8 9 26 26 8
Sectors/allocation unit 1 1 2 2 4 4 1
Reserved sectors 1 1 1 1 1 4 1
No. FATS 2 2 2 2 2 2 2
Root directory entries 64 64 112 112 68 68 192
No. sectors 320 360 640 720 2002 2002 616
Media Descriptor Byte FE FC FF FD FE* FD FE*
Sectors for 1 FAT 1 2 1 2 6 6 2

* The two media descriptor bytes that are the same for 8“ disks
(FEH) is not a misprint. To establish whether a disk is single- or
double-density, a read of a single-density address mark should be
made. If an error occurs, the media is double-density.

Table 3.2 MS-DOS Standard Fixed Disk Formats

5 MB* 5 MB 10 MB

BYTES PER SECTOR 512 512 512
SECTORS / ALLOCATION UNIT 16 16 8
RESERVED SECTORS 0 1 1
NUMBER OF FAT’S 1 1 2
ROOT DIRECTORY ENTRIES 512 496 512
NUMBER OF SECTORS PER DISK 10370 10370 20740
MEDIA DESCRIPTOR FA F9 F8
NUMBER OF FAT SECTORS 2 2 8
SECTORS PER TRACK 17 17 17
NUMBER OF HEADS 2 2 4
HIDDEN SECTORS 0 0 0

* The 5MB format was generated under D006-0052. All three
formats can be used under D006-0225.

3-10

MS-DOS PROGRAMMER'S MANUAL CONTROL BLOCKS AND WORK AREAS

CHAPTER 4
MS-DOS CONTROL BLOCKS AND WORK AREAS

4.1 TYPICAL MS-DOS MEMORY MAP

0000:0000 Interrupt vector table

XXXX:0000 IO.SYS - MS-DOS interface to hardware

XXXX :0000 MSDOS.SYS - MS-DOS interrupt handlers, service
routines (Interrupt 21H functions)

MS-DOS buffers, control areas, and installed device
drivers

XXXX:0000 Resident part of COMMAND.COM - Interrupt
handlers for Interrupts 22H (Terminate Address),
23H (CONTROL-C Exit Address), 24H (Fatal Error
Abort Address)
and code to reload the transient part

XXXX :0000 External command or utility - (.COM or .EXE file)

XXXX:0000 User stack for .COM files (256 bytes)

XXXX:0000 Transient part of COMMAND.COM - Command
interpreter, internal commands, batch processor

1. Memory map addresses are in segment:offset format. For
example, 0090:0000 is absolute address 0900FI.

2. User memory is allocated from the lowest end of available
memory that will meet the allocation request.

4-1

4.2 MS-DOS PROGRAM SEGMENT

When an external command is typed, or when you execute a program
through the EXEC system call, MS-DOS determines the lowest
available free memory address to use as the start of the program. This
area is called the Program Segment.
The first 256 bytes of the Program Segment are set up by the EXEC
system call for the program being loaded into memory. The program
is then loaded following this block. An .EXE file with minalloc and
maxalloc both set to zero is loaded as high as possible.
At offset 0 within the Program Segment, MS-DOS builds the Program
Segment Prefix control block. The program returns form EXEC by
one of four methods:

1. A long jump to offset 0 in the Program Segment Prefix
2. By issuing an INT 20H with CS:0 pointing at the PSP
3. By issuing an INT 21H with register AE1 = 0 with CS:0 poin

ting at the PSP, or 4CH and no restrictions on CS
4. By a long call to location 50H in the Program Segment Prefix

with AH = 0 or Function Request 4CH

NOTE

It is the responsibility of all programs to
ensure that the CS register contains the
segment address of the Program Segment
Prefix when terminating via any of these
methods, except Function Request 4CH.
For this reason, using Function Request
4CH is the preferred method.

All four methods result in transferring control to the program that
issued the EXEC. During this returning process, Interrupts 22H, 23H,
and 24H (Terminate Address, CONTROL-C Exit Address, and Fatal
Error Abort Address) addresses are restored from the values saved in
the Program Segment Prefix of the terminating program. Control is
then given to the terminate address. If this is a program returning to
COMMAND.COM, control transfers to its resident portion. If a batch
file was in process, it is continued; otherwise, COMMAND.COM
performs a checksum on the transient part, reloads it if necessary,
then issues the system prompt and waits for you to type the next
command.
When a program receives control, the following conditions are in
effect:
4-2

MS-DOS PROGRAMMER'S MANUAL CONTROL BLOCKS AND WORK AREAS

For all programs:
The segment address of the passed environment is contained at
offset 2CH in the Program Segment Prefix.
The environment is a series of ASCII strings (totaling less than
32K) in the form:

NAME = parameter
Each string is terminated by a byte of zeros, and the set of
strings is terminated by another byte of zeros. The environ
ment built by the command processor contains at least a COM-
SPEC = string (the parameters on COMSPEC define the path
used by MS-DOS to locate COMMAND.COM on disk). The
last PATH and PROMPT commands issued will also be in the
environment, along with any environment strings defined with
the MS-DOS SET command.
The environment that is passed is a copy of the invoking pro
cess environment. If your application uses a “keep process”
concept, you should be aware that the copy of the environment
passed to you is static. That is, it will not change even if subse
quent SET, PATH, or PROMPT commands are issued.
Offset 50H in the Program Segment Prefix contains code to call
the MS-DOS function dispatcher. By placing the desired func
tion request number in AH a program can issue a far call to
offset 50H to invoke an MS-DOS function, rather than issuing
an Interrupt 21H. Since this is a call and not an interrupt, MS-
DOS may place any code appropriate to making a system call at
this position. This makes the process of calling the system
portable.
The Disk Transfer Address (DTA) is set to 80H (default DTA
in the Program Segment Prefix).
File control blocks at 5CH and 6CH are formatted from the first
two parameters typed when the command was entered. If
either parameter contained a pathname, then the correspon
ding FCB contains only the valid drive number. The filename
field will not be valid.
An unformatted parameter area at 81H contains all the charac
ters typed after the command (including leading and imbedded
delimiters), with the byte at 80H set to the number of charac
ters. If the < , > , or parameters were typed on the command
line, they (and the filenames associated with them) will not
appear in this area; redirection of standard input and output is
transparent to applications.
Offset 6 (one word) contains the number of bytes available in
the segment.

4-3

Register AX indicates whether or not the drive specifiers (ente
red with the first two parameters) are valid, as follows:

A1 = FF if the first parameter contained an
invalid drive specifier (otherwise AL = 00)
AH = FF if the second parameter contained
an invalid drive specifier (otherwise AH =
00)

Offset 2 (one word) contains the segment address of the first
byte of unavailable memory. Programs must not modify ad
dresses beyond this point unless they were obtained by alloca
ting memory via the Allocate Memory system call (Function
Request 48H).

4-4

MS-DOS PROGRAMMER’S MANUAL CONTROL BLOCKS AND WORK AREAS

For Executable (EXE) programs:
DS and ES registers are set to point to the Program Segment
Prefix.
CS,IP,SS, and SP registers are set to the values passed by MS-
LINK.

For Executable (.COM) programs:
All four segment registers contain the segment address of the
initial allocation block that starts with the Program Segment
Prefix control block.
All of user memory is allocated to the program. If the program
invokes another program through Function Request 4BH, it
must first free some memory through the Set Block (4AH)
function call, to provide space for the program being executed.
The Instruction Pointer (IP) is set to 100H.
The Stack Pointer register is set to the end of the program’s
segment. The segment size at offset 6 is reduced by 100H to
allow for a stack of that size.
A word of zeros is placed on top of the stack. This is to allow a
user program to exit to COMMAND.COM by doing a RET
instruction last. This assumes, however, that the user has
maintained his stack and code segments.

4-5

Figure 5. illustrates the format of the Program Segment Prefix. All
offsets are in hexadecimal.

(o ffs e ts in h e x)

1 N T h e x 2 0
T o p o f
m e m o ry R eserved

L o n g c a ll to
D O S fu n c t io n d is
p a tc h e r (5 b y te s)1 2 3

T e r m in a te address
(IP , C S)

C T R L - B R E A K
e x i t address
(IP)

C T R L - B R E A K
e x i t address
(C S)

C R I T I C A L E R R O R
e x i t address
(IP , C S)

« Use d b y D O S

2 C

N o te 3

J

n e d F C B
F o rm a t te d Para
fo r m a t te d as st<

m e te r A re a 1
ändard unope

(

■ned F C B
o p e n e d)

F o rm a t te d P a ra m e te r A re a
fo r m a t te d as s ta n d a rd unope
(o v e rla id i f F C B a t h e x 5 C is

- U n fo r m a t te d p a ra m e te r a re a ^
(d e fa u lt d is k tra n s fe r a rea)

1. First segment of available memory is in segment (paragraph)
form (for example, hex 1000 would represent 64K).

2. The word at offset 6 contains the number of bytes available in
the segment.

3. Offset hex 2C contains the segment address of the environment.

Figure 5 Program Segment Prefix

IMPORTANT

Programs must not alter any part of the
Program Segment Prefix below offset 5CH.

4-6

MS-DOS PROGRAMMER'S MANUAL EXE FILE STRUCTURE AND LOADING

CHAPTER 5
EXE FILE STRUCTURE AND LOADING

NOTE

This chapter describes .EXE file structure
and loading procedures for systems that use
a version of MS-DOS that is lower than 2.0.
For MS-DOS 2.0 and higher, use Function
Request 4BH, Load and Execute a Program,
to load (or load and execute) an .EXE file.

The .EXE files produced by MS-LINK consist of two parts:
Control and relocation information
The load module

The control and relocation information is at the beginning of the file
in an area called the header. The load module immediately follows
the header.
The header is formatted as follows. (Note that offsets are in hexadeci
mal.)

Offset Contents

00-01 Must contain 4DH, 5AH.

02-03 Number of bytes contained in last page; this is useful
in reading overlays.

04-05 Size of the file in 512-byte pages, including the hea
der.

06-07 Number of relocation entries in table.

5-7

08-09 Size of the header in 16-byte paragraphs. This is used to
locate the beginning of the load module in the file.

0A-0B Minimum number of 16-byte paragraphs required above the
end of the loaded program.

0C-0D Maximum number of 16-byte paragraphs required above
the end of the loaded program. If both minalloc and maxal-
loc are 0, then the program will be loaded as high as possi
ble.

0E-0F Initial value to be loaded into stack segment before starting
program execution. This must be adjusted by relocation.

10-11 Value to be loaded into the SP register before starting pro
gram execution.

12-13 Negative sum of all the words in the file.
14-15 Initial value to be loaded into the IP register before starting

program execution.
16-17 Initial value to be loaded into the CS register before starting

program execution. This must be adjusted by relocation.
18-19 Relative byte offset from beginning of run file to relocation

table.
1A-1B The number of the overlay as generated by MS-LINK.

The relocation table follows the formatted area described above. This
table consists of a variable number of relocation items. Each reloca
tion item contains two fields: a two-byte offset value, followed by a
two-byte segment value. These two fields contain the offset into the
load module of a word which requires modification before the mo
dule is given control. The following steps describe this process: 1 2 3 4

1. The formatted part of the header is read into memory. Its
size is 1BH.

2. A portion of memory is allocated depending on the size of
the load module and the allocation numbers (0A-0B and 0C-
0D). MS-DOS attempts to allocate FFFFH paragraphs. This
will always fail, returning the size of the largest free block. If
this block is smaller than minalloc and loadsize, then there
will be no memory error. If this block is larger than maxalloc
and loadsize, MS-DOS will allocate (maxalloc + loadsize).
Otherwise, MS-DOS will allocate the largest free block of
memory.

3. A Program Segment Prefix is built in the lowest part of the
allocated memory.

4. The load module size is calculated by subtracting the header
size from the file size. Offsets 04-05 and 08-09 can be used
for this calculation. The actual size is downward-adjusted

5-2

MS-DOS PROGRAMMER'S MANUAL EXE FILE STRUCTURE AND LOADING

based on the contents of offsets 02-03. Based on the setting
of the high/low loader switch, an appropriate segment is
determined at which to load the load module. This segment
is called the start segment.

5. The load module is read into memory beginning with the
start segment.

6. The relocation table items are read into a work area.
7. Each relocation table item segment value is added to the

start segment value. This calculated segment, plus the
relocation item offset value, points to a word in the load
module to which is added the start segment value. The
result is placed back into the word in the load module.

8. Once all relocation items have been processed, the SS and
SP registers are set from the values in the header. Then, the
start segment value is added to SS. The ES and DS registers
are set to the segment address of the Program Segment
Prefix. The start segment value is added to the header CS
register value. The result, along with the header IP value, is
the initial CS:IP to transfer to before starting execution of
the program.

5-3

MS-DOS PROGRAM M ER'S M ANUAL s p e c ia l Fe a t u r e s

C H A P T E R 6
S P E C I A L F E A T U R E S

6 . 1 T I M E R I N T E R R U P T S U P P O R T

The MS-DOS operating system provides support for an interval
timer, which is used for updating DATE and TIME, on systems
equipped with a 8088 16-Bit Processor with Interrupts (inter
nal) 3273—K23 5. Applications and system modules can intercept
the periodic interrupts of the interval timer for their own timing
purposes.
Section 1 describes basic concepts, section 2 shows how timer and
controller are initialized by MS-DOS.

6 . 1 . 1 B a s i c c o n c e p t s o f t h e t i m e r i n t e r r u p t s u p p o r t .

The interval timer, which is referred to as timer 2, is set by MS-
DOS to issue an interrupt every 10 ms. Whenever a period of
10 ms expires, interrupt controller 8259A gives control to the
timer 2 Interrupt Service Routine (= Interrupt type 8 vector). The
ISR updates the internal counters and gives control to interrupt
type/number ICH vector.

As already mentioned, application programs can make use of the
system’s interval timer. To set up its own timer, an application
program must save the interrupt number ICH vector (address
0000:0070 hex). This can be done with function call 35H which
returns the vector in ES:BS. The address in ES:BX should be
saved as a Double WORD Pointer, because the application’s timer
ISR must exit to it.

The application must now set the vector to its own timer ISR with
function call 25H. Interrupts must be disabled while this vector is
being set. After this initial setup is accomplished, the application’s
timer ISR is given control every 10 ms.

To allow other application programs to make use of the interval
timer too, every timer ISR must exit to the address saved during
initial setup; it must not do an IRET.

6 1

NOTE

A timer ISR must always exit to the address
saved during initial setup. If this is not the
case, the system will crash.

Figures 1-3 shall illustrate the basic principles of an interval timer.

>1

A p e rio d o f 1 0 m s has e x p ire d

In te r r u p t c o n tro l le r 8 2 5 9 A tran s fe rs c o n tro l to
In te r r u p t ty p e 8 v e c to r (T im e r 2 IS R o f o p e ra tin g sys te m)

IR E T

T im e r 2 IS R u p d a tes in te rn a l c o u n te rs a n d tra n s fe rs
c o n tro l t o In te r r u p t ty p e 1 C H v e c to r

a p p lic a t io n in te rc e p tio n p laced
o w n v e c to r a t address 0 0 0 0 1
0 0 7 0 h e x . a f te r saving o ld on e

T im e r IS R o f a p p lic a t io n X
u p d a tes in te rn a l c o u n te rs a n d
gives c o n tro l to saved v e c to r

a n o th e r a p p lic a t io n in te rc e p
t io n

F ig u re 1 G e n e ra l F lo w

6-2

MS-DOS PROGRAMMER'S M ANUAL SPECIAL FEATURES

r
T im e r 2 IS R

(o p e ra tin g sys tem)

T im e r 2 IS R E x it

I R E T

0000:0020
1 V e c to r 8

1

0 0 0 0 : 0 0 7 0

in itia l

0 0 0 0 : 0 0 7 0

0 0 0 0 : 0 0 7 0

5 V e c to r 1 C H 2

never c hanged

V e c to r 1 C H 1

A p p lic a t io n 1

set v e c to r 1 C H (1) l

saved V e c to r 1 C H

T im e r IS R

A p p lic a t io n 2

set v e c to r 1 C H (2)

saved V e c to r 1 C H 1

T im e r IS R

F ig u re 2 .

6-3

hex.address (segment: offset)

F ig u re 3 T h e IS R o f th e o p e ra tin g system

The last application intercepting the interval timer interrupt
vector ICH is the first to be serviced, because it saves the ISR
address of the previous “first in queue” and puts its own ISR
address in place of the one saved.

There is no limit as to the number of applications that can make
use of the interrupt.

The overall service time should be kept to a minimum.

6-4

MS-DOS PROGRAMMER'S MANUAL SPECIAL FEATURES

6.1.2 Initialization of the interval timer by MS-DOS

This section provides information on how interrupt controller
8259A and timer 2 are initialized by MS-DOS.

The operating system sets up timer 2 for issuing an interrupt
every 10 milliseconds (see code listed below). Interrupt type 8 is
used.

Timer 2 is set up for square wave generation (Mode 3). This mode
does not require a reload of the timer in the Interrupt Service
Routine, and it provides the most exact timing. However, Mode 3
requires that interrupt controller 8259A be in edge triggered mode
(Bit 3 of ICW1=0). Furthermore, the controller is instructed to
handle end of interrupt automatically. Thus, the timer Interrupt
Service Routine does not need to reset the interrupt.

Initialization of Interrupt Controller 8259A:

CLI
MOVAL, 00010111B

OUT 90H, AL
MOV AL, 00001000B
OUT 91H, AL
MOV AL, 00000011B
OUT 91H, AL
IN AL, 91H
AND AL, 11111110B
OUT 91H, AL

disable Interrupts during Initialization
Initialize, edge triggered input, call
address interval of 4, single, ICW4
PIC 8259A Port address ICW1
interrupt type 8 for IRQ 0
PIC 8259A Port address (ICW2)
Auto EOI, MCS-86 mode
PIC 8259A Port Address (ICW4)
Read Interrupt Mask Register (OCW1)
Unmask type 8
Write Interrupt mask Register (OCW1)

Initialization of Timer 2
MOV AL, 10110110B

OUT 83H, AL

MOV AX, 5000 D

OUT 82H, AL
XCHG AL, AH
OUT 82H, AL
STI

Counter 2, load least significant byte
then most siginificant byte, Mode 3,
binary counter (16 bits)
Interval timer 8253 Port (write mode
word)
Valve for counter 2 500 x 500 khz
= 10 ms
Interval timer 8253 Port load counter2)
Most sign, byte to AL

Enable Interrupts

By issuing an I/O control command, you can, among other things,
select the cursor and the lines per screen, switch the bell on or off,
and tell the system about the installation of a video disk.

6.2 I/O Control Functions

6 . 2 . 1 H o w t o w r i t e t h e s e l e c t e d v a l u e s

A) Select the cursor

Send the following bytes in an I/O-control-write command to
select the cursor:

1. “43H” or “63H” ----------- ----------------------------------- Prefix

2 .

3.

4.

row s p e r c h a ra c te r
(m u s t be O F H f o r D M V)

0 - c u rso r o f f
I = c u rso r on

n u m b e r o f th e to p p ix e l ro w
(A n y value f ro m 0 th ro u g h F
m a y be e n te re d)
0 - b l in k in g cu rso r
I - s tea d y c u rso r

b lin k in g ra te , lo w e r b its

b lin k in g ra te , u p p e r b its

n u m b e r o f th e b o t to m p ix e l ro w
(A n y v a lu e f ro m 0 th ro u g h F m a y
be e n te re d).

The term “pixel row” may need some brief explanation. The soft
ware considers the screen to be made up of pixels. A pixel is simp
ly a dot on the screen. Each of the 25 lines on your screen com
prises 16 pixel rows. These pixel rows are numbered 0 through F
(from top to bottom).

6-6

MS-DOS PROGRAMMER'S M ANUAL SPECIAL FEATURES

B) Select the number of lines per screen

Send the following bytes in an I/O-control-write command to
select the number of lines on the screen:

1. “4CH” or “6CH” Prefix
2. “ 18H” or “ 19H” hex values for 24 or 25 lines

NOTE: With a screen of 24 lines, the 25th line is reserved for
steady displays. Scrolling takes longer.

C) Switch the bell on/off

Send byte “42H” or byte “62H” in an I/O-control-write command
to switch the bell on or off. Note that if the bell is switched off,
you cannot play music.

D) Installation of a video disk

Send “56H” or “76H” in an I/O-con trol-write command to tell
the system about the installation of a video disk.

6 . 2 . 2 H o w t o c h e c k t h e s e l e c t e d v a l u e s

If an I/O-control-read command is sent, the following eight bytes
will be returned:

‘43H” or “63H”

“4CH” or “6CH”

u

“42H” or “62H”

u

Prefix

cursor type
(the 3 bytes defining the cursor;
compare with A))

Prefix

number of lines
(1 byte, either 18H or 19H;
compare with B))
Prefix

console flags
(1 byte, compare with the next
paragraph, “Pattern of the console
‘console flags’ byte” .)

6-7

6 . 2 . 3 T h e p a t t e r n o f t h e " c o n s o l e f l a g s " b y t e

The byte “console flags” has the following pattern:

i__11__ 11__ II__II____________1
n o t used

I - v id e o d is k in s ta lle d

I - b e ll s w itc h e d o f f

I - h e b re w k e y b o a rd in s ta lled I

I - system has c o lo r C R T

6-8

MS-DOS PROGRAMMER'S M ANUAL SPECIAL FEATURES

ü U S - E N G L J S H

yF 1 ! F.2 ! F- 3 ! F 4 ! F 5 ! F 6 ! F 7 ! F S ! F 9 ! F 1 0 ! F l 1 ! F 12 ! F 13 ! F 1 4 ! F 1 5 !
; AG ! A l ! A 2 ' A 3 ! A 4 ! A 5 ! A 6 ! A 7 ! A S ! A 9 ! AA ! AB ! A C ! AD! A E !
y CO ! C I ! C 2 ! C 3 ! C 4 ! C 5 ! CA ! C 7 ! C S ! C 9 ! CA ! CB ! CC ! CD! C E !
? EO ! E l ! E 2 ! E 3 ! E 4 ! El 5 ! EA ! E 7 ! F S 1 E 9 ! E A ! EB ! E C ! E D ! E E !

5 E S C ! 1 ! ! 2 @ ! 3 * ! 4 $! '.i V. ! 6 A ! 7 6 ! S ä ! 9 (! 0) ! - ! ! B S P ! T A B !
9 1B ! ! i i ! ! i i i ! i I F ! ! 9 B ! 0 9 !
} 1 B ! 2 1 ! 4 0 ! 2 3 ! 2 4 ! 2 5 1 5 E ! 2 6 ! 2 A ! 2 8 1 2 9 ! 5 F ! 2 B ! S B ! 0 9 !
; 1B ! 3 3. 1 "7r) ! 3 3 1 3 4 ! 3 5 ! 3 6 ! 3 7 ! 3 8 ! 3 ? ! 3 0 ! 2D ! 3 D ! S B 1 0 9 !

f (q 0 ! wW ! e E (r R ! T t ! y Y 1LI 1J ! i I ! o O ! f> P ! C -L !1 1 !
? ' 3 1 ! 1 7 ! 0 5 ! 1 2 ' 1 4 ! 1 9 ! 15! 0 9 ' O F ' 1.0! I ß ! 1 0 !
jj C O N T I . ! 5 1 ! 5 7 ! 4 5 ! 5 2 ! 5 4 ! 5 9 ! 5 5 ! 4 9 ! 4 F ! 5 0 ! 7 B ! 7D ! C O N T I
J ! 7 1 ! 7 7 ! 6 5 ! 7 2 ! 7 4 ! 7 9 ! 7 5 ! 6 9 ! 6 F ! 7 0 ! 5 ß ! 5 0 !

y ! ! a A ! s S !d D ! FF ! gG ! hH ■ j j ! (< K ! LJL ! y : ! " ' ! , ** ■

; ! ! 0 1 ' 1 3 ' 0 4 ! 0 6 ! 0 7 ! OS 1 DA ! OB! OC! ! 0 0 ! I E i 2 g i

5 ! L Ü C K A ! 4 1 ! 5 3 ! 4 4 ! 4 6 ! 47 ! 4 8 ! 4 A ! 4B ! 4 C ! 3 A ! 2.2 ! 7 E ! 8 8 !
t ! ! 6 1 ! 7 3 ! 6 4 ! 6 6 ! 6 7 ! 68 ! 6 A ! 6 B ! 6 C ! 3 B ! 2 7 ! 6 0 1 88 1
y
y ! ! ’■ * ! .7.2. ! x X ! c C ! v V ! bB ! nN ! mil ! y < ! .) ! / ? !
; ' A ' I C ! 1A ! I S ! 0 3 ' 16 1 0 2 ! OE ! OD! ! ! ! a

? ! S H F ! 7 C ! 5 A ! 5 8 ! 4 3 ! 5 6 ! 4 2 ! 4 E ! 4 D ! 3 C ! 3 E ! 3 F ! S H I F T
; ' ! 5 C ! 7 A ! 7 8 ! 6 3 ! 7 6 ! 6 2 ! 6 E ! A D ! 2 C ! 2 E ! 2 F 1

20
20
20

jl U K - E N G L I S H

5F l ! F 2 ! F 3 ! F 4 F 5 ! F 6 ! F 7 F S ! F 9 ! F 1 0 ! F 1 1 ! F 1 2 ! F 13 ! F 14 ! F 15 !

; ACI! A l ! A2 1 A 3 1 A4 ! A 5 ! A 6 A 7 ! A 8 ! A 9 ! A A ! AB 1 A C ! A D ! A E !
; CO! C l ! C.2! C 3 ! 0 4 ! C 5 ! CA C 7 ! CB ! C 9 ! C A 1 CB ! C C ! C D ! C E !
; F O 1 E l ! EC2 ! FC3 ! E 4 ! E 5 ! E 6 ! E 7 ! E S ! E 9 ! E A 1 EB ! E C ! E D ! E E !

3E S C ! 1 ! \ 2 " ! 3 t ! 4 $ ' 37. ' 6 6 7 1 ! 8 (! 9) ! 0 _ ! | ! B S P ! T A B !

; 1B ! ! ! i i ' ! ! ! ! I F ! ! I E ! 9 B ! 0 9 !

ü 1 B ! 2 1 ! 2 2 ! 2 3 1 2 4 ’ 2 5 ! 2 6 ! 2 7 ! 2 8 ! 2 9 ! 5 F ! 3 D ! 7 E ! 8B ! 0 9 !

? 1.B! 3 1 ! 3 2 ! 3 3 i 34 ! 3 5 ! 3 6 ! 3 7 ' 3 8 ! 3 9 ' 3 0 ! 20 ! 5 E ! S B ! 0 9 !

:: CONT!..,
i

qO !wU
1 1 ! 1
5 1 ! 5 '
7 1 ! 7

! :K>E '
' ! 0 5 !

1 4 5 !
1 ! 6 5 !

r R 1
1 2 !
c-O i

7 2 1

t.T ! y Y !
14 ! 19 !
5 4 ! 5 9 !
7 4 ! 7 9 !

uU !
15!
5 5 1
7 5 !

i l !
0 9 !
4 9 !
6 9 !

oO
OF
4 F
ÄF

P P !
1 0 !
5 0 !
7 0 !

' i s !C { !
0 0 ! 1B !
6 0 ! 7 B !
4 0 ! 5 B !

C O N TL

l t
! a A ! s f !d D ! FF ! g ü ! hH ■ j j ! kl< ! I L ! y + ! : : * ! I J !

- i ! 0 1 ! 1 3 ' 04 ! 0 6 ! 0 7 ! 0 8 ! GA ! GIB ! OC i ! ! I D

y ! l o c i : V 4 1 ! 13 i 44 ! 4 6 1 4 7 ! i-8 ' 4 A ! 4 B ! 4 C ! 2 B ! 2 A ! 7 0 1 g g I

? • ! 6 1 ' 7 3 ! 64 ! 66 ' 6 7 ! 68 ! 6 A ! AB ! AC ! 3B 1 3 A ! 5 0 1 o <■-> 1: cjv» .

• i .- I i

; ! S H F !

. : ! x Z
LC ! 1A
7 C ! 5 A
7C 1 7 A

x X ! c
1 8 ! ■
5 8 '
7 8 !

C ! v V ! bB
0 3 ! 3 6 ! 0 2
4 3 ! 5 6 ! 4 2
A 3 ! 7 6 ! 6 2

nN !mH !y
CIE! OD!
4 E ! 4 D !
6 E ! 6D !

< ! ..
i

3 C !
2 C !

>

3 E
2 E

/ ? !
1 A

3 F i S H I F T
2F !

i i
i i

i i

2020
20

A -1

MS-DOS PROGRAMMER'S M ANUAL SPECIAL FEATURES

i! N U M E R IC K E Y P A D PA R T

! F 16 ! F 17 ' F 18 ? F 1 9 ! F20
! AF ! BO! B 1 ! B 2 ! B3
! CF ! DO! D l! D2! 0 3
! F.F ! FQ! F I ! F 2 ! F3
|-------+ -------+ ------+

— ! t :

-------+

♦ ! i
! 9 1 ! 9 2 ! 9 3 ! 9 4 ' 9 5 !
! 8 1 ! 8 2 ! 8 3 ! 8 4 ! 8 5 !
! 8 1 ! 8 ' J 1 8 3 1 8 4 ! 8 5 1

! C L P ! 7 ! 8 ! ? ! / !
! 9 6 ! S!7! B B ! B 9 ! B E !
! 7 F ! 0 7 ! 0 8 ! D9 ! D F !
! 8 6 ! 3 7 ' 3 8 ! 3 9 ! 2F !

4 ! 5 ! 6 ! * !
! F 5 ! B 4 ! B 5 ! B 6 ! B A !
! F 4 1 0 4 ! 0 5 ! D 6 ! D A '
! 2 D ! 3 4 ! 3 5 ! 3 6 ! 2 A !

! + ! 1 12 ! 3 ! F T !
! B B ! B C ! BD ! B E ! 9 8 1
! D E ! D C ! 0 0 ! D E ' 88 1
1 2 B ! 3 1 ! 3 2 ! 3 3 ! 8 8 !

i

! 0 ! 00 ! i
! 30 1 » 3 0 ! i <-------
! 30 ! « 3 0 ! 2 E ! <-------
! 30 ! * 3 0 1 2E! !

s w i tc:h
2 E H (..)

fni . t o i
o r 2 C H (, >

o r b a c k
a s s e t

E X P L A N A T IO N : 1ST L IN E SY M B O L S , 2N D L IN E C O N R O L-CO D E,
3 R D L IN E SH IFT -C O D E , 4TH U N SH IF T

For some keyboards, the keys listed below are designed as follows:

F1
AO
CO
EO

F2
A1
C1
E1

F3
A2
C2
E2

F4
A 3
C3
E3

F20
B3
D3
F3

— volume control for the bell (—)

— volume control for the bell (+)

— brightness (—)

— brightness (+)

— used for system reset

2E
2E

-----used for switching from point to comma and back
O U TPU T :2EH (.) or 2CH (,); older keyboards return

9 A H in C O N T R O L mode, and 8A H instead of 2EH and 2CH.

A-2

MS-DOS PROGRAMMER’S MANUAL INDEX

INDEX

.COM f i l e ..2-12

Absolute Disk Read (Interrupt 2 5 H) ...1-23
Absolute Disk Write (Interrupt 26H)...1-25
Allocate Memory (Function 4 8 H)..1-128
Archive b i t ..3-6
A S C IZ ... 1-107
Attribute field .. 2-4
A ttribu tes.. •1-12
AUTOEXEC f ile ... 3-2
Auxiliary Input (Function 03H)..1-36
Auxiliary Output (Function 0 4 H)...1-37

Basic..1-1
BIOS .. 1-25,2-6
BIOS Parameter B lock...2-10, 2-13
Bit 8 ... 2-9
Bit 9 ..2-9
Block devices... 2-1, 2-8, 2-10
Boot sector.. 2-14
BPB ... 2-10
BPB p o in te r .. 2-12
Buffered Keyboard Input (Function OAH)................................ 1-45
BUILD B P B ... 2-4, 2-8, 2-13
Busy b i t ..2-9, 2-17 to 2-18

Case m app ing ..1-108
Change Attributes (Function 43H) ...1-120
Change Current Directory (Function 3BH)............................... 1-111
Character device .. 2-1, 2-5

Example.. 2-34
Check Keyboard Status (Function 0B H)..................................... 1-47
CLOCK device... 2-4, 2-19
Close a File Handle (Function 3 E H) ..1-115
Close File (Function 10H).. 1-53
Cluster ..3-3

INDEX-1

Command code field .. 2-7
Command processor... 3-2
COMMAND.COM.. 3-1 to 3-2
COM SPEC=...4-3
CON device ...2-5
CONFIG.SYS... 2-6, 2-12
Console input/output c a l l s .. 1-3
Control b lo ck s .. 4-1
Control inform ation... 5-1
CONTROL-C Check (Function 3 3 H)... 1-102
CONTROL-C Exit Address (Interrupt 23H)1-19, 3-2
CP/M-compatible calling sequence..1-28
Create a File (Function 3 C H) ..1-112
Create File (Function 1 6 H) ... 1-65
Create Sub-Directory (Function 39H)... 1-109
Current Disk (Function 1 9 H).. 1-69

D A T E ..2-19
Delete a Directory Entry (Function 41H).................................. 1-118
Delete File (Function 1 3 H) ... 1-59
Device drivers .. 3-7

Creating ..2-5
D u m b ...2-11

Installing..2-6
S m a r t ...2-11

Device h e a d e r .. 2-3
Direct Console I/O (Function 06H) ...1-40
Direct Console Input (Function 07H) ... 1-42
Directory en try .. 1-6
Disk allocation.. 3-3
Disk D irectory .. 3-4
Disk errors ... 1-22
Disk format

IB M ...3-3
M S-DOS..3-7

Disk I/O calls .. 1-3
Disk Reset (Function O D H)... 1-49
Disk Transfer Address ...1-63, 4-3
Display Character (Function 02H) ..1-35
Display String (Function 09H) ... 1-44
Done bit ...2-9
D river.. 2-2
Dumb device driver ...2-11
INDEX-2

MS-DOS PROGRAMMER'S MANUAL INDEX

Duplicate a File Handle (Function 4 5 H) 1-125

Error codes.. 1-20
EXE files .. 5-1
Extended File Control B lo ck ... 1-6

F A T ...1-11,2-8,2-13,3-3,3-7
FAT ID byte ..2-13,2-15
Fatal Error Abort Address (Interrupt 24H) 1-20, 3-2
F C B ... 1-3
File Allocation T a b le .. 1-11,3-3, 3-7
File Control B lo ck ... 1-3,1-51

E x tended .. 1-6,4-10
F ie ld s ... 1-4, 1-7
Opened...1-3
Unopened.. 1-3

File control Block ..1-3
File Size (Function 23H)...1-76
Filename separators ...1-88
Filename terminators...1-88
Find Match File (Function 4EH) ..1-136
FLUSH .. 2-18
Flush Buffer (Function O C H).. 1-48
Force Duplicate of Handle (Function 46H)............................... 1-126
FORMAT...3-4
F o r tra n ..1-2
Free Allocated Memory (Function 4 9 H) 1-129
Function call parameters...2-11
Function dispatcher ...1-28
Function Request (Interrupt 2 1 H)...1-18, 4-3
Function Requests

Function 0 0 H ... 1-33
Function 0 1 H ... 1-34
Function 0 2 H ... 1-35
Function 0 3 H ... 1-36
Function 04H ... 1-37
Function 0 5 H ... 1-38
Function 0 6 H ... 1-40
Function 0 7 H ... 1-42
Function 0 8 H ... 1-43

INDEX-3

Function 09H .
Function OAH-
Function OBH
Function OCH
Function ODH
Function OEH
Function OFH
Function 10H .
Function 11H .
Function 12H .
Function 13H .
Function 14H .
Function 15H .
Function 16H .
Function 17H .
Function 19H .
Function IAH
Function 21H .
Function 22H .
Function 23H .
Function 24H .
Function 25H .
Function 27H .
Function 28H .
Function 29H .
Function 2AH
Function 2BH
Function 2CH
Function 2DH
Function 2EH
Function 2FH
Function 30H
Function 31H
Function 33H
Function 35H
Function 36H
Function 38H
Function 39H
Function 3AH
Function 3BH
Function 3CH
Function 3DH
Function 3EH
Function 3FH

. . . 1-44

. . . 1-45

. . . 1-47

. . . 1-48
1-49, 1-63
. . . 1-50
1-51, 1-65
. . . 1-53
. . . 1-55
. . . 1-57
. . . 1-59
. . . 1-61
. . . 1-63
. . . 1-65
. . . 1-67
. . . 1-69
. . . 1-70
. . . 1-72
. . . 1-74
. . . 1-76
. . . 1-78
1-19, 1-79
. . . 1-81
. . . 1-84
. . . 1-87
. . . 1-90
. . . 1-92
. . . 1-94
. . . 1-95
. . . 1-97
. . . 1-99
. . 1-100
. . 1-101
. . 1-102
. . 1-104
. . 1-105
. . 1-106
. . 1-109
. . 1-110
. . 1-111
. . 1-112
. . 1-113
. . 1-115
. . 1-116

INDEX-4

MS-DOS PROGRAMMER'S MANUAL INDEX

Function 4 0 H .. 1-117
Function 4 1 H .. 1-118
Function 4 2 H .. 1-119
Function 4 3 H .. 1-120
Function 4 4 H .. 1-121
Function 4 5 H .. 1-125
Function 4 6 H .. 1-126
Function 4 7 H .. 1-127
Function 4 8 H .. 1-128
Function 4 9 H .. 1-129
Function 4A H .. 1-130
Function 4 B H .. 1-131
Function 4 C H .. 1-134
Function 4D H .. 1-135
Function 4 E H .. 1-136
Function 4 F H .. 1-138
Function 5 4 H .. 1-139
Function 5 6 H .. 1-140
Function 5 7 H .. 1-141
Function O A H .. 1-45

Get Date (Function 2A H) ..1-90
Get Disk Free Space (Function 3 6 H)..1-105
Get Disk Transfer Address (Function 2 F H)............................... 1-99
Get DOS Version Number (Function 30H) 1-100
Get Interrupt Vector (Function 3 5 H)..1-104
Get Time (Function 2C H)..1-94
Get/Set Date/Time of File (Function 5 7 H) 1-141
H eader...5-1
Hidden files .. 1-57, 3-5
Hierarchical directories...1-11
High-level languages... 1-1
I/O Control for Devices (Function 44H) 1-121, 2-4
I/O Control F unctions.. 6-6
IBM disk fo rm at...3-3
I N I T ..2-5, 2-10 to 2-12
Initial allocation block ...1-101
Installable device drivers .. 2-5
Instruction Pointer.. 4-4
Internal s ta c k .. 1-29
Interrupt entry po in t... 2-1
Interrupt hand lers... 1-19, 4-1
Interrupt-handling rou tine ..1-80

INDEX-5

Interrupts.. 1-14
Interrupt 16H..1-16
Interrupt 20H .. 1-17, 1-33
Interrupt 21 H ... 1-18, 1-28
Interrupt 22 H ... 1-19
Interrupt 23H 1-19, 1-34 to 1-35, 1-38, 1-43, 1-45
Interrupt 24H ... 1-20
Interrupt 25H ... 1-23
Interrupt 26H ... 1-25
Interrupt 27H ... 1-27

IO. SYS...3-1,3-6
IOCIL b i t .. 2-4

Keep Process Function 31H) ..1-101
Keyboard Character Code Read (Interrupt 16H) 1-16
Keyboard Code C harts.. . A-l
Load and Execute Program (Function 4BH)1-131
Load module ... 5-1 to 5-2
Local buffering... 2-6
Logical sec to r..3-7
Logical sector number .. 3-8
M a c ro .. : 1-10
MEDIA CHECK ... 2-8, 2-12
Media descriptor b y te ... 2-10 to 2-11, 2-15
Modify Allocated Memory Blocks (Function 4 A H).................1-130
Move a Directory Entry (Function 5 6 H) 1-140
Move File Pointer (Function 42H) ...1-119
MS-DOS initialization.. 3-1
MS-DOS memory m a p ... 4-1
M S-LINK.. 5-1 to 5-2
MSDOS.SYS... 3-1 to 3-2, 3-6
Multiple m e d ia ...2-11

Name f i e ld ... 2-5
NON DESTRUCTIVE READ NO W A IT2-17
Non IBM form at...2-8
Non IBM format b i t .. 2-4, 2-13
NUL device... 2-4

Offset 5 0 H ..1-28
Open a File (Function 3D H).. 1-113
Open File (Function 0F H)..1-51

Parse File Name (Function 2 9 H).. 1-87
P asca l...1-2
INDEX-6

MS-DOS PROGRAMMER’S MANUAL INDEX

PA TH ... 4-3
Pattern of the “Console Flags” Byte ...6-8
Pointer to Next Device fie ld .. 2-3
Print Character (Function 05H) ..1-38
Printer input/output calls...1-3
Program segment ... 4-2
Program Segment P refix1-2 to 1-3, 1-20, 1-28, 4-2
Program Terminate (Interrupt 20H)... 1-17
PROMPT ...4-3
Random Block Read (Function 27H)...1-81
Random Block Write (Function 28H) .. 1-84
Random Read (Function 21H) ..1-72
Random Write (Function 2 2 H)..1-74
Read From File/Device (Function 3 F H).................................. 1-116
Read Keyboard (Function 08H)..1-43
Read Keyboard and Echo (Function 01H).................................. 1-34
Read Only M em ory ... 3-1
READ or WRITE ... 2-16
Record S iz e ... 1-63
Registers... 1-29
Relocation information ..5-1
Relocation item offset value ...5-3
Relocation table ... 5-2
Remove a Directory Entry (Function 3AH) 1-110
Rename File (Function 1 7 H) .. 1-67
Request H e a d e r ... 2-6
Retrieve Return Code (Function 4 D H)..................................... 1-135
Return Country-Dependent Info (Function 3 8 H)1-106
Return Current Setting (Function 54H)..................................... 1-139
Return Text of Current Directory (Function 47H)....................1-127
Returning control to M S-D O S.. 1-2
R O M -...3-1
Root d irec to ry ..1-11,3-4

Search for First Entry (Function 11H)1-55
Search for Next Entry (Function 12H)1-57
Select Disk (Function OEH)... 1-50
Sequential Read (Function 1 4 H) ...1-61
Sequential Write (Function 1 5 H)...1-63
S E T ..4-3
Set Date (Function 2BH) .. 1-92
Set Disk Transfer Address (Function 1 A H)............................... 1-70
Set Relative Record (Function 2 4 H) ...1-78
Set Time (Function 2 D H).. 1-95

INDEX-7

Set Vector (Function 25H) ..1-19, 1-79
Set/Reset Verify Flag (Function 2 E H).. 1-97
Smart device driver... 2-11
Start segment v a lu e ... 5-3
STATUS...2-18
Status w o rd ..2-9
Step Through Directory (Function 4 F H).................................. 1-138
Strategy entry p o in t ... 2-1
Strategy routines... 2-5
System files ..1-57, 3-5
System prom pt.. 3-2

Terminate a Process (Function 4 C H).. 1-134
Terminate Address (Function 4 C H)... 4-2
Terminate Address (Interrupt 2 2 H)1-19, 3-2
Terminate But Stay Resident (Interrupt 2 7 H)............................ 1-27
Terminate Program (Function 00H) ...1-33
T IM E ...2-19
Timer Interrupt Support .. 6-1
Type-ahead b u f f e r ... 2-18
Unit c o d e ...2-7
User s tack .. 1-21,4-1
Volume la b e l...3-5

Wild card characters... 1-57, 1-59, 1-88
. Write to a File/Device (Function 40H)..................................... 1-117

Xenix-compatible c a lls ..1-11

INDEX-8

N C□

MS-LIB Library Manager

r

(

MS-DOS PROGRAMMER’S MANUAL

MS-LIB
CONTENTS

INTRODUCTION

Introduction
Features and Benefits of MS-LIB
Overview of MS-LIB Operation4

Chapter 1 RUNNING MS-LIB

1.1 Invoking M S-LIB.. 1-1
1.1.1 Method 1: L I B ...1-2

Summary of Command Prom pts...................1-2
Summary of Command Characters1-2

1.1.2 Method 2: LIB <library> <operations>,
< lis t in g > ...1-3

1.1.3 Method 3: LIB @ <filespec>1-5
1.2 Command Prom pts..1-7
1.3 Command Characters .. 1-9

+ - append...1-9
---- delete .. 1-9
* - ex trac t..1-10
; - default remaining prompts1-10
& - continuation...1-11
Control-C - program a b o r t1-11

Chapter 2 ERROR MESSAGES

1

MS-DOS PROGRAMMER'S MANUAL INTRODUCTION

INTRODUCTION

Features and Benefits

MS-LIB creates and modifies library files that are used with Micro
soft’s MS-LINK Linker Utility. MS-LIB can add object files to a lib
rary, delete modules from a library, or extract modules from a library
and place the extracted modules into separate object files.
MS-LIB provides a means of creating either general or special libra
ries for a variety of programs or for specific programs only. With MS-
LIB you can create a library for a language compiler, or you can create
a library for one program only, which would permit very fast linking
and possibly more efficient execution.
You can modify individual modules within a library by extracting the
modules, making changes, then adding the modules to the library
again. You can also replace an existing module with a different mo
dule or with a new version of an existing module.
The command scanner in MS-LIB is the same as the one used in
Microsoft’s MS-LINK, MS-Pascal, MS-FORTRAN, and other 16-bit
Microsoft products. If you have used any of these products, using
MS-LIB is familiar to you. Command syntax is straightforward, and
MS-LIB prompts you for any of the commands it needs that you have
not supplied. There are no surprises in the user interface.

3

MS-LIB performs two basic actions: it deletes modules from a library
file, and it changes object files into modules and appends them to a
library file. These two actions underlie five library manager functions:

delete a module
extract a module and place it in a separate object file
append an object file as a module of a library
replace a module in the library file with a new module
create a library file

During each library session, MS-LIB first deletes or extracts modules,
then appends new ones. In a single operation, MS-LIB reads each
module into memory, checks it for consistency, and writes it back to
the file. If you delete a module, MS-LIB reads in that module but
does not write it back to the file. When MS-LIB writes back the next
module to be retained, it places the module at the end of the last
module written. This procedure effectively “closes up” the disk space
to keep the library file from growing larger than necessary. When MS-
LIB has read through the whole library file, it appends any new mo
dules to the end of the file. Finally, MS-LIB creates the index, which
MS-LINK uses to find modules and symbols in the library file, and
outputs a cross reference listing of the PUBLIC symbols in the lib
rary, if you request such a listing. (Building the library index may take
some extra time, up to 20 seconds in some cases.)

For example:

LIB PASCAL+HEAP-HEAP;

first deletes the library module HEAP from the library file, then adds
the file HEAP.OBJ as the last module in the library. This order of
execution prevents confusion in MS-LIB when a new version of a
module replaces a version in the library file. Note that the replace
function is simply the delete-append functions in succession. Also
note that you can specify delete, append, or extract functions in any
order; the order is insignificant to the MS-LIB command scanner.

Overview of MS-LIB Operation

4

MS-DOS PROGRAMMER'S MANUAL INTRODUCTION

Consistency
Check only

Delete
Module C;
Module D
written to
space of
Module C

5

Extract
Module E;
place in a
separate
object file;
return to library

Consistency
Check, then
output a
cross
reference
listing of
PUBLIC
symbols

6

MS-DOS PROGRAMMER'S MANUAL RUNNING MS-LIB

CHAPTER 1
RUNNING MS-LIB

Running MS-LIB requires two types of commands: a command to
invoke MS-LIB and answers to command prompts. Usually you will
enter all the commands to MS-LIB on the terminal keyboard. As an
option, answers to the command prompts may be contained in a
Response File. Some special command characters exist. Some are
used as a required part of MS-LIB commands. Others assist you while
entering MS-LIB commands.

1.1 INVOKING MS-LIB

MS-LIB may be invoked three ways. By the first method, you enter
the commands as answers to individual prompts. By the second
method, you enter all commands on the line used to invoke MS-LIB.
By the third method, you create a Response File that contains all the
necessary commands.

Summary of Methods to invoke MS-LIB

Method 1 LIB
Method 2 LIB <library> <operations>,<listing>
Method 3 LIB @ <filespec>

1-1

1 . 1 . 1 M e t h o d 1 : L I B

Enter:

LIB

MS-LIB will be loaded into memory. Then, MS-LIB returns a series
of three text prompts that appear one at a time. You answer the
prompts as commands to MS-LIB to perform specific tasks.
The Command Prompts and Command Characters are summarized
here. The Command Prompts and Command Characters are descri
bed fully in Sections 1.2 and 1.3.

Summary of Command Prompts

PROMPT RESPONSES

Library file: List filename of library to be manipulated
(default: filename extension .LIB)

Operation: List command character(s) followed by module
name(s) or object filename(s) (default action: no
changes, default object filename extension: .OBJ)

List file: List filename for a cross reference listing file
(default: NUL; no file)

Summary of Command Characters

Character Action

+ Append an object file as the last module

- Delete a module from the library
* Extract a module and place in an object file

5 Use default responses to remaining prompts

& Extend current physical line; repeat command
prompt

Control-C Abort library session.

1-2

MS-DOS PROGRAMMER’S MANUAL RUNNING MS-LIB

1 . 1 . 2 M e t h o d 2 : L I B <library> <operations>,<listing>

Enter:
LIB <library> <operations>,<listing>

The entries following LIB are responses to the command
prompts. The library and operations fields and all operations
entries must be separated by one of the command charac
ters plus, minus, and asterisk (+, -, *). If a cross reference
listing is wanted, the name of the file must be separated
from the last operations entry by a comma.

where: library is the name of a library file. MS-LIB assumes that the
filename extension is .OBJ, which you may override by
specifying a different extension. If the filename given for the

'library fields does not exist, MS-LIB will prompt you:

Library file does not exist. Create?

Enter Yes (or any response beginning with Y) to create a
new library file. Enter No (or any other response not begin
ning with Y) to abort the library session,
operations is deleting a module, appending an object file as a
module, or extracting a module as an object file from the
library file. Use the three command characters plus (+),
minus (-), and asterisk (*) to direct MS-LIB what to do with
each module or object file.
listing is the name of the file you want to receive the cross
reference listing of PUBLIC symbols in the modules in the
library. The list is compiled after all module manipulation
has taken place.
To select the default for remaining field(s), you may enter
the semicolon command character.
If you enter a Library filename followed immediately by a
semicolon, MS-LIB will read through the library file and
perform a consistency check. No changes will be made to
the modules in the library file.
If you enter a Library filename followed immediately by a
comma and a List filename, MS-LIB will perform its consi
stency check of the library file, then produce the cross
reference listing file.

1-3

Example
LIB PASCAL-HEAP+HEAP;

This example causes MS-LIB to delete the module HEAP
from the library file PASCAL.LIB, then append the object
file HEAP.OBJ as the last module of PASCAL.LIB (the
module will be named HEAP).
If you have many operations to perform during a library
session, use the ampersand (&) command character to
extend the line so that you can enter additional object
filenames and module names. Be sure to always include one
of the command characters for operations (+, -, *) before
the name of each module or object filename.

Example

LIB PASCAL<CR>

causes MS-LIB to perform a consistency check of the library
file PASCAL.LIB. No other action is performed.

Example

LIB PASCAL,PASCROSS.PUB

causes MS-LIB to perform a consitency check of the library
file PASCAL.LIB, then output a cross reference listing file
named PASCROSS.PUB.

MS-DOS PROGRAMMER’S MANUAL RUNNING MS-LIB

1 . 1 . 3 M e t h o d 3 : L I B @ <filespec>

Enter:
LIB @ <filespec>

where: filespec is the name of a Response File. A Response File
contains answers to the MS-LIB prompts (summarized
under method 1 for invoking and described fully in Section
1.2). Method 3 permits you to conduct the MS-LIB session
without interactive (direct) user responses to the MS-LIB
prompts.

IMPORTANT

Before using method 3 to invoke MS-LIB, you must first
create the Response File.

A Response File has text lines, one for each prompt. Re
sponses must appear in the same order as the command
prompts appear.
Use Command Characters in the Response File the same
way as they are used for responses entered on the terminal
keyboard.
When the library session begins, each prompt will be dis
played in turn with the responses from the response file. If
the response file does not contain answers for all the
prompts, MS-LIB will use the default responses (no changes
to the modules currently in the library file for Operation,
and no cross reference listing file created).
If you enter a Library filename followed immediately by a
semicolon, MS-LIB will read through the library file and
perform a consistency check. No changes will be made to
the modules in the library file.
If you enter a Library filename then only a carriage return of
Operations then a comma and a List filename, MS-LIB will
perform its consistency check of the library file, then pro
duce the cross reference listing file.

1-5

Example:

PASCAL<CR>
+CURSOR+HEAP-HEAP*FOIBLES<CR>
CROSSLST<CR>

This Response File will cause MS-LIB to delete the module
HEAP from the PASCAL.LIB library file, extract the mo
dule FOIBLES and place in an object file named FOIBLES.
OBJ, then append the object files CURSOR.OBJ and HE-
AP.OBJ as the last two modules in the library. Then, MS-
LIB will create a cross reference file named CROSSLST.

1-6

MS-DOS PROGRAMMER'S MANUAL RUNNING MS-LIB

1.2 COMMAND PROMPTS

MS-LIB is commanded by entering responses to three text prompts.
When you have entered your response to the current prompt, the
next appears. When the last prompt has been answered, MS-LIB
performs its library management functions without further command.
When the library session is finished, MS-LIB exits to the operating
system. When the operating system prompt is displayed, MS-LIB has
finished the library session successfully. If the library session is un
successful, MS-LIB returns the appropriate error message.
MS-LIB prompts you for the name of the library file, the operation(s)
you want to perform, and the name you want to give to a cross refe
rence listing file, if any.

Library file:
Enter the name of the library file that you want to manipulate.
MS-LIB assumes that the filename extension is .LIB. You can
override this assumption by giving a filename extension when
you enter the library filename. Because MS-LIB can manage
only one library file at a time, only one filename is allowed in
response to this prompt. Additional responses, except the
semicolon command character, are ignored.
If you enter a library filename and follow it immediately with a
semicolon command character, MS-LIB will perform a consi
stency check only, then return to the operating system. Any
errors in the file will be reported.
If the filename you enter does not exist, MS-LIB returns the
prompt:

Library file does not exist. Create?

You must enter either Yes or No, in either upper or lower (or
mixed) case. Actually, MS-LIB checks the response of the letter
Y as the first character. If any other character is entered first,
MS-LIB terminates and returns to the operating system.

1-7

Operation:
Enter one of the three command characters for manipulating
modules (+, -, *), followed immediately (no space) by the
module name or the object filename. Plus sign appends an
object file as the last module in the library file (see further
discussion under the description of plus sign below). Minus
sign deletes a module from the library file. Asterisk extracts a
module from the library and places it in a separate object file
with the filename taken from the module name and a filename
extension .OBJ.
When you have a large number of modules to manipulate
(more than can be typed on one line), enter an ampersand (&)
as the last character on the line. MS-LIB will repeat the Opera
tion prompt, which permits you to enter additional module
names and object filenames.
MS-LIB allows you to enter operations on modules and object
files in any order you want.
More information about order of execution and what MS-LIB
does with each module is given in the descriptions of each
Command Character.

List file:
If you want a cross reference list of the PUBLIC symbols in the
modules in the library file after your manipulations, enter a
filename in which you want MS-LIB to place the cross refe
rence listing. If you do not enter a filename, no cross reference
listing is generated (a NUL file).
The response to the List file prompt is a file specification.
Therefore, you can specify, along with the filename, a drive (or
device) designation and a filename extension. The List file is
not given a default filename extension. If you want the file to
have a filename extension, you must specify it when entering
the filename.
The cross reference listing file contains two lists. The first list is
an alphabetical listing of all PUBLIC symbols. Each symbol
name is followed by the name of its module. The second list is
an alphabetical list of the modules in the library. Under each
module name is an alphabetical listing of the PUBLIC symbols
in that module.

1-8

MS-DOS PROGRAMMER’S MANUAL RUNNING MS-LIB

1.3 COMMAND CHARACTERS

MS-LIB provides six command characters: three of the command
characters are required in responses to the Operation prompt; the
other three command characters provide you additional helpful
commands to MS-LIB.

+ The plus sign followed by an object filename appends the
object file as the last module in the library named in respon
se to the Library file prompt. When MS-LIB sees the plus
sign, it assumes that the filename extension is .OBJ. You
may override this assumption by specifying a different
filename extension.
MS-LIB strips the drive designation and the extension from
the object file specification, leaving only the filename. For
example, if the object file to be appended as a module to a
library is:

B:CURSOR.OBJ
a response to the Operation prompt of:

+B:CURSOR.OBJ

causes MS-LIB to strip off the B: and the .OBJ, leaving only
CURSOR, which becomes a module named CURSOR in
the library.

NOTE
The distinction between an object file and a
module (or object module) is that the file
possesses a drive designation (even if it is
default drive) and a filename extension.
Object modules possess neither of these.

The minus sign followed by a module name deletes that
module from the library file. MS-LIB then “closes up” the
file space left empty by the deletion. This cleanup action
keeps the library file from growing larger than necessary
with empty space. Remember that new modules, even
replacement modules are added to the end of the file, not
stuffed into space vacated by deleting modules.

The asterisk followed by a module name extracts that mo
dule from the library file and places it into a separate object
file. The module will still exist in the library (extract means,
essentially, copy the module to a separate object file). The
module name is used as the filename. MS-LIB adds the
default drive designation and the filename extension .OBJ.
For example, if the module to be extracted is:

CURSOR

and the current default disk drive is A:, a reponse to the
Operation prompt of:

♦CURSOR

causes MS-LIB to extract the module named CURSOR
from the library file and to set it up as an object file with the
file specification of:

default drive:CURSOR.OBJ

(The drive designation and filename extension cannot be
overridden. You can, however, rename the file, giving a new
filename extension, and/or copy the file to a new disk drive,
giving a new filename and/or filename extension.)

Use a single semicolon (;) followed immediately by a car
riage return at any time after responding to the first prompt
(from Library file on) to select default responses to the
remaining prompts. This feature saves time and overrides
the need to answer additional prompts.

NOTE
Once the semicolon has been entered, you
can no longer respond to any of the prompts
for that library session. Therefore, do not
use the semicolon to skip over some
prompts. For this, use carriage return.

Example:

Library file: FUN <CR>
Operation: +CURSOR;<CR>

MS-DOS PROGRAMMER’S MANUAL RUNNING MS-LIB

The remaining prompt will not appear, and MS-LIB will use
the default value (no cross reference file).

& Use the ampersand to extend the current physical line. This
command character will only be needed for'the Operation
prompt. MS-LIB can perform many functions during a
single library session. The number of modules you can
append is limited only by disk space. The number of mo
dules you can replace or extract is also limited only by disk
space. The number of modules you can delete is limited
only by the number of modules in the library file. However,
the line length for a response to any prompt is limited to the
line length of your system. For a large number of responses
to the Operation prompt, place an ampersand at the end of a
line. MS-LIB will display the Operation prompt again, then
enter more responses. You may use the ampersand charac
ter as many times as you need. For example:

Library file: FUN <NEW LINE>
Operation: +CURSOR-HEAP+HEAP*FOIBLES&
Operation: *INIT+ASSUME+RIDE; <NEW LINE>

MS-LIB will delete the module HEAP, extract the modules
FOIBLES and INIT (creating two files, FOIBLES.OBJ and
INIT.OBJ), then append the object files CURSOR, HEAP,
ASSUME, and RIDE. Note, however, that MS-LIB allows
you to enter your Operation responses in any order.

Control-C
Use Control-C at any time to abort the library session. If you
enter an erroneous response, such as the wrong filename or
module name, or an incorrectly spelled filename or module
name, you must press CTRL-C to exit MS-LIB then rein
voke MS-LIB and start over. If the error has been typed but
not entered, you may delete the erroneous characters, but
for that line only.

1-11

MS-DOS PROGRAMMER’S MANUAL ERROR MESSAGES

CHARTER 2
ERROR MESSAGES

<symbol> is a multiply defined PUBLIC. Proceed?
Cause: two modules define the same public symbol. The user
is asked to confirm the removal of the definition of the old
symbol. A No response leaves the library in an undetermined
state.
Cure: Remove the PUBLIC declaration from one of the object
modules and recompile or reassemble.

Allocate error on VM.TMP
Cause: out of space

Cannot create extract file
Cause: no room in directory for extract file

Cannot create list file
Cause: No room in directory for library file

Cannot nest response file
Cause: “@filespec” in response (or indirect) file

Cannot open VM.TMP
Cause: no room for VM.TMP in disk directory

Cannot write library file
Cause: Out of space

Close error on extract file
Cause: out of space

Error: An internal error has occurred.
Contact Microsoft, Inc.

Fatal Error: Cannot open input file
Cause: Mistyped object file name

Fatal Error: Module is not in the library
Cause: trying to delete a module that is not in the library

Input file read error
Cause: bad object module or faulty disk

Invalid object module/library
Cause: bad object and/or library

Library Disk is full
Cause: no more room on diskette

Listing file write error
Cause: out of space

2-1

No library file specified
Cause: no response to Library File prompt

Read error on VM.TMP
Cause: disk not ready for read

Symbol table capacity exceeded
Cause: too many public symbols (about 30K chars in symbols)

Too many object modules
Cause: more than 500 object modules

Too many public symbols
Cause: 1024 public symbols maximum

Write error on library/extract file
Cause: Out of space

Write error on VM.TMP
Cause: out of space

2-2

C R

DEBUG Utility

I

I

DEBUG UTILITY

DEBUG UTILITY
CONTENTS

INTRODUCTION

Chapter 1 INTRODUCTION
1.1 Overview of DEBUG.. 1-1
1.2 How to Start D E B U G 1-1

Chapter 2 COMMANDS
2.1 Command Information..................................... 2-1
2.2 Parameters............................. 2-3
2.3 Error M essages... 2-36

1

DEBUG UTILITY

CHAPTER 1
INTRODUCTION

INTRODUCTION

1.1 OVERVIEW OF DEBUG

The Microsoft DEBUG Utility (DEBUG) is a debugging program that
provides a controlled testing environment for binary and executable
object files. Note that EDLIN is used to alter source files; DEBUG is
EDLIN’s counterpart for binary files. DEBUG eliminates the need to
reassemble a program to see if a problem has been fixed by a minor
change. It allows you to alter the contents of a file or the contents of a
CPU register, and then to immediately reexecute a program to check
on the validity of the changes.
All DEBUG commands may be aborted at any time by pressing
<CONTROL-C>. <CONTROL-S> suspends the display, so that
you can read it before the output scrolls away. Entering any key other
than <CONTROL-C> or <CONTROL-S> restarts the display. All of
these commands are consistent with the control character functions
available at the MS-DOS command level.

1.2 HOW TO START DEBUG

DEBUG may be started in two ways. By the first method, you type
all commands in response to the DEBUG prompt (a hyphen). By
the second method, you type all commands on the line used to
start DEBUG.

Summary of Methods to Start DEBUG

Method 1 DEBUG
Method 2 DEBUG [<filespec> [<arglist>]]

1-1

1.2.1 Method 1: DEBUG

To start DEBUG using method 1, type:

DEBUG

DEBUG responds with the hyphen (-) prompt, signaling that it is
ready to accept your commands. Since no filename has been speci
fied, current memory, disk sectors, or disk files can be worked on by
using other commands.

Warnings

1. When DEBUG is started, it sets up a program header at
offset 0 in the program work area. On previous versions
of DEBUG, you could overwrite this header. You can still
overwrite the default header if no <filespec> is given to
DEBUG. If your are debugging a .COM or .EXE file, how
ever, do not tamper with the program header below
address 5CH, or DEBUG will terminate.

2. Do not restart a program after the “Program terminated
normally” message is displayed. You must reload the pro
gram with the N and L commands for it to run properly.

1.2.2 Method 2: Command Line

To start DEBUG using a command line, type:

DEBUG [<filespec> [<arglist>]]

For example, if a <filespec> is specified, then the following is a
typical command to start DEBUG:

DEBUG FILE.EXE

DEBUG then loads FILE.EXE into memory starting at 100 hexadeci
mal in the lowest available segment. The BX:CX registers are loaded
with the number of bytes placed into memory.
An <arglist> may be specified if <filespec> is present. The <arg-
list> is a list of filename parameters and switches that are to be passed
to the program <filespec> . Thus, when <filespec> is loaded into
memory, it is loaded as if it had been started with the command:
1-2

DEBUG UTILITY INTRODUCTION

<filespec> <arglist>

Here, <filespec> is the file to be debugged, and the <arglist> is the
rest of the command line that is used when <filespec> is invoked
and loaded into memory.

1-3

CHAPTER 2
COMMANDS

DEBUG UTILITY COMMANDS

2.1 COMMAND INFORMATION

Each DEBUG command consists of a single letter followed by one or
more parameters. Additionally, the control characters and the special
editing functions described in the MS-DOS User’s Guide, apply inside
DEBUG.

If a syntax error occurs in a DEBUG command, DEBUG reprints the
command line and indicates the error with an up-arrow (~) and the
word “error.”

For example:

des :100 cs: 110
~ error

Any combination of uppercase and lowercase letters may be used in
commands and parameters.

The DEBUG commands are summarized in Table 2.1 and are de
scribed in detail, with examples, following the description of com
mand parameters.

2-1

Table 2.1 DEBUG COMMANDS

DEBUG Command Function

A[<address>]
C<range> <address>
D[<range>]
E<address> [<list>]
F<range> <list>
G[=<address> [<address>...]]
H<value> <value>
I<value>
L[<address> [<drive> <record> <record>]]
M<range> <address>
N<filename> [<filename>]
0<value> <byte>
Q
R[<register-name>]
S<range> <list>
T[=<address>] [<value>]
U[<range>]
W[<address> [<drive> <record> <record>]]

Assemble
Compare
Dump
Enter
Fill
Go
Hex
Input
Load
Move
Name
Output
Quit
Register
Search
Trace
Unassemble
Write

2-2

DEBUG UTILITY COMMANDS

2.2 PARAMETERS

All DEBUG commands accept parameters, except the Quit com
mand. Parameters may be separated by delimiters (spaces or com
mas), but a delimiter is required only between two consecutive hexa
decimal values. Thus, the following commands are equivalent:

des:100 110
d cs:100 110
d,cs :100,110

PARAMETER DEFINITION
<drive> A one-digit hexadecimal value to indicate which

<byte>

drive a file will be loaded from or written to. The
valid values are 0-3. These values designate the
drives as follows: 0=A:, 1=B:, 2 = C : , 3=D:.
A two-digit hexadecimal value to be placed in or read
from an address or register.

<record> A 1- to 3-digit hexadecimal value used to indicate the
logical record number on the disk and the number of
disk sectors to be written or loaded. Logical records
correspond to sectors. However, their numbering
differs since they represent the entire disk space.

<value> A hexadecimal value up to four digits used to specify
a port number or the number of times a command
should repeat its functions.

<address> A two-part designation consisting of either an al
phabetic segment register designation or a four-digit
segment address plus an offset value. The segment
designation or segment address may be omitted, in
which case the default segment is used. DS is the
default segment for all commands except G, L, T, U,
and W, for which the default segment is CS. All
numeric values are hexadecimal.

For example:

CS:0100
04BA:0100

The colon is required between a segment designation
(whether numeric or alphabetic) and an offset.

2-3

<range<

<list>

<string>

Two <address>es: e.g., <address> <address>; or
one <address>,anL,and a<value>:e.g.,<adress>
L <value> where <value> is the number of lines
the command should operate on, and LBO is as
sumed. The last form cannot be used if another hex
value follows the <range>, since the hex value
would be interpreted as the second <address> of the
<range>.
Examples:

CS:100 110
CS: 100 L 10
CS: 100

The following is illegal:

CS:100 CS:110
error

The limit for <range> is 10 000 hex. To specify a
<value> of 10 000 hex within four digits, type 0000
(or 0).
A series of <byte> values or of <string>s. <list>
must be the last parameter on the command line.

Example:

fcs:100 42 45 52 54 41

Any number of characters enclosed in quote marks.
Quote marks may be either single (’) or double (“). If
the delimiter quote marks must appear within a
<string>, the quote marks must be doubled. For
example, the following strings are legal:

’This is a “string” is okay.’
’This is a “string” is okay.’

Elowever, this string is illegal:

’This is a ’string’ is not.’

Similarly, these strings are legal:

“This is a ’string’ is okay.”
“This is a ““string”” is okay.”

2-4

DEBUG UTILITY COMMANDS

However, this string is illegal:

“This is a “string” is not.”

Note that the double quote marks are not necessary
in the following strings:

“This is a ’’string” is not necessary.”
’This is a ““string”” is not necessary.’

The ASCII values of the characters in the string are
used as a <list> of byte values.

2-5

NAME Assemble

PURPOSE

SYNTAX

COMMENTS

Assembles 8086/8087/8088 mnemonics directly into
memory.

A[<address>]

If a syntax error is found, DEBUG responds with

"Error

and redisplays the current assembly address.
All numeric values are hexadecimal and must be
entered as 1-4 characters. Prefix mnemonics must be
specified in front of the opcode to which they refer.
They may also be entered on a separate line.
The segment override mnemonics are CS:, DS:, ES:,
and SS:. The mnemonic for the far return is RETF.
String manipulation mnemonics must explicitly state
the string size. For example, use MOVSW to move
word strings and MOVSB to move byte strings.
The assembler will automatically assemble short,
near or far jumps and calls, depending on byte dis
placement to the destination address. These may be
overridden with the NEAR or FAR prefix. For exam
ple:

0100:0500 JMP 502 ; a 2-byte short jump
0100:0502 JMP NEAR 505 ; a 3-byte near jump
0100:505 JMP FAR 50A ; a 5-byte far jump

The NEAR prefix may be abbreviated to NE, but the
FAR prefix cannot be abbreviated.
DEBUG cannot tell whether some operands refer to
a word memory location or to a byte memory loca
tion. In this case, the data type must be explicitly
stated with the prefix “WORD PTR” or “BYTE
PTR”. Acceptable abbreviations are “WO” and “BY”.
For example:

NEG BYTE PTR [128]
DEC WO [SI]

2-6

DEBUG UTILITY COMMANDS

DEBUG also cannot tell whether an operand refers
to a memory location or to an immediate operand.
DEBUG uses the common convention that operands
enclosed in square brackets refer to memory. For
example:

MOV AX,21 ; Load AX with 21H
MOV AX,[21] ; Load AX with the

; contents
; of memory location 21H

Two popular pseudo-instructions are available with
Assemble. The DB opcode will assemble byte values
directly into memory. The DW opcode will assemble
word values directly into memory. For example:

DB 1,2,3,4,“THIS IS AN EXAMPLE”
DB ’THIS IS A QUOTE: “ ’
DB “THIS IS A QUOTE: ’ ”

DW 1000,2000,3000,“BACH”

Assemble supports all forms of register indirect
commands. For example:

ADD BX,34[BP+2].[SI-1]
POP [BP+DI]
PUSH [SI]

All opcode synonyms are also supported. For exam
ple:

LOOPZ 100
LOOPE 100

JA 200
JNBE 200

For 8087 opcodes, the WAIT or FWAIT must be
explicitly specified. For example:

FWAIT FADD ST,ST(3) ; This line will assemble
; an FWAIT prefix

LD TBYTE PTR [BX] ; This line will not
2-7

NAME Compare

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Compares the portion of memory specified by
<range> to a portion of the same size beginning at
<address>.

C<range> <address>

If the two areas of memory are identical, there is no
display and DEBUG returns with the MS-DOS
prompt. If there are differences, they are displayed in
this format:

<addressl> <bytel> <byte2> <address2>

The following commands have the same effect:

C100,1FF 300
or

C100L100 300

Each command compares the block of memory from
100 to 1FFH with the block of memory from 300 to
3FFH.

2-8

DEBUG UTILITY COMMANDS

NAME

PURPOSE

SYNTAX

COMMENTS

Dump

Displays the contents of the specified region of
memory.

D[<range>]

If a range of addresses is specified, the contents of
the range are displayed. If the D command is typed
without parameters, 128 bytes are displayed at the
first address (DS: 100) after the address displayed by
the previous Dump command.
The dump is displayed in two portions: a hexadeci
mal dump (each byte is shown in hexadecimal value)
and an ASCII dump (the bytes are shown in ASCII
characters). Nonprinting characters are denoted by a
period (.) in the ASCII portion of the display. Each
display line shows 16 bytes with a hyphen between
the eighth and ninth bytes. At times, displays are split
in this manual to fit them on the page. Each dis
played line begins on a 16-byte boundary.

If you type the command:

des :100 110

DEBUG displays the dump in the following format:

04BA.-0100 42 45 52 54 41. . . 4E 44 TOM SAWYER

If you type the following command:

D

the display is formatted as described above. Each line
of the display begins with an address, incremented by
16 from the address on the previous line. Each subse
quent D (typed without parameters) displays the
bytes immediately following those last displayed.

2-9

DCS :100 L 20

the display is formatted as described above, but 20H
bytes are displayed.
If then you type the command:

DCS :100 115

the display is formatted as described above, but all
the bytes in the range of lines from 100H to 115H in
the CS segment are displayed.

If you type the command:

DEBUG UTILITY COMMANDS

NAME

PURPOSE

SYNTAX

COMMENTS

Enter

Enters byte values into memory at the specified
<address>.

E<address> [<list>]

If the optional <list> of values is typed, the replace
ment of byte values occurs automatically. (If an error
occurs, no byte values are changed.)
If the <address> is typed without the optional
<list>, DEBUG displays the address and its con
tents, then repeats the address on the next line and
wait for your input. At this point, the Enter com
mand waits for you to perform one of the following
actions:

1. Replace a byte value with a value you type. Simply
type the value after the current value. If the value
typed in is not a legal hexadecimal value or if more
than two digits are typed, the illegal or extra
character is not echoed.

2. Press the <SPACE> bar to advance to the next
byte. To change the value, simply type the new
value as described in (1.) above. If you space
beyond an 8-byte boundary, DEBUG starts a new
display line with the address displayed at the
beginning.

3. Type a hyphen (-) to return to the preceding byte.
If you decide to change a byte behind the current
position, typing the hyphen returns the current
position to the previous byte. When the hyphen is
typed, a new line is started with the address and its
byte value displayed.

4. Press the <NEW LINE> key to terminate the
Enter command. The <NEW LINE> key may
be pressed at any byte position.

2-11

EXAMPLE Assume that the following command is typed:

ECS :100

DEBUG displays:

04BA :0100 EB.-

To change this value to 41, type 41 as shown:
04BA :0100 EB.41-

To step through the subsequent bytes, press the
<SPACE> bar to see:

04BA :0100 EB.41 10. 00. BG-

To change BC to 42:

04BA :0100 EB.41 10. 00. BC.42-

Now, realizing that 10 should be 6F, type the hyphen
as many times as needed to return to byte 0101
(value 10), then replace 10 with 6F:

04BA :0100 EB.41 10. 00. BC.42-
04BA:0102 00.--
04BA:0101 10.6F-

Pressing the <NEW LINE> key ends the Enter
command and retunrs to the DEBUG command
level.

2-12

DEBUG UTILITY COMMANDS

NAME

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Fill

Fills the addresses in the <range> with the values in
the <list>.

F<range> <list>

If the <range> contains more bytes than the number
of values in the <list>, the <list> will be used
repeatedly until all bytes in the <range> are filled. If
the <list> contains more values than the number of
bytes in the <range>, the extra values in the <list>
will be ignored. If any of the memory in the <range>
is not valid (bad or nonexistent), the error will occur
in all succeeding locations.

Assume that the following command is typed:

F04BAT00 L 100 42 45 52 54 41

DEBUG fills memory locations 04BAT00 through
04BATFF with the bytes specified. The five values
are repeated until all 100H bytes are filled.

2-13

NAME Go

PURPOSE

SYNTAX

COMMENTS

Executes the program currently in memory.

G [=<address> [<address>.. .]]

If only the Go command is typed, the program exe
cutes as if the program had run outside DEBUG.
If = <address> is set, execution begins at the address
specified. The equal sign (=) is required, so that
DEBUG can distinguish the start = <address> from
the breakpoint <address>es.
With the other optional addresses set, execution
stops at the first <address> encountered, regardless
of that address’ position in the list of addresses to halt
execution or program branching. When program
execution reaches a breakpoint, the registers, flags,
and decoded instruction are displayed for the last
instruction executed. (The result is the same as if you
had typed the Register command for the breakpoint
address.)
Up to ten breakpoints may be set. Breakpoints may
be set only at addresses containing the first byte of an
8086 opcode. If more than ten breakpoints are set,
DEBUG returns the BP Error message.
The user stack pointer must be valid and have 6 bytes
available for this command. The G command uses an
IRET instruction to cause a jump to the program
under test. The user stack pointer is set, and the user
flags, Code Segment register, and Instruction Pointer
are pushed on the user stack. (Thus, if the user stack
is not valid or is too small, the operating system may
crash.) An interrupt code (OCCH) is placed at the
specified breakpoint address(es).
When an instruction with the breakpoint code is
encountered, all breakpoint addresses are restored to
their original instructions. If execution is not halted
at one of the breakpoints, the interrupt codes are not
replaced with the original instructions.

2-14

DEBUG UTILITY COMMANDS

EXAMPLE Assume that the following command is typed:

GCS :7550

The program currently in memory executes up to the
address 7550 in the CS segment. DEBUG then
displays registers and flags, after which the Go com
mand is terminated.
After a breakpoint has been encountered, if you type
the Go command again, then the program executes
just as if you had typed the filename at the MS-DOS
command level. The only difference is that program
execution begins at the instruction after the break
point rather than at the usual start address.

2-15

NAME Hex

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Performs hexadecimal arithmetic on the two parame
ters specified.

H<value> <value>

First, DEBUG adds the two parameters, then sub
tracts the second parameter from the first. The
results of the arithmetic are displayed on one line;
first the sum, then the difference.

Assume that the following command is typed:

H19F 10A

DEBUG performs the calculations and then displays
the result:

02A9 0095

2-16

DEBUG UTILITY COMMANDS

NAME

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Input

Inputs and displays one byte from the port specified
by <value>.

I<value>

A 16-bit port address is allowed.

Assume that you type the following command:

I2F8

Assume also that the byte at the port is 42H.
DEBUG inputs the byte and displays the value:

42

2-17

NAME Load

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

2-18

Loads a file into memory.

L[<address> [<drive> <record> <record>]]

Set BX:CX to the number of bytes read. The file
must have been named either when DEBUG was
started or with the N command. Both the DEBUG
invocation and the N command format a filename
properly in the normal format of a file control block
at CS:5C.
If the L command is typed without any parameters,
DEBUG loads the file into memory beginning at
address CS: 100 and sets BX:CX to the number of
bytes loaded. If the L command is typed with an
address parameter, loading begins at the memory
<address> specified. If L is typed with all parame
ters, absolute disk sectors are loaded, not a file. The
<record>s are taken from the <drive> specified (the
drive designation is numeric here-0=A:, 1=8:, 2=C:,
etc.); DEBUG begins loading with the first <record>
specified, and continues until the number of sectors
specified in the second <record> have been loaded.

Assume that the following commands are typed:

A>DEBUG
-NFILE.COM

Now, to load FILE.COM, type:

L

DEBUG loads the file and then displays the DEBUG
prompt. Assume that you want to load only portions
of a file or certain records from a disk. To do this,
type:

L04BA:100 2 OF 6D

DEBUG then loads 109 (6D hex) records beginning
with logical record number 15 into memory begin
ning at address 04BA :0100. When the records have
been loaded, DEBUG simply returns the - prompt.

DEBUG UTILITY COMMANDS

If the file has a .EXE extension, it is relocated to the
load address specified in the header of the .EXE file:
the <address> parameter is always ignored for .EXE
files. The header itself is stripped off the .EXE file
before it is loaded into memory. Thus the size of an
.EXE file on disk will differ from its size in memory.
If the file named by the Name command or specified
when DEBUG is started is a .HEX file, then typing
the L command with no parameters causes DEBUG
to load the file beginning at the address specified in
the .HEX file. If the L command includes the option
<address>, DEBUG adds the <address> specified
in the L command to the address found in the .HEX
file to determine the start address for loading the file.

2-19

NAME Move

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Moves the block of memory specified by <range> to
the location beginning at the <address> specified.

M<range> <address>

Overlapping moves (i.e., moves where part of the
block overlaps some of the current addresses) are
always performed without loss of data. Addresses
that could be overwritten are moved first. The
sequence for moves from higher addresses to lower
addresses is to move the data beginning at the block’s
lowest address and then to work towards the highest.
The sequence for moves from lower addresses to
higher addresses is to move the data beginning at the
block’s highest address and to work towards the
lowest.
Note that if the addresses in the block being moved
will not have new data written to them, the data there
before the move will remain. The M command
copies the data from one area into another, in the
sequence described, and writes over the new addres
ses. This is why the sequence of the move is impor
tant.

Assume that you type:

MCS:100 110 CS:500

DEBUG first moves address CS:110 to address
CS :510, then CS:10F to CS:50F, and so on until
CS:100 is moved to CS:500. You should type the D
command, using the <address> typed for the M
command, to review the results of the move.

2-20

DEBUG UTILITY COMMANDS

NAME

PURPOSE

SYNTAX

COMMENTS

Name

Sets filenames.

N<filename> [<filename> . . .]

The Name command performs two functions. First,
Name is used to assign a filename for a later Load or
Write command. Thus, if you start DEBUG without
naming any file to be debugged, then the N<file-
name> command must be typed before a file can be
loaded. Second, Name is used to assign filename
parameters to the file being debugged. In this case,
Name accepts a list of parameters that are used by
the file being debugged.
These two functions overlap. Consider the following
set of DEBUG commands:

-NFILE1.EXE
-L
-G

Because of the effects of the Name command, Name
will perform the following steps:
1. (N)ame assigns the filename FILE1.EXE to the

filename to be used in any later Load or Write
commands.

2. (N)ame also assigns the filename FILE1.EXE to
the first filename parameter used by any program
that is later debugged.

3. (L)oad loads FILE1.EXE into memory.
4. (G)o causes FILE1.EXE to be executed with

FILE1.EXE as the single filename parameter (that
is, FILE1.EXE is executed as if FILE1.EXE had
been typed at the command level).

2-21

EXAMPLE

A more useful chain of commands might look like
this:

-NFILE1.EXE
-L
-NFILE2.DAT FILE3.DAT
-G

Here, Name sets FILE1.EXE as the filename for the
subsequent Load command. The Load command
loads FILE1.EXE into memory, and then the Name
command is used again, this time to specify the
parameters to be used by FILE1.EXE. Finally, when
the Go command is executed, FILE1.EXE is exe
cuted as if FILE1 FILE2.DAT FILE3.DAT had been
typed at the MS-DOS command level. Note that if a
Write command were executed at this point, then
FILE1.EXE - the file being debugged - would be
saved with the name FILE2.DAT! To avoid such
undesired results, you should always execute a Name
command before either a Load or a Write.
There are four regions of memory that can be affec
ted by the Name command:

CS:5C FCB for file 1
CS:6C FCB for file 2
CS:80 Count of characters
CS:81 All characters typed

A File Control Block (FCB) for the first filename
parameter given to the Name command is set up at
CS:5C. If a second filename parameter is typed, then
an FCB is set up for it beginning at CS:6C. The
number of characters typed in the Name command
exclusive of the first character, “N”) is given at loca
tion CS:80. The actual stream of characters given by
the Name command (again, exclusive of the letter
“N”) begins at CS:81. Note that this stream of
characters may contain switches and delimiters that
would be legal in any command typed at the MS-
DOS command level.
A typical use of the Name command is:

DEBUG PROG.COM
-NPARAM1 PARAM2/C
-G

2-22

DEBUG UTILITY COMMANDS

In this case, the Go command executes the file in
memory as if the following command line had been
typed:

PROG PARAM1 PARAM2/C

Testing and debugging therefore reflect a normal
runtime environment for PROG.COM.

2-23

NAME Output

PURPOSE Sends the <byte> specified to the output port speci
fied by <value>.

SYNTAX 0<value> <byte>

COMMENTS A 16-bit port address is allowed.

EXAMPLE Type:

02F8 4F

DEBUG outputs the byte value 4F to output port
2F8.

2-24

DEBUG UTILITY COMMANDS

NAME Quit

PURPOSE Terminates the DEBUG utility.

SYNTAX Q

COMMENTS The Q command takes no parameters and exits
DEBUG without saving the file currently being
operated on. You are returned to the MS-DOS
command level.

EXAMPLE To end the debugging session, type:

Q <NEW LINE>

DEBUG has been terminated, and control returns to
the MS-DOS command level.

2-2 5

NAME

PURPOSE

SYNTAX

COMMENTS

Displays the contents of one or more CPU registers.

R[<register-name>]

If no <register-name> is typed, the R command
dumps the register save area and displays the con
tents of all registers and flags.
If a register name is typed, the 16-byte value of that
register is displayed in hexadecimal, and then a colon
appears as a prompt. You then either type a <value>
to change the register, or simply press the <NEW
LINE> key if no change is wanted.
The only valid <register-name>s are:

Register

AX BP SS
BX SI cs
CX DI IP (IP and PC both refer to
DX DS PC the Instruction Pointer.)
SP ES F

Any other entry for <register-name> results in a BR
Error message.
If F is entered as the <register-name>, DEBUG dis
plays each flag with a two-character alphabetic code.
To alter any flag, type the opposite two-letter code.
The flags are either set or cleared.

2-26

DEBUG UTILITY COMMANDS

The flags are listed below with their codes for SET
and CLEAR:

FLAG NAME SET CLEAR

Overflow OV NV

Direction DN Decrement UP Increment

Interrupt El Enabled DI Disabled

Sign NG Negative PL Plus

Zero ZR NZ

Auxiliary Carry AC NA

Parity PE Even PO Odd

Carry CY NC

Whenever you type the command RF, the flags are
displayed in the order shown above in a row at the
beginning of a line. At the end of the list of flags,
DEBUG displays a hyphen (-). You may enter new
flag values as alphabetic pairs. The new flag values
can be entered in any order. You do not have to leave
spaces between the flag entries. To exit the R com
mand, press the <NEW LINE> key. Flags for which
new values were not entered remain unchanged.
If more than one value is entered for a flag, DEBUG
returns a DF Error message. If you enter a flag code
other than those shown above, DEBUG returns a BF
Error message. In both cases, the flags up to the error
in the list are changed; flags at and after the error are
not.
At startup, the segment registers are set to the bot
tom of free memory, the Instruction Pointer is set to
0100H, all flags are cleared, and the remaining regis
ters are set to zero.

2-27

EXAMPLE Type:

R

DEBUG displays all registers, flags, and the decoded
instruction for the current location. If the location is
CS:11A, then the display will look similar to this:

AX=OEOO BX=00FF CX=0007 DX=01FF SP=039D
BP=0000 SI=005C DI=0000 DS=04BA ES=04BA
SS=04BA CS=04BA IP=011A
NV UP DI NG NZ AC PE NC
04BA:011A CD21 INT 21

If you type:

RF

DEBUG will display the flags:

NV UP DI NG NZ AC PE NC - -

Now, type any valid flag designation, in any order,
with or without spaces.

For example:

NV UP DI NG NZ AC PE NC - PLEICY<NEW LINE>

DEBUG responds only with the DEBUG prompt. To
see the changes, type either the R or RF command:

RF
NV UP El PL NZ AC PE CY - -

Press <NEW LINE> to leave the flags this way, or
to specify different flag values.

2-28

DEBUG UTILITY COMMANDS

NAME Search

PURPOSE Searches the <range< specified for the <list> of
bytes specified.

SYNTAX S<range> <list>

COMMENTS The <list> may contain one or more bytes, each se
parated by a space or comma. If the <list> contains
more than one byte, only the first address of the byte
string is returned. If the <list> contains only one
byte, all addresses of the byte in the <range> are
displayed.

EXAMPLE If you type:

SCS:100 110 41

DEBUG will display a response similar to this:

04BA:0104
04BA:010D
-type:

2-29

NAME Trace

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Executes one instruction and displays the contents of
all registers and flags, and the decoded instruction.

T[=<address>] [<value>]

If the optional =<address> is typed, tracing occurs at
the =<address> specified. The optional <value>
causes DEBUG to execute and trace the number of
steps specified by <value>.
The T command uses the hardware trace mode of
the 8086 or 8088 microprocessor. Consequently, you
may also trace instructions stored in ROM (Read
Only Memory).

TYPE:

T

DEBUG returns a display of the registers, flags, and
decoded instruction for that one instruction. Assume
that the current position is 04BA:011A; DEBUG
might return the display:
AX=0E00 BX=00FF CS=0007 DX=01FF SP=039D
BP=0000 SI=005C DI-0000 DS=04BA ES=04BA
SS—04BA CS=04BA IP=011A
NV UP DI NG NZ AC PE NC
04BA:011A CD21 INT 21

If you type

T=011A 10

2-30

DEBUG UTILITY COMMANDS

DEBUG executes sixteen (10 hex) instructions
beginning at Oil A in the current segment, and then
displays all registers and flags for each instruction as
it is executed. The display scrolls away until the last
instruction is executed. Then the display stops, and
you can see the register and flag values for the last
few instructions performed. Remember that <CON-
TROL-S> suspends the display at any point, so that
you can study the registers and flags for any instruc
tion.

2-31

NAME Unassemble

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Disassembles bytes and displays the source state
ments that correspond to them, with addresses and
byte values.

U[<range>]

The display of disassembled code looks like a listing
for an assembled file. If you type the U command
without parameters, 20 hexadecimal bytes are disas
sembled at the first address after that displayed by
the previous Unassemble command. If you type the
U command with the <range> parameter, then
DEBUG disassembles all bytes in the range. If the
<range> is given as an <address> only, then 20H
bytes are disassembled instead of 80H.

Type:

U04BA:100 L10

DEBUG disassembles 16 bytes beginning at address
04BA:0100:

04BA:0100 206472
04BA :0103 69
04BA:0104 7665
04BA :0106 207370
04BA:0109 65
04BA:010A 63
04BA:010B 69
04BA:010C 66
04BA.-010D 69
04BA:010E 63
04BA:010F 61

If you type

004ba:0100 0108

AND [SI+72],AH
DB 69
JBE 016B
AND [BP+DI+70],DH
DB 65
DB 63
DB 69
DB 66
DB 69
DB 63
DB 61

2-32

DEBUG UTILITY COMMANDS

The display will show:

04BA :0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69
04BA :0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH

If the bytes in some addresses are altered, the disas
sembler alters the instruction statements. The U
command can be typed for the changed locations, the
new instructions viewed, and the disassembled code
used to edit the source file.

2-33

NAME Write

PURPOSE Wirtes the file being debugged to a disk file.

SYNTAX W[<address> [<drive> <record> <records>]]

COMMENTS If you type W with no parameters, BX:CX must al
ready be set to the number of bytes to be written; the
file is written beginning from CS :100. If the W com
mand is typed with just an address, then the file is
written beginning at that address. If a G or T com
mand has been used, BX:CX must be reset before
using the Write command without parameters. Note
that if a file is loaded and modified, the name, length,
and starting address are all set correctly to save the
modified file (as long as the length has not changed).
The file must have been named either with the
DEBUG invocation command or with the N com
mand (refer to the Name command earlier in this
manual). Both the DEBUG invocation and the N
command format a filename properly in the normal
format of a file control block at CS:5C.
If the W command is typed with parameters, the
write begins from the memory address specified; the
file is written to the <drive> specified (the drive
designation is numeric here-0=A:, 1=B:, 2=C:, etc.);
DEBUG writes the file beginning at the logical record
number specified by the first <record>; DEBUG
continues to write the file until the number of sectors
specified in the second <record> have been written.

WARNING

Writing to absolute sectors is EXTREMELY
dangerous because the process bypasses the
file handler.

2-34

DEBUG UTILITY COMMANDS

EXAMPLE Type:

W

DEBUG will write the file to disk and then display
the DEBUG prompt. Two examples are shown
below.

W

WCS:100 1 37 2B

DEBUG writes out the contents of memory, begin
ning with the address CS:100 to the disk in drive B:.
The data written out starts in disk logical record
number 37H and consists of 2BH records. When the
write is complete, DEBUG displays the prompt:

WCS:100 1 37 2B

2-35

2.3 ERROR MESSAGES

During the DEBUG session, you may receive any of the following
error messages. Each error terminates the DEBUG command under
which it occurred, but does not terminate DEBUG itself.

ERROR CODE DEFINITION

BF Bad flag
You attempted to alter a flag, but the charac
ters typed were not one of the acceptable
pairs of flag values. See the Register com
mand for the list of acceptable flag entries.

BP Too many breakpoints
You specified more than ten breakpoints as
parameters to the G command. Retype the
Go command with ten or fewer breakpoints.

BR Bad register
You typed the R command with an invalid
register name. See the Register command
for the list of valid register names.

DF Double flag
You typed two values for one flag. You may
specify a flag value only once per RF com
mand.

2-36

