NICIR

NCR DECISION MATE V

MS™ DOS
Programmer’s Manual

MACRO-86, MS-CREF, MS-LINK, MS-LIB, and MS-DOS (and its
constituent program names EDLIN and DEBUG are trademarks of
Microsoft Corporation. Microsoft is a registered trademark of Micro-
soft Corporation.

Copyright © 1983, 1984 by NCR Corporation
Dayton, Ohio
All Rights Reserved
Printed in the Federal Republic of Germany

Third Edition, August 1984

It is the policy of NCR Corporation to improve products as new
technology, componentes, software, and firmware become avail-
able. NCR Corporation, therefore, reserves the right to change
specifications without prior notice.

All features. functions, and operations described herein may not
be marketed by NCR in all parts of the world. In some instances,
photographs are of equipment prototypes. Therefore, before using
this document, consult your nearest dealer or NCR office for in-
formation that is applicable and current.

General Introduction

Chapter 1 System Calls
1.1 Introduction 1-1
1.2 Programming Considerations 1-1
1.2.1 Calling From Macro Assembler 1-1
1.2.2 Calling From a High-Level Language 1-1
1.2.3 Returning Control to MS-DOS 1-2
1.24 Console and Printer Input/Output Calls . . . 1-3
125 DiskI/O System Calls 1-3
1.3 File Control Block (FCB) 1-3
1.3.1 Fields ofthe FCB 1-4
132 Extended FCB 1-6
133 DirectoryEntry L. 1-6
134 Fieldsofthe FCB 1-7
1.4 System Call Descriptions 1-9
1.4.1 Programming Examples 1-10
1.5 Xenix-Compatible Calls 1-11
1.6 Interrupts 1-14
16H Keyboard Character Code Read 1-16
20H Program Terminate 1-17
21H Function Request 1-18
22H Terminate Address 1-19
23H CONTROL-C Exit Address 1-19
24H Fatal Error Abort Address 1-20
25H Absolute Disk Read 1-23
26H Absolute Disk Write 1-25
27H Terminate But Stay Resident 1-27
1.7 Function Requests 1-28
1.7.1 CP/M-Compatible Calling Sequence 1-28
1.7.2 Treatment of Registers 1-29
Function Requests
00H Terminate Program 1-33
01H Read Keyboard and Echo 1-34
02H Display Character 1-35
03H Auxiliary Input 1-36
04H Auxiliary Output 1-37
05H Print Character 1-38
06H Direct Console I/O0 1-40
07H Direct Console Input 1-42
08H Read Keyboard 1-43
09H Display String 1-44
0OAH Buffered Keyboard Input 1-45

OBH Check Keyboard Status 1-47

0CH
0DH
0EH
OFH
10H
11H
12H
13H
14H
15H
16H
17H
19H
1AH
21H
22H
23H
24H
25H
27TH
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
33H
35H
36H
38H

39H
3JAH
3BH
3CH
3DH
3EH
3FH
40H
41H

Flush Buffer, Read Keyboard 1-48
Disk Reset 1-49
Select Disk 1-50
OpenFile................ 1-50
Close File 1-53
Search for First Entry 1-55
Search for Next Entry 1-57
Delete File 1-59
Sequential Read 1-61
Sequential Write 1-63
Create File 1-65
Rename File 1-67
CurrentDisk 1-69
Set Disk Transfer Address 1-70
RandomRead 1-72
Random Write 1-74
File Size 1-76
Set Relative Record 1-78
Set Vector 1-80
Random Block Read 1-81
Random Block Write 1-84
Parse File Name 1-87
GetDate 1-90
SetDate 1-92
GetTime 1-94
SetTime 1-95
Set/Reset Verify Flag 1-97
Get Disk Transfer Address 1-99
Get DOS Version Number 1-100
Keep Process 1-101
CONTROL-C Check 1-102
Get Interrupt Vector 1-104
Get Disk Free Space 1-105
Return Country-Dependent

Information 1-106
Create Sub-Directory 1-109
Remove a Directory Entry 1-110
Change Current Directory 1-111
Createa File 1-112
OpenakPFie............... 1-113
Close a File Handle 1-115
Read From File/Device 1-116
Write to a File/Device 1-117

Delete a Directory Entry 1-118

MS-DOS PROGRAMMER’'S MANUAL CONTENTS

Chapter

42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH
4DH
4EH
4FH

54H
56H
57TH

Move a File Pointer 1-119
Change Attributes 1-120
I/0 Control for Devices 1-121
Duplicate a File Handle 1-125
Force a Duplicate of a Handle 1-126
Return Text of Current Directory . . 1-127
Allocate Memory 1-128
Free Allocated Memory 1-129
Modify Allocated Memory Blocks . . 1-130
Load and Execute a Program 1-131
Terminate a Process 1-134
Retrieve the Return Code of a Child 1-135
Find Mateh File 1-136
Step Through a Directory

Matching Files 1-138
Return Current Setting of Verify . . 1-139
Move a Directory Entry 1-140
Get/Set Date/Time of File 1-141

Macro Definitions for MS-DOS System

Call Examples (00H-S7TH) 1-142
Extended Example of MS-DOS System Calls 1-149
MS-DOS Deyvice Drivers

What is a Device Driver? 2-1
Device Headers 2-3
Pointer to Next Device Field 2-3
Attribute Field 2-4
Strategy and Interrupt Routines 2-5
Name Field 2-5
How to Create a Device Driver 2-5
Installation of Device Drivers 2-6
Request Header 2-6
UnitCode 2-7
Command Code Field 2-7
MEDIA CHECK and BUILD BPB 2-8
Status Word 2-9
Function Call Parameters 2-11
INIT 2-12
MEDIA CHECK 2-12
BUILDBPB 2-13
Media Descriptor Byte 2-15
READ OR WRITE 2-16
NON DESTRUCTIVE READ NO WAIT 2-17
STATUS 2-18
FLUSH 2-18

W

I\JNI\)N'—“—"—‘
W — RO —

The CLOCK Device 2-19

MS-DOS Technical Information

MS-DOS Initialization 3-1
The Command Processor 3-1
MS-DOS Disk Allocation 33
MS-DOS Disk Directory 3-3
File Allocation Table 3-7
How to Use the File Allocation Table 3-8
IBM 5 1/4‘“ MS-DOS Disk Formats 3-9
MS-DOS Control Blocks and Work Areas
Typical MS-DOS Memory Map 4-1
MS-DOS Program Segment 4-2

EXE File Structure and Loading

Special Features 6
Timer Interrupt Support 6
Basis Concepts of the Timer Interrupt Support 6
Initilaization 6-
I/O Control Functions 6
How to Write the Selected Values 6
How to Check the Selected Values 6
Pattern of the “Console Flags* Byte 6

Keyboard Code Charts A-1

MS-DOS PROGRAMMER’S MANUAL

General Introduction

The Microsoft (R) MS(tm)-DOS Programmer’s Reference Manual
is a technical reference manual for system programmers. This
manual contains a description and examples of all MS-DOS system
calls and interrupts (Chapter 1). Chapter 2, “MS-DOS Device
Drivers” contains information on how to install your own device
drivers on MS-DOS. Chapter 3 through 5 contain technical infor-
mation about MS-DOS,; including MS-DOS disk allocation (Chapter
3), MS-DOS control blocks and work areas (Chapter 4) and EXE
file structure and loading (Chapter 5). Chapter 6 describes special
features, such as the timer interrupt support and I/O control
functions. Appendix A provides keyboard code charts.

The term “MS-DOS” in this manual refers to MS-DOS versions
that are 2.0 or higher.

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Chapter 1
System Calls

1.1 INTRODUCTION

MS-DOS provides two types of system calls: interrupts and function
requests. This chapter describes the environments from which these
routines can be called, how to call them, and the processing perfor-
med by each.

1.2 PROGRAMMING CONSIDERATIONS

The system calls mean you don’t have to invent your own ways to
perform these primitive functions, and make it easier to write ma-
chine-independent programs.

1.2.1 Calling From Macro Assembler

The system calls can be invoked from Macro Assembler simply by
moving any required data into registers and issuing an interrupt.
Some of the calls destroy registers, so you may have to save registers
before using a system call. The system calls can be used in macros
and procedures to make your programs more readable; this technique
is used to show examples of the calls.

1.2.2 Calling From A High-Level Language

The system calls can be invoked from any high-level language whose
modules can be linked with assembly-language modules.

Calling from Microsoft Basic: Different techniques are used to invoke
system calls from the compiler and interpreter. Compiled modules
can be linked with assembly-language modules; from the interpreter,
the CALL statement or USER function can be used to execute the
appropriate 8086 object code.

1-1

Calling from Microsoft Pascal: In addition to linking with an assembly-
language module, Microsoft Pascal includes a function (DOSXQQ)
that can be used directly from a Pascal program to call a function
request.

Calling from Microsoft FORTRAN: Modules compiled with Microsoft
FORTRAN can be linked with assembly-language modules.

1.2.3 Returning Control To MS-DOS

Control can be returned to MS-DOS in any of four ways:

1. Call Function Request 4CH

MOV AH,4CH
INT 21H

This is the preferred method.
2. Call Interrupt 20H:
INT 20H
3. Jump to location 0 (the beginning of the Program Segment Prefix):
JMP 0
Location 0 of the Program Segment Prefix contains an INT 20 H
}‘flrs;tzuction, so this technique is simply one step removed from the

4. Call Function Request 00H:

MOV AH,00H
INT 21H

This causes a jump to location 0, so it is simply one step removed
from technique 2, or two steps removed from technique 1.

1-2

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.2.4 Console And Printer Input/Output Calls

The console and printer system calls let you read from and write to
the console device and print on the printer without using any ma-
chine-specific codes. You can still take advantage of specific capa-
bilities (display attributes such as positioning the cursor or erasing the
screen, printer attributes such as double-strike or underline, etc.) by
using constants for these codes and reassembling once with the
correct constant values for the attributes.

1.2.5 Disk 170 System Calls

Many of the system calls that perform disk input and output require
placing values into or reading values from two system control blocks:
the File Control Block (FCB) and directory entry.

1.3 FILE CONTROL BLOCK (FCB)

The Program Segment Prefix includes room for two FCBs at offsets
5CH and 6CH. The system call descriptions refer to unopened and
opened FCBs. An unopened FCB is one that contains only a drive
specifier and filename, which can contain wild card characters (* and
7). An opened FCB contains all fields filled by the Open File system
call (Function OFH). Table 1.1 describes the fields of the FCB.

1-3

Table 1.1 Fields of File Control Block (FCB)

Size Offset
Name (bytes) Hex Decimal
Drive number 1 00H 0
Filename 8 01-08H 1-8
Extension 3 09-0BH 9-11
Current block 2 0CH,0DH 12,13
Record size 2 0EH,0FH 14,15
File size 4 10-13H 16-19
Date of last write 2 14H,15H 20,21
Time of last write 2 16H,17H 2223
Reserved 8 18-1FH 24-31
Current record 1 20H 32
Relative record 4 21-24H 33-36

1.3.1 Fields Of The FCB

Drive Number (offset 00H): Specifies the disk drive; 1 means drive A:
and 2 means drive B:. If the FCB is to be used to create or open a file,
this field can be set to 0 to specify the default drive; the Open File
system call Function (OFH) sets the field to the number of the default
drive.

Filename (offset 01H): Eight characters, left-aligned and padded (if
necessary) with blanks. If you specify a reserved device name (such as
LPT1), do not put a colon at the end.

Extension (offset 09H): Three characters, left-aligned and padded (if
necessary) with blanks. This field can be all blanks (no extension).

Current Block (offset 0CH): Points to the block (group of 128 records)
that contains the current record. This field and the Current Record
field (offset 20H) make up the record pointer. This field is set to 0 by
the Open File system call.

Record Size (offset 0EH): The size of a logical record, in bytes. Set to
128 by the Open File system call. If the record size is not 128 bytes,
you must set this field after opening the file.

1-4

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

File Size (offset 10H): The size of the file, in bytes. The first word of
this 4-byte field is the low-order part of the size.

Date of Last Write (offset 14H): The date the file was created or last
updated. The year, month, and day are mapped into two bytes as
follows:

Offset 15H
Y I YIYIYIY!IYIYIMI
15 9 8
Offset 14H
IMIMIMIDIDIDIDID|

54 0

Time of Last Write (offset 16H): The time the file was created or last
updated. The hour, minutes, and seconds are mapped into two bytes
as follows:

Offset 17H

I HIHIHIHIHIMIMIM|I
15 11 10

Offset 16H
IMIMIMISISISISISI

54 0
Reserved (offset 18H): These fields are reserved for use by MS-DOS.

Current Record (offset 20H): Points to one of the 128 records in the
current block. This field and the Current Block field (offset 0CH)
make up the record pointer. This field is not initialized by the Open
File system call. You must set it before doing a sequential read or
write to the file.

Relative Record (offset 21H): Points to the currently selected record,
counting from the beginning of the file (starting with 0). This field is
not initialized by the Open File system call. You must set it before
doing a random read or write to the file. If the record size is less than
64 bytes, both words of this field are used; if the record size ist 64
bytes or more, only the first three bytes are used.

1-5

NOTE

If you use the FCB at offset SCH of the
Program Segment Prefix, the last byte of the
Relative Record field is the first byte of the
unformatted parameter area that starts at
offset 80H. This is the default Disk Transfer
Address.

1.3.2 Extended FCB

The Extended File Control Block is used to create or search for
directory entries of files with special attributes. It adds the following
7-byte prefix to the FCB:

Size Offset
Name (bytes) (Decimal)
Flag byte (255, or FFH) 1 -7
Reserved 5 -6
Attribute byte: 1 -1

02H = Hidden file
04H = System file
1.3.3 Directory Entry

A directory contains one entry for each file on the disk. Each entry is
32 bytes; Table 1.2 describes the fields of an entry.

Table 1.2 Fields of Directory Entry

Size Offset
Name (bytes) Hex Decimal
Filename 8 00-07TH 0-7
Extension 3 08-0AH 8-10
Attributes 1 0BH 11
Reserved 10 0C-15H 12-21
Time of last write 2 16H,17H 22,23
Date of last read 2 18H,19H 2425
Reserved 2 1AH,1BH 26,27
File size 4 1C-1FH 28-31

1-6

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.3.4 Fields Of The FCB

Filename (offset 00H): Eight characters, left-aligned and padded (if
necessary) with blanks. MS-DOS uses the first byte of this field for
two special codes:

OOH (0) End of allocated directory
ESH (229) Free directory entry

Extension (offset 08H): Three characters, left-aligned and padded (if
necessary) with blanks. This field can be all blanks (no extension).

Attributes (offset 0BH): Attributes of the file:

Value
Hex Binary Dec Meaning
01H 0000 0001 1 Read-only
02H 0000 0010 2 Hidden
04H 0000 0100 4 System
07H 0000 0111 7 Changeable with CHGMOD
08H 0000 1000 8 Volume-ID
10H 0001 0000 16 Directory
16H 0001 0110 22 Hard attributes for FINDENTRY
20H 0010 0000 32 Archive

Reserved (offset 0CH): Reserved for MS-DOS.
Time of Last Write (offset 16H): The time the file was created or last

updated. The hour, minutes, and seconds are mapped into two bytes
as follows:

Offset 17H
IHIHIHIHIHIMIMIMI
15 11 10

Offset 16H
IMIMIMISISISISISI

54 0
Date of Last Write (offset 18H): The date the file was created or last

updated. The year, month, and day are mapped into two bytes as
follows:

1-7

Offset 19H
Yl YIYIYIYIYIYIM]

15 98

Offset 18H

IMIMIMIDIDIDIDID|
54 0

File Size (offset 1CH): The size of the file, in bytes. The first word of
this 4-byte field is the low-order part of the size.

1-8

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.4 SYSTEM CALL DESCRIPTIONS

Many system calls require that parameters be loaded into one or
more registers before the call is issued; most calls return information
in the registers (usually a code that describes the success or failure of
the operation). The description of system calls 00H-2EH includes the
following:

A drawing of the 8088 registers that shows their contents before
and after the system call.

A more complete description of the register contents required
before the system call.

A description of the processing performed.

A more complete description of the register contents after the
system call.

An example of its use.
The description of system calls 2FH-57H includes the following:

A drawing of the 8088 registers that shows their contents before
and after the system call.

A more complete description of the register contents repuired
before the system call.

A description of the processing performed.
Error returns from the system call.
An example of its use.

Figure 1 is an example of how each system call is described. Function
27H, Random Block Read, is shown.

1-9

Call

AH = 27H
DS:DX
Opened FCB
CX
Number of blocks to read
Return
AL
0= Read completed successfully
1=EOF

2 =End of segment

3 =EOF, partial record
CX

Number of blocks read

Figure 1. Example of System Call Description

1.4.1 Programming Examples

A macro is defined for each system call, then used in some examples.
In addition, a few other macros are defined for use in the examples.
The use of macros allows the examples to be more complete pro-
grams, rather than isolated uses of the system calls. All macro defini-
tions are listed at the end of the chapter.

The examples are not intended to represent good programming
practice. In particular, error checking and good human interface
design have been sacrificed to conserve space. You may, however,
find the macros a convenient way to include system calls in your
assembly language programs.

A detailed description of each system call follows. They are listed in
numeric order; the interrupts are described first, then the function
requests.

NOTE

Unless otherwise stated, all numbers in the
system call descriptions - both text and
code - are in hex.

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.5 XENIX COMPATIBLE CALLS

MS-DOS supports hierarchical (i.e., tree-structured) directories,
similar to those found in the Xenix operating system. (For informa-
tion on tree-structured directories, refer to the MS-DOS User’s
Guide.)

The following system calls are compatible with the Xenix system:

Function 39H Create Sub-Directory
Function 3AH Remove a Directory Entry
Function 3BH Change the Current Directory
Function 3CH Create a File

Function 3DH Open a File

Function 3FH Read From File/Device
Function 40H Write to a File or Device
Function 41H Delete a Directory Entry
Function 42H Move a File Pointer

Function 43H Change Attributes

Function 44H 1/0 Control for Devices
Function 45H Duplicate a File Handle
Function 46H Force a Duplicate of a Handle
Function 4BH Load and Execute a Program
Function 4CH Terminate a Process

Function 4DH Retrieve Return Code of a Child

There is no restriction in MS-DOS on the depth of a tree (the
length of the longest path from root to leaf) except in the number of
allocation units available. The root directory will have a fixed number
of entries (64 for the single sided disk). For non-root directories, the
number of files per directory is only limited by the number of alloca-
tion units available.

Pre-2.0 disks will appear to MS-DOS as having only a root directo-
ry with files in it and no subdirectories.

Implementation of the tree structure is simple. The root directory is
the pre-2.0 directory. Subdirectories of the root have a special attri-
bute set indicating that they are directories. The subdirectories them-
selves are files, linked through the FAT as usual. Their contents are
identical in character to the contents of the root directory.

Pre-2.0 programs that use system calls not described in this chapter
will be unable to make use of files in other directories. Those files not
necessary for the current task will be placed in other directories.

Attributes apply to the tree-structured directories in the following
manner:

MS-DOS PROGRAMMER'S MANUAL

Attribute

volume-id

directory

read-only

archive

hidden/
system

Meaning/Function
for files

Present at the root.
Only one file may have
this set.

Meaningless.

Old
Create,
new open (for write or
read/write) will fail.

fcb-create, new

Set when file is written.
Set/reset via Function
43H.

Prevents file from being
found in search first/se-
arch next. Old open will
fail.

SYSTEM CALLS

Meaning/Function
for directories

Meaningless.

Indicates that the direc-
tory entry is a directory.
Cannot be changed with
43H.

Meaningless.

Meaningless.

Prevents directory entry
from being found. Func-
tion 3BH will still work.

1.6 INTERRUPTS

MS-DOS reserves interrupts 20H through 3FH for its own use. The
table of interrupt routine addresses (vectors) is maintained in loca-
tions 80H-FCH. Table 1.3 lists the interrupts in numeric order; Table
1.4 lists the interrupts in alphabetic order (of the description). User
programs should only issue Interrupts 20H, 21H, 25H, 26H, and 27H.
(Function Requests 4CH and 31H are the preferred method for
Interrupts 20H and 27H for versions of MS-DOS that are 2.0 and
higher.)

NOTE
Interrupts 22H, 23H, and 24H are not inter-
rupts that can be issued by user programs;

they are simply locations where a segment
and offset address are stored.

1-14

MS-DOS PROGRAMMER’S MANUAL

Table 1.3 MS-DOS Interrupts, Numeric Order

Interrupt
Hex Dec
16H 22
20H 32
21H 33
22H 34
23H 35
24H 36
25H 37
26H 38
27H 39

28-40H 40-64

Description

Keyboard Character Code Read
Program Terminate

Function Request

Terminate Address

<CTRL-C> Exit Address

Fatal Error Abort Address
Absolute Disk Read

Absolute Disk Write _
Terminate But Stay Resident
RESERVED - DO NOT USE

Table 1.4 MS-DOS Interrupts, Alphabetic Order

Interrupt
Description Hex Dec
Absolute Disk Read 25H 37
Absolute Disk Write 26H 38
<CTRL-C> Exit Address 23H 35
Fatal Error Abort Address 24H 36
Function Request 21H 33
Keyboard Character Code Read 16H 22
Program Terminate 20H 32
RESERVED - DO NOT USE 2840H 40-64
Terminate Address 22H 34

Terminate But Stay Resident 27H 39

SYSTEM CALLS

Keyboard Character Code Read (Interrupt 16H)

1.

Interrupt 16H allows keyboard read. 00 in register AH leads to a
normal read — that means the program waits for a character to be
typed, then returns it in AL and AH. Ol in Register AH leads to a
non-destructive read, that is, the code read remains in the key-

Normal Read

Call
AH=00H

Return
AH=AL
Character code from keyboard

. Non-destructive Read

Call
AH=01H

Return
AH=AL
Character code from keyboard

Zero flag set means there was not a character to get; Zero flag
not set means AL and AH contain the character code from the

keyboard.

board buffer.

1-16

NOTE

Interrupt 16H gets the original keyboard
codes (No translation to ASCII is made;
the function keys are disabled). Turn to
Appendix A for the US-English and Inter-
national English + UK keyboard code charts.
All registers except AX are preserved. There
is no check for CONTROL-C.

MS-DOS PROGRAMMER’'S MANUAL SYSTEM CALLS

Program Terminate (Interrupt 20H)

Call

CS
Segment address of Program Segment
Prefix

Return
None

Interrupt 20H causes the current process to terminate and returns
control to its parent process. All open file handles are closed and
the disk cache is cleaned. This interrupt is almost always used in
old .COM files for termination.

The CS register must contain the segment address of the Program
Segment Prefix before you call this interrupt.

The following exit addresses are restored from the Program Seg-
ment Prefix:

Exit Address Offset
Programm Terminate OAH
CONTROL-C OEH
Critical Error 12H

All file buffers are flushed to disk.

NOTE

Close all files that have changed in length
before issuing this interrupt. If a changed
file is not closed, its length is not recorded
correctly in the directory. See Functions
10H and 3EH for a description of the
Close File system calls.

Interrupt 20H is provided for compatibility with versions of MS-
DOS prior to 2.0. New programs should use Function Request
4CH, Terminate a Process.

Macro Definition: terminate macro

int 20H
endm
Example
;CS must be equal to PSP values given at program start
+(ES and DS values)
INT 20H

sThere is no return from this interrupt

Function Request (Interrupt 21H)

Call
AH
Function number
Other registers as specified in individual
function

Return
As specified in individual function

The AH register must contain the number of the system function.
See Section 1.7. ”Function Requests”, for a description of the
MS-DOS system functions.

Example

NOTE

No macro is defined for this interrupt,
because all function descriptions in this
chapter that define a macro include Inter-
rupt 21H.

To call the Get Time function:

mov ah,2CH ;:Get Time is Function 2CH

21H ;THIS INTERRUPT

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Terminate Address (Interrupt 22H)
CONTROL-C Exit Address (Interrupt 23H)
Fatal Error Abort Address (Interrupt 24H)

These are not true interrupts, but rather storage locations for a seg-
ment and offset address. The interrupts are issued by MS-DOS under
the specified circumstance. You can change any of these addresses
with Function Request 25H (Set Vector) if you prefer to write your
own interrupt handlers.

Interrupt 22H -- Terminate Address

When a program terminates, control transfers to the address at offset
0AH of the Program Segment Prefix. This address is copied into the
Program Segment Prefix, from the Interrupt 22H vector, when the
segment is created.

Interrupt 23H - CONTROL-C Exit Address

If the user types CONTROL-C during keyboard input or display
output, control transfers to the INT 23H vector in the interrupt table.
This address is copied into the Program Segment Prefix, from the
Interrupt 23H vector, when the segment is created.

If the CONTROL-C routine preserves all registers, it can end with an
IRET instruction (return from interrupt) to continue program execu-
tion. When the interrupt occurs, all registers are set to the value they
had when the original call to MS-DOS was made. There are no re-
strictions on what a CONTROL-C handler can do - including
MS-DOS function calls - so long as the registers are unchanged if
IRET is used.

If Function 09H or 0AH (Display String of Buffered Keyboard Input)
is interrupted by CONTROL-C, the three-byte sequence 03H-0DH-
0AH (ETX-CR-LF) is sent to the display and the function resumes at
the beginning of the next line.

If the program creates a new segment and loads a second program
that changes the CONTROL-C address, termination of the second
program restores the CONTROL-C address to its value before execu-
tion of the second program.

1-19

Interrupt 24H - Fatal Error Abort Address

If a fatal disk error occurs during execution of one of the disk I/0
function calls, control transfers to the INT 24H vector in the vector
table. This address is copied into the Program Segment Prefix, from
the Interrupt 24H vector, when the segment is created.

BP:SI contains the address of a Device Header Control Block from
which additional information can be retrieved.

NOTE

Interrupt 24H is not issued if the failure
occurs during execution of Interrupt 25H
(Absolute Disk Read) or Interrupt 26H
(Absolute Disk Write). These errors are
usually handled by the MS-DOS error
routine in COMMAND.COM that retries
the disk operation, then gives the user the
choice of aborting, retrying the operation, or
ignoring the error. The following topics give
you the information you need about inter-
preting the error codes, managing the regi-
sters and stack, and controlling the system’s
response to the error in order to write your
own error-handling routines.

Error Codes

When an error-handling program gains control from Interrupt 24H,
the AX and DI registers can contain codes that describe the error. If
Bit 7 of AH is 1, the error is either a bad image of the File Allocation
Table or an error occurred on a character device. The device header
passed in BP:SI can be examined to determine which case exists. If
the attribute byte high order bit indicates a block device, then the
error was a bad FAT. Otherwise, the error is on a character device.

1-20

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

The following are error codes for Interrupt 24H:

Error Code

AP OO AANNE W —O

Description

Attempt to write on write-protected disk
Unknown unit

Drive not ready

Unknown command

Data error

Bad request structure length
Seek error

Unknown media type
Sector not found

Printer out of paper

Write fault

Read fault

General failure

The user stack will be in effect (the first item described below is at the
top of the stack), and will contain the following from top to bottom:

IP
CS

MS-DOS registers from
issuing INT 24H

FLAGS

AX
BX
CX
DX
S1
DI
BP
DS
ES

IP
CS

User registers at time of original
INT 21H request

From the original INT 21H
from the user to MS-DOS

FLAGS

The registers are set such that if an IRET is executed, MS-DOS will
respond according to (AL) as follows:

(AL)=0 ignore the error

=1 retry the operation
=2 terminate the program via INT 23H

1-21

Notes:

1. Before giving this routine control for disk errors, MS-DOS per-
forms five retries.

2. For disk errors, this exit is taken only for errors occurring during

an Interrupt 21H. It is not used for errors during Interrupts 25H or

26H.

This routine is entered in a disabled state.

The SS, SP, DS, ES, BX, CX, and DX registers must be preserved.

This interrupt handler should refrain from using MS-DOS func-

tion calls. If necessary, it may use calls 01H through OCH. Use of

any other call will destroy the MS-DOS stack and will leave MS-

DOS in an unpredictable state.

6. The interrupt handler must not change the contents of the device
header.

7. If the interrupt handler will handle errors rather than returning to
MS-DOS, it should restore the application program’s registers
from the stack, remove all but the last three words on the stack,
then issue an IRET. This will return to the program immediately
after the INT 21H that experienced the error. Note that if this is
done, MS-DOS will be in an unstable state until a function call
higher than 0CH is issued.

0 = b

1-22

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Absolute Disk Read (Interrupt 25H)

Call
AL
Drive number
DS:BX
Disk Transfer Address
CX
Number of sectors
DX
Beginning relative sector

Return
AL
Error code if CF =1
FlagsL
CF = 0 if successful
= 1 if not successful

The registers must contain the following:

AL
BX

CX
DX

Drive number (0= A, 1 =B, etc.).

Offset of Disk Transfer Address (from segment address
in DS).

Number of sectors to read.

Beginning relative sector.

This interrupt transfers control to the MS-DOS BIOS. The number of
sectors specified in CX is read from the disk to the Disk Transfer
Address. Its requirements and processing are identical to Interrupt
26H, except data is read rather than written.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing
the interrupt.

The system pushes the flags at the time of the call; they are still there
upon return. (This is necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to prevent uncontrolled

growth.

1-23

If the disk operation was successful, the Carry Flag (CF) is 0. If the
disk operation was not successful, CF is 1 and AL contains the MS-
DOS error code (see Interrupt 24H earlier in this section for the codes
and their meaning).

Macro Definition:

abs-disk-read

Example

macro disk,buffer,num-sectors,start
mov al, disk

mov bx,offset buffer

mov cx,nume-sectors

mov dh,start

int 25H

endm

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:. It uses a buffer of 32K bytes:

prompt

start
buffer

int-25H:

copy:

1-24

db “Source in A, target in B”,13,10
db “Any Key to start. $”
dw 0

db 64 dup (512 dup (7)) ;64 sectors

display prompt ;see Function 09H

read-kbd :see Function 08H
mov cx,5 ;copy 5 groups of

;64 sectors
push cx ;save the loop counter

abs-disk-read 0,buffer,64,start ;THIS INTERRUPT
abs-disk-write 1,buffer,64,start ;see INT 26H

add start,64 ;do the next 64 sectors

pop cx ;restore the loop counter

loop copy

MS-DOS PROGRAMMER'’S MANUAL SYSTEM CALLS

Absolute Disk Write (Interrupt 26H)

Call
AL
Drive number
DS:BX
Disk Transfer Address
CX
Number of sectors
DX
Beginning relative sector

Return
AL
Error code if CF =1
FLAGSL
CF = 0 if successful
= 1 if not successful

The registers must contain the following:

AL
BX

CX
DX

Drive number (0 = A, 1 =B, etc.).
Offset of Disk Transfer Address
(from segment address in DS).
Number of sectors to write.
Beginning relative sector.

This interrupt transfers control to the MS-DOS BIOS. The number of
sectors specified in CX is written from the Disk Transfer Address to
the disk. Its requirements and processing are identical to Interrupt
25H, except data is written to the disk rather than read from it.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing
the interrupt.

The system pushes the flags at the time of the call; they are still there
upon return. (This is necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to prevent uncontrolled

growth.

1-25

If the disk operation was successful, the Carry Flag (CF) is 0. If the
disk operation was not successful, CF is 1 and AL contains the MS-
DOS error code (see Interrupt 24H for the codes and their meaning).

Macro Definition:
abs-disk-write macro disk,buffer,num-sectors,start
mov al,disk

mov bx,offset buffer
mov cx,num-sectors
mov dh,start

int 26H

endm

Example

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:, verifying each write. It uses a buffer of
32K bytes:

off equ 0
on equ 1
prompt db “Source in A, target in B”,13,10
db “Any key to start. $”
start dw 0
buffer db 64 dup (512 dup (7)) ;64 sectors
int-26H: display prompt ;see Function 09H
read-kbd ;see Function 08H
verify on ;see Function 2EH
mov cX,5 ;copy 5 groups of 64 sectors
copy: push cx ;save the loop counter

abs-disk-read 0,buffer,64,start ;see INT 25H
abs-disk-write 1,buffer,64,start ;THIS INTERRUPT
add start,64 ;do the next 64 sectors

pop cx ;restore the loop counter
loop copy
verify off ;see Function 2EH

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Terminate But Stay Resident (Interrupt 27H)

Call

CS:DX
First byte following
last byte of code

Return
None

The Terminate But Stay Resident call is used to make a piece of code
remain resident in the system after its termination. Typically, this call
is used in .COM files to allow some device-specific interrupt handler
to remain resident to process asynchronous interrupts.

DX must contain the offset (from the segment address in CS) of the
first byte following the last byte of code in the program. When Inter-
rupt 27H is executed, the program terminates but is treated as an
extension of MS-DOS; it remains resident and is not overlaid by
other programs when it terminates.

This interrupt is provided for compatibility with versions of MS-DOS
prior to 2.0. New programs should use Function 31H, Keep Process.

Macro Definition:
stay-resident macro last-instruc

mov dx,offset last-instruc
inc dx

int 27TH

endm

Example

;:CS must be equal to PSP values given at program start
; (ES and DS values)

mov DX, LastAddress

int 27H
;There is no return from this interrupt

1-27

1.7 FUNCTION REQUESTS

Most of the MS-DOS function calls require input to be passed to
them in registers. After setting the proper register values, the function
may be invoked in one of the following ways:

1.

Place the function number in AH and execute a long call to offset
S0H in your Program Segment Prefix. Note that programs using
this method will not operate correctly on versions of MS-DOS that
are lower than 2.0.

. Place the function number in AH and issue Interrupt 21H. All of

the examples in this chapter use this method.

An additional method exists for programs that were written with
different calling conventions. This method should be avoided for
all new programs. The function number is placed in the CL register
and other registers are set according to the function specification.
Then, an intrasegment call is made to location 5 in the current
code segment. That location contains a long call to the MS-DOS
function dispatcher. Register AX is always destroyed if this me-
thod is used; otherwise, it is the same as normal function calls.
Note that this method is valid only for Function Requests 00H
through 024H.

1.7.1 CP/M(R)-Compatible Calling Sequence

A different sequence can be used for programs that must conform to
CP/M calling conventions:

1.

2.
3. Execute an intrasegment call to location 5 in the current code

Move any required data into the appropriate registers (just as in the
standard sequence).
Move the function number into the CL register.

segment.

This method can only be used with functions 00H through 24H that
do not pass a parameter in AL. Register AX is always destroyed when
a function is called in this manner.

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
1.7.2 Treatment Of Registers

When MS-DOS takes control after a function call, it switches to an
internal stack. Registers not used to return information (except AX)
are preserved. The calling program’s stack must be large enough to
accommodate the interrupt system - at least 128 bytes in addition to
other needs.

IMPORTANT NOTE
The macro definitions and extended exam-
ple for MS-DOS system calls 00H through
2EH can be found at the end of this chapter.

Table 1.5 lists the function requests in numeric order; Table 1.6 lists
the function requests in alphabetic order (of the description).

Table 1.5 MS-DOS Function Requests, Numeric Order

Function

Number Function Name
O0OH Terminate Program
O1H Read Keyboard and Echo
02H Display Character
03H Auxiliary Input
04H Auxiliary Output
O5H Print Character
06H Direct Console 1/0
O07H Direct Console Input
08H Read Keyboard
09H Display String
OAH Buffered Keyboard Input
OBH Check Keyboard Status
OCH Flush Buffer, Read Keyboard
ODH Disk Reset
OEH Select Disk
OFH Open File
10H Close File
11H Search for First Entry
12H Search for Next Entry
13H Delete File
14H Sequential Read
15H Sequential Write

1-29

1-30

16H
17H
19H
1AH
21H
22H
23H
24H
25H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
33H
35H
36H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH

Create File

Rename File

Current Disk

Set Disk Transfer Address
Random Read

Random Write

File Size

Set Relative Record

Set Vector

Random Block Read

Random Block Write

Parse File Name

Get Date

Set Date

Get Time

Set Time

Set/Reset Verify Flag

Get Disk Transfer Address
Get DOS Version Number
Keep Process

CONTROL-C Check

Get Interrupt Vector

Get Disk Free Space

Return Country-Dependent Info.
Create Sub-Directory
Remove a Directory Entry
Change the Current Directory
Create a File

Open a File

Close a File Handle

Read From File/Device
Write to a File/Device
Delete a Directory Entry
Move a File Pointer

Change Attributes

1/0 Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Return Text of Current Directory
Allocate Memory

Free Allocated Memory
Modify Allocated Memory Blocks
Load and Execute a Program
Terminate a Process

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

4DH Retrieve the Return Code of a Child
4EH Find Match File

4FH Step Through a Directory Matching Files
54H Return Current Setting of Verify

56H Move a Directory Entry

57H Get/Set Date/Time of File

Table 1.6 MS-DOS Function Requests, Alphabetic Order

Function Name Number
Allocate Memory 48H
Auxiliary Input 03H
Auxiliary Output 04H
Buffered Keyboard Input OAH
Change Attributes 43H
Change the Current Directory 3BH
Check Keyboard Status 0BH
Close a File Handle 3EH
Close File 10H
CONTROL-C Check 33H
Create a File 3CH
Create File 16H
Create Sub-Directory 39H
Current Disk 19H
Delete a Directory Entry 41H
Delete File 13H
Direct Console Input 07H
Direct Console 170 06H
Disk Reset ODH
Display Character 02H
Display String O09H
Duplicate a File Handle 45H
File Size 23H
Find Match File 4EH
Flush Buffer, Read Keyboard OCH
Force a Duplicate of a Handle 46H
Free Allocated Memory 49H
Get Date 2AH
Get Disk Free Space 36H
Get Disk Transfer Address 2FH
Get DOS Version Number 30H

Get Interrupt Vector 35H

1-31

1-32

Get Time

Get/Set Date/Time of File

I/D Control for Devices

Keep Process

Load and Execute a Program
Modify Allocated Memory Blocks
Move a Directory Entry

Move a File Pointer

Open a File

Open File

Parse File Name

Print Character

Random Block Read

Random Block Write

Random Read

Random Write

Read From File/Device

Read Keyboard

Read Keyboard and Echo
Remove a Directory Entry
Rename File

Retrieve the Return Code of a Child
Return Current Setting of Verify
Return Country-Dependent Info.
Return Text of Current Directory
Search for First Entry

Search for Next Entry

Select Disk

Sequential Read

Sequential Write

Set Date

Set Disk Transfer Address

Set Relative Record

Set Time

Set Vector

Set/Reset Verify Flag

Step Through a Directory Matching
Terminate a Process

Terminate Program

Write to a File/Device

2CH
57H
44H
31H
4BH
4AH
56H
42H
3DH
OFH
29H
05H
27H
28H
21H
22H
3FH
08H
01H
3AH
17H
4DH
54H
38H
47H
11H
12H
OEH
14H
15H
2BH
1AH
24H
2DH’
25H
2EH
4FH
4CH
00H
40H

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Terminate Program (Function 00H)
Call
AH = 00H
CS
Segment address of
Program Segment Prefix

Return
None

Function 00H is called by Interrupt 20H; it performs the same proces-
sing.

The CS register must contain the segment address of the Program
Segment Prefix before you call this interrupt.

The following exit addresses are restored from the specified offsets in
the Program Segment Prefix:

Program terminate O0AH
CONTROL-C OEH
Critical error 12H

All file buffers are flushed to disk.

Warning: Close all files that have changed in length before calling this
function. If a changed file is not closed, its length is not recorded
correctly in the directory. See Function 10H for a description of the
Close File system call.

Macro Definition: terminate-program macro

xor ah,ah
int 21H
endm

Example

;:CS must be equal to PSP values given at program start
:(ES and DS values)

mov ah,0

int 21H
;There are no returns from this interrupt

Read Keyboard and Echo (Function 01H)

Call

AH = 01H
Return

AL

Character typed
Function 01H waits for a character to be typed at the keyboard, then
echoes the character to the display and returns it in AL. If the charac-
ter is CONTROL-C, Interrupt 23H is executed.

Macro Definition: read-kbd-and-echo macro

mov ah, 01H
int 21H
endm

Example

The following program boths displays and prints characters as they
are typed. If <NEW LINE> is pressed, the program sends Line
Feed-Carriage Return to both the display and the printer:

func-01H: read-kbd-and-echo ;THIS FUNCTION
print-char al ;see Function 05H
cmp al,0DH ;is it a CR?
jne func-01H ;no, print it
print-char 10 ;see Function 05H
display-char 10 ;see Function 02H
jmp func-01H ;get another character

1-34

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Display Character (Function 02H)

Call
AH = 02H
DL
Character to be displayed

Return
None

Function 02H displays the character in DL. If CONTROL-C is typed,
Interrupt 23H is issued.

Macro Definition: display-char macro character
mov dl,character

mov ah, 02H
int 21H
endm

Example

The following program converts lowercase characters to uppercase
before displaying them:

func-02H: read-kbd ;see Function 08H
cmp al,“a”
jl uppercase ;don’t convert
cmp al,“z”
g uppercase ;don’t convert
sub al,20H ;convert to ASCII code
;for uppercase
uppercase: display-char al ;THIS FUNCTION
jmp func-02H: ;get another character

1-35

Auxiliary Input (Function 03H)

Call

AH = 03H
Return

AL

Character from auxiliary device

Function 03H waits for a character from the auxiliary input device,
then returns the character in AL. This system call does not return a
status or error code.

If a CONTROL-C has been typed at console input, Interrupt 23H is
issued.

Macro Definition: aux-input macro
mov ah,03H
int 21H
endm

Example

The following program prints characters as they are received from the
auxiliary device. It stops printing when an end-of-file character
(ASCII 1AH, or CONTROL-Z) is received:

func-03H: aux-input ;THIS FUNCTION
cmp al,1AH ;end of file?
je continue ;yes, all done
print-char al ;see Function 05SH
jmp func-03H ;get another character
continue:

1-36

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Auxiliary Output (Function 04H)

Call
AH = 04H
DL
Character for auxiliary device

Return
None

Function 04H sends the character in DL to the auxiliary output
device. This system call does not return a status or error code.

If a CONTROL-C has been typed at console input, Interrupt 23H is
issued.

Macro Definition: aux-output macro character
mov dl,character

mov ah,04H
int 21H
endm

Example

The following program gets a series of strings of up to 80 bytes from
the keyboard, sending each to the auxiliary device. It stops when a
null string (CR only) is typed:

string db 81 dup(?) ;see Function 0AH
func-04H: get-string 80,string ;see Function 0AH
cmp string[1],0 ;null string?
je continue ;yes, all done
mov c¢x, word ptr string[1] ;get string length
mov bx,0 ;set index to 0
send-it: aux-output string[bx+2] ;THIS FUNCTION
inc bx ;bump index
loop send-it ;send another character
jmp func-04H ;get another string
continue:

Print Character (Function 05H)

Call
AH = 05H
DL
Character for printer

Return
None

Function 05H prints the character in DL on the standard printer
device. If CONTROL-C has been typed at console input, Interrupt
23H is issued.

Macro Definition: print-char macro character

mov dl,character
mov ah,05SH

int 21H

endm

Example

The following program prints a walking test pattern on the printer. It
stops if CONTROL-C is pressed.

line-num db 0
func-05H: mov cx,60 ;print 60 lines
start-line: mov bl,33 sfirst printable ASCII
;character (!)
add blline-num ;to offset ne character
push cX ;save number-of-lines counter
mov cx,80 ;loop counter for line
print-it: print-char bl ;THIS FUNCTION
inc bl ;move to next ASCII character
cmp bl, 126 ;last printable ASCII
:character ()
jl no-reset ;not there yet
mov bl.33 ;start over with (!)

1-38

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

no-reset: loop print-it ;print another character
print-char 13 ;carriage return
print-char 10 ;line feed
inc line-num ;to offset 1st char. of line
pop cX ;restore #-of-lines counter
loop start-line; ;print another line

1-39

Direct Console I/0 (Function 06H)

Call
AH = 06H
DL

See text
Return
AL

If DL = FFH (255) before call, then Zero
flag not set means AL has character from
keyboard.

Zero flag set means there was not a cha-
racter to get, and AL =0

The processing depends on the value in DL when the function is
called:

DL is FFH (255) - If a character has been typed at the key-
board, it is returned in AL and the Zero flag is 0; if a character
has not been typed, the Zero flag is 1.

DL is not FFH - The character in DL is displayed.

This function does not check for CONTROL-C.

Macro Definition: dir-console-io macro switch
mov dl,switch

mov ah,06H
int 21H
endm

1-40

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Example

The following program sets the system clock to 0 and continuously
displays the time. When any character is typed, the display stops
changing; when any character is typed again, the clock is reset to 0 and
the display starts again:

time db “00:00:00.00”,13,10,“¢” ;see Function 09H

: ;for explanation of $

ten db 10

func-06H: set-time 0,0,0,0 ;see Function 2DH

read-clock: get-time ;see Function 2CH
convert ch,ten,time ;see end of chapter

convert clten,time[3] ;see end of chapter
convert dh,tentime[6] ;see end of chapter
convert dlten,time[9] ;see end of chapter

display time ;see Function 09H
dir-console-io FFH ;THIS FUNCTION
jne stop ;yes, stop timer
jmp read-clock :no, keep timer
;running
stop: read-kbd ;see Function 08H

jmp func-06H ;start over

Direct Console Input (Function 07H)

Call

AH = 07H
Return

AL

Character from keyboard

Function 07H waits for a character to be typed, then returns it in AL.
This function does not echo the character or check for CONTROL-C.
(For a keyboard input function that echoes or checks for CONTROL-
C, see Functions 01H or 08H.)

Macro Definition: dir-console-input macro

mov ah,07H
int 21H
endm

Example

The following program prompts for a password (8 characters maxi-
mum) and places the characters into a string without echoing them:

password db 8 dup(?)
prompt db “Password: $” ;see Function 09H for
;explanation of $
func-07H: display prompt ;see Function 09H
mov cx,8 ;maximum length of password
Xor bx,bx ;50 BL can be used as index
get-pass: dir-console-input ;THIS FUNCTION
cmp al,0DH ;was it a CR?
je continue ;yes, all done
mov password[bx],al ;no, put character in string
inc bx ;bump index
loop get-pass ;get another character

continue: - ;BX has length of password+1

1-42

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS

Read Keyboard (Function 08H)

Call

AH = 08H
Return

AL

Character from keyboard

Function 08H waits for a character to be typed, then returns it in AL.
If CONTROL-C is pressed, Interrupt 23H is executed. This function
does not echo the character. (For a keyboard input function that
echoes the character or does not check for CONTROL-C, see Func-
tions 01H or 07H.)

Macro Definition: read-kbd macro
mov ah,08H
int 21H
endm

Example

The following program prompts for a password (8 characters max-
imum) and places the characters into a string without echoing them:

password db 8 dup(?)
prompt db “Password: $” ;see Function 09H
;for explanation of $
func-08H: display prompt ;see Function 09H
mov cx,8 ;maximum length of password
Xor bx,bx ;BL can be an index
get-pass: read-kbd ;THIS FUNCTION
cmp al,0DH ;was it a CR?
je continue ;yes, all done
mov password[bx],al ;no, put char. in string
inc bx ;bump index
loop get-pass ;get another character

continue: - ;BX has length of password+1

1-43

Display String (Function 09H)

Call
AH = 09H
DS:DX
String to be displayed

Return
None

DX must contain the offset (from the segment address in DS) of a
string that ends with “$”. The string is displayed (the $ is not dis-
played).

Macro Definition: display macro string

mov dx,offset string
mov ah 09H

int 21H

endm

Example

The following program displays the hexadecimal code of the key that
is typed:

table db “0123456789ABCDEF”
sixteen db 16
result db “ - 00H”,13,10,“$” ;see text for

:explanation of $

func-09H: read-kbd-and-echo ;see Function 01H

convert al, sixteen, result{3] ;see end of chapter
display result ;THIS FUNCTION
jmp func-09H ;do it again

MS-DOS PROGRAMMER'S MANUAL SYSTEM CALLS
Buffered Keyboard Input (Function 0AH)
Call
AH = 0AH
DS:DX
Input buffer

Return
None

DX must contain the offset (from the segment address in DS) of an
input buffer of the following form:

Byte Contents

1 Maximum number of characters in buffer, including the
CR (you must set this value).
2 Actual number of characters typed, not counting the CR

(the function sets this value).
3-h Buffer; must be at least as long as the number in byte 1.
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>