
NCR DECISION MATE V

User Information

FEDERAL COMMUNICATIONS COMMISSION
RADIO FREQUENCY INTERFERENCE STATEMENT

WARNING: This equipment has been certified to comply with
the limits for a Class B computing device, pursuant to Subpart J
o f Part 15 o f FCC rules. Only peripherals (computer input/output
devices, terminals, printers, etc.) certified to comply with the
Class B limits may be attached to this computer. Operation with
non-certified peripherals is likely to result in interference to radio
and TV reception.

CP/M-80, CP/M-86 and DR-GRAPH are registered trademarks of
Digital Research Inc.
GW-BASIC, MS-BASIC-80, MS-BASIC-86 and MS-DOS are trade
marks o f Microsoft Inc.

Copyright ©1983 by NCR Corporation
Dayton, Ohio

All Rights Reserved
Printed in the Federal Republic of Germany

Second Edition, June 1983
This document contains the latest information available at the
time o f publication. However, NCR reserves the right to modify
the contents o f this material at any time. Also, all features, func
tions, and operations described herein may not be marketed by
NCR in all parts o f the world. Therefore, before using this docu
ment, consult your nearest dealer o f NCR office for the informa
tion that is applicable and current.

USER IN FO R M A TIO N

FOREWORD

Congratulations on your selection o f NCR DECISION MATE V
as your new professional business partner. Using state-of-the-art
technology and a modular design philosophy, NCR DECISION
MATE V offers features for both the experienced and first
time user, providing flexibility in choosing processing capabilities
and options. Best o f all, your NCR DECISION MATE V is very
friendly, with ease o f operation perhaps its most attractive feature.

Regardless o f your computer background, take time to read
this manual, it contains important information about your com
puter.

The manual, arranged in five sections, is the primary introduc
tion to your NCR DECISION MATE V. The first two sections
describe installation procedures, and introduce the main elements
o f a computer, the hardware and software. The next section con
centrates on operations — how to use the hardware and how to
start the system. And, finally, the last sections describe what to do
should you have problems and other helpful hints for the care of
your system.

After you have read this manual, you will be thoroughly
comfortable with your NCR DECISION MATE V and able to per
form many functions. You will then want to study the other
manuals that fully describe the capabilities of your computer
including those manuals referenced in System Introduction.

One final point should be made about your computer. NCR
DECISION MATE V is offered from a company committed to
computer technology. Ongoing research and development will
produce new features and options, allowing you to easily upgrade
your computer to match your processing needs. Contact your
NCR representative or dealer who will always be up-to-date on
current offerings.

USER INFO R M A TION

NCR DECISION MATE V
USER INFORM ATION

CONTENTS

INSTALLATIO N
Basic System .. 1-1
Keyboard L a y o u ts .. 1-11
Printers... 1-17

SYSTEM INTRODUCTION
Hardware ... 2-1
Softw are... 2-4

HARDWARE OPERATION
Introduction.. 3-1
Flexible Disks.. 3-1
Fixed Winchester D is k ... 3-4
Control P a n e l.. 3-5
CRT Screen .. 3-6
K eyb oa rd ... 3-6
Startup Procedure .. 3-14
Some Practice Exercises... 3-14

W HAT IF?
Problem Iso la tion .. 4-1
Servicing Arrangements ... 4-1
Radio Frequency In terference.. 4-2

HELPFUL HINTS
Positioning the Computer... 5-1
Working with NCR DECISION MATE V 5-2
Care o f Flexible Disks ... 5-2
Moving the Computer... 5-3
Cleaning Procedure.. 5-3

Copyright ©1983 by NCR Corporation
Dayton, Ohio

All Rights Reserved
Printed in the Federal Republic of Germany

i n s t a l l a t i o n

USER
i n f o r m a t i o n

NCR DECISION MATE V
INSTALLATION

1-1

1-2

USER INFO R M A TION IN S T A LLA T IO N

CHECK VOLTAGE

i
OK?

1-3

PREPARE DISK DRIVES

1-4

USER IN FO R M A TIO N IN S T A LLA T IO N

SET LANGUAGE CODE SWITCHES

VERSION 1 VERSION 2

Language Code

US English
1 2 3
O O O

UK/Int. English • o o
Danish 0 9 0
German 9 9 0
Swedish/Finnish 0 0 9
Norwegian 9 0 9
Spanish 0 9 9
Italian 9 9 9

O = off • = on
1 2 3

Language Code

Swiss-German O O O
Swiss-French 9 0 0
French 0 9 0
Canadian/Australian 990
Canadian(Bilingual) o o i
South African 9 0 9
Portuguese O • •
Yugoslavian • • •

1 2 3
O = off • = on

Y_______________________ J

1-5

FIT KEYTiPS

F 1 F2 F3 Ft, F5 F6 F 7 F 8 F9 F10 F11 F12 F13 FH F1S

ESC 1
<a
2

*
3

i
u

%
S 6

&
7 8

I
9

)
0 - ♦ TAB

CONTROL 0 w E R T Y U | I 0 P CONTROL

Ü ; h X c V B N M < I > 0
/

F16 F17 F18 F19 F20

\ - t i -

CLR 7 8 9 /

- L. S 6 X

+ 1 2 3

J
0 00

US ENGLISH KEYBOARD LAYOUT

F 1 F2 F 3 FA FS F6 F 7 F 8 F9 F10 F11 F12 F13 FH F15

ESC 1- 2
t
3

%
L

%
S

&
6 7

1
8

)
9 0

=
t - TAB

CONTROL 0 W E R T Y U 1 0 P {
(

CONTROL

0
I
\

z X c V 8 N M < >
->

/

F16 F17 F18 F19 F20

\ - i t -

CLR 7 8 9 /

- 4 5 6 X

1 2 3

J
0 00

UK/INTERNATIONAL KEYBOARD LAYOUT

1-6

USER IN FORMA TION IN S T A LLA T IO N

CONNECT KEYBOARD

1-7

CONNECT OPTIONS

BE SURE GROUND CONNECTION IS MADE AT PRINTER PLUG/SOCKET
(REFER TO PRINTER MANUAL)

1-8

USER IN FO R M A TIO N IN S T A LLA T IO N

OPTION LOCATIONS

• Fit any peripheral adapter that has a cable to the rightmost slot (slot 6)
• If two adapters have cables always fit printer adapter (K210 or K212)

to slot 6 and communication adapter (K211) to slot 5
• Do not leave any slots between adapters open

Note slot 7 is reserved for Diagnostic module or 16-bit processor, slot 1 is
reserved for Memory expansion module.

K200 64 KB MEMORY EXPANSION
K202 192 KB MEMORY EXPANSION
K208 448 KB MEMORY EXPANSION
K210 CENTRONICS PARALLEL PRINTER INTERFACE
K211 RS-232C COMMUNICATION INTERFACE

K212 RS-232C SERIAL PRINTER INTERFACE
K214 BLANK ADAPTER AND BUS CONNECTOR
K220 DIAGNOSTIC MODULE
K230 8/16-BIT UPGRADE KIT

OPTION/PERIPHERAL LOCATIONS

1-9

CONNECT POWER

CONNECT POWER CABLE

1-10

USER IN FO R M A TIO N IN S T A LLA T IO N

KEYBOARD LAYOUTS

F1 F 2 F3 F U F5 F 6 F 7 F 8 F9 F10 F11 F12 F13 F U F15

ESC
i

1
9
2

*
3

i
u

%
S 6

&
7

*
8

1
9

)
0 - ♦ - TAB

CONTROL Q W E R T Y U I 0 P <
[

CONTROL

A S D F G H J K L ; ■

ü
I
\

Z X c V B N M < > ?
/

F16 F17 F18 F19 F20

\ - i t -

CLR 7 8 9 /

- U 5 6 X

+ 1 2 3

J
0 00

US ENGLISH

F16 F17 F18 F19 F20

\ - i i -

CLR 7 8 9 /

- U 5 6 X

1 2 3

J
0 00

F1 F2 F3 F U F5 F 6 F 7 F 8 F9 F10 F11 F12 F13 F U F15

ESC 1 2
t
3

%
U

%
S

&
6 7

I
8

)
9 0 : ♦ - TAB

CONTROL 0 W E R T Y U I 0 P CONTROL

A S D F G H J K L ♦ •*

UK/INTERNATIONAL ENGLISH

F 1 F2 F3 FU F5 F 6 F 7 F 8 F9 F10 F11 F12 F13 F U F15

ESC 1 2
±
3

i
u

%
S

&
6

/
7

(
8

)
9 0

0 \
/ - TAB

CONTROL 0 W E R T Y U I 0 P CONTROL

0
>
< z X c V B N M , —

F16 F17 F18 F19 F20

\ - t 1 -

CLR 7 8 9 /

- U 5 6 *

1 2 3

J
0 00

F 1 F2 F3 FU FS F 6 F 7 F 8 F9 F10 F11 F12 F13 F U F15

ESC 1 2
§
3

i
U

%
5

&
6

/
7

(
8

)
9 0

7

n - TAB

CONTROL Q W E R T Z U I 0 P Ü
w-

CONTROL

0 >
< Y X c V B N M , - 0

F16 F17 F18 F19 F20

\ - i I -

CLR 7 8 9 /

- U 5 6 *

1 2 3

J
0 00

1-11

F I F2 F3 F4 F5 F 6 F 7 F 8 F9 F10 F11 F12 F13 F U F15

ESC 1 2
*
3

E
U

%
5

&
6

/
7

(
8

)
9 0

7
z - TAB

CONTROL 0 W E R T Y U I 0 P A 1 CONTROL

F16 F17 F18 F19 F20

\ - t t -

CLR 7 8 9 /

- 4 5 6 X

+ 1 2 3

J
0 00

SWEDISH,FINNISH

F 1 F2 F 3 FL F5 F 6 F 7 F 8 F 9 F10 F11 F12 F13 F H F1S

ESC 1 2
±
3

$
U

%
S

&
6

/
7

l
8

)
9 0

7
/ - TAB

CONTROL Q W E R 1 Y U 1 0 P A CONTROL

0
>
< z X c V B N M —

F16 F17 F18 F19 F20

\ - i i -

CLR 7 8 9 /

- U 5 6 X

1 2 3

J
0 0 0

NORWEGIAN

F 1 F2 F3 Ft, F5 F 6 F 7 F 8 F9 F10 F11 F12 F13 F K F15

ESC J 2
£
3

$
L

%
S

a
6

/
7

I
8

)
9 0

7 c
i - TAB

CONTROL Q W E R T Y U I 0 P
*

CONTROL

0
>
< z X c V B N M

F16 F17 F18 F19 F20

\ - i t -

CLR 7 8 9 /

- t, 5 6 *

1 2 3

J
0 00

SPANISH

CONTROL 0 Z E R T Y U I 0 P CONTROL
*

A S D F G H J K L 9
b u

f> >
< W X c V B N M - -

F16 F17 F18 F19 F20

\ - t t -

CLR 7 8 9 /

- U 5 6 X

+ 1 2 3

J
0 00

ITALIAN

1-12

USER IN FO R M A TION IN S T A LLA T IO N

Q W E R T Z U I 0 P e
Ü

A S D F G H J K L e
Ö

a
ä

£
$

Y X C V B N M \ - J

F16 F17 F18 F 19 F20

\ — 1 t -

CLR 7 8 9 /

- U 5 6 *

+ 1 2 3 J0 00 '

SWISS-GERMAN

0

F 13

* s r ^ T g I / 1 M) = ? ”
1 2 3 4 5 6 7 8 9 0 | A

CONTROL Q W E R T Z U I O P “ .' CONTROL

A S D F G H J K L Ö a
e a

§ Y X C V B N M , — J

F16 F17 F18 F 19 F20

\ — 1 I —

CLR 7 8 9 /

- k 5 6 *

+ 1 2 3 J0 00 -

SWISS FRENCH

F1 F2 F3 F U F5 F 6 F7 F 8 F9 F10 F 11 F12 F 13 F U F 15

ESC
1
&

2
e

3 U 5
(

6
§

7
e

8
1

9

9
0
i

0
) — T A B

CONTROL A Z E R T Y U 1 0 P -
*
%

CONTROL

Q S D F G H J K L M
%
Ü

A
V W X c V B N
? / ♦ J

F 16 F17 F18 F19 F20

\ - I t -

CLR 7 8 9 /

- U 5 6 *

1 2 3 J0 00 -

FRENCH

Q W E R T Y U 1 0 P c
]

A S D F G H J K L ;
//

i
\ z X c V B N M < > 7

/
J

F 16 F17 F 18 F 19 F 20

\ - i 1 -

CLR 7 8 9 /

- A 5 6 *

+ 1 2 3

- J0 00

AUSTRALIAN (PRELIMINARY)

1-13

F l F2 F3 FA F5 F 6 F l F 8 F 9 F10 F 11 F 12 F 13 F H F15

ESC 1 2
/
3

J
A

%
5

?
6

&
7

♦
8

(
9

)
0

— +
— TAB

CONTROL VV R i j 0 p
A

#
' CONTROL

A S D F G H J K L ; ✓

Ü
C
]

z X c V B N M < > e
e

J

F 16 F17 F 18 F19 F20

\ — 1 t -

CLR 7 8 9 /

- A 5 6 *

+ 1 2 3

J0 00

CANADIAN (BILINGUAL - PRELIMINARY)

F12

ESC

Q W E R T Y U 1 0 P E A

A S D F G H J K L ■N E
$
(J

F 16 F 17 F18 F19 F20

\ - 1 1 —

CLR 7 8 9 /

- A b 6 *

+ 1 2 3 J0 00

SOUTH AFRICAN

F l F 2 F 3 FA F5 F6 F7 F 8 F9 F10 F 11 F12 F 13 F H F15

ESC
;

1 2
*
3

$
A

%
5

&
6

/
7

(
8

)
9

?
@ / \ — TAB

CONTROL A z E R T Y u i 0 P ä
*
+ CONTROL

Ü

A
V w X c V B N M

Q S D F G H J K L 5 5 J

F16 F17 F18 F19 F20

\ — 1 I —

CLR 7 8 9 /

- A 5 6 *

+ 1 2 3

J0 00 !

PORTUGUESE

F l F2 F3 FA F5 F 6 F7 F 8 F9 F10 F11 F 12 F13 F H F15

ESC
f
1 2

#
3

$
A

%
5

&
6

/
7

(
8

)
9

?
e — TAB

CONTROL Q w E R T z u i 0 p s
*
+ CONTROL

A S D F G H J K L C t

Ü Y X c V B N M — J

F 1 6 F 17 F 1 8 F 19 F 2 0

\ — 1 t —

C L R 7 8 9 /

- A 5 6 *

+ \ 2 3
i

0 0 0 -

YUGOSLAVIAN

1-14

USER IN FORM A TION IN S T A LLA T IO N

PRINTERS

RECOMMENDED PRINTERS FOR NCR DECISION MATE V.

• NCR 6411 (Serial or Parallel)

• NCR 6442 (Parallel only)

• NCR 6455 (Serial only)

Strappings shown are for use with NCR DECISION MATE V. For
further information refer to relevant printer documentation.

• NCR 6411 Printer Owner's Manual
• NCR 6442 Matrix Printer Operator Information
• NCR 6442 Matrix Printer Hardware Installation
• NCR 6455 Printer Owner's Manual

Only one printer may be connected to the system.

1-15

1-16

USER IN FO R M A TIO N IN S T A LLA T IO N

NCR 6411
Serial mode with RS-232C peripheral adapter (K212)

SWITCH SW21

SWITCH
NUMBER POSITION FUNCTION

1 OPEN NUMBER OF STOP BIT, 1
2 OPEN SD
3 OPEN PARITY CHECK\ pN

PARITY CHECK /4 OPEN
5 NO FUNCTION
6 CLOSED 7-BIT DATA
7
8

OPEN
CLOSED

DATA PROTOCOL
DATA PROTOCOL X- °N/X- ° FF

SWITCH SW22

SWITCH
NUMBER POSITION FUNCTION

1 OPEN DATA TRANSMISSION SPEED')
2 OPEN DATA TRANSMISSION SPEED l

DATA TRANSMISSION SPEED/3 OPEN
4 NO FUNCTION

4

n
3 2 1

nnnUJUU
O P E N

1-17

SWITCH SW23

SWITCH
NUMBER POSITION FUNCTION

1 CLOSED RS-232C
2 OPEN RS-232C
3 OPEN DSR, RS-232C
4 CLOSED DSR, RS-232C
5 OPEN DSR, RS-232C
6 NO FUNCTION

SWITCH SW24

SWITCH
NUMBER POSITION FUNCTION

1 OPEN DTR, X-ON/X-OFF
2 CLOSED DTR, X-ON/X-OFF
3 OPEN RTS
4 CLOSED RTS
5 OPEN USE OF CTS
6 CLOSED USE OF CTS
7 OPEN CD INVALID
8 CLOSED CD INVALID

NCR 6411
Parallel mode with Centronics peripheral adapter (K210)

NO SPECIAL STRAPPING REQUIRED

1-18

USER IN FO R M A TION IN S T A LLA T IO N

NCR 6442
Parallel mode with Centronics peripheral adapter (K210)

NO SPECIAL STRAPPING REQUIRED

1-19

1-20

USER INFO R M A TION IN S T A LLA T IO N

NCR 6455
Serial mode with RS-232C peripheral adapter (K212)

SWITCH SW1

SWITCH
NUMBER POSITION FUNCTION

1 OFF REMOTE MODE AT POWER ON
2 ON LF SWITCH ACTS AS FORMS FEED
3 OFF INDIVIDUAL HORIZONTAL TAB CLEARED
4 OFF AUTO RETURN DISABLED
5 ON X-ON/X-OFF PROTOCOL
6 ON INTERRUPT SIGNAL SENT AT ALARM
7 OFF FORMS LENGTH SWITCH DISABLE
8 OFF NORMAL OPERATION (ERROR MONITOR)

ON

OFF

SWITCH SW2

SWITCH
NUMBER POSITION FUNCTION

1 OFF CONSTANT PITCH
2 OFF CONSTANT PITCH
3 OFF NORMAL OPERATION (PAPER OUT)
4 OFF NORMAL OPERATION (TEST)

ON

OFF

1-21

SWITCH SW3

SWITCH
NUMBER POSITION FUNCTION

1 OFF 6 LINES PER INCH
2 OFF 10 CHARACTERS PER INCH
3 OFF 10 CHARACTERS PER INCH
4 OFF 10 CHARACTERS PER INCH

auau ON

OFF

SWITCH SW4

SWITCH
NUMBER POSITION FUNCTION

1 OFF LOCAL LINE FEED SWITCH DISABLED
2 ON RECEIVE/TRANSMIT PARITY CHECK - EVEN
3 ON RECEIVE/TRANSMIT PARITY CHECK - EVEN
4 OFF HALF DUPLEX

anna ON

OFF

1-22

USER IN FORMA TION IN S T A LLA T IO N

INTERFACE BOARD SWITCH SW1

SWITCH
NUMBER POSITION FUNCTION

1 ON DATASET READY ON
2 OFF CLEAR TO SEND OFF
3 OFF CARRIER DETECT CONTROL NORMAL (MODEM)
4 OFF REVERSE CHANNEL ACTIVE HIGH
5 ON TEST
6 ON 2K BUFFER
7 ON NOT USED
8 OFF HAMMER ENABLE

ON

OFF

SPEED 8 = 9600 BAUD
LINES/FORM = 72
SELECT RS-232C X-ON/X-OFF BY CONTROL PANEL

1-23

TECHNICAL SPECIFICATIONS

Size Processor

Keyboard

Height 378 mm Width 461 mm Depth 370 mm
(14.9 in.) (18.1 in.) (14.6 in.)

Height 37 mm Width 430 mm Depth 216 mm
(1.5 in.) (16.9 in.) (8.5 in.)

Weight Processor
Keyboard

22 kg (48.5 lb)
2 kg (4.4 lb)

Voltage Nominal 100 volts ac Range 90 to 107 volts ac
120 104 to 127
220 198 to 235
230 207 to 246
240 216 to 257

Frequency 50/60 Hertz (49 to 61 Hertz)

Power (average) 70 Watts (basic computer without peripherals)

Temperature °C
°F

Operating 10 to 35 Storage -10 to 50 Transit-40 to 60
(50 to 95) (14 to 120) (-40 to 140)

Temperature Change 10°C per hour (18°F per hour)

Relative Humidity Range: 20% to 80%

Cable Lengths Power 2.5 to 3.5 metres (8.2 to 11.5 feet)

Keyboard 0.5 metres (1.6 feet) extendable

Centronics Peripheral Adapter 2.0 metres (6.6 feet)

RS-232 Peripheral Adapter 2.0 metres (6.6 feet)

Noise Rating Level Idle mode 33 dB (A) Flex. Disk 41dB(A)

Product Safety USA UL 478 UL listing mark used
Canada CSA 22.2 — 154, CSA monogram used
Europe IEC 380, Inhouse verification
Germany VDE 0806, GS label granted by trade association

Radio Protection USA FCC Docket No. 20780, Class B
Germany VDE 0871, Class A certified by German Federal

Post (FTZ)

Radiation Emission USA Public Law 90 - 602
DHEW Publication No. (FDA) 75 — 8003

Germany X-Ray Emission Regulations

1-24

USER IN FO R M A TIO N SYSTEM INTRO DUCTIO N

SYSTEM INTRODUCTION

Your NCR DECISON MATE V comprises two separate, though
interrelated, elements: hardware and software. Hardware encom
passes any o f the physical components o f the computer, while
software defines the programs that “ drive” it. In this section, you
learn about the standard hardware o f the NCR DECISION MATE
V, plus software and options that you can order separately.

HARDWARE

The standard version o f NCR DECISION MATE V consists o f a
processor unit and keyboard built and tested to meet the highest
engineering and safety standards.

STANDARD CONFIGURATION
The processor unit consists o f a compact cabinet, ideally suited for
desk-top use, that is made up o f the following major modules:

• 12-inch cathode ray tube monitor (monochrome or color)
• Two 5 1 /4-inch flexible disk drive units, or

One flexible disk and one fixed Winchester disk drive
• Accessible connectors for peripherals and features
• Processor (circuit) board with a 64 KB memory capacity
• Power supply

NOTE: A kilobyte (KB) = 1024 bytes (characters). A 64 KB mem
ory capacity holds over 65,000 characters.

The processor is available in two types, 8-bit for use with
8-bit software, or dual 8/16-bit for use with either 8-or 16-bit
software.

The keyboard is a freestanding unit that is connected to the
processor by a coiled cable. The keyboard has an alphanumeric
section with control and function keys, and, for rapid entry of
numeric-only data, a 10-key numeric keypad.

NCR DECISION MATE V uses industry standard, 5 1/4-inch
flexible disks with double-sided, double density format, providing

2-1

a storage capacity o f 360 KB per disk. While any disk that meets
these specifications may be used, be sure to purchase quality disks
either from NCR or another reputable manufacturer.

The integrated fixed Winchester Disk offers a far greater storage
capacity. This disk can store ten megabytes (ten million charac
ters).

The major hardware elements of a typical NCR DECISION
MATE V are shown below. More detailed information on the
function of these elements and how to operate each one are
provided in — Hardware Operation.

FIXED
WINCHESTER DISK
(DRIVE 0 /C)

OPTIONS AND ENHANCEMENTS
NCR DECISION MATE V is designed for worldwide use and,
with the various features and kits that are or will be available,
can easily be changed to match your requirements as they expand.

The features available include the following options:

• Dual 8/16-bit processor upgrade
• Memory expansion up to a maximum of 512KB
• Peripheral adapters (Centronics or RS-232C compatible) for

connection o f printers, terminals or modems
• Keyboard and language sets for most languages

2-2

USER IN FO R M A TIO N SYSTEM INTRO DUCTIO N

• Blank interface adapter for designers who wish to connect
some other equipment to the computer

• Diagnostic module for speedy problem identification
• Provision for connecting a joystick

Dual 8 /16-Bit Processor Upgrade
You can plug this module into the rightmost slot at the rear of
the processor and convert your 8-bit processor into a dual 8/16-
bit processor, allowing the use o f both 8-bit and 16-bit operating
systems, and any o f the compatible application software packages.

Memory Expansion
Simply determine how much memory you require, select the ap
propriate kit, and plug it into the leftmost slot at the rear o f the
processor. Three memory expansion kits are available, these are:

• K200 — increases memory capacity from 64KB to 128KB
• K202 — increases memory capacity from 64KB to 256KB
• K208 — increases memory capacity from 64KB to 512KB

Peripheral Adapters
Most RS-232C and Centronics compatible devices can be connected
to the NCR DECISION MATE V. You simply select the correct
adapter, plug it into one o f the slots (2 to 6) at the rear of the
processor, and connect the cable to the peripheral you wish to
use. A ll adapters are complete with a 2-metre cable and a suitable
connecting plug. Currently the following adapters are available:

• K210 — for the connection o f a Centronics compatible printer
(parallel input)

• K211 — for the connection of an RS-232C compatible modem
• K212 — for the connection o f an RS-232C compatible printer

(serial input)

PRINTERS
In theory, any RS-232C (Serial) or Centronics (parallel) compatible
printer may be used with the DECISION MATE V: however, NCR
recommends the following printers:

• NCR 6411 — with either parallel (Centronics) or serial (RS-
232C) peripheral adapters

• NCR 6442 — with parallel (Centronics) peripheral adapter
• NCR 6455 — with serial (RS-232C) peripheral adapter

2-3

SOFTWARE

Generally, a computer uses three types o f software: operating sys
tem software, application software, and programming language
software. The following definitions may clarify these three cate
gories.

• Operating system software controls the execution o f computer
programs and includes such functions as managing memory
and disk space, and handling data and files.

• Application software, a collection of programs written for or
by the user, performs a specific processing function.

• Programming language software, consisting o f commands and
the software to interpret them, provides the elements for a
computer program.

Better than any definition, however, the importance o f soft
ware can best be understood in terms o f what it can do for you.

OPERATING SYSTEM SOFTWARE
Of all software, the operating system is the most important be
cause, without it, you cannot use your computer or any other
software. Besides containing control programs, the operating
system includes all information needed to interface the hardware
with the software. An operating system is usually on disk and is
automatically read into the computer once the disk is inserted
in the disk drive. Today, many standard operating systems are
available. These “ generic” packages are written for specific micro
processors and are, therefore, sometimes described as 8- or 16-bit
software. Each o f these operating systems, however, usually
require some alteration to define the characteristics o f the hard
ware.

Three highly popular operating systems are implemented for
NCR DECISION MATE V: CP/M®-80, CP/M®-86 and M S™ -DOS.
Depending on the model o f your computer, you can use one or all
o f these.

CP/M is an abbreviation for Control Program for Micropro
cessors: CP/M-80 is an operating system developed by Digital Re
search, Inc. for 8-bit processors.

CP/M-86, also developed by Digital Research, is an operating
system for 16-bit processors. This software is fully compatible
with CP/M-80 allowing all files to be used without conversion, it
also allows you access to all CP/M-compatible, 16-bit application
software.

2-4

USER IN FO R M A TIO N SYSTEM IN TRO DUCTIO N

MS-DOS is a Disk Operating System developed by Microsoft
Corporation for 16-bit processors. This software uses a different
file structure from CP/M-86, but is fully compatible with IBM file
format and, like CP/M-86, allows access to a number o f 16-bit
application packages.

These operating systems were selected for NCR DECISION
MATE V not only because they provide optimum system per
formance, but also because they provide the largest possible
selection o f both 8- and 16-bit application software.

APPLICATION/LANGUAGE SOFTWARE
Walk into any computer store today and look at the number o f
application packages. These packages, offered from many different
companies, perform specific processing functions to save you the
time and effort o f doing your own programming. In theory, you
simply insert the application disk into your computer, specify a
few parameters describing your hardware, and begin processing. In
fact, not all application software is so easy to use or offers good
system performance. Because an application runs on your com
puter, doesn’t necessarily mean it is the best one.

To help guide you in selecting applications, NCR has tested
numerous packages on NCR DECISION MATE V and those
applications that have proved so successful are recommended and
distributed through NCR.

Besides the application packages, language packes are available
should you want to write your own programs.

SOFTWARE PUBLICATIONS

The following publications provide detailed information on the
software used with the NCR DECISION MATE V:

• Operating systems — CP/M-80, CP/M-86, MS-DOS
• Languages - MS-BASIC-80, MS-BASIC-86, GW-BASIC
• Applications — DR-GRAPH-80, DR-GRAPH-86

2-5

USER IN FO R M A TIO N HARDW ARE OPERATION

HARDWARE OPERATION

INTRODUCTION

Having installed NCR DECISION MATE V, you are now ready to
learn how to operate the computer. This section describes the
following components:

• Flexible disks and flexible disk drives
• Fixed Winchester disk drive
• Control panel
• CRT (cathode ray tube) screen
• Keyboard.

Read this entire section, which gives an overview o f operating
the computer. Then, follow the procedure for startup, and practice
using the computer as described at the end o f this section.

FLEXIBLE DISKS

NCR DECISION MATE V uses 5 1/4-inch double-sided flexible
disks for the storage o f software and data files. Examine the disk
supplied with your computer. Carefully remove the disk from its
protective envelope and, referring to Figure 3.1, identify the
following items:

• Disk label
• Recording slot in disk jacket
• Index hole
• Write protect cutout
• Jacket
• Envelope

FLEXIBLE DISK HANDLING
At all times, except when the flexible disk is installed in the
computer, it must be in its envelope. Keep these envelopes in the
container box.

3-1

Disks containing important data such as, operating system and
application software should be protected by fitting a ‘write
protect tab’ . This ensures that the important data is not over
written and destroyed. Operating system software supplied by
NCR is permanently protected.

WRITE PROTECT CUTOUT

Flexible disks must be permitted to reach the same tempera
ture and humidity as that o f the computer before they are used.
I f flexible disks are not kept in the same area as the computer,
move them near the computer at least one hour before they are
used.

FLEXIBLE DISK DRIVES
The NCR DECISION MATE V contains two similar 5 1/4-inch
flexible disk drives. The leftmost drive is known as drive “ A ” ,
the rightmost drive is known as drive “ B” . Each drive has a slot
where the flexible disk is inserted, a locking device, and a red
LED indicator, see Figure 3.2.

F ig u re 3 .2 F le x ib le d is k d rives

3-2

USER IN FO R M A TIO N HAR DW ARE OPERATION

The locking lever is turned counterclockwise to allow a flexi
ble disk to be loaded into the drive, and clockwise to lock the
flexible disk in the drive.

The red LED indicator will turn on whenever a drive is busy
(data is either being read from or written to the flexible disk).
Only one disk drive is busy at a time.

LOADING A DISK
To load a flexible disk into a drive unit proceed as follows:

• Open the disk drive by turning the locking lever counter
clockwise to the vertical position as in Figure 3.2

• Select the correct flexible disk and remove it from the enve
lope

• Insert the flexible disk into the disk drive as shown in Figure
3.3. The recording slot must enter the disk drive first with the
label side o f the jacket facing the CRT screen.

• Turn the locking lever clockwise

Figure 3.3 Loading a flexible disk

The flexible disk is now loaded and ready for use. A t this time
the red LED indicator is o ff: only when the drive mechanism is
reading data from or writing data to the disk, is the LED turned
on.

3-3

To remove a disk, use the following procedure:

• Wait until all processing has finished
• Turn the lock lever counterclockwise
• Remove the disk from the drive and return it to the envelope

CAUTION

Never attempt to remove a flexible disk until all processing
is completed and a prompt message such as A > is displayed
on the CRT screen.

FIXED WINCHESTER DISK

Generally, systems with a fixed Winchester disk, Figure 3.4, func
tion similarly to systems with two flexible disks. The Winchester
disk is a mass storage device with a capacity o f ten megabytes.
It has no operator controls and requires no hardware considera
tions by the operator. A small red light emitting diode illuminates
when the drive is selected at switch on and remains on until the
drive is deselected at switch off. The one flexible disk drive is
located in the rightmost position o f the cabinet and is designated
drive “ A .” The fixed Winchester drive contains two disks which
are designated “ B” and “ C.”

FIXED
WINCHESTER DISK
i DRIVE B /C)

3-4

USER IN FO R M A TIO N HARDW ARE OPERA TION

CONTROL PANEL

The control panel, shown in Figure 3.5, is below the disk drives
and contains a power LED indicator and switches for the power
and the CRT screen adjustment.

Figure 3.5 Control panel

POWER SWITCH
To start using the computer, set the power switch to 1 (on), this
provides power to the computer and turns the green power LED
on. Leave the switch in this position until all processing is com
plete; then set the switch to the o ff position (0).

BRIGHTNESS AND CONTRAST CONTROLS
These two control knobs allow you to adjust the brigthness and
contrast o f the CRT screen to give the most comfortable display.

VOLUME CONTROL
The colume o f the speaker can be adjusted by turning the control
that is located at the rear o f the processor, as shown in Figure 3.6,
for monochrome systems. For color systems the volume is ad
justed by a control on the front panel, see Figure 3.5.

3-5

CRT SCREEN

The CRT (cathode ray tube) screen displays keyboard input, pro
gram instructions, system messages, and other information to the
operator. It can display a total o f 25 lines with up to 80 characters
per line. In the graphics mode, the screen has 640 horizontal and
400 vertical points, allowing for the display o f both complex
figures and a mixture o f figures and characters.

The combination of green characters on a dark background
and a nonreflective screen provide a clear and restful display. The
brigthness and contrast controls on the control panel allow you to
adjust the display for individual viewing preference and ambient
light.

Systems with a color CRT can display the following colors:
black, white, red, green, blue, yellow, magenta, and cyan. The
color selection is controlled by the software. Systems with color
CRT do not have a contrast control.

KEYBOARD

The keyboard is used to enter instructions and data into the
NCR DECISION MATE V. A key roll-over feature enables fast
operation: one key can be pressed while another is being released.
Also, an 8-character buffer stores entries, allowing them to be
made and held until the program is ready for the information.
A repeat feature allows for the continuous entry o f any character
for as long as the key is held down.

I f your entry is accepted you hear a “ short” tone; if not,
you hear a longer one. Simply re-enter the data if not accepted
the first time.

The keyboard is divided into two areas: an alphanumeric
section with a layout similar to that o f a typewriter, and a numeric
section. Each section contains a number of special keys. Those
keys that are used in a standard manner with all applications are
described in the following paragraphs. The other special keys that
are program/application dependent are described in detail in the
specific software.

ALPHANUMERIC KEYBOARD
The alphanumeric section of the keyboard has a standard type
writer keyboard arrangement and a number o f special keys to
control the computer. The figures used in this description are for
the US English keyboard arrangement. The position and function

3-6

USER IN FORMA TION HAR DW ARE OPERATION

o f the special keys remains the same regardless for which language
the keyboard is prepared. Minor changes are made to the alpha
numeric keys to ensure the layout is similar to the standard layout
for the country in which the computer is being used.

Alphabetic Keys
Whenever the alpha keys shown in Figure 3.7 are pressed, the
characters shown on the key tips are entered into the computer
and displayed on the CRT screen as small (lowercase) letters.
I f alpha keys are pressed with the Capital Mode key in the down
position, the entered and displayed characters are capital (upper
case) letters.

F 1 F2 F 3 FA F S F6 F 7 F8 F9 F10 F11 F12 F13 F1A F15

ESC 1
9
2

*
3

4
u

%
S 6

&

7
#
8

1
9

1
0

— * —< TAB

CONTROL V 3 I CONTROL

0 X c V B N J < > 9
/ ft

Figure 3.7 Alpha keys

Capital Mode Key
When pressed, this key latches down and changes the alpha charac
ters (Figure 3.7) from lowercase to uppercase. To release this key,
press the key a second time, see Figure 3.8.

F I '2 F3 FA FS F6 F 7 F t

ESC 1
9
2

*
3

4
u

%
5 6

ä
7

CONTROL Q w E R T y

i®.J* s D F G H

0
I
\

Z X C V B N

F ig u re 3 .8 C a p ita l m o d e k e y

3-7

Numeric Keys
Whenever the numeric keys or any other keys shown in Figure
3.9 are pressed, then the characters shown on the lower part of
the key tips are entered and displayed. I f these keys are pressed
together with a shift key, then the characters shown on the upper
part o f the key tips are entered and displayed.

F 1 F 2 F 3 F U F 5 F 6 F 7 F 8 F 9 ; 1 0 F11 F 1 2 F 1 3 F U F 1 5

ESC
4 i

4

u/ 4
7

#• I)
—

♦ k-»-H TAB

CONTROL Q w E R T Y u I 0 p
{

[
0NTR0

0 A s D F G H J L , J
Ü r F X c V B N M E 9 F

Figure 3.9 Numeric and symbol keys

Shift Keys
For convenience two identical Shift keys (Figure 3.10) are on the
keyboard. When either key is pressed with a numeric key, the
character shown on the upper part of the key tip (see Figure 3.9)
is entered and displayed. Similarly, the form o f the alpha charac
ters (Figure 3.7) is changed, from lowercase to uppercase (or
from uppercase to lowercase if the Capital Mode key is down at
the same time). These two keys do not latch down; when you
take your finger o ff the key, they will restore.

F 1 F 2 F 3 F U F 5 F 6 F 7 F 8 F 9 F 10 F11 F 1 2 F 1 3 F U F 1 S

E S C
1
1

<a

2

+
3

i

u

%

5 6

&
7

*

8

1
9

)

0
— ♦

— T A B

CONTROL 0 W E R T y u I 0 P CONTROL

A s D F G H j K i
; ■ '

Ff z X c V B N M < >

Figure 3.10 Shift keys

3-8

USER IN FO R M A TIO N HA RDWA RE OPERA TION

Backspace Key
Pressing the Backspace key (Figure 3.11) moves the cursor on the
CRT screen one position to the left, and normally clears the last
character entered.

F 7 F 8 F9 F10 F11 F12 F13 FU F15

- & * I) T T l TAB
6 7 8 9 0 — • - J

CONTROL

„ _
H j K L ; • '

ft

Figure 3.11 Backspace key

Control Keys (CONTROL)
These two keys (Figure 3.12) change the function of some o f the
alpha keys. This is done to control the operation o f the computer.
These special functions are software dependent and are described
in the software documentation. To use a special function, press
a Control key down and hold it down while pressing the desired
alpha key. When the control key is released, it restores auto
matically.

F1 F2 F 3 F L F5 F6 F 7 F 8 F9 F10 F11 F12 F13 FU F1S

ESC 1
9
2

*
3

1
L

%
5 6

&
7

*
8

1
9

I
0

— ♦ TAB

jcONTRol| 0 W E R T Y u 1 0 P jCONTROL|

A s D F G H j K L .

0
I
\ Z X c V 8 N M < >

Figure 3.12 Control keys

3-9

Return Key ^
The most used o f the special keys, the Return key (Figure 3.13)
appears on both the alphanumeric and the numeric sections o f the
keyboard. This key indicates to the computer that the entry is
complete.

NOTE: In other publications you may see this key called “ Carriage
Return” , “ Field Terminate” or “ Enter” key.

F 7 FB F9 F10 F11 F12 F13 FU F15

6
&
7 CD

* (

9
)
0

— ♦
- TAB

T Y u I 0 p (
I]

G H J K L ;

CONTROL

ft

Figure 3.13 Returnkey

Programmable Keys
The remaining keys (Figure 3.14) in the alphanumeric section of
the keyboard, ESC, TAB, and F I through F15 are dependent on
the program. The design o f the keyboard allows for a descriptive
mask above the function keys F I through F15. This mask can
contain short a description o f the function o f each key. The use of
these keys is application dependent and is described in the applica
tion documentation.

F 1

ESC

F2 F 3

0>
2

F L

*
3

FS

T
L

F 6

5

F 7 F 6

T
7

F9

*
8

F10 F11

T
0

F12 F13 F14

CONTROL 0 W E R T Y U I 0 P 1
[]

A s 0 F G H J K L ; .

F15

TAB

CONTROL

0 ft
J

F ig u re 3 .1 4 P ro g ra m m a b le keys

USER IN FO R M A TIO N HAR DW ARE OPERATION

NUMERIC KEYBOARD
The numeric keyboard has a 10-key numeric keypad allowing the
high-speed entry o f numeric data. In addition to the 10 numeric
keys, this keyboard section includes the following keys:

• Five programmable keys (F16 through F20)
• Five cursor positioning keys
• Arithmetic keys for add, subtract, multiply, divide, and clear
• A double zero key 00
• A decimal point key.
• A return key

Programmable Function Keys
These five (F16-F20) keys (Figure 3.15) operate exactly the same
as the keys F1-F15 on the alphanumeric section o f the keyboard.
Similarly, provision is made for a descriptive mask to be placed
above these keys.

F16 F17 F18 F19 F20

\ — i I —

CLR 7 8 9 /

- u 5 6 *

+ 1 2 3

J
0 0 0

Figure 3.15 Programmable keys

Cursor Positioning Keys
Pressing any o f these keys (Figure 3.16) moves the cursor on the
CRT screen in the direction o f the arrow on the respective key
tips. A more detailed description is found in the application do
cumentation.

3-11

F16 F17 F18 F 19 F20

\ — i t —

CLR 7 8 9 /

- U 5 6 *

+ 1 2 3

J
0 00

Figure 3.16 Cursor positioning keys

Arithmetic Keys
These keys (Figure 3.17) are used to perform the basic arithmetic
functions o f add, subtract, multiply, divide and clear, similar to
those on your pocket calculator

F16 F17 F18 F19 F20

\ — 1 t -

CLR 7 8 9 /

- 4 5 6 *

J
+ 1 2 3

0 00 •

Figure 3.17 Arithmetic keys

Double Zero Key
Pressing this key (Figure 3.18) inputs two zeros to the computer,
allowing for the quick entry o f multiple zeros.

F16 F17 F18 F19 F20

\ — 1 t —

CLR 7 8 9 /

- 4 5 6 *

+ 1 2 3

J
0 00 |

'

F ig u re 3 .1 8 D o u b le z e ro k e y

3-12

USER IN FO R M A TIO N HA ROW A RE OPERA TION

NOTE: Pressing the Zero and the Double Zero keys at the same
time inputs three zeros.

Decimal Point Key
Use this key (Figure 3.19) to enter the position o f the decimal
point in a string o f numbers. Should you require the computer to
display (and print) a comma (,) instead o f a decimal point (.)
simply press a CONTROL key together with a decimal point key.
The computer now displays (and prints) a comma whenever the
decimal point key is used. Press the CONTROL key together with
the decimal point key again and the display (and print) reverts to
a decimal point. After a power down the display (and print)
reverts to a decimal point.

F16 F17 F18 F 19 F20

\ — 1 t —

CLR 7 8 9 /

- 4 5 6 #

+ 1 2 3

J
0 00 •

Figure 3.19 Decimal point key

Return Key <-*
Like the Return key on the alphanumeric section, this key (Figure
3.20) is pressed to indicate to the computer that the current entry
is complete.

F16 F17 F18 F19 F20

\ — 1 t —

CLR 7 8 9 /

- 4 5 6 *

+ 1 2 3
I

0 00 •
J

F ig u re 3 .2 0 R e tu rn k e y

3-13

STARTUP PROCEDURE

You have now learned enough to switch on the system, insert a
flexible disk, and respond through the keyboard to messages
displayed on the CRT screen. To summarize ...

Push the on/off switch to the on (1) position and wait a few
moments, the following message appears on the CRT:

DISK A: NOT READY < C R >

Select the correct operating system flexible disk
Insert the disk into drive “ A ” with the recording slot end first
and the label side facing the CRT screen; then close the disk
lock lever
Press the Return key (J)
When the software heading appears in the top left hand area of
the CRT screen, the computer is ready for use

NOTE: On systems with two flexible disk drives, the leftmost
drive is designated drive “ A .” On systems with a fixed Win
chester disk, the flexible disk drive which is located in the
rightmost position is designated drive “ A .”

It is recommended to remove the flexible disks only when
a system prompt message is displayed and before switching the
computer off.

SOME PRACTICE EXERCISES

To become familiar with the keyboard, type any string o f charac
ters — your name, address, or whatever information you want.

A >enter any information and as much as you want

When finished, complete the entry by pressing the Return (J)
key. During this practice, you can’t harm the hardware or the soft
ware — the computer simply won’t know “ what you ’re talking
about” and will tell you so by displaying your first word and a
question mark.

3-14

USER IN FORMA TION HAR DW ARE OPERATION

ENTER ?
A >

Now, enter more data, practicing using the keys described in
this section. Shift to uppercase (capital) letters:

A > ENTER DATA IN CAPITAL LETTERS
ENTER?
A > and then shift back to small ones
AND?
A >

Practice the effect o f using the Capital Mode key, the Shift
key, and the Capital Mode and Shift keys simultaneously, together
with all other keys on the keyboard.

I f you make mistakes, correct them with the Backspace key,
which erases a single character or all the characters on the line.
Soon you will be comfortable with the keyboard and ready for
actual (“ live”) work. However, before proceeding take time to
study the manual that comes with your operating system software.
Learn how to format disks, how to make back-up copies of impor
tant disks, and how to prepare the system for your applications.
Learn how to make the computer work for you.

3-15

USER IN FO R M A TIO N W HAT IF?

WHAT IF?

PROBLEM ISOLATION

In this section guidelines are given on how to recover when prob
lems arise. Never assume that anything has been done, or that
anything is correct. A few minutes spent checking and rechecking
often saves time that would be wasted while you wait for assis
tance.

I f you have to contact your service engineer, ensure that
you can accurately describe the problem. This assists the engineer
in deciding what spare parts and service equipment he may re
quire. Keep a written record o f any problem or error messages,
ensure that the record includes the following:

• Date and time o f problem.
• The application/software disk being used.
• Exact message that was displayed on the CRT screen.
• Which level zero diagnostic LED indicator was on.
• I f the diagnostic module was used, a record o f the displays

from this module.

SERVICING ARRANGEMENTS

Should you need the help o f a skilled engineer, NCR has a large
and highly trained team o f field engineers operating from approxi
mately 1200 offices throughout the world. You can select one o f
several servicing arrangements with NCR: your nearest NCR offioe
is able to provide more detailed information.

• Full NCR service contract — For an annual fee, NCR trained
engineers are available, whenever required, during normal
business hours. The fee usually covers travelling time, repair
time, and the cost o f replacement parts. This plan offers
the advantage o f total servicing with a convenient, once-
yearly fee.

• Time-and-material service — With this arrangement, you pay
for the NCR field engineer’s time and the cost o f any re-

4-1

placement parts, each time he comes to your site.
• NCR depot service — Under this plan you bring your com

puter to your local NCR service office. When repairs are
complete, NCR either returns the unit to you or advises you
that it is ready for collection. You are charged on a time-and-
material basis.

Other choices of servicing arrangements may be available:

• I f you purchased your NCR DECISION MATE V from a sup
plier other than NCR, the supplier may have establidied his
own servicing arrangements.

• Suitable staff within your own organization may, with training
and the assistance o f the service manual, be able to repair your
NCR DECISION MATE V.

CAUTION

It is recommended that only trained persons with ex
perience on servicing electronic equipment and handling
printed circuit boards and integrated circuits should at
tempt to service the computer. Should you plan to train an
engineer from your organization, contact the local NCR
office for information on training courses.

RADIO FREQUENCY INTERFERENCE

This equipment generates and uses radio frequency energy and
if not installed and used properly, that is, in strict accordance
with the manufacturer’s instructions, may cause interference
to radio and television reception. It has been type tested and
found to comply with the limits for a Class B computing de
vice in accordance with the specifications in Subpart J of Part
15 o f FCC Rules, which are designed to provide reasonable
protection against such interference in a residential installation.
However, there is no guarantee that interference will not
occur in a particular installation. I f this equipment does cause
interference to radio or television reception, which can be de
termined by turning the equipment o ff and on, the user is
encouraged to try to correct the interference by one or more
o f the following measures:

4-2

USER IN FORM A TION W HAT IF ?

• Reorient the receiving antenna
• Relocate the computer with respect to the receiver
• Move the computer away from the receiver
• Plug the computer into a different outlet so that com

puter and receiver are on different branch circuits

I f necessary, the user should consult the dealer or an experi
enced radio/television technician for additional suggestions. The
user may find the following booklet prepared by the Federal
Communications Commission helpful:

“ How to Identify and Resolve Radio-TV Interference Prob
lems.”

This booklet is available from the U.S. Government Printing
Office, Washington, DC 20402. Stock No. 004-000-00345-4.

U.S. CUSTOMER SUPPORT

For users in the U.S., support for both hardware and software
problems is available on the following toll-free telephone num
bers:

• 1 800 543 9935 (outside Ohio)
• 1 800 762 9275 (inside Ohio)

4-3

4
-4

Problem Reason Remedy

Power LED not on On/Off switch in off position Press switch to on position
Power cable not connected to processor Connect cable to processor
Power cable not connected to wall outlet Connect cable to wall outlet
No power at wall outlet Inform site electrician
Faulty power cable Replace cable
Internal processor problem Inform service engineer (1)

Software heading message
does not appear on startup

Contrast/Brightness controls not correctly
adjusted

Adjust Contrast/Brightness controls

Operating system disk not loaded the correct
way

Reload disk into drive A correctly
(refer Hardware Operation)

Wrong type of disk Select correct disk and load into drive A
Disk loaded into drive (dual flox disk system) Remove disk and load into drive A
Operating System disk damage Use backup copy of Operating System disk
Internal problem in processor Inform service engineer (1)

Unable to enter data through
the keyboard correctly

Capital Mode Key not positioned correctly Set Capital Mode key correctly

Keyboard buffer full Wait until current processing operation is completed
Keyboard cable disconnected from the processor Reconnect cable
Internal keyboard or processor problem Inform service engineer (1)

4-5

Problem Reason Remedy

Unable to write to flexible disk Disk not in the specified disk drive Install correct disk in specified drive
Flexible disk incorrectly loaded Reload disk correctly (refer to Hardware Operation)
Write protect tab fitted to flexible disk Check why write protect tab is fitted. Only remove

when you are certain it was wrongly fitted, or select
correct flexible disk

Damaged flexible disk Use backup copy of disk
Disk not formatted Carry out format routine
Internal processor or flexible disk drive problem Inform service engineer (1)

Unable to read from flexible
disk

Disk not installed in specified drive Install disk into correct drive

Disk not installed correctly Install disk correctly (refer to Hardware Operation)
Damaged flexible disk Use backup copy of disk
Internal processor or flexible disk drive problem Inform service engineer (1)

Undefined problem — unable Problem with operating system, and/or application Reload operating system and application program
to continue any processing program

Switch off computer, use backup copies of oper
ating system and program and reload

Temporary problem with electrical supply Inform site electrician
Internal processor problem Inform service engineer (1)

(1) Before contacting your service engineer, check that you can give him full details of the problem, including any messages that are display-
ed and any diagnostic LEDs that are on. If you have a diagnostic module, refer to the Service Manual and perform the appropriate dia
gnostic routines. Again provide the engineer with the information from the diagnostics.

U
S

E
R

 IN
F

O
R

M
A

 T
IO

N

W
H

A
 T

 IF
?

USER IN FO R M A TIO N HELPFUL H INTS

HELPFUL HINTS

This section suggests some o f the things that may help in the day-
to-day operation o f your computer. Hints are given on the working
environment, on operator discipline when using the computer, and
on what to do when finishing work. Problems are often caused
by mishandling flexible disks, therefore, a separate section is de
voted to the care o f flexible disks. Should you decide to move
your computer, hints on moving NCR DECISION MATE V are
provided at the end o f this section.

POSITIONING THE COMPUTER

When choosing a position for your NCR DECISION MATE V,
consider the following points:

• Choose a position away from heavy office traffic and dust.
• Site the computer where there are no extremes in temperature

and humidity: try not to position it in direct sunlight or too
close to a heating system.

• Discourage smoking or drinking beverages near the computer.
• Be sure there are sufficient electrical outlets for the computer

and any peripheral units.
• Be sure there is sufficient storage space for flexible disks,

working media, and finished work.
• Arrange power cables and any interconnecting cables so that

people are not likely to trip over them.
• Operating the computer near devices that produce strong mag

netic fields may cause some instability o f the CRT screen
display: should this be a problem then it is suggested that you
reposition your computer away from the source of the mag
netic fields.

5-1

WORKING WITH NCR DECISION MATE V

The following hints may help in the day-to-day operation o f your
computer:

• Work in a logical and orderly manner. Be sure that you have
plenty o f space for the working media, and that work done is
kept separate from work to be done.

• Never switch o ff the computer before a system prompt mes
sage is displayed on the CRT screen, otherwise data may be lost.

• Do not leave flexible disks lying about, as soon as you have
finished with a disk return it to its storage place.

• Make backup copies o f your disks at regular intervals. The
backup copies should be stored in a separate location, to
reduce the chances o f losing your media.

• Before leaving the office, remove the power cable from the
wall outlet, and cover the computer with a dust cover.

CARE OF FLEXIBLE DISKS

I f the flexible disk is handled correctly, it can be used for a long
period o f time. In particular, pay attention to the following
points:

• Use a felt tip pen to write on the flexible disk label. Deposits
from lead pencils, erasers, grease pencils, or ball point pens can
damage the recording surface. Write on the label before
putting it on the flexible disk, or, if the label is already on the
disk, write on the label only when the flexible disk is in the
envelope.

• Do not put the flexible disk in direct sunlight.
• Do not put a label on the seamed side o f the jacket.
• Do not put paper clips or rubber bands on the jacket.
• Do not touch the recording surface.
• Do not, by any method, clean the flexible disk. The inner sur

face o f the jacket cleans the flexible disk during processing.
• To prevent the possibility o f touching the recording surface

hold the disk only at the comer o f the jacket.
• Return the disk to its envelope as soon as you remove it from

the disk drive.
• Do not place flexible disks on or near any magnetic object.

5-2

USER IN FO R M A TIO N HELPFUL HINTS

MOVING THE COMPUTER

PREPARATION
To move NCR DECISION MATE V either a short or a longer
distance, first prepare the unit as follows:

• Set the on/off switch to the o ff position.
• Disconnect all cables and protect the cable connectors with

suitable wrapping material.
• Coil the cables and secure with masking tape.
• Insert a protective card into each o f the flexible disk drives.
• Carefully pack each piece o f the system.

I f the original packing material is no longer available, use
strong boxes that are large enough to allow for plenty o f cushion
ing material such as foam pads.

RE-INSTALLATION
To re-install your NCR DECISION MATE V, follow the setup pro
cedure in Installation.

CLEANING PROCEDURE

No special cleaning procedure is necessary for the NCR DECISION
MATE V however, regular dusting with a soft lint-free cloth will
prevent the build up o f dirt. Pay particular attention to the CRT
screen. Any persistent marks may be removed with a soft cloth
dampened with a mild soap solution.

Aerosol sprays and cleaning solvents should not be used. Be
sure to switch the power o ff before starting to clean the computer.

5-3

Dear NCR MS-DOS User:

This binder contains the MS-DOS master diskette and documen
tation on how to use the software: the User’s Guide provides
simple descriptions o f the features and functions o f MS-DOS,
while the Programmer’s Manual provides technical information.

For your processing enjoyment, we have also included another
diskette in the binder. This diskette contains application and
demonstration software that is both informative and entertaining.
You can, for example, create line, bar, and pie charts; you can
play music or a game o f chase.

Brief explanations for this easy-to-use software are in a special
supplement following the User's Guide.

We hope you enjoy this processing “ extra” and especially wish
you success in using MS-DOS on your NCR DECISION MATE V.

Best regards,
NCR Corporation

0
CUSTOMER PROGRAM LICENSE AGREEMENT

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS
BEFORE OPENING THIS DISKETTE(S) PACKAGE. OPENING THIS DISKETTE(S)
PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF
YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACK
AGE UNOPENED; AND YOUR MONEY WILL BE REFUNDED.

NCR provides this Program(s) and licenses its use under these terms and conditions and
under Copyright Law: You assume responsibility for the selection of the Program(s) to
achieve your intended results, and for the installation, use and results obtained from the
Program(s). This program is confidential, proprietary to and a trade secret of the owner,
and should be safeguarded by you as such.

LICENSE

You may:

a. use the Program(s) only on a single machine at a single location;

b. copy the program into any machine readable or printed form for backup or modification
purposes only, to support your use of the Program(s) on the single machine (Certain
programs, however, may include mechanisms to lim it or inhibit copying. They are
marked "copy protected.'’):

c. modify the Program(s) and/or merge it into another program for your use on the single
machine (Any portion of this Program(s) merged into another program will continue to
be subject to the terms and conditions of this Agreement.); and

d. transfer the Program(s) and license to another party only if the other party agrees to
accept the terms and conditions of this Agreement. You must advise NCR of the name
and address of the other party and the other party must sign a copy of the NCR
Customer Program License Agreement and have the same received by NCR. If you
transfer the Program(s), you must at the same time either transfer all copies whether in
printed or machine readable form to the same party or destroy any copies not trans
ferred; this includes all m odifications and portions of the Program(s) contained or
merged into other programs.

You must reproduce and include any copyright notice and serial number on any copy,
modification or portion merged into another program.

TERM

The license is effective until terminated. You may terminate it at anytim e by destroying the
program together with all copies, m odifications and merged portions in any form. It will
also terminate upon conditions set forth elsewhere in this Agreement or if you fail to
com ply with any term or condition of this Agreement. You agree upon such termination to
destroy the Program(s) together with all copies, m odifications and merged portions in any
form.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PROGRAM(S), OR ANY
COPY, MODIFICATION OR MERGED PORTION, IN WHOLE OR IN PART, EXCEPT AS
EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION OR MERGED POR
TION OF THE PROGRAM TO ANOTHER PARTY, YOUR LICENSE IS AUTOMATICALLY
TERMINATED.

EXCLUSION OF WARRANTY

THE PROGRAM(S) IS PROVIDED “AS IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM(S) PROVE DEFECTIVE, YOU (AND NOT NCR OR
ITS DEALER OR DISTRIBUTOR) ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION. NCR does not warrant that the functions con
tained in the Program(s) will meet your requirements or that the operation of the program
will be uninterrupted or error free.

LIMITED WARRANTY

NCR warrants the diskette(s) on which the program is furnished to be free from defects in
materials and workmanship under normal use fo r a period of ninety (90) days from the date
of delivery to you as evidenced by a copy of your receipt.

NCR’s entire liability and your exclusive remedy shall be:

1. the replacement of any diskette(s) not meeting NCR’s “ Limited Warranty” and which is
returned to NCR or an authorized NCR dealer or distributor, with a copy of your receipt,
or

2. if NCR or its authorized dealer or distributor is unable to deliver a replacement
diskette(s) and repair is not practicable or cannot be timely made, you may terminate
this Agreement by returning the program and your money will be refunded.

IN NO EVENT WILL NCR BE LIABLE TO YOU FOR ANY DAMAGES. INCLUDING ANY
LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE DISKETTE(S) EVEN
IF NCR OR AN AUTHORIZED NCR DEALER OR DISTRIBUTOR HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

Some states do not allow lim itations on how long an implied warranty lasts, so the above
exclusion may not apply to you.

Some states do not allow the lim itation or exclusion of liability for incidental or consequen
tial damages so the above lim itation or exclusion may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary
from state to state.

N C R

NCR DECISION MATE V

MS™- DOS
User’s Guide

MS and M ULTIPLAN are trademarks of Microsoft Corporation.
CP/M is a registered trademark o f Digital Research.

Copyright ©1983 by NCR Corporation
Dayton, Ohio

All Rights Reserved
Printed in the Federal Republic of Germany

Second Edition, October 1983
It is the policy o f NCR Corporation to improve products as new
technology, components, software, and firmware become available.
NCR Corporation, therefore, reserves the right to change speci
fications without prior notice.

A ll features, functions, and operations described herein may not
De marketed by NCR in all parts o f the world. In some instances,
photographs are o f equipment prototypes. Therefore, before using
this document, consult your nearest dealer or NCR office for
information that is applicable and current.

MS-DOS USER'S GUIDE

CONTENTS

1. INTRODUCTION

WHAT IS AN OPERATING S Y S T E M ?1-1
HOW TO USE THIS M ANUAL ... 1-1
Syntax Notation.. 1-2
Flexible/Fixed Disk Systems Considerations 1-3

2. GETTING STARTED

SYSTEM SETUP .. 2-1
Loading MS-DOS .. 2-1
Copying your Master Software D isk2-2

2 Flexible Disk Drives (chart)... 2-3
1 Flexible Disk Drive (chart) ... 2-5

Learning about your Drive Designations.............................2-7
Defining your Fixed D isks ... 2-7

Sequence Summary ..2-8
Formatting D isks .. 2-12
Defining a Serial P rin ter... 2-12

FREQUENTLY PERFORMED O P E R A T IO N S2-12
Entering the Date and T im e ... 2-12
Changing the Default Drive ... 2-14
Backing-Up your D isks..2-14
Using the Programmable Function K eys 2-15
Running Programs Automatically.....................................2-15
Turning the System O f f ..2-15

FILES ... 2-15
How MS-DOS Keeps Track o f Files2-16
The DIR (Show Directory) Com m and............................ 2-16
Checking your Disks..2-17

CHAPTER REVIEW ..2-18

/

3. MORE ABOUT FILES

NAM ING YOUR F IL E S ..3-1
Wild Cards ...3-2

The ? Wild C a rd .. 3-2
The * Wild C a rd .. 3-3

Exam ples...3-3
Illegal Filenames.. 3-4

COPYING YOUR F IL E S ..3-4

PROTECTING YOUR FILES ... 3-6

DIRECTORIES .. 3-6
Filenames and Paths.. 3-8
Pathnames ...3-9
Pathing and External Commands...................................3-10
Pathing and Internal Commands..................................... 3-11

Displaying your Working Directory3-11
Creating a D irectory.. 3-12
Changing your Working Directory3-13
Removing a Directory ..3-13

4. LEARNING ABOUT COMMANDS

GENERAL IN F O R M A T IO N ... 4-1
Types o f MS-DOS Commands ... 4-1

Internal Commands .. 4-1
External Commands.. 4-1

Command O ptions.. 4-2
Common Entry Conventions ... 4-3

BATCH PROCESSING..4-4
The AUTOEXEC.BAT File ..4-6
Creating an AUTOEXEC.BAT F i le4-7
Creating a .BAT File with Replaceable Parameters............4-9
Executing a .BAT File .. 4-10

INPUT AND O U T P U T ..4-11
Redirecting your Output ..4-11
Filters... 4-12
Command Piping .. 4-12

//

5. MS-DOS COMMANDS

COMMAND SUMMARY ..5-2
BACKUP ...5-4
BREAK ...5-5
C H D IR ...5-6
C H K D S K ...5-7
C IP H E R ...5-10
CLS (Clear) .. 5-12
C O N F IG ...5-13
C O P Y ...5-17
CTTY 5-20
D A T E ...5-21
D E L ...5-23
DIR ...5-24
DISKCOPY .. 5-25
E C H O ...5-27
EXIT ...5-28
F IN D ...5-29
F O R ...5-31
F O R M A T ...5-33
GOTO 5-35
I F ... 5-36
LOCATE ...5-38
MKDIR ...5-41
MORE ...5-42
P A T H ... 5-43
P A U S E ...5-44
P R IN T ...5-45
PROMPT ...5-48
RDCPM ...5-50
R E C O V E R .. 5-52
REM (Rem ark).. 5-53
REN (Renam e).. 5-54
RMDIR (Remove Directory) ... 5-56
SET ...5-57
SHIFT ...5-58
S O R T ...5-59
SYS (System).. 5-61
TIME ...5-63
T Y P E ...5-65
VER (V ers ion).. 5-66
V E R IF Y .. 5-67
VOL (V o lu m e).. 5-68

6. MS-DOS EDITING AND FUNCTION KEYS

SPECIAL EDITING K E Y S ... 6-1
CONTROL CHARACTER FU N C T IO N S 6-5

7. LINE EDITOR (EDLIN)

GENERAL IN F O R M A T IO N ... 7-1
How to Start EDLIN ..7-1
Special Editing K eys ..7-3
C O P Y 1 ...7-4
COPYUP ...7-5
CO PYALL .-... 7-6
S K IP 1 ...7-7
SKIPUP ...7-8
V O ID ...7-9
IN S E R T .. 7-10
EXIT ...7-12
NEWLINE .. 7-13

EDLIN CO M M AND S..7-14
Format Conventions..7-14
Command O ptions..7-16

(A)P P E N D .. 7-18
(C) OPY ... 7-19
(D) ELETE ... 7-21
EDIT ...7-23
(E) ND ... 7-25
(I)N S E R T ...7-26
(L) IST ... 7-29
(M) O V E ..7-32
(P) AGE ... 7-33
(Q) U I T ... 7-34
(R) E P L A C E ... 7-35
(S) E A R C H .. 7-38
(T) RANSFER ... 7-41
(W)RITE ...7-42

ERROR M ESSAG ES..7-43

IV

8. FILE COMPARE (FC) U TIL ITY

GENERAL IN F O R M A T IO N ... 8-1
Limitations on Source Comparisons...................................8-1
File Specifications .. 8-1

HOW TO USE FILE COMPARE 8-2
FC Sw itches...8-2
Difference R eportin g ..8-4
Redirecting FC Output to a F ile ... 8-5
Examples ...8-5

ERROR M ESSAG ES..8-9

9. LINKER PROGRAM (MS-LINK)

GENERAL INFORM ATION ... 9-1
Program Overview .. 9-1
Definitions You ’ll Need To Know 9-3
Files That MS-LINK U ses..9-5
Input File Extensions..9-5
Output File Extensions ..9-6
VM.TMP (Temporary) F ile ..9-6

USING M S -L IN K .. 9-6
Starting MS-LINK .. 9-6

Method 1 : Prompts .. 9-7
Method 2: Command L in e 9-8
Method 3: Response F i l e ..9-8

Command Characters..9-10
Command Prompts.. 9-11
MS-LINK Switches..9-13

SAMPLE MS-LINK SESSION ... 9-15

ERROR M ESSAG ES..9-17

A. DUAL-OPERATING SYSTEMS
C O N SID ER A TIO N S ...A -l

B. DISK E R R O R S ... B-l

C. HOW TO OBTAIN AND INSTALL SOFTWARE

M AKING THE RIGHT PURCHASE C-l
INSTALLING THE SO FTW AR E C-2
Functional Characteristics Information C-3
MS-DOS ANSI Driver T a b le .. C-3
Terminal Function Codes.. . C-4
Miscellaneous In form ation .. C-5
Music C od es ... C-6
Graphic Attributes.. C-8

Translation/Conversion Information C-9
Special Country Keyboard Definitions......................... C-9
ASCII Code Chart .. C-10

D. ADVANCED CONFIGURATION FEATURE

CHANGING THE CONFIG.SYS F IL E D-l

vi

MS-DOS USER'S GUIDE INTRODUCTION

INTRODUCTION

MS™ -DOS is a disk operating system for the 16-bit processor of
NCR DECISION MATE V. Through MS-DOS, you communicate
with the computer, disk drives, and printer (if available), managing
these resources to your advantage.

WHAT IS AN OPERATING SYSTEM?

An operating system is your “ silent partner” when you are using
the computer. It provides the interface between the hardware
and both you and the other software (application packages and
your own programs). An operating system can be compared to
the electricity in a house: You need it for the toaster and the
blender to work, but you are not always aware that it ’s there.

Operating systems provide varying capabilities. With MS-DOS, you
can create and keep track o f files, run and link programs, and
access peripheral devices (for example, printers and disk drives)
that are attached to your computer.

HOW TO USE THIS MANUAL

This manual describes MS-DOS and how to use it. This chapter
introduces some basic MS-DOS concepts; Chapter 2 discusses how
to start using MS-DOS and how to format and back up your
disks.

Chapter 3 tells you about files — what they are and how to use
them. Chapters 4 through 6 introduce MS-DOS commands and
Chapter 7 describes the line editor, EDLIN. Read these chapters
carefully — they contain information on protecting your data,
system commands, and the MS-DOS editing commands.

Chapter 8 explains how to use the MS-DOS File Comparison
utility, FC. This utility is helpful when you need to compare
the contents o f two source or binary files.

1-1

I f you are writing programs and want to link separately-produced
object modules and create relocatable modules, Chapter 9 de
scribes a useful MS-DOS utility, MS-LINK.

Appendices to this manual include instructions if you are using
MS-DOS and other operating systems on NCR DECISION MATE
V, disk error messages, and special guidelines on how to run MS-
DOS-compatible applications on your computer.

I f you want to know more, a companion manual, the
PROGRAMMER’S M ANUAL, contains information on the
technical aspects o f MS-DOS. It also describes MS-DOS system
architecture, additional utilities, and system calls and interrupts.

SYNTAX NOTATION
The following syntax notation is used throughout this manual in
descriptions o f command and statement syntax. Don’t be over
whelmed by this list; after you use the commands a few times, the
notation becomes quickly familiar.

[] square brackets
Indicate that the enclosed entry is optional.

< > angle brackets
Indicate that you supply the text for this entry. When the
angle brackets enclose lowercase text, type in an entry defined
by the text; for example, <filename>.
braces
Indicate that you have a choice between two or more entries.
A t least one o f the entries enclosed in braces must be chosen
unless the entries are also enclosed in square brackets.

. . . ellipses
Indicate that an entry may be repeated as many times as
needed or desired.

I a bar
When used with an MS-DOS filter, the bar indicates a pipe.
(This feature is fully explained in Chapter 4, Learning About
Commands.)

CAPS capital letters
Indicate portions o f statements or commands that must be
entered exactly as shown. Capital letters also indicate specific
keys, such as<CR>.

All other punctuation, such as commas, colons, slash marks, and
equal signs must be entered exactly as shown.

1-2

MS-DOS USER'S GUIDE INTRODUCTION

FLEXIBLE/FIXED DISK SYSTEMS CONSIDERATIONS

To simplify explanations in this manual, examples are shown
based on a multi-drive, flexible disk system. However, if you have
a flexible/fixed disk system, you will use only the flexible disk
drive to format and make copies of flexible disks. In these situa
tions, MS-DOS always “ prompts” you to change disks and waits
for you to insert the new disk. You then continue processing by
pressing any key.

Turn to the next chapter and learn how to start your MS-DOS
system and how to format and back up your disks.

1-3

MS-DOS USER'S GUIDE GETTING STARTED

GETTING STARTED

SYSTEM SETUP

The MS-DOS master disk (or diskette), the one you received with
this book, contains all the operating system software files and all
commands. In this chapter, you learn how to install the software,
switch processing from one disk to another, protect your master
disk, and format other new disks. Finally, you’ll read about files.

Before actually loading your software, you may need to know
a little more about NCR DECISION MATE V and those all-
important disks. Depending on your computer model, you have
either a flexible disk system or a flexible/fixed disk system. The
types o f disks are not important to MS-DOS; the software only
wants to know where to get and put information.

Regardless of which disk system you have, you always start pro
cessing from flexible disk drive A. Let’s do that now by loading
MS-DOS into memory.

LOADING MS-DOS
Turn on your computer, insert the MS-DOS disk in drive A, and
press the J key. (This return key is also referred to as the<CR>
key.) This is always the standard startup procedure. Depending on
the size o f memory, loading MS-DOS can take up to 25 seconds.

Once MS-DOS is loaded, the system searches the MS-DOS disk for
the COMMAND.COM file and loads it into memory. The COM-
MAND.COM file is a program that processes the commands you
enter and then runs the appropriate programs. It is also called the
command processor.

When the command processor is loaded, you see a copyright and
software identification message on your screen. Have you read
the “ sign on” message, too? I f so, you’re right where you should
be in this guide to begin using MS-DOS.

2-1

COPYING YOUR MASTER SOFTWARE DISK
You start using MS-DOS by making a backup copy o f your master
software disk. Actually, the software on your MS-DOS master
disk begins the process automatically. You have only to help by
answering simple questions or following simple directions that
MS-DOS displays.

While the displays are self-explanatory, you may prefer following
along with printed text. A summary o f the copy procedure is
shown in table form with your actions marked with a V'' •

The first question asks how many flexible disk drives you have.
Answer the question and then . . .

• Turn to page 2-3 if you have 2 flexible disk drives
• Turn to page 2-5 if you have 1 flexible disk drive

2 -2

MS-DOS USER'S GUIDE GETTING STARTED

Copying the Master Diskette — Sequence Summary

2 FLEXIBLE DISKDRIVES

Formatting begins . . .

A > FORMAT B:

Insert new diskette for drive B :
and strike any key when ready

Press any key!

xxxxxx bytes total disk space
xxxxxx bytes available on disk

Format another (Y/N) ? N

Don't format any other disks now.
Press N (for no).

Formatting complete

We’re now ready to copy the master
diskette in drive A to the diskette
in drive B. Press any key when
instructed to do so.

A > DISKCOPY A: B:/V

Insert source diskette into drive A:
Insert formatted target diskette into drive B:
Press any key when ready

Your disks are already in place.
Press any key!

Copying . . .

Copying . . . Copying complete

cont.
2-3

Copy another (Y /N)? N

Don't copy any other disks now.
Press N (for no).

Remove the master diskette from
drive A and save for system protection.
Take the diskette from drive B and
place it in drive A.

MS-DOS USER'S GUIDE GETTING STARTED

Copying the Master Diskette — Sequence Summary

1 FLEXIBLE D ISK D R IVE

Formatting begins . . .

A > FORMAT A:

Insert new diskette for drive A :
and strike any key when ready

Remove the master diskette and
insert a new diskette; press any
key when ready.

xxxxxx bytes total disk space
xxxxxx bytes available on disk

Format another (Y/N)? N

Don't format any other disks now.
Press N (for no).

Formatting complete

Remove the formatted diskette from
drive A and again insert the master
diskette into drive A.

During the following copy procedure, change
diskettes as instructed until the ‘copy complete’
message appears.

A > DISKCOPY/V

Insert formatted target diskette into drive A :
Press any key when ready

Change diskettes; press
any key when ready

cont.
2-5

Copy complete

Copy another (Y /N)? N

Don't copy any other disks now.
Press IM (for no).

2-6

MS-DOS USER'S GUIDE GETTING STARTED

LEARNING ABOUT YOUR DRIVE DESIGNATIONS
When you copied your master disk, you were directed to insert
or change a disk. You were instructed to do this by drive desig
nation. For example, “ Insert a disk into drive A .”

The drive designation, which is always an alphabetic character,
tells MS-DOS where to get and put information. No matter what
types o f disk units you have, each drive always has its own desig
nation. Consider the following disk configuration examples:

• You have two flexible disk drives. One drive is designated (and
labelled) A ; the other drive is designated (and labelled) B.

• You have one flexible disk drive and one fixed disk unit. The
flexible disk drive is designated (and labelled) A, but what
about the fixed disk? A fixed disk unit contains two logi
cal disk drives. (You can’t see them, and they aren’t
labelled, but they’re there). In this example configuration,
the logical disk drives o f the fixed disk unit are B and C.

• Now, assume you have two flexible disk drives and three fixed
disk units. What are the drive designations? The flexible disk
drive designations are A and B; the fixed disk unit drive desig
nations are C, D, E, F, G, and H.

Drive designations are assigned by MS-DOS, which assumes you
have 2 flexible disk drives. I f you don’t have this configuration
you must describe your configuration to MS-DOS.

DEFINING YOUR FIXED DISKS
I f you have fixed disks (sometimes called hard disks), you must
continue setup procedures by defining your disk configuration.
(I f you have only a flexible disk system, you can skip this section.)

You define your disk configuration with the CONFIG routine.
With self-explanatory screens, this routine is easy to use: You
simply enter the name o f the routine and follow the displays,
carrying on a conversation with MS-DOS.

To make the procedure even simpler, however, table 1 summarizes
the entire configure procedure. The left column contains the
complete conversation. What you say (enter) is in bold type, what
MS-DOS responds is in normal type, and actions you must per
form are in italics. I f you need some guidance when performing
the sequence, look at the right-hand column for help.

2-7

Display/Enter/Acf/on Comments

A> You're using a flexible/fixed disk system, but MS-DOS still "thinks" you have only
flexible disks. Let's tell the software about your fixed disk with the CONFIG utility.
Enter CONFIG and press J .

A> CONFIG J

CONFIG UTILITY Study this main menu screen for a minute. These functions can all be performed with
CONFIG. (You’ll learn about them in the "MS-DOS Commands" chapter.)

1) Modify Function Keys
2) Select Printer (Serial/Parallel)
3) Modify Retry/Restore Counter
4) Modify Serial Printer Interface
5) Modify Disk Configuration
6) Exit Program

This function is the one you want.

* Enter Function 5 Enter 5.

CONFIG UTILITY Another screen ! You'll be using this one several times. Let's call it the disk configu
ration screen. First, modify the number of flexible disks.

Modify Disk Configuration

1) Modify number of flexible disks
2) Modify number of hard disks
3) Display configuration
4) Return to main menu

This function is the one you want.

* Enter Function 1 Enter 1.

T a b le 1 D e f in in g Y o u r D is k C o n f ig u ra t io n c o n t.

D isplay/E nter/Action Comments

CONFIG UTILITY

Modify Disk Configuration
Modify Number of Flexible Disks Specify the number of flexible disks you have.

1) One Flex Disk
2) Two Flex Disks
3) Return to Main Program

This function is the one you want.

* Enter Function 1 Enter 1.

CONFIG UTILITY

Modify Disk Configuration

Now, modify the number of fixed disks.

1) Modify number of flexible disks
2) Modify number of hard disks
3) Display configuration
4) Return to main menu

This function is the one you want.

* Enter Function 2 Enter 2.

NJ
cb cont.

M
S

-D
O

S
 U

S
E

R
'S

 G
U

ID
E

G

E
T

T
IN

G
 S

T
A

R
T

E
D

2-10

DisplayIfznterlAction Comments

CONFIG UTILITY Here you tell the software about your fixed disk.

Modify Disk Configuration
Modify Number of Hard Disks

1) No hard disk
2) One hard disk
3) Two hard disks
4) Three hard disks
5) Return to Main Program

This function is the one you want, assuming you have one fixed disk unit.

* Enter Function 2 Enter 2.

CONFIG UTILITY The disk configuration screen now appears. Select function 4. (If you want to see the
the drive assignments, select function 3. Press J to return to this screen.)

Modify Disk Configuration

1) Modify number of flexible disks
2) Modify number of hard disks
3) Display configuration
4) Return to main menu

* Enter Function 4 Enter 4.

cont.

2-11

Display/EnterMcr/on Comments

CONFIG UTILITY You've finished configuring.
1) Modify Function Keys
2) Select Printer (Serial/Parallel)
3) Modify Retry/Restore Counter
4) Modify Serial Printer Interface
5) Modify Disk Configuration
6) Exit Program This function is the one you want.

* Enter Function 6 Enter 6.

1 Update O.S. disk in drive A
2 Return to main program
3 Exit CONFIG

The exit program function is important. Here, you make the changes permanent by
having them written to disk.

ATTENTION: Changes to the disk configuration must be
written to disk (permanent) and must be followed by a re
start. Update the disk, exit CONFIG, and then turn off
and on the computer when the system prompt appears.

Read the "attention" and then perform the following sequence:

* Enter Function 1 Enter 1 (You'll "hear" the changes being written to disk.)

* Enter Function 3 Enter 3 (You're leaving the CONFIG utility.)

A>
Switch your computer o f f and on. Complete setup
procedures as described in the following text.

Be sure to do this!

M
S

-D
O

S
 U

S
E

R
 'S G

 U
l D

E

G
E

 T
T

 IN
G

 S
T

A
R

 TE
D

NOTE: The sequence described assumes one flexible disk drive
and one fixed disk unit. Adjust your entries for your specific
configuration.

FORMATTING DISKS
You ’ve already done a lot with your DECISION MATE V and MS-
DOS. You ’ve protected your software by making a copy o f the
master disk and, if you have a fixed disk, defined the configu
ration. You also saw how to format a disk. Remember, though
that each new disk must be formatted.

Your fixed disks, for example, are not yet formatted for MS-DOS.
Because the FORM AT routine is described in detail in chapter 5,
its description is not repeated here; however, a couple o f com
ments about formatting fixed disks must be noted.

• To format one logical drive o f a fixed disk unit takes approxi
mately 20 minutes. This time is calculated based on the
“ standard” number o f 5 certifications (read and write checks).
The formula is 4 mins + (3 min. x f o f certifications). You
have an option o f increasing or decreasing the number o f
certifications before formatting begins.

• Before you format a fixed disk, always check that the logical
disk drive hasn’t already been formatted by MS-DOS or some
other operating system. Use a command like MS-DOS
CHKDSK to first determine the contents o f the disk.

DEFINING A SERIAL PRINTER
Are you using a printer? MS-DOS assumes it is a parallel printer.
I f using a serial printer, you must define it to MS-DOS with the
CONFIG utility. Because printer requirements vary, refer again
to chapter 5 for a full description o f CONFIG.

You ’ve now completed all setup procedures. In the next sections
o f this chapter, you learn some more operating procedures and
about files.

FREQUENTLY PERFORMED OPERATIONS

ENTERING THE DATE AND TIME
When you load MS-DOS into memory or restart your computer,
you see the date and time prompts. You should enter this infor
mation which is extremely helpful in keeping track o f when you

2 -12

MS-DOS USER'S GUIDE GETTING STARTED

created or updated data on your disk.

When you see:

Enter new date: _

Type today’s date in an mm-dd-yy format, where:

• mm is a 1- or 2-digit number from 1-12 (representing month)
• dd is a 1- or 2-digit number from 1-31 (representing the day

o f the month)
• yy is a 2-digit number from 80-99 (the 19 is assumed), or a

4- digit number from 1980-2099 (representing year)

Any date is acceptable in answer to the new date prompt as long
as it follows the above format. Separators between the numbers
can be hyphens (-) or slashes (/). For example:

5- 1-83 or 05/01/83

are both acceptable answers to the “ Enter new date:” prompt.

I f you enter an invalid date or form o f date, the system prompts
you again with “Enter new date:” .

A fter you respond to the new date prompt and enter your answer
by pressing th e<C R > key, you see a prompt similar to this:

Current time is 0.00:00.00
Enter new tim e: _

Enter the current time in the hh :mm format, where:

• hh is a 1- or 2-digit number from 0-23 (representing hours)
• mm is a 1- or 2-digit number from 0-59 (representing minutes)

MS-DOS uses this time value to keep track o f when you last up
dated and/or created files on the system. Notice that MS-DOS uses
military time; for instance, 1 :30 p.m is written 13:30.

Example:

Current time is 0:00:00.00
Enter new time: 9:05

2-13

Only use the colon (:) to separate hours and minutes. I f you enter
an invalid number separator, MS-DOS repeats the prompt.

NOTE: I f you make a mistake while typing, press the CONTROL
key on your keyboard, hold it down, and then press the C key.
The <CONTROL-C> function aborts your current entry. You
can then re-answer the prompt or type another command. To
correct a line before you press <CR>, use the <BACKSPACE>
key to erase one letter at a time.

CHANGING THE DEFAULT DRIVE
The A > is the MS-DOS prompt from the command processor. It
tells you that MS-DOS is ready to accept commands.

The A in the previous prompt is the default disk drive. This means
that MS-DOS searches only the disk in drive A for any filenames
you enter and writes files to that disk unless you specify a differ
ent drive. You can ask MS-DOS to search a disk in another drive
by changing the drive designation or by specifying it in a com
mand. To change the disk drive designation, enter the new drive
letter followed by a colon. For example:

A >
A>B : <C R > (you have typed B: in response to the prompt)
B>

The system prompt B > appears and drive B is now the default
drive. MS-DOS searches only the disk in drive B until you specify
a different default drive. To move back to drive A, simply specify
A :. (Don’t forget the colon.)

A>B :
B>A: <C R >
A >

BACKING-UP YOUR DISKS
You ’ve made a backup copy o f your master software disk; you
should make backup copies o f all your disks. I f a disk becomes
damaged or if files are accidentally erased, you will still have all of
the information on your backup disk.

You make backup copies o f flexible disks with the DISKCOPY
command; you make backup copies o f fixed disks with the

2-14

MS-DOS USER'S GUIDE GETTING STARTED

BACKUP command. (Both o f these commands are discussed in
detail in Chapter 5, MS-DOS Commands.)

USING THE PROGRAMMABLE FUNCTION KEYS
Your NCR DECISION MATE V has a row o f special keys. These
keys are labelled F I through F20 and are located on the top row
o f the keyboard. They are special because you can define (pro
gram) them to do any function you want.

Like the automatic-program-execution feature (see next section),
the programmable function keys are convenient, especially for
performing an often-used or difficult function. For example, you
may always want to check the contents o f a disk before you access
it. You could assign the directory display (D IR) command to a
function key. Then, to use the command, you could simply press
the key instead o f typing the command through the keyboard.

Function keys are defined with the MS-DOS CONFIG utility. (See
Chapter 5.)

RUNNING PROGRAMS AUTOMATICALLY
I f you want to run a specific program automatically each time you
start MS-DOS, you can do so with Automatic Program Execution.
For example, you may want to have MS-DOS display the names of
your files each time you load MS-DOS.

When you start MS-DOS, the command processor searches for a
file named AUTOEXEC.BAT on the MS-DOS disk. This file is a
program that MS-DOS will run each time MS-DOS is started.
Chapter 4, Learning About Commands, tells you how to create
an AUTOEXEC.BAT file.

TURNING THE SYSTEM OFF
There is no “ logo ff” command in MS-DOS. To end your terminal
session, open the disk drive doors and remove the disks. Then,
simply turn your terminal o ff in response to a default drive
prompt.

FILES

A file is a collection o f related information. A file on your disk
can be compared to a file folder in a desk drawer. For example,
one file folder might contain the names and addresses o f the em

2-15

ployees who work in the office. You might name this file the
Employee Master File. A file on your disk could also contain the
names and addresses o f employees in the office and could also be
named Employee Master File.

A ll programs, text, and data on your disk reside in files and each
file has a unique name. You refer to files by their names. Chapter
3, More About Files, tells you how to name your files.

You create a file each time you enter and save data or text at your
terminal. Files are also created when you write and name programs
and save them on your disks.

HOW MS-DOS KEEPS TRACK OF YOUR FILES
The names o f files are kept in directories on a disk. These direc
tories also contain information on the size o f the files, their
location on the disk, and the dates that they were created and
updated. The directory you are working in is called your current
or working directory.

An additional system area is called the File Allocation Table. It
keeps track o f the location o f your files on the disk. It also allo
cates the free space on your disks so that you can create new files.

These two system areas, the directories and the File Allocation
Table, enable MS-DOS to recognize and organize the files on your
disks. The File Allocation Table is copied to a new disk when you
format it with the MS-DOS FORMAT command; also, one empty
directory is created, called the root directory.

THE DIR (SHOW DIRECTORY) COMMAND
I f you want to know what files are on your disk, you can use the
DIR command. This command tells MS-DOS to display all the files
in the current directory on the disk that is named. For example, if
your MS-DOS disk is in drive A and you want to see the listing for
the current directory on that disk, type:

DIR A: <C R >

MS-DOS responds with a directory listing o f all the files in the
current directory on your MS-DOS disk. To stop the screen to
study the files, press the CONTROL key, hold it down, and then
press the S key. To continue the display, press any key.

2-16

MS-DOS USER'S GUIDE GETTING STARTED

NOTE: Two MS-DOS system files, IO.SYS and MSDOS.SYS,
are “ hidden” files and do not appear when you issue the DIR
command.

You can also get information about any file on your disk by typing
DIR and a filename. For example, if you have created a file named
M YFILE .TXT, the command

DIR M YFILE .TXT <C R >

gives you a display o f all the directory information (name o f file,
size o f file, date last edited) for the file M YFILE.TXT.

For more information on the DIR command, refer to Chapter 5,
MS-DOS Commands.

CHECKING YOUR DISKS
The MS-DOS command CHKDSK is used to check your disks for
consistency and errors, much like a secretary proofreading a letter.
CHKDSK analyzes the directories and the File Allocation Table
on the disk that you specify. It then produces a status report o f
any inconsistencies, such as files which have a non-zero size in
their directory but really have no data in them.

To check the disk in drive A, type:

CHKDSK A: <C R >

MS-DOS displays a status report and any errors that it has found.
An example o f this display and more information on CHKDSK
can be found in the description o f the CHKDSK command in
Chapter 5. You should run CHKDSK occasionally for each disk
to ensure the integrity o f your files.

2-17

CHAPTER REVIEW

• Always begin processing from disk drive A. Turn on your com
puter, insert a master disk in drive A, and press <CR>.

• The date and time messages are displayed whenever MS-DOS
is read into memory. Although these messages can be by
passed, they provide important information about when data
was created or updated on your disk.

• The MS-DOS master disk that came with this manual is write
protected. You made a backup copy o f the diskette and
should only use the new copy for processing. (Put the original
master diskette in a safe place for system protection.)

• On your MS-DOS master diskette, the software “ thinks” you
have two flexible disk drives and a parallel printer. To “ tell”
MS-DOS differently, you must use the CONFIG utility to de
fine and write the configuration description on the new master
diskette.

• Each disk drive has a unique name (drive designation), which is
an alphabetic character. A fixed disk unit has two logical disk
drives and, therefore, two drive designations.

• The A > is the system default prompt. It tells you which disk
drive MS-DOS is using and that MS-DOS is waiting for your
direction. You can change the default drive designation by
entering the drive designation followed by a colon (:).

• Most entries you make on the keyboard must end by pressing
the <C R > key. This function key tells MS-DOS you have com
pleted an entry.

• Any new disk must be formatted with the FORMAT com
mand before it can be used by MS-DOS. Because o f the high
storage capacity o f a fixed disk, formatting it can take several
minutes.

• A ll data on your disk is stored in files and each file name is
listed in a directory. The DIR command displays the directory.

• Always make a copy o f important data on your disk using the
appropriate MS-DOS copy commands: DISKCOPY, COPY, or
BACKUP.

• Keys F1-F20 on the top row o f your computer are available
for your own use. You can “ program” them (with the CON
FIG utility) to do anything you want.

• MS-DOS has an automatic program execution feature. When
ever you load MS-DOS, the defined program is automatically
executed.

• When you have finished processing, remove the flexible disk
and then turn o ff your computer.

2-18

MS-DOS USER'S GUIDE MORE A B O U T FILES

MORE ABOUT FILES

In Chapter 2, you learned that directories contain the names of
your files. In this chapter, you learn how to name and copy your
files. You also learn more about the MS-DOS hierarchical direc
tory structure that makes it easy for you to organize and locate
your files.

NAMING YOUR FILES

The name o f a typical MS-DOS file looks like this:

NEWFILE.EXE

The name o f a file consists o f two parts. The filename isNEWFILE
and the filename extension is .EXE.

A filename can be from 1 to 8 characters long. The filename
extension can be three or fewer characters. You can type any
filename in small or capital letters and MS-DOS will translate these
letters into uppercase characters.

In addition to the filename and the filename extension, the name
o f your file may include a drive designation. A drive designation
tells MS-DOS to look on the disk in the designated drive to find
the filename typed. For example, to find directory information
about the file NEWFILE.EXE which is located on the disk in drive
A (and drive A is NOT the default drive), type the following com
mand:

DIR A:NEWFILE.EXE

Directory information about the file NEWFILE.EXE is now dis
played on your screen.

I f drive A is the default drive, MS-DOS will search only the disk in
drive A for the filename NEWFILE and so the drive designation is
not necessary. A drive designation is needed if you want to tell
MS-DOS to look on the other drive to find a file.

3-1

Your filenames will probably be made up o f letters and numbers,
but other characters are allowed, too. Legal characters for file
name extensions are the same as those for filenames. Here is a
complete list o f the characters you can use in filenames and
extensions:

A - Z 0 - 9 $ & f

% () - @

\ “ [] ~ '

A ll o f the parts o f a filename comprise a file specification. The
term file specification (or filespec) is used in this manual to
indicate the following filename format:

[<drive designation^] <filename> [<.filename extension>]

Remember that brackets indicate optional items. Angle brackets
(< >) mean that you supply the text for the item. Note that the
drive designation is not required unless you need to indicate to
MS-DOS on which disk to search for a specific file. You do not
have to give your filename a filename extension.

Examples o f file specifications are:

B:MYPROG.COB
A : Y OURPROG.EXT
AtNEWFILE.
TEXT

WILD CARDS
Two special characters (called wild cards) can be used in filenames
and extensions: the asterisk (*) and the question mark (?). These
special characters give you greater flexibility when using filenames
in MS-DOS commands.

The ? Wild Card
A question mark (?) in a filename or filename extension indicates
that any character can occupy that position. For example, the
MS-DOS command

DIR TEST7RUN.EXE

3-2

MS-DOS USER'S GUIDE MORE A B O U T F ILES

lists all directory entries on the default drive that have 8 charac
ters, begin with TEST, have any next character, end with the
letters RUN, and have a filename extension o f .EXE. Here are
some examples o f files that might be listed by the previous DIR
command:

TEST1RUN.EXE
TEST2RUN.EXE
TEST6RUN.EXE

The * Wild Card
An asterisk (*) in a filename or filename extension indicates that
any character can occupy that position or any o f the remaining
positions in the filename or extension. For example:

DIR TEST*.EXE

lists all directory entries on the default drive with filenames that
begin with the characters TEST and have an extension o f .EXE.
Here are some examples o f files that might be listed by this DIR
command:

TEST1RUN.EXE
TEST2RUN.EXE
TEST6RUN.EXE
TESTALL.EXE

The wild card designation * .* refers to all files on the disk. Note
that this designation can be very powerful and destructive when
used in MS-DOS commands. For example, the command DEL *.*
deletes all files on the default drive, regardless o f filename or
extension.

Examples
To list the directory entries for all files named NEWFILE on drive
A (regardless o f filename extensions), simply type:

DIR A:NEW FILE.*

To list the directory entries for all files with filename extensions
o f .TXT (regardless o f filenames) on the disk in drive B, type:

DIR B:????????.TXT

3-3

This command is useful if, for example, you have given all your
text programs a filename extension o f .TXT. By using the DIR
commands with the wild card characters, you can obtain a listing
o f all your text files even if you do not remember all o f their
filenames.

ILLEGAL FILENAMES
MS-DOS treats some device names specially, and certain 3-letter
names are reserved for the names o f these devices. The following
3-letter names cannot be used as filenames or extensions.

AUX
Used when referring to input from or output to an auxiliary
device (such as a printer or disk drive).

CON
Used when referring to keyboard input or to output to the
terminal console (screen).

LST or PRN
Used when referring to the printer device.

NUL
Used when you do not want to create a particular file, but the
command requires an input or output filename.

Even if you add device designations or filename extensions to
these filenames, they remain associated with the devices listed
above. For example, A :CON.XXX always refers to the console and
is not the name o f a disk file.

COPYING YOUR FILES

Just as with paper files, you often need more than one copy o f a
disk file. The COPY command allows you to copy one or more
files to another disk. You can also give the copy a different name
if you specify the new name in the COPY command.

The COPY command can also make copies o f files on the same
disk. In this case, you must assign a different filename or you will
overwrite the file. You cannot make a copy o f a file on the same
disk unless you specify a different filename for the new copy.

The format o f the COPY command is:

COPY filespec [filespec]

3 -4

MS-DOS USER'S GUIDE MORE AB O U T FILES

For example,

COPY A :MYFILE .TXT B :M YFILE.TXT

copies the file M YFILE .TXT on disk A to a file named MYFILE.
TXT on disk B. A duplicate copy o f M YFILE .TXT now exists.

Figure 3.1 illustrates how to copy files to another disk:

A :M YFILE.TXT blank t o oP Y -* A.MYFILE.TXT B:MYFILE.TXT

Disk A Disk B Disk A Disk B

COPY A :M YFILE.TXT B:MYFILE.TXT

Figure 3.1 Copying files to another disk

I f you want to duplicate the file named M YFILE. TXT on the
same disk, type:

COPY A :M YFILE .TX T A ‘.NEWNAME.TXT

You now have two copies o f your file on disk A, one named
M YFILE .TXT and the other named NEWNAME.TXT. The fo l
lowing figure illustrates this example.

Disk A Disk A

Figure 3.2 Copying files on the same disk

3-5

You can also copy all files on a disk to another disk (that is, make
a backup copy) with the COPY command. Refer to Chapter 5,
MS-DOS Commands, for more information on this process.

PROTECTING YOUR FILES

MS-DOS is a powerful and useful tool in processing your personal
and business information. As with any information system,
inadvertent errors may occur and information may be misused. I f
you are processing information that cannot be replaced or that
requires a high level o f security, you should take steps to ensure
that your data and programs are protected from accidental or un
authorized use, modification, or destruction. Simple measures you
can take - such as removing your disks when they are not in use,
keeping backup copies o f valuable information, and installing
your equipment in a secure facility - can help you maintain the
integrity o f the information in your files. An MS-DOS command,
CIPHER, can also be used to encrypt your files for total privacy.
For more information on CIPHER, refer to Chapter 5, MS-DOS
Commands.

DIRECTORIES

As you learned in Chapter 2, the names o f your files are kept in a
directory on each disk. The directory also contains information on
the size o f the files, their locations on the disk, and the dates that
they were created and updated.

When there are multiple users on your computer, or when you are
working on several different projects, the number o f files in the
directory can become large and unwieldy. You may want your
own files kept separate from a co-worker’s, or you may want to
organize your programs into categories that are convenient for you.

In an office, you can separate files by putting them in different
filing cabinets; in effect, creating different directories o f infor
mation. MS-DOS allows you to organize the files on your disks
into directories. Directories are a way o f dividing your files into
convenient groups o f files. For example, you may want all o f your
accounting programs in one directory and text files in another.
Any one directory can contain any reasonable number o f files,
and it may also contain other directories (referred to as sub

3-6

MS-DOS USER'S GUIDE MORE A B O U T F ILES

directories). This method o f organizing your files is called a
hierarchical directory structure.

A hierarchical directory structure can be thought o f as a “ tree”
structure: directories are branches o f the tree and files are the
leaves, except that the “ tree” grows downward; that is, the “ root”
is at the top. The root is the first level in the directory structure. It
is the directory that is automatically created when you format a
disk and start putting files in it. You can create additional direc
tories and subdirectories by following the instructions in Chapter
4, Learning About Commands.

The tree or file structure grows as you create new directories for
groups o f files or for other people on the system. Within each new
directory, files can be added, or new subdirectories can be created.

It is possible for you to “ travel” around this tree; for instance, it is
possible to find any file in the system by starting at the root and
traveling down any o f the branches to the desired file. Conversely,
you can start where you are within the file system and travel
towards the root.

The filenames discussed earlier in this chapter are relative to your
current directory and do not apply system-wide. Thus, when you
turn on your computer, you are “ in” your directory. Unless you
take special action when you create a file, the new file is created in
the directory in which you are now working. Users can have files
o f the same name that are unrelated because each is in a differ
ent directory.

Figure 3.3 illustrates a typical hierarchical directory structure.

ROOT

GAMES ACCOUNTS^- PROGRAMS

JOE SUE MARY

TEXT.TXT

TEXT.TXT FORMS

Figure 3.3 A sample hierarchical directory structure

3-7

The ROOT directory is the first level in the directory structure.
You can create subdirectories from the ROOT by using the
MKDIR command (refer to Chapter 5, MS-DOS Commands, for
information on M KDIR). In this example, five subdirectories
o f ROOT have been created. These include:

• A directory o f games, named GAMES
• A directory o f all external commands, named BIN (refer to

Chapter 4, Learning About Commands, for more information
on the BIN directory)

• A USER directory containing separate subdirectories for all
users o f the system

• A directory containing accounting information, named AC
COUNTS

• A directory o f programs, named PROGRAMS

Joe, Sue, and Mary each have their own directories which are
subdirectories o f the USER directory. Sue has a subdirectory
under the \ USER\ SUE directory named FORMS. Sue and Mary
have files in their directories, each named TEXT.TXT. Notice that
Mary’s text file is unrelated to Sue’s.

This organization o f files and directories is not important if you
only work with files in your own directory, but, if you work with
someone else or on several projects at one time, the hierarchical
directory structure becomes extremely useful. For example, you
could get a list o f the files in Sue’s FORMS directory by typing:

DIR \ USER \ SUE \ FORMS

Note that the back slash mark (\) is used to separate directories
from other directories and files.

To find out what files Mary has in her directory, you could type:

DIR \ USER \ M ARY

FILENAMES AND PATHS
When you use hierarchical directories, you must tell MS-DOS
where the files are located in the directory structure. Both Mary
and Sue, for example, have files named TEXT.TXT. Each will have
to tell MS-DOS in which directory her file resides if she wants to
access it. This is done by giving MS-DOS a pathname to the file.

3 -8

MS-DOS USER'S GUIDE MORE A B O U T F ILES

Pathnames
A simple filename is a sequence o f characters that can optionally
be preceded by a drive designation and followed by an extension.
A pathname is a sequence o f directory names followed by a simple
filename, each separated from the previous one by a slash (\).

The syntax o f pathnames is:

[< d > :] [<directory>] \ [<directory. . . >] \ [<filename>]

I f a pathname begins with a slash, MS-DOS searches for the file
beginning at the root (or top) o f the tree; otherwise, MS-DOS
begins at the user’s current directory, known as the working
directory, and searches downward from there. The pathname
o f Sue’s TEXT.TXT file is \ USER \ SUE \ TEXT. TXT.

When you are in your working directory, a filename and its
corresponding pathname may be used interchangeably. The
following list shows some sample names:

\
Indicates the root directory.

\ PROGRAMS
Sample directory under the root directory containing program
files.

\ USER \ M ARY \ FORMS \ 1A
A typical full pathname. This one happens to be a file named
1A in the directory named FORMS belonging to the USER
named M ARY.

USER\SUE
A relative pathname; it names the file or directory SUE in
subdirectory USER o f the working directory. I f the working
directory is the root (\), it names \ BIN \ SUE.

TEXT.TXT
Name o f a file or directory in the working directory.

MS-DOS provides special shorthand notations for the working
directory and the parent directory (one level up) o f the working
directory. For example, in the sample o f a hierarchical directory
structure in this chapter, the parent o f the directory JOE is USER.

. (single period)
This shorthand notation indicates the name of the working
directory in all hierarchical directory listings and is auto

3-3

matically created by MS-DOS. For example, if your working
directory is JOE and you issue the DIR command, MS-DOS
displays a single period to represent your working directory
instead o f the filename.

. . (double period)
This is the shorthand notation for the working directory’s
parent directory. In the above example, MS-DOS displays a
double period to represent the parent directory USER. You
may use the double period when specifying a path to MS-DOS
as a shorthand way o f telling MS-DOS to go back one direc
tory level. For example, if your working directory is JOE and
you wish to find the file FORMS in USER SUE’s directory,
you can specify this in either o f two ways:

USER\SUE\FORMS

or

. . SUE \ FORMS

The double period causes MS-DOS to go back one level and to
continue the path from there.

Pathing and External Commands - External commands reside on
disks as program files. They must be read from the disk before
they execute. (For more information on external commands, refer
to Chapter 4, Learning About Commands.)

When you are working with more than one directory, it is con
venient to put all MS-DOS external commands into a separate
directory so they do not clutter your other directories. When you
issue an external command to MS-DOS, MS-DOS immediately
checks your working directory to find that command. You must
tell MS-DOS in which directory these external commands reside.
This is done with the PATH command.

For example, if you are in a working directory named \BIN\
PROG, and all MS-DOS external commands are in \ BIN, you
must tell MS-DOS to choose the BIN path to find the FORMAT
command. The command

PATH \ BIN

tells MS-DOS to search in your working directory and the \ BIN

3 -1 0

MS-DOS USER'S GUIDE MORE A B O U T FILES

directory for all commands. You only have to specify this path
once to MS-DOS during your terminal session. MS-DOS will now
search in \ BIN for the external commands. I f you want to know
what the current path is, type the word PATH and the current
value o f PATH will be printed.

For more information on the MS-DOS command PATH, refer to
Chapter 5, MS-DOS Commands.

3-1 Oa

THIS PAGE INTENTIONALLY LEFT BLANK

3-1 Ob

MS-DOS USER'S GUIDE MORE A B O U T FILES

Pathing and Internal Commands - Internal commands are the
simplest, most commonly used commands. They execute immedi
ately because they are incorporated into the command processor.
(For more information on internal commands, refer to Chapter 4,
Learning About Commands.)

Some internal commands can use paths. The four commands,
COPY, DIR, DEL, and TYPE, have greater flexibility when you
specify a pathname after the command.

COPY <pathname pathname >
I f the second pathname to COPY is a directory, all files are
copied into that directory. The first pathname may only
specify files in the working directory.

DEL <pathname>
I f the pathname is a directory, all the files in that directory are
deleted. Note: The prompt “ Are you sure (Y/N)?” is dis
played if you try to delete a path. Type Y to complete the
command, or type N for the command to abort.

DIR <pathname>
Displays the directory for a specific path.

TYPE <pathname>
You must specify a file in a path for this command. MS-DOS
will display the file on your screen in response to the TYPE
pathname command.

DISPLAYING YOUR WORKING DIRECTORY
All commands are executed while you are in your working direc
tory. You can find out the name o f the directory you are in by
issuing the MS-DOS command CHDIR (Change Directory) with no
options. For example, if your current directory is \ USER \ JOE,
when you type:

CHDIR<RETURN >

you will see:

A : \ USER \ JOE

This is your current drive designation plus the working directory
(\ USER\ JOE).

I f you now want to see what is in the \ USER \ JOE directory, you
can issue the MS-DOS command DIR. The following is an example

3-11

o f the display you might receive from the DIR command for a
subdirectory:

Volume in drive A has no ID
Directory o f A : \ USER \ JOE

< D IR > 5-09-83
< D IR > 5-09-83

TEXT < D IR > 5-09-83
FILE1 COM 5243 5-04-83

4 File(s) 250518 bytes free

A volume ID for this disk was not assigned when the disk was
formatted. Note that MS-DOS lists both files and directories in
this output. As you can see, Joe has another directory in this tree
structure named TEXT. The V indicates the working directory
\USER\JOE, and *. .’ is the shorthand notation for the parent
directory \USER. FILE1. COM is a file in the \ USER \ JOE
directory. A ll o f these directories and files reside on the disk in
drive A.

Because files and directories are listed together (see previous
display), MS-DOS does not allow you to give a subdirectory the
same name as a file in that directory. For example, if you have a
path \BIN\ USER \ JOE where JOE is a subdirectory, you can
not create a file in the USER directory named JOE.

CREATING A DIRECTORY
To create a subdirectory in your working directory, use the
MKDIR (Make Directory) command. For example, to create a new
directory named NEWDIR under your working directory, simply
type:

MKDIR NEWDIR

After this command is executed by MS-DOS, a new directory
exists in your tree structure under your working directory. You
can also make directories anywhere in the tree structure by
specifying MKDIR and then a pathname. MS-DOS automati
cally creates the . and . . entries in the new directory.

To put files in the new directory, use the MS-DOS Line Editor,
EDLIN. Chapter 7, Line Editor (EDLIN), describes how to use
EDLIN to create and save files.

10:09a
10:09a
10:09a
9:30a

3-12

MS-DOS USER’S GUIDE MORE A B O U T F ILES

CHANGING YOUR WORKING DIRECTORY
Changing from your working directory to another directory is very
easy in MS-DOS. Simply issue the CHDIR (Change Directory)
command and supply a pathname. For example:

A:CHDIR \ USER

changes the working directory from \ USER \ JOE to \USER.
You can specify any pathname after the command to “ travel” to
different branches and leaves o f the directory tree. The command
“ CHDIR . .” will always put you in the parent directory o f your
working directory.

REMOVING A DIRECTORY
To delete a directory in the tree structure, use the MS-DOS
RMDIR (Remove Directory) command. For example, to remove
the directory NEWDIR from the working directory, type:

RMDIR NEWDIR

Note that the directory NEWDIR must be empty except for the .
and . . entries before it can be removed; this will prevent you from
accidentally deleting files and directories. You can remove any
directory by specifying its pathname. To remove the \BIN\
USER \ JOE directory, make sure that it has only the . and . .
entries, then type:

RMDIR \ BIN \ USER \ JOE

To remove all the files in a directory (except for the . and . .
entries), type DEL and then the pathname o f the directory. For
example, to delete all files in the \ BIN \ USER \ SUE directory,
type:

DEL \ BIN \ USER \ SUE

You cannot delete the . and .. entries. They are created by MS-DOS
as part o f the hierarchical directory structure.

In the next chapter, you will learn about MS-DOS commands.

3-13

MS-DOS USER'S GUIDE LEA R N IN G A B O U T COMMANDS

LEARNING ABOUT COMMANDS

GENERAL INFORMATION

Commands are a way o f communicating with the computer. By
entering MS-DOS commands at your terminal, you can ask the sys
tem to perform useful tasks:

• Compare, copy, display, delete, and rename files
• Copy and format disks
• Execute system programs such as EDLIN, as well as your own

programs
• Analyze and list directories
• Enter date, time, and remarks
• Set various printer and screen options
• Copy MS-DOS system files to another disk
• Request MS-DOS to wait for a specific period o f time

TYPES OF MS-DOS COMMANDS
There are two types o f MS-DOS commands: internal commands
and external commands.

Internal Commands
Internal commands are the simplest, most commonly used com
mands. You cannot see these commands when you do a directory
listing on your MS-DOS disk; they are part o f the command pro
cessor. When you type these commands, they execute immediately.
The following internal commands are described in Chapter 5 :

BREAK DEL (ERASE) MKDIR (MD) SET
CHDIR (CD) DIR PATH SHIFT
CLS ECHO PAUSE TIME
COPY EXIT PROMPT TYPE
CTTY FOR REM VER
DATE GOTO REN (RENAME) VERIFY

IF RMDIR (RD) VOL

External Commands
External commands reside on disk as program files. They must be
read from disk before they can execute. I f the disk containing the

4-1

command is not in the drive, MS-DOS will not be able to find and
execute the command.

Any filename with a filename extension o f .COM, .EXE or .BAT
is considered an external command. For example, the program
FORMAT.COM is an external command. Because all external
commands reside on disk, you can create commands and add them
to the system. Programs that you create with most languages
(including assembly language) will be .EXE (executable files).

When you enter an external command, do not include its filename
extension. The following external commands are described in
Chapter 5:

COMMAND OPTIONS
Options can be included in your MS-DOS commands to specify
additional information to the system. I f you do not include some
options, MS-DOS provides a default value. Refer to individual
command descriptions in Chapter 5 for the default values.

The following is the format o f all MS-DOS commands:

Command [options. . .]

where:

d:
Refers to the disk drive designation,

filename
Refers to any valid name for a disk file, including an optional
filename extension. The filename option does not refer to a
device or to a disk drive designation.

.ext
Refers to an optional filename extension consisting o f a period
and 1-3 characters. When used, filename extensions immedi
ately follow filenames.

BACKUP
CHKDSK
CIPHER
CONFIG
DISKCOPY
FIND

LOCATE
MORE
PRINT
RDCPM
RECOVER
SORT
SYSFORMAT

4-2

MS-DOS USER'S GUIDE LEARNING A B O U T COMMANDS

filespec
Refers to an optional drive designation, a filename, and an
optional three letter filename extension in the following for
mat:

[< d :>] <filename> [< .ext>]

pathname
Refers to a pathname or filename in the following format:

[<directory>] \ [<directory. . .>] \ [<filename>]

switches
Switches are options that control MS-DOS commands. They
are preceded by a forward slash (for example, /P).

arguments
Provide more information to MS-DOS commands. You usually
choose between arguments; for example, ON or OFF.

COMMON ENTRY CONVENTIONS
The following information applies to all MS-DOS commands:

1. Commands are usually followed by one or more options.
2. Commands and options may be entered in uppercase o f lower

case, or a combination o f keys.
3. Commands and options must be separated by delimiters. Be

cause they are easiest, you will usually use the space and
comma as delimiters. For example:

DEL M YFILE.OLD NEWFILE.TXT
RENAME,THISFILE THATFILE

You can also use the semicolon (;), the equal sign (=), or the
tab key as delimiters in MS-DOS commands. (In this manual,
we use a space as the delimiter in commands.)

4. Do not separate a file specification with delimiters, since the
colon and the period already serve as delimiters.

5. When instructions say “ Press any key,” you can press any
alpha (A-Z) or numeric (0-9) key.

6. You must include the filename extension when referring to a
file that already has a filename extension.

7. You can abort commands when they are running by pressing
<CONTROL-C >.

4-3

8. Commands take effect only after you have pressed the<C R >
key.

9. Wild cards (global filename characters) and device names (for
example, PRN or CON) are not allowed in the names o f any
commands.

10. When commands produce a large amount o f output on the
screen, the display automatically scrolls to the next screen.
You can press <CONTROL-S> to suspend the display. Press
any key to resume the display on the screen.

11. MS-DOS editing and function keys can be used when entering
commands. Refer to Chapter 6, MS-DOS Editing and Function
Keys, for a complete description o f these keys.

12. The prompt from the command processor is the default drive
designation plus a greater-than (>) sign; for example, A > .

13. Disk drives will be referred to as source drives and destination
drives. A source drive is the drive you transfer information
from; a destination drive is the drive you transfer information
to.

BATCH PROCESSING

Often you may find yourself typing the same sequence o f com
mands over and over to perform some commonly used task. With
MS-DOS, you can put the command sequence into a special file,
called a batch file, and execute the entire sequence simply by typ
ing the name o f the batch file. “ Batches” o f your commands in
such files are processed as if they were typed at a terminal. Each
batch file must be named with the .BAT extension, and is exe
cuted by typing the filename without its extension.

You can create a batch file by using the Line Editor (EDLIN) or
by typing the COPY command. Refer to the Creating an
AUTOEXEC.BAT File section later in this chapter for more
information on using the COPY command to create a batch
file.

Two MS-DOS commands are available for use expressly in batch
files: REM and PAUSE. REM permits you to include remarks and
comments in your batch files without these remarks being exe
cuted as commands. PAUSE prompts you with an optional message
and permits you to either continue or abort the batch process at
a given point. REM and PAUSE are described in detail in Chapter
5.

4-4

MS-DOS USER'S GUIDE LEA R N IN G A B O U T COMMANDS

Batch processing is useful i f you want to execute several MS-DOS
commands with one batch command, such as when you format
and check a new disk. For example, a batch file for this purpose
might look like this:

1 : REM This is a file to check new disks
2: REM It is named NEWDISK.BAT
3: PAUSE Insert new disk in drive B :
4: FORMAT B:
5: DIR B:
6: CHKDSKB:

To execute this .BAT file, simply type the filename without the
.BAT extension:

NEWDISK

The result is the same as if each o f the lines in the .BAT file was
entered at the terminal as individual commands.

Figure 4.1 illustrates the 3 steps used to write, save, and execute
an MS-DOS batch file.

The following list contains information that you should read be
fore you execute a batch process with MS-DOS.

1. Do not enter the filename BATCH (unless the name o f the file
you want to execute is BATCH.BAT).

2. Enter only the filename to execute the batch file; do not enter
the filename extension.

3. The commands in the file named <filename>.BAT are exe
cuted.

4. I f you press <CONTROL-C> while in batch mode, this prompt
appears:

Terminate batch job (Y/N) ?

I f you press Y, the remainder o f the commands in the batch
file are ignored and the system prompt appears.

I f you press N, only the current command ends and batch pro
cessing continues with the next command in the file.

4-5

5. I f you remove the disk containing a batch file being executed,
MS-DOS prompts you to insert it again before the next com
mand can be read.

6. The last command in a batch file may be the name o f another
batch file. This allows you to call one batch file from another
when the first is finished.

1. Write a program.

2. Assign a filename extension of .BAT
and save on your directory.

3. Enter NEWDISK as a command to MS-DOS.

Figure 4.1 MS-DOS batch file steps

THE AUTOEXEC.BAT FILE
As discussed in Chapter 2, an AUTOEXEC.BAT file allows you to
automatically execute programs when you start MS-DOS. Auto
matic Program Execution is useful when you want to run a specific
application package under MS-DOS, or when you want MS-DOS to
execute a batch program automatically each time you start the
system. You can avoid loading two separate disks to perform either
o f these tasks by using an AUTOEXEC.BAT file.

4-6

MS-DOS USER'S GUIDE LEARNING A B O U T COMMANDS

When you start MS-DOS, the command processor searches the MS-
DOS disk for a file named AUTOEXEC.BAT. The AUTOEXEC.
BAT file is a batch file that is automatically executed each time
you start the system.

I f MS-DOS finds the AUTOEXEC.BAT file, the file is immedia
tely executed by the command processor and the date and time
prompts are bypassed.

I f MS-DOS does not find an AUTOEXEC.BAT file when you first
load the MS-DOS disk, then the date and time prompts are issued.
Figure 4.2 illustrates how MS-DOS uses the AUTOEXEC.BAT
file.

CREATING AN AUTOEXEC.BAT FILE
To see how to create an AUTOEXEC.BAT file, assume that each
time you start MS-DOS, you want to automatically load BASIC
and run a program called MENU. You could create an AUTOEXEC.
BAT file as follows:

1. Type:

COPY CON: AUTOEXEC.BAT

This statement tells MS-DOS to copy the information from the
console (keyboard) into the AUTOEXEC.BAT file. Note that
the AUTOEXEC.BAT file must be created in the root direc
tory o f your MS-DOS disk.

2. Now type:

BASIC MENU

This statement goes into the AUTOEXEC.BAT file. It tells
MS-DOS to load BASIC and run the MENU program whenever
MS-DOS is started.

3. Press the <CONTROL-Z> key; then press the <C R > key to
put the command BASIC MENU in the AUTOEXEC.BAT file.

4. The MENU program will now run automatically whenever you
start MS-DOS.

To run your own BASIC program, enter the name o f your pro
gram in place o f MENU in the second line o f the example. You
can enter any MS-DOS command or series o f commands in the
AUTOEXEC.BAT file.

4-7

Figure 4.2 How MS-DOS uses the AUTOEXEC.BAT file

4-8

MS-DOS USER'S GUIDE LEARNING A B O U T COMMANDS

NOTE: Remember that if you use an AUTOEXEC.BAT file,
MS-DOS does not prompt you for a current date and time
unless you include the DATE and TIME commands in the
AUTOEXEC.BAT file. You should include these two com
mands in your AUTOEXEC.BAT file, since MS-DOS uses
this information to keep your directory current.

CREATING A .BAT FILE WITH
REPLACEABLE PARAMETERS
There may be times when you want to create an application pro
gram and run it with different sets o f data. This data may be
stored in various MS-DOS files.

When used in MS-DOS commands, a parameter is an option that
you define. With MS-DOS, you can create a batch (.BAT) file with
dummy (replaceable) parameters. These parameters, named %0-%9,
can be replaced by values supplied when the batch file executes.

For example, when you type the command line COPY CON
M YFILE.BAT, the next lines you type are copied from the con
sole to a file named M YFILE.BAT on the default drive:

A >C O PY CON M YFILE.BAT
COPY %1.MAC %2.MAC
TYPE %2.PRN
TYPE %0.BAT

Now, press <CONTROL-Z> and then press <CR>. MS-DOS
responds with this message:

1 File(s) copied
A >

The file M YFILE.BAT, which consists o f three commands, now
resides on the disk in the default drive.

The dummy parameters %1 and %2 are replaced sequentially by
the parameters you supply when you execute the file. The dummy
parameter %0 is always replaced by the drive designator, i f speci
fied, and the filename o f the batch file (for example, M YFILE).

NOTE: Up to 10 dummy parameters (%0-%9) can be specified.
Refer to the MS-DOS command SHIFT in Chapter 5 if you
wish to specify more than 10 parameters. Also, if you use the

4-9

percent sign as part o f a filename within a batch file, you must
type it twice. For example, to specify the file ABC%.EXE, you
must type it*as ABC%%.EXE in the batch file.

EXECUTING A .BAT FILE
To execute the batch file M YFILE.BAT and to specify the param
eters that will replace the dummy parameters, you must enter the
batch filename (without its extension) followed by the parameters
you want MS-DOS to substitute for %1, %2, etc.

Remember that the file M YFILE.BAT consists o f 3 lines:

COPY %1.MAC %2.MAC
TYPE %2.PRN
TYPE %0.BAT

To execute the M YFILE batch process, type:

M YFILE A :PR O G l B:PROG2

M YFILE is substituted for %0, A :PR O G l for %1, and B:PROG2
for %2.

The result is the same as if you had typed each o f the commands
in M YFILE with their parameters, as follows:

COPY A:PRO G l.M AC B:PROG2.MAC
TYPE B:PROG2.PRN
TYPE M YFILE.BAT

The following table illustrates how MS-DOS replaces each o f the
above parameters:

BATCH
FILENAME

PARAMETER1 (%0)
(MYFILE)

PARAMETER2 (911)
(PROG1)

PARAMETERS (%2)
(PROG2)

MYFILE MYFILE.BAT PROG1.MAC PROG2.MAC
PROG2.PRN

Remember that the dummy parameter %0 is always replaced by
the drive designator (i f specified) and the filename o f the batch
file.

4-10

MS-DOS USER'S GUIDE LEARNING A B O U T COMMANDS

INPUT AND OUTPUT

MS-DOS always assumes that input comes from the keyboard and
output goes to the terminal screen. However, the flow o f com
mand input and output can be redirected. Input can come from a
file rather than a terminal keyboard, and output can go to a file
or to a line printer instead o f to the terminal. In addition, “ pipes”
can be created that allow output from one command to become
the input to another. Redirection and pipes are discussed in the
next sections.

REDIRECTING YOUR OUTPUT
Most commands produce output that is sent to your terminal. You
can send this information to a file by using a greater-than sign (>)
in your command. For example, the command

DIR

displays a directory listing o f the disk in the default drive on the
terminal screen. The same command can send this output to a file
named MYFILES by designating the output file on the command
line:

DIR >M YFILES

I f the file MYFILES does not already exist, MS-DOS creates it
and stores your directory listing in it. I f MYFILES already exists,
MS-DOS overwrites what is in the file with the new data.

I f you want to append your directory or a file to another file
(instead o f replacing the entire file), two greater-than signs (»)
can be used to tell MS-DOS to append the output o f the command
(such as directory listing) to the end o f a specified file. The com
mand

DIR »M Y F IL E S

appends your directory listing to a currently existing file named
MYFILES. I f MYFILES does not exist, it is created.

It is often useful to have input for a command come from a file
rather than from a terminal. This is possible in MS-DOS by using
a less-than sign (<) in your command. For example, the command

4-11

SORT <NAM ES> LIST1

sorts the file NAMES and sends the sorted output to a file named
LIST1.

FILTERS
A filter is a command that reads your input, transforms it in some
way, and then outputs it, usually to your terminal or to a file. In
this way, the data is said to have been “ filtered” by the program.
Since filters can be put together in many different ways, a few
filters can take the place o f a large number o f specific commands.

MS-DOS filters include CIPHER, FIND, MORE, and SORT, and
perform the following functions:

CIPHER
Encrypts/decrypts a file.

FIND
Searches for a constant string o f text in a file.

MORE
Takes standard terminal output and displays it, one screen at
a time.

SORT
Sorts text.

You can see how these filters are used in the next section.

COMMAND PIPING
I f you want to give more than one command to the system at a
time, you can “ pipe” commands to MS-DOS. For example, you
may occasionally need to have the output o f one program sent as
the input to another program. A typical case would be a program
that produces output in columns. It could be desirable to have this
columnar output sorted.

Piping is done by separating commands with the pipe separator,
which is the vertical bar symbol (i). For example, the command

DIR i SORT

gives you an alphabetically sorted listing o f your directory. The
vertical bar causes all output generated by the left side o f the bar
to be sent to the right side o f the bar for processing.

4-12

MS-DOS USER'S GUIDE LEARNING A B O U T COMMANDS

Piping can also be used when you want to output to a file. I f you
want your directory sorted and sent to a new file (for example,
DIREC.FIL), you could type:

DIR i SORT >DIREC.FIL

MS-DOS creates a file named DIREC.FIL on your default drive.
D IREC.FIL contains a sorted listing o f the directory on the de
fault drive, since no other drive was specified in the command. To
specify a drive other than the default drive, type:

DIR i SORT >B:DIREC.FIL

This sends the sorted data to a file named DIREC.FIL on drive B.

A pipeline may consist o f more than two commands. For example,

D IR i SORT | MORE

sorts your directory, shows it to you one screen at a time, and
puts “ --MORE--” at the bottom o f your screen when there is more
output to be seen.

You will find many uses for piping commands and filters. You will
also find more information on using filters in the next chapter,
MS-DOS Commands.

4-13

MS-DOS USER'S GUIDE MS-DOS COMMANDS

MS-DOS COMMANDS

This section describes each o f the MS-DOS commands, arranged in
alphabetical order for quick reference. Certain commands are used
only if you are writing batch programs. These commands, ECHO,
FOR, GOTO, IF, and SHIFT, are noted as batch processing com
mands in the description. The individual command descriptions
are preceded by a table summarizing the complete set.

Before studying or using any o f the commands, be sure to become
familiar with the notations that indicate how to format a com
mand. (The notations were explained in an earlier chapter, but are
important enough to repeat.)

• Words shown in capital letters are required entries. These
words are called keywords and must be entered exactly as
shown. You can enter these keywords in any combination o f
upper/lowercase; MS-DOS converts all keywords to uppercase.

• You supply the text for any items enclosed in angle brackets
(< >). For example, you should enter the name o f your file
when<filename> is shown in the format.

• Items in square brackets ([]) are optional. I f you include
optional information,.do not include the square brackets, only
the information within the brackets.

• An ellipsis (. . .) indicates that you may repeat an item as
many times as you want.

• You must include all punctuation where shown (with the ex
ception o f square brackets), such as commas, equal signs,
question marks, colons, or slashes.

5-1

MS-DOS COMMAND SUM M ARY

Name
(Synonym)

Purpose

BACKUP Copies fixed disk to flexible disks

BREAK Sets CONTROL-C check

CHDIR
(CD)

Changes directories; prints working
directory

CHKDSK Scans the directory of the default or des
ignated drive and checks for consistency

CIPHER Encrypts/decrypts a file

CLS Clears screen

CONFIG Defines configuration information

COPY Copies file(s) specified

CTTY Changes console TTY

DATE Displays and sets date

DEL
(ERASE)

Deletes file(s) specified

DIR Lists requested directory entries

DISKCOPY Copies disks

ECHO Turns batch file echo feature on/off

EXIT Exits command and returns to lower
level

FIND Searches for a constant string of text

FOR Batch command extension

FORMAT Formats a disk to receive MS-DOS file
• fixed disk
• flexible disk

GOTO Batch command extension

IF Batch command extension

Syntax

BACKUP

BREAK ON
BREAK OFF

CHDIR [pathname]

CHKDSK [d:] <filespec> [/F] [/V]

CIPHER <keyword> [<filename>]

CLS

CONFIG

COPY <filespec> [filespec] [pathname]
[pathname] [/V]

CTTY \DEV\DEV

DATE [<mm>-<dd>-<yy>]

DEL [filespec] [pathname]

DIR [filespec] [pathname] [/P] [/W]

DISKCOPY [d:] [d:]

ECHO [ON message]
ECHO [OFF message]

EXIT

FIND [/V /C /N] <string> [<filename . . .>]

For batch processing:
FOR %%<c> IN <set> DO <command>
For interactive processing:
FOR %<c> IN <set> DO <command>

FORMAT [d] : [/V]
FORMAT [d:] [/V /J /D /1 /O /S]

GOTO <label>

IF<condition> <command>

5-2

MS-DOS USER'S GUIDE MS-DOS COMMANDS

MS-DOS COMMAND SUM M ARY (Cont.)

Name
(Synonym)

Purpose

LOCATE Converts executable files to binary
format

MKDIR
(MD)

Makes a directory

MORE Displays output one screen at a time

PATH Sets a command search path

PAUSE Pauses for input in a batch file

PRINT Background print feature

PROMPT Designates command prompt

RECOVER Recovers a bad disk

REM Displays a comment in a batch file

REN
(RENAME)

Renames first file as second file

RDCPM Transfers CP/M files to an MS-DOS
formatted disk

RMDIR
(RD)

Removes a directory

SET Sets one string value to another

SHIFT Increases number of replaceable param
eters in batch process

SORT Sorts data alphabetically, forward or
backward

SYS Transfers MS-DOS system files from
drive A: to the drive specified

TIME Displays and sets time

TYPE Displays the contents of file specified

VER Prints MS-DOS version number

VERIFY Verifies writes to disk

VOL Prints volume identification number

Syntax

LOCATE <filespec> [d:] [<filename>
[<.ext>]]

MKDIR <pathname>

MORE

PATH [<pathname>[;<pathname>] . . .]

PAUSE [comment]

PRINT [[filespec] [/T] [/C] [/P]] . . .

PROMPT [<prompt-text>]

RECOVER <filename>
RECOVER <d:>

REM [comment]

REN <filespec> <filename>

RDCPM DIRd:
RDCPM d: filename [d :]

RMDIR [d:] <pathname>

SET [<string = string >]

SHIFT

SORT [/R] [/+n]

SYS <d>:

TIME [<hh> [:<mm>]]

TYPE <filespec>

VER

VERIFY [ON]
VERIFY [OFF]

VOL [d :]

5-3

BACKUP

BACKUP

TYPE

External

PURPOSE
Copies the contents o f one o f the logical fixed disks in the source
drive to flexible disks; also restores the fixed disk.

SYNTAX

BACKUP

COMMENTS
Before copying begins, BACKUP asks for the source and desti
nation drive designations, the 6-character volume ID (label) to be
placed on each flexible disk, and if write with verify is to be per
formed.

After answering the questions, insert a formatted flexible disk in
the destination disk drive and press <C R > to start the copy. (The
flexible disks must be formatted using no switches.) As soon as
one flexible disk is filled, BACKUP prompts you to insert the
next disk.

NOTE: BACKUP copies the entire contents o f one logical fixed
disk. I f you only want to copy selected files, use the COPY
command.

To restore the fixed disk, simply reverse the copy: specify the
flexible disk drive as the source and the fixed disk drive as the
destination. Messages are displayed if the ID you enter does not
match the ID on the flexible disk or if you insert a flexible disk
out o f sequence.

NAME

5-4

MS-DOS USER'S GUIDE MS-DOS COMMANDS

BREAK

NAME

BREAK

TYPE

Internal

PURPOSE
Sets CONTROL-C check.

SYNTAX

BREAK ON
BREAK OFF

COMMENTS
I f you are running an application program that uses CONTROL-C
function keys, you will want to turn o ff the MS-DOS CONTROL-
C function so that when you press <CONTROL-C> you affect
your program and not the operating system. Specify BREAK
OFF to turn o ff CONTROL-C and BREAK ON when you have
finished running your application program and are using MS-DOS.

5-5

CHDIR

CHDIR (CHANGE DIRECTORY)

TYPE

Internal

SYNONYM

CD

PURPOSE
Changes directory to a different path; displays current (working)
directory.

SYNTAX

CHDIR [pathname]

COMMENTS
I f your working directory is \ BIN \ USER \ JOE and you want to
change your path to another directory (such as \ BIN \ USER \
JOE\FORMS), type:

CHDIR \ BIN \ USER \ JOE \ FORMS

and MS-DOS puts you in the new directory. A shorthand notation
is also available with this command:

CHDIR . .

This command always puts you in the parent directory o f your
working directory.

CHDIR used without a pathname displays your working directory.
I f your working directory is \ BIN \ USER \ JOE on drive B, and
you type CHDIR <C R > , MS-DOS displays:

B: \ BIN \ USER \ JOE

This command is useful if you forget the name o f your working
directory.

NAME

5-6

MS-DOS USER'S GUIDE MS-DOS COMMANDS

CHKDSK

NAME

CHKDSK (CHECK DISK)

TYPE

External

PURPOSE
Scans the directory o f the specified disk drive and checks it for
consistency.

SYNTAX

CHKDSK [d :] <filespec> [/F] [/V]

COMMENTS
CHKDSK should be run occasionally on each disk to check for
errors in the directory. I f any errors are found, CHKDSK displays
error messages, if any, and then a status report similar to the one
below.

160256 bytes total disk space
8192 bytes in 2 hidden files

512 bytes in 2 directories
30720 bytes in 8 user files

121344 bytes available on disk

65536 bytes total memory
53152 bytes free

CHKDSK does not correct the errors found in your directory
unless you specify the /F (fix) switch. Typing /V causes CHKDSK
to display messages while it is running.

You can redirect the output from CHKDSK to a file. Simply type:

CHKDSK A:>filenam e

The errors are sent to the filename specified. Do not use the /F
switch if you redirect CHKDSK output.

5 - 7

The following errors are corrected automatically if you specify
the /F switch:

Invalid drive specification

Invalid parameter

Invalid sub-directory entry

Cannot CHDIR to <filename>
Tree past this point not processed

First cluster number is invalid
entry truncated

Allocation error, size adjusted

Has invalid cluster, file truncated

Disk error reading FAT

Disk error writing FAT

<filename> contains
non-contiguous blocks

All specified file(s) are contiguous

You must correct the following errors returned by CHKDSK,
even if you specified the /F switch:

Incorrect DOS version
You cannot run CHKDSK on versions o f MS-DOS that are not
2.0 or higher.

Insufficient memory
Processing cannot continue

There is not enough memory in your machine to process
CHKDSK for this disk. You must obtain more memory to run
CHKDSK.

Errors found, F parameter not specified
Corrections will not be written to disk

You must specify the /F switch if you want the errors corrected
by CHKDSK.

5 -8

MS-DOS USER'S GUIDE MS-DOS COMMANDS

Invalid current directory
Processing cannot continue

Restart the system and rerun CHKDSK.

Cannot CHDIR to root
Processing cannot continue

The disk you are checking is bad. Try restarting MS-DOS and
RECOVER the disk.

<filename> is cross linked on cluster
Make a copy o f the file you want to keep, and then delete
both files that are cross linked.

X lost clusters found in y chains
Convert lost chains to file (Y/N)?

I f you respond Y to this prompt, CHKDSK creates a directory
entry and a file for you to resolve this problem (files created
by CHKDSK are named FILEnnnnnnnn).

CHKDSK then displays:

X bytes disk space freed

I f you respond N to this prompt and have not specified the
/F switch, CHKDSK frees the clusters and displays:

X bytes disk space would be freed

Probable non-DOS disk
Continue (Y/N)?

The disk you are using is a non-DOS disk. You must indicate
whether or not you want CHKDSK to continue processing.

Insufficient room in root directory
Erase files in root and repeat CHKDSK

CHKDSK cannot process until you delete files in the root
directory.

Unrecoverable error in directory
Convert directory to file (Y/N) ?

I f you respond Y to this prompt, CHKDSK converts the bad
directory into a file. You can then fix the directory yourself
or delete it.

5-9

CIPHER

CIPHER

TYPE

External

PURPOSE
Encrypts and decrypts files based on a specified keyword.

SYNTAX

CIPHER <keyword> [<filename>]

COMMENTS
Use this command when you want to encrypt a file for security
purposes. The CIPHER command uses a keyword that must be
provided when encrypting the file. To encrypt the file NSA.CIA
using the keyword “ SECRET,” enter:

CIPHER SECRET < NSA.CIA

This displays the encrypted file (NSA.C IA) on your screen. I f you
want the encrypted file sent to another file, enter:

CIPHER SECRET <NSA.C IA > M Y STERY.NEW

where MYSTERY.NEW is the name o f the file where you are
storing the encrypted file. You may delete the original file NSA.
CIA.

To decrypt the encrypted file MYSTERY.NEW, simply reverse
the process:

CIPHER SECRET <M YSTERY.NEW

This command decrypts the file MYSTERY.NEW and displays it
on your screen. I f you want the decrypted file sent to another file,
called NOSECRET.XXX, type:

CIPHER SECRET <M YSTERY.NEW >NOSECRET.XXX

NAME

5-10

MS-DOS USER'S GUIDE MS-DOS COMMANDS

NOTE: You must supply the same keyword that you encrypted
the file with when you decrypt the file, or the CIPHER
command will not work.

I f you omit the less-than sign (<), CIPHER takes input
from the keyboard and outputs to the screen. The file name
is ignored. I f you omit the greater-than sign (>), the encrypted
file is not sent to another file but to the screeen. You can
terminate either o f these actions by pressing CONTROL-Z or
CONTROL-C.

5-11

CLS

CLS

TYPE

Internal

PURPOSE
Clears the terminal screen,

SYNTAX

CLS

COMMENTS
The CLS command causes MS-DOS to send the ANSI escape se
quence ESC[2J (that clears the screen) to the console.

NAME

5-12

MS-DOS USER'S GUIDE MS-DOS COMMANDS

CONFIG

NAME

CONFIG

TYPE

External

PURPOSE
Defines and modifies (temporarily or permanently) configuration
information to MS-DOS.

SYNTAX

CONFIG

COMMENTS
Use this command to define your processing environment to MS-
DOS: the type o f printer and disks, any programmable function
keys, and the number o f retries to be performed on disk read and
writes.

MS-DOS is initially set up with specific parameters. The following
table shows these parameters and the changes that you can make
with CONFIG.

Initial Definition With CONFIG

Programmable none up to 20
Function Keys

Printer parallel serial

Serial Printer
Interface:

— Stop Bits 1 1 1/2 or 2
— Parity even disabled or odd
— Character 7 bits 5, 6 ,or 8

length
— Baud rate 9600 50-19200

Disk 2 flexible 1 flexible, 1 -3 fixed

Retry/Restore
Counters:

— Flexible 5, 5 1-9, 1-9
— Fixed 5,5 1-9, 1-9

5-13

CONFIG is made up o f a series o f lead-through screens. To begin,
type CONFIG and you see the main function screen.

CONFIG

CONFIG U T IL ITY

1) Modify Function Keys
2) Select Printer (Serial/Parallel)
3) Modify Retry/Restore Counter
4) Modify Serial Printer Interface
5) Modify Disk Configuration
6) Exit Program

* Enter function

After you select the function, further screens guide you in defining
your configuration. Although the screens are self-explanatory,
some usage conventions should be noted.

None o f the 20 programmable function keys are predefined. A
single definition can be approximately 255 characters long (the
exact length depends on the characters used). The definition may
specify any function, but cannot include another function key (no
characters in the range o f 80-FF are accepted).

Function key definitions are placed in a table that can hold up to
492 characters. I f more are entered a message is displayed. When
you continue processing, the input definition o f the key that
caused the overflow is deleted, but any original contents is not.

The function keys are a convenience feature. An often-used
function, for example, can be assigned to a function key and then
initiated simply by pressing the key.

Assume you usually begin processing by displaying the directory
on your system disk. You could assign the command DIR A : (plus
the < C R > return function) to function key 1 with CONFIG.
Request function 1 from the main screen, function 2 from the
function key screen, and then press F I in response to the Enter
Function Key message. You will see:

5-14

MS-DOS USER’S GUIDE MS-DOS COMMANDS

Function 01:

Now, enter the command, including th e<C R > function.

Function 01: DIR A :< C R >

NOTE: The control character keys with hexadecimal values from
00 through IF are displayed between the symbols < >.

Check your definition and press the function key. (The definition
always begins and ends by pressing the function key.) The key is
now programmed to do a directory display. I f you want to check
the assignment, request the ‘display definition’ function.

As already discussed in Chapter 2, CONFIG must be used to define
the disk system unless two flexible disks are being used. Modifi
cations to the disk configuration parameters must be specified as
“ permanent,” written to the operating system disk, and must be
followed by a system restart. (A restart simply means turning o ff
and on the computer.) The restart initializes the disk drives.

The Exit Program function may be used after each configuration
function is performed or after all functions are completed. When
requested, Exit Program displays three options.

1) Update O.S. disk in drive A
2) Return to main program
3) Exit CONFIG

ATTENTIO N: Changes to the disk configuration must be
written to disk (permanent) and must be
followed by a restart. Update the disk, exit
CONFIG, and then turn o ff and on the com
puter when the system prompt appears.

* Enter function

Function 1 is used to have the new configuration parameters
written to disk. I f the modifications are only temporary (for a
specific run, for example), use function 3; the changes are only
made in memory.

I f you are making permanent changes and want to also update all
other copies o f your operating system disk, just insert another disk

5-15

in drive A and request function 1. You can repeat this procedure
and update all MS-DOS operating system disks.

You seldom have errors when using CONFIG, but you may - if
your operating system disk is nearing its capacity. During the last
phase o f a “ modify disk configuration” function, CONFIG writes
the changes to disk in a file called CONFIG.SYS. I f the directory
or the file area itself is full, you will see either o f two messages:

DIRECTORY FULL
DELETE A FILE FROM YOUR O.S. DISK; THEN REPEAT
THIS FUNCTION.

or

DISK FULL
DELETE OR SHORTEN A FILE FROM YOUR O.S. DISK;
THEN REPEAT THIS FUNCTION.

To correct the problem, simply delete or shorten a non-essential
file (a scratch or backup file, perhaps); then, request CONFIG
again, go directly to the Exit Program function, and specify
function 1. The configuration changes are written to disk.

5-16

MS-DOS USER'S GUIDE MS-DOS COMMANDS

COPY

NAME

COPY

TYPE

Internal

PURPOSE
Copies one or more files to another disk. I f you prefer, you can
give the copies different names. This command can also copy files
on the same disk.

SYNTAX

COPY <filespec> [filespec] [pathname] [pathname] [/V]

COMMENTS
Before using this command, be sure the destination disk contains
sufficient space for the copy.

I f the second filespec option is not given, the copy is to the de
fault drive and has the same name as the original file (first filespec
option). I f the first filespec is on the default drive and the second
filespec is not specified, the COPY is aborted (copying files to
themselves is not allowed) and MS-DOS returns the error message:

File cannot be copied onto itself
0 File(s) copied

NOTE: You cannot copy a file on flexible disk to another flexible
disk using a single flexible disk drive. To copy selected files,
you must first copy the files to the fixed disk and then to
another flexible disk.

The second option may take three forms:

1. I f the second option is a drive designation (d :) only, the origi
nal file is copied with the original filename, to the designated
drive.

5-17

2. I f the second option is a filename only, the original file is
copied to a file on the default drive with the filename speci
fied.

3. I f the second option is a full filespec, the original file is copied
to a file on the default drive with the filename specified.

The /V switch causes MS-DOS to verify that the sectors written on
the destination disk are recorded properly. Although there are
rarely recording errors when you run COPY, you can verify that
critical data has been correctly recorded. This option causes the
COPY command to run more slowly because MS-DOS must check
each entry recorded on the disk.

The COPY command also allows file concatenation (joining) while
copying. Concatenation is accomplished by simply listing any
number o f files as options to COPY, separated by “ +.”

For example,

COPY A .X YZ + B.COM + B:C.TXT BIGFILE.CRP

This command concatenates files named A .X YZ, B.COM, and
B:C.TXT and places them in the file on the default drive called
BIGFILE.CRP.

To combine several files using wild cards into one file, you could
type:

COPY *.LST COMBIN.PRN

This command would take all files with a filename extension o f
.LST and combine them into a file named COMBIN.PRN.

In the following example, for each file found matching *.LST,
that file is combined with the corresponding .REF file. The result
is a file with the same filename but with the extension .PRN.
Thus, FILE1.LST will be combined with FILE1.REF to form
FILE1.PRN; then XYZ.LST with XYZ.REF to form XYZ.PRN;
and so on.

COPY *.LST + *.REF *.PRN

5-18

MS-DOS USER'S GUIDE MS-DOS COMMANDS

The following COPY command combines all files matching *.LST,
then all files matching *.REF, into one file named COMBIN.PRN:

COPY *.LST + *.REF COMBIN.PRN

Do not enter a concatenation COPY command where one o f the
source filenames has the same extension as the destination. For
example, the following command is an error if ALL.LST already
exists:

COPY *.LST ALL.LST

The error would not be detected, however, until ALL.LST is ap
pended. A t this point it could have already been destroyed.

COPY compares the filenames o f the input file with the filename
of the destination. I f they are the same, that one input file is
skipped, and the error message “ Content o f destination lost before
copy” is printed. Further concatenation proceeds normally. This
allows “ summing” files, as in this example:

COPY ALL.LST + *.LST

This command appends all *.LST files, except ALL.LST itself, to
ALL.LST. This command does not produce an error message and
is the correct way to append files using the COPY command.
Combining and copying files is normally performed in ASCII
mode. This means that the system interprets the first CONTROL-
Z character in the file as an end-of-file mark. You can, however,
combine binary files or binary and ASCII files. Consider the fo l
lowing command line where:

/A means ASCII (default)

/B means binary

[/A] [/B] <filespec>[filespec] [pathname] [/A] [/B] [/V]

I f you want to combine or copy binary files, use the /B argument
at the beginning o f the command line. In the following example,
/B tells COPY that files MASM.ABC and MASM.DEF are both
binary files. The /A or /B at the beginning applies to all subsequent
files in the command line until another /A or /B is found.

5-19

THIS PAGE INTENTIONALLY LEFT BLANK

MS-DOS USER 'S GUIDE MS-DOS COMMANDS

COPY/B MASM.ABC+MASM.DEF MASM.EXE

I f you want to combine ASCII and binary files, use the /A or /B
argument after the filename in the command line. In the following
example, the ASCII file A .XYZ, the binary file B.BIN, and the
ASCII file C.TXT are combined into BIGFILE.CRP. Again, the
/A or /B applies to all subsequent files in the command line until
another /A or /B is found.

COPY A.XYZ+B.BIN/B+B:C.TXT/A BIGFILE.CRP

A /A on the resulting file causes a CONTROL-Z to be added as the
last character in that file. A /B on the resulting file means no
CONTROL-Z character is added.

NOTE: Binary files output by development tools, e.g., macro
assembler locate, are recognized as such by the system pro
vided you define the extension without wild card characters.
I f you combine or copy these files, you do not need to include
the /B argument.

5 -1 9b

[

CTTY

NAME

CTTY

TYPE

Internal

PURPOSE
Allows you to change the device from which you issue commands
(T T Y represents the console).

SYNTAX

CTTY \DEV\DEV

COMMENTS
DEV stands for “ device” , which is the device from which you are
giving commands to MS-DOS. This command is useful if you want
to change the device on which you are working. The command

CTTY \D EV\AUX

moves all command I/O (input/output) from the current device
(the console) to the AU X port, such as a printer. The command

CTTY \D EV\CON

moves I/O back to the original device (here, the console). Refer to
“ Illegal Filenames” in Chapter 3 for a list o f valid device names to
use with the CTTY command.

5-20

MS-DOS USER'S GUIDE MS-DOS COMMANDS

DATE

NAME

DATE

TYPE

Internal

PURPOSE
Enter or change the date known to the system. This date is re
corded in the directory for any files you create or alter.

You can change the date from your terminal or from a batch file.
(MS-DOS does not display a prompt for the date if you use an
AUTOEXEC.BAT file, so you may want to include a DATE
command in that file.)

SYNTAX

DATE [< m m > -< d d > -< y y >]

COMMENTS
I f you type DATE, DATE responds with the message:

Current date is < m m > -< d d > -< y y >
Enter new date

Press < C R > if you do not want to change the date shown.

You can also type a particular date after the DATE command, as
in:

DATE 5-9-83

In this case, you do not have to answer the “ Enter new date:”
prompt.

The new date must be entered using numerals only; letters are not
permitted. The allowed options are:

5-21

<m m > = 1-12
< d d > = 1-31
< y y > = 80-99 or 1980-2099

The date, month, and year entries may be separated by hyphens
(-) or slashes (/).

I f the options or separators are not valid, DATE displays the mes
sage:

Invalid date
Enter new date

DATE then waits for you to enter a valid date.

5-22

MS-DOS USER'S GUIDE MS-DOS COMMANDS

DEL

NAME

D EL(D ELETE)

TYPE

Internal

SYNONYM

ERASE

PURPOSE
Deletes all files with the designated filespec.

SYNTAX

DEL [filespec] [pathname]

COMMENTS
I f the filespec is *.*, the prompt “ Are you sure?” appears. I f a Y
or y is typed as a response, then all files are deleted as requested.
You can also type ERASE for the DELETE command.

5-23

DIR

NAME

DIR (D IRECTORY)

TYPE

Internal

SYNTAX

DIR [filespec] [pathname] [/P] [/W]

PURPOSE
Lists the files in a directory.

COMMENTS
I f you just type DIR, all directory entries on the default drive are
listed. I f only the drive specification is given (D IR d:), all entries
on the disk in the specified drive are listed. I f only a filename is
entered with no extension (DIR filename), then all files with the
designated filename on the disk in the default drive are listed. I f
you designate a file specification (for example, DIR drfilename.ext),
all files with the filename specified on the disk in the drive speci
fied are listed. In all cases, files are listed with their size in bytes
and with the time and date o f their last modification.

The wild card characters ? and * (question mark and asterisk) may
be used in the filename option. As examples, the following table
shows equivalent command designations.

Two switches may be specified with DIR. The /P switch selects
Page Mode. With /P, display o f the directory pauses after the
screen is filled. To resume display o f output, press any key.

The /W switch selects Wide Display. With /W, only filenames are
displayed, without other file information. Files Eire displayed five
per line.

COMMAND EQUIVALENT

DIR
DIR FILENAME
DIR .EXT
DIR .

DIR *.*
DIR FILENAME.*
DIR *.EXT
DIR *.

5-24

MS-DOS USER'S GUIDE MS-DOS COMMANDS

DISKCOPY

NAME

DISKCOPY

TYPE

External

PURPOSE
Copies the contents o f the disk in the source drive to the disk in
the destination drive.

SYNTAX

DISKCOPY [d :] [d :]

COMMENTS
The first option you specify is the source drive; the second option
is the destination drive.

The disk in the destination drive must be formatted (by the same
operating system and in the same format as the source disk) before
using DISKCOPY.

You can specify the same drives or you may specify different
drives. I f the drives designated are the same, a single-drive copy
operation is performed. You are prompted to insert the disks at
the appropriate times. DISKCOPY waits for you to press any key
before continuing.

After copying, DISKCOPY prompts:

Copy another (Y /N)?_

I f you press Y, the next copy is performed on the same drives that
you originally specified, after you have been prompted to insert
the proper disks.

To end the COPY, press N.

Before using DISKCOPY, also consider the following command
characteristics:

5-25

• I f you omit both options, a single-drive copy operation is per
formed on the default drive.

• I f you omit the second option, the default drive is used as the
destination drive.

• Both disks must have the same number o f physical sectors
and those sectors must be the same size.

• Disks that have had a lot o f file creation and deletion activity
become fragmented, because disk space is not allocated se
quentially. The first free sector found is the next sector
allocated, regardless o f its location on the disk.

A fragmented disk can cause poor performance due to delays
involved in finding, reading, or writing a file. I f this is the case,
you must use the COPY command, instead o f DISKCOPY,
to copy your disk and eliminate the fragmentation.

For example:

COPY A :* .* B:

copies all files from the disk in drive A to the disk in drive
B.

• DISKCOPY automatically determines the number o f sides to
copy, based on the source drive and disk.

• I f disk errors are encountered during a DISKCOPY, MS-DOS
displays:

DISK error while reading drive A
Abort, Ignore, Retry?

Refer to Appendix B, Disk Errors, for information on this error
message.

5-26

MS-DOS USER'S GUIDE MS-DOS COMMANDS

ECHO

NAME

ECHO

TYPE

Internal; Batch processing

PURPOSE
Turns batch echo feature on and off.

SYNTAX

ECHO [ON message]
ECHO [O FF message]

COMMENTS
Normally, commands in a batch file are displayed (“ echoed”) on
the console when they are seen by the command processor. ECHO
OFF turns o ff this feature. ECHO ON turns the echo back on.

I f ON or OFF are not specified, the current setting is displayed.

5-27

EXIT

NAME

EXIT

TYPE

Internal

PURPOSE
Exits the program COMMAND.COM (the command processor)
and returns to a previous level, if one exists.

SYNTAX

EXIT

COMMENTS
This command can be used when you are running an application
program and want to start the MS-DOS command processor, then
return to your program. For example, to look at a directory on
drive B while running an application program, you must start the
command processor by typing COMMAND in response to the de
fault drive prompt:

A > COMMAND

You can now type the DIR command and MS-DOS displays the
directory for the default disk. When you type EXIT, you return
to the previous level (your application program).

5-28

MS-DOS USER'S GUIDE MS-DOS COMMANDS

FIND

NAME

FIND

TYPE

External

PURPOSE
Searches for a specific string o f text in a file or files.

SYNTAX

FIND [/V /C /N] <string> [<filename. . .>]

COMMENTS
FIND is a filter that takes as options a string and a series o f file
names. It displays all lines that contain a specified string from
the files specified in the command line.

I f no files are specified, FIND takes the input on the screen and
displays all lines that contain the specified string.

These switches can be used with FIND:

/V
This switch causes FIND to display all lines not containing
the specified string.

1C
This switch causes FIND to display only the count o f lines
that contained a match in each o f the files.

/N
This switch causes each line to be preceded by its relative line
number in the file.

The string should be enclosed in quotes. For example,

FIND “ Foo l’s Paradise” BO O K l.TX T BOOK2.TXT

displays all lines from BO O K l.TX T and BOOK2.TXT (in that
order) that contain the string “ Foo l’s Paradise.” The command

5-29

DIR B: I FIND /V “ D A T ”

causes MS-DOS to display all names o f the files on the disk in
drive B that do not contain the string DAT. Type double quotes
around a string that already has quotes in it.

When an error is detected, FIND responds with one o f the fo l
lowing error messages:

Incorrect DOS version
FIND only runs on versions o f MS-DOS that are 2.0 or higher.

FIND: Invalid number o f parameters
You did not specify a string when issuing the FIND command.

FIND: Syntax error
You typed an illegal string when issuing the FIND command.

FIND: File not found<filename>
The filename you have specified does not exist or FIND can
not find it.

FIND: Read error in<filename>
An error occurred when FIND tried to read the file specified
in the command.

FIND: Invalid parameter <option-name>
You specified an option that does not exist.

5-30

MS-DOS USER'S GUIDE MS-DOS COMMANDS

FOR

NAME

FOR

TYPE

Internal; Batch processing

PURPOSE
Command extension used in batch and interactive file processing.

SYNTAX

• For batch processing:

FOR %%<c> IN <set> DO <command>

• For interactive processing:

FOR % <c> IN <set> DO <command>

COMMENTS
< c> can be any character except 0, 1, 2, 3, . . , 9 to avoid con
fusion with the %0-%9 batch parameters.

<set> is (<item>. . .)

The % % <c> variable is set sequentially to each member o f <set>,
and then <command> is evaluated. I f a member o f <set> is an
expression involving * and/or ?, then the variable is set to each
matching pattern from disk. In this case, only one such<item>
may be in the set, and any <item > besides the first is ignored.

NOTE: The words IN, FOR, and DO must be in uppercase.

Consider these examples:

FOR %%f IN (*.ASM) DO MASM %%f;
FOR %%f IN (FOO BAR BLECH) DO REM %%f

i
5-31

The '%%’ is needed so that after batch parameter (%0-%9) pro
cessing is done, there is one left. I f only ‘% f’ were there, the
batch parameter processor would see the *%’, look at T , decide
that ‘% r was an error (bad parameter reference) and throw out
the ‘%f’, so that the command FOR would never see it. I f the FOR
is not in a batch file, then only one *%’ should be used.

5-32

MS-DOS USER'S GUIDE MS-DOS COMMANDS

FORMAT

NAME

FORM AT

TYPE

External

PURPOSE
Formats the disk in the specified drive to accept MS-DOS files.

SYNTAX

FORM AT [d :] [/V /J /D /1 /O /S] (flexible disks)
FORM AT [d :] [/V] (fixed disks)

COMMENTS
This command formats the disk and initializes the directory and
file allocation tables. I f no drive is specified, the disk in the de
fault drive is formatted. A ll disks are formatted at double density,
double sided and either at 9 sectors per track for a flexible disk or
17 sectors per track for a fixed disk.

When formatting a fixed disk, FORMAT displays a message asking
for the number o f certifications (read-after-write checks on each
track). The default value is 5; increasing the number will signifi
cantly increase the time for formatting.

Six switches control options that can be requested when formatting
a flexible disk; only the /V switch is valid when formatting a fixed
disk. O f the switches, two are used more frequently than the
others.

/V
Causes FORM AT to pause in the formatting process and dis
play a message asking for a volume label (useful in disk identi
fication).

/S
Causes FORM AT to copy the operating system files from the
disk in the default drive to the newly formatted disk. The files
are copied in the following order: IO.SYS, MSDOS.SYS,
COMMAND.COM. (Other files can then be selectively copied

5-33

with the COPY command.) When used with other switches,
/S must be entered last.

NOTE: To copy an entire system disk, format with no switches
and then use DISKCOPY. DISKCOPY produces a “mirror
image” and writes over any label.

The next group o f switches allows some other format to be
created on a flexible disk. (These formats may be needed if you
want to copy and use information from a non-NCR format disk.)
I f no switch is specified, the default format is assumed: 9 sectors
per track; double sided, double density (360 KB disk capacity).

/J
Formats at 9 sectors per track; single sided, double density
(180KB disk capacity).

/D
Formats at 8 sectors per track; double sided, double density
(320KB disk capacity).

/1
Formats at 8 sectors per track; single sided, double density
(160KB disk capacity).

The /O switch generates an E5 character in the first position o f an
empty (available) directory entry. Use this switch only if you need
to maintain compatibility with older versions o f MS-DOS; the
current standard entry to indicate empty directory entries is 00.

5-34

MS-DOS USER'S GUIDE MS-DOS COMMANDS

GOTO

NAME

GOTO

TYPE

Internal; Batch processing

PURPOSE
Command extension used in batch file processing.

SYNTAX

GOTO <label>

COMMENTS
GOTO causes commands to be taken from the batch file beginning
with the line after the < label> definition. I f no label has been de
fined, the current batch file terminates.

For example:

:foo
REM looping . . .
GOTO foo

produces an infinite sequence o f messages: REM looping

Starting a line in a batch file with causes the line to be ignored
by batch processing. The characters following GOTO define a
label, but this procedure may also be used to put in comment
lines.

5-35

IF

IF

TYPE

Internal; Batch processing

PURPOSE
Command extension used in batch file processing.

SYNTAX

IF<condition> <command>

COMMENTS
The parameter<condition> is one o f the following:

ERRORLEVEL <number>
True if and only if the previous program executed by COM
MAND had an exit code of<num ber> or higher.

<stringl > = = <string2 >
True if and only if <stringl> and <string2> are identical
after parameter substitution. Strings may not have embedded
separators.

EXIST <filename>
True if and only if <filename> exists.

NOT <condition>
True if and only if <condition> is false.

The IF statement allows conditional execution o f commands.
When the <condition> is true, then the <command> is executed.
Otherwise, the<command> is ignored.

NOTE: The words ERRORLEVEL, EXIST, and NOT must be
uppercase.

NAME

5-36

MS-DOS USER'S GUIDE MS-DOS COMMANDS

Consider the following examples:

IF NOT EXIST \ TMP \ FOO ECHO Can’t find file

IF NOT ERRORLEVEL 3 L IN K $1, , ;

5-37

LOCATE

LOCATE

TYPE

External

PURPOSE
Converts .EXE (executable) files to binary format. This results in
a saving of disk space and faster program loading.

SYNTAX

LOCATE <filespec> [d :] [<filenam e>[<.ext>]]

COMMENTS
This command is useful only if you want to convert .EXE files to
binary format. The file named by filespec is the input file. I f no
extension is specified, it defaults to .EXE. The input file is con
verted to .COM file format (memory image o f the program) and
placed in the output file. I f you do not specify a drive, the drive of
the input file is used. I f you do not specify an output filename,
the input filename is used. I f you do not specify a filename ex
tension in the output filename, the new file is given an extension
o f .BIN.

The input file must be in valid .EXE format produced by the
linker. The resident, or actual code and data part o f the file must
be less than 64K. There must be no STACK segment.

Two kinds o f conversions are possible, depending on whether the
initial CS:IP (Code Segmentinstruction Pointer) is specified in
the .EXE file.

1. I f CS:IP is not specified in the .EXE file, a pure binary con
version is assumed. I f segment fixups are necessary (that is, the
program contains instructions requiring segment relocation),
you are prompted for the fixup value. This value is the ab
solute segment at which the program is to be loaded. The re
sulting program is usable only when loaded at the absolute

NAME

5-38

MS-DOS USER'S GUIDE MS-DOS COMMANDS

memory address specified by a user application. The command
processor will not be capable o f properly loading the program.

2. I f CS:IP is specified as 0000:100H, it is assumed that the file
is to be run as a .COM file with the location pointer set at
100H by the assembler statement ORG; the first 100H bytes
o f the file are deleted. No segment fixups are allowed, as .COM
files must be segment relocatable; that is, they must assume
the entry conditions explained in the PROGRAMMER’S
MANUAL. Once the conversion is complete, you may re
name the resulting file with a .COM extension. Then the
command processor is able to load and execute the program
in the same way as the .COM programs supplied on your MS-
DOS disk.

I f CS:IP does not meet either o f these criteria, or if it meets the
.COM file criterion but has segment fixups, the following message
is displayed:

File cannot be converted

This message is also displayed if the file is not a valid executable
file.

I f LOCATE finds an error, one or more o f the following error mes
sages is displayed:

File not found
The file is not on the disk specified.

Insufficient memory
There is not enough memory to run LOCATE.

File creation error
LOCATE cannot create the output file. Run CHKDSK to de
termine if the directory is full, or if some other condition
caused the error.

Insufficient disk space
There is not enough disk space to create a new file.

Fixups needed - base segment (hex):
The source (.EXE) file contained information indicating that
a load segment is required for the file. Specify the absolute
segment address at which the finished module is to be located.

5-39

File cannot be converted
The input file is not in the correct format.

W ARNING - Read error on .EXE file.
Amount read less than size in header

This is a warning message only.

5-40

MS-DOS USER’S GUIDE MS-DOS COMMANDS

MKDIR

NAME

MKDIR

TYPE

Internal

SYNONYM

MD

PURPOSE
Makes a new directory.

SYNTAX

MKDIR < pathname>

COMMENTS
This command is used to create a hierarchical directory structure.
When you are in your root directory, you can create subdirectories
by using the MKDIR command. The command

MKDIR \ USER

creates a subdirectory \ USER in your root directory. To create a
directory named JOE under \USER, type:

MKDIR \ USER \ JOE

5-41

MORE

MORE

TYPE

External

PURPOSE
Sends output to console one screen at a time.

SYNTAX

MORE

COMMENTS
MORE is a filter that reads from standard input (such as a com
mand from your terminal) and displays one screen o f information
at a time. The MORE command then pauses and displays the
- -MORE- - message at the bottom o f your screen.

Pressing the < C R > key displays another screen o f information.
This process continues until all the input data has been read.

The MORE command is useful for viewing a long file one screen
at a time. I f you type

TYPEM YFILES.COM I MORE

MS-DOS displays the file MYFILES.COM (on the default drive)
one screen at a time.

NAME

5-42

MS-DOS USER'S GUIDE MS-DOS COMMANDS

PATH

NAME

PATH

TYPE

Internal

PURPOSE
Sets a command path.

SYNTAX

PATH [<pathname>[;<pathname>] . . .]

COMMENTS
This command allows you to tell MS-DOS which directories to
search for external commands after MS-DOS searches your working
directory. The default value is \BIN, where \BIN is the name o f
the directory in which all MS-DOS external commands reside.

To tell MS-DOS to search your \ BIN \ USER \ JOE directory for
external commands (in addition to a search o f the \BIN direc
tory), type:

PATH \ BIN \ USER \ JOE

MS-DOS now also searches the \ BIN \ USER \ JOE directory for
external commands until you set another path or shut down
MS-DOS.

You can tell MS-DOS to search more than one path by specifying
several pathnames separated by semicolons. For example,

PATH \ BIN \ USER \ JOE; \ BIN \ USE R \ SUE; \ BIN \ DE V

tells MS-DOS to search the directories specified by the above path
names to find external commands. MS-DOS searches the pathnames
in the order specified in the PATH command.

The command PATH with no options prints the current path. I f
you specify PATH;, MS-DOS sets the NUL path, meaning that
only the working directory is searched for external commands.

5 - 4 3

PAUSE

PAUSE

TYPE

Internal

PURPOSE
Suspends execution o f the batch file.

SYNTAX

PAUSE [comment]

COMMENTS
During the execution o f a batch file, you may need to change
disks or perform some other action. PAUSE suspends execution
until you press any key, except <CONTROL-C>.

When the command processor encounters PAUSE, it prints:

Strike a key when ready . . .

I f you press<CONTROL-C>, another prompt will be displayed:

Abort batch job (Y/N) ?

I f you type Y in response to this prompt, execution o f the re
mainder o f the batch command file is aborted and control is
returned to the operating system command level. Therefore,
PAUSE is used to break a batch file into pieces, allowing you
to end the batch command file at an intermediate point.

The comment is optional and is entered on the same line as
PAUSE. You may want to prompt the user o f the batch file with
some meaningful message when the batch file pauses. For example,
you may want to change disks in one o f the drives. An optional
prompt message may be given in such cases. The comment prompt
is displayed before the “ Strike a key” message.

NAME

5-44

MS-DOS USER'S GUIDE MS-DOS COMMANDS

PRINT

NAME

PRINT

TYPE

External

PURPOSE
Prints a text file on a line printer while you are processing other
MS-DOS commands (usually called “ background printing”).

SYNTAX

PRINT [[filespec] [/T] [/C] [/P]] . . .

COMMENTS
You use the PRINT command only if you have a line printer
attached to your computer. The following switches are provided
with this command:

/T - TERM INATE
This switch deletes all files in the print queue (those waiting
to be printed). A message to this effect is printed.

/C - CANCEL
This switch turns on cancel mode. The preceding filespec and
all following filespecs are suspended in the print queue until
you type a /P switch.

/P - PRINT
This switch turns on print mode. The preceding filespec and all
following filespecs are added to the print queue until you issue
a /C switch.

PR INT with no options displays the contents o f the print queue
on your screen without affecting the queue.

Consider the following examples:

PR INT /T

empties the print queue.

5-45

PRINT /T *.ASM

empties the print queue and queues all .ASM files on the default
drive.

PRINT A:TEMP1.TST/C A:TEMP2.TST A:TEMP3.TST

removes the three files indicated from the print queue.

PRINT TEMPI.TST /C TEMP2.TST /P TEMP3.TST

removes TEMP1.TST from the queue, and adds TEMP2.TST and
TEMP3.TST to the queue.

I f an error is detected, PRINT displays one o f the following error
messages:

Name o f list device [PR N :]
This prompt appears when PRINT is run the first time. Any
current device may be specified and that device then becomes
the PRINT output device. As indicated in the [] , simply
pressing < C R > results in the device PRN being used.

List output is not assigned to a device
This message is displayed if the “ Name o f list device” specified
to the preceding prompt is invalid. Subsequent attempts return
the same message until a valid device is specified.

PRINT queue is full
There is room for 10 files in the queue. I f you attempt to put
more than 10 files in the queue, this message appears on the
console.

PRINT queue is empty
There are no files in the print queue.

No files match d :XXXXXXXX.XXX
A filespec was given for files to add to the queue, but no files
match a specification. (I f there are no files in the queue to
match a cancelled filespec, no error message appears.)

5-46

MS-DOS USER’S GUIDE MS-DOS COMMANDS

Drive not ready
I f this message occurs when PRINT attempts a disk access,
PR INT keeps trying until the drive is ready. Any other error
causes the current file to be cancelled. In such a case, an error
message is output to your printer.

A ll files cancelled
I f the /T (TERM INATE) switch is issued, the message “ A ll
files cancelled by operator” is output on your printer. I f the
current file being printed is cancelled by a /C, the message
“ File cancelled by operator” is printed.

5-47

PROMPT

PROMPT

TYPE

Internal

PURPOSE
Changes the MS-DOS command prompt.

SYNTAX

PROMPT [<prompt-text>]

COMMENTS
This command allows you to change the MS-DOS system prompt.
I f no text is typed, the prompt is set to the default prompt, which
is the default drive designation. You can set the prompt to a special
prompt by using the characters indicated below.

The following characters can be used in the prompt command to
specify special prompts. They must all be preceded by a dollar
sign ($) in the prompt command:

NAME

Specify
This

Character To Get This Prompt:

$ — The '$' character
t — The current time
d — The current date
p— The current directory of the default drive
v — The version number
n — The default drive
g — The '> ' character
I — The '< ' character
b — The 'I' character
_ — A CR LF sequence
s — A space
h — A backspace
e — ASCII code XTB' (escape)

5-48

MS-DOS USER'S GUIDE MS-DOS COMMANDS

Consider the following example:

PROMPT $n:

Sets the prompt to the default drive followed by a colon.

You can also use escape sequences in your prompts. For example:

PROMPT $e[7m$nge[m

Sets the prompts in inverse video mode and returns to video mode
for other text.

5-49

RDCPM

RDCPM

TYPE

External

PURPOSE
Transfers NCR CP/M® files to an MS-DOS formatted disk.

SYNTAX

RDCPM DIR d: (displays directory on CP/M disk)
RDCPM d: filename [d :] (transfers CP/M file to MS-DOS disk)

COMMENTS
RDCPM reads the file from an NCR CP/M formatted disk and
transfers it to an MS-DOS formatted disk. Once transferred, the
file is an MS-DOS file.

The DIR variation o f RDCPM displays the directory o f the CP/M
disk, so you can see the names o f the files. The drive designation
o f the CP/M disk must be specified.

To transfer the file, you must specify the drive designation o f the
CP/M disk and the filename. The wild-card characters (* and ?)
may be used to transfer several files. (See Chapter 3, More about
Files, for a description o f naming files with wild cards.) The desti
nation drive designation is optioned; and, i f not specified, the disk
in the default drive is assumed to be the destination disk.

Consider the following examples:

A>RDCPM C: M YFILE .TXT B:
A>RDCPM C: M YFILE .TXT

The first command transfers M YFILE .TXT from the disk in drive
C to the disk in drive B; the second command transfers the same
file to the disk in drive A, the default drive.

NAME

5-50

MS-DOS USER'S GUIDE MS-DOS COMMANDS

NOTE: The source and destination drive designations must be
different. Therefore, if you have a single flexible disk drive and
want to transfer a CP/M file from a flexible disk, you must
first copy the file (with the CP/M operating system) to another
disk drive. Then, use the RDCPM command.

The following messages may be displayed; most are self-explanatory.

Hard disk error on CP/M drive
The disk specified by the source drive designation may not be
a CP/M disk.

Source and destination drives must not be the same
The CP/M and MS-DOS disks must be on different drives.

Drive not available for CP/M reading
MS-DOS cannot access the specified drive. This error occurs if
your MS-DOS disk configuration is not correct. For example,
you specified

RDCPM C: YOURFILE B:

but the system is configured for a 2-flexible disk system with
drives A and B. (No fixed disk was defined.) I f the configu
ration definition is the cause o f the error, use the CONFIG
utility to modify the definition and then run RDCPM again.

Insufficient disk space
The MS-DOS destination disk does not have enough space for
the CP/M file(s).

No room in directory to create file
The directory on the MS-DOS disk has no space to create an
entry for the CP/M file(s).

Source file name missing
The specified file is not on the NCR CP/M disk. Check that the
filename was entered correctly.

Source file not found
The specified file is not on the NCR CP/M disk. Check that the
filename was entered correctly.

File transfer complete
The specified file(s) was successfully transferred.

5-51

RECOVER

RECOVER

TYPE

External

PURPOSE
Recovers a file or an entire disk containing bad sectors.

SYNTAX

RECOVER <filename>
RECOVER < d :>

COMMENTS
I f a sector on a disk is bad, you can recover either the file con
taining that sector (without the bad sector) or the entire disk (if
the bad sector was in the directory).

To recover a particular file, type:

RECOVER <filename>

This causes MS-DOS to read the file sector by sector and to skip
the bad sector(s). When MS-DOS finds the bad sector(s), the sec
to rs) are marked and MS-DOS no longer allocates your data to
that sector.

To recover a disk, type:

RECOVER < d :>

where d: is the letter o f the drive containing the disk to be re
covered.

I f there is not enough room in the root directory, RECOVER
prints a message and stores information about the extra files in
the File Allocation Table. You can run RECOVER again to regain
these files when there is more room in the root directory.

NAME

5-52

MS-DOS USER'S GUIDE MS-DOS COMMANDS

REM

NAME

REM (REM ARK)

TYPE

Internal

PURPOSE
Displays remarks that are on the same line as the REM command
in a batch file during execution o f that batch file.

SYNTAX

REM [comment]

COMMENTS
The only separators allowed in the comment are the space, tab,
and comma. Consider the following example:

1: REM This file checks new disks
2: REM It is named NEWDISK.BAT
3: PAUSE Insert new disk in drive B :
4: FORM AT B:/S
5: DIR B:
6: CHKDSKB:

5-53

REN

REN (RENAME)

TYPE

Internal

SYNONYM

RENAME

PURPOSE
Changes the name o f the first option (filespec) to the second
option (filename).

SYNTAX

REN <filespec> <filename>

COMMENTS
The first option (filespec) must be given a drive designation if the
disk resides in a drive other than the default drive. Any drive desig
nation for the second option (filename) is ignored. The file remains
on the disk where it currently resides.

The wild card characters may be used in either option. A ll files
matching the first filespec are renamed. I f wild card characters
appear in the second filename, corresponding character positions
are not changed.

For example, the following command changes the names o f all
files with the .LST extension to similar names with the .PRN
extension:

REN *.LST *.PRN

In the next example, REN renames the file ABODE on drive B to
ADOBE:

REN B:ABODE ?D?B?

NAME

5-54

MS-DOS USER'S GUIDE MS-DOS COMMANDS

The file remains on drive B.

An attempt to rename a filespec to a name already present in the
directory results in the error message “ File not found.”

5 -5 5

RMDIR

RMDIR (REMOVE DIRECTORY)

TYPE

Internal

SYNONYM

RD

PURPOSE
Removes a directory from a hierarchical directory structure.

SYNTAX

RMDIR [d :] <pathname>

COMMENTS
This command removes a directory that is empty except for the
. and . . shorthand symbols.

To remove the \ BIN \ USER \ JOE directory, first issue a DIR
command for that path to ensure that the directory does not
contain any important files that you do not want deleted. Then
type:

RMDIR \ BIN \ USER \ JOE

The directory is deleted from the directory structure.

NAME

5-56

MS-DOS USER'S GUIDE MS-DOS COMMANDS

SET

NAME

SET

TYPE

Internal

PURPOSE
Sets one string value equivalent to another string for use in later
programs.

SYNTAX

SET [<string = string>]

COMMENTS
This command is meaningful only if you want to set values that
will be used by programs you have written. An application pro
gram can check all values that have been set with the SET command
by issuing SET with no options. For example, SET T T Y = VT52
sets your T T Y value to VT52 until you change it with another
SET command.

The SET command can also be used in batch processing. In this
way, you can define your replaceable parameters with names
instead o f numbers. I f your batch file contains the statement
“ L IN K %FILE%” , you can set the name that MS-DOS will use
for that variable with the SET command. The command SET
FILE = DOMORE replaces the %FILE% parameter with the
filename DOMORE. Therefore, you do not need to edit each
batch file to change the replaceable parameter names. Note that
when you use text (instead o f numbers) as replaceable parameters,
the name must be ended by a percent sign.

5 -5 7

SHIFT

SHIFT

TYPE

Internal; Batch processing

PURPOSE
Allows access to more than 10 replaceable parameters in batch file
processing.

SYNTAX

SHIFT

COMMENTS
Usually, command files are limited to handling 10 parameters,
%0 through %9. To allow access to more than ten parameters, use
SHIFT to change the command line parameters. For example, if

%0 = “ fo o ”
%1 = “ bar”
%2 = “ name”
%3 . . .%9 are empty

then a SHIFT results in the following:

%0 = “ bar”
%1 = “ name”
%2 . . ,%9 are empty

I f there are more than 10 parameters given on a command line,
those that appear after the 10th (%9) are shifted one at a time into
%9 by successive shifts.

NAME

5-58

MS-DOS USER'S GUIDE MS-DOS COMMANDS

SORT

NAME

SORT

TYPE

External

PURPOSE
SORT reads input from your terminal, sorts the data, then writes
it to your terminal screen or files.

SYNTAX

SORT [/R] [/+n]

COMMENTS
SORT can be used, for example, to alphabetize a file by a certain
column. There are two switches that allow you to select options:

/R
Reverses the sort; that is, sorts from Z to A.

/+n
Sorts starting with column n where n is some number. I f you
do not specify this switch, SORT begins sorting from column
1.

Consider the following examples. In the first one, the command
reads the file UNSORT.TXT, reverses the sort, and then writes the
output to a file named SORT.TXT:

SORT /R CUNSORT.TXT >SORT.TXT

The next command pipes the output o f the directory command to
the SORT filter. The SORT filter sorts the directory listing starting
with column 14 (this is the column in the directory listing that
contains the file size), then sends the output to the console. Thus,
the result o f this command is a directory sorted by file size:

DIR I S O R T /+14

5-59

The command

DIR I SORT /+14 I MORE

does the same thing as the command in the previous example,
except that the MORE filter gives you a chance to read the sorted
directory one screen at a time.

NOTE: A>SO R T leads to a keyboard entry. This entry can be
terminated only by CONTROL-Z.

*

5-60

MS-DOS USER'S GUIDE MS-DOS COMMANDS

SYS

NAME

SYS (SYSTEM)

TYPE

External

PURPOSE
Transfers the MS-DOS system files from the disk in the default
drive to the disk in the drive specified by d:.

SYNTAX

SYS <d> :

COMMENTS
SYS is normally used to update the system or to place the system
on a formatted disk that contains no files. An entry for d: is re
quired.

I f IO.SYS and MSDOS.SYS are on the destination disk, they must
take up the same amount o f space on the disk as the new system
will need. This means that you cannot transfer system files from
an MS-DOS 2.0 disk to an MS-DOS 1.1 disk. You must reformat
the MS-DOS 1.1 disk with the MS-DOS FORMAT command be
fore the SYS command will work.

The destination disk must be completely blank or already have the
system files IO.SYS and MSDOS.SYS.

The transferred files are copied in the following order:

IO.SYS
MSDOS.SYS

IO.SYS and MSDOS.SYS are both hidden files that do not appear
when the DIR command is executed. COMMAND.COM (the com
mand processor) is not transferred. You must use the COPY com
mand to transfer COMMAND.COM.

5-61

I f SYS detects an error, one o f the following messages will be
displayed:

No room for system on destination disk
There is not enough room on the destination disk for the
IO.SYS and MSDOS.SYS files.

Incompatible system size
The system files IO.SYS and MSDOS.SYS do not take up the
same amount o f space on the destination disk as the new sys
tem will need.

5-62

MS-DOS USER'S GUIDE MS-DOS COMMANDS

TIME

NAME

TIME

TYPE

Internal

PURPOSE
Displays and sets the time.

SYNTAX

TIME [<hh>[:<m m >]]

COMMENTS
I f the TIME command is entered without any arguments, the fo l
lowing message is displayed:

Current time is<hh>:<m m >:<ss>.<cc>
Enter new time: _

Press the <C R > key if you do not want to change the time shown.
A new time may be given as an option to the TIME command as
in:

TIME 8:20

The new time must be entered using numerals only; letters are not
allowed. The allowed options are:

<hh> =00-24
<m m > = 00-59

The hour and minute entries must be separated by colons. You do
not have to type the <ss> (seconds) or <cc> (hundredths o f se
conds) options.

MS-DOS uses the time entered as the new time if the options and
separators are valid. I f the options or separators are not valid, MS-
DOS displays the message:

Invalid time
Enter new tim e: _

MS-DOS then waits for you to type a valid time.

5-64

MS-DOS USER'S GUIDE MS-DOS COMMANDS

TYPE

NAME

TYPE

TYPE

Internal

PURPOSE
Displays the contents o f the file on the console screen.

SYNTAX

TYPE <filespec>

COMMENTS
Use this command to examine a file without modifying it. (Use
DIR to find the name o f a file and EDLIN to alter the contents
o f a file.) The only formatting performed by TYPE is that tabs
are expanded to spaces consistent with tab stops every eighth
column. Note that a display o f binary files causes control charac
ters (such as CONTROL-Z) to be sent to your computer, including
bells, form feeds, and escape sequences.

5-65

VER

NAME

VER

TYPE

Internal

PURPOSE
Prints MS-DOS version number.

SYNTAX

VER

COMMENTS
I f you want to know what version o f MS-DOS you are using, type
VER. The version number is displayed on your screen.

5-66

MS-DOS USER'S GUIDE MS-DOS COMMANDS

VER IFY

NAME

VERIFY

TYPE

Internal

PURPOSE
Turns the verify switch on or o ff when writing to disk.

SYNTAX

VE RIFY [O N]
VERIFY [O FF]

COMMENTS
This command has the same purpose as the /V switch in the COPY
command. If you want to verify that all files are written correctly
to disk, you can use the VERIFY command to tell MS-DOS to
verify that your files are intact (no bad sectors, for example). MS-
DOS performs a VERIFY each time you write data to a disk. You
receive an error message only if MS-DOS was unable to success
fully write your data to disk.

VERIFY ON remains in effect until you change it in a program
(by a SET VERIFY system call), or until you issue a VERIFY
OFF command to MS-DOS.

I f you want to know what the current setting o f VERIFY is, type
VE RIFY with no options.

5-67

VOL

NAME

VOL (VOLUME)

TYPE

Internal

PURPOSE
Displays disk volume number, i f it exists.

SYNTAX

VOL [d :]

COMMENTS
This command prints the volume ID o f the disk in drive d :. I f no
drive is specified, MS-DOS prints the volume ID o f the disk in the
default drive.

5-68

MS-DOS USER'S GUIDE EDITING A N D FUNCTION KEYS

MS-DOS EDITING AND FUNCTION KEYS

SPECIAL EDITING KEYS

The special editing keys deserve particular emphasis because they
depart from the way in which most operating systems handle com
mand input. You do not have to type the same sequences o f keys
repeatedly, because the last command line is automatically placed
in a special storage area called a template.

By using the template and the special editing keys, you can take
advantage o f the following MS-DOS features:

• A command line can be instantly repeated by pressing two
keys.

• I f you make a mistake in the command line, you can edit it
and retry without having to retype the entire command line.

• A command line that is similar to a preceding command line
can be edited and executed with a minimum o f typing by
pressing a special editing key.

The relationship between the command line and the template is
shown in Figure 6.1.

User Input

Command Line < -----------------------> Template

COMMAND.COM

Figure 6.1 Command line and template

6-1

You type a command to MS-DOS on the command line. When you
press the < C R > key, the command is automatically sent to the
command processor (COMMAND.COM) for execution. A t the
same time, a copy o f this command is sent to the template. You
can now recall the command or modify it with MS-DOS special
editing keys.

Table 6.2 contains a complete list o f the special editing keys. Each
o f these keys is more fully described in Chapter 7, Line Editor
(EDLIN), where they can be used to edit your text files.

Function Key(s) * Description

Copy one character <COPY1>
ESC S

Copies one character from the
template to the command line.

Copy up to character <COPYUP>
ESC T

Copies characters up to the char
acter specified in the template
and puts these characters on the
command line.

Copy template <COPYALL>
ESC U

Copies all remaining characters
in the template to the command
line.

Skip one character <SKIP1>
ESC V

Skips over (does not copy) a
character in the template.

Skip up to character <SKIPUP>
ESC W

Skips over (does not copy) the
characters in the template up to
the character specified.

Quit input <VOID>
ESC E

Voids the current input; leaves
the template unchanged.

Kill line <KI LL>
ESC J

Voids line on template; current in
put sent to template.

Insert mode <INSERT>
ESC P

Enters insert mode.

Replace mode <EXIT>
ESC Q

Turns insert mode off; this is the
default mode.

New template <NEWLINE>

J
Makes the new line the new tem
plate.

* Most functions require a 2-key entry. Do not press the keys simultaneously.

Table 6.2 Special editing functions

6-2

MS-DOS USER'S GUIDE EDITING A N D FUNCTION KEYS

Notice in the table that an editing function (except for N E W
LINE >) is initiated with two keys. Press the ESC key first and
then the editing key. Do not press the keys simultaneously.

Consider the following examples. In the examples, the name o f the
function key is used, not the actual key.

I f you type the following command

DIR PROG.COM

MS-DOS displays information about the file PROG.COM on your
screen. The command line is also saved in the template. To repeat
the command, just use the editing keys: <C O PYA LL> and <CR>.

The repeated command is displayed on the screen as you type:

<C O PYALL>D IR PROG.COM<CR>

Notice that pressing the <C O PYA LL> key causes the contents of
the template to be copied to the command line; pressing < C R >
causes the command line to be sent to the command processor for
execution.

I f you want to display information about a file named PROG. ASM,
you can use the contents o f the template and type:

<C O PYALL>C

Typing <CO PYALL>C copies all characters from the template to
the command line, up to but not including “ C ” . MS-DOS displays:

DIR PROG—

Note that the underline is your cursor. Now type:

.ASM

The result is:

DIR PROG.ASM—

The command line “ DIR PROG.ASM” is now in the template and

6-3

ready to be sent to the command processor for execution. To do
this, press <CR>.

Now assume that you want to execute the following command:

TYPE PROG.ASM

To do this, type:

TYPE<INSERT> < C O P Y A L L X R E T U R N >

Notice that when you are typing, the characters are entered directly
into the command line and overwrite corresponding characters in
the template. This automatic replacement feature is turned o ff
when you press the insert key. Thus, the characters “ TYPE ” re
place the characters “ D IR ” in the template. To insert a space
between “ TYPE ” and “ PROG.ASM” , you pressed <INSERT>
and then the space bar. Finally, to copy the rest o f the template
to the command line, you pressed <C O PYALL> and then <CR>.
The command TYPE PROG.ASM has been processed by MS-DOS,
and the template becomes “ TYPE PROG.ASM” .

I f you had misspelled “ TYPE ” as “ BYTE” , a command error
would have occurred. Still, instead o f throwing away the whole
command, you could save the misspelled line before you press
<C R > by creating a new template with the <NEW LINE> key:

BYTE PROG.ASM<NEWLINE>

You could then edit this erroneous command by typing:

T<C O PY l>P<C O PYA LL>

The < C O P Y l> key copies a single character from the template
to the command line. The resulting command line is then the
command that you want:

TYPE PROG.ASM

As an alternative, you can use the same template containing
BYTE PROG.ASM and then use the <SKIP1> and <INSERT>
keys to achieve the same result:

<SKIP1 > <SKIP1 > <COPY 1 > <IN SERT> YP <COP Y A L L >

6-4

MS-DOS USER'S GUIDE EDITING A N D FUNCTION KEYS

To illustrate how the command line is affected as you type, ex
amine the keys typed on the left; their effect on the command
line is shown on the right:

<SKIP1> Skips over 1st tem
plate character

<SKIP1> Skips over 2nd tem
plate character

< C O P Y l> T Copies 3rd template
character

< IN SE RT>YP TYP Inserts two characters
<C O PYALL> TYPE PROG.ASM Copies rest o f template

Notice that <SKIP1> does not affect the command line. It affects
the template by deleting the first character. Similarly, <SKIPUP>
deletes characters in the template, up to but not including a
given character.

These special editing keys can add to your effectiveness at the key
board. The next section describes control character functions that
can also help when you are typing commands.

CONTROL CHARACTER FUNCTIONS
A control character function is a function that affects the com
mand line. You have already learned about <CONTROL-C> and
<CONTROL-S>. Other control character functions are summarized
in the following table.

Remember that when you type a control character, such as
<CONTROL-C>, you must hold down the control key and then
press the “C” key.

6-5

Control
Character Function

<CONTROL-C> Aborts current command.

<CONTROL-H> Removes last character from command line, and erases
character from terminal screen (same as Backspace key).

<CONTROL-J> Inserts physical end-of-line, but does not empty command
line. Use the <LINE FEED> key to extend the current
logical line beyond the physical limits of one terminal
screen.

<CONTROL-P> Qr Echoes terminal output to the line printer. Press this key
<CONTROL-N> again to cancel echoing.

<CONTROL-S> Suspends display of output to terminal screen. Press any
key to resume.

<CONTROL-X> Cancels the current line; empties the command line; and
then outputs a back slash (\), carriage return, and line
feed. The template used by the special editing commands
is not affected.

NOTE: If you press CONTROL-P during a printout and continue keyboard entry,
the printout will be a mixture of the keyboard entries and information already
on the print spool. Be sure your printout is completed before using the
CONTROL-P character.

Table 6.3 Control character functions

6-6

MS-DOS USER'S GUIDE L IN E EDITOR (EDLIN)

LINE EDITOR (EDLIN)

GENERAL INFORMATION

In this chapter, you learn how to use the Line Editor (EDLIN).
You can use EDLIN to create, change, and display files, whether
they are source program or text files. Specifically, you can use
EDLIN to perform the following functions:

• Create new source files and save them.
• Update existing files and save both the updated and original

files.
• Delete, edit, insert, and display lines.
• Search for, delete, or replace text within one or more lines.

The text in files created or edited by EDLIN is divided into lines,
each up to 253 characters long. Line numbers are generated and
displayed by EDLIN during the editing process, but are not actu
ally present in the saved file.

When you insert lines, all line numbers following the inserted text
advance automatically by the number o f lines being inserted.
When you delete lines in a file, all line numbers following the de
leted text decrease automatically by the number o f lines deleted.
As a result, lines are always numbered consecutively in your file.

HOW TO START EDLIN
To start EDLIN, type:

EDLIN <filespec>

I f you are creating a new file, the <filespec> should be the name
o f the file you wish to create. I f EDLIN does not find this file on
a drive, EDLIN creates a new file with the name you specify. The
following message and prompt are displayed:

New file
*

7-1

You can now type lines o f text into your new file. To begin en
tering text, you must enter an I (Insert) command to insert lines.
The I command is discussed later in this chapter.

I f you want to edit an existing file, <filespec> should be the name
o f the file you want to edit. When EDLIN finds the file you
specify on the designated or default drive, the file is loaded into
memory. I f the entire file can be loaded, EDLIN displays the
following message on your screen:

End o f input file
*

You can then edit the file using EDLIN editing commands.

I f the file is too large to be loaded into memory, EDLIN loads
lines until memory is 3/4 full, and then displays the * prompt.
You can then edit the portion o f the file that is in memory.

To edit the remainder o f the file, you must save some o f the edited
lines on disk to free memory; then EDLIN can load the unedited
lines from disk into memory. Refer to the Write and Append
commands in this chapter for the procedure.

When you complete the editing session, you can save the original
and the updated (new) files by using the End command. The End
command is discussed in this chapter in the section EDLIN Com
mands. The original file is renamed with an extension o f .BAK,
and the new file has the filename and extension you specify in the
EDLIN command. The original .BAK file is not erased until the
end o f the editing session, or until disk space is needed by the
editor (EDLIN).

Do not try to edit a file with a filename extension o f .BAK
because EDLIN assumes that any .BAK file is a backup file. I f you
find it necessary to edit such a file, rename the file with another
extension (using the MS-DOS RENAME command discussed in
Chapter 5); then start EDLIN and specify the new<filespec>.

Notice that the prompt for EDLIN is an asterisk (*).

7-2

MS-DOS USER'S GUIDE LIN E EDITO R (EDLIN)

SPECIAL EDITING KEYS
The special editing keys and template discussed in Chapter 6 can
be used to edit your text files. These keys are discussed in detail
in this section.

Table 7.1 summarizes the commands, codes, and functions. De
scriptions o f the special editing keys follow the table.

Function Key(s) * Description

Copy one character <COPY1>
ESC S

Copies one character from the
template to the new line.

Copy up to character <COPYUP>
ESC T

Copies all characters from the
template to the new line, up to
the character specified.

Copy template <COPYALL>
ESC U

Copies all remaining characters
in the template to the screen.

Skip one character <SKIP1>
ESC V

Does not copy (skips over) a
character.

Skip up to character <SKIPUP>
ESC W

Does not copy (skips over) the
characters in the template, up
to the character specified.

Quit input <VOID>
ESC E

Voids the current input; leaves
the template unchanged.

Kill line <KI LL>
ESC J

Voids line on template; current
input sent to template.

Insert mode <INSE RT>
ESC P

Enters insert mode.

Replace mode <EXIT>
ESC Q

Turns insert mode off; this is the
default.

New template <NEWLINE>
J

Makes the new line the new
template.

* Most functions require a 2-key entry. Do not press the keys simultaneously.

Table 7.1 Special editing keys

7-3

< C0PY1>

ESC S

PURPOSE
Copies one character from the template to the command line.

COMMENTS
Pressing the < C O P Y l> key copies one character from the tem
plate to the command line. When the < C O P Y l> key is pressed,
one character is inserted in the command line and insert mode is
automatically turned off.

EXAMPLE
Assume that the screen shows:

1 : *This is a sample file.
1 :* _

KEY

At the beginning o f the editing session, the cursor (indicated by
the underline) is positioned at the beginning o f the line. Pressing
the < C O P Y l> key copies the first character (T) to the second o f
the two lines displayed:

1 : *This is a sample file
< C O P Y l> 1 :*T _

Each time the < C O P Y l> key is pressed, one more character ap
pears:

< C O P Y l> l : * T h _
< C O P Y l> l:*T h i_
< C O P Y l> l:*T h is_

7-4

MS-DOS USER'S GUIDE L IN E EDITOR tE D LIN)

<COPYUP>

KEY

ESC T

PURPOSE
Copies multiple characters up to a given character.

COMMENTS
Pressing the <COPYUP> key copies all characters up to a given
character from the template to the command line. The given
character is the next character typed after <COPYUP>; it is not
copied or displayed on the screen. Pressing the <COPYUP> key
causes the cursor to move to the single character that is specified
in the command. I f the template does not contain the specified
character, nothing is copied. Pressing <COPYUP> also automati
cally turns o ff insert mode.

EXAMPLE
Assume that the screen shows:

1 : *This is a sample file.
1 :*_

At the beginning o f the editing session, the cursor (indicated by
the underline) is positioned at the beginning o f the line. Pressing
the <CO PYUP> key copies all characters up to the character
specified immediately after the<CO PYUP> key.

1 : *This is a sample file
<CO PYUP>p 1: *This is a sam_

7-5

<COPYALL>

ESC U

PURPOSE
Copies template to command line.

COMMENTS
Pressing the <C O PYA LL> key copies all remaining characters
from the template to the command line. Regardless o f the cursor
position at the time the <C O PYA LL> key is pressed, the rest of
the line appears, and the cursor is positioned after the last charac
ter on the line.

EXAMPLE
Assume that the screen shows:

1: *This is a sample file.
1:

At the beginning o f the editing session, the cursor (indicated by
the underline) is positioned at the beginning o f the line. Pressing
the <C O PYA LL> key copies all characters from the template
(shown in the upper line displayed) to the line with the cursor
(the lower line displayed):

1 : *This is a sample file (template)
<C O PYA LL> 1 : *This is a sample file_(command line)

Also, insert mode is automatically turned off.

KEY

7-6

MS-DOS USER'S GUIDE L IN E EDITOR (EDLIN)

< SKIP1>

KEY

ESC V

PURPOSE
Skips over one character in the template.

COMMENTS
Pressing th e<S K IP l>k ey skips over one character in the template.
Each time you press th e< S K IP l> key, one character is not copied
from the template. The action o f the <SKIP1> key is similar to
the < C O P Y l> key, except that <SKIP1> skips a character in the
template rather than copying it to the command line.

EXAMPLE
Assume that the screen shows:

1 : *This is a sample file.
1 :*_

A t the beginning o f the editing session, the cursor (indicated by
the underline) is positioned at the beginning o f the line. Pressing
the <SKIP1> key skips over the first character (“ T ”).

1 : *This is a sample file
<SKIP1> 1 : *_

The cursor position does not change and only the template is af
fected. To see how much o f the line has been skipped over, press
the <C O PYA LL> key, which moves the cursor beyond the last
character o f the line.

1 : *This is a sample file.
<SKIP1> 1 :*_

<C O PYA LL> 1 : *his is a sample file.-

7-7

<SKIPUP>

ESC W

PURPOSE
Skips multiple characters in the template up to the specified
character.

COMMENTS
Pressing the <SKIPUP> key skips over all characters up to a given
character in the template. This character is not copied and is not
shown on the screen. I f the template does not contain the speci
fied character, nothing is skipped over. The action o f the<SKIPUP>
key is similar to the<COPYUP> key, except that<SKIPUP> skips
over characters in the template rather than copying them to the
command line.

EXAMPLE
Assume that the screen shows:

1 : *This is a sample file.
1 :* _

A t the beginning o f the editing session, the cursor (indicated by
the underline) is positioned at the beginning o f the line. Pressing
the <SKIPU P> key skips over all the characters in the template
up to the character pressed after the<SKIPUP> key:

1 : *This is a sample file
<SKIPUP>p 1 :*_

The cursor position does not change. To see how much o f the line
has been skipped over, press the <C O PYA LL> key to copy the
template. This moves the cursor beyond the last character o f the
line:

KEY

1 : *This is a sample file :
<SKIPUP>p 1 :*_

<C O PYA LL> l :*p le file. _

7-8

MS-DOS USER'S GUIDE L IN E EDITOR (EDLIN)

< VOID>

KEY

ESC E

PURPOSE
Quits input and empties the command line.

COMMENTS
Pressing the <V O ID > key empties the command line, but it leaves
the template unchanged. <V O ID > also prints a back slash (\),
carriage return, and line feed, and turns insert mode off. The cur
sor (indicated by the underline) is positioned at the beginning o f
the line. Pressing th e<C O PYALL> key copies the template to the
command line and the command line appears as it was before
<V O ID > was pressed.

EXAMPLE
Assume that the screen shows:

1 : *This is a sample file.
1

At the beginning o f the editing session, the cursor (indicated by
the underline) is positioned at the beginning o f the line. Assume
that you want to replace the line with “ Sample File” :

1 : *This is a sample file.
l:*Sam ple File-

To cancel the line you just entered (Sample File), and to keep
“ This is a sample file.” , press <VO ID >. Notice that a backslash
appears on the Sample File line to tell you it is cancelled.

1 : *This is a sample file.
<V O ID > l:*Sam ple File\

1 : _

Press < C R > to keep the original line, or to perform any other
editing functions. If< C O P Y A L L > is pressed, the original template
is copied to the command line:

<C O PYA LL> 1: This is a sample file.-

7-9

< INSERT>

ESC P

PURPOSE
Enters insert mode.

COMMENTS
Pressing th e< IN S E R T > key causes EDLIN to enter insert mode.
The current cursor position in the template is not changed. The
cursor does move as each character is inserted. However, when you
are finished inserting characters, the cursor is positioned at the
same character as it was before the insertion began. Thus, charac
ters are inserted in front o f the character to which the cursor
points.

EXAMPLE
Assume that the screen shows:

1 : *This is a sample file.
1 :* _

A t the beginning o f the editing session, the cursor (indicated by
the underline) is positioned at the beginning o f the line. Assume
that you press the<CO PYUP> and “ f ” keys:

1 : *This is a sample file
<CO PYU P>f 1 : *This is a sample _

Now press the < IN S E R T> key and insert the characters “ edit”
and a space:

KEY

1 : *This is a sample file.
<CO PYU P>f 1 : *This is a sample _
<COPYUP>edit 1 : *This is a sample edit _

I f you now press the <C O PYA LL> key, the rest o f the template
is copied to the line:

1 : *This is a sample edit
<C O P Y A LL> 1 : *This is a sample edit file. _

7-10

MS-DOS USER'S GUIDE LIN E EDITOR (ED LIN)

I f you press the <C R > key, the remainder o f the template is
truncated, and the command line ends at the end o f the insert:

< IN SE RT>ed it <C R > 1 : *This is a sample edit _

7-11

<EXIT>

ESC Q

PURPOSE
Enters replace mode.

COMMENTS
Pressing the < E X IT > key causes EDLIN to exit insert mode
and to enter replace mode. A ll the characters you type overstrike
and replace characters in the template. When you start to edit a
line, replace mode is in effect. I f the <C R > key is pressed, the
remainder o f the template is deleted.

EXAMPLE
Assume that the screen shows:

1: *This is a sample file.
1 :*_

KEY

A t the beginning o f the editing session, the cursor (indicated by
the underline) is positioned at the beginning o f the line. Assume
that you then press <COPYUP>m, <INSERT>lary, < E X IT >
tax, and then <C O PYA LL>:

<COPYUP>m
<INSERT>lary
< E X IT > tax
<C O PYA LL>

1: *This is a sample file.
1 : *This is a sa_
1 : *This is a salary-
1 : *This is a salary tax-
1 : *This is a salary tax file. _

Notice that you inserted “ lary” and replaced “ mple” with “ tax.”
I f you type characters that extend beyond the length o f the tem
plate, the remaining characters in the template are automatically
appended when you press <CO PYALL >.

7-12

MS-DOS USER'S GUIDE L IN E EDITOR (EDLIN)

< NEWLINE>

KEY
J

PURPOSE
Creates a new template.

COMMENTS
Pressing the <NEW LINE> key copies the current command line
to the template. The contents o f the old template are deleted.
Pressing <NEW LINE> outputs an @ (“ at sign” character), a car
riage return, and a line feed. The command line is also emptied
and insert mode is turned off.

NOTE: <NEW LINE> performs the same function as the<V O ID >
key, except that the template is changed and an @ (“ at sign”
character) is printed instead o f a \ (backslash).

EXAMPLE
Assume that the screen shows:

1 : *This is a sample file.
1 :* _

A t the beginning o f the editing session, the cursor (indicated by
the underline) is positioned at the beginning o f the line. Assume
that you enter <COPYUP>m , <INSERT>lary, < E X IT > tax, and
then <C O PYALL> :

<COPYUP>m
<INSERT>lary
< E X IT > tax
<C O PYA LL>

1: *This is a sample file.
1 : *This is a sa_
1: *This is a salary-
1 : *This is a salary tax-
1 : *This is a salary tax file.-

A t this point, assume that you want this line to be the new tem
plate; press the <NEW LINE> key:

<N E W LIN E > l:*Th is is a salary tax file. @

The @ indicates that this new line is now the new template. Ad
ditional editing can be done using the new template.

7-13

EDLIN COMMANDS

This section describes the individual EDLIN commands that per
form editing functions on lines o f text. Before using an EDLIN
command, read the conventions and options that apply to all com
mands.

FORMAT CONVENTIONS

1. Pathnames are acceptable as options to commands. For exam
ple, typing EDLIN \ BIN \ USER \ JOE \ TEXT.TXT allows
you to edit the TEXT.TXT file in the subdirectory JOE.

2. You can reference line numbers relative to the current line
(the line with the asterisk). Use a minus sign with a number to
indicate lines before the current line. Use a plus sign with a
number to indicate lines after the current line.

Example:

-10, +10L

This command lists 10 lines before the current line, the cur
rent line, and 10 lines after the current line.

3. Multiple commands may be issued on one command line.
When you issue a command to edit a single line using a line
number (< line>), a semicolon must separate commands on the
line. Otherwise, one command may follow another without
any special separators. In the case o f a Search or Replace com
mand, the <string> may be ended by a <CONTROL-Z>
instead o f a<C R>.

Examples:

15;-5,+5L

The command line in the next example searches for “ This
string” and then displays 5 lines before and 5 lines after the
line containing the matched string. I f the search fails, then the
displayed lines are those line numbers relative to the current
line.

SThis string <CONTROL-Z>-5,+L

7-14

MS-DOS USER'S GUIDE LIN E EDITOR (EDLINJ

4. You can type EDLIN commands with or without a space be
tween the line number and command. For example, to delete
line 6, the command 6D is the same as 6 D.

5. It is possible to insert a control character (such as CONTROL-
C) into text by using the quote character CONTROL-V
before it while in insert mode. CONTROL-V tells MS-DOS to
recognize the next capital letter typed as a control character.
It is also possible to use a control character in any of the
string arguments o f Search or Replace by using the special
quote character. For example:

S<CONTROL-V>Z
finds the first occurrence
o f CONTROL-Z in a file

R<CONTROL-V > Z<CONTROL-Z >foo
replaces all occurrences
o f CONTROL-Z in a file with foo

S<CONTROL-V>C<CONTROL-Z>bar
replaces all occurrences
o f CONTROL-C with bar

It is possible to insert CONTROL-V into the text by typing
CONTROL-V-V.

6. The CONTROL-Z character ordinarily tells EDLIN, “ This is
the end o f the file.” I f you have CONTROL-Z characters
elsewhere in your file, you must tell EDLIN that these other
control characters do not mean “ End o f File.” Use the /B
switch to tell EDLIN to ignore any CONTROL-Z characters
in the file and to show you the entire file.

The EDLIN commands are summarized in the following table.
They are also described in further detail following the description
o f command options.

7-15

Command Purpose

<line> Edits line no.
A Appends lines
C Copies lines
D Deletes lines
E Ends editing
I Inserts lines
L Lists text
M Moves lines
P Pages text
Q Quits editing
R Replaces lines
S Searches text
T Transfers text
W Writes lines

Table 7.2 EDLIN commands

COMMAND OPTIONS
Several EDLIN commands accept one or more options. The effect
o f a command option varies, depending on with which command
it is used. The following list describes each option.

< lin e>
< lin e> indicates a line number that you type. Line numbers
must be separated by a comma or a space from other line num
bers, other options, and from the command.

< lin e> may be specified in one o f three ways:

• Number (n). Any number less than 65534 - - I f a number
larger than the largest existing line number is specified,
then < line> means the line after the last line number.

• Period (.) -- I f a period is specified for< line> , then<line>
means the current line number. The current line is the
last line edited, and is not necessarily the last line dis
played. The current line is marked on your screen by an
asterisk (*) between the line number and the first charac
ter.

• Pound (ft) - - The pound sign indicates the line after the
last line number. I f you specify ft for < line>, this has the
same effect as specifying a number larger than the last
line number.

<C R >
A carriage return entered without any o f the < lin e> speci-

7-16

MS-DOS USER'S GUIDE LIN E EDITOR (E D U N)

fiers directs EDLIN to use a default value appropriate to the
command.

?
The question mark option directs EDLIN to ask you if the
correct string has been found. The question mark is used only
with the Replace and Search commands. Before continuing,
EDLIN waits for either a Y or < C R > for a yes response,
or for any other key for a no response.

<string>
<string> represents text to be found, to be replaced, or to re
place other text. The <string> option is used only with the
Search and Replace commands. Each <string> must be ended
by a <CONTROL-Z> or a < C R > (see the Replace command
for details). Do not leave spaces between strings or between a
string and its command letter, unless you want those spaces to
be part o f the string.

7-17

(A)PPEND

NAME

Append

PURPOSE
Adds the specified number o f lines from disk to the file being
edited in memory. The lines are added at the end o f lines that are
currently in memory.

SYNTAX

[<n >] A

COMMENTS
This command is meaningful only if the file being edited is too
large to fit into memory. As many lines as possible are read into
memory for editing when you start EDLIN.

To edit the remainder o f the file that will not fit into memory,
lines that have already been edited must be written to disk. Then
you can load unedited lines from disk into memory with the
Append command. (Refer to the Write command in this chapter
for information on how to write edited lines to disk.)

I f you do not specify the number o f lines to append, lines are
appended to memory until available memory is 3/4 full. No action
is taken if available memory is already 3/4 full.

The message “ End o f input file” is displayed when the Append
command has read the last line o f the file into memory.

7-18

MS-DOS USER'S GUIDE L IN E EDITOR (ED LIN)

(C)OPY

NAME

Copy

PURPOSE
Copies a range o f lines to a specified line number. The lines can
be copied as many times as you want by using the =countö
option.

SYNTAX

[< line>] , [< line>] ,< lin e > , [<count>]C

COMMENTS
I f you do not specify a number in <count>, EDLIN copies the
lines one time. I f the first or the second < lin e> is omitted, the
default is the current line. The file is renumbered automatically
after the copy.

The line numbers must not overlap or you will get an “ Entry
error” message. For example, 3,20,15C would result in an error
message.

EXAMPLES
Assume that the following file exists and is ready to edit:

1 : This is a sample file
2 : used to show copying lines.
3 : See what happens when you use
4 : the Copy command
5: (the C command)
6 : to copy text in your file.

You can copy this entire block o f text by issuing the following
command :

1,6,7C

The result is:

1 : This is a sample file
2 : used to show copying lines.

7-19

3: See what happens when you use
4 : the Copy command
5 : (the C command)
6 : to copy text in your file.
7 : This is a sample file
8: used to show copying lines.
9: See what happens when you use

10: the Copy command
11: (the C command)
12: to copy text in your file.

I f you want to place the text within other text, the third < lin e>
option should specify the line before which you want the copied
text to appear. For example, assume that you want to copy lines
and insert them within the following file :

1 : This is a sample file
2: used to show copying lines.
3: See what happens when you use
4: the Copy command
5: (the C command)
6 : to copy text in your file.
7: You can also use COPY
8 : to copy lines o f text
9: to the middle o f your file.

10: End o f sample file.

The command 3,6,9C results in the following file:

1 : This is a sample file
2 : used to show copying lines.
3 : See what happens when you use
4: the Copy command
5: (the C command)
6: to copy text in your file.
7 : You can also use COPY
8 : to copy lines o f text
9: to the middle o f your file.

10: See what happens when you use
11: the Copy command
12: (the C command)
13: to copy text in your file.
14: End o f sample file.

7-20

MS-DOS USER'S GUIDE L IN E EDITOR (EDLIN)

(D)ELETE

NAME

Delete

PURPOSE
Deletes a specified range o f lines in a file.

SYNTAX

[< lin e>] [,< lin e>]D

COMMENTS
I f the first < lin e> is omitted, that option will default to the cur
rent line (the line with the asterisk next to the line number). I f
the second < lin e> is omitted, then just the first < line> will be de
leted. When lines have been deleted, the line immediately after the
deleted section becomes the current line and has the same line
number as the first deleted < lin e> had before the deletion
occurred.

EXAMPLES
Assume that the following file exists and is ready to edit:

1 : This is a sample file
2 : used to show dynamic line numbers.
3 : See what happens when you use
4 : Delete and Insert

25: (the D and I commands)
26: to edit the text
27:* in your file.

To delete multiple lines, type < line> ,< line>D:

5,24D

The result is:

1 : This is a sample file
2 : used to show dynamic line numbers.

7-21

3 : See what happens when you use
4 : Delete and Insert
5 : (the D and I commands)
6 : to edit text
7 :* in your file.

To delete a single line, type:

6D

The result is:

1 : This is a sample file
2 : used to show dynamic line numbers.
3 : See what happens when you use
4 : Delete and Insert
5: (the D and I commands)
6:* in your file.

Next, delete a range o f lines from the following file:

1 : This is a sample file
2 : used to show dynamic line numbers.
3 :* See what happens when you use
4 : Delete and Insert
5 : (the D and I commands)
6 : to edit text
7 : in your file.

To delete a range o f lines beginning with the current line, type

,6D

The result is:

1 : This is a sample file
2 : used to show dynamic line numbers.
3:* in your file.

Notice that the lines are automatically renumbered.

7-22

MS-DOS USER'S GUIDE L IN E EDITOR IE DL IN)

<line> EDIT

NAME

Edit

PURPOSE
Edits line of text.

SYNTAX

[< line>]

COMMENTS
When a line number is typed, EDLIN displays the line number and
text; then, on the line below, EDLIN reprints the line number.
The line is now ready for editing. You may use any o f the EDLIN
editing commands to edit the line. The existing text o f the line
serves as the template until the <C R > key is pressed.

I f no line number is typed (that is, if only the <C R > key is pressed),
the line after the current line (marked with an asterisk) is edited.
I f no changes to the current line are needed and the cursor is at
the beginning or end o f the line, press the<C R > key to accept the
line as is.

CAUTION

I f the <C R > key is pressed while the cursor is in the
middle o f the line, the remainder o f the line is deleted.

EXAMPLE
Assume that the following file exists and is ready to edit:

1 : This is a sample file.
2 : used to show
3 : the editing o f line
4 :* four.

To edit line 4, type:

4

7-23

The contents o f the line are displayed with a cursor below the
line:

4 :* four.
4 •*_

Now, using the<C O PYALL> special editing key, type:

<INSERT>number 4: number-
<CO PYALL > <CR > 4: number four.

5:*_

7-24

MS-DOS USER'S GUIDE LIN E EDITOR (EDLIN)

(E)ND

NAME

End

PURPOSE
Ends the editing session.

SYNTAX

E

COMMENTS
This command saves the edited file on disk, renames the original
input file <filename>.BAK, and then exits EDLIN. I f the file is
created during the editing session, no .BAK file is created.

The E command takes no options. Therefore, you cannot tell
EDLIN on which drive to save the file. The drive you want to save
the file on must be selected when the editing session is started. I f
the drive is not selected when EDLIN is started, the file is saved
on the disk in the default drive. It is still possible to COPY the
file to a different drive using the MS-DOS COPY command.

You must be sure that the disk contains enough free space for the
entire file. I f the disk does not contain enough free space, the
write is aborted and the edited file is lost, although part o f the file
might be written out to the disk.

EXAMPLE

E <C R >

After execution o f the E command, the MS-DOS default drive
prompt (for example, A >) is displayed.

7-25

(I)NSERT

NAME

Insert

PURPOSE
Inserts text immediately before the specified <line>.

SYNTAX

[< lin e>]I

COMMENTS
I f you are creating a new file, the I command must be given before
text can be typed (inserted). Text begins with line number 1. Suc
cessive line numbers appear automatically each time <C R > is
pressed.

EDLIN remains in insert mode until <CONTROL-C> is typed.
When the insert is completed and insert mode has been exited, the
line immediately following the inserted lines becomes the current
line. A ll line numbers following the inserted section are incre
mented by the number o f lines inserted.

I f < lin e> is not specified, the default is the current line number
and the lines are inserted immediately before the current line. I f
< lin e> is any number larger than the last line number, or if a
pound sign (f) is specified as<line>, the inserted lines are appen
ded to the end o f the file. In this case, the last line inserted be
comes the current line.

EXAMPLES
Assume that the following file exists and is ready to edit:

1 : This is a sample file
2: used to show dynamic line numbers.
3 : See what happens when you use
4 : Delete and Insert
5: (the D and I commands)
6 : to edit text
7 :* in your file.

7-26

MS-DOS USER'S GUIDE L IN E EDITOR (EDLIN)

To insert text before a specific line that is not the current line,
type< line>I:

71

The result is:

7:_

Now, type the new text for line 7 :

7 : and renumber lines

Then to end the insertion, press <CONTROL-Z> on the next
line:

8: <CONTROL-Z>

Now type L to list the file. The result is:

1 : This is a sample file
2 : used to show dynamic line numbers.
3: See what happens when you use
4 : Delete and Insert
5 : (the D and I commands)
6 : to edit text
7 : and renumber lines
8 :* in your file.

To insert lines immediately before the current line, type:

I

The result is:

8 : -

Now, insert the following text and terminate with a<CONTROL-
Z > on the next line:

8 : so they are consecutive
9: <CONTROL-Z >

Now to list the file and see the result, type L:

7-27

The result is:

1: This is a sample file
2 : used to show dynamic line numbers.
3 : See what happens when you use
4 : Delete and Insert
5 : (the D and I commands)
6 : to edit text
7 : and renumber lines
8 : so they are consecutive
9:* in your file.

To append new lines to the end o f the file, type:

101

This produces the following:

10 : -

Now, type the following new lines:

10: The insert command can place new lines
11: in the file; there’s no problem
12: because the line numbers are dynamic;
13: they’ll go all the way to 65533.

End the insertion by pressing <CONTROL-Z> on line 14. The new
lines appear at the end o f all previous lines in the file. Now type
the list command, L :

The result is:

1 : This is a sample file
2 : used to show dynamic line numbers.
3 : See what happens when you use
4 : Delete and Insert
5: (the D and I commands)
6 : to edit text
7 : and renumber lines
8 : so they are consecutive
9: in your file.

10: The insert command can place new lines
11: in the file; there’s no problem
12: because the line numbers are dynamic;
13: they’ll go all the way to 65533.

7-28

MS-DOS USER'S GUIDE LIN E EDITOR (EDLIN)

(L)IST

NAME

List

PURPOSE
Lists a range of lines, including the two lines specified.

SYNTAX

[< line>] [,< lin e >]L

COMMENTS
Default values are provided if either one or both o f the options are
omitted. I f you omit the first option, as in:

,< lin e> L

the display starts 11 lines before the current line and ends with the
specified < line>. The beginning comma is required to indicate the
omitted first option.

NOTE: I f the specified < lin e> is more than 11 lines before the
current line, the display is the same as if you omitted both
options.

I f you omit the second option, as in

< line>L

23 lines are displayed, starting with the specified <line>.

I f you omit both parameters, as in

L

23 lines are displayed: the 11 lines before the current line, the cur
rent line, and the 11 lines after the current line. I f there are less
than 11 lines before the current line, more than 11 lines after the
current line are displayed to make a total o f 23 lines.

7-29

EXAMPLES
Assume that the following file exists and is ready to edit:

1 : This is a sample file
2 : used to show dynamic line numbers
3 : See what happens when you use
4 : Delete and Insert
5 : (the D and I commands)

15:* The current line contains an asterisk.

26: to edit text
27: in your file.

To list a range o f lines without reference to the current line,
type < lin e> , < line>L:

2,5L

The result is:

2 : used to show dynamic line numbers.
3 : See what happens when you use
4 : Delete and Insert
5: (the D and I commands)

To list a range o f lines beginning with the current line, type,
< line> L:

,26L

The result is:

15:* The current line contains an asterisk.

26: to edit text

7-30

MS-DOS USER'S GUIDE L IN E EDITOR (EDLIN)

To list a range o f 23 lines centered around the current line, type
only L :

L

The result is:

4 : Delete and Insert
5 : (the D and I commands)

13: The current line is listed in the middle o f the range.
14: The current line remains unchanged by the L command.
15:* The current line contains an asterisk.

26: to edit text.

7-31

(M)OVE

NAME

Move

PURPOSE
Moves a range o f text to the line specified.

SYNTAX

[< line>] ,[< line>] ,<line>M

COMMENTS
Use the Move command to move a block o f text (from the first
< lin e> to the second < lin e> to another location in the file. The
lines are renumbered according to the direction o f the move. For
example,

,+25,100M

moves the text from the current line plus 25 lines to line 100. I f
the line numbers overlap, EDLIN displays an “ Entry error”
message.

To move lines 20-30 to line 100, type:

20,30,100M

7-32

MS-DOS USER'S GUIDE L IN E EDITO R (ED LIN)

(P)AGE

NAME

Page

PURPOSE
Pages through a file 23 lines at a time.

SYNTAX

[< line>] [,< lin e>]P

COMMENTS
I f the first < lin e> is omitted, that number defaults to the current
line plus one. I f the second < lin e> is omitted, 23 lines are listed.
The new current line becomes the last line displayed and is marked
with an asterisk.

7-33

(Q)UIT

NAME

Quit

PURPOSE
Quits the editing session, does not save any editing changes, and
exits to the MS-DOS operating system.

SYNTAX

Q

COMMENTS
EDLIN prompts you to make sure you don’t want to save the
changes.

Type Y if you want to quit the editing session. No editing changes
are saved and no .BAK file is created. Refer to the End command
in this chapter for information about the .BAK file.

Type N or any other character if you want to continue the editing
session.

NOTE: When started, EDLIN erases any previous copy o f the file
with an extension o f .BAK to make room to save the new
copy. I f you reply Y to the “ Abort edit (Y/N)?” message,
your previous backup copy no longer exists.

EXAMPLE

Q
Abort edit (Y / N)?Y < C R >

A > —

7-34

MS-DOS USER'S GUIDE L IN E EDITOR (ED LIN)

(R)EPLACE

NAME

Replace

PURPOSE
Replaces all occurrences o f a string o f text in the specified range
with a different string o f text or blanks.

SYNTAX

[< line>] [,< line>] [?] R<stringl><CONTROL-Z><string2>

COMMENTS
As each occurrence o f <stringl> is found, it is replaced by
<string2>. Each line in which a replacement occurs is displayed.
I f a line contains two or more replacements o f <stringl> with
<string2>, then the line is displayed once for each occurrence.
When all occurrences o f <stringl> in the specified range are re
placed by <string2>, the R command terminates and the asterisk
prompt reappears.

I f a second string is to be given as a replacement, then <stringl >
must be separated from <string2> with a <CONTROL-Z>.
<String2> must also be ended with a <CONTROL-Z> <C R >
combination or with a simple <CR>.

I f <stringl > is omitted, then Replace takes the old <stringl > as
its value. I f there is no old <stringl> (that is, this is the first
replace done), then the replacement process is terminated imme
diately. I f <string2> is omitted, then <stringl> may be ended
with a <CR>. I f the first < lin e> is omitted in the range argument
(as in, < lin e>) then the first < lin e> defaults to the line after the
current line. I f the second < lin e> is omitted (as in < lin e> or
< line>,), the second < lin e> defaults to § . Remember that §
indicates the line after the last line o f the file.

I f <stringl> is ended with a <CONTROL-Z> and there is no
<string2>, <string2> is taken as an empty string and becomes
the new replace string. For example,

R<string2 > CCONTROL-Z > <CR >

7-35

R<stringl > <CR > and
R <C R>

replaces <stringl> by the old <string2> and the old <stringl>
with the old <string2>, respectively. Note that “ old” here refers
to a previous string specified either in a Search or a Replace com
mand.

I f the question mark (?) option is given, the Replace command
stops at each line with a string that matches <stringl >, displays
the line with <string2> in place, and then displays the prompt
“ O .K.?.” I f you press Y or th e<C R > key, then<string2> replaces
<stringl>, and the next occurrence o f <stringl> is found. Again,
the “ O .K.?” prompt is displayed. This process continues until the
end o f the range or until the end o f the file. After the last occur-
-rence o f <stringl> is found, EDLIN displays the asterisk prompt.

I f you press any key besides Y or <C R > after the “O .K.?”
prompt, the<stringl> is left as it was in the line, and Replace goes
to the next occurrence o f <stringl>. I f <stringl> occurs more
than once in a line, each occurrence o f<string l> is replaced indi
vidually, and the “ O .K.?” prompt is displayed after each replace
ment. In this way, only the desired <stringl> is replaced, and you
can prevent unwanted substitutions.

EXAMPLES
Assume that the following file exists and is ready for editing:

1 : This is a sample file
2: used to show dynamic line numbers.
3 : See what happens when you use
4 : Delete and Insert
5: (the D and I commands)
6 : to edit text
7 : in your file.
8: The insert command can place new lines
9: in the file; there’s no problem

10: because the line numbers are dynamic;
11: they’ll go all the way to 65533.

deletes occurrences of <stringl > , but

7-36

MS-DOS USER'S GUIDE L IN E EDITOR (EDLIN)

To replace all occurrences o f <stringl> with <string2> in a speci
fied range, type:

2,12 Rand<CONTROL-Z> o r<C R >

The result is:

4 : Delete or Insert
5 : (the D or I commors)
8: The insert commor can place new lines

Note that in the replacements, some unwanted substitutions
have occurred. To avoid these and to confirm each replacement,
the same original file can be used with a slightly different com
mand.

In the next example, to replace only certain occurrences o f the
first <string> with the second <string>, type:

2? Rand <CONTROL-Z> o r< C R >

The result is:

4 : Delete or Insert
O.K.? Y
5: (the D or I commands)
O.K.? Y
5: (the D or I commors)
O.K.? N
8 : The insert commor can place new lines
O.K.? N
*_

Now, type the List command (L) to see the result o f all these
changes:

4 : Delete or Insert
5: (The D or I commands)

8 : The insert command can place new lines

7-37

(S)EARCH

NAME

Search

PURPOSE
Searches the specified range of lines for a specified string of text.

SYNTAX

[< line>] [,< line>] [?] S < str in gX C R >

COMMENTS
The <string> must be ended with a <CR>. The first line that
matches <string> is displayed and becomes the current line.
I f the question mark option is not specified, the Search command
terminates when a match is found. I f no line contains a match for
<string>, the message “ Not found” is displayed.

I f the question mark option (?) is included in the command,
EDLIN displays the first line with a matching string; it then
prompts you with the message “ O .K.?” . I f you press either the
Y or <C R > key, the line becomes the current line and the search
terminates. I f you press any other key, the search continues
until another match is found, or until all lines are searched (and
the “ Not found” message is displayed).

I f the first < lin e> is omitted (as in ,<line>S <string>), the first
< line> defaults to the line after the current line. I f the second
< line> is omitted (as in < line> S <string> or <line>, S <string>),
the second < lin e> defaults to f (line after last line o f file), which
is the same as < line>, $ S<string>. I f <string> is omitted, Search
takes the old string if there is one. (Note that “ old” here refers
to a string specified in a previous Search or Replace command.)
I f there is not an old string (that is, no previous search or replace
has been done), the command terminates immediately.

EXAMPLES
Assume that the following file exists and is ready for editing:

1 : This is a sample file
2: used to show dynamic line numbers.
3 : See what happens when you use

7-38

MS-DOS USER'S GUIDE LIN E EDITOR (ED LIN)

4 : Delete and Insert
5 : (the D and I commands)
6 : to edit text
7 : in your file.
8 : The insert command can place new lines
9 : in the file; there’s no problem

10: because the line numbers are dynamic;
11 :* they’ll go all the way to 65533.

To search for the first occurrence o f the string “ and,” type

2,12 Sand<CR>

The following line is displayed:

4 : Delete and Insert

to get the “ and” in line 5, modify the search command by typing:

< S K IP 1 X C 0 P Y A L L > ,1 2 Sand<CR>

The search then continues from the line after the current line
(line 4), since no first line was given. The result is:

5 : (the D and I commands)

To search through several occurrences o f a string until the correct
string is found, type:

1, ? Sand

The result is:

4 : Delete and Insert
O.K.?—

I f you press any key (except Y or<C R >), the search continues, so
type N here:

O.K. ? N

Continue:

7-39

5 : (the D and I commands)
O .K .?_

Now press Y to terminate the search:

O.K.? Y
* _

To search for string X YZ without the verification (O .K.?), type:

SXYZ

EDLIN reports a match and continues to search for the same
string when you issue the S command:

S

EDLIN reports another match.

S

EDLIN reports the string is not found.

Note that <string> defaults to any string specified by a previous
Replace or Search command.

7-40

MS-DOS USER'S GUIDE L IN E EDITOR (EDLIN)

(T)RANSFER

NAME

Transfer

PURPOSE
Inserts (merges) the contents o f <filename> into the file current
ly being edited at < line>. I f < line> is omitted, then the current
line is used.

SYNTAX

[< line>] T <filename>

COMMENTS
This command is useful if you want to put the contents o f a file
into another file or into the text you are typing. The transferred
text is inserted at the line number specified by < line> and the
lines are renumbered.

7-41

(W)RITE

NAME

Write

PURPOSE
Writes a specified number of lines to disk from the lines that are
being edited in memory. Lines are written to disk beginning with
line number 1.

SYNTAX

[<n>] W

COMMENTS
This command is meaningful only if the file you are editing is too
large to fit into memory. When you start EDLIN, EDLIN reads
lines into memory until memory is 3/4 full.

To edit the remainder o f your file, you must write edited lines in
memory to disk. Then you can load additional lines from disk into
memory by using the Append command.

NOTE: I f you do not specify the number o f lines, lines are writ
ten until memory is 3/4 full. No action is taken if available
memory is already more than 3/4 full. A ll lines are renumbered,
so that the first remaining line becomes line number 1.

7-42

MS-DOS USER'S GUIDE LIN E EDITOR (EDLIN)

ERROR MESSAGES

When EDLIN finds an error, one o f the following error messages
is displayed:

Cannot edit .BAK file- -rename file

Explanation
You attempted to edit a file with a filename extension of
.BAK. .BAK files cannot be edited because this extension is
reserved for backup copies.

Action
I f you need the .BAK file for editing purposes, you must
either RENAME the file with a different extension, or COPY
the .BAK file and give it a different filename extension.

No room in directory for file

Explanation
When you attempted to create a new file, either the file direc
tory was full or you specified an illegal disk drive or an illegal
filename.

Action
Check the command line that started EDLIN for illegal file
name and illegal disk drive entries. I f the command is no
longer on the screen and if you have not yet typed a new com
mand, the EDLIN start command can be recovered by pressing
the<C O PYALL> key.

I f this command line contains no illegal entries, run the
CHKDSK program for the specified disk drive. I f the status
report shows that the disk directory is full, remove the disk.
Insert and format a new disk.

Entry Error

Explanation
The last command typed contained a syntax error.

Action
Retype the command with the correct syntax and press
<CR>.

7-43

Line too long

Explanation
During a Replace command, the string given as the replace
ment caused the line to expand beyond the limit o f 253 charac
ters. EDLIN aborted the Replace command.

Action
Divide the long line into two lines; then try the Replace com
mand twice.

Disk Full- -file write not completed

Explanation
You gave the End command, but the disk did not contain
enough free space for the whole file. EDLIN aborted the
E command and returned you to the operating system. Some
of the file may have been written to the disk.

Action
Only a portion (i f any) o f the file has been saved. You should
probably delete that portion o f the file and restart the editing
session. The file is not available after this error. Always be sure
that the disk has sufficient free space for the file to be written
to disk before you begin your editing session.

Incorrect DOS version

Explanation
You attempted to run EDLIN under a version o f MS-DOS that
was not 2.0 or higher.

Action
You must make sure that the version o f MS-DOS that you are
using is 2.0 or higher.

Invalid drive name or file

Explanation
You have not specified a valid drive or filename when starting
EDLIN.

Action
Specify the correct drive or filename.

7-44

MS-DOS USER'S GUIDE LIN E EDITOR (EDLIN)

Filename must be specified

Explanation
You did not specify a filename when you started EDLIN.

Action
Specify a filename.

Invalid parameter

Explanation
You specified a switch other than /B when starting EDLIN.

Action
Specify the /B switch when you start EDLIN.

Insufficient memory

Explanation
There is not enough memory to run EDLIN.

Action
You must free some memory by writing files to disk or by de
leting files before restarting EDLIN.

File not found

Explanation
The filename specified during a Transfer command was not
found.

Action
Specify a valid filename when issuing a Transfer command.

Must specify destination number

Explanation
A destination line number was not specified for a Copy or
Move command.

Action
Reissue the command with a destination line number.

7-45

Not enough room to merge the entire file

Explanation
There was not enough room in memory to hold the file during
a Transfer command.

Action
You must free some memory by writing some files to disk or
by deleting some files before you can transfer this file.

7-46

MS-DOS USER'S GUIDE F ILE COMPARE (FC) U T IL IT Y

FILE COMPARE (FC) U T IL ITY

GENERAL INFORMATION

It is sometimes useful to compare files on your disk. I f you have
copied a file and later want to compare copies to see which one is
current, you can use the MS-DOS File Compare (FC) Utility.

The File Compare Utility compares the contents o f two files. The
difference between the two files can be output to the console or
to a third file. The files being compared may be either source files
(files containing source statements o f a programming language), or
binary files (files output by the assembler, the MS-LINK Linker
utility, or by a high-level language compiler).

The comparisons are made in one o f two ways: on a line-by-line
or a byte-by-byte basis. The line-by-line comparison isolates blocks
o f lines that are different between the two files and prints those
blocks o f lines. The byte-by-byte comparison displays the bytes
that are different between the two files.

LIMITATIONS ON SOURCE COMPARISONS
FC uses a large amount o f memory as buffer (storage) space to
hold the source files. I f the source files are larger than available
memory, FC compares what can be loaded into the buffer space.
I f no lines match in the portions o f the files in the buffer space,
FC displays only the message:

FILES ARE DIFFERENT

For binary files larger than available memory, FC compares both
files completely, overlaying the portion in memory with the next
portion from disk. A ll differences are output in the same manner
as those files that fit completely in memory.

FILE SPECIFICATIONS
All file specifications use the following syntax:

[d :] <filename> [< .ext>]

8-1

d: is the letter designating a disk drive. I f the drive designation is
omitted, FC defaults to the operating system’s (current) default
drive.

filename is a 1- to 8-character name o f the file.

.ext is a 1- to 3-character extension to the filename.

HOW TO USE FILE COMPARE

The syntax o f FC is as follows:

FC [I f /B /W /C] <filenam el> <filename2>

FC matches the first file (filenamel) against the second (filename2)
and reports any differences between them. Both filenames can be
pathnames. For example,

FC B :\FO O \B A R \F ILE l.TX T \BAR\FILE2.TXT

FC takes FILE1.TXT in the \FOO\BAR directory o f disk B and
compares it with FILE2.TXT in the \BAR directory. Since no
drive is specified for filename2, FC assumes that the \ BAR direc
tory is on the disk in the default drive.

FC SWITCHES
There are four switches that you can use with the File Compare
Utility:

/B
Forces a binary comparison o f both files. The two files are
compared byte-to-byte, with no attempt to re-synchronize
after a mismatch. The mismatches are printed as follows:

— ADDRS----- F I ------F2-
xxxxxxxx yy zz

(where xxxxxxxx is the relative address o f the pair o f bytes
from the beginning o f the file). Addresses start at 00000000;
yy and zz are the mismatched bytes from file l and file2, re
spectively. I f one o f the files contains less data than the other,
then a message is printed out. For example, if file l ends before
file2, then FC displays:

8-2

MS-DOS USER'S GUIDE F IL E COMPARE (FC) U T IL IT Y

***D ata left in F 2 ***

If,
f stands for a number from 1 to 9. This switch specifies the
number o f lines required to match for the files to be con
sidered as matching again after a difference is found. I f this
switch is not specified, it defaults to 3. This switch is used
only in source comparisons.

/W
Causes FC to compress “ whites” (tabs and spaces) during the
comparison. Thus, multiple contiguous whites in any line
are considered as a single white space. Note that although FC
compresses whites, it does not ignore them. The two excep
tions are beginning and ending whites in a line, which are
ignored. For example (note that an underscore represents a
white)

— M ore_data_to-be_found—

matches with

More_data- to_be_found

and with

------- More-----data—to_be------found--------

but does not match with

----- Moredata—to_be_found

This switch is used only in source comparisons.
1C

Causes the matching process to ignore the case o f letters. A ll
letters in the files are considered uppercase letters. For ex
ample,

Much—MORE_data—IS—NO T-FO UND

matches

much_more_data-is-not-found

8-3

I f both the /W and /C options are specified, then FC com-
resses whites and ignores case. For example,

___DAT A _ was_found___

will match:

data—was_found

This switch is used only in source comparisons.

DIFFERENCE REPORTING
The File Compare Utility reports the differences between the two
files you specify by displaying the first filename, followed by the
lines that differ between the files, followed by the first line to
match in both files. FC then displays the name o f the second file
followed by the lines that are different, followed by the first line
that matches. The default for the number o f lines to match be
tween the files is 3. (I f you want to change this default, specify
the number o f lines with the Of switch.) For example,

---------------- <filenam el>
<difference>
< ls t line to match file 2 in f i le l>

---------------- <filename2>
<difference>
< ls t line to match file l in file2>

FC continues to list each difference.

I f there are too many differences (involving too many lines), the
program simply reports that the files are different and stops.

I f no matches are found after the first difference is found, FC
displays:

8-4

MS-DOS USER'S GUIDE F ILE COMPARE (FC) U T IL IT Y

* * * Files are different * * *

and returns to the MS-DOS default drive prompt (for example,
A >).

REDIRECTING FC OUTPUT TO A FILE
The differences and matches between the two files you specify are
displayed on your screen unless you redirect the output to a file.
This is accomplished in the same way as MS-DOS command re
direction (refer to Chapter 4, Learning About Commands).

To compare F ile l and File2 and then send the FC output to
D IFFER.TXT, type:

FC F ile l File2 > DIFFER.TXT

The differences and matches between F ile l and File2 are put into
D IFFER.TXT on the default drive.

EXAMPLES

Example 1 - - Compare (No Switches)
Assume these two ASCII files are on disk:

ALPHA.ASM BETA.ASM

FILE A

A
B
C
D
E
F
G
H
I
M
N
O
P
Q
R
S

FILE B

A
B
C
G
H
1
J
1
2
P
Q
R
S
T
U
V

8-5

T 4
U 5
V W
W X
X Y
Y Z
Z

To compare the two files and display the differences on the termi
nal screen, type:

FC ALPHA.ASM BETA.ASM

FC compares ALPHA.ASM with BETA.ASM and displays the dif
ferences on the terminal screen. All other defaults remain intact.
(The defaults are: do not use tabs, spaces, or comments for
matches, and do a source comparison on the two files.)

The output appears as follows on the terminal screen (the Notes
do not appear):

ALPHA.ASM
D NOTE: ALPHA file
E contains defg,
F BETA contains g.
G

— BETA.ASM
G

ALPHA.ASM
M NOTE: ALPH A file
N contains mno where
0 BETA contains j!2 .
P

8-6

MS-DOS USER'S GUIDE F ILE COMPARE (FC) U T IL IT Y

------------------BETA. ASM
J
1
2
P

------------------ALPHA. ASM
W NOTE: ALPH A fUe

contains w where
------------------BETA.ASM BETA contains 45w.
4
5
W

Example 2 - - Compare with Number Switch
You can print the differences on the line printer using the same
two source files. In this example, four successive lines must be
the same to constitute a match.

Type:

FC /4 ALPHA.ASM BETA.ASM > PRN

The following output appears on the line printer:

----------------ALPHA.ASM
D
E
F
G
H
I
M
N NOTE: p is the 1st o f
O a string o f 4 matches.
P

8-7

BETA.ASM
G
H
1
J
1
2
P

W
ALPHA.ASM

----------------BETA.ASM
4
5
W

NOTE: w is the 1st o f a
string o f 4 matches.

Example 3 - - Compare with Binary Switch
This example forces a binary comparison and then displays the
differences on the terminal screen using the same two source files
as were used in the previous examples.

Type:

FC /B ALPHA.ASM BETA .ASM

The /B switch in this example forces binary comparison. This
switch and any others must be typed before the filenames in the
FC command line. The following display appears:

-AD D R S-- — F I— -F 2 —
00000009 44 47
OOOOOOOC 45 48
0000000F 46 49
00000012 47 4A
00000015 48 31
00000018 49 32
0000001B 4D 50
0000001E 4E 51
00000021 4F 52
00000024 50 53
00000027 51 54

8-8

MS-DOS USER'S GUIDE F IL E COMPARE (FC) U T IL IT Y

0000002A 52 55
0000002D 53 56
00000030 54 34
00000033 55 35
00000036 56 57
00000039 57 58
0000003C 58 59
0000003F 59 5A
00000042 5A 1A

ERROR MESSAGES

When the File Compare Utility detects an error, one or more
o f the following error messages are displayed:

Incorrect DOS version
You are running FC under a version o f MS-DOS that is not
2.0 or higher.

Invalid parameter ,<option>
One o f the switches that you have specified is invalid.

File not found :<filename>
FC could not find the filename you specified.

Read error in:<filename>
FC could not read the entire file.

Invalid number o f parameters
You have specified the wrong number o f options on the FC
command line.

8-9

MS-DOS USER'S GUIDE LIN K E R PROGRAM (MS-LINK)

LINKER PROGRAM (MS-LINK)

GENERAL INFORMATION

In this chapter you learn about the Linker program, called MS-
LINK. Read the entire chapter before you use MS-LINK.

NOTE: I f you are not going to compile and link programs, you
do not need to read this chapter.

MS-LINK is a program that performs the following functions:

• Combines separately produced object modules into one re
locatable load module - - a program you can run.

• Searches library files for definitions o f unresolved external
references.

• Resolves external cross-references.
• Produces a listing that shows both the resolution o f external

references and error messages.

PROGRAM OVERVIEW
When you write a program, you write it in source code. This source
code is passed through a compiler which produces object modules.
The object modules must be passed through the link process to
produce machine language that the computer can understand
directly. This machine language is in the form required for running
programs.

You may wish to link (combine) several programs and run them
together. Each o f your programs may refer to a symbol that is
defined in another object module. This reference is called an ex
ternal reference.

MS-LINK combines several object modules into one relocatable
load module, or Run file (called an .EXE or Executable file). As
it combines modules, MS-LINK makes sure that all external refer
ences between object modules are defined. L IN K can search

9-1

Figure 9.1 The MS-LINK Operation

9-2

MS-DOS USER'S GUIDE LIN K E R PROGRAM (MS-LINK)

several library files for definitions o f any external references that
are not defined in the object modules.

MS-LINK also produces a List file that shows external references
resolved, and it also displays any error messages.

MS-LINK uses available memory as much as possible. When avail
able memory is exhausted, MS-LINK creates a temporary disk file
named VM.TMP.

Figure 9.1 illustrates the various parts o f the MS-LINK operation.

DEFINITIONS YOU'LL NEED TO KNOW
Some o f the terms used in this chapter are explained below to
help you understand how MS-LINK works. Generally, if you are
linking object modules compiled from BASIC, Pascal, or a high-
level language, you do not need to know these terms. I f you are
writing and compiling programs in assembly language, however,
you need to understand MS-LINK and the definitions described
in this section.

In MS-DOS, memory can be divided into segments, classes, and
groups. Figure 9.2 illustrates these concepts.

Assume that the three segments have the following names.

Segment Class
Segment Name Name

Segment 1 PRO G .l CODE
Segment 2 PROG.2 CODE
Segment 3 PROG.3 D ATA

Note that segments 1, 2, and 12 have different segment names but
may or may not have the same segment class name. Segments 1, 2,
and 12 form a group with a group address o f the lowest address o f
segment 1 (that is, the lowest address in memory).

Each segment has a segment name and a class name. MS-LINK
loads all segments into memory by class name from the first seg
ment encountered to the last. A ll segments assigned to the same
class are loaded into memory contiguously.

9-3

Segment 1 Segment 2 Segment Segment Segment
3 4 5

Memory ̂

Segment 6 Segment
7

Segment
8

Segment
9

Segment
10

Segment
11

Segment
12

Segment
13

Segment
14

Segment
15

Segment
16

Segment
17

Segment
18

Segment
19

Segment
20

Segment
21

Segment
22

Highlighted area = a group (64K bytes addressable)

Figure 9.2 How memory is divided

9-4

MS-DOS USER 'S GUIDE LIN K E R PROGRAM (MS-LINK)

During processing, MS-LINK references segments by their addresses
in memory (where they are located). MS-LINK does this by find
ing groups o f segments.

A group is a collection o f segments that fit within a 64K byte area
o f memory. The segments do not need to be contiguous to form a
group (see illustration). The address o f any group is the lowest
address o f the segments in that group. A t link time, MS-LINK
analyzes the groups, then references the segments by the address
in memory o f that group. A program may consist o f one or more
groups.

I f you are writing in assembly language, you may assign the group
and class names in your program. In high-level languages (BASIC,
COBOL, FORTRAN, Pascal), the naming is done automatically by
the compiler.

FILES THAT MS-LINK USES
MS-LINK works with one or more input files, produces two out
put files, may create a temporary disk file, and may be directed
to search up to eight library files.

For each type o f file, you may give a 3-part file specification. The
format for MS-LINK file specifications is the same as that o f a
disk file :

[d :]< filenam e>[< .ext>]

• d: is the drive designation. Permissible drive designations for
MS-LINK are A : through 0 :. The colon is always required as
part o f the drive designation.

• filename is any legal filename o f one to eight characters.
• .ext is a 1- to 3-character extension to the filename. The

period is always required as part o f the extension.

Input File Extensions
I f no filename extensions are given in the input (object) file speci
fications, MS-LINK recognizes the following extensions by de
fault :

.OBJ Object

.LIB Library

9-5

Output File Extensions
MS-LINK appends the following default extensions to the output
(Run and List) files:

.EXE Run (may not be overridden)

.MAP List (may be overridden)

VM.TMP (Temporary) File
MS-LINK uses available memory for the link session. I f the files to
be linked create an output file that exceeds available memory,
MS-LINK creates a temporary file, names it VM.TMP, and puts it
on the disk in the default drive. I f MS-LINK creates VM.TMP, it
displays the message:

VM.TMP has been created.
Do not change disk in drive, <d :>

Once this message has been displayed, you must not remove the
disk from the default drive until the link session ends. I f the disk
is removed, the operation o f MS-LINK will be unpredictable, and
MS-LINK might display the error message:

Unexpected end o f file on VM.TMP

The contents o f VM.TMP are written to the file named following
the “ Run F ile:” prompt. VM.TMP is a working file only and is
deleted at the end o f the linking session.

CAUTION

Do not use VM.TMP as a filename for any file. I f you have
a file named VM.TMP on the default drive and MS-LINK
requires the VM.TMP file, MS-LINK deletes the VM.TMP
already on disk and creates a new VM.TMP. Thus, the con
tents o f the previous VM.TMP file will be lost.

USING MS-LINK

STARTING MS-LINK
MS-LINK requires two types o f input: a command to start MS-
L IN K and responses to command prompts. In addition, six
switches control MS-LINK features. Usually, you type all the
commands to MS-LINK on the terminal keyboard. As an option,
answers to the command prompts and any switches may be con

9 -6

MS-DOS USER'S GUIDE LIN K E R PROGRAM (M S-LINK)

tained in a response file. Command characters can be used to assist
you while giving commands to MS-LINK.

You may start MS-LINK in any o f three ways. The first method
is to type the commands in response to individual prompts. In
the second method, you type all commands on the line used to
start MS-LINK. To start MS-LINK by the third method, you must
create a response file that contains all the necessary commands
and tell MS-LINK where that file is when you start MS-LINK.

Method 1 LINK

Method 2 LINK <filenames> [/switches]

Method 3 LINK @<filespec>

Summary of methods to start MS-LINK

Method 1 : Prompts
To start MS-LINK with method 1, type:

L IN K

MS-LINK is loaded into memory, and then MS-LINK displays
four text prompts that appear one at a time. You answer the
prompts to tell MS-LINK to perform specific tasks.

A t the end o f each line, you may type one or more switches,
preceded by the switch character (in this case, a forward slash).

The command prompts are summarized in the following table and
are described in more detail in “ Command Prompts.”

PROMPT

Object Modules [.OBJ]:

Run File [Object-file.EXE]:

RESPONSES

List .OBJ files to be linked. They
must be separated by spaces or
plus signs (+). If a plus sign is the
last character typed, the prompt
reappears. There is no default;a
response is required.

Give filename for executable ob
ject code. The default is first-
object-filename.EXE. (You can
not change the output extension.)

9-7

List File [Run-file.MAP]:

Libraries []:

Method 2: Command Line
To start MS-LINK using method 2, type all commands on one line.
The entries following LIN K are responses to the command prompts.
The entry fields for the different prompts must be separated by
commas. Use the following syntax:

LINK<object-list>,<runfile>,<listfile>,<lib-list>[/sw itch...]

• object-list is a list o f object modules, separated by plus signs.
• runfile is the name o f the file to receive the executable output.
• listfile is the name o f the file to receive the listing.
• lib-list is a list o f library modules to be searched.
• /switch refers to optional switches, which may be placed fo l

lowing any o f the response entries (just before any o f the
commas or after the < lib-list>, as shown).

To select the default for a field, simply type a second comma with
no spaces between the two commas.

LINK
FUN+TEXT+TABLE+CARE/P/M, , FUNLIST,COBLIB.LIB

This command causes MS-LINK to be loaded, followed by the ob
ject modules FUN.OBJ, TEXT.OBJ, TABLE.OBJ, and CARE.OBJ.
MS-LINK then pauses (as a result o f using the /P switch). MS-LINK
links the object modules when you press any key, and produces a
global symbol map (the /M switch); defaults to FUN.EXE Run
file; creates a List file named FUNLIST.MAP; and searches the
Library file COBLIB.LIB.

Method 3: Response File
To start MS-LINK with method 3, type:

L IN K @<filespec>

Give filename for listing. The de
fault is RUN filename.

List filenames to be searched,
separated by spaces or plus signs
(+). If a plus sign is the last
character typed, the prompt re
appears. The default is no search.
(Extensions will be changed to
• LIB.)

9-8

MS-DOS USER'S GUIDE LIN K E R PROGRAM (MS-LINK)

filespec is the name o f a response file. A response file contains an
swers to the MS-LINK prompts (shown in method 1) and may also
contain any o f the switches. When naming a response file, the use
o f filename extensions is optional. Method 3 permits the com
mand that starts MS-LINK to be entered from the keyboard or
within a batch file without requiring you to take any further
action.

To use this option, you must create a response file containing
several lines o f text, each o f which is the response to an MS-
L IN K prompt. The responses must be in the same order as the
MS-LINK prompts discussed in method 1. I f desired, a long re
sponse to the “ Object Modules:” or “ Libraries:” prompt may be
typed on several lines by using a plus sign (+) to continue the same
response onto the next line.

Use switches and command characters in the response file the
same way as they are used for responses typed on the terminal
keyboard.

When the MS-LINK session begins, each prompt is displayed in
order with the responses from the response file. I f the response
file does not contain answers for all the prompts (in the form o f
filenames, the semicolon command character, or carriage returns),
MS-LINK displays the prompt that does not have a response and
then waits for you to type a legal response. When a legal response
is typed, MS-LINK continues the link session.

Consider the following example:

FUN TEXT TABLE CARE
/PAUSE/MAP
FUN LIST
COBLIB.LIB

This response file tells MS-LINK to load the four object modules
named FUN, TEXT, TABLE, and CARE. MS-LINK pauses before
producing a public symbol map to permit you to swap disks (see
discussion under /PAUSE in the Switches section before using this
feature). When you press any key, the output files are named
FUN.EXE and FUNLIST.MAP. MS-LINK searches the library file
COBLIB.LIB and uses the default setting for the switches.

9-9

COMMAND CHARACTERS
MS-LINK provides three command characters.

Plus sign
Use the plus sign (+) to separate entries and to extend the cur
rent line in response to the “ Object Modules:” and “ Libraries:”
prompts. (A space may be used to separate object modules.)
To type a large number o f responses (each may be very long),
type a plus sign and a < C R > at the end o f the line to extend
it. I f the plus sign and < C R > is the last entry following these
two prompts, MS-LINK prompts you for more module names.
When the “ Object Modules:” or “ Libraries:” prompt appears
again, continue to type responses. When all the modules to be
linked and libraries to be searched are listed be sure the
response line ends with a module name and a < C R > and not a
plus sign and<CR>.

Example:

Object Modules [.OBJ] : FUN TEXT
TABLE CARE+<CR>
Object Modules [.OBJ] :
FOO+FLIPFLOP+JUN QUE+<CR >
Object Modules [.OBJ] :
CORSAIR < C R >

Semicolon
To select default responses to the remaining prompts, use a
single semicolon (;) followed immediately by a carriage return
at any time after the first prompt (Run File:). This feature
saves time and overrides the need to press a series o f< C R >
keys.

NOTE: Once the semicolon has been typed and entered (by
pressing the < C R > key), you can no longer respond
to any o f the prompts for that link session. Therefore, do
not use the semicolon to skip some prompts. To skip
prompts, use th e< C R > key.

Example:

Object Modules
[.OBJ] : FUN TEXT TABLE C A R E <C R >
Run Module [FU N.EXT] : ;<C R >

9-10

MS-DOS USERS GUIDE LIN K E R PROGRAM (MS-LINK)

No other prompts appear, and MS-LINK uses the default
values (including FUN.MAP for the List file).

<CONTROL-C >
Use the <CONTROL-C> key to abort the link session at any
time. I f you type an erroneous response, such as the wrong
filename or an incorrectly spelled filename, you must press
<CONTROL-C> to exit MS-LINK then restart MS-LINK. If
you typed the error but did not press the < C R > key, you
may delete the erroneous characters with the backspace
key, but for that line only.

COMMAND PROMPTS
MS-LINK asks you for responses to four text prompts. When you
type a response to a prompt and press <C R > , the next prompt
appears. When the last prompt is answered, MS-LINK begins
linking automatically without further command. When the link
session is finished, MS-LINK exits to the operating system. When
the operating system prompt appears, MS-LINK has finished
successfully. I f the link session is unsuccessful, MS-LINK displays
the appropriate error message.

MS-LINK prompts the user for the names o f Object, Run, and List
files, and for Libraries. The prompts are listed in order o f appear
ance. The default response is shown in square brackets ([]) fo l
lowing the prompt, for prompts which can default to preset re
sponses. The “ Object Modules:” prompt, however, has no preset
filename response and requires you to type a filename.

Object Modules [.OBJ] :
Type a list o f the object modules to be linked. MS-LINK as
sumes by default that the filename extension is .OBJ. I f an
object module has any other filename extension, the extension
must be given. Otherwise, the extension may be omitted.

Modules must be separated by plus signs (+).

Remember that MS-LINK loads segments into classes in the
order encountered. You can use this information to set the
order in which the object modules are read by MS-LINK.

Run File [First-Object-filename.EXE]:
Typing a filename creates a file for storing the Run (execu
table) file that results from the link session. A ll Run files re

9-77

ceive the filename extension .EXE, even if you specify an
extension other than .EXE.

I f no response is typed to the “ Run F ile:” prompt, MS-LINK
uses the first filename typed in response to the “ Object
Modules:” prompt as the RUN filename.

Example:

Run File [FUN.EXE] : B:PAYROLL/P

This response directs MS-LINK to create the Run file P A Y
ROLL.EXE on drive B:. Also, MS-LINK pauses, which allows
you to insert a new disk to receive the Run file.

List File [Run-Filename.MAP] :
The List file contains an entry for each segment in the input
(object) modules. Each entry shows the addressing in the Run
file.

The default response is the Run filename with the default
filename extension .MAP.

Libraries [] :
The valid responses are up to eight library filenames or simply
a carriage return. (A carriage return means no library search.)
Library files must have been created by a library utility. MS-
L IN K assumes by default that the filename extension is
.LIB for library files.

Library filenames must be separated by spaces or plus signs (+).

MS-LINK searches library files in the order listed to resolve
external references. When it finds the module that defines the
external symbol, MS-LINK processes that module as another
object module.

I f MS-LINK cannot find a library file on the disks in the disk
drives, it displays the message:

Cannot find library <library-name>
Type new drive letter:

Press the letter for the drive designation (for example, B).

9-12

MS-DOS USER'S GUIDE LIN K E R PROGRAM IM S-LINK)

MS-LINK SWITCHES
The six MS-LINK switches control various MS-LINK functions.
Switches must be typed at the end o f a prompt response, regard
less o f the method used to start MS-LINK. Switches may be
grouped at the end o f any response, or may be scattered at the end
o f several. I f more than one switch is typed at the end o f one re
sponse, each switch must be preceded by a forward slash (/).

A ll switches may be abbreviated. The only restriction is that an
abbreviation must be sequential from the first letter through the
last typed; no gaps or transpositions are allowed. For example,
examine the following lists o f valid and invalid abbreviations.

Legal Illegal

/DSALLOCATE
Using the /DSALLOCATE switch tells MS-LINK to load all
data at the high end o f the Data Segment. Otherwise, MS-
L IN K loads all data at the low end o f the Data Segment. A t
runtime, the DS pointer is set to the lowest possible address
to allow the entire DS segment to be used. Use o f the /DSAL
LOCATE switch in combination with the default load low
(that is, the /HIGH switch is not used) permits the user appli
cation to dynamically allocate any available memory below
the area specifically allocated within DGroup, yet to remain
addressable by the same DS pointer. This dynamic allocation
is needed for Pascal and FO RTRAN programs.

NOTE: Your application program may dynamically allocate
up to 64K bytes (or the actual amount o f memory avail
able) less the amount allocated within DGroup.

/HIGH
Use o f the /HIGH switch causes MS-LINK to place the Run
file as high as possible in memory. Otherwise, MS-LINK places
the Run file as low as possible.

/D
/ DS
/DSA
/DSALLOCA

/DSL
/DAL
/DLC
/DSALLOCT

9-13

CAUTION

Do not use the /HIGH switch with Pascal or FORTRAN
programs.

/LINENUMBERS
The /LINENUMBERS switch tells MS-LINK to include in the
List file the line numbers and addresses o f the source state
ments in the input modules. Otherwise, line numbers are not
included in the List file.

NOTE: Not all compilers produce object modules that con
tain line number information. In these cases, o f course,
MS-LINK cannot include line numbers.

/MAP
/MAP directs MS-LINK to list all public (global) symbols de
fined in the input modules. I f /MAP is not given, MS-LINK
lists only errors (including undefined globals).

The symbols are listed alphabetically. For each symbol, MS-
L IN K lists its value and its segment:offset location in the
Run file. The symbols are listed at the end o f the List file.

/PAUSE
The /PAUSE switch causes MS-LINK to pause in the link ses
sion when the switch is encountered. Normally, MS-LINK
performs the linking session from beginning to end without
stopping. This switch allows the user to swap the disks before
MS-LINK outputs the Run (.EXE) file.

When MS-LINK encounters the /PAUSE switch, it displays
the message:

About to generate .EXE file
Change disks <hit any key>

MS-LINK resumes processing when the user presses any key.

CAUTION

Do not remove the disk that receives the List file, or the
disk used for the VM.TMP file, if one has been created.

9-14

MS-DOS USER'S GUIDE LIN K E R PROGRAM (M S-LIN K)

/STACK renumber >
The number entry represents any positive numeric value
(in hexadecimal radix) up to 65536 bytes. I f a value from
1 to 511 is typed, MS-LINK uses 512. I f the /STACK
switch is not used for a link session, MS-LINK calculates
the necessary stack size automatically.

A ll compilers and assemblers should provide information
in the object modules that allow the linker to compute the
required stack size.

A t least one object (input) module must contain a stack
allocation statement. I f not, MS-LINK displays the fol
lowing error message:

W ARNING: NO STACK STATEMENT

SAMPLE MS-LINK SESSION

This sample shows you the type o f information that is displayed
during an MS-LINK session.

In response to the MS-DOS prompt, type:

L IN K

The system displays the following messages and prompts (your
answers are underlined):

Microsoft Object Linker V.2.00
(C) Copyright 1982 by Microsoft Inc.

Object Modules [.OBJ] : NCRIO SYSINIT
Run File [N C R IO .E X E]:
List File [NUL.M AP] : NCRIO /MAP
Libraries [.L IB] : ;

Consider how your answers direct MS-LINK and how others affect
the output:

• By specifying /MAP, you get both an alphabetic listing and a
chronological listing o f public symbols.

9-15

• By responding PRN to the “ List F ile :” prompt, you can re
direct your output to the printer.

• By specifying the /LINE switch, MS-LINK gives you a listing
o f all line numbers for all modules. (Note that the /LINE
switch can generate a large volume o f output.)

• By pressing < C R > in response to the “ Libraries:” prompt, an
automatic library search is performed.

Once MS-LINK locates all libraries, the linker map displays a list
o f segments in the order o f their appearance within the load mod
ule. The list might look like this:

Start Stop Length Name
00000H 009ECH 09EDH CODE
009F0H 01166H 0777H SYSINITSEG

The information in the Start and Stop columns shows the 20-bit
hex address o f each segment relative to location zero. Location
zero is the beginning o f the load module.

The addresses displayed are not the absolute addresses where these
segments are loaded. Consult the PROGRAMMER’S MANUAL
for information on how to determine where relative zero is actual
ly located, and also on how to determine the absolute address o f a
segment.

Because the /MAP switch was used, MS-LINK displays the public
symbols by name and value. For example:

ADDRESS
009F:0012
009F:0005
009F:0011
009F:000B
009F:0013
009F :0009
009F:000F
009F:0000

PUBLICS—BY-NAM E
BUFFERS
CURRENT—DOS—LOCATION
D EFAU LT-D RIVE
DEVICE-LIST
FILES
F IN A L—DOS—LOCATION
M EM ORY-SIZE
SYSINIT

ADDRESS
009F:0000
009F:0005
009F :0009

PUBLICS BY VALUE
SYSINIT
CURRENT—DOS—LOCATION
F IN A L—DOS—LOCATION

9-16

MS-DOS USER'S GUIDE LIN K E R PROGRAM (MS-LINK)

009F:000B
009F:000F
009F :0011
009F :0012
009F:0013

DEVICE-LIST
MEMORY-SIZE
DEFAU LT-D RIVE
BUFFERS
FILES

ERROR MESSAGES

All errors cause the link session to abort. A fter you find the cause
o f the error and correct it, rerun MS-LINK. The following error
messages are displayed by MS-LINK; they are mostly self-
explanatory.

ATTEMPT TO ACCESS D ATA OUTSIDE OF SEGMENT
BOUNDS, POSSIBLY BAD OBJECT MODULE

There is probably a bad object file.

BAD NUMERIC PARAMETER
Numeric value is not in digits.

CANNOT OPEN TEM PORARY FILE
MS-LINK is unable to create the file VM.TMP because the disk
directory is full. Insert a new disk. Do not remove the disk
that will receive the List.MAP file.

ERROR: DUP RECORD TOO COMPLEX
DUP record in assembly language module is too complex. Sim
plify DUP record in assembly language program.

ERROR: FIXUP OFFSET EXCEEDS FIELD WIDTH
An assembly language instruction refers to an address with a
short instruction instead o f a long instruction. Edit assembly
language source and reassemble.

INPUT FILE READ ERROR
There is probably a bad object file.

IN V A LID OBJECT MODULE
An object module(s) is incorrectly formed or incomplete (as
when assembly is stopped in the middle).

9-17

SYMBOL DEFINED MORE TH AN ONCE
MS-LINK found two or more modules that define a single
symbol name.

PROGRAM SIZE OR NUMBER OF SEGMENTS EXCEEDS
CAPACITY OF LINKER

The total size may not exceed 384K bytes and the number o f
segments may not exceed 255.

REQUESTED STACK SIZE EXCEEDS 64K
Specify a size greater than or equal to 64K bytes with the
/STACK switch.

SEGMENT SIZE EXCEEDS 64K
64K bytes is the addressing system limit.

SYMBOL TABLE CAPACITY EXCEEDED
Very many and/or very long names were typed, exceeding the
limit o f approximately 25K bytes.

TOO M ANY EXTERNAL SYMBOLS IN ONE MODULE
The limit is 256 external symbols per module.

TOO M AN Y GROUPS
The limit is 10 groups.

TOO M ANY LIBRARIES SPECIFIED
The limit is 8 libraries.

TOO M ANY PUBLIC SYMBOLS
The limit is 1024 public symbols.

TOO M ANY SEGMENTS OR CLASSES
The limit is 256 (segments and classes taken together).

UNRESOLVED EXTERNALS: < lis t>
The external symbols listed have no defining module among
the modules or library files specified.

VM READ ERROR
This is a disk error; it is not caused by MS-LINK.

9-18

MS-DOS USER'S GUIDE LIN K E R PROGRAM (M S-LINK)

W ARNING: NO STACK SEGMENT
None o f the object modules specified contains a statement
allocating stack space, but the user typed the /STACK switch.

W ARNING: SEGMENT OF ABSOLUTE OR UNKNOWN TYPE
There is a bad object module or an attempt has been made to
link modules that MS-LINK cannot handle (e.g., an absolute
module).

WRITE ERROR IN TMP FILE
No more disk space remains to expand VM.TMP file.

WRITE ERROR ON RUN FILE
Usually, there is not enough disk space for the Run file.

9-19

M S -D O S U S E R 'S G U ID E D U A L -O P E R A T IN G S Y S T E M S C O N S ID E R A T IO N S

DUAL-OPERATING SYSTEMS CONSIDERATIONS

You may use your NCR DECISION MATE V with more than one
operating system. The dual-processor model, for example, provides
processing capabilities o f both 8- and 16-bit based applications. I f
you are planning to use MS-DOS and another operating system,
you are responsible for protecting your data files and other disk
software. Generally, data protection is simply a matter o f keeping
the disks properly labelled so that you always process using com
patible ones. You must also be sure that only compatible software
and data files are on the same disk.

This procedure o f ‘separation’ is also valid for a fixed disk, where
one o f the logical units may be formatted for use by MS-DOS
while the other is reserved for another operating system. When the
fixed disk is shared, you should put a label on the unit clearly
showing which logical disk is for which operating system.

Properly used, dual-operating sytems significantly increase your
processing capabilities. Just remember the guidelines:

• Keep compatible operating system software, application soft
ware, and data on the same disks.

• Clearly label all disks, especially the fixed disk where the
logical units are not visible.

• Never use a command that could destroy the contents o f a
disk without first finding out what’s on the disk. I f you are
not sure about the contents, use a command that identifies the
contents (MS-DOS CHKDSK for example).

• Finally, be sure you always have backup copies o f all impor
tant software and data.

A -1

MS-DOS USER'S GUIDE DISK ERRORS

DISK ERRORS

I f a disk error occurs at any time during a command or program,
MS-DOS retries the operation three times. I f the operation cannot
be completed successfully, MS-DOS returns an error message in
the following format:

< y yy > ERROR WHILE <1/0 action> ON DRIVE x
Abort, Ignore, Retry :_

In this message, < y yy > may be one o f the following:

• WRITE PROTECT
• NOT READY
• SEEK
• D ATA
• SECTOR NOT FOUND
• WRITE FAULT
• DISK

The<I/0-action> may be either o f the following:

• READING
• W RITING

The drive < x > indicates the drive in which the error occurred.

MS-DOS waits for you to enter one o f the following responses:

A (Abort)
Terminate the program requesting the disk read or write.

I (Ignore)
Ignore the bad sector and pretend the error did not occur.

R (Retry)
Repeat the operation. Use this response when the error is
corrected (such as with NOT READY or WRITE PROTECT
errors).

B-1

Usually, you will want to attempt recovery by entering responses
in this order:

R (to try again)
A (to terminate program and try a new disk)

One other error message might be related to faulty disk read or
write:

FILE ALLO CATIO N TABLE BAD FOR DRIVE x

This message means that the copy in memory o f one o f the allo
cation tables has pointers to nonexistent blocks. Possibly the disk
was incorrectly formatted or not formatted before use. I f this
error persists, the disk is currently unusable and must be for
matted prior to use.

B-2

MS-DOS USER'S GUIDE HOW TO O BTAIN AN D INSTALL SOFTWARE

HOW TO OBTAIN AND INSTALL SOFTWARE

MAKING THE RIGHT PURCHASE

Your NCR DECISION MATE V with MS-DOS is highly flexible,
accommodating nearly any application and language software as
long as it is MS-DOS compatible. Think o f the software you can
use on your computer in three categories:

• Software that is distributed by NCR.
• Software that has been run by NCR on the DECISION MATE V

and is available to any MS-DOS user.
• Software that has not been tested by NCR, but is available to

any MS-DOS user.

Those packages in the first group can be obtained directly from
NCR by contacting your NCR representative or licensed dealer.
The software in the other categories can be purchased from
an NCR licensed dealer or any reputable software house. You will
want to be sure, however, that the software will run on your com
puter. Knowing what questions to ask and working with a know
ledgeable dealer will help you to make the right decision.

1. Ask if the software is on an NCR MS-DOS format disk.
2. I f the software is not available on an NCR MS-DOS format

disk, ask if it is available on an IBM-PC format disk. (A 5 1/4-
inch disk with either 160/180/320/360KB capacity.) Any of
these disks can be used on your computer.

3. Most application packages and some language software require
an installation program to interface with the specific hardware.
Ask if the software is already installed to be used on an NCR
DECISION MATE V, or if the package includes an installation
(or install) program so that you can tailor the software your
self. I f the software is installed for an MS-DOS ANSI device
driver or a Lear Siegler terminal, it can be installed simply on
your computer (see next section).

c -1

INSTALLING THE SOFTWARE

To fully use every feature on NCR DECISION MATE V, each
application must be tailored to, or installed on, your computer.
The installation procedure is different for each application, so
every “ o ff the shelf” package, such as M ULTIPLAN™ , contains
its own program for accomplishing this task. The documentation
that accompanies the application disk you purchase describes the
way this program is run. We recommend that before you custo
mize your application, you make a copy of the purchased disk and
use the copy as your work disk. (See the FORMAT and DISKCOPY
commands in chapter 5.) Save the original disk in a safe place and
use it only to make copies.

To begin, most installation programs display a list of computer
terminals. I f this list includes NCR DECISION MATE V, select it;
otherwise, choose an MS-DOS ANSI device driver, the Lear Siegler
ADM-31, or the Lear Siegler ADM-3A terminal. Refer to table 1
for the functions that are active if you install your application as
for an MS-DOS ANSI device driver, or table 2 if you install your
application as on a Lear Siegler terminal.

I f none o f the above terminals are listed, you must describe
the terminal characteristics of NCR DECISION MATE V to the
application’s installation program. Use the tables as a guide if you
must enter these codes to install an application package. (A ll of
these control characters/sequences are for use by applications, not
for entry from the keyboard.)

Other tables include information you may need, depending on the
particular application. Table 3 contains miscellaneous infor
mation and table 4 gives notes, frequencies, and cycles for pro
gramming music applications. For further reference, conversion
and translation tables are included at the end of this section.

c-2

MS-DOS USER'S GUIDE HOW TO O BTAIN AN D INSTALL SOFTWARE

FUNCTIONAL CHARACTERISTICS INFORMATION
The following functions must be preceded by an ESCAPE <ESC>
character (hex value IB) and a left bracket < [> character (hex
value 5B).

MS-DOS ANSI DRIVER TABLE (TABLE 1)

Function ASCII string hex string

Cursor Position
or

(row#);(col#)H
(row#);(col#)f

(row#)3B(col#)48
(row#)3B(col#)66

Cursor Left (# of cols)D (# of cols)44

Cursor Right (# of cols)C (# of cols)43

Cursor Down (# of rows)B (# of rows)42

Cursor Up (# of rows)A (# of rows)41

Device Status Report 6n 366E

Cursor Position Report
(returned after 6n function)

(row#);(col#)R (row#)3B(col#)52

Save Cursor Position s 73

Restore Cursor Position u 75

Erase Screen 2J 324A

Erase to End of Line K 4B

Define Function Key 0;(fk#);"string"p 303B(fk#)3B22string2270

Disable Function Key Ext. 0,-Op 303B3070

Enable Function Key Ext. 0;99p 303B393970

The information in parentheses represents data you supply. You do not enter the
parentheses.

For example, to assign CHKDSK <C R > to function key 18, enter

<ESC>[0;18;“ CHKDSK” ;13p

where 13 stands for<C R > , hex value OD.

C-3

TERMINAL FUNCTION CODES «TABLE 2)

Function ASCII string hex string Terminal*

Position Cursor
Row + Offset
Column + Offset

<ESC>=
(row# 1-32)
(col #+32)

1B3D
(row#+20nex)
(col#+20hex)

A,B
A,B
A,B

Cursor Left ~H 08 A,B

Cursor Right ~L OC A,B

Cursor Down OA A,B

Cursor Up OB A,B

Clear Screen & Cursor Home 1A A,B

Clear to End of Line “ w 17

Carriage Return "M OD A,B

Escape <ESC> 1 B A,B

Bell 07 A,B

Home Cursor 1E

The following functions must be preceded by an ESCAPE <ESC> charac
ter, hex value 1B.

Clear to End of Line T or t 54 or 74 A

Clear to End of Screen Yory 59 or 79 A

Clear Screen and Cusor Home : or * 3A or 2A

Half Intensity On) 29 A

Half Intensity Off (28 A

Reverse Video On G4 4734 A

Blinking On G2 4732 A

The information in parentheses represents data you supply. You do not
enter the parentheses.

* A = Lear Siegler ADM-31; B = Lear Siegler ADM-3A

cont.

C-4

MS-DOS USER'S GUIDE HOW TO O BTAIN AND INSTALL SOFTWARE

TERMINAL FUNCTION CODES (TABLE 2) . . cont.

Function ASCII string hex string Terminal*

Rev. Video & Blinking Off GO 4730 A

Insert Line E 45 A

Insert Character Q 51 A

Delete Line R 52 A

Delete Character W 57 A

Play Music ** M 4D

The information in parentheses represents data you supply. You do not
enter the parentheses.

* A = Lear Siegler ADM-31; B = Lear Siegler ADM-3A

** Music can be programmed on the NCR DECISION MATE V. On re
ceiving the string <ESC> M, the CRT driver accepts the next two num
bers as frequency and tone length, respectively. Refer to Table 4 at the
end of this section for the corresponding note, frequency, and number
of cycles.

MISCELLANEOUS INFORMATION - Table 3

ANSI
Lear-Siegler
ADM 31 /A

Number of rows * 24 (1-24) 24 (0-23)

Number of columns 80 (1-80) 80 (0-79)

Cursor origin 1/1 0/0

Input/Output technique MS-DOS calls and
commands
(e.g. TYPE)

MS-DOS calls and
commands
(e.g. TYPE)

Cursor on/off not active not active

Keyboard click on/off not active not active

* Row 25 does not scroll.

C-5

MUSIC CODES - Table 4

Note
dec.

Frequency
hex key

Cycles

Pause 32 20 Space -

A 33 21 ! 110

A# 34 22 - 116.5

B 35 23 # 123.5

C 36 24 $ 131

c# 37 25 % 138.6

D 38 26 & 146.8

D# 39 27 ■ 155.8

E 40 28 (164.8

F 41 29) 174.6

F# 42 2A * 185

G 43 2B + 196

G# 44 2C , 208

A 45 2D - 220

A# 46 2E 233

B 47 2F / 246.9

C (Middle C) 48 30 0 261.6

C# 49 31 1 277.4

D 50 32 2 293.7

D# 51 33 3 311

E 52 34 4 329.6

F 53 35 5 349.2

F# 54 36 6 370

G 55 37 7 392

G# 56 38 8 415

A 57 39 9 440

A# 58 3A 465

B 59 3B 493.9

cont.

C-6

MS-DOS USER'S GUIDE HOW TO O BTAIN AN D INSTALL SOFTWARE

MUSIC CODES - Table 4 (cont.)

Note
dec.

Frequency
hex key

Cycles

C 60 3C < 523.2

C# 61 3D = 553

D 62 3E > 587.3

D# 63 3F ? 622

E 64 40 @ 659.3

F 65 41 A 698.5

F# 66 42 B 740

G 67 43 C 784

G# 68 44 D 830

A 69 45 E 880

A# 70 46 F 932

B 71 47 G 987.8

C 72 48 H 1046.5

C# 73 49 1 1108.7

D 74 4A J 1174.7

C -7

GRAPHIC ATTRIBUTES (TABLE 5)
Function ASCII

Code,
preceded
by ESC[

Hexadecimal
Code, preceded

by 1B 5B

GRAPHIC ATTRIBUTES OFF Om 30 6D

HALF INTENSITY OFF 1 m 31 6D

BLINKING ON 5m 35 6D

REVERSE VIDEO ON 7m 37 6D

HALF INTENSITY ON 8m 38 6D

BLACK FOREGROUND 30 m 33 30 6D

RED FOREGROUND 31 m 33 31 6D

GREEN FOREGROUND 32m 33 32 6D

YELLOW FOREGROUND 33m 33 33 6D

BLUE FOREGROUND 34m 33 34 6D

MAGENTA FOREGROUND 35m 33 35 6D

CYAN FOREGROUND 36m 33 36 6D

WHITE FOREGROUND 37m 33 37 6D

BLACK FOREGROUND 40m 34 30 6D

RED BACKGROUND 41 m 34 31 6D

GREEN BACKGROUND 42m 34 32 6D

YELLOW BACKGROUND 43m 34 33 6D

BLUE BACKGROUND 44 m 34 34 6D

MAGENTA BACKGROUND 45m 34 35 6D

CYAN BACKGROUND 46m 34 36 6D

WHITE BACKGROUND 47 m 34 37 6D

MS-DOS USER'S GUIDE HOW TO OBTAIN A N D INSTALL SOFTWARE

TRANSLATION/CONVERSION INFORMATION
Because o f the special language requirements o f different countries,
examples in this manual o f characters, either input or displayed,
may not match the characters on the keyboard. The following
table shows substitute characters which produce the same hexa
decimal code and satisfy the requirements o f the operating system.
Also, for users who need to refer to the complete hexadecimal
chart, the ASCII code chart with the USASI code set is given after
the keyboard table.

Country Hex Codes and Corresponding Characters

23 24 40 5B 5C 5D 5E 60 7B 7C 7D 7E

US-English * $ @ [\ 1 -
1 1 1

-

U «-English C $ ® I \ 1 t 1 1 1
~

F rench £ $ A 0 P §
* 6 Ü a

German # $ § Ä 0 Q a Ö Ü 0

Swedish/Finnish * a A 0 A - a Ö &

Danish/Norwegian £ $ @ /E 0 A - SB 0 ä

Spanish £ $ i N 6 -
1 n 1

-

Italian £ $ § o p e - Ü a Ö a i

Swiss £ $ p ä e e - a Ö Ü

Canadian # $ @ i \ i - £ i c

Canadian (bilingual) # $ @ t p i - e e p

South African # $ @ E 'N E - e •n e

Portuguese £ $ @ Ä Ö Q - ä Ö p -

Yugoslavian # $ e C C s Z 6 c c s z

Special country Keyboard definitions

C-9

C
-10

ASCII CODE CHART

Binary
b4- b ^ 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 m i

b8 jb5 HEX 0 1 2 3 4 5 6 7 8 9 A B c D E F

0000 0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

0001 1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

0010 2 ! » # $ % & ■ () • + . - /

0011 3 0 1 2 3 4 5 6 7 8 9 ; < = > ?

0100 4 @ A B C D E F G H I J K L M N o

0101 5 P Q R S T U V W X Y Z I \ l A

00110 6 ' a b C d
f

f 9 h i j k I m n

0111 7 P q r s t U V w X y Z : : ■ ~ DEL

L E G E N D : (F o r Control
C haracters in USASI Code Set)

NUL Null
SOH Start of Heading
STX Start of Text
ETX End of Text
EOT End of Transmission
ENQ Enquiry
ACK Acknowledge
BEL Bell (Audible or Attention Signal)
BS Backspace
HT Horizontal Tabulation (Punched Card Strip)
LF Line Feed
VT Vertical Tabulation
FF Form Feed
CR Carriage Return
5 0 Shift Out
51 Shift In
DLE Data Link Escape
DC1 Device Control 1
DC2 Device Control 2
DC3 Device Control 3
DC4 Device Control 4
NAK Negative Acknowledge
SYN Synchronous DLE (Sync Code)
ETB End of Transmission Block
CAN Cancel (Void Data)
EM End of Media
SUB Substitute
ESC Escape
FS File Separation (End of File)
GS Group Separate
RS Record Separator (End of Record)
US Unit Separator (End of Field)
DEL Delete

M S -D O S U S E R 'S G U I D E A D V A N C E D C O N F I G U R A T I O N F E A T U R E

ADVANCED CONFIGURATION FEATURE

In many cases, there are installation-specific settings for MS-DOS
that need to be configured at system startup. An example o f this
is a standard device driver, such as an online printer.

The MS-DOS configuration file (CONFIG.SYS) allows you to con
figure your system with a minimum o f effort. With this file, you
can add device drivers to your system at startup. The configuration
file is simply an ASCII file that has certain commands for MS-DOS
startup (boot). The boot process is as follows:

1. The disk boot sector is read. This contains enough code to
read MS-DOS code and the installation’s BIOS (machine-
dependent code).

2. The MS-DOS code and BIOS are read.
3. A variety of BIOS initializations are done.
4. A system initialization routine reads the configuration file

(CONFIG.SYS), if it exists, to perform device installation and
other user options. Its final task is to execute the command in
terpreter, which finishes the MS-DOS boot process.

CHANGING THE CONFIG.SYS FILE

I f there is not a CONFIG.SYS file on the MS-DOS disk, you can
use the MS-DOS editor, EDLIN, to create a file; then save it on
the MS-DOS disk in your root directory.

The following is a list o f commands for the configuration file
CONFIG.SYS:

BUFFERS = <number>
Where the number is between 1 and 99. This is the number of
sector buffers that MS-DOS should allocate in memory when it
starts up. It is installation-dependent. I f not set, 10 is a reason
able number. The default value is 2.

FILES = <number>
Where the number is between 1 and 99. This is the number of
open files that the XENIX system calls can access. It is in-

D-1

stallation-dependent. I f not set, 10 is a reasonable number.
The default value is 8.

DEVICE = <filename>
This installs the device driver in <filename> into the system
list. (See below.)

BREAK = < O N or O FF>
If ON is specified (the default is OFF), a check for CONTROL-
C as input will be made every time the system is called. ON
improves the ability to abort programs over previous versions
o f the MS-DOS. BREAK ON/OFF may be changed by issuing
a BREAK command (see Chapter 5).

SHELL = <filename>
This begins execution o f the shell (top-level command pro
cessor) from <filename>.

A typical configuration file might look like this:

Buffers = 10
Files = 10
Device = \ BINXNETWORK.SYS
Break = ON
Shell = A : \ BIN \ COMM AND .COM A : \ BIN /P

Note here that the Buffers and Files parameters are set to lOx.
The system initialization routine will search for the filename
\ BIN \ NETWORK.SYS to find the device that is being added to
the system. This file is usually supplied on disk with your device.
Make sure that you save the device file in the pathname that you
specify in the Device parameter.

This configuration file also sets the MS-DOS command EXEC to
the COMMAND.COM file located on disk A : in the \BIN direc
tory. The A :\B IN tells COMMAND.COM where to look for itself
when it needs to be re-read from disk. The /P tells COMMAND.COM
that it is the first program running on the system so that it can
process the MS-DOS EXIT command.

D-2

M S -D O S U S E R 'S G U I D E

INDEX

+ (command character) (M S -L IN K).............................9-10
.BAT ..4-4
.EXE (M S -L IN K)...9-6,9-11
.EXE file (M S -L IN K).. 9-1
.LIB (M S -L IN K).. 9-5
.MAP (M S -L IN K)...9-6,9-12
.OBJ (MS-LINK) ...9-5,9-11
; (command character) (M S -L IN K)...............................9-10
< C O P Y l> ... 7-4
< C O P Y A L L > ... 7-6
<COP YUP > ... 7-5
< E X IT > ... 7-12
< IN S E R T> ... 7-10
< N E W L IN E > ... 7-13
< S K IP 1 > ... 7-7
< S K IP U P > ... 7-8
< V O ID > ..7-9

A b o r t .. B1
Addresses (M S -L IN K).. 9-3
ASCII code c h a r t .. C-10
AUTOEXEC.BAT .. 2-15, 4-6, 5-21
Automatic Program Execution... 2-15

Backing-up your disks .. 2-14
BACKUP (com m and).. 5-4
Backup (d is k)...3-6
Basic..4-7
Batch processing...4-4
Binary files (F C) ...8-1
BREAK ..5-5
Buffer space (F C) ...8-1

Change directory ...3-13
C H D IR ..5-6
C H K D S K .. 2-11,2-17,5-7
C IP H E R ..4-12, 5-10
Class name (M S -L IN K).. 9-3

Classes (M S -L IN K).. 9-3, 9-11
CLS ... 5-12
Command Characters

+ (MS-LINK) .. 9-10
; (M S -L IN K).. 9-10

Command Characters (M S -L IN K).................................9-10
Command processor.. 2-1, 4-1
Command Prompts

Libraries (MS-LINK) .. 9-8, 9-12
List File (MS-LINK) .. 9-8,9-12
Object Modules (M S -L IN K)..............................9-7,9-11
Run File (MS-LINK) .. 9-7, 9-11

COMMAND.COM.. 2-1
Commands... 5-1
Compiler ... 9-1
Concatenation ...5-18
C O N FIG .. 5-13
Control character functions..6-5
Control character functions ta b le 6-6
C O N TR O L-C ...4-3
CONTROL S ...4-4
C O N T R O L -Z ... 4-7,4-9
COPY command...3-4, 5-17
Copying your master software disk 2-2
C T T Y ..5-20
Current d a te ... 2-12
Current tim e .. 2-12

Data E r r o r .. B-l
D a te ..2-13
Default drive ...2-14
Defining your disk configuration (table)2-8
Defining a serial printer ..2-12
Defining your fixed d isks..2-7
Delimiters... 4-3
Difference reporting (F C) ..8-4
DIR ..2-16, 3-11
Directories

Hierarchical ...3-7
D irec to ry ... 2-16, 3-6

M ak ing... 3-12
Rem oving... 3-13
W ork in g ... 3-7

M S -D O S U S E R 'S G U I D E

Disk Errors
A b o r t .. B-l
D a ta .. B-l
D is k .. B-l
File Allocation Table Bad For Drive x B-2
Ignore.. B-l
Not R e a d y ... B-l
R e t r y .. B-l
Sector Not Found .. B-l
S e e k .. B-l
Write F au lt.. B-l
Write P ro te c t ... B-l

DISKCOPY ... 2-14, 5-25
Disks

Backup... 2-14
Drive designation...2-7, 3-2, 4-2
Drive designations (M S -L IN K)....................................... 9-5
Dual-Operating Systems Considerations............................A - l
Dummy parameters .. 4-9

E C H O ..5-27
EDLIN Commands

Append ... 7-18
Copy ... 7-19
D elete... 7-21
Edit ... 7-23
End ... 7-25
In s e r t ... 7-26
L is t ..7-29
Move ... 7-32
P a g e ..7-33
Q u it ... 7-34
Replace ... 7-35
Search ... 7-38
Tran sfer... 7-41
Write ... 7-42

EDLIN Errors
Cannot edit .BAK file — rename f i l e7-43
Disk f u l l ... 7-44
Entry e rro r ...7-43
Filename must be specified ..7-45
File not found ...7-45
Incorrect DOS version .. 7-44
Insufficient m em ory.. 7-45

Invalid drive name or f i l e ..7-44
Invalid parameter.. 7-45
Line too lo n g ...7-44
Must specify destination num ber................................. 7-45
No room in directory for f i l e 7-43
Not enough room to merge the entire file 7-46

EDLIN Command O ptions..7-16
EDLIN Format Conventions ..7-14
EXIT ..5-28
External com m ands.. 3-10
External reference (MS-LINK) 9-1

FC ..8-1
File Allocation T a b le .. 2-16
File Allocation Table Bad For Drive x B-2
File specification ...3-2
File system ... 3-8
Filename ..3-1, 4-2
Filename extension ...3-1, 4-2

.C O M ..4-2

.EXE ..4-2
Filename extensions — default

.EXE (M S -L IN K).. 9-6

.MAP (M S -L IN K).. 9-6

.OBJ (MS-LINK) .. 9-5
Filenames

Ille g a l................................... 3-4
F ile s ..2-15

Binary (FC) ...8-1
Com paring... 8-1
Nam ing... 3-1
Source (F C) ...8-1

Files that MS-LINK uses (MS-LINK)9-5
Filespec ... 4-3
Filters..4-12
F IN D ..4-13, 5-29
F O R ..5-31
F O R M A T ... 2-12, 5-33
Functional characteristics in form ation........................... C-3

GOTO ..5-35
Groups (M S -L IN K)................ 9-4

M S -D O S U S E R 'S G U I D E

Hidden files .. 2-17
Hierarchical d irectory..3-7
How to obtain and install software.................................. C-l

I F ... 5-36
Ignore.. B-l
Illegal filenam es.. 3-4
Input ...4-11

Redirection .. 4-11
Installing the software .. C-2
Internal commands.. 3-11
Intraline Commands

Replace m ode.. 7-12
Copy multiple characters..7-5
Copy tem p la te .. 7-6
Enter insert m ode.. 7-10
Exit insert m ode.. 7-12
New tem plate.. 7-13
Q u it ... 7-9
Quit input ...7-9
Skip multiple characters..7-8
Skip one character.. 7-7

LINK (F C) ...8-1
LINKER PROGRAM (M S -L IN K)...................................9-1
Loading M S-D O S.. 2-1
LOCATE ...5-38

Miscellaneous information ta b le C-5
MKDIR ... 3-12, 5-41
MORE ... 4-12, 5-42
MS-LINK Switches.. 9-13
MS-DOS ANSI driver ta b le .. C-3
MS-DOS Command Summary ... 5-2
Music codes ta b le ...C-6, C-7

Not Ready Error ... B-l

Object modules .. 9-1
Options ... 4-2
O u tpu t... 4-11

Redirection .. 4-11
Output Redirection (F C) ..8-5

Overview
M S -L IN K ... 9-1

Parameters...4-9
Parameters

Replaceable ...4-9
Parent d irec to ry ...3-9, 5-6
P A T H ... 5-43
Pathing... 3-9
Pathnam e...3-9
P A U S E ... 4-5
P ipes... 4-11
P ip in g ... 4-12
P R IN T .. 5-45
Programmable function k e y s ... 2-15
PROMPT ... 5-48

RDCPM ... 5-50
R E C O V E R ...5-52
Redirecting output (F C) ..8-5
Relative address (F C) ..8-2
Relocatable load module (M S -L IN K).............................9-1
R E M .. 4-5, 5-53
RENAME (synonym for R E N)... 5-54
Replaceable parameters ..4-9
Reserved filenames

A U X ... 3-4
C O N ... 3-4
LST ... 3-4
N U L ... 3-4
P R N ... 3-4

Response file (MS-LINK) ..9-8
R e t r y .. B-l
RMDIR ..3-13, 5-56
Root d irec to ry .. 2-16

Sector Not Found E rro r... B-l
Seek E r r o r .. B-l
Segment name (M S -L IN K)... 9-3
Segments (M S -L IN K)...9-3, 9-11
SET ..5-57
SHIFT ..4-9, 5-58
Shorthand notation .. 3-9
S O R T ..4-12, 5-59

M S -D O S U S E R 'S G U I D E

Source c o d e ...9-1
Source drives ...4-4
Source files (FC) .. 8-1
Special characters.. 3-2
Special country keyboard defin itions............................. C-9
Special editing functions ta b le ... 6-2
Special editing keys .. 6-1, 7-3
Starting MS-LINK .. 9-6
Subdirectory ...3-11
Switches

FC
Of (F C) ..8-3
/ B (F C) ..8-2
/C (F C) ..8-3
/W (F C) ..8-3

MS-LINK
- DSALLOCATE (M S -L IN K)...............................9-13
- HIGH (MS-LINK) ..9-13
- LINENUMBERS (MS-LINK) 9-14
- MAP (MS-LINK) ..9-14
- PAUSE (MS-LINK) ..9-14
-S T A C K (M S -L IN K)..9-15

SYS ..5-61
System set u p ... 2-1

Terminal function codes tableC-4, C-5
T im e ..2-12
TIME (com m and)...5-63
Translation/conversion in form ation C-9
T Y P E ..5-65

V E R ..5-66
V E R IF Y ... 5-67
VM.TMP (MS-LINK) .. 9-6
V O L ..5-68

Wild cards... 3-2, 4-4
The * wild card ...3-3
The ? wild card ... 3-2

Working directory2-16, 3-7, 3-9, 5-6
Displaying ...3-11

Write Fault E r r o r ... B-l
Write Protect E rror... B-l

Supplement

Ladder and CatChum are trademarks o f Yahoo Software.
MS-BASIC is a registered trademark o f Microsoft
Corporation.

M S -D O S U S E R 'S G U I D E S U P P L E M E N T

INTRODUCTION

This Supplement contains descriptions of some application and
demonstration software featured with your NCR DECISION
MATE V.

I f you have a single flexible disk drive, follow the steps below to
start using any o f the software. I f you have two flexible disk
drives, note the instructions in parentheses.

1. Insert MS-DOS. (For two flexible disk drives, insert MS-DOS
in A and the supplement disk in B.)

2. The system displays A > . Insert the supplement disk. Enter
the name of the application and press RETURN. (For two
flexible disk drives, enter B: and press RETURN. When the
system prompt B > is displayed, enter the name o f the appli
cation and press RETURN.) The game instructions appear
on the screen.

LADDER

LADDER is a game for use on the NCR DECISION MATE V. To
start the program, enter LADDER J . The main screen appears.

Enter “ I ” (Instructions) to obtain the description o f the game.
Read the explanations and then press J to return to the main
screen. There you will find the directions on how to play the game.

Let’s now start the game by entering P. You can leave the program
at any time by pressing t C (hold down the CONTROL key and
press C).

CATCHUM

CATCHUM is a game for one or two players. To start the program,
enter CATCHUM J . The main screen appears.

Enter “ I ” (Instructions) to obtain the description o f the game.
Read the explanations and then press J to return to the main

s-1

screen. There you will find the directions on how to play the game.
Enter 1 if you are the first player, or 2 if you are the second player.

You can leave the program at any time by pressing t C.

DEM05

DEM05 is a continuous running graphics demonstration showing
the excellent resolution and speed o f the NCR DECISION MATE V.
To run the program, enter DEMO 5 J . The program can be
aborted at any time with t C (hold down the CONTROL key and
press C).

CLOK

CLOK displays a running clock on the CRT screen. To rim the
program, enter CLOK J . The current date is then entered in the
following format:

MM,DD,YY <C R > (e.g. 4,26,83)

Next, enter the current time using the following format:

HH,MM <C R > (e.g. 12,31)

The program can be aborted at any time with t C (hold down the
CONTROL key and press C).

MUSIC

MUSIC plays 11 different tunes on the NCR DECISION MATE V.
To run the program, enter MUSIC J . The music menu is dis
played and you can choose song number 1-9, A, or B. Just type
the number or letter o f the selection you want to hear (do not
press <C R >), and the song is played. When the tune is finished,
the menu is redisplayed. Choose another song or press E to end.
(This program cannot be aborted with t C.)

S-2

M S -D O S U S E R 'S G U I D E S U P P L E M E N T

VEGAS

VEGAS (Very Easy Graphic Application System) is a very useful
program for displaying business graphics. This program allows you
to create line, bar, and pie charts and then output them to a prin
ter. NCR Business Graphics is written in MS-BASIC® with the
NCR graphics extension. To run the program, enter VEGAS J .

The main menu now appears and processing may begin.

NCR D M U
BUSINESS GRAPHICS

ELECT FUNCTION

0 1 SPLAV CHART (1)
ENTER DATA <2>
CHANGE DATA <3>
END <E>

PORTIONS COPYRIGHTED BY MICROSOFT, 1982

Figure 1 Main Menu

Each time VEGAS is called from the disk, the following screen
is displayed after a selection (1-3) is made on the main menu.
(This is the only time this screen appears during the VEGAS
session.)

r
++++++++++++ D E C I S I O N M A T E ++++++++++++++++++++

BUSINESS GRAPHICS +++++++++++++++++++++++++++++++++++ BUSINESS GRAPHICS
Select type of printer

NCR 6411-8510(I)
EPSON FX80 (E)
OTHER OR NONE(O)

Figure 1a Printer Definition

S-3

Enter I i f you are using an NCR 6411-8510 (ITOH M8510A)
printer; E if you have an EPSON MX82; and O if you have another
type o f printer or no printer at all.

Before continuing with the next section, the following general
information should be noted:

• (CR) is the Carriage Return key (J)
• For questions that require only a 1-character response, (CR)

should not be pressed after the character is entered.
• A fter all data has been entered on most screens, the message

PRESS (CR) TO CONTINUE OR “ R ” TO REENTER? is
displayed. R allows you to return to the top o f the screen and
reenter all information.

• Rows (Items) refer to the segments or parts in each column.
• Current Chart refers to the chart last used.

ENTERING DATA

The second choice on the main menu (Figure 1) is Enter Data.
This selection allows you to enter information to create a new
graph. Enter 2 to choose this function.

r
D E C I S I O N M A T E V +++++

BUSINESS GRAPHICS +++++++++ BUSINESS GRAPHICS

Enter two title lines for the chart, the value for units,
the name of the units and the number of columns and rows(items)
(Default = points for strings, one for numbers)
First title, uppercase only
Second title, uppercase only

Unit of measure ? Name of units, uppercase only
Number of columns ** Max length of column title
Number of rows(items) **

Press (CR) to continue or 'R' to reenter ?

Figure 2

To begin, each question on the screen is displayed one at a
time and the following information must be entered.
S-4

M S -D O S U S E R 'S G U I D E S U P P L E M E N T

First Title:

Second Title:

Unit o f Measure:

Name o f Units:

Number o f Columns:
Number o f Rows (Items):

uppercase only, 36 chars, max, no
comma
uppercase only, 72 chars, max, no
comma
0-9, default = 0
(0 = units, 1 = tens, 2 = hundreds,
3 = thousands, etc.)
uppercase only, 12 chars, max
(e.g. DOLLARS, MACHINES, etc.)
48 maximum, default = 1
12 maximum, default = 1

A response o f (CR) only to the above questions enters the de
fault value. For questions that require a string response the default
is points (.........). When all information on the screen is completed,
press (CR) to continue.

The next type o f data that must be entered is column titles:
uppercase only, 59 characters maximum, default = points, see
Figure 3. (The maximum number o f characters for the titles may
decrease, depending on the number o f columns in your graph.)
After each title is entered, press (CR).

Next, information about the rows is entered (see Figure 4).

s - s

Row Titles: uppercase only, 12 chars, maximum
The maximum number may de
crease, depending on the number of
rows.

Shade: 0-15, default = 0
(Refer to the end o f this section for
the shading patterns.)

The values for every item in each column are entered next. The
item title and shade are displayed, and asterisks appear where
you enter the value. See Figure 5.

r
ENTRY OF CHART VALUES

ITEM TITLE/CD/ COL 1
(item title, shade, displayed)

Press (CR) to continue or 'R' to reenter ?

S-6
Figure 5

MS-DOS USER'S GUIDE SUPPLEMENT

Values: The value for each row is entered,
integers only. No integer larger than
32760 may be entered.

When all o f the above information is entered the end o f data
entry menu is displayed. A t this point you have the chance to save
the data, reenter all o f the information once again, print a listing
o f the data or return to the main menu. See Figure 6.

It is a good idea to list the data first so that it can be checked.
I f you choose to do this, the following screen is displayed.

Figure 7

When the listing is finished, the end o f data entry menu is re
displayed. Now, save the data or, if mistakes were made, reenter
the information. (I f you choose to reenter the data, all o f the
information must be repeated. I f only 1 or 2 fields must be changed,
it is better to save the data and then select Function 3 on the main
menu, Change Data. Refer to the section on changing data for the
fields that can be changed with that function.)

S-7

As the data is saved on the disk, the following question is dis
played: REPLACE (R) LAST RECORD IN FILE OR WRITE
NEW (N) RECORDS? To delete the last record in the file and re
place it with the current information, enter R. To add a new
record to the file, enter N. The message: PRESS (CR) TO CON
TINUE OR “ R ” TO REENTER? is displayed next. I f you made
a mistake, press R, otherwise, press (CR) to continue. The pro
gram now assigns a number to this record and displays it on the
screen. See Figure 8.

r >
D E C I S I O N M A T E V

BUSINESS GRAPHICS
++++++++++++++++++

BUSINESS GRAPHICS

Processing Data File

The TITLE:
is now stored unter TITLE NUMBER:

continue with (CR)
j

Figure 8

Note this number and press (CR) to continue. The end o f data
entry menu is redisplayed. You are now ready to select G and
return to the main menu to choose another function.

s -8

MS-DOS USER'S GUIDE SUPPLEMENT

DISPLAYING CHARTS

The first choice on the main menu is Display Chart (refer to
Figure 1). This selection allows you to display and print line, bar,
and pie charts. Enter 1 to choose this function. Either the question
USE CURRENT CHART ? (Y/N) or the following screen is dis
played.

I f you are not going to use the current chart, you must enter
the number assigned to the one you want to use. To obtain a
listing o f all titles and numbers, enter R and press (CR). (For
this version o f VEGAS, a demonstration chart, number 2, is saved
on the disk.) When you have found the number o f your chart press
(CR) to continue and the main menu is redisplayed. Then select
Function 1 once again and enter the title number.

Once the title number is entered, a short menu appears and
you choose the type o f graph you want to see. Refer to Figure 10.

Figure 10

S-9

Before a line graph is displayed, certain parameters must be
entered. See Figure 11.

D E C I S I O N M A T E

BUSINESS GRAPHICS BUSINESS GRAPHICS

Select Parameters for Display

Enter column no. for begin /end
Default = (CR) selects all

Enter row no.(item) for begin / end
Default = (CR) allows mixed selection

Mixed selection
Default = (CR) selects all * * * * * * * *

Number of columns
Number of rows(items) Press (CR) to continue or 'R' to reenter

Figure 11

First, enter the number o f the columns you want to display.
For example, if your chart has 4 columns, you may want to see
only columns 3 and 4 on the graph. Pressing (CR) only in response
to this question selects all columns.

Next, enter the row numbers to appear on the chart. For
example, if each column has 3 different parts to it, you can choose
to display 1, 2, or all o f them. A response o f (CR) selects all rows
and also allows you to change the order in which the rows are
displayed (mixed selection). For example, you can display row 3
first, row 2, and then row 1. The default response o f (CR) displays
the rows in the order in which they were originally entered. When
all information has been entered, press (CR) to continue and the
chart is displayed.

Before displaying a bar chart, select the type o f chart you
want — bars stacked, or side by side. Then enter the columns and
rows to be displayed. See Figure 12.

S-10

MS-DOS USER'S GUIDE SUPPLEMENT

N C R D E C I S I O N M A T E V

BUSINESS GRAPHICS BUSINESS GRAPHICS

Select Parameters for Display

Rows(Item) stacked (1)
Rows(Item) side by side (2) ?

Enter column no. for begin / end
Default = (CR) selects all

Enter row no.(item) for begin / end
Default = (CR) allows mixed selection

Mixed Selection
Default = (CR) selects all ** **

Number of columns
Number of rows(items) Press (CR) to continue or to reenter

Figure 12

When all information has been entered, press (CR) to continue
and the chart is displayed.

A pie chart can be divided into a maximum o f 12 pieces. To
begin, choose what to display — one column or one row covering
several columns. I f you select one column, you must enter the
column number and how many rows within the column should
be displayed. See Figure 13.

N C R D E C I S I O N M A T E V

BUSINESS GRAPHICS BUSINESS GRAPHICS

SELECT PARAMETERS FOR P I E C H A R T DISPLAY
Several rows(items) for one column?
Several columns for one row?

(1)
(2)

Enter COLUMN NO. (Default = 1)
Enter ROW NO.(item) for begin / end

Default = (CR) allows mixed selection
Mixed selection

Default = (CR) selects all

Number of columns
Number of rows(items) Press (CR) to continue or 'R' to reenter ?

Figure 13

S-11

I f you choose to display one row covering several columns,
enter the row number and column numbers. As with the line and
bar charts, you may display the column or the rows in any order
(mixed selection). See Figure 14.

r
4++ N C R D E C I S I O N M A T E V

BUSINESS GRAPHICS

+++++

BUSINESS GRAPHICS

SELECT PARAMETERS FOR P I E C H A R T DISPLAY
Several rows(items) for one column? (1)
Several columns for one row? (2)
Enter ROW NO.(item) (Default = 1)

Enter COLUMN NO. for begin / end
Default = (CR) allows mixed selection

Mixed selection
Default = (CR) selects all

Number of columns
Number of rows(items) Press (CR) to continue or 'R' to reenter

Figure 14

The pie chart displays a legend to the right o f the pie. This
legend tells you the title o f the row or column, the value, and the
percent o f the pie for each value. When pieces o f the pie are less
than 1.5%, they are collected and displayed as one piece labeled
MISC. However, the legend lists each individual value separately.

In the lower left corner o f the CRT a few additional features
are listed when the chart is displayed. E ends the display and re
turns to the chart menu. C switches the screen between inverse
video (dark on green background) and the normal mode (green
on dark background). P or D prints the chart on your printer. (D
prints in double density mode; the characters are printed twice so
that it comes out darker.)

To print charts with black printing on a white background,
change to the normal mode and then plot it.

In addition, with pie charts you can choose to “ slice” the pie.
This is done by making sure the chart is in the inverse
video mode, then select the number o f the slice and press that
key. All slices can be separated, but cannot be brought back to
gether again while the chart is displayed on the screen.

S-12

MS-DOS USER'S GUIDE SUPPLEMENT

CHANGING DATA

The third choice on the main menu is Change Data (refer to Figure
1). This selection allows you to update the information for a chart
that is already saved on the disk. Enter 3 to choose this function.
Either the question USE CURRENT CHART ? (Y/N) or the
following screen is displayed.

Figure 15

I f you are not going to use the current chart, you must enter
the number assigned to the one you want to use. To obtain a
listing o f all titles and numbers, enter R and press (CR). When you
have found the number o f your chart, press (CR) to continue and
the main menu is redisplayed. Then select function 3 once again
and enter the title number.

The data for your chart is displayed one field at a time and
you now have the option o f changing it. I f no change is necessary,
press (CR) and the cursor moves to the next field. The only infor
mation that cannot be changed is the number o f columns and rows
and, if the unit o f measure is changed, all values must be altered to
match it. Refer to the following screens for the order in which the
information is displayed.

S-13

r
D E C I S I O N M A T E V

BUSINESS GRAPHICS BUSINESS GRAPHICS

The process for changing parameters and/or values is started.
It is impossible to change the number of columns and rows.
To change enter data / (CR) = no change
First Title

Second Title

Unit of measure
Name of unit

Press (CR) to continue or 'R' to reenter ?
j

Figure 16

S-14

MS-DOS USER'S GUIDE SUPPLEMENT

When you have finished with all data, the end o f change menu
(Figure 20) is displayed. List the changes to make sure that every
thing was input correctly, and if errors are detected, repeat the
process.

Figure 20

When you are satisfied that everything is correct, save the
changes by selecting function 1. The following screen is displayed
when the data is saved (Figure 21).

Figure 21

Press (CR) to continue; the end o f change menu is redisplayed
(see Figure 20). You are now ready to return to the main menu
and select another function.

S-15

Listing of Values

Co

O)

L I S T O F V A L U E S F O R G R A P H I C - C H A R T

T i t l e PERSONAL COMPUTER SALES

Second T i t l e FIRST QUARTER 1983

V a lu e O
j L

Name o f U n it s MACHINES

Number o f COLUMNS / ROWS 3 / 2

COLUMN / COLUMN-NO R O W - N O / R O W

1 /8 BIT 2 /1 6 B IT

JANUARY 1
FEBRUARY 2

MARCH 3

5 1
10 1
25 3

G
R

A
P

H
IC

S
 S

A
M

P
LE

S

MS-DOS USER'S GUIDE SUPPLEMENT

8 3 M IH 0 U W JO S »001 N I S 3 m « n

Line Chart

S-17

Bar Chart (stacked)

PERSONAL COMPUTER SAL ES
F I R S T Q U A R T E R 1 9 8 3

JFl MU ft R V F E B RU ft RV MR R C H

MS-DOS USER’S GUIDE SUPPLEMENT

Bar Chart (side by side)

S-19

Pie Chart

V5 PERSONAL COMPUTER SAL ES
F I RST QUARTER 1S83

8 B I T

1 0 0 m4

4 0

m
L E G E W D

J A N U R R V

m F t ~ B R U h F f
1 1

m " H R P C H

6 2 . 5 L 5
I H H

T I T LE

-U HLUES I N 1 0 0 ' S OF Hfi C H I H E S-

Pie Chart (sliced)

Co
1*0

PERSONAL CO MPUT ER SAL ES
F I RST QUARTER 1983

M
S

-D
O

S
 U

S
E

R
'S

 G
U

ID
E

S

U
P

P
L

E
M

E
N

T

Shade Codes

MS-DOS USER'S GUIDE SUPPLEMENT

ERROR CONDITIONS

When invalid information (for example, alphabetic characters in
a numeric field) is entered into a field, VEGAS erases the infor
mation typed in and prompts for a new input. No error message is
displayed.

A system error message can occur when you are saving infor
mation for a new chart. VEGAS has 2 files in which it stores all
values for your charts: TITLE-F and VALUE-F. When there is
no more room on the disk to expand these files with new infor
mation, the following message is displayed.

Disk Full at address xxxx

The NCR DECISION MATE V returns to the system level prompt
and you choose one o f 3 actions.

1. Delete the files TITLE-F and VALUE-F from your disk. (A ll
previous charts are erased.)

2. Move the files TITLE-F and VALUE-F to another disk. (The
previous information is not lost.)

3. Move all VEGAS files to another disk and use this new disk
for future processing. (The previous information is not lost.)

The VEGAS files are all files on your disk that begin with the
letters VE and end with the extension COM. The file BRUN.COM
must also be moved. So, for example, if you Eire moving the
VEGAS files from drive A to drive B, the PIP commands are as
follows:

PIP B: = A:VE*.COM
PIP B: = A:BRUN.COM

NOTE: In this case, do not move TITLE-F and VALUE-F to the
new disk. These files are automatically created by VEGAS.

S-23

NCR DECISION MATE V

MS™- DOS
Programmer’s Manual

MACRO-86, MS-CREF, MS-LINK, MS-LIB, and MS-DOS (and its
constituent program names EDLIN and DEBUG) are trademarks of
Microsoft Corporation. Microsoft is a registered trademark of Micro
soft Corporation.

Copyright © 1983 by NCR Corporation
Dayton, Ohio

All Rights Reserved
Printed in the Federal Republic of Germany

First Edition, June 1983
It is the policy of NCR Corporation to improve products as new
technology, components, software, and firmware become available.
NCR Corporation, therefore, reserves the right to change specifica
tions without prior notice.

All features, functions, and operations described herein may not be
marketed by NCR in all parts of the world. In some instances, photo
graphs are of equipment prototypes. Therefore, before using this
document, consult your nearest dealer or NCR office for information
that is applicable and current.

General Introduction

Chapter 1 System Calls

1.1 Introduction...1-1
1.2 Programming Considerations1-1
1.2.1 Calling From Macro Assembler 1-1
1.2.2 Calling From a High-Level Language 1 - 1
1.2.3 Returning Control to M S-DOS....................1-2
1.2.4 Console and Printer Input/Output Calls . . . 1-3
1.2.5 Disk I/O System Calls.................................. 1-3
1.3 File Control Block (FCB)1-3
1.3.1 Fields of the FCB ...1-4
1.3.2 Extended F C B ...1-6
1.3.3 Directory E ntry ...1-6
1.3.4 Fields of the FCB ...1-7
1.4 System Call Descriptions.................................. 1-9
1.4.1 Programming Exam ples.................................. 1-10
1.5 Xenix-Compatible Calls 1-11
1.6 Interrupts .. 1-14

2OH Program Term inate..................................... 1-16
21H Function R equest..1-18
22H Terminate A ddress..................................... 1-19
23H CONTROL-C Exit A d d ress1-19
24H Fatal Error Abort A ddress..........................1-20
25H Absolute Disk Read1-23
26H Absolute Disk W r ite1-25
27H Terminate But Stay R es id en t....................1-27

1.7 Function R eq u ests ..1-28
1.7.1 CP/M-Compatible Calling Sequence 1-28
1.7.2 Treatment of Registers1-29

Function Requests
00H Terminate Program1-33
01H Read Keyboard and E c h o 1-34
02H Display Character..................................1-35
03H Auxiliary I n p u t1-36
04H Auxiliary O u tp u t1-37
05H Print C harac te r.....................................1-38
06H Direct Console I / O1-40
07H Direct Console In p u t............................ 1-42
08H Read K eyboard.....................................1-43
09H Display S tring 1-44
OAH Buffered Keyboard Input 1-45
OBH Check Keyboard Status 1-47

1

OCH Flush Buffer, Read Keyboard 1-48
ODH Disk R e s e t .. 1-49
OEH Select D isk .. 1-50
OFH Open F ile ...1-50
10H Close File .. 1-53
11H Search for First E n try1-55
12H Search for Next Entry1-57
13H Delete F i l e ..1-59
14H Sequential R e a d1-61
15H Sequential W rite1-63
16H Create F i l e ..1-65
17H Rename F i l e 1-67
19H Current D isk 1-69
1AH Set Disk Transfer A d d ress 1-70
21H Random R e a d1-72
22H Random W rite1-74
23H File Size ... 1-76
24H Set Relative R eco rd1-78
25H Set V e c to r .. 1-80
27H Random Block Read1-81
28H Random Block W r i te 1-84
29H Parse File N am e1-87
2AH Get D a te ... 1-90
2BH Set Date ... 1-92
2CH Get T im e ... 1-94
2DH Set T im e ... 1-95
2EH Set/Reset Verify F la g 1-97
2FH Get Disk Transfer A ddress.............. 1-99
30H Get DOS Version N um ber.................1-100
31H Keep Process.. 1-101
33H CONTROL-C C h e c k1-102
35H Get Interrupt Vector1-104
36H Get Disk Free Space1-105
38H Return Country-Dependent

Information .. 1-106
39H Create Sub-Directory..........................1-109
3AH Remove a Directory E n t ry1-110
3BH Change Current D irec to ry1-111
3CH Create a F i l e ..1-112
3DH Open a F ile ...1-113
3EH Close a File H and le 1-115
3FH Read From File/Device.......................1-116
40H Write to a F ile /D ev ice1-117
41H Delete a Directory E n try1-118

M S -D O S PR O G R A M M E R ’S MANUAL CONTENTS

42H Move a File Po in ter............................ 1-119
43H Change A ttributes............................... 1-120
44H I/O Control for Devices1-121
45H Duplicate a File H andle.......................1-125
46H Force a Duplicate of a Handle 1-126
47H Return Text of Current Directory . . 1-127
48H Allocate Memory 1-128
49H Free Allocated Memory.......................1-129
4AH Modify Allocated Memory Blocks . . 1-130
4BH Load and Execute a Program........... 1-131
4CH Terminate a Process.............................1-134
4DH Retrieve the Return Code of a Child 1-135
4EH Find Match F i l e 1-136
4FH Step Through a Directory

Matching F ile s 1-138
54H Return Current Setting of Verify . . 1-139
56H Move a Directory Entry1-140
57H Get/Set Date/Time of F ile 1-141

1.8 Macro Definitions for MS-DOS System
Call Examples (00H-57H) 1-142

1.9 Extended Example of MS-DOS System Calls 1-149
Chapter 2 MS-DOS 2.0 Device Drivers

2.1 What is a Device Driver?................................2-1
2.2 Device H e a d e rs .. 2-3
2.2.1 Pointer to Next Device Field 2-3
2.2.2 Attribute Field ... 2-4
2.2.3 Strategy and Interrupt Routines................. 2-5
2.2.4 Name F ie ld ... 2-5
2.3 How to Create a Device D r iv e r 2-5
2.4 Installation of Device Drivers 2-6
2.5 Request H e a d e r .. 2-6
2.5.1 Unit C o d e ..2-7
2.5.2 Command Code F ie ld2-7
2.5.3 MEDIA CHECK and BUILD B P B 2-8
2.5.4 Status W o rd2-9
2.6 Function Call Parameters................................2-11
2.6.1 I N I T ...2-12
2.6.2 MEDIA C H E C K .. 2-12
2.6.3 BUILD B P B ... 2-13
2.6.4 Media Descriptor B y te2-15
2.6.5 READ OR W R IT E 2-16
2.6.6 NON DESTRUCTIVE READ NO WAIT 2-17
2.6.7 STATUS...2-18
2.6.8 FLUSH ...2-18

3

2.7 The CLOCK Device ..2-19
2.8 Example of Device D rivers............................... 2-20
2.8.1 Block Device Driver2-20
2.8.2 Character Device D riv e r............................... 2-34

Chapter 3 MS-DOS Technical Information
3.1 MS-DOS Initialization3-1
3.2 The Command Processor..................................3-1
3.3 MS-DOS Disk Allocation..................................3-3
3.4 MS-DOS Disk D irecto ry3-3
3.5 File Allocation T a b le ..3-7
3.5.1 How to Use the File Allocation Table . . . 3-8
3.6 IBM 5 1/4“ MS-DOS Disk Form ats.............. 3-9

Chapter 4 MS-DOS Control Blocks and Work Areas
4.1 Typical MS-DOS Memory M a p4-1
4.2 MS-DOS Program Segment4-2

Chapter 5 EXE File Structure and Loading

Index

4

M S -D O S PRO G RAM M E R 'S MANUAL

General Introduction

The Microsoft (R) MS(tm)-DOS Programmer’s Reference Manual is a
technical reference manual for system programmers. This manual
contains a description and examples of all MS-DOS 2.0 system calls
and interrupts (Chapter 1). Chapter 2, ’’MS-DOS 2.0 Device Drivers“
contains information on how to install your own device drivers on
MS-DOS. Two examples of device driver programs (one serial and
one block) are included in Chapter 2. Chapter 3 through 5 contain
technical information about MS-DOS, including MS-DOS disk alloca
tion (Chapter 3), MS-DOS control blocks and work areas (Chapter 4),
and EXE file structure and loading (Chapter 5).

5

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Chapter 1
System Calls

1.1 INTRODUCTION

MS-DOS provides two types of system calls: interrupts and function
requests. This chapter describes the environments from which these
routines can be called, how to call them, and the processing perfor
med by each.

1.2 PROGRAMMING CONSIDERATIONS

The system calls mean you don’t have to invent your own ways to
perform these primitive functions, and make it easier to write ma
chine-independent programs.

1.2.1 Calling From Macro Assembler

The system calls can be invoked from Macro Assembler simply by
moving any required data into registers and issuing an interrupt.
Some of the calls destroy registers, so you may have to save registers
before using a system call. The system calls can be used in macros
and procedures to make your programs more readable; this technique
is used to show examples of the calls.

1.2.2 Calling From A High-Level Language

The system calls can be invoked from any high-level language whose
modules can be linked with assembly-language modules.

Calling from Microsoft Basic: Different techniques are used to invoke
system calls from the compiler and interpreter. Compiled modules
can be linked with assembly-language modules; from the interpreter,
the CALL statement or USER function can be used to execute the
appropriate 8086 object code.

1-1

Calling from Microsoft Pascal: In addition to linking with an assembly-
language module, Microsoft Pascal includes a function (DOSXQQ)
that can be used directly from a Pascal program to call a function
request.

Calling from Microsoft FORTRAN: Modules compiled with Microsoft
FORTRAN can be linked with assembly-language modules.

1.2.3 Returning Control To MS-DOS

Control can be returned to MS-DOS in any of four ways:

1. Call Function Request 4CH

MOV AH.4CH
INT 21H

This is the preferred method.

2. Call Interrupt 20H:

INT 20H

3. Jump to location 0 (the beginning of the Program Segment Prefix):

JMP 0

Location 0 of the Program Segment Prefix contains an INT 20 H
instruction, so this technique is simply one step removed from the
first.

4. Call Function Request 00H:

MOV AH.OOH
INT 21H

This causes a jump to location 0, so it is simply one step removed
from technique 2, or two steps removed from technique 1.

1-2

M S -D O S PR O G R A M M E R 'S MANUAL SYSTEM CALLS

1.2.4 Console And Printer Input/Output Calls

The console and printer system calls let you read from and write to
the console device and print on the printer without using any ma
chine-specific codes. You can still take advantage of specific capa
bilities (display attributes such as positioning the cursor or erasing the
screen, printer attributes such as double-strike or underline, etc.) by
using constants for these codes and reassembling once with the
correct constant values for the attributes.

1.2.5 Disk I/O System Calls

Many of the system calls that perform disk input and output require
placing values into or reading values from two system control blocks:
the File Control Block (FCB) and directory entry.

1.3 FILE CONTROL BLOCK (FCB)

The Program Segment Prefix includes room for two FCBs at offsets
5CH and 6CH. The system call descriptions refer to unopened and
opened FCBs. An unopened FCB is one that contains only a drive
specifier and filename, which can contain wild card characters (* and
?). An opened FCB contains all fields filled by the Open File system
call (Function OFH). Table 1.1 describes the fields of the FCB.

1-3

Table 1.1 Fields of File Control Block (FCB)

Size Offset
Name (bytes) Hex Decimal
Drive number 1 00H 0
Filename 8 01-08H 1-8
Extension 3 09-0BH 9-11
Current block 2 0CH,0DH 12,13
Record size 2 OEH,OFH 14,15
File size 4 10-13H 16-19
Date of last write 2 14H,15H 20,21
Time of last write 2 16H,17H 22,23
Reserved 8 18-1FH 24-31
Current record 1 20H 32
Relative record 4 21-24H 33-36

1.3.1 Fields Of The FCB

Drive Number (offset 00H): Specifies the disk drive; 1 means drive A:
and 2 means drive B:. If the FCB is to be used to create or open a file,
this field can be set to 0 to specify the default drive; the Open File
system call Function (OFH) sets the field to the number of the default
drive.

Filename (offset 01H): Eight characters, left-aligned and padded (if
necessary) with blanks. If you specify a reserved device name (such as
LPT1), do not put a colon at the end.

Extension (offset 09H): Three characters, left-aligned and padded (if
necessary) with blanks. This field can be all blanks (no extension).

Current Block (offset OCH): Points to the block (group of 128 records)
that contains the current record. This field and the Current Record
field (offset 20H) make up the record pointer. This field is set to 0 by
the Open File system call.

Record Size (offset OEH): The size of a logical record, in bytes. Set to
128 by the Open File system call. If the record size is not 128 bytes,
you must set this field after opening the file.
1-4

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

File Size (offset 10H): The size of the file, in bytes. The first word of
this 4-byte field is the low-order part of the size.

Date of Last Write (offset 14H): The date the file was created or last
updated. The .year, month, and day are mapped into two bytes as
follows:

Offset 15H
I Y I Y I Y I Y I Y I Y I Y I M I
15 9 8

Offset 14H
I M I M I M I D I D I D I D I D I

5 4 0

Time of Last Write (offset 16H): The time the file was created or last
updated. The hour, minutes, and seconds are mapped into two bytes
as follows:

Offset 17H
1 H 1 H 1 H 1 H 1 H 1 M 1 M 1 M
15 11 10

Offset 16H
1 M 1 M 1 M 1 S 1 S 1 s 1 S 1 S

5 4 0

Reserved (offset 18H): These fields are reserved for use by MS-DOS.

Current Record (offset 20H): Points to one of the 128 records in the
current block. This field and the Current Block field (offset OCH)
make up the record pointer. This field is not initialized by the Open
File system call. You must set it before doing a sequential read or
write to the file.

Relative Record (offset 21H): Points to the currently selected record,
counting from the beginning of the file (starting with 0). This field is
not initialized by the Open File system call. You must set it before
doing a random read or write to the file. If the record size is less than
64 bytes, both words of this field are used; if the record size ist 64
bytes or more, only the first three bytes are used.

1-5

NOTE

If you use the FCB at offset 5CH of the
Program Segment Prefix, the last byte of the
Relative Record field is the first byte of the
unformatted parameter area that starts at
offset 80H. This is the default Disk Transfer
Address.

1.3.2 Extended FCB

The Extended File Control Block is used to create or search for
directory entries of files with special attributes. It adds the following
7-byte prefix to the FCB:

Name
Flag byte (255, or FFH)
Reserved
Attribute byte:

02H = Hidden file
04H = System file

Size Offset
(bytes) (Decimal)

1 -7
5 -6
1 -1

1.3.3 Directory Entry

A directory contains one entry for each file on the disk. Each entry is
32 bytes; Table 1.2 describes the fields of an entry.

Table 1.2 Fields of Directory Entry

Size Offset
Name (bytes) Hex Decimal
Filename 8 00-07H 0-7
Extension 3 08-0AH 8-10
Attributes 1 OBH 11
Reserved 10 0C-15H 12-21
Time of last write 2 16H,17H 22,23
Date of last read 2 18H,19H 24,25
Reserved 2 1AH,1BH 26,27
File size 4 1C-1FH 28-31
1-6

M S -D O S PR O G R AM M E R 'S M ANUAL SYSTEM CALLS

1.3.4 Fields Of The FCB

Filename (offset 00H): Eight characters, left-aligned and padded (if
necessary) with blanks. MS-DOS uses the first byte of this field for
two special codes:

00H (0) End of allocated directory
E5H (229) Free directory entry

Extension (offset 08H): Three characters, left-aligned and padded (if
necessary) with blanks. This field can be all blanks (no extension).

Attributes (offset OBH): Attributes of the file:

Value
Hex Binary Dec Meaning
01H 0000 0001 1 Read-only
02H 0000 0010 2 Hidden
04H 0000 0100 4 System
07H 0000 0111 7 Changeable with CHGMOD
08H 0000 1000 8 Volume-ID
OAH 0001 0000 10 Directory
16H 0001 0110 22 Hard attributes for FINDENTRY
20H 0010 0000 32 Archive

Reserved (offset OCH): Reserved for MS-DOS.

Time of Last Write (offset 16H): The time the file was created or last
updated. The hour, minutes, and seconds are mapped into two bytes
as follows:

Offset 17H
I H I H I H I H I H I M I M I M I
15 1110

Offset 16H
I M I M I M I S I S I S I S I S I

5 4 0

Date of Last Write (offset 18H): The date the file was created or last
updated. The year, month, and day are mapped into two bytes as
follows:

1-7

Offset 19H
I Y I Y I Y I Y I Y I Y I Y I M I
15 9 8

Offset 18H
I M I M I M I D I D I D I D I D I

5 4 0

File Size (offset ICH): The size of the file, in bytes. The first word of
this 4-byte field is the low-order part of the size.

1-8

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

1.4 SYSTEM CALL DESCRIPTIONS

Many system calls require that parameters be loaded into one or
more registers before the call is issued; most calls return information
in the registers (usually a code that describes the success or failure of
the operation). The description of system calls 00H-2EH includes the
following:

A drawing of the 8088 registers that shows their contents before
and after the system call.

A more complete description of the register contents required
before the system call.

A description of the processing performed.

A more complete description of the register contents after the
system call.

An example of its use.

The description of system calls 2FH-57H includes the following:

A drawing of the 8088 registers that shows their contents before
and after the system call.

A more complete description of the register contents repuired
before the system call.

A description of the processing performed.

Error returns from the system call.

An example of its use.

Figure 1 is an example of how each system call is described. Function
27H, Random Block Read, is shown.

1-9

Call
AH - 27H
DS:DX

Opened FCB
CX

Number of blocks to read

Return
AL

0 — Read completed successfully
1 = EOF
2 = End of segment
3 = EOF, partial record

CX
Number of blocks read

Figure 1. Example of System Call Description

1.4.1 Programming Examples

A macro is defined for each system call, then used in some examples.
In addition, a few other macros are defined for use in the examples.
The use of macros allows the examples to be more complete pro
grams, rather than isolated uses of the system calls. All macro defini
tions are listed at the end of the chapter.
The examples are not intended to represent good programming
practice. In particular, error checking and good human interface
design have been sacrificed to conserve space. You may, however,
find the macros a convenient way to include system calls in your
assembly language programs.
A detailed description of each system call follows. They are listed in
numeric order; the interrupts are described first, then the function
requests.

NOTE

Unless otherwise stated, all numbers in the
system call descriptions - both text and
code - are in hex.

1-10

M S -D O S PROGRAM M E R 'S MANUAL SYSTEM CALLS

1.5 XENIX COMPATIBLE CALLS

MS-DOS 2.0 supports hierarchical (i.e., tree-structured) directories,
similar to those found in the Xenix operating system. (For informa
tion on tree-structured directories, refer to the MS-DOS User’s
Guide.)

The following system calls are compatible with the Xenix system:

Function 39H
Function 3AH
Function 3BH
Function 3CH
Function 3DH
Function 3FH
Function 40H
Function 41H
Function 42H
Function 43H
Function 44H
Function 45H
Function 46H
Function 4BH
Function 4CF1
Function 4DH

Create Sub-Directory
Remove a Directory Entry
Change the Current Directory
Create a File
Open a File
Read From File/Device
Write to a File or Device
Delete a Directory Entry
Move a File Pointer
Change Attributes
I/O Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Load and Execute a Program
Terminate a Process
Retrieve Return Code of a Child

There is no restriction in MS-DOS 2.0 on the depth of a tree (the
length of the longest path from root to leaf) except in the number of
allocation units available. The root directory will have a fixed number
of entries (64 for the single sided disk). For non-root directories, the
number of files per directory is only limited by the number of alloca
tion units available.
Pre-2.0 disks will appear to MS-DOS 2.0 as having only a root directo
ry with files in it and no subdirectories.
Implementation of the tree structure is simple. The root directory is
the pre-2.0 directory. Subdirectories of the root have a special attri
bute set indicating that they are directories. The subdirectories them
selves are files, linked through the FAT as usual. Their contents are
identical in character to the contents of the root directory.
Pre-2.0 programs that use system calls not described in this chapter
will be unable to make use of files in other directories. Those files not
necessary for the current task will be placed in other directories.

1-11

Attributes apply to the tree-structured directories in the following
manner:

1-12

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Attribute Meaning/Function
for files

Meaning/Function
for directories

volume-id Present at the root.
Only one file may have
this set.

Meaningless.

directory Meaningless. Indicates that the direc
tory entry is a directory.
Cannot be changed with
43H.

read-only Old fcb-create, new
Create,
new open (for write or
read/write) will fail.

Meaningless.

archive Set when file is written.
Set/reset via Function
43H.

Meaningless.

hidden/
system

Prevents file from being
found in search first/se-
arch next. Old open will
fail.

Prevents directory entry
from being found. Func
tion 3BH will still work.

1-13

1.6 INTERRUPTS

MS-DOS reserves interrupts 20H through 3FH for its own use. The
table of interrupt routine addresses (vectors) is maintained in loca
tions 80H-FCH. Table 1.3 lists the interrupts in numeric order; Table
1.4 lists the interrupts in alphabetic order (of the description). User
programs should only issue Interrupts 20H, 21H, 25H, 26H, and 27H.
(Function Requests 4CH and 31H are the preferred method for
Interrupts 20H and 27H for versions of MS-DOS that are 2.0 and
higher.)

NOTE

Interrupts 22H, 23H, and 24H are not inter
rupts that can be issued by user programs;
they are simply locations where a segment
and offset address are stored.

1-14

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Table 1.3 MS-DOS Interrupts, Numeric Order

Interrupt
Hex Dec Description
20H 32 Program Terminate
21H 33 Function Request
22H 34 Terminate Address
23H 35 <CTRL-C> Exit Address
24H 36 Fatal Error Abort Address
25H 37 Absolute Disk Read
26H 38 Absolute Disk Write
27H 39 Terminate But Stay Resident

28-40H 40-64 RESERVED - DO NOT USE

Table 1.4 MS-DOS Interrupts, Alphabetic Order

Interrupt
Description Hex Dec

Absolute Disk Read 25H 37
Absolute Disk Write 26H 38
<CTRL-C>Exit Address 23H 35
Fatal Error Abort Address 24H 36
Function Request 21H 33
Program Terminate 20H 32
RESERVED - DO NOT USE 28-40H 40-64
Terminate Address 22H 34
Terminate But Stay Resident 27H 39

1-15

Call
CS

Segment address of Program Segment
Prefix

Return
None

Interrupt 20H causes the current process to terminate and returns
control to its parent process. All open file handles are closed and the
disk cache is cleaned. This interrupt is almost always used in old
.COM files for termination.
The CS register must contain the segment address of the Program
Segment Prefix before you call this interrupt.
The following exit addresses are restored from the Program Segment
Prefix:

Program Terminate (Interrupt 20H)

Exit Address Offset
Program Terminate OAH
CONTROL-C OEH
Critical Error 12H

All file buffers are flushed to disk.

NOTE

Close all files that have changed in length
before issuing this interrupt. If a changed
file is not closed, its length is not recorded
correctly in the directory. See Functions
10H and 3EH for a description of the Close
File system calls.

1-16

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Interrupt 20H is provided for compatibility with versions of MS-DOS
prior to 2.0. New programs should use Function Request 4CH, Ter
minate a Process.

Macro Definition: terminate macro
int 20H
endm

Example
;CS must be equal to PSP values given at program start
;(ES and DS values)

INT 20H
;There is no return from this interrupt

1-17

Function Request (Interrupt 21H)

Call
AH

Function number
Other registers as specified in individual
function

Return
As specified in individual function

The AH register must contain the number of the system function.
See Section 1.7. ’’Function Requests”, for a description of the
MS-DOS system functions.

NOTE

No macro is defined for this interrupt,
because all function descriptions in this
chapter that define a macro include Inter
rupt 21H.

Example
To call the Get Time function:

mov ah,2CH ;Get Time is Function 2CH
int 21H ;THIS INTERRUPT

1-18

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

Terminate Address (Interrupt 22H)
CONTROL-C Exit Address (Interrupt 23H)
Fatal Error Abort Address (Interrupt 24H)

These are not true interrupts, but rather storage locations for a seg
ment and offset address. The interrupts are issued by MS-DOS under
the specified circumstance. You can change any of these addresses
with Function Request 25H (Set Vector) if you prefer to write your
own interrupt handlers.

Interrupt 22H - - Terminate Address
When a program terminates, control transfers to the address at offset
OAH of the Program Segment Prefix. This address is copied into the
Program Segment Prefix, from the Interrupt 22H vector, when the
segment is created.

Interrupt 23H - CONTROL-C Exit Address
If the user types CONTROL-C during keyboard input or display
output, control transfers to the INT 23H vector in the interrupt table.
This address is copied into the Program Segment Prefix, from the
Interrupt 23H vector, when the segment is created.
If the CONTROL-C routine preserves all registers, it can end with an
IRET instruction (return from interrupt) to continue program execu
tion. When the interrupt occurs, all registers are set to the value they
had when the original call to MS-DOS was made. There are no re
strictions on what a CONTROL-C handler can do - including
MS-DOS function calls - so long as the registers are unchanged if
IRET is used.
If Function 09H or OAH (Display String of Buffered Keyboard Input)
is interrupted by CONTROL-C, the three-byte sequence 03H-0DH-
OAH (ETX-CR-LF) is sent to the display and the function resumes at
the beginning of the next line.
If the program creates a new segment and loads a second program
that changes the CONTROL-C address, termination of the second
program restores the CONTROL-C address to its value before execu
tion of the second program.

1-19

Interrupt 24H - Fatal Error Abort Address
If a fatal disk error occurs during execution of one of the disk I/O
function calls, control transfers to the INT 24H vector in the vector
table. This address is copied into the Program Segment Prefix, from
the Interrupt 24H vector, when the segment is created.
BP:SI contains the address of a Device Header Control Block from
which additional information can be retrieved.

NOTE

Interrupt 24H is not issued if the failure
occurs during execution of Interrupt 25H
(Absolute Disk Read) or Interrupt 26H
(Absolute Disk Write). These errors are
usually handled by the MS-DOS error
routine in COMMAND.COM that retries
the disk operation, then gives the user the
choice of aborting, retrying the operation, or
ignoring the error. The following topics give
you the information you need about inter
preting the error codes, managing the regi
sters and stack, and controlling the system’s
response to the error in order to write your
own error-handling routines.

Error Codes
When an error-handling program gains control from Interrupt 24H,
the AX and DI registers can contain codes that describe the error. If
Bit 7 of AH is 1, the error is either a bad image of the File Allocation
Table or an error occurred on a character device. The device header
passed in BP:SI can be examined to determine which case exists. If
the attribute byte high order bit indicates a block device, then the
error was a bad FAT. Otherwise, the error is on a character device.

1-20

M S -D O S PRO G RAM M E R 'S M ANUAL SYSTEM CALLS

The following are error codes for Interrupt 24H:

Error Code Description
0 Attempt to write on write-protected disk
1 Unknown unit
2 Drive not ready
3 Unknown command
4 Data error
5 Bad request structure length
6 Seek error
7 Unknown media type
8 Sector not found
9 Printer out of paper
A Write fault
B Read fault
C General failure

The user stack will be in effect (the first item described below is at the
top of the stack), and will contain the following from top to bottom:

IP MS-DOS registers from
CS issuing INT 24H
FLAGS

AX User registers at time of original
BX INT 21H request
c x
DX
SI
DI
BP
DS
ES

IP From the original INT 21H
CS from the user to MS-DOS
FLAGS

The registers are set such that if an IRET is executed, MS-DOS will
respond according to (AL) as follows:

(AL) = 0 ignore the error
= 1 retry the operation
= 2 terminate the program via INT 23H

1-21

Notes:

1. Before giving this routine control for disk errors, MS-DOS per
forms five retries.

2. For disk errors, this exit is taken only for errors occurring during
an Interrupt 21H. It is not used for errors during Interrupts 25H or
26H.

3. This routine is entered in a disabled state.
4. The SS, SP, DS, ES, BX, CX, and DX registers must be preserved.
5. This interrupt handler should refrain from using MS-DOS func

tion calls. If necessary, it may use calls 01H through OCH. Use of
any other call will destroy the MS-DOS stack and will leave MS-
DOS in an unpredictable state.

6. The interrupt handler must not change the contents of the device
header.

7. If the interrupt handler will handle errors rather than returning to
MS-DOS, it should restore the application program’s registers
from the stack, remove all but the last three words on the stack,
then issue an IRET. This will return to the program immediately
after the INT 21H that experienced the error. Note that if this is
done, MS-DOS will be in an unstable state until a function call
higher than OCH is issued.

1-22

M S -D O S PROGRAM M E R 'S MANUAL SYSTEM CALLS

Absolute Disk Read (Interrupt 25H)

Call
AL

Drive number
DS:BX

Disk Transfer Address
CX

Number of sectors
DX

Beginning relative sector

Return
AL

Error code if CF = 1
FlagsL

CF = 0 if successful
= 1 if not successful

The registers must contain the following:

AL Drive number (0 = A, 1 = B, etc.).
BX Offset of Disk Transfer Address (from segment address

in DS).
CX Number of sectors to read.
DX Beginning relative sector.

This interrupt transfers control to the MS-DOS BIOS. The number of
sectors specified in CX is read from the disk to the Disk Transfer
Address. Its requirements and processing are identical to Interrupt
26H, except data is read rather than written.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing
the interrupt.

The system pushes the flags at the time of the call; they are still there
upon return. (This is necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to prevent uncontrolled
growth.

1-23

If the disk operation was successful, the Carry Flag (CF) is 0. If the
disk operation was not successful, CF is 1 and AL contains the MS-
DOS error code (see Interrupt 24H earlier in this section for the codes
and their meaning).

Macro Definition:
abs-disk-read macro disk,buffer,num-sectors,start

mov al, disk
mov bx,offset buffer
mov cx,num-sectors
mov dh,start
int
endm

25H

Example

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:. It uses a buffer of 32K bytes:

prompt db “Source in A, target in B”,13,10
db “Any Key to start. $”

start dw 0
buffer db 64 dup (512 dup (?)) ;64 sectors

int-25H: display prompt ;see Function 09H
read-kbd ;see Function 08H
mov cx,5 ;copy 5 groups of

;64 sectors
copy: push cx ;save the loop counter

abs-disk-read 0,buffer,64,start ;THIS INTERRUPT
abs-disk-write 1,buffer,64,start ;see INT 26H
add start,64 ;do the next 64 sectors
pop cx ;restore the loop counter
loop copy

1-24

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Absolute Disk Write (Interrupt 26H)

Call
AL

Drive number
DS:BX

Disk Transfer Address
CX

Number of sectors
DX

Beginning relative sector

Return
AL

Error code if CF = 1
FLAGSL

CF = 0 if successful
= 1 if not successful

The registers must contain the following:

AL Drive number (0 = A, 1 = B, etc.).
BX Offset of Disk Transfer Address

(from segment address in DS).
CX Number of sectors to write.
DX Beginning relative sector.

This interrupt transfers control to the MS-DOS BIOS. The number of
sectors specified in CX is written from the Disk Transfer Address to
the disk. Its requirements and processing are identical to Interrupt
25H, except data is written to the disk rather than read from it.

NOTE

All registers except the segment registers are
destroyed by this call. Be sure to save any
registers your program uses before issuing
the interrupt.

The system pushes the flags at the time of the call; they are still there
upon return. (This is necessary because data is passed back in the
flags.) Be sure to pop the stack upon return to prevent uncontrolled
growth.

1-25

If the disk operation was successful, the Carry Flag (CF) is 0. If the
disk operation was not successful, CF is 1 and AL contains the MS-
DOS error code (see Interrupt 24H for the codes and their meaning).

Macro Definition:
abs-disk-write macro disk,buffer,num-sectors,start

Example

mov al,disk
mov bx,offset buffer
mov cx,num-sectors
mov dh,start
int 26H
endm

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:, verifying each write. It uses a buffer of
32K bytes:

off
on

equ 0
equ 1

prompt db “Source in A, target in B”,13,10
db “Any key to start. $”

start
buffer

dw 0
db 64 dup (512 dup (?)) ;64 sectors

int-26H: display prompt ;see Function 09H
read-kbd ;see Function 08H
verify on ;see Function 2EH
mov cx,5 ;copy 5 groups of 64 sectors

copy: push cx ;save the loop counter
abs-disk-read 0,buffer,64,start ;see INT 25H
abs-disk-write 1,buffer,64,start ;THIS INTERRUPT
add start,64 ;do the next 64 sectors
pop cx ;restore the loop counter
loop copy
verify off ;see Function 2EH

1-26

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Terminate But Stay Resident (Interrupt 27H)

Call
CS:DX

First byte following
last byte of code

Return
None

The Terminate But Stay Resident call is used to make a piece of code
remain resident in the system after its termination. Typically, this call
is used in .COM files to allow some device-specific interrupt handler
to remain resident to process asynchronous interrupts.
DX must contain the offset (from the segment address in CS) of the
first byte following the last byte of code in the program. When Inter
rupt 27H is executed, the program terminates but is treated as an
extension of MS-DOS; it remains resident and is not overlaid by
other programs when it terminates.
This interrupt is provided for compatibility with versions of MS-DOS
prior to 2.0. New programs should use Function 31H, Keep Process.

Macro Definition:
stay-resident macro

mov
inc
int
endm

last-instruc
dx,offset last-instruc
dx
27H

Example

;CS must be equal to PSP values given at program start
; (ES and DS values)

mov DX,LastAddress
int 27H

;There is no return from this interrupt

1-27

1.7 FUNCTION REQUESTS

Most of the MS-DOS function calls require input to be passed to
them in registers. After setting the proper register values, the function
may be invoked in one of the following ways:

1. Place the function number in AH and execute a long call to offset
50H in your Program Segment Prefix. Note that programs using
this method will not operate correctly on versions of MS-DOS that
are lower than 2.0.

2. Place the function number in AH and issue Interrupt 21H. All of
the examples in this chapter use this method.

3. An additional method exists for programs that were written with
different calling conventions. This method should be avoided for
all new programs. The function number is placed in the CL register
and other registers are set according to the function specification.
Then, an intrasegment call is made to location 5 in the current
code segment. That location contains a long call to the MS-DOS
function dispatcher. Register AX is always destroyed if this me
thod is used; otherwise, it is the same as normal function calls.
Note that this method is valid only for Function Requests 00H
through 024H.

1.7.1 CP/M(R)-Compatible Calling Sequence

A different sequence can be used for programs that must conform to
CP/M calling conventions:

1. Move any required data into the appropriate registers Gust as in the
standard sequence).

2. Move the function number into the CL register.
3. Execute an intrasegment call to location 5 in the current code

segment.

This method can only be used with functions 00H through 24H that
do not pass a parameter in AL. Register AX is always destroyed when
a function is called in this manner.

1-28

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

1.7.2 Treatment Of Registers

When MS-DOS takes control after a function call, it switches to an
internal stack. Registers not used to return information (except AX)
are preserved. The calling program’s stack must be large enough to
accommodate the interrupt system - at least 128 bytes in addition to
other needs.

IMPORTANT NOTE

The macro definitions and extended exam
ple for MS-DOS system calls 00H through
2EH can be found at the end of this chapter.

Table 1.5 lists the function requests in numeric order; Table 1.6 lists
the function requests in alphabetic order (of the description).

Table 1.5 MS-DOS Function Requests, Numeric Order

Function
Number Function Name
00H Terminate Program
01H Read Keyboard and Echo
02H Display Character
03H Auxiliary Input
04H Auxiliary Output
05H Print Character
06H Direct Console I/O
07H Direct Console Input
08H Read Keyboard
09H Display String
OAH Buffered Keyboard Input
OBH Check Keyboard Status
OCH Flush Buffer, Read Keyboard
ODH Disk Reset
OEH Select Disk
OFH Open File
10H Close File
11H Search for First Entry
12H Search for Next Entry
13H Delete File
14H Sequential Read
15H Sequential Write

7-29

16H
17H
19H
1 AH
21H
22H
23H
24H
25H
27H
28H
29H
2AH
2BH
2CH
2DH
2EH
2FH
30H
31H
33H
35H
36H
38H
39H
3AH
3BH
3CH
3DH
3 EH
3FH
40H
41H
42H
43H
44H
45H
46H
47H
48H
49H
4AH
4BH
4CH

Create File
Rename File
Current Disk
Set Disk Transfer Address
Random Read
Random Write
File Size
Set Relative Record
Set Vector
Random Block Read
Random Block Write
Parse File Name
Get Date
Set Date
Get Time
Set Time
Set/Reset Verify Flag
Get Disk Transfer Address
Get DOS Version Number
Keep Process
CONTROL-C Check
Get Interrupt Vector
Get Disk Free Space
Return Country-Dependent Info.
Create Sub-Directory
Remove a Directory Entry
Change the Current Directory
Create a File
Open a File
Close a File Handle
Read From File/Device
Write to a File/Device
Delete a Directory Entry
Move a File Pointer
Change Attributes
I/O Control for Devices
Duplicate a File Handle
Force a Duplicate of a Handle
Return Text of Current Directory
Allocate Memory
Free Allocated Memory
Modify Allocated Memory Blocks
Load and Execute a Program
Terminate a Process

M S -D O S PR O G R AM M E R 'S M ANUAL SYSTEM CALLS

4DH Retrieve the Return Code of a Child
4EH Find Match File
4FH Step Through a Directory Matching Files
54H Return Current Setting of Verify
56H Move a Directory Entry
57H Get/Set Date/Time of File

Table 1.6 MS-DOS Function Requests, Alphabetic Order

Function Name Number

Allocate Memory 48H
Auxiliary Input 03H
Auxiliary Output 04H
Buffered Keyboard Input OAH
Change Attributes 43H
Change the Current Directory 3BH
Check Keyboard Status OBH
Close a File Handle 3EH
Close File 10H
CONTROL-C Check 33H
Create a File 3CH
Create File 16H
Create Sub-Directory 39H
Current Disk 19H
Delete a Directory Entry 41H
Delete File 13H
Direct Console Input 07H
Direct Console I/O 06H
Disk Reset ODH
Display Character 02H
Display String 09 H
Duplicate a File Handle 45H
File Size 23H
Find Match File 4EH
Flush Buffer, Read Keyboard OCH
Force a Duplicate of a Handle 46H
Free Allocated Memory 49H
Get Date 2AH
Get Disk Free Space 36H
Get Disk Transfer Address 2FH
Get DOS Version Number 30H
Get Interrupt Vector 35H

1-31

Get Time 2CH
Get/Set Date/Time of File 57H
I/D Control for Devices 44H
Keep Process 31H
Load and Execute a Program 4BH
Modify Allocated Memory Blocks 4AH
Move a Directory Entry 56H
Move a File Pointer 42H
Open a File 3DH
Open File OFH
Parse File Name 29H
Print Character 05H
Random Block Read 27H
Random Block Write 28H
Random Read 21H
Random Write 22H
Read From File/Device 3FH
Read Keyboard 08H
Read Keyboard and Echo 01H
Remove a Directory Entry 3AH
Rename File 17H
Retrieve the Return Code of a Child 4DH
Return Current Setting of Verify 54 H
Return Country-Dependent Info. 38H
Return Text of Current Directory 47H
Search for First Entry 11H
Search for Next Entry 12H
Select Disk OEH
Sequential Read 14H
Sequential Write 15H
Set Date 2BH
Set Disk Transfer Address 1 AH
Set Relative Record 24H
Set Time 2DH
Set Vector 25H
Set/Reset Verify Flag 2EH
Step Through a Directory Matching 4FH
Terminate a Process 4CH
Terminate Program 00H
Write to a File/Device 40H

1-32

M S -D O S PROGRAM M E R 'S M ANUAL SYSTEM CALLS

Terminate Program (Function 00H)
Call
AH = 00H
CS

Segment address of
Program Segment Prefix

Return
None

Function 00H is called by Interrupt 20H; it performs the same proces
sing.
The CS register must contain the segment address of the Program
Segment Prefix before you call this interrupt.
The following exit addresses are restored from the specified offsets in
the Program Segment Prefix:

Program terminate OAH
CONTROL-C OEH
Critical error 12H

All file buffers are flushed to disk.

Warning: Close all files that have changed in length before calling this
function. If a changed file is not closed, its length is not recorded
correctly in the directory. See Function 10H for a description of the
Close File system call.

Macro Definition: terminate-program macro
xor ah,ah
int 21H
endm

Example

;CS must be equal to PSP values given at program start
;(ES and DS values)

mov ah,0
int 21H

;There are no returns from this interrupt

1-33

Read Keyboard and Echo (Function 01H)
Call
AH = 01H

Return
AL

Character typed

Function 01H waits for a character to be typed at the keyboard, then
echoes the character to the display and returns it in AF. If the charac
ter is CONTROF-C, Interrupt 23H is executed.

Macro Definition: read-kbd-and-echo macro
mov ah, 01H
int 21H
endm

Example

The following program both displays and prints characters as they are
typed. If RETURN is pressed, the program sends Fine Feed-Carriage
Return to both the display and the printer:

func-01H: read-kbd-and-echo ;THIS FUNCTION
print-char al ;see Function 05H
cmp al,0DH ;is it a CR?
jne func-01H ;no, print it
print-char 10 ;see Function 05H
display-char 10 ;see Function 02H
jmp func-01H ;get another character

1-34

M S -D O S PR O G R A M M E R ’S M ANUAL SYSTEM CALLS

Display Character (Function 02H)

Call
AH = 02H
DL

Character to be displayed

Return
None

Function 02H displays the character in DL. If CONTROL-C is typed,
Interrupt 23H is issued.

Macro Definition: display-char macro character
mov dl, character
mov ah, 02H
int 21H
endm

Example

The following program converts lowercase characters to uppercase
before displaying them:

func-02H: read-kbd
cmp al,“a”

;see Function 08H

Jl
cmp

uppercase
al,“z”

;don’t convert

jg uppercase ;don’t convert
sub al,20H ;convert to ASCII code

;for uppercase
uppercase: display-char al ;THIS FUNCTION

jmp func-02H: ;get another character

1-35

Call
AH = 03H

Return
AL

Character from auxiliary device

Function 03H waits for a character from the auxiliary input device,
then returns the character in AL. This system call does not return a
status or error code.
If a CONTROL-C has been typed at console input, Interrupt 23H is
issued.

Macro Definition: aux-input macro
mov ah,03H
int 21H
endm

Auxiliary Input (Function 03H)

Example

The following program prints characters as they are received from the
auxiliary device. It stops printing when an end-of-file character
(ASCII 1AH, or CONTROL-Z) is received:
func-03H: aux-input ;THIS FUNCTION

cmp al,lAH ;end of file?
je continue ;yes, all done
print-char al ;see Function 05H
jmp func-03H ;get another character

continue:

1 -36

M S -D O S PROGRAM M E R 'S MANUAL SYSTEM CALLS

Auxiliary Output (Function 04H)

Call
AH = 04H
DL

Character for auxiliary device

Return
None

Function 04H sends the character in DL to the auxiliary output
device. This system call does not return a status or error code.
If a CONTROL-C has been typed at console input, Interrupt 23H is
issued.

Macro Definition: aux-output macro character
mov dl,character
mov ah,04H
int 21H
endm

Example

The following program gets a series of strings of up to 80 bytes from
the keyboard, sending each to the auxiliary device. It stops when a
null string (CR only) is typed:

string db 81 dup(?) ;see Function OAH

func-04H:

send-it:

continue:

get-string 80,string
cmp string[l],0
je continue
mov cx, word ptr stringfl]
mov bx,0
aux-output string[bx+2]
inc bx
loop send-it
jmp func-04H

;see Function OAH
;null string?
;yes, all done
;get string length
;set index to 0
;THIS FUNCTION
;bump index
;send another character
;get another string

1-37

Print Character (Function 05H)

Call
AH = 05H
DL

Character for printer

Return
None

Function 05H prints the character in DL on the standard printer
device. If CONTROL-C has been typed at console input, Interrupt
23H is issued.

Macro Definition: print-char macro character
mov dl,character
mov ah,05H
int 21H
endm

Example

The following program prints a walking test pattern on the printer. It
stops if CONTROL-C is pressed.

line-num db 0

func-05H: mov cx,60 ;print 60 lines
start-line: mov bl,33 ;first printable ASCII

character (!)
add bl,line-num ;to offset ne character
push cx ;save number-of-lines counter
mov cx,80 ;loop counter for line

print-it: print-char bl ;THIS FUNCTION
inc bl ;move to next ASCII character
cmp bl,126 ;last printable ASCII

character ()
jl no-reset ;not there yet
mov bl,33 ;start over with (!)

1-38

no-reset: loop print-it
print-char 13
print-char 10
inc line-num
pop cx
loop start-line;

M S -D O S PRO G RAM M E R 'S MANUAL

;print another character
;carriage return
;line feed
;to offset 1st char, of line
;restore #-of-lines counter
;print another line

SYSTEM CALLS

1-39

Call
AH = 06H
DL

See text

Return
AL

If DL = FFH (255) before call, then Zero
flag not set means AL has character from
keyboard.
Zero flag set means there was not a cha
racter to get, and AL = 0

The processing depends on the value in DL when the function is
called:

DL is FFH (255) - If a character has been typed at the key
board, it is returned in AL and the Zero flag is 0; if a character
has not been typed, the Zero flag is 1.
DL is not FFH - The character in DL is displayed.

This function does not check for CONTROL-C.

Macro Definition: dir-console-io macro switch
mov dl, switch
mov ah,06H
int 21H
endm

Direct Console I/O (Function 06H)

1-40

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Example

The following program sets the system clock to 0 and continuously
displays the time. When any character is typed, the display stops
changing; when any character is typed again, the clock is reset to 0 and
the display starts again:

time
5

ten

db “00:00:00.00”,13,10,“$” ;see Function 09H
;for explanation of $

db 10

func-06H: set-time 0,0,0,0 ;see Function 2DH
read-clock: get-time ;see Function 2CH

convert ch, ten, time ;see end of chapter
convert cl,ten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dl,ten,time[9] ;see end of chapter
display time ;see Function 09H
dir-console-io FFH ;THIS FUNCTION
jne stop ;yes, stop timer
jmp read-clock ;no, keep timer

;running
stop: read-kbd ;see Function 08H

jmp func-06H ;start over

1-41

Direct Console Input (Function 07H)

Call
AH = 07H

Return
AL

Character from keyboard

Function 07H waits for a character to be typed, then returns it in AL.
This function does not echo the character or check for CONTROL-C.
(For a keyboard input function that echoes or checks for CONTROL-
C, see Functions 01H or 08H.)

Macro Definition: dir-console-input macro
mov ah,07H
int 21H
endm

Example

The following program prompts for a password (8 characters maxi
mum) and places the characters into a string without echoing them:

password db 8 dup(?)
prompt db “Password: $” ;see Function 09H for

explanation of $

func-07H:

get-pass:

continue:

display prompt
mov cx,8
xor bx,bx
dir-console-input
cmp al,0DH
je continue
mov password[bx],al
inc bx
loop get-pass

;see Function 09H
;maximum length of password
;so BL can be used as index
;THIS FUNCTION
;was it a CR?
;yes, all done
;no, put character in string
;bump index
;get another character
;BX has length of password-!-1

1-42

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Read Keyboard (Function 08H)

Call
AH = 08H

Return
AL

Character from keyboard

Function 08H waits for a character to be typed, then returns it in AL.
If CONTROL-C is pressed, Interrupt 23H is executed. This function
does not echo the character. (For a keyboard input function that
echoes the character or does not check for CONTROL-C, see Func
tions 01H or 07H.)

Macro Definition: read-kbd macro
mov ah,08H
int 21H
endm

Example

The following program prompts for a password (8 characters max
imum) and places the characters into a string without echoing them:

password db 8 dup(?)
prompt db “Password: $” ;see Function 09H

;for explanation of $

func-08H: display prompt ;see Function 09H
mov cx,8 ;maximum length of password
xor bx,bx ;BL can be an index

get-pass: read-kbd ;THIS FUNCTION
cmp al,0DH ;was it a CR?
je continue ;yes, all done
mov password[bx],al ;no, put char, in string
inc bx ;bump index
loop get-pass ;get another character

continue: ;BX has length of password+1

1-43

Display String (Function 09H)

Call
AH = 09H
DS:DX

String to be displayed

Return
None

DX must contain the offset (from the segment address in DS) of a
string that ends with The string is displayed (the $ is not dis
played).

Macro Definition: display macro string
mov dx,offset string
mov ah,09H
int 21H
endm

Example

The following program displays the hexadecimal code of the key that
is typed:

table db “0123456789ABCDEF”
sixteen db 16
result db “ - 00H”,13,10,“$” ;see text for

explanation of $

func-09H: read-kbd-and-echo ;see Function 01H
convert al, sixteen, result[3] ;see end of chapter
display result ;THIS FUNCTION
jmp func-09H ;do it again

1-44

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Buffered Keyboard Input (Function OAH)

Call
AH = OAH
DS:DX

Input buffer

Return
None

DX must contain the offset (from the segment address in DS) of an
input buffer of the following form:

Byte Contents
1 Maximum number of characters in buffer, including the

CR (you must set this value).
2 Actual number of characters typed, not counting the CR

(the function sets this value).
3-h Buffer; must be at least as long as the number in byte 1.

This function waits for characters to be typed. Characters are read
from the keyboard and placed in the buffer beginning at the third byte
until RETURN is typed. If the buffer fills to one less than the max
imum, additional characters typed are ignored and ASCII 7 (BEL) is
sent to the display until RETURN is pressed. The string can be edited
as it is being entered. If CONTROL-C is typed, Interrupt 23H is
issued.
The second byte of the buffer is set to the number of characters
entered (not counting the CR).

Macro Definition: get-string macro limit,string
mov dx,offset string
mov string,limit
mov ah,OAH
int 21H
endm

1-45

Example

The following program gets a 16-byte (maximum) string from the
keyboard and fills a 24-line by 80-character screen with it:

buffer label byte
max-length db ? ;maximum length
chars-entered db ? ;number of chars.
string db 17 dup (?) ;16 chars + CR
strings-per-line dw 0 ;how many strings

;fit on line
crlf db 13,10,”$“

func-OAH: get-string 17,buffer ;THIS FUNCTION
xor bx,bx ;so byte can be

;used as index
mov bl,chars-entered ;get string length
mov buffer[bx+2],”$“ ;see Function 09H
mov al,50H ;columns per line
cbw
div chars-entered ;times string fits

;on line
xor ah,ah ;clear remainder
mov strings-per-line,ax ;save col. counter
mov cx,24 ;row counter

display-screen: push cx ;save it
mov cx, strings-per-line ;get col. counter

display-line: display string ;see Function 09H
loop display-line
display crlf ;see Function 09H
pop cx ;get line counter
loop display-screen ;display 1 more line

1-46

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Check Keyboard Status (Function OBH)

Call
AH = OBH

Return
AL

255 (FFH) = characters in type-ahead
buffer
0 = no characters in type-ahead

buffer

Checks whether there are characters in the type-ahead buffer. If so,
AL returns FFH (255); if not, AL returns 0. If CONTROL-C is in the
buffer, Interrupt 23H is executed.

Macro Definition: check-kbd-status macro
mov ah,OBH
int 21H
endm

Example
The following program continuously displays the time until any key is
pressed.

time db ”00:00:00.00“,13,10,”$“
ten db 10

func-OBH: get-time
convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
check-kbd-status
cmp al, FFH
je all-done
jmp func-OBH

;see Function 2CH
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;THIS FUNCTION
;has a key been typed?
;yes, go home
;no, keep displaying
;time

1-47

Flush Buffer, Read Keyboard (Function OCH)

Call
AH = OCH
AL

1, 6, 7, 8, or OAH = The corresponding
function is called.
Any other value = no further processing.

Return
AL

0 = Type-ahead buffer was flushed; no
other
processing performed.

The keyboard type-ahead buffer is emptied. Further processing
depends on the value in AL when the function is called:

1, 6, 7, 8, or OAH - The corresponding MS-DOS
function is executed.

Any other value - No further processing; AL returns 0.

Macro Definition: flush-and-read-kbd macro switch

Example
The following program both displays and prints characters as they are
typed. If RETURN is pressed, the program sends Carriage Return-
Line Feed to both the display and the printer.

mov al,switch
mov ah,0CH
int 21H
endm

func-OCH: flush-and-read-kbd 1 ;THIS FUNCTION
;see Function 05H
;is it a CR?

print-char al
cmp al,0DH
jne func-OCH
print-char 10
display-char 10
jmp func-OCH

;no, print it
;see Function 05H
;see Function 02H
;get another character

1-48

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

Disk Reset (Function ODH)

Call
AH - ODH

Return
None

Function ODH is used to ensure that the internal buffer cache mat
ches the disks in the drives. This function writes out dirty buffers
(buffers that have been modified), and marks all buffers in the inter
nal cache as free.
Function ODH flushes all file buffers. It does not update directory
entries; you must close files that have changed to update their directo
ry entries (see Function 10H, Close File). This function need not be
called before a disk change if all files that changed were closed. It is
generally used to force a known state of the system; CONTROL-C
interrupt handlers should call this function.

Macro Definition: disk-reset macro disk
mov ah,ODH
int 21H
endm

Example
mov ah,ODH
int 21H

;There are no errors returned by this call.

1-49

Select Disk (Function OEH)

Call
AH = OEH
DL

Drive number
(0 — A:, 1 = B:, etc.)

Return
AL

Number of logical drives

The drive specified in DL (0 = A:, 1 = B:, etc.) is selected as the
default disk. The number of drives is returned in AL.

Macro Definition: select-disk macro disk

Example
The following program selects the drive not currently selected in a
2-drive system:

mov dl,disk[-64]
mov ah, OEH
int 21H
endm

func-OEH: current-disk ;see Function 19H
;drive A: selected?
;yes, select B

cmp al,00H
je select-b
select-disk ”A“
jmp continue

;THIS FUNCTION

select-b: select-disk ”B“
Continue: •

;THIS FUNCTION

1-50

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Open File (Function OFH)

Call
AH - OFH
DS:DX

Unopened FCB

Return
AL

0 = Directory entry found
255 (FFH) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened File Control Block (FCB). The disk directory is searched
for the named file.
If a directory entry for the file is found, AL returns 0 and the FCB is
filled as follows:

If the drive code was 0 (default disk), it is changed to the actual
disk used (1 = A:, 2 = B:, etc.). This lets you change the default
disk without interfering with subsequent operations on this file.
The Current Block field (offset OCH) is set to zero.
The Record Size (offset OEH) is set to the system default of 128.
The File Size (offset 10H), Date of Last Write (offset 14H), and
Time of Last Write (offset 16H) are set from the directory
entry.

Before performing a sequential disk operation on the file, you must
set the Current Record field (offset 20H). Before performing a ran
dom disk operation on the file, you must set the Relative Record field
(offset 21H). If the default record size (128 bytes) is not correct, set it
to the correct length.

1-51

If a directory entry for the file is not found, AL returns FFH (255).

Macro Definition: open macro fcb
mov dx,offset fcb
mov ah,0FH
int 21H
endm

Example
The following program prints the file named TEXTFILE.ASC that is
on the disk in drive B:. If a partial record is in the buffer at end-of-file,
the routine that prints the partial record prints characters until it
encounters an end-of-file mark (ASCII 26, or CONTROL-Z):

fcb db 2,”TEXTFILEASC”
db 25 dup (?)

buffer db 128 dup (?)

func-OFH: set-dta buffer ;see Function 1AH
open fcb ;THIS FUNCTION

read-line: read-seq fcb ;see Function 14H
cmp al,02H ;end of file?
je all-done ;yes, go home
cmp al,00H ;more to come?
jg check-more ;no, check for partial

;record
mov cx,128 ;yes, print the buffer
xor si,si ;set index to 0

print-it: print-char buffer[si] ;see Function 05H
inc si ;bump index
loop print-it ;print next character
jmp read-line ;read another record

check-more: cmp al,03H ;part. record to print?
jne all-done ;no
mov cx,128 ;yes, print it
xor si,si ;set index to 0

find-eof: cmp buffer[si],26 ;end-of-file mark?
je all-done ;yes
print-char buffer[si] ;see Function 05H
inc si ;bump index to next

character
loop find-eof

all-done: close fcb ;see Function 10H
1-52

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Close File (Function 10H)

Call
AH = 10 H
DS:DX

Opened FCB

Return
AL

0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (to the segment address in DS) of an
opened FCB. The disk directory is searched for the file named in the
FCB. This function must be called after a file is changed to update the
directory entry.
If a directory entry for the file is found, the location of the file is
compared with the corresponding entries in the FCB. The directory
entry is updated, if necessary, to match the FCB, and AL returns 0.
If a directory entry for the file is not found, AL returns FFH (255).

Macro Definition: close macro fcb
mov dx,offset fcb
mov ah,10H
int 21H
endm

Example
The following program checks the first byte of the file named MODL-
BAS in drive B: to see if it is FFH, and prints a message if it is:

message db ’’Not saved in ASCII format“,13,10,”$'
fcb db 2,’’MODI BAS“

db 25 dup (?)
buffer db 128 dup (?)

func-lOH: set-dta buffer ;see Function 1AH
open fcb ;see Function OFH
read-seq fcb ;see Function 14H

1-53

cmp buffer,FFH
jne all-done
display message

all-done: close fcb

;is first byte FFH?
;no
;see Function 09H
;THIS FUNCTION

1-54

M S -D O S PR O G R A M M E R ’S M ANUAL SYSTEM CALLS

Search for First Entry (Function 11H)

Call
AH = 11H
DS:DX

Unopened FCB

Return
0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened FCB. The disk directory is searched for the first matching
name. The name can have the ? wild card character to match any
character. To search for hidden or system files, DX must point to the
first byte of the extended FCB prefix.
If a directory entry for the filename in the FCB is found, AL returns 0
and an unopened FCB of the same type (normal or extended) is
created at the Disk Transfer Address.
If a directory entry for the filename in the FCB is not found, AL
returns FFH (255).

Notes:
If an extended FCB is used, the following search pattern is used:

1. If the FCB attribute is zero, only normal file entries are found.
Entries for volume label, sub-directories, hidden, and system files
will not be returned.

2. If the attribute field is set for hidden or system files, or directory
entries, it is to be considered as an inclusive search. All normal file
entries plus all entries matching the specified attributes are retur
ned. To look at all directory entries except the volume label, the
attribute byte may be set to hidden + system + directory (all 3 bits
on).

1-55

3. If the attribute field is set for the volume label, it is considered an
exclusive search, and only the volume label entry is returned.

Macro Definition: search-first macro fcb
mov dx,offset fcb
mov ah,llH
int 21H
endm

Example
The following program verifies the existence of a file named
REPORT.ASM on the disk in drive B::

yes db ’’FILE EXISTS.$“
no db ’’FILE DOES NOT EXIST.$“
fcb db 2,’’REPORT ASM“

db 25 dup (?)
buffer db 128 dup (?)

func-llH: set-dta buffer ;see Function 1AH
search-first fcb ;THIS FUNCTION
cmp al,FFH directory entry found?
je not-there ;no
display yes ;see Function 09H
jmp continue

not-there: display no ;see Function 09H
continue: display crlf ;see Function 09H

1-56

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Search for Next Entry (Function 12H)

Call
AH = 12H
DS:DX

Unopened FCB

Return
AF

0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
FCB previously specified in a call to Function 11H. Function 12H is
used after Function 11H (Search for First Entry) to find additional
directory entries that match a filename that contains wild card charac
ters. The disk directory is searched for the next matching name. The
name can have the ? wild card character to match any character. To
search for hidden or system files, DX must point to the first byte of
the extended FCB prefix.
If a directory entry for the filename in the FCB is found, AL returns 0
and an unopened FCB of the same type (normal or extended) is
created at the Disk Transfer Address.
If a directory entry for the filename in the FCB is not found, AF
returns FFH (255).

Macro Definition: search-next macro fcb
mov dx,offset fcb
mov ah,12H
int 21H
endm

Example
The following program displays the number of files on the disk in
drive B:

message db ”No files“,10,13,”$'
files db 0
ten db 10
fcb db 1 » 9 9 9 9 7 7 9 9 9 9 7 «

db 25 dup (?)
buffer db 128 dup (?)

1 -57

func-12H: set-dta buffer ;see Function 1AH
search-first fcb ;see Function 11H
cmp al,FFH directory entry found?
je all-done ;no, no files on disk
inc files ;yes, increment file

;counter
search-dir: search-next fcb ;THIS FUNCTION

cmp al,FFH directory entry found?
je done ;no
inc files ;yes, increment file

;counter
jmp search-dir ;check again

done: convert files,ten,message ;see end of chapter
all-done: display message ;see Function 09H

1-58

M S -D O S PR O G R A M M E R S MANUAL SYSTEM CALLS

Delete File (Function 13H)

Call
AH = 13H
DS:DX

Unopened FCB

Return
0 = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened FCB. The directory is searched for a matching filename.
The filename in the FCB can contain the ? wild card character to
match any character.
If a matching directory entry is found, it is deleted from the directory.
If the ? wild card character is used in the filename, all matching direc
tory entries are deleted. AL returns 0.
If no matching directory entry is found, AL returns FFH (255).

Macro Definition: delete macro fcb
mov dx,offset fcb
mov ah,13H
int 21H
endm

Example
The following program deletes each file on the disk in drive B: that
was last written before December 31, 1982:

year dw 1982
month db 12
day db 31
files db 0
ten db 10
message db ”NO FILES I

fcb db ? » 797799799? ? '

db 25 dup (?)

;see Function 09H for
explanation of $

1-59

buffer db 128 dup (?)

func-13H: set-dta buffer ;see Function 1AH
search-first fcb ;see Function 11H
cmp al,FFH directory entry found?
je all-done ;no, no files on disk

compare: convert-date buffer ;see end of chapter
cmp cx,year ;next several lines
jg next ;check date in directory
cmp dl,month ;entry against date
jg next ;above & check next file
cmp dh,day ;if date in directory
jge next ;entry isn’t earlier.
delete buffer ;THIS FUNCTION
inc files ;bump deleted-files

;counter
next: search-next fcb ;see Function 12H

cmp al,00H directory entry found?
je compare ;yes, check date
cmp files,0 ;any files deleted?
je all-done ;no, display NO FILES

;message.
convert files,ten,message ;see end of chapter

all-done: display message ;see Function 09H

1-60

M S -D O S PROGRAM M E R 'S M ANUAL SYSTEM CALLS

Sequential Read (Function 14H)

Call
AH = 14H
DS:DX

Opened FCB

Return
Al

0 = Read completed successfully
1 = EOF
2 = DTA too small
3 = EOF, partial record

DX must contain the offset (from the segment address in DS) of an
opened FCB. The record pointed to by the current block (offset OCH)
and Current Record (offset 20H) fields is loaded at the Disk Transfer
Address, then the Current Block and Current Record fields are
incremented.
The record size is set to the value at offset OEH in the FCB.
AL returns a code that describes the processing:

Code Meaning
0 Read completed successfully.
1 End-of-file, no data in the record.
2 Not enough room at the Disk Transfer Address to read

one record; read canceled.
3 End-of-file; a partial record was read and padded to the

record length with zeros.

Macro Definition: read-seq macro fcb
mov dx,offset fcb
mov ah,14H
int 21H
endm

Example
The following program displays the file named TEXTFILE.ASC that
is on the disk in drive B:; its function is similar to the MS-DOS TYPE
command. If a partial record is in the buffer at end of file, the routine
that displays the partial record displays characters until it encounters
an end-of-file mark (ASCII 26, or CONTROL-Z):

1-61

fcb db 2,”TEXTFILEASC“
db 25 dup (?)

buffer db 128 dup (?),”$“

func-14H: set-dta buffer ;see Function 1AH
open fcb ;see Function OFH

read-line: read-seq fc ;THIS FUNCTION
cmp al,02H ;end-of-file?
je all-done ;yes
cmp al,02H ;end-of-file with partial

;record?
jg check-more ;yes
display buffer ;see Function 09H
jmp read-line ;get another record

check-more: cmp al,03H ;partial record in buffer?
jne all-done ;no, go home
xor si,si ;set index to 0

fmd-eof: cmp buffer[si],26 ;is character EOF?
je all-done ;yes, no more to display
display-char bufferjsi] ;see Function 02H
inc si ;bump index to next

character
jmp fmd-eof ;check next character

all-done close fcb ;see Function 10H

1-62

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

Sequential Write (Function 15H)

Call
AH = 15H
DS:DX

Opened FCB

Return
AL

00H = Write completed successfully
01H = Disk full
02H = DTA too small

DX must contain the offset (from the segment address in DS) of an
opened FCB. The record pointed to by Current Block (offset OCH)
and Current Record (offset 20H) fields is written from the Disk
Transfer Address, then the current block and current record fields are
incremented.
The record size is set to the Value at offset OEH in the FCB. If the
Record Size is less than a sector, the data at the Disk Transfer Ad
dress is written to a buffer; the buffer is written to disk when it con
tains a full sector of data, or the file is closed, or a Reset Disk system
call (Function ODH) is issued.
AL returns a code that describes the processing:

Code Meaning
0 Transfer completed successfully.
1 Disk full; write canceled.
2 Not enough room at the Disk Transfer Address to write

one record; write canceled

Macro Definition: write-seq macro fcb
mov dx,offset fcb
mov ah,15H
int 21H
endm

1-63

Example
The following program creates a file named DIR.TMP on the disk in
drive B: that contains the disk number (0 = A:, 1 = B:, etc.) and
filename from each directory entry on the disk:

record-size equ 14 ;offset of Record Size
;field in FCB

fcbl db 2,”DIR TMP“
db 25 dup (?)

fcb2 db ~) ” 9 9 9 9 9 9 9 9 9 9 9 “

db 25 dup (?)
buffer db 128 dup (?)

func-15H: set-dta buffer ;see Function 1AH
search-first fcb2 ;see Function 11H
cmp al,FFH ;directory entry found?
je all-done ;no, no files on disk
create fcbl ;see Function 16H
mov fcbl[record-size],12

;set record size to 12
write-it: write-seq fcbl ;THIS FUNCTION

search-next fcb2 ;see Function 12H
cmp al,FFH ;directory entry found?
je all-done ;no, go home
jmp write-it ;yes, write the record

all-done: close fcbl ;see Function 10H

1-64

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

Create File (Function 16H)

Call
AH = 16H
DS:DX

Unopened FCB

Return
AL

00H = Empty directory found
FFH (255) = No empty directory

available

DX must contain the offset (from the segment address in DS) of an
unopened FCB. The directory is searched for an empty entry or an
existing entry for the specified filename.
If an empty directory entry is found, it is initialized to a zero-length
file, the Open File system call (Function OFH) is called, and AL
returns 0. You can create a hidden file by using an extended FCB
with the attribute byte (offset FCB-1) set to 2.
If an entry is found for the specified filename, all data in the file is
released, making a zero-length file, and the Open File system call
(Function OFH) is issued for the filename (in other words, if you try to
create a file that already exists, the existing file is erased, and a new,
empty file is created).
If an empty directory entry is not found and there is no entry for the
specified filename, AL returns FFH (255).

Macro Definition: create macro fcb
mov dx,offset fcb
mov ah,16H
int 21H
endm

Example
The following program creates a file named DIR.TMP on the disk in
drive B: that contains the disk number (0 = A:, 1 = B:, etc.) and
filename from each directory entry on the disk:

1-65

record-size equ 14 ;offset of Record Size
;field of FCB

fehl db 2,”DIR TMP“
db 25 dup (?)

fcb2 db ? ” 77777779? ? ? “

db 25 dup (?)
buffer db 128 dup (?)

func-16H: set-dta buffer ;see Function 1AH
search-first fcb2 ;see Function 11H
cmp al,FFH directory entry found?
je all-done ;no, no files on disk
create fcbl ;THIS FUNCTION
mov fcbl [record-size], 12

;set record size to 12
write-it: write-seqfcbl ;see Function 15H

search-next fcb2 ;see Function 12H
cmp al,FFH directory entry found?
je all-done ;no, go home
jmp write-it ;yes, write the record

all-done: close fcbl ;see Function 10H

1-66

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Rename File (Function 17FI)

Call
AH - 17H
DS:DX

' Modified FCB

Return
AL

00H = Directory entry found
EFH (255) = No directory entry
found or destination already exists

DX must contain the offset (from the segment address in DS) of an
FCB with the drive number and filename filled in, followed by a
second filename at offset 11H. The disk directory is searched for an
entry that matches the first filename, which can contain the ? wild
card character.
If a matching directory entry is found, the filename in the directory
entry is changed to match the second filename in the modified FCB
(the two filenames cannot be the same name). If the ? wild card
character is used in the second filename, the corresponding charac
ters in the filename of the directory entry are not changed. AL returns
0 .

If a matching directory entry is not found or an entry is found for the
second filename, AL returns FFH (255).

Macro Definition: rename macro fcb,newname
mov dx,offset fcb
mov ah,17H
int 21H
endm

Example
The following program prompts for the name of a file and a new
name, then renames the file:

fcb db 37 dup (?)
promptl db ’’Filename: $“
prompt2 db ’’New name: $'
reply db 17 dup(?)
crlf db 13,10,”$“

1-67

func-17H: display prompt 1
get-string 15,reply
display crlf
parse reply[2],fcb
display prompt2
get-string 15,reply
display crlf
parse reply[2],fcb[16]

rename fcb

;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 09H
;see Function OAFI
;see Function 09 H

;see Function 29H
;THIS FUNCTION

1-68

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Current Disk (Function 19H)

Call
AH = 19H

Return
AL

Currently selected drive
(0 = A, 1 = B, etc.)

AL returns the currently selected drive (0 = A:, 1 = B:, etc.).

Macro Definition: current-disk macro
mov ah,19H
int 21H
endm

Example
The following program displays the currently selected (default) drive
in a 2-drive system:

message db ’’Current disk is $“ ;see Function 09H

crlf db 13,10,”$“
;for explanation of $

func-19H: display message ;see Function 09H
current-disk ;THIS FUNCTION
cmp al,00H ;is it disk A?
jne disk-b ;no, it’s disk B:
display-char ”A“
jmp all-done

;see Function 02H

disk-b: display-char ”B“ ;see Function 02H
all-done: display crlf ;see Function 09H

1-69

Call
AH = 1AH
DS:DX

Disk Transfer Address

Return
None

DX must contain the offset (from the segment address in DS) of the
Disk Transfer Address. Disk transfers cannot wrap around from the
end of the segment to the beginning, nor can they overflow into
another segment.

Set Disk Transfer Address (Function 1AH)

NOTE

If you do not set the Disk Transfer Address,
MS-DOS defaults to offset 80H in the
Program Segment Prefix.

Macro Definition: set-dta macro buffer
mov dx,offset buffer
mov ah,lAH
int 21H
endm

Example
The following program prompts for a letter, converts the letter to its
alphabetic sequence (A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file named ALPHABET.DAT on the
disk in drive B:. The file contains 26 records; each record is 28 bytes
long:

record-size equ 14 ;offset of Record Size
;field of FCB

relative-record equ 33 ;offset of Relative Record
;field of FCB

1-70

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

fcb db 2,“ALPHABETDAT”
db 25 dup (?)

buffer db 34 dup (?),“$’5

prompt db “Enter letter: $”
crlf db 13,10,“$”

func-lAH: set-dta buffer ;THIS FUNCTION
open fcb ;see Function OFH
mov fcb[record-size],28 ;set record size

get-char: display prompt ;see Function 09H
read-kbd-and-echo ;see Function 01H
cmp al,0DH just a CR?
je all-done ;yes, go home
sub al,41H ;convert ASCII

icode to record #
mov fcb [relative-record] ,al

;set relative record
display crlf ;see Function 09H
read-ran fcb ;see Function 21H
display buffer ;see Function 09H
display crlf ;see Function 09H
jmp get-char ;get another character

all-done: close fcb ;see Function 10H

1-71

Random Read (Function 21H)

Call
AH = 21H
DS:DX

Opened FCB

Return
AL

00H = Read completed successfully
01H = EOF
02H = DTA too small
03H = EOF, partial record

DX must contain the offset (from the segment address in DS) of an
opened FCB. The Current Block (offset OCH) and Current Record
(offset 20H) fields are set to agree with the Relative Record field
(offset 21H), then the record addressed by these fields is loaded at the
Disk Transfer Address.
AL returns a code that describes the processing:

Code Meaning

0 Read completed successfully.

1 End-of-file; no data in the record.

2 Not enough room at the Disk Transfer Address to read
one record; read canceled.

3 End-of-file; a partial record was read and padded to the
record length with zeros.

Macro Definition: read-ran macro fcb
mov dx,offset fcb
mov ah,21H
int 21H
endm

Example

The following program prompts for a letter, converts the letter to its
alphabetic sequence (A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file namedALPHABET.DAT on the disk
in drive B:. The file contains 26 records; each record is 28 bytes long:
1-72

M S -D O S PRO G RAM M E R 'S MANUAL SYSTEM CALLS

record-size equ 14 ;offset of Record Size
;field of FCB

relative-record equ 33 ;offset of Relative Record
;field of FCB

fcb db 2,“ALPHABETDAT”
db 25 dup (?)

buffer db 34 dup (?),“$”
prompt db “Enter letter: $’5

crlf db 13,10,“$”

func-21H: set-dta buffer ;see Function IAH
open fcb ;see Function OFH
mov fcb[record-size],28 ;set record size

get-char: display prompt ;see Function 09H
read-kbd-and-echo ;see Function 01H
cmp al,0DH just a CR?
je all-done ;yes, go home
sub al,41H ;convert ASCII code

;to record #
mov fcb[relative-record],al ;set relative

;record
display crlf ;see Function 09H
read-ran fcb ;THIS FUNCTION
display buffer ;see Function 09H
display crlf ;see Function 09H
jmp get-char ;get another char.

all-done: close fcb ;see Function 10H

1-73

Call
AH = 22H
DS:DX

Opened FCB

Return
AL

00H = Write completed successfully
01H = Disk full
02H = DTA too small

DX must contain the offset from the segment address in DS of an
opened FCB. The Current Block (offset OCH) and Current Record
(offset 20H) fields are set to agree with the Relative Record field
(offset 21H), then the record addressed by these fields is written from
the Disk Transfer Address. If the record size is smaller than a sector
(512 bytes), the records are buffered until a sector is ready to write.
AL returns a code that describes the processing:

Code Meaning

0 Write completed successfully.

1 Disk is full.

2 Not enough room at the Disk Transfer Address to write
one record; write canceled.

Macro Definition: write-ran macro fcb
mov dx,offset fcb
mov ah,22H
int 21H
endm

Random Write (Function 22H)

Example
The following program prompts for a letter, converts the letter to its
alphabetic sequence (A = 1, B = 2, etc.), then reads and displays the
corresponding record from a file named ALPHABET.DAT on the
disk in drive B:. After displaying the record, it prompts the user to
enter a changed record. If the user types a new record, it is written to
the file; if the user just presses RETURN, the record is not replaced.
The file contains 26 records; each record is 28 bytes long:
1-74

M S -D O S PROGRAM M E R 'S MANUAL SYSTEM CALLS

record-size equ 14 ;offset of Record Size
;field of FCB

relative-record equ 33 ;offset of Relative Record
;field of FCB

fcb db 2,“ALPHABETDAT”
db 25 dup (?)

buffer db 26 dup (?),13,10,“$”
promptl db “Enter letter: $
prompt2 db “New record (RETURN for no change): $”
crlf db 13,10,“$”
reply db 28 dup (32)
blanks db 26 dup (32)

func-22H: set-dta buffer ;see Function 1AH
open fcb ;see Function OFH
mov fcb[record-size],32 ;set record size

get-char: display promptl ;see Function 09H
read-kbd-and-echo ;see Function 01H
cmp al,0DH yust a CR?
je all-done ;yes, go home
sub al,41H ;convert ASCII

;code to record #
mov fcb[relative-record],al

;set relative record
display crlf ;see Function 09H
read-ran fcb ;THIS FUNCTION
display buffer ;see Function 09H
display crlf ;see Function 09H
display prompt2 ;see Function 09H
get-string 27,reply ;see Function OAH
display crlf ;see Function 09H
cmp reply[l],0 ;was anything typed

;besides CR?
je get-char ;no

;get another char.
xor bx,bx ;to load a byte
mov bl,reply[l] ;use reply length as

;counter
move-string blanks,buffer,26 ;see chapter end
move-string reply[2],buffer,bx ;see chapter end
write-ran fcb ;THIS FUNCTION
jmp get-char ;get another character

all-done: close fcb ;see Function 10H

1 -7 5

File Size (Function 23H)

Call
AH = 23H
DS:DX

Unopened FCB

Return
AL

00H = Directory entry found
FFH (255) = No directory entry found

DX must contain the offset (from the segment address in DS) of an
unopened FCB. You must set the Record Size field (offset OEH) to
the proper value before calling this function. The disk directory is
searched for the first matching entry.
If a matching directory entry is found, the Relative Record field
(offset 21H) is set to the number of records in the file, calculated from
the total file size in the directory entry (offset ICH) and the Record
Size field of the FCB (offset OEH). AL returns 00.
If no matching directory is found, AL returns FFH (255).

NOTE

If the value of the Record Size field of the
FCB (offset OEH) doesn’t match the actual
number of characters in a record, this
function does not return the correct file size.
If the default record size (128) is not correct,
you must set the Record Size field to the
correct value before using this function.

1 -76

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Macro Definition: file-size macro fcb
mov dx,offset fcb
mov ah,23H
int 21H
endm

Example

The following program prompts for the name of a file, opens the file
to fill in the Record Size field of the FCB, issues a File Size system
call, and displays the file size and number of records in hexadecimal:

fcb db 37 dup (?)
prompt db “File name: $”
msgl db “Record length: “,13,10,“$”
msg2 db “Records: “,13,10,“$”
crlf db 13,10,“$”
reply db 17 dup (?)
sixteen db 16

func-23H: display prompt ;see Function 09H
get-string 17,reply ;see Function OAH
cmp reply[l],0 yust a CR?
jne get-length ;no, keep going
jmp all-done ;yes, go home

get-length: display crlf ;see Function 09H
parse reply[2],fcb ;see Function 29H
open fcb ;see Function OFH
file-size fcb ;THIS FUNCTION
mov si,33 ;offset to Relative

;Record field
mov di,9 ;reply in msg-2

convert-it: cmp fcb[si],0 ;digit to convert?
je show-it ;no, prepare message
convert fcb[si], sixteen, msg-2[di]
inc si ;bump n-o-r index
inc di ;bump message index
jmp convert-it ;check for a digit

show-it: convert fcb[14],sixteen,msg-l[15]
display msg-1 ;see Function 09H
display msg-2 ;see Function 09H
jmp func-23H ;get a filename

all-done: close fcb ;see Function 10H
1-77

Set Relative Record (Function 24H)

Call
AH = 24H
DS:DX

Opened FCB

Return
None

DX must contain the offset (from the segment address in DS) of an
opened FCB. The Relative Record field (offset 21H) is set to the same
file address as the Current Block (offset OCH) and Current Record
(offset 20H) fields.

Macro Definition: set-relative-record macro fcb
mov dx,offset fcb
mov ah,24H
int 21H
endm

Example

The following program copies a file using the Random Block Read
and Random Block Write system calls. It speeds the copy by setting
the record length equal to the file size and the record count to 1, and
using a buffer of 32K bytes. It positions the file pointer by setting the
Current Record field (offset 20H) to 1 and using Set Relative Record
to make the Relative Record field (offset 21H) point to the same
record as the combination of the Current Block (offset OCH) and
Current Record (offset 20H) fields:

current-record equ 32 ;offset of Current Record
;field of FCB

file-size equ 16 ;offset of File Size
;field of FCB

fcb db 37 dup (?)
filename db 17 dup (?)
promptl db “File to copy: $” ;see Function 09H for
prompt2 db “Name of copy: $” explanation of $
crlf db 13,10,“$”

1-78

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

file-length dw ?
buffer db 32767 dup (?)

func-24H: set-dta buffer ;see Function 1AH
display promptl ;see Function 09H
get-string 15, filename ;see Function 0AF1
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current-record],0 ;set Current Record

;field
set-relative-record fcb ;THIS FUNCTION
mov ax,word ptr fcb[file-size] ;get file size
mov file-length,ax ;save it for

;ran-block-write
ran-block-read fcb,l,ax ;see Function 27H
display prompt2 ;see Function 09H
get-string 15,filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
create fcb ;see Function 16H
mov fcb[current-record],0 ;set Current Record

;field
set-relative-record fcb ;THIS FUNCTION
mov ax,file-length ;get original file

;length
ran-block-write fcb,l,ax ;see Function 28H
close fcb ;see Function 10H

1-79

Set Vector (Function 25H)

Call
AH = 25H
AL

Interrupt number
DS:DX

Interrupt-handling routine

Return
None

Function 25H should be used to set a particular interrupt vector. The
operating system can then manage the interrupts on a per-process
basis. Note that programs should never set interrupt vectors by wri
ting them directly in the low memory vector table.
DX must contain the offset (to the segment address in DS) of an
interrupt-handling routine. AL must contain the number of the
interrupt handled by the routine. The address in the vector table for
the specified interrupt is set to DS:DX.

Macro Definition: set-vector macro interrupt, seg-addr,off-addr
mov al, interrupt
push ds
mov ax,seg-addr
mov ds,ax
mov dx,off-addr
mov ah,25H
int 21H
pop ds
endm

Example

Ids dx,intvector
mov ah,25H
mov al,intnumber
int 21H
;There are no errors returned

1-80

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

Random Block Read (Function 27H)

Call
AH = 27H
DS:DX

Opened FCB
CX

Number of blocks to read

Return
AL

00H = Read completed successfully
01H = EOF
02H = End of segment
03H = EOF, partial record

CX
Number of blocks read

DX must contain the offset (to the segment address in DS) of an
opened FCB. CX must contain the number of records to read; if it
contains 0, the function returns without reading any records (no
operation). The specified number of records - calculated from the
Record Size field (offset OEH) - is read starting at the record specified
by the Relative Record field (offset 21H). The records are placed at
the Disk Transfer Address.
AL returns a code that describes the processing:

Code Meaning

0 Read completed successfully.

1 End-of-file; no data in the record.

2 Not enough room at the Disk Transfer Address to read
one record; read canceled.

3 End-of-file; a partial record was read and padded to the
record length with zeros.

CX returns the number of records read; the Current Block (offset
OCH), Current Record (offset 20H), and Relative Record (offset 21H)
fields are set to address the next record.

1-81

Macro Definition: ran-block-read macro fcb,count,rec-size
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],rec-size
mov ah,27H
int
endm

21H

Example

The following program copies a file using the Random Block Read
system call. It speeds the copy by specifying a record count of 1 and a
record length equal to the file size, and using a buffer of 32 K bytes;
the file is read as a single record (compare to the sample program for
Function 28H that specifies a record length of 1 and a record count
equal to the file size):
current-record equ 32 ;offset of Current Record field
file-size equ 16 ;offset of File Size field

fcb db
filename db
promptl db
prompt2 db
crlf db
file-length dw
buffer db

37 dup (?)
17 dup(?)
’’File to copy: $” ;see Function 09H for
’’Name of copy: $” explanation of $
13,10,”$”
?
32767 dup(?)

func-27H: set-dta buffer ;see Function 1AH
display promptl ;see Function 09H
get-string 15,filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb[current-record],0 ;set Current

;Record field
set-relative-record fcb ;see Function 24H
mov ax,word ptr fcb[file-size]

;get file size
mov file-length,ax ;save it for

;ran-block-write
ran-block-read fcb,1,ax ;THIS FUNCTION

1-82

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

display prompt2
get-string 15,filename
display crlf
parse filename[2],fcb

;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H

create fcb ;see Function 16H
mov fcb[current-record],0

;set Current Record

set-relative-record fcb
mov ax, file-length

ran-block-write fcb,l,ax
close fcb

;field
;see Function 24H
;get original file
;size
;see Function 28H
;see Function 10H

1-83

Call
AH = 28H
DS:DX

Opened FCB
CX

Number of blocks to write
(0 = set File Size field)

Return
AL

00H = Write completed successfully
01H = Disk full
02H = End of segment

CX
Number of blocks written

DX must contain the offset (to the segment address in DS) of an
opened FCB; CX must contain either the number of records to write
or 0. The specified number of records (calculated from the Record
Size field, offset OEH) is written from the Disk Transfer Address. The
records are written to the file starting at the record specified in the
Relative Record field (offset 21H) of the FCB. If CX is 0, no records
are written, but the File Size field of the directory entry (offset ICH) is
set to the number of records specified by the Relative Record field of
the FCB (offset 21H); allocation units are allocated or released, as
required.
AL returns a code that describes the processing:

Code Meaning

0 Write completed successfully.

1 Disk full. No records written.

2 Not enough room at the Disk Transfer Address to read
one record; read canceled.

CX returns the number of records written; the current block (offset
OCH), Current Record (offset 20H), and Relative Record (offset 21H)
fields are set to address the next record.

Random Block Write (Function 28H)

1-84

M S -D O S PROGRAM M E R 'S MANUAL SYSTEM CALLS

Macro Definition: ran-block-write macro fcb,count,rec-size
mov dx,offset fcb
mov cx,count
mov word ptr fcb [14],

rec-size
mov ah,28H
int 21H
endm

Example

The following program copies a file using the Random Block Read
and Random Block Write system calls. It speeds the copy by speci
fying a record count equal to the file size and a record length of 1, and
using a buffer of 32K bytes; the file is copied quickly with one disk
access each to read and write (compare to the sample program of
Function 27H, that specifies a record count of 1 and a record length
equal to file size):

current-record equ 32 ;offset of Current Record
file-size equ 16 ;offset of File Size field

fcb db 37 dup (?)
filename db 17 dup(?)
promptl db “File to copy: $” ;see Function 09H for
prompt2 db “Name of copy: $” ;explanation of $
crlf db 13,10,“$”
num-recs dw ?
buffer db 32767 dup(?)

func-28Fl: set-dta buffer ;see Function 1AH
display promptl ;see Function 09H
get-string 15, filename ;see Function OAH
display crlf ;see Function 09H
parse filename[2],fcb ;see Function 29H
open fcb ;see Function OFH
mov fcb [current-record] ,0

;set Current Record
;field

set-relative-record fcb ;see Function 24H
mov ax, word ptr fcb[file-size]

;get file size
1-85

mov num-recs,ax ;save it for
;ran-block-write

ran-block-read fcb,num-recs,l ;THIS FUNCTION
;see Function 09H
;see Function OAH
;see Function 09H
;see Function 29H
;see Function 16H

display prompt2
get-string 15,filename
display crlf
parse filename[2],fcb
create fcb
mov fcb[current-record],0 ;set Current

;Record field
set-relative-record fcb ;see Function 24H
mov ax, file-length ;get size of original
ran-block-write fcb,num-recs,l ;see Function 28H
close fcb ;see Function 10H

M S -D O S PRO G RAM M E R 'S MANUAL SYSTEM CALLS

Parse File Name (Function 29H)

Call
AH - 29H
AL

Controls parsing (see text)
DS:SI

String to parse
ES: DI

Unopened FCB

Return
AL

00H = No wild card characters
01H = Wild-card characters used
FFH (255) = Drive letter invalid

DS:SI
First byte past string that was parsed

ES.DI
Unopened FCB

SI must contain the offset (to the segment address in DS) of a string
(command line) to parse; DI must contain the offset (to the segment
address in ES) of an unopened FCB. The string is parsed for a file
name of the form d: filename, ext; if one is found, a corresponding
unopened FCB is created at ES:DI.
Bits 0-3 of AL control the parsing and processing. Bits 4-7 are ignored:

Bit Value Meaning

0 0 All parsing stops if a file separator is encountered.
1 Leading separators are ignored.

1 0 The drive number in the FCB is set to 0 (default
drive) if the string does not contain a drive num
ber.

1 The drive number in the FCB is not changed if the
string does not contain a drive number.

2 1 The filename in the FCB is not changed if the
string does not contain a filename.

0 The filename in the FCB is set to 8 blanks if the
string does not contain a filename.

3 1 The extension in the FCB is not changed if the
string does not contain an extension.

0 The extension in the FCB is set to 3 blanks if the
string does not contain an extension.

1 -87

If the filename or extension includes an asterisk (*), all remaining
characters in the name or extension are set to question mark (?).

Filename separators:

: . ; , = + / “ [] \ < > l space tab

Filename terminators include all the filename separators plus any
control character. A filename cannot contain a filename terminator; if
one is encountered, parsing stops.

If the string contains a valid filename:

1. AL returns 1 if the filename or extension contains a wild
card character (* or ?); AL returns 0 if neither the filename
nor extension contains a wild card character.

2. DS:SI point to the first character following the string that
was parsed.
ES:DI point to the first byte of the unopened FCB.

If the drive letter is invalid, AL returns FFH (255). If the string does
not contain a valid filename, ES :DI+1 points to a blank (ASCII 20H).

Macro Definition: parse macro string, fcb
mov si,offset string
mov di,offset fcb
push es
push ds
pop es
mov al,0FH ;bits 0,1,2, 3 on
mov ah,29H
int 21H
pop
endm

es

Example

The following program verifies the existence of the file named in
reply to the prompt:

fcb db 37 dup (?)
prompt db “Filename: $”
reply db 17 dup(?)
yes db “FILE EXISTS”,13,10,“$:
1-88

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

no db “FILE DOES NOT EXIST”,13,10,“$”

func-29H:

not-there:
continue:

display prompt
get-string 15,reply
parse reply[2],fcb
search-first fcb
cmp al,FFH
je not-there
display yes
jmp continue
display no

;see Function 09H
;see Function OAH
;THIS FUNCTION
;see Function 11H
;dir. entry found?
;no
;see Function 09H

1-89

Get Date (Function 2AH)

Call
AH = 2 AH

Return
CX

Y ear(1980 - 2099)
DH

Month (1 - 12)
DL

Day (1-31)
AL

Day of week (0=Sun., 6=Sat.)

This function returns the current date set in the operating system as
binary numbers in CX and DX:

CX Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)
AL Day of week (0 = Sunday, 1 = Monday, etc.)

Macro Definition: get-date macro
mov ah,2AH
int 21H
endm

Example

The following program gets the date, increments the day, increments
the month or year, if necessary, and sets the new date:

month db 31,28,31,30,31,30,31,31,30,31,30,31

func-2AH: get-date ;see above
inc dl ;increment day
xor bx,bx ;so BL can be used as index
mov bl,dh ;move month to index register
dec bx ;month table starts with 0
cmp dl,month[bx] ;past end of month?
jle month-ok ;no, set the new date
mov dl,l ;yes, set day to 1

1-90

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

month-ok:

inc dh ;and increment month
cmp dh,12 ;past end of year?

jle month-ok ;no, set the new date
mov dh,l ;yes, set the month to 1
inc cx ;increment year
set-date cx,dh,dl ;THIS FUNCTION

1-91

Set Date (Function 2BH)

Call
AH = 2BH
CX

Year (1980 - 2099)
DH

Month (1 - 12)
DL

Day (1 -31)

Return
AL

00H = Date was valid
FFH (255) = Date was invalid

Registers CX and DX must contain a valid date in binary:

CX Year (1980-2099)
DH Month (1 = January, 2 = February, etc.)
DL Day (1-31)

If the date is valid, the date is set and AL returns 0. If the date is not
valid, the function is canceled and AL returns FFH (255).

Macro Definition: set-date macro year,month,day
mov cx,year
mov dh,month
mov dl,day
mov ah,2BH
int 21H
endm

Example

The following program gets the date, increments the day, increments
the month or year, if necessary, and sets the new date:

func-2BH: get-date ;see Function 2AH
;increment day
;so BL can be used as index

inc
xor

dl
bx,bx

1-92

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

mov bl,dh
dec bx
cmp dl,month[bx]
jle month-ok
mov dl,l
inc dh
cmp dh,12
jle month-ok
mov dh,l
inc cx

month-ok: set-date cx,dh,dl

;move month to index register
;month table starts with 0
;past end of month?
;no, set the new date
;yes, set day to 1
;and increment month
;past end of year?
;no, set the new date
;yes, set the month to 1
;increment year
;THIS FUNCTION

1-93

Call
AH = 2CH

Return
CH

Hour (0 - 23)
CL

Minutes (0 - 59)
DH

Seconds (0 - 59)
DL

Hundredths (0 - 99)

This function returns the current time set in the operating system as
binary numbers in CX and DX:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

Macro Definition: get-time macro

Get Time (Function 2CH)

Example

The following program continuously displays the time until any key is
pressed:

mov ah,2CH
int 21H
endm

time
ten

db “00:00:00.00”,13,10,“$
db 10

func-2CH: get-time ;THIS FUNCTION
;see end of chapter
;see end of chapter
;see end of chapter
;see end of chapter
;see Function 09H
;see Function 0BH

convert ch,ten,time
convert cl,ten,time[3]
convert dh,ten,time[6]
convert dl,ten,time[9]
display time
check-kbd-status
cmp al,FFH
je all-done
jmp func-2CH

;has a key been pressed?
;yes, terminate
;no, display time

1-94

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

Set Time (Function 2DH)

Call
AH - 2DH
CH

Hour (0 - 23)
CL

Minutes (0 - 59)
DH

Seconds (0 - 59)
DL

Hundredths (0 - 99)

Return
AL

00H = Time was valid
FFH (255) = Time was invalid

Registers CX and DX must contain a valid time in binary:

CH Hour (0-23)
CL Minutes (0-59)
DH Seconds (0-59)
DL Hundredths of a second (0-99)

If the time is valid, the time is set and AL returns 0. If the time is not
valid, the function is canceled and AL returns FFH (255).

Macro Definition: set-time macro hour,minutes,seconds,hundredths
mov ch,hour
mov cl,minutes
mov dh,seconds
mov dl,hundredths
mov ah,2DH
int 21H
endm

Example

The following program sets the system clock to 0 and continuously
displays the time. When a character is typed, the display freezes;
when another character is typed, the clock is reset to 0 and the display
starts again:

1-95

time db “00:00:00.00”,13,10,“$”
ten db 10

func-2DH: set-time 0,0,0,0 ;THIS FUNCTION
read-clock: get-time ;see Function 2CH

convert ch,ten,time ;see end of chapter
convert cl,ten,time[3] ;see end of chapter
convert dh,ten,time[6] ;see end of chapter
convert dl,ten,time[9] ;see end of chapter
display time ;see Function 09H
dir-console-io FFH ;see Function 06H
cmp al,00H ;was a char, typed?
jne stop ;yes, stop the timer
jmp read-clock ;no keep timer on

stop: read-kbd ;see Function 08H
jmp func-2DH ;keep displaying time

1-96

M S -D O S PR O G R AM M E R ’S MANUAL SYSTEM CALLS

Set/Reset Verify Flag (Function 2EH)

Call
ÄH = 2EH
AL

00H = Do not verify
01H = Verify

Return
None

AL must be either 1 (verify after each disk write) or 0 (write without
verifying). MS-DOS checks this flag each time it writes to a disk.
The flag is normally off; you may wish to turn it on when writing
critical data to disk. Because disk errors are rare and verification slows
writing, you will probably want to leave it off at other times.

Macro Definition: verify macro switch
mov al,switch
mov ah,2EH
int 21H
endm

Example

The following program copies the contents of a single-sided disk in
drive A: to the disk in drive B:, verifying each write. It uses a buffer of
32K bytes:

on equ 1
off equ 0

prompt db “Source in A, target in B”,13,10
db “Any key to start. $”

start dw 0
buffer db 64 dup (512 dup(?)) ;64 sectors

func-2DH: display prompt ;see Function 09H
read-kbd ;see Function 08H
verify on ;THIS FUNCTION
mov cx,5 ;coby 64 sectors

;5 times
1 -97

copy: push cx ;save counter
abs-disk-read 0,buffer,64,start

;see Interrupt 25H
abs-disk-write 1,buffer,64,start

add start,64
;see Interrupt 26H
;do next 64 sectors

pop cx ;restore counter
loop copy ;do it again
verify off ;THIS FUNCTION

,buffer,64,start ;see Interrupt 25H
abs-disk-write 1,buffer,64,start

add start,64
;see Interrupt 26H
;do next 64 sectors

pop cx ;restore counter
loop copy ;do it again
verify off

1-98

M S -D O S PR O G R AM M E R ’S M ANUAL SYSTEM CALLS

Get Disk Transfer Address (Function 2FH)

Call
AH = 2FH

Return
ES:BX

Points to Disk Transfer Address

Function 2FH returns the DMA transfer address.

Error returns:
None.

Example
mov ah,2FH
int 21H

;es:bx has current DMA transfer address

1-99

Get DOS Version Number (Function 30H)

Call
AH = 30H

Return
AL

Major version number
AH

Minor version number

This function returns the MS-DOS version number. On return,
AL.AH will be the two-part version designation; i.e., for MS-DOS
1.28, AL would be 1 and AH would be 28. For pre-1.28, DOS AL = 0.
Note that version 1.1 is the same as 1.10, not the same as 1.01.

Error returns:
None.

Example

mov ah,30
int 21H

; al is the major version number
; ah is the minor version number
; bh is the OEM number
; bl:cx is the (24 bit) user number

1-100

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

Keep Process (Function 31H)

Call
AH = 31H
AL

Exit code
DX

Memory size, in paragraphs

Return
None

This call terminates the current process and attempts to set the initial
allocation block to a specific size in paragraphs. It will not free up any
other allocation blocks belonging to that process. The exit code
passed in AX is retrievable by the parent via Function 4DH.
This method is preferred over Interrupt 27H and has the advantage of
allowing more than 64K to be kept.

Error returns:
None.

Example

mov al, exitcode
mov dx, parasize
mov ah, 31H
int 21H

1-101

Call
AH = 33H
AL

Function
00H =Request current state
01H = Set state

DL (if setting)
00H = Off
01H = On

Return
DL

00H = Off
01H = On

MS-DOS ordinarily checks for a CONTROL-C on the controlling
device only when doing function call operations 01H-0CH to that
device. Function 33H allows the user to expand this checking to
include any system call. For example, with the CONTROL-C trapping
off, all disk I/O will proceed without interruption; with CONTROL-C
trapping on, the CONTROL-C interrupt is given at the system call
that initiates the disk operation.

NOTE

Programs that wish to use calls 06H or 07H
to read CONTROL-Cs as data must ensure
that the CONTROL-C check is off.

Error return:
AL = FF

The function passed in AL was not in the range 0:1.

Example

mov dl,val
mov ah,33H
mov al,func

CONTROL-C Check (Function 33H)

1-102

M S -D O S PR O G R AM M E R ’S M ANUAL SYSTEM CALLS

int 21H
; If al was 0, then dl has the current value
;of the CONTROL-C check

1-103

Call
AH = 35H
AL

Interrupt number

Return
ES:BX

Pointer to interrupt routine

This function returns the interrupt vector associated with an inter
rupt. Note that programs should never get an interrupt vector by
reading the low memory vector table directly.

Error returns:
None.

Example

Get Interrupt Vector (Function 35H)

mov ah,35H
mov al, interrupt
int 21H

; es:bx now has long pointer to interrupt routine

1-104

M S -D O S PRO G RAM M E R 'S MANUAL SYSTEM CALLS

Get Disk Free Space (Function 36H)

Call
AH = 36H
DL

Drive (0 = Default,
1 = A, etc.)

Return
BX

Available clusters
DX

Clusters per drive
CX

Bytes per sector
AX

FFFF if drive number is invalid;
otherwise sectors per cluster

This function returns free space on disk along with additional infor
mation about the disk.

Error returns:
AX = FFFF

The drive number given in DL was invalid.

Example

mov ah,36H
mov dl,Drive ;0 = default, A = 1
int 21H

; bx = Number of free allocation units on drive
; dx = Total number of allocation units on drive
; cx = Bytes per sector
; ax = Sectors per allocation unit

1-105

Return Country-Dependent Information (Function 38H)
Call
AH = 38H
DS:DX

Pointer to 32-byte memory area
AL

Function code. In MS-DOS 2.0,
must be 0

Return
Carry set:
AX

2 = file not found
Carry not set:

DX:DS filled in with country data

The value passed in AL is either 0 (for current country) or a country
code. Country codes are typically the international telephone prefix
code for the country.
If DX = -1, then the call sets the current country (as returned by the
AL = 0 call) to the country code in AL. If the country code is not
found, the current country is not changed.

NOTE

Applications must assume 32 bytes of infor
mation. This means the buffer pointed to by
DS:DX must be able to accommodate 32
bytes.

This function is fully supported only in versions of MS-DOS 2.01 and
higher. It exists in MS-DOS 2.0, but is not fully implemented.
This function returns, in the block of memory pointed to by DS:DX,
the following information pertinent to international applications:

1-106

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

WORD Date/time format

5 BYTE ASCIZ String currency symbol

2 BYTE ASCIZ String thousands separator

2 BYTE ASCIZ String decimal separator

2 BYTE ASCIZ String date separator

2 BYTE ASCIZ string time separator

1 BYTE Bit field

1 BYTE Currency places

1 BYTE time format

DWORD Case Mapping call

2 BYTE ASCIZ string data list separator

The format of most of these entries is ASCIZ (a NUL terminated
ASCII string), but a fixed size is allocated for each field for easy
indexing into the table.
The date/time format has the following values:

0 - USA standard h:m:s m /d/y
1 - Europe standard h:m:s d/m /y
2 - Japan standard y/m /d h:m:s

The bit field contains 8 bit values. Any bit not currently defined must
be assumed to have a random value.

Bit 0 = 0 If currency symbol precedes the currency amount.
= 1 If currency symbol comes after the currency amount.

Bit 1 = 0 If the currency symbol immediately precedes the
currency amount.

= 1 If there is a space between the currency symbol and
the amount.

1-107

The time format has the following values:

0 - 12 hour time
1 - 24 hour time

The currency places field indicates the number of places which
appear after the decimal point on currency amounts.
The Case Mapping call is a FAR procedure which will perform coun
try specific lower-to-uppercase mapping on character values from
80H to FFH. It is called with the character to be mapped in AL. It
returns the correct upper case code for that character, if any, in AL.
AL and the FLAGS are the only registers altered. It is allowable to
pass this routine codes below 80H; however nothing is done to cha
racters in this range. In the case where there is no mapping, AL is not
altered.

Error returns:
AX

2 = file not found
The country passed in AL was not found (no table for
specified country).

Example

Ids dx, blk
mov ah, 38H
mov al, Country-code
int 21H

;AX = Country code of country returned

1-108

M S -D O S PR O G R AM M E R 'S MANUAL SYSTEM CALLS

Create Sub-Directory (Function 39H)

Call
AH = 39H
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
5 = access denied

Carry not set:
No error

Given a pointer to an ASCIZ name, this function creates a new
directory entry at the end.

Error returns:
AX

3 = path not found
The path specified was invalid or not found.

5 = access denied
The directory could not be created (no room in parent
directory), the directory/file already existed or a device
name was specified.

Example

Ids dx, name
mov ah, 39H
int 21H

1-109

Call
AH = 3 AH
DS :DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
5 = access denied
16 = current directory

Carry not set:
No error

Function 3AH is given an ASCIZ name of a directory. That directory
is removed from its parent directory.

Error returns:
AX

3 = path not found
The path specified was invalid or not found.

5 = access denied
The path specified was not empty, not a directory, the root
directory, or contained invalid information.

16 = current directory
The path specified was the current directory on a drive.

Remove a Directory Entry (Function 3AH)

Example

Ids dx, name
mov ah, 3AH
int 21H

1-110

M S -D O S PR O G R A M M E R ’S M ANUAL SYSTEM CALLS

Change the Current Directory (Function 3BH)

Call
AH = 3BH
DS:DX

Pointer to pathname

Return
Carry set:
AX

3 = path not found
Carry not set:

No error

Function 3BH is given the ASCIZ name of the directory which is to
become the current directory. If any member of the specified path
name does not exist, then the current directory is unchanged. Other
wise, the current directory is set to the string.

Error returns:
A X

3 = path not found
The path specified in DS:DX either indicated a file or
the path was invalid.

Example
Ids dx, name
mov ah, 3BH
int 21H

1 - 1 1 1

Create a File (Function 3CH)

Call
AH = 3CH
DS:DX

Pointer to pathname
CX

File attribute

Return
Carry set:
AX

5 = access denied
3 = path not found
4 = too many open files

Carry not set:
AX is handle number

Function 3CH creates a new file or truncates an old file to zero length
in preparation for writing. If the file did not exist, then the file is
created in the appropriate directory and the file is given the attribute
found in CX. The file handle returned has been opened for
read/write access.

Error returns:
AX

5 = access denied
The attributes specified in CX contained one that
could not be created (directory, volume ID), a file
already existed with a more inclusive set of attribu
tes, a directory existed with the same name, or the
path was not found.

3 = path not found
The path specified had a syntax error.

4 = too many open files
The file was created with the specified attributes,
but there were no free handles available for the
process, or the internal system tables were full.

Example
Ids dx, name

ah, 3CH
cx, attribute
21H

mov
mov
int

; ax now has the handle
1-112

M S -D O S PR O G R AM M E R ’S MANUAL SYSTEM CALLS

Open a File (Function 3DH)

Call
AH = 3DH
AL

Access
0 = File opened for reading
1 = File opened for writing
2 = File opened for both
reading and writing

Return
Carry set:
AX

12 = invalid access
2 = file not found
5 = access denied
4 = too many open files

Carry not set:
AX is handle number

Function 3DH associates a 16-bit file handle with a file.
The following values are allowed:

ACCESS Function
0 file is opened for reading
1 file is opened for writing
2 file is opened for both reading and writing.

DS:DX point to an ASCIZ name of the file to be opened.

The read/write pointer is set at the first byte of the file and the record
size of the file is 1 byte. The returned file handle must be used for
subsequent I/O to the file.

1-113

Error returns:
AX
12 = invalid access

The access specified in AL was not in the range 0:2.
2 = file not found

The path specified was invalid or not found.
5 = access denied

The user attempted to open a directory or volume-id, or
open a read-only file for writing.

4 = too many open files
There were no free handles available in the current
process or the internal system tables were full.

Example
Ids dx, name
mov ah, 3DH
mov al, access
int 21H

; ax has error or file handle
; If successful open

1-114

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Close a File Handle (Function 3EH)

Call
AH = 3EH
BX

File handle

Return
Carry set:
AX

6 = invalid handle
Carry not set:

No error

In BX is passed a file handle (like that returned by Functions 3DH,
3CH, or 45H), Function 3EH closes the associated file. Internal buf
fers are flushed.

Error return:
AX

6 = invalid handle
The handle passed in BX was not currently open.

Example
mov bx, handle
mov ah, 3EH
int 21H

1-115

Read From File/Device (Function 3FH)

Call
. AH = 3FH

DS:DX
Pointer to buffer

CX
Bytes to read

BX
File handle

Return
Carry set:
AX

Number of bytes read
6 = invalid handle
5 = error set:

Carry not set:
AX = number of bytes read

Function 3FH transfers count bytes from a file into a buffer location.
It is not guaranteed that all count bytes will be read; for example,
reading from the keyboard will read at most one line of text. If the
returned value is zero, then the program has tried to read from the
end of file.
All I/O is done using normalized pointers; no segment wraparound
will occur.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently open.

5 = access denied
The handle passed in BX was opened in a mode that
did not allow reading.

Example
Ids dx, buf
mov cx, count
mov bx, handle
mov ah, 3FH
int 21H

; ax has number of bytes read
1-116

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Write to a File or Device (Function 40H)

Call
AH = 40H
DS:DX

Pointer to buffer
CX

Bytes to write
BX

File handle

Return
Carry set:
AX

Number of bytes written
6 = invalid handle
5 = access denied

Carry not set:
AX = number of bytes written

Function 40H transfers count bytes from a buffer into a file. It should
be regarded as an error if the number of bytes written is not the same
as the number requested.
The write system call with a count of zero (CX = 0) will set the file
size to the current position. Allocation units are allocated or released
as required.
All I/O is done using normalized pointers; no segment wraparound
will occur.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently open.

5 — access denied
The handle was not opened in a mode that allowed
writing.

Example
Ids dx, buf
mov cx, count
mov bx, handle
mov ah, 40H
int 21H

;ax has number of bytes written
1-117

Call
AH = 41H
DS:DX

Pointer to pathname

Return
Carry set:
AX

2 = file not found
5 = access denied

Carry not set:
No error

Function 41H removes a directory entry associated with a filename.
Error returns:
AX

2 = file not found
The path specified was invalid or not found.

5 = access denied
The path specified was a directory or read-only.

Example
Ids dx, name
mov ah, 41H
int 21H

Delete a Directory Entry (Function 41H)

1-118

M S -D O S PR O G R A M M E R 'S MANUAL SYSTEM CALLS

Move File Pointer (Function 42H)
Call
AH = 42H
CX:DX

Distance to move, in bytes
AL

Method of moving:
(see text)

BX
File handle

Return
Carry set:
AX

6 = invalid handle
1 = invalid function

Carry not set:

Function 42H
DX:AX = new pointer location
moves the read/write pointer according to one of the

following methods:
Method Function

0 The pointer is moved to offset bytes from the be

1
ginning of the file.
The pointer is moved to the current location plus

2
offset.
The pointer is moved to the end of file plus offset.

Offset should be regarded as a 32-bit integer with CX occupying the
most significant 16 bits.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently open.

1 = invalid function
The function passed in AL was not in the range 0:2.

Example
mov dx, offsetlow
mov cx, offsethigh
mov al, method
mov bx, handle
mov ah, 42H
int 21H

; dx:ax has the new location of the pointer
1-119

Change Attributes (Function 43H)

Call
AH = 43H
DS:DX

Pointer to pathname
CX (if AL = 01)

Attribute to be set
AL

Function
01 Set to CX
00 Return in CX

Return
Carry set:
AX

3 = path not found
5 = access denied
1 = invalid function

Carry not set:
CX attributes (if AL = 00)

Given an ASCIZ name, Function 42H will set/get the attributes of
the file to those given in CX.
A function code is passed in AL:

AL Function
0 Return the attributes of the file in CX.
1 Set the attributes of the file to those in CX.

Error returns:
AX

3 = path not found
The path specified was invalid.

5 = access denied
The attributes specified in CX contained one that could
not be changed (directory, volume ID).

1 = invalid function
The function passed in AL was not in the range 0:1.

Example
Ids dx, name
mov cx, attribute
mov al, func
int ah, 43 H
int 21H

1-120

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

I/O Control for Devices (Function 44H)
Call
AH = 44H
BX

Handle
BL

Drive (for calls AL = 4, 5
0 = default, 1 = A, etc.)

DS:DX
Data or buffer

CX
Bytes to read or write

AL
Function code; see text

Return
Carry set:
AX

6 = invalid handle
1 = invalid function

13 = invalid data
5 = access denied

Carry not set:
AL = 2,3,4,5
AX = Count transferred
AL = 6,7

00 = Not ready
FF = Ready

Function 44H sets or gets device information associated with an open
handle, or send/receives a control string to a device handle or device.
The following values are allowed for function:
Request Function

0 Get device information (returned in DX)
1 Set device information (as determined by DX)
2 Read CX number of bytes into DS :DX from device control

channel.
3 Write CX number of bytes from DS:DX to device control

channel.
4 Same as 2 only drive number in BL 0=default,A:=l,B:=2,...
5 Same as 3 only drive number in BL 0=default,A:=l,B :=2,.,.
6 Get input status
7 Get output status

This function can be used to get information about device channels.
Calls can be made on regular files, but only calls 0,6 and 7 are defined
in that case (AL=0,6,7). All other calls return an invalid function error.

1-121

Calls AL=0 and AL=1
The bits of DX are defined as follows for calls
AL=0 and AL=1. Note that the upper byte MUST be zero on a
set call.

ISDEV = 1 if this channel is a device
= 0 if this channel is a disk file (Bits 8-15 = 0 in this

case)

I f ISDEV = 1
EOF = 0
RAW - 1

- 0
ISCLK = 1
ISNUL = 1
ISCOT - 1
ISCIN =1
SPECL = 1

if End Of File on input
if this device is in Raw mode
if this device is cooked
if this device is the clock device
if this device is the null device
if this device is the console output
if this device is the console input
if this device is special

CTRL = 0 if this device can not do control strings via
calls AL=2 and AL=3.

CTRL = 1 if this device can process control strings via
calls AL=2 and AL=3.

NOTE that this bit cannot be set.

If ISDEV — 0
EOF = 0 if channel has been written
Bits 0-5 are the block device number for the channel
(0 = A:, 1 = B :,...)

Bits 15,8-13,4 are reserved and should not be altered.

Calls 2..5:
These four calls allow arbitrary control strings to be sent or
received from a device. The call syntax is the same as the read
and write calls, except for 4 and 5, which take a drive number in
BL instead of a handle in BX.

1-122

M S -D O S PRO G RAM M E R 'S M ANUAL SYSTEM CALLS

An invalid function error is returned if the CTRL bit (see
above) is 0.
An ac cess denied is returned by calls AL=4,5 if the drive num
ber is invalid.

Calls 6,7:
These two calls allow the user to check if a file handle is ready
for input or output. Status of handles open to a device is the
intended use of these calls, but status of a handle open to a disk
file is allowed, and is defined as follows:
Input:

Always ready (AL=FF) until EOF reached, then always
not ready (AL=0) unless current position changed via
LSEEK.

Output:
Always ready (even if disk full).

IMPORTANT

The status is defined at the time the system
is CALLED. On future versions, by the time
control is returned to the user from the
system, the status returned may NOT cor
rectly reflect the true current state of the
device or file.

Error returns:
AX
6 = invalid handle

The handle passed in BX was not currently open.
1 = invalid function

The function passed in AL was not in the range 0:7.
13 = invalid data
5 = access denied (calls AL=4..7)

1-123

Example
mov bx, Handle

(or mov bl, drive for calls AL=4,5
0=default, A :=1..,)

mov dx, Data
(or Ids dx, buf and

mov cx, count for calls AL=2,3,4,5)
mov ah, 44H
mov al, func
int 21H

; For calls AL=2,3,4,5 AX is the number of bytes
; transferred (same as READ and WRITE).
; For calls AL=6,7 AL is status returned, AL=0 if
; status is not ready, AL=0FFH otherwise.

1-124

M S -D O S PR O G R A M M E R ’S M ANUAL SYSTEM CALLS

Duplicate a File Handle (Function 45H)

Call
AH - 45H
BX

File handle

Return
Carry set:
AX

6 = invalid handle
4 = too many open files

Carry not set:
AX = new file handle

Function 45H takes an already opened file handle and returns a new
handle that refers to the same file at the same position.

Error returns:
AX

6 = Invalid handle
The handle passed in BX was not currently open.

4 = too many open files
There were no free handles available in the current
process or the internal system tables were full.

Example
mov bx, fh
mov ah, 45H
int 21H

; ax has the returned handle

1-125

Call
AH = 46H
BX

Existing file handle
CX

New file handle

Return
Carry set:
AX

6 = invalid handle
4 = too many open files

Carry not set:
No error

Function 46H takes an already opened file handle and returns a new
handle that refers to the same file at the same position. If there was
already a file open on handle CX, it is closed first.

Error returns:
AX

6 = invalid handle
The handle passed in BX was not currently open.

4 = too many open files
There were no free handles available in the current
process or the internal system tables were full.

Example
mov bx, fh
mov cx, newfh
mov ah, 46H
int 21H

Force a Duplicat of a Handle (Function 46H)

1-126

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Return Text of Current Directory (Function 47H)

Call
AH = 47 H
DS.SI

Pointer to 64-byte memory area
DL

Drive number

Return
Carry set:
AX

15 = invalid drive
Carry not set:

No error

Function 47H returns the current directory for a particular drive. The
directory is root-relative and does not contain the drive specifier or
leading path separator. The drive code passed in DL is 0=default,
1=A.\ 2=B:, etc.

Error returns:
AX
15 = invalid drive

The drive specified in DL was invalid.

Example
mov ah, 47H
Ids si,area
mov dl,drive
int 21H

; ds: si is a pointer to 64 byte area that
; contains drive current directory.

1-127

Allocate Memory (Function 48H)

Call
AH = 48H
BX

Size of memory to be allocated

Return
Carry set:
AX

8 = not enough memory
7 = arena trashed

BX
Maximum size that could be allocated

Carry not set:
AX:0

Pointer to the allocated memory

Function 48H returns a pointer to a free block of memory that has the
requested size in paragraphs.

Error return:
AX

8 = not enough memory
The largest available free block is smaller than that
requested or there is no free block.

7 — arena trashed
The internal consistency of the memory arena has been
destroyed. This is due to a user program changing me
mory that does not belong to it.

Example
mov bx,size
mov ah,48H
int 21H

; ax :0 is pointer to allocated memory
; if alloc fails, bx is the largest block available

1-128

M S -D O S PR O G R AM M E R ’S MANUAL SYSTEM CALLS

Free Allocated Memory (Function 49H)

Call
AH = 49H
ES

Segment address of memory
area to be freed

Return
Carry set:
AX

9 = invalid block
7 = arena trashed

Carry not set:
No error

Function 49H returns a piece of memory to the system pool that was
allocated by Function Request 48H.

Error return:
AX

9 = invalid block
The block passed in ES is not one allocated via Function
Request 48H.

7 = arena trashed
The internal consistency of the memory arena has been
destroyed. This is due to a user program changing me
mory that does not belong to it.

Example
mov es,block
mov ah,49H
int 21H

1-129

Call
AH = 4 AH
ES

Segment address of memory area
BX

Requested memory area size

Return
Carry set:
AX

9 = invalid block
7 = arena trashed
8 = not enough memory

BX
Maximum size possible

Carry not set:
No error

Function 4AH will attempt to grow/shrink an allocated block of
memory.

Error return:
AX

9 = invalid block
The block passed in ES is not one allocated via this
function.

7 = arena trashed
The internal consistency of the memory arena has been
destroyed. This is due to a user program changing me
mory that does not belong to it.

8 = not enough memory
There was not enough free memory after the specified
block to satisfy the grow request.

Example
mov es,block
mov bx,newsize
mov ah,4AH
int 21H

; if setblock fails for growing, BX will have the
; maximum size possible

Modify Allocated Memory Blocks (Function 4AH)

1-130

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Load and Execute a program (Function 4BH)

Call
AH = 4BH
DS:DX

Pointer to pathname
ES:BX

Pointer to parameter block
AL

00 = Load and execute program
03 = Load program

Return
Carry set:
AX

1 = invalid function
10 = bad environment
11 = bad format
8 = not enough memory
2 = file not found

Carry not set:
No error

This function allows a program to load another program into memory
and (default) begin execution of it. DS:DX points to the ASCIZ name
of the file to be loaded. ES:BX points to a parameter block for the
load.
A function code is passed in AL:

AL Function
0 Load and execute the program. A program header is

established for the program and the terminate and CON-
TROL-C addresses are set to the instruction after the
EXEC system call.

3 Load (do not create) the program header, and do not
begin execution. This is useful in loading program over
lays.

1-131

For each value of AL, the block has the following format:

AL = 0 —> load/execute program

WORD segment address of environment.

DWORD pointer to command line at 80H

DWORD pointer to default FCB to be passed
at 5CH
DWORD pointer to default FCB to be passed
at 6CH

AL = 3 —> load overlay

WORD segment address where file will be
loaded.
WORD relocation factor to be applied to the
image.

Note that all open files of a process are duplicated in the child process
after an EXEC. This is extremely powerful; the parent process has
control over the meanings of stdin, stdout, stderr, stdaux and stdprn.
The parent could, for example, write a series of records to a file, open
the file as standard input, open a listing file as standard output and
then EXEC a sort program that takes its input from stdin and writes to
stdout.
Also inherited (or passed from the parent) is an “environment”. This
is a block of text strings (less than 32K bytes total) that convey various
configurations parameters. The format of the environment is as
follows:

1-132

M S -D O S PR O G R A M M E R 'S MANUAL SYSTEM CALLS

(paragraph boundary)

Typically the environment strings have the form:
parameter = value

For example, COMMAND.COM might pass its execution search
path as:
PATH = A:XBIN;B:XBASICXLIB

A zero value of the environment address causes the child process to
inherit the parent’s environment unchanged.

Error returns:
AX

1 = invalid function
The function passed in AL was not 0, 1 or 3.

10 = bad environment
The environment was larger than 32Kb.

11 = bad format
The file pointed to by DS:DX was an EXE format file
and contained information that was internally inconsi
stent.

8 = not enough memory
There was not enough memory for the process to be
created.

2 = file not found
The path specified was invalid or not found.

Example
Ids dx, name
les bx, blk
mov ah, 4BH
mov al, func
int 21H

1-133

Call
AH = 4CH
AL

Return code

Return
None

Function 4CH terminates the current process and transfers control to
the invoking process. In addition, a return code may be sent. All files
open at the time are closed.
This method is preferred over all others (Interrupt 20H, JMP 0) and
has the advantage that CS:0 does not have to point to the Program
Header Prefix.

Error returns:
None.

Terminate a Process (Function 4CH)

Example
mov al, code
mov ah, 4CH
int 21H

1-134

M S -D O S PR O G R A M M E R 'S MANUAL SYSTEM CALLS

Retrieve the Return Code of a Child (Function 4DH)

Call
AH = 4DH

Return
AX

Exit Code

Function 4DH returns the Exit code specified by a child process. It
returns this Exit code only once. The low byte of this code is that sent
by the Exit routine. The high byte is one of the following:

0 = Terminate/abort
1 = CONTROL-C
2 = Hard error
3 = Terminate and stay resident

Error returns:
None.

Example
mov ah, 4DH
int 21H

; ax has the exit code

1-135

Find Match File (Function 4EH)

Call
AH = 4EH
DS:DX

Pointer to pathname
CX

Search attributes

Return
Carry set:
AX

2 = file not found
18 = no more files

Carry not set:
no error

Function 4EH takes a pathname with wild card characters in the last
component (passed in DS:DX), a set of attributes (passed in CX) and
attempts to find all files that match the pathname and have a subset of
the required attributes. A datablock at the current DMA is written
that contains information in the following form:

find-buf-reserved DB 21 DUP (?); Reserved*
find-buf-attr DB ? ; attribute found
find-buf-time DW ? ; time
find-buf-date DW ? ; date
find-buf-size-1 DW ? ; low(size)
find-buf-size-h DW ? ; high(size)
find-buf-pname DB 13 DUP (?) ; packed name
find-buf ENDS

*Reserved for MS-DOS use on subsequent find-nexts

To obtain the subsequent matches of the pathname, see the descrip
tion of Function 4FH.

Error returns:
AX
2 = file not found

The path specified in DS:DX was an invalid path.
18 = no more files

There were no files matching this specification.
1-136

M S -D O S PR O G R A M M E R ’S M ANUAL SYSTEM CALLS

Example
mov ah, 4EH
Ids dx, pathname
mov cx, attr
int 21H

; dma address has datablock

1-137

Step Through a Directory Matching Files (Function 4FH)

Call
AH = 4FH

Return
Carry set:
AX

18 = no more files
Carry not set:

No error

Function 4FH finds the next matching entry in a directory. The
current DMA address must point at a block returned by Function
4EH (see Function 4EH).

Error returns:
AX
18 = no more files

There are no more files matching this pattern.

Example
; dma points at area returned by Function 4FH

mov ah, 4FH
int 21H

; next entry is at dma

1-138

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

Return Current Setting of Verify After Write Flag (Function 54H)

Call
AH = 54H

Return
AL

Current verify flag value

The current value of the verify flag is returned in AL.
Error returns:

None.

Example
mov ah, 54H
int 21H

; al is the current verify flag value

1-139

Call
AH = 56H
DS:DX

Pointer to pathname of
existing file

ES:DI
Pointer to new pathname

Return
Carry set:
AX

2 = file not found
17 = not same device
5 = access denied

Carry not set:
No error

Function 56H attempts to rename a file into another path. The paths
must be on the same device.

Error returns:
AX
2 = file not found

The file name specifed by DS:DX was not found.
17 = not same device

The source and destination are on different drives.
5 = access denied

The path specified in DS:DX was a directory or the file
specified by ES:DI exists or the destination directory
entry could not be created.

Move a Directory Entry (Function 56H)

Example
Ids dx, source
les di, dest
mov ah, 56H
int 21H

1-140

M S -D O S PR O G R AM M E R 'S M ANUAL SYSTEM CALLS

Get/Set Date/Time of File (Function 57H)
Call
AH = 57H
AL

00 = get date and time
01 = set date and time

BX
File handle

CX (if AL = 01)
Time to be set

DX (if AL = 01)
Date to be set

Return
Carry set:
AX

1 = invalid function
6 = invalid handle

Carry not set:
No error
CX/DX set if function 0

Function 57H returns or sets the last-write time for a handle. These
times are not recorded until the file is closed.
A function code is passed in AL:

AL Function
0 Return the time/date of the handle in CX/DX
1 Set the time/date of the handle to CX/DX

Error returns:
AX

1 = invalid function
The function passed in AL was not in the range 0:1.

6 = invalid handle
The handle passed in BX was not currently open.

Example
mov ah, 57H
mov al, func
mov bx, handle

; if al = 1 then next two are mandatory
mov cx, time
mov dx, date
int 21H

; if al = 0 then cx/dx has the last write time/date
; for the handle.

1-141

1.8 MACRO DEFINITIONS FOR MS-DOS SYSTEM CALL EXAMPLES

NOTE

These macro definitions apply to system call
examples 00H through 57H.

.xlist

; Interrupts

;ABS-DISK-READ
;abs-disk-read macro disk,buffer,num-sectors,first-sector

mov al,disk
mov bx,offset buffer
mov cx,num-sectors
mov dx,first-sector
int 37 ;interrupt 37
popf
endm

abs-disk-write macro
mov
mov
mov
mov
int
popf
endm

;ABS-DISK-WRITE
disk,buffer,num-sectors,first-sector

al,disk
bx,offset buffer
cx,num-sectors
dx,first-sector
38 ;interrupt 38

5

stay-resident macro last-instruc
mov dx.offset
inc dx
int 39
endm

? jj, jjj »Jj % jj, jjj jjj ^ jj. ^ jJj 5j- ̂

; Functions

read-kbd-and-echo macro ;READ-KBD-AND-ECHO
mov ah,l ;function 1
int 33
endm

;STAY-RESIDENT
last-instruc

interrupt 39

display-char macro character ;DISPLAY-CHAR
mov dl,character
mov ah,2 function 2

1-142

MS-DOS PROGRAMMER’S MANUAL SYSTEM CALLS

int 33
endm

9

aux-input macro ;AUX-INPUT
mov ah,3 function 3
int 33
endm

9

aux-output macro ; AUX-OUTPUT
mov ah,4 function 4
int 33
endm

;;page
print-char macro character ;PRINT-CHAR

mov dl,character
mov ah,5 ffunction 5
int 33
endm

9

dir-console-io macro switch ;DIR-CONSOLE-IO
mov dl, switch
mov ah,6 function 6
int 33
endm

9

dir-console-input macro ;DIR-CONSOLE-INPUT
mov ah,7 function 7
int 33
endm

9

read-kbd macro ;READ-KBD
mov ah,8 function 8
int 33
endm

9

display macro string ;DISPLAY
mov dx,offset string
mov ah,9 function 9
int 33
endm

9

get-string macro limit,string ;GET-STRING
mov String,limit
mov dx,offset string
mov ah, 10 function 10
int 33
endm

9

check-kbd-status macro ;CHECK-KBD-STATUS
mov ah, 11 function 11
int 33
endm

1-143

flush-and-read-kbd macro switch ;FLUSH-AND-READ-KBD
mov al,switch
mov ah, 12 ffunction 12
int 33
endm

reset-disk macro ;RESET DISK
mov ah, 13 function 13
int 33
endm

;;page
select-disk macro disk ;SELECT-DISK

mov dl,disk[-65]
mov ah,14 function 14
int 33
endm

•)

open macro fcb ;OPEN
mov dx,offset fcb
mov ah, 15 function 15
int 33
endm

close macro fcb ;CLOSE
mov dx,offset fcb
mov ah, 16 function 16
int 33
endm

search-first macro fcb ;SEARCH-FIRST
mov dx,offset fcb
mov ah,17 ;Function 17
int 33
endm

search-next macro fcb ; SEARCH-NEXT
mov dx,offset fcb
mov ah, 18 function 18
int 33
endm

1

delete macro fcb ;DELETE
mov dx,offset fcb
mov ah,19 function 19
int 33
endm

1

read-seq macro fcb ;READ-SEQ
mov dx,offset fcb
mov ah,20 function 20
int 33
endm

1-144

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

write-seq macro
mov
mov
int
endm

create macro
mov
mov
int
endm

rename macro
mov
mov
int
endm

current-disk macro
mov
int
endm

set-dta macro
mov
mov
int
endm

alloc-table macro
mov
int
endm

read-ran macro
mov
mov
int
endm

•>

write-ran macro
mov
mov
int
endm

file-size macro
mov
mov
int
endm

fcb
dx,offset fcb
ah,21
33

fcb
dx,offset fcb
ah,22
33

fcb,newname
dx,offset fcb
ah,23
33

ah,25
33

buffer
dx,offset buffer
ah,26
33

ah,27
33

fcb
dx,offset fcb
ah,33
33

fcb
dx,offset fcb
ah,34
33

fcb
dx,offset fcb
ah,35
33

;WRITE-SEQ

function 21

;CREATE

function 22

;RENAME

function 23

;CURRENT-DISK
function 25

;SET-DTA

function 26

;ALLOC-TABLE
function 27

;READ-RAN

function 33

;WRITE-RAN

function 34

;FILE-SIZE

function 35

1-14 5

set-relative-record macro fcb ;SET-RELATIVE-RECORD
mov dx,offset fcb
mov ah,36 function 36
int 33
endm

;;page
set-vector macro interrupt,seg-addr,off-addr ;SET-VECTOR

push
mov ax,seg-addr
mov ds,ax
mov dx,off-addr
mov al,interrupt
mov ah,37 function 37
int 33
endm

create-prog-seg macro seg-addr ;CREATE-PROG-SEG
mov dx,seg-addr
mov ah,38 function 38
int 33
endm

ran-block-read macro fcb,count,rec-size ;RAN-BLOCK-READ
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14].,rec-size
mov ah,39 function 39
int 33
endm

ran-block-write macro fcb,count,rec-size ;RAN-BLOCK-WRITE
mov dx,offset fcb
mov cx,count
mov word ptr fcb[14],rec-size
mov ah,40 function 40
int 33
endm

parse macro filename,fcb ;PARSE
mov si,offset filename-
mov di,offset fcb
push es
push ds
pop es
mov al, 15
mov ah,41 function 41
int 33
pop es
endm

>

get-date macro ;GET-DATE
mov ah,42 function 42
int 33

1-146

M S -D O S PR O G R A M M E R 'S MANUAL SYSTEM CALLS

;;page
set-date

get-time

set-time

verify

endm

macro year,month,day ;SET-DATE
mov cx,year
mov dh,month
mov dl,day
mov ah,43 function 43
int
endm

33

macro ;GET-TIME
mov ah,44 function 44
int
endm

33

macro hour,minutes,seconds,hundref
mov ch,hour
mov cl,minutes
mov dh,seconds
mov dl,hundredths
mov ah,45 function 45
int
endm

33

macro switch ;VERIFY
mov al,switch
mov ah,46 function 46
int
endm

33

General

move-string macro source,destination,num-bytes ;MOVE-STRING
push es
mov ax,ds
mov es,ax
assume es: data
mov si,offset source
mov di,offset destina

tion
mov cx,num-bytes

rep movs es:destination,source
assume es: nothing
pop es
endm

convert macro value,base,destination ;CONVERT
local table,start
jmp start

1-147

table
start:

db ”0123456789ABCDEF“
mov al,value
xor ah,ah
xor bx,bx
div base
mov bl,al
mov al,cs:table[bx]
mov destination,al
mov bl,ah
mov al,cs:table[bx]
mov destination! l],al
endm

;;page
convert-to-binary macro string,number,value ;CONVERT-TO-BINARY

local ten,start,calc,mult,no-mult
jmp start

ten db 10
start: mov value,0

xor cx,cx
mov cl,number
xor si,si

calc: xor ax,ax
al,string[si]mov

sub al,48
cmp cx,2
jl no-mult
push cx
dec cx

mult: mul cs:ten
loop mult
pop cx

no-mult: add value,ax
inc si
loop
endm

calc

convert-date macro
mov
mov
shr
mov
and
xor
mov
shr
add
endm

dir-entry
dx,word ptr dir-entry[25]
cl,5
dl,cl
dh,dir-entry[25]
dh,lfh
cx,cx
cl,dir-entry[26]
cU
cx,1980

1-148

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

1.9 EXTENDED EXAMPLE OF MS-DOS SYSTEM CALLS
title DISK DUMP
zero equ 0
disk-B equ 1
sectors-per-read equ 9
er equ 13
blank equ 32
period equ 46
tilde equ 126

INCLUDE B:CALLS.EQU

subttl DATA SEGMENT
page +
data segment
5
input-buffer db 9 dup(512 dup(?))
output-buffer db 77 dup(” ”)

db 0DH,0AH,”$“
start-prompt db ’’Start at sector: $“
sectors-prompt db ’’Number of sectors: $“
continue-prompt db ’’RETURN to continue $“
header db ’’Relative sector $“
end-string db 0DH,0AH,0AH,07H,”ALL DONE$'

crlf db
;DELETE THIS
0DH,0AH,”$“

table db “0123456789ABCDEF$”
5

ten db 10
sixteen db 16

start-sector dw 1
sector-num label byte
sector-number dw 0
sectors-to-dump dw sectors-per-read
sectors-read dw 0

buffer label byte
max-length db 0
current-length db 0
digits db 5 dup(?)

data ends

subttl STACK SEGMENT
page +
stack seg

ment stack
dw 100 dup(?)

stack-top label word
stack ends

subttl MACROS
page +

1-149

INCLUDE B:CALLS.MAC
;BLANK LINE
blank-line macro number

local print-it
push cx
call clear-line
mov cx,number

print-it: display output-buffer
loop print-it
pop cx
endm

subttl ADDRESSABILITY
page +
code segment

assume cs: code,ds: data,ss: stack
start: mov ax,data

mov ds,ax
mov ax,stack
mov ss,ax
mov sp,offset stack-top

•>

jmp main-procedure
subttl PROCEDURES
page +

; PROCEDURES
; READ-DISK
read-disk proc;

cmp sectors-to-dump-zero
jle done
mov bx,offset input-buffer
mov dx,start-sector
mov al,disk-b
mov cx,sectors-per-read
cmp cx,sectors-to-dump
jle get-sector
mov cx,sectors-to-dump

get-sector: push cx
int
popf

disk-read

pop cx
sub sectors-to-dump,cx
add start-sector,cx
mov sectors-read,cx
xor si,si

done: ret
read-disk endp
;CLEAR-LINE
clear-line proc;

push cx
mov cx,77
xor bx,bx

move-blank: mov output-buffer[bx],“ ”
inc bx

1-150

M S -D O S PR O G R A M M E R ’S MANUAL SYSTEM CALLS

clear-line

•PUT-BLANK
put-blank

put-blank

setup

setup

■CONVERT-LINE
convert-line

convert-it

display-ascii:

printable:

non-prin table:

convert-line

loop move-blank
pop cx
ret
endp

proc;
mov output-buffer[di], “ ”
inc di
ret
endp

proc;
display start-prompt
get-string 4,buffer
display crlf
convert-to-binary digits,
current-length,start-sector
mov ax,start-sector
mov sector-number,ax
display sectors-prompt
get-string 4,buffer
convert-to-binary digits,
current-length,sectors-to-dump
ret
endp

proc;
push cx
mov di,9
mov cx,16
convert input-buffer[si],sixteen,
output-buffer[di]
inc si
add di,2
call put-blank
loop convert-it
sub si,16
mov cx,16
add di,4
mov output-buffer[di],period
cmp input-buffer[si],blank
jl non-printable
cmp input-buffer[si],tilde
jg non-printable
mov dl,input-buffer[si]
mov output-buffer[di],dl
inc si
inc di
loop display-ascii
pop cx
ret
endp

1-151

•DISPLAY-SCREEN
display-screen

;I WANT length header

;minus 1 in cx

move-header:

dump-it:

display-screen

proc;
push cx
call clear-line

mov cx,17

dec cx

xor di,di
mov al,header[di]
mov output-buffer[di],al
inc di
loop move-header ;FIXr

convert sector-num[l],sixteen,
output-buffer[di]
add di,2
convert sector-num,sixteen,
output-buffer[di]
display output-buffer
blank-line 2
mov cx,16
call clear-line
call convert-line
display output-buffer
loop dump-it
blank-line 3
display continue-prompt
get-char-no-echo
display crlf
pop cx
ret
endp

; END PROCEDURES
subttl MAIN PROCEDURE
page +
main-procedure:
check-done:

display-it:

all-done:

code

call setup
cmp sectors-to-dump,zero
jng all-done
call read-disk
mov cx,sectors-read
call display-screen
call display-screen
inc sector-number
loop display-it
jmp check-done
display end-string
get-char-no-echo
ends
end start

1-152

M S -D O S PRO G RAM M E R 'S MANUAL DEVICE DRIVERS

CHAPTER 2
MS-DOS 2.0 DEVICE DRIVERS

2.1 WHAT IS A DEVICE DRIVER?

A device driver is a binary file with all of the code in it to manipulate
the hardware and provide a consistent interface to MS-DOS. In
addition, it has a special header at the beginning that identifies it as a
device, defines the strategy and interrupt entry points, and describes
various attributes of the device.

NOTE

For device drivers, the file must not use the
ORG 100H (like .COM files). Because it
does not use the Program Segment Prefix,
the device driver is simply loaded; therefore,
the file must have an origin of zero (ORG 0
or no ORG statement).

There are two kinds of device drivers.

1. Character device drivers
2. Block device drivers

Character devices are designed to perform serial character I/O like
CON, AUX, and PRN. These devices are named (i.e., CON, AUX,
CLOCK, etc.), and users may open channels (handles or FCBs) to do
I/O to them.
Block devices are the “disk drives” on the system. They can perform
random I/O in pieces called blocks (usually the physical sector size).
These devices are not named as the character devices are, and there
fore cannot be opened directly. Instead they are identified via the
drive letters (A:,B:,C:, etc.).

Block devices also have units. A single driver may be responsible for
one or more disk drives. For example, block device driver ALPHA

2 -1

may be responsible for drives A:,B:,C: and D:. This means that it has
four units (0-3) defined and, therefore, takes up four drive letters. The
position of the driver in the list of all drivers determines which units
correspond to which driver letters. If driver ALPHA is the first block
driver in the device list, and it defines 4 units (0-3), then they will be
A:,B:,C: and D:. If Beta is the second block driver and defines three
units (0-2), then they will be E:,F: and G:, and so on. MS-DOS 2.0 is
not limited to 16 block device units, as previous versions were. The
theoretical limit is 63 (26 - 1), but it should be noted that after 26 the
drive letters are unconventional (such as], \ , and).

NOTE

Character devices cannot define multiple
units because they have only one name.

2 -2

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

2.2 DEVICE HEADERS

A device header is required at the beginning of a device driver. A
device header looks like this:

DWORD pointer to next device (Must be set to -1)
WORD attributes
Bit 15 = 1 if char device 0 is blk
if bit 15 is 1

Bit 0 = 1 if current sti device
Bit 1 = 1 if current sto output
Bit 2 = 1 if current NUL device
Bit 3 = 1 if current CLOCK dev
Bit 4 = 1 if special
Bits 5 - 1 2 Reserved; must be set to 0

Bit 14 is the IOCTL bit
Bit 13 is the NON IBM FORMAT bit__________________________________
WORD pointer to device strategy entry point
WORD pointer to device interrupt entry point
8-BYTE character device name field Character devices set a device name.
For block devices the first byte is the number of units.

Figure 2. Sample Device Header

Note that the device entry points are words. They must be offsets
from the same segment number used to point to this table. For exam
ple, if XXX: YYY points to the start of this table, then XXXstrategy
and XXX interrupt are the entry points.

2.2.1 Pointer To Next Device Field

The pointer to the next device header field is a double word field
(offset followed by segment) that is set by MS-DOS to point at the
next driver in the system list at the time the device driver is loaded. It
is important that this field be set to -1 prior to load (when it is on the
disk as a file) unless there is more than one device driver in the file. If
there is more than one driver in the file, the first word of the double
word pointer should be the offset of the next driver’s Device Header.

2-3

NOTE

If there is more than one device driver in the
.COM file, the last driver in the file must
have the pointer to the next Device Header
field set to -1.

2.2.2 Attribute Field

The attribute field is used to tell the system whether this device is a
block or character device (bit 15). Most other bits are used to give
selected character devices certain special treatment. (Note that these
bits mean nothing on a block device). For example, assume that a
user has a new device driver that he wants to be the standard input
and output. Besides installing the driver, he must tell MS-DOS that
he wants his new driver to override the current standard input and
standard output (the CON device). This is accomplished by setting
the attributes to the desired characteristics, so he would set bits 0 and
1 to 1 (note that they are separate!) Similarly, a new CLOCK device
could be installed by setting that attribute. (Refer to section 2.7, “The
CLOCK Device”, in this chapter for more information.) Although
there is a NUL device attribute, the NUL device cannot be reassigned.
This attribute exists so that MS-DOS can determine if the NUL
device is being used.
The NON IBM FORMAT bit applies only to block devices and affects
the operation of the BUILD BPB (Bios Parameter Block) device call.
(Refer to section 2.5.3 for further information on this call).
The other bit of interest is the IOCTL bit, which has meaning on
character and block devices. This bit tells MS-DOS whether the
device can handle control strings (via the IOCTL system call, Func
tion 44H).
If a driver cannot process control strings, it should initially set this bit
to 0. This tells MS-DOS to return an error if an attempt is made (via
Function 44H) to send or receive control strings to this device. A
device which can process control strings should initialize the IOCTL
bit to 1. For drivers of this type, MS-DOS will make calls to the
IOCTL INPUT and OUTPUT device functions to send and receive
IOCTL strings.
The IOCTL functions allow data to be sent and received by the device
for its own use (for example, to set baud rate, stop bits, and form
length), instead of passing data over the device channel as does a
normal read or write. The interpretation of the passed information is
up to the device, but it must not be treated as a normal I/O request.
2 -4

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

2.2.3 Strategy And Interrupt Routines

These two fields are the pointers to the entry points of the strategy
and interrupt routines. They are word values, so they must be in the
same segment as the Device Header.

2.2.4 Name Field

This is an 8-byte field that contains the name of a character device or
the number of units of a block device. If it is a block device, the num
ber of units can be put in the first byte. This is optional, because MS-
DOS will fill in this location with the value returned by the driver’s
INIT code. Refer to Section 2.4, “Installation of Device Drivers” in
this chapter for more information.

2.3 HOW TO CREATE A DEVICE DRIVER

In order to create a device driver that MS-DOS can install, you must
write a binary file with a Device Header at the beginning of the file.
Note that for device drivers, the code should not be originated at
100H, but rather at 0. The link field (pointer to next Device Header)
should be -1, unless there is more than one device driver in the file.
The attribute field and entry points must be set correctly.
If it is a character device, the name field should be filled in with the
name of that character device. The name can be any legal 8-character
filename.
MS-DOS always processes installable device drivers before handling
the default devices, so to install a new CON device, simply name the
device CON. Remember to set the standard input device and standard
output device bits in the attribute word on a new CON device. The
scan of the device list stops on the first match, so the installable
device driver takes precedence.

2-5

NOTE

Because MS-DOS can install the driver any
where in memory, care must be taken in any
far memory references. You should not
expect that your driver will always be loaded
in the same place every time.

2.4 INSTALLATION OF DEVICE DRIVERS

MS-DOS 2.0 allows new device drivers to be installed dynamically at
boot time. This is accomplished by INIT code in the BIOS, which
reads and processes the CONFIG.SYS file.
MS-DOS calls upon the device drivers to perform their function in
the following manner:

MS-DOS makes a far call to strategy entry, and passes (in a
Request Header) the information describing the functions of
the device driver.

This structure allows you to program an interrupt-driven device
driver. For example, you may want to perform local buffering in a
printer.

2.5 REQUEST HEADER

When MS-DOS calls a device driver to perform a function, it passes a
Request Header in ES:BX to the strategy entry point. This is a fixed
length header, followed by data pertinent to the operation being
performed. Note that it is the device driver’s responsibility to preserve
the machine state (for example, save all registers on entry and restore
them on exit). There is enough room on the stack when strategy or
interrupt is called to do about 20 pushes. If more stack is needed, the
driver should set up its own stack.
The following figure illustrates a Request Header.

2 -6

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

REQUEST HEADER - >

BYTE length of record
Length in bytes of this Request Header

BYTE unit code
The subunit the operation is for (minor device)
(no meaning on character devices)

BYTE command code
WORD status
8 bytes RESERVED

Figure 3. Request Header

2.5.1 Unit Code

The unit code field identifies which unit in your device driver the
request is for. For example, if your device driver has 3 units defined,
then the possible values of the unit code field would be 0,1, and 2.

2.5.2 Command Code Field

The command code field in the Request header can have the follo
wing values:

Command Function
Code

0 INIT
1 MEDIA CHECK (Block only, NOP for character)
2 BUILD BPB “ “ “ “
3 IOCTL INPUT (Only called if device has IOCTL)
4 INPUT (read)
5 NON-DESTRUCTIVE INPUT NO WAIT (Char devs only)
6 INPUT STATUS “ “
7 INPUT FLUSH “ “
8 OUTPUT (write)
9 OUTPUT (write) with verify

10 OUTPUT STATUS “ “
11 OUTPUT FLUSH “ “
12 IOCTL OUTPUT (Only called if device has IOCTL)

2 -7

2.5.3 MEDIA CHECK AND BUILD BPB

MEDIA CHECK and BUILD BPB are used with block devices only.
MS-DOS calls MEDIA CHECK first for a drive unit. MS-DOS passes
its current media descriptor byte (refer to the section “Media Descrip
tor Byte” later in this chapter). MEDIA CHECK returns one of the
following results:

Media Not Changed - current DPB and media byte are OK.
Media Changed - Current DPB and media are wrong. MS-DOS
invalidates any buffers for this unit and calls the device driver to
build the BPB with media byte and buffer.
Not Sure - If there are dirty buffers (buffers with changed data,
not yet written to disk) for this unit, MS-DOS assumes the DPB
and media byte are OK (media not changed). If nothing is dirty,
MS-DOS assumes the media has changed. It invalidates any
buffers for the unit, and calls the device driver to build the BPB
with media byte and buffer.
Error - If an error occurs, MS-DOS sets the error code accor
dingly.

MS-DOS will call BUILD BPB under the following conditions:

If Media Changed is returned

If Not Sure is returned, and there are no dirty buffers

The BUILD BPB call also gets a pointer to a one-sector buffer. What
this buffer contains is determined by the NON IBM FORMAT bit in
the attribute field. If the bit is zero (device is IBM format-compatible),
then the buffer contains the first sector of the first FAT. The FAT ID
byte is the first byte of this buffer. NOTE: The BPB must be the same,
as far as location of the FAT is concerned, for all possible media
because this first FAT sector must be read before the actual BPB is
returned. If the NON IBM FORMAT bit is set, then the pointer
points to one sector of scratch space (which may be used for any
thing).

2-8

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

2.5.4 Status Word

The following figure illustrates the status word in the Request Hea
der.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
E B D
R RESERVED U 0 ERROR CODE (bit 15 on)
R s N

The Status word is zero on entry and is set by the driver interrupt
routine on return.
Bit 8 is the done bit. When set, it means the operation is complete.
For MS-DOS 2.0, the driver sets it to 1 when it exits.
Bit 15 is the error bit. If it is set, then the low 8 bits indicate the error.
The errors are:

0 Write protect violation
1 Unknown Unit
2 Drive not ready
3 Unknown command
4 CRC error
5 Bad drive request structure length
6 Seek error
7 Unknown media
8 Sector not found
9 Printer out of paper
A Write fault
B Read Fault
C General failure

Bit 9 is the busy bit, which is set only by status calls.

For output on character devices: If bit 9 is 1 on return, a write
request (if made) would wait for completion of a current re
quest. If it is 0, there is no current request, and a write request
(if made) would start immediately.

2 -9

For input on character devices with a buffer: If bit 9 is 1 on re
turn, a read request (if made) would go to the physical device. If
it is 0 on return, then there are characters in the device buffer
and a read would return quickly. It also indicates that some
thing has been typed. MS-DOS assumes all character devices
have an input type-ahead buffer. Devices that do not have a
type-ahead buffer should always return busy=0 so that MS-
DOS will not continuously wait for something to get into a
buffer that does not exist.

One of the functions defined for each device is INIT. This routine is
called only once when the device is installed. The INIT routine re
turns a location (DS:DX), which is a pointer to the first free byte of
memory after the device driver (similar to “Keep Process”). This
pointer method can be used to delete initialization code that is only
needed once, saving on space.
Block devices are installed the same way and also return a first free
byte pointer as described above. Additional information is also retur
ned:

The number of units is returned. This determines logical
device names. If the current maximum logical device letter is F
at the time of the install call, and the INIT routine returns 4 as
the number of units, then they will have logical names G, H, I
and J. This mapping is determined by the position of the driver
in the device list, and by the number of units on the device
(stored in the first byte of the device name field).
A pointer to a BPB (BIOS Paramter Block) pointer array is also
returned. There is one table for each unit defined. These blocks
will be used to build an internal DOS data structure for each of
the units. The pointer passed to the DOS from the driver points
to an array of n word pointers to BPBs, where n is the number
of units defined. In this way, if all units are the same, all of the
pointers can point to the same BPB, saving space. Note that this
array must be protected (below the free pointer set by the
return) since an internal DOS structure will be built starting at
the byte pointed to by the free pointer. The sector size defined
must be less than or equal to the maximum sector size defined
at default BIOS INIT time. If it isn’t, the install will fail.
The last thing that INIT of a block device must pass back is the
media descriptor byte. This byte means nothing to MS-DOS,
but is passed to devices so that they know what parameters MS-
DOS is currently using for a particular drive unit.

2 -10

M S -D O S PR O G R A M M E R 'S M ANUAL DEVICE DRIVERS

Block devices may take several approaches; they may be dumb or
smart. A dumb device defines a unit (and therefore an internal DOS
structure) for each possible media drive combination. For example,
unit 0 = drive 0 single side, unit 1 = drive 0 double side. For this
approach, media descriptor bytes do not mean anything. A smart
device allows multiple media per unit. In this case, the BPB table
returned at INIT must define space large enough to accommodate the
largest possible media supported. Smart drivers will use the media
descriptor byte to pass information about what media is currently in a
unit.

2.6 FUNCTION CALL PARAMETERS

All strategy routines are called with ES:BX pointing to the Request
Header. The interrupt routines get the pointers to the Request Hea
der from the queue that the strategy routines store them in. The
command code in the Request Header tells the driver which function
to perform.

NOTE

All DWORD pointers are stored offset first,
then segment.

2 -11

2.6.1 INIT

Command code = 0

INIT - ES:BX - >

13-BYTE Request Header

BYTE # of units____________

DWORD break address

DWORD pointer to BPB array
(Not set by character devices)

The number of units, break address, and BPB pointer are set by the
driver. On entry, the DWORD that is to be set to the BPB array (on
block devices) points to the character after the “=” on the line in
CONFIG.SYS that loaded this device. This allows drivers to scan the
CONFIG.SYS invocation line for arguments.

NOTE

If there are multiple device drivers in a
single .COM file, the ending address retur
ned by the last INIT called will be the one
MS-DOS uses. It is recommended that all of
the device drivers in a single .COM file
return the same ending address.

2.6.2 MEDIA CHECK

Command Code = 1
MEDIA CHECK -ES: B X -

13-BYTE Request Header

BYTE media descriptor from DPB

BYTE returned

2 -1 2

M S -D O S PROGRAM M E R 'S MANUAL DEVICE DRIVERS

In addition to setting the status word, the driver must set the return
byte to one of the following:

-1 Media has been changed
0 Don’t know if media has been changed
1 Media has not been changed

If the driver can return -1 or 1 (by having a door-lock or other inter
lock mechanism) MS-DOS performance is enhanced because MS-
DOS does not need to reread the FAT for each directory access.

2.6.3 BUILD BPB (BIOS Paramter Block)

Command code = 2
BUILD BPB - ES:BX — >

13-BYTE Request Header

BYTE media descriptor from DPB

DWORD transfer address
(Points to one sector worth of scratch space or first sector of FAT
depending on the value of the NON IBM FORMAT bit)

DWORD pointer to BPB

If the NON IBM FORMAT bit of the device is set, then the DWORD
transfer address points to a one sector buffer, which can be used for
any purpose. If the NON IBM FORMAT bit is 0, then this buffer
contains the first sector of the first FAT and the driver must not alter
this buffer.
If IBM compatible format is used (NON IBM FORMAT BIT = 0),
then the first sector of the first FAT must be located at the same
sector on all possible media. This is because the FAT sector will be
read BEFORE the media is actually determined. Use this mode if all
you want is to read the FAT ID byte.
In addition to setting status word, the driver must set the Pointer to
the BPB on return.

2 -13

In order to allow for many different OEMs to read each other’s disks,
the following standard is suggested: The information relating to the
BPB for a particular piece of media is kept in the boot sector for the
media. In particular, the format of the boot sector is:

3 BYTE near JUMP to boot code

8 BYTES OEM name and version

B WORD bytes per sector
P
B
|

BYTE sectors per allocation unit

WORD reserved sectors

V BYTE number of FATs

WORD number of root dir entries
I
B
P

WORD number of sectors in logical image

BYTE media descriptor
B WORD number of FAT sectors

WORD sectors per track

WORD number of heads

WORD number of hidden sectors

The three words at the end (sectors per track, number of heads, and
number of hidden sectors) are optional. They are intended to help the
BIOS understand the media. Sectors per track may be redundant
(could be calculated from total size of the disk). Number of heads is
useful for supporting different multi-head drives which have the same
storage capacity, but different numbers of surfaces. Number of hid
den sectors may be used to support drive-partitioning schemes.

2 -14

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

2.6.4 Media Descriptor Byte

The last two digits of the FAT ID byte are called the media descriptor
byte. Currently, the media descriptor byte has been defined for a few
media types, including 5-1/4“ and 8“ standard disks. For more infor
mation, refer to Section 3.6, “MS-DOS Standard Disk Formats.”
Although these media bytes map directly to FAT ID bytes (which are
constrained to the 8 values F8-FF), media bytes can, in general, be
any value in the range 0-FF.

2 -1 5

2.6.5 READ OR WRITE

Command codes = 3,4,8,9, and 12

READ or WRITE - ES:BX (Including IOCTL) - >

13-BYTE Request Header

BYTE media descriptor from DPB

DWORD transfer address

WORD byte/sector count

WORD starting sector number
(Ignored on character devices)

In addition to setting the status word, the driver must set the sector
count to the actual number of sectors (or bytes) transferred. No error
check is performed on an IOCTL I/O call. The driver must correctly
set the return sector (byte) count to the actual number of bytes trans
ferred.

THE FOLLOWING APPLIES TO BLOCK DEVICE DRIVERS:

Under certain circumstances the BIOS may be asked to perform a
write operation of 64K bytes, which seems to be a “wrap around” of
the transfer address in the BIOS I/O packet. This request arises due
to an optimization added to the write code in MS-DOS. It will only
manifest on user writes that are within a sector size of 64K bytes on
files “growing” past the current EOF. It is allowable for the BIOS to
ignore the balance of the write that “wraps around” if it so chooses. For
example, a write of 10000H bytes worth of sectors with a transfer
address of XXX: 1 could ignore the last two bytes. A user program can
never request an I/O of more than FFFFH bytes and cannot wrap
around (even to 0) in the transfer segment. Therefore, in this case, the
last two bytes can be ignored.

2 -16

M S -D O S PROGRAM M E R 'S MANUAL DEVICE DRIVERS

2.6.6 NON DESTRUCTIVE READ NO WAIT

Command code = 5

NON DESRUCTIVE READ NO WAIT - ES:BX - >

13-BYTE Request Header

BYTE read from device

If the character device returns busy bit = 0 (characters in buffer), then
the next character that would be read is returned. This character is not
removed from the input buffer (hence the term “Non Destructive
Read”). Basically, this call allows MS-DOS to look ahead one input
character.

2 -1 7

2.6.7 STATUS

Command codes = 6 and 10

STATUS Calls - ES:BX - >

13-BYTE Request Header

All the driver must do is set the status word and the busy bit as fol
lows:

For output on character devices: If bit 9 is 1 on return, a write
request (if made) would wait for completion of a current re
quest. If it is 0, there is no current request and a write request (if
made) would start immediately.
For input on character devices with a buffer: A return of 1 means,
a read request (if made) would go to the physical device. If it is
0 on return, then there are characters in the devices buffer and
a read would return quickly. A return of 0 also indicates that the
user has typed something. MS-DOS assumes that all character
devices have an input type-ahead buffer. Devices that do not
have a type-ahead buffer should always return busy = 0 so that
the DOS will not hang waiting for something to get into a buffer
which doesn’t exist.

2.6.8 FLUSH

Command codes = 7 and 11

FLUSH Calls - ES : B X - >

13-Byte Request Header

The FLUSH call tells the driver to flush (terminate) all pending
requests. This call is used to flush the input queue on character devi
ces.

2 -1 8

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

2.7 THE CLOCK DEVICE

One of the most popular add-on boards is the real time clock board.
To allow this board to be integrated into the system for TIME and
DATE, there is a special device (determined by the attribute word),
called the CLOCK device. The CLOCK device defines and performs
functions like any other character device. Most functions will be: “set
done bit, reset error bit, return.” When a read or write to this device
occurs, exactly 6 bytes are transferred. The first two bytes are a word,
which is the count of days since 1-1-80. The third byte is minutes, the
fourth, hours, the fifth, hundredths of seconds, and the sixth, se
conds. Reading the CLOCK device gets the date and time; writing to
it sets the date and time.

2 -19

2.8 EXAMPLE DEVICE DRIVERS

The following examples illustrate a block device driver and a charac
ter device driver program.

2.8.1 Block Device Driver

.**************************** ^ BLOCK DEVICE ******************************

TITLE 5 1/4“ DISK DRIVER FOR SCP DISK-MASTER

;This driver is intended to drive up to four 5 1/4“ drives
;hooked to the Seattle Computer Products DISK MASTER disk
;controller. All standard IBM PC formats are supported.

FALSE EQU 0
TRUE EQU NOT FALSE

;The I/O port address of the DISK MASTER
DISK
;DISK+0

;DISK+1

;DISK+2

;DISK+3

;DISK+4

EQU

1793

1793

1793

1793

OEOH

Command/Status

Track

Sector

Data

; Aux Command/Status
;DISK+5
; Wait Sync

;Back side select bit
BACKBIT EQU 04H
;5 1/4“ select bit
SMALBIT EQU 10H
;Double Density bit
DDBIT EQU 08 H

;Done bit in status register
DONEBIT EQU 01H

; Use table below to select head step speed.
;Step times for 5“ drives
; are double that shown in the table.

; Step value 1771 1793

6ms 3ms
6ms 6ms

2 -2 0

0
1

M S -D O S PRO G RAM M E R 'S MANUAL DEVICE DRIVERS

10ms
20ms

10ms
15ms

STPSPD EQU 1

NUMERR EQU ERROUT-ERRIN

CR EQU ODH
LF EQU OAH
CODE SEGMENT
ASSUME CS :CODE,DS :NOTHING,ES :NOTHING,SS :NOTHIl

;
DEVICE HEADER

DRVDEV LABEL WORD
DW -1,-1
DW 0000 ;IBM format-compatible, Bli
DW STRATEGY
DW DRV$IN

DRVMAX DB 4

DRVTBL LABEL WORD
DW DRVSIN1T
DW MEDIA$CHK
DW GETSBPB
DW CMDERR
DW DRV$READ
DW EXIT
DW EXIT
DW EXIT
DW DRVSWRIT
DW DRVSWRIT
DW EXIT
DW EXIT
DW EXIT

*
STRATEGY

PTRSAV DD 0

STRATP PROC FAR
STRATEGY:

STRATP

MOV
MOV
RET
ENDP

WORD PTR [PTRSAV],BX
WORD PTR [PTRSAV+2LES

MAIN ENTRY

2 -21

CMDLEN = 0 ;LENGTH OF THIS COMMAND
UNIT = 1 ;SUB UNIT SPECIFIER
CMDC = 2 ;COMMAND CODE
STATUS = 3 ;STATUS
MEDIA = 13 ;MEDIA DESCRIPTOR
TRANS = 14 ;TRANSFER ADDRESS
COUNT = 18 ;COUNT OF BLOCKS OR CHARACTERS
START = 20 ;FIRST BLOCK TO TRANSFER
DRV$IN:

PUSH SI
PUSH AX
PUSH CX
PUSH DX
PUSH DI
PUSH BP
PUSH DS
PUSH ES
PUSH BX

LDS BX,[PTRSAV] ;GET POINTER TO I/O PACKET

MOV AL.BYTE PTR [BX].UNIT ;AL = UNIT CODE
MOV AH,BYTE PTR [BXJ.MEDIA ;AH = MEDIA DESCRIP
MOV CX,WORD PTR [BXJ.COUNT ;CX = COUNT
MOV DX,WORD PTR [BX],START; ;DX = START SECTOR
PUSH AX
MOV AL,BYTE PTR [BXJ.CMDC ;Command code
CMP AL,11
JA CMDERRP ;Bad command
CBW
SHL AX, I ;2 times command =

;word table index
MOV SI,OFFSET DRVTBL
ADD SI,AX ;Index into table
POP AX ;Get back media

and unit

LES DI,DWORD PTR[BX].TRANS ;ES:DI = TRANSFER
;ADDRESS

PUSH CS
POP DS

ASSUME DS:CODE
JMP WORD PTR [SI] ;GO DO COMMAND

ASSUME
CMDERRP

EXIT - ALL ROUTINES RETURN THROUGH THIS PATH

DS:NOTHING

2-22

M S -D O S PR O G R A M M E R ’S M ANUAL DEVICE DRIVERS

POP AX ;Clean stack
CMDERR:

MOV AL,3 ;UNKNOWN COMMAND ERROR
JMP SHORT ERRSEXIT

ERRSCNT: LDS BX,[PTRSAV]
SUB WORD PTR [BX].COUNT,CX ;# OF SUCCESS. I/Os

ERRSEXIT:
;AL has error code

MOV AH,10000001B ;MARK ERROR RETURN
JMP SHORT ERR1

EXITP PROC FAR

EXIT: MOV AH,00000001B
ERR1: LDS BX, [PTRSAV]

MOV WORD PTR [BX].STATUS,AX ;MARK OPERATION COMPLETE

POP BX
POP ES
POP DS
POP BP
POP DI
POP DX
POP CX
POP AX
POP SI
RET ;RESTORE REGS AND RETURN

EXITP ENDP

CURDRV DB -1

TRKTAB DB -1,-1,-1,-1

SECCNT DW 0

DRV LI M = 8 ;Number of sectors on device
SECLIM = 13 ;MAXIMUM SECTOR
HDLIM = 15 ;MAXIMUM HEAD

;WARNING - preserve order of drive and curhd!

DRIVE DB 0 PHYSICAL DRIVE CODE
CURHD DB 0 ;CURRENT HEAD
CURSEC DB 0 ;CURRENTSECTOR
CURTRK DW 0 ;CURRENT TRACK

MEDIAJCHK: ;Always indicates Don’t know
ASSUME DS:CODE

TEST AH,00000100B ;TEST IF MEDIA REMOVABLE
JZ MEDIASEXT

2-23

DI,DI ;SAY I DON’T KNOWXOR
MEDIA$EXT:

LDS BX, [PTRSAV]
MOV WORD PTR [BX].TRANS,DI
JMP EXIT

BUILDSBPB
ASSUME DS:CODE

MOV AH,BYTE PTR ES: [DI] ;GET FAT ID BYTE
CALL GETBP TRANSLATE

SETBPB: LDS BX,[PTRSAV]
MOV [BX].MEDIA,AH
MOV [BX].COUNT,DI
MOV [BX].COUNT+2,CS
JMP EXIT

BUILDBP:
ASSUME DS:NOTHING
;AH is media byte on entry
;DI points to correct BPB on return

PUSH AX
PUSH CX
PUSH DX
PUSH BX
MOV CL,AH ;SAVE MEDIA
AND CL,0F8H FORMALIZE
CMP CL,0F8H ;COMPARE WITH GOOD MEDIA BYTE
JZ GOODID
MOV AH,0FEH :DEFAULT TO 8-SECTOR,

;SINGLE-SIDED
GOODID:

MOV AL,1 ;SET NUMBER OF FAT SECTORS
MOV BX,64*256+8 ;SET DIR ENTRIES AND SECTOR MAX
MOV CX,40*8 ;SET SIZE OF DRIVE
MOV DX,01*256+1 ;SET HEAD LIMIT & SEC/ALL UNIT
MOV DI,OFFSET DRVBPB
TEST AH,00000010B ;TEST FOR 8 OR 9 SECTOR
JNZ HAS8 ;NZ = HAS 8 SECTORS
INC AL ;INC NUMBER OF FAT SECTORS
INC BL ;INC SECTOR MAX
ADD CX,40 ;INCREASE SIZE

HAS8: TEST AH,00000001B ;TEST FOR 1 OR 2 HEADS
JZ HAS1 ;Z = 1 HEAD
ADD CX,CX ;DOUBLE SIZE OF DISK
MOV BH,112 ;INCREASE # OF DIREC. ENTRIES
INC DH ;INC SEC/ALL UNIT
INC DL ;INC HEAD LIMIT

HAS1: MOV BYTE PTR [DI].2,DH
MOV BYTE PTR [DI].6,BH
MOV WORD PTR [DI].8,CX
MOV BYTE PTR [DI].10,AH
MOV BYTE PTR [DI].I1,AL
MOV BYTE PTR [DI].13,BL
MOV BYTE PTR [DI].15,DL
POP BX

2-24

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

POP DC
POP CX
POP AX
RET

DISK I/O HANDLERS

;ENTRY:
; AL = DRIVE NUMBER (0-3)
; AH = MEDIA DESCRIPTOR
; CX = SECTOR COUNT
; DX = FIRST SECTOR
; DS = CS
; ES: DI = TRANSFER ADDRESS
;EXIT:
; IF SUCCESSFUL CARRY FLAG = 0
; ELSE CF = 1 AND AL CONTAINS (MS-DOS) ERROR CODE,

CX # sectors NOT transferred
DRVSREAD:
ASSUME DS:CODE

JCXZ DSKOK
CALL SETUP
JC DSK$IO
CALL DISKRD
JMP SHORT DSKSIO

DRV$WRIT:
ASSUME DS:CODE

JCXZ DSKOK
CALL SETUP
JC DSKSIO
CALL DISKWRT

ASSUME DS:NOTHING
DSK$IO: JNC DSKOK

JMP ERRSCNT
DSKOK: JMP EXIT

SETUP:
ASSUME DS:CODE
;Input same as above
;On output
; ES:DI = Trans addr
; DS:BX Points to BPB
; Carry set if error (AL is error code (MS-DOS))
; eise
; [DRIVE] = Drive number (0-3)
; [SECCNT] = Sectors to transfer
; [CURSEC] = Sector number of start of I/O
; [CURHD] = Head number of start of I/O ;SET
; [CURTRK] = Track # of start of I/O ;Seek performed

2 -25

; All other registers destroyed
XCHG BX,DI ;ES:BX = TRANSFER ADDRESS
CALL GETBP ;DS: DI = PTR TO BPB
MOV SI,CX
ADD SI,DX
CMP SI,WORD PTR [DI].DRVLIM

;COMPARE AGAINST DRIVE MAX
JBE INRANGE
MOV AL,8
STC
RET

INRANGE:

SEEK:

TRYSK:

NOHOME:

MOV [DRIVE],AL
MOV [SECCNT],CX ;SAVE SECTOR COUNT
XCHG AX,DX ;SET UP LOGICAL SECTOR

;FOR DIVIDE
XOR DX,DX
DIV WORD PTR [DI].SECLIM ;DIVIDE BY SEC PER TRACK
INC DL
MOV [CURSEC],DL ;SAVE CURRENT SECTOR
MOV CX.WORD PTR [DIJ.HDLIM ;GET NUMBER OF HEADS
XOR DX,DX ;DIVIDE TRACKS BY HEADS PER CYLINDER
DIV CX
MOV [CURHD],DL ;SAVE CURRENT HEAD
MOV [CURTRK],AX ;SAVE CURRENT TRACK

PUSH BX
PUSH DI
CALL CHKNEW
CALL DRIVESEL
MOV BL,[DRIVE]
XOR BH,BH,
ADD BX,OFFSET TRKTAB
MOV AX, [CURTRK]
MOV DL,AL
XCHG AL,DS:[BX]
OUT DISK+1,AL
CMP AL,DL
JZ SEEKRET
MOV BH,2
CMP AL,-1
JNZ NOHOME

;Xaddr
;BPB pointer
;Unload nead if change drives

;BX drive index
;Get current track

;Save desired track
;Make desired track current
;Tell Controller current track
;At correct track?
;Done if yes
;Seek retry count
;Position Known?
;If not home head

CALL HOME
JC SEEKERR

MOV AL,DL
OUT DISK+3,AL
MOV AL,1CH+STPSPD
CALL DCOM
AND AL,98H
JZ SEEKRET
JS SEEKERR

;Desired track
;Seek

;Accept not rdy, seek, & CRC errors

;No retries if not ready

2 -2 6

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

DEC BH
JNZ TRYSK

SEEKERR:
MOV BL,[DRIVE]
XOR BH,BH ;BX drive index
ADD BX,OFFSET TRKTAB ;Get current track
MOV BYTE PTR DS:[BX],-I ;Make current track

;lunknown
CALL GETERRCD
MOV CX,[SECCNT] ;Nothing transferred
POP BX ;BPB Pointer
POP DI ;Xaddr
RET

SEEKRET:
POP BX ;BPB pointer
POP DI ;Xaddr
CLC
RET

; READ

DISKRD:
ASSUME DS:CODE

MOV CX,[SECCNT]
RDLP:

CALL PRESET
PUSH BX
MOV BL,10 ;Retry count
MOV DX,DISK+3 ;Data port

RDAGN:
MOV AL,80H ;Read command
CLI ;Disable for 1793
OUT DISK,AL ;Output read command
MOV BP,DI ;Save address for retry
JMP SHORT RLOOPENTRY

RLOOP:
STOSB

RLOOPENTRY:
IN AL,DlSK+5 ;Wait for DRQ or INTRQ
SHR AL,1
IN AL,DX ;Read data
JNC RLOOP
STI ;Ints OK now
CALL GETSTAT
AND AL,9CH
JZ RDPOP ;Ok
MOV DI,BP ;Get back transfer
DEC BL
JNZ RDAGN
CMP AL,10H ;Record not found?

2 -2 7

GOT-CODE:

RDPOP:

DISKWRT:
ASSUME

ASSUME
WRLP:

WRAGN:

WRLOOP:

WRPOP:

JNZ GOT-CODE
MOV AL.l

CALL GETERRCD
POP BX
RET

POP BX
LOOP RDLP
CLC
RET

WRITE

DS:CODE
MOV CX,[SECCNT]
MOV SI,DI
PUSH ES
POP DS
DS:NOTHING

CALL PRESET
PUSH BX
MOV BL.10
MOV DX.DISK+3

MOV AL.OAOH
CLI
OUT DISK.AL
MOV BP,SI

IN AL,DISK+5
SHR AL.l
LODSB
OUT DX.AL
JNC WRLOOP
STI
DEC SI
CALL GETSTAT
AND AL.OFCH
JZ WRPOP
MOV SI,BP
DEC BL
JNZ WRAGN
CALL GETERRCD
POP BX
RET

;Retry count
;Data port

;Write command
;Disable for 1793
;Output write command
;Save address for retry

;Get data
;Write data

;Ints OK now

;Ok
;Get back transfer

POP BX

2-28

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

LOOP WRLP
CLC
RET

PRESET:
ASSUME

SETHEAD:

GOTSEC:

STEP:
ASSUME

HOME:
ASSUME

TRYHOM:

HOMERR:

DS: NOTHING
MOV AL, [CURSEC]
CMP AL,CS: [BXJ.SECLIM
JBE GOTSEC
MOV DH,[CURHD]
INC DH
CMP DH,CS:[BX].HDLIM
JB SETHEAD ;Select new head
CALL STEP ;Go on to next track
XOR DH,DH ;Select head zero

MOV [CURHD],DH
CALL DRIVESEL
MOV AL,1 ;First sector
MOV [CURSEC],AL ;Reset CURSEC

OUT DISK+2,AL ;Tell controller which sector
INC
RET

[CURSEC] ;We go on to next sector

DS: NOTHING
MOV AL,58H+STPSPD ;Step in w/ update, no verify
CALL DCOM
PUSH BX
MOV BL,[DRIVE]
XOR BH,BH ;BX drive index
ADD BX,OFFSET TRKTAB ;Get current track
INC BYTE PTR CS:[BX] ;Next track
POP BX
RET

DS: NOTHING
MOV BL,3

MOV AL,OCH+STPSPD ;Restore with verify
CALL DCOM
AND AL,98H
JZ RET3
JS HOMERR ;No retries if not ready
PUSH AX ;Save real error code
MOV AL,58H+STPSPD ;Step in w/ update no verify
CALL DCOM
DEC BL
POP AX ;Get back real error code
JNZ TRYHOM

STC

2 -29

RET3: R ET

CHKNEW:
ASSUME DS: NOTHING

MOV AL,[DRIVE] ;Get disk drive number
MOV AH,AL
XCHG AL,[CURDRV] ;Make new drive current.
CMP AL,AH ;Changing drives?
JZ RET1 ;No

; If changing drives, unload head so the head load delay
;one-shot will fire again. Do it by seeking to the same
;track with the H bit reset.

IN AL,DISK+1 ;Get current track number
OUT DISK+3.AL ;Make it the track to seek
MOV AL,10H ;Seek and unload head

DCOM:
ASSUME DS:NOTHING

OUT DISK.AL
PUSH AX
AAM ;Delay 10 microseconds
POP AX

GETSTAT:
IN AL,DISK+4
TEST AL,DONEBIT
JZ GETSTAT
IN AL,DISK

RET1: RET

DRIVESEL:
ASSUME DS:NOTHING
;Select the drive based on current info
;Only AL altered

MOV AL,[DRIVE]
OR AL,SMALBIT + DDBIT ;5 1/4“ IBM PC disks
CMP [CURHDJ.O
JZ GOTHEAD
OR AL,BACKBIT ;Select side 1

GOTHEAD:
OUT DISK+4,AL ;Select drive and side
RET

GETERRCD
ASSUME DS:NOTHING

PUSH CX
PUSH ES
PUSH DI
PUSH CS
POP ES ;Make ES the local segment
MOV CS:[LSTERR],AL ;Terminate list w/ error code
MOV CX.NUMERR ;Number of error conditions
MOV DI,OFFSET ERRIN ;Point to error conditions
REPNE SCASB

2 -3 0

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

MOV AL.NUMERR-1 [DI] ;Get translation
STC ;Flag error condition
POP DI
POP ES
POP CX
RET ;and return

**

; BPB FOR AN IBM FLOPPY DISK, VARIOUS PARAMETERS ARE
; PATCHED BY GETBP TO REFLECT THE TYPE OF MEDIA
; INSERTED
; This is a nine sector single side BPB
DRVBPB:

DW 512 ;Physical sector size in bytes
DB 1 Sectors/allocation unit
DW 1 ;Reserved sectors for DOS
DB 2 ;# of allocation tables
DW 64 Number directory entries
DW 9*40 Number 512-byte sectors
DB 11111100B Media descriptor
DW 2 ;Number of FAT sectors
DW 9 Sector limit
DW 1 ;Head limit

INITAB DW DRVBPB ;Up to four units
DW DRVBPB
DW DRVBPB
DW DRVBPB

ERRIN: ;DISK ERRORS RETURNED FROM THE 1793 CONTROLER
DB 80H NO RESPONSE
DB 40H Write protect
DB 20H Write Fault
DB 10H SEEK error
DB 8 CRC error
DB 1 Mapped from 10H

(record not found) on READ
LSTERR DB 0 ALL OTHER ERRORS

ERROUT: ;RETURNED ERROR CODES CORRESPONDING TO ABOVE
DB 2 NO RESPONSE
DB 0 WRITE ATTEMPT

ON WRITE-PROTECT DISK
DB OAH WRITE FAULT
DB 6 SEEK FAILURE
DB 4 BAD CRC
DB 8 SECTOR NOT FOUND
DB 12 GENERAL ERROR

DRV$INIT:

; Determine number of physical drives by reading CONFIG.SYS

2 -31

ASSUME DS:CODE
PUSH DS
LDS SI,[PTRSAV]

ASSUME DS: NOTHING
LDS SI,DWORD PTR [SI.COUNT] ;DS: SI points to ;CONFIG.SYS

SCAN-LOOP:
CALL SCAN-SWITCH
MOV AL,CL
OR AL.AL
JZ SCAN4
CMP AL,”s”
JZ SCAN4

WERROR: POP DS
ASSUME DS:CODE

MOV DX,OFFSET ERRMSG2
WERROR2: MOV AH,9

INT 21H
XOR AX,AX
PUSH AX
JMP SHORT ABORT

;No units

BADNDRV:
POP DS
MOV DX,OFFSET ERRMSG1
JMP WERROR2

SCAN4:
ASSUME DS: NOTHING
;BX is number of floppies

OR BX,BX
JZ BADNDRV
CMP BX,4

;User error

JA BADNDRV
POP DS

;User error

ASSUME DS:CODE
PUSH BX ;Save unit count

ABORT: LDS BX,[PTRSAV]
ASSUME DS:NOTHING

POP AX
MOV BYTE PTR [BX].MEDIA,AL
MOV [DRVMAX],AL

;Unit count

MOV WORD PTR [BXJ.TRANS,OFFSET DRVSINIT ;SET
;BREAK ADDRESS

MOV [BX].TRANS+2,CS
MOV WORD PTR [BXJ.COUNT,OFFSET INITAB

;SET POINTER TO BPB ARRAY
MOV [BX].COUNT+2,CS
JMP EXIT

; PUT SWITCH IN CL, VALUE IN BX

SCAN-SWITCH:
XOR BX,BX

2 -3 2

M S -D O S PR O G R AM M E R 'S MANUAL DEVICE DRIVERS

MOV CX,BX
LODSB
CMP AL, 10
JZ NUMRET
CMP AL,“-”
JZ GOT-SWITCH
CMP AL,“/”
JNZ SCAN-SWITCH

GOT-SWITCH:
CMP BYTE PTR [SI+1],“:”
JNZ TERROR
LODSB
OR AL,20H
MOV CL,AL
LODSB

; CONVERT TO LOWER CASE
; GET SWITCH
; SKIP

; GET NUMBER POINTED TO BY [SI]

; WIPES OUT AX,DX ONLY BX RETURNS NUMBER

GETNUM1: LODSB
SUB AL,“0”
JB CHKRET
CMP AL,9
JA
CBW

CHKRET

XCHG AX,BX
MOV DX.10
MUL DX
ADD BX,AX
JMP GETNUM1

CHKRET: ADD AL,“0”
CMP AL,“ ”
JBE NUMRET
CMP AL,“-”
JZ NUMRET
CMP AL,“/”

TERROR:
JZ NUMRET

POP DS
JMP WERROR

NUMRET: DEC
RET

SI

ERRMSG1 DB “SMLDRV:
ERRMSG2 DB “SMLDRV:
CODE ENDS

END

; GET RID OF RETURN ADDRESS

2 -33

2.8.2 Character Device Driver

The following program illustrates a character device driver program.
.****************** A CHARACTER DEVICE ******************

TITLE VT52 CONSOLE FOR 2.0 (IBM)

IBM ADDRESSES FOR I/O

CR=13
BACKS P=8
ESC=1BH
BRKADR=6CH
ASNMAX=200

CODE SEGMENT BYTE

ASSUME CS :CODE,DS :NOTHING,ES :NOTHING

C O N - CONSOLE DEVICE DRIVER

CONDEV: ;HEADER FOR DEVICE “CON
DW -1,-1
DW 100000000001001 IB ;CON IN AND CON OUT
DW STRATEGY
DW ENTRY
DB ’CON

;CARRIAGE RETURN
;BACKSPACE

;006C BREAK VECTOR ADDRESS
;SIZE OF KEY ASSIGNMENT BUFFER

COMMAND JUMP TABLES
CONTBL:

DW CONSINIT
DW EXIT
DW EXIT
DW CMDERR
DW CON$READ
DW CONSRDND
DW EXIT
DW CONSFLSH
DW CONSWRIT
DW CONSWRIT
DW EXIT
DW EXIT

CMDTABL DB ’A ’

2 -34

M S -D O S PR O G R A M M E R ’S MANUAL DEVICE DRIVERS

DW CUU ;cursor up
DB “B”
DW CUD ;cursor down
DB “C”
DW CUF ;cursor forward
DB “D”
DW CUB ;cursor back
DB “H”
DW CUH ;cursor position
DB “J”
DW ED ;erase display
DB “K”
DW EL ;erase line
DB “Y”
DW CUP ;cursor position
DB “j”
DW PSCP ;save cursor position
DB “k”
DW PRCP ;restore cursor position
DB “y”
DW RM ;reset mode
DB “x”
DW SM ;set mode
DB 00

PAGE

; Device entry pont

CMDLEN — 0 ;LENGTH OF THIS COMMAND
UNIT = 1 ;SUB UNIT SPECIFIER
CMD = 2 ;COMMAND CODE
STATUS = 3 ;STATUS
MEDIA = 13 ;MEDIA DESCRIPTOR
TRANS = 14 ;TRANSFER ADDRESS
COUNT = 18 ;COUNT OF BLOCKS OR CHARACTERS
START = 20 ;FIRST BLOCK TO TRANSFER

PTRSAV DD 0
STRATP PROC FAR

STRATEGY.
MOV WORD PTR CS:[PTRSAV],BX
MOV WORD PTR CS :[PTRSAV+2],ES
RET

STRATP ENDP

ENTRY:
PUSH SI
PUSH AX
PUSH CX
PUSH DX

2 -35

PUSH DI
PUSH BP
PUSH DS
PUSH ES
PUSH BX

LDS BX,CS:[PTRSAV] ;GET POINTER TO I/O PACKET
MOV CX,WORD PTR DS:[BX].COUNT ;CX = COUNT

MOV AL,BYTE PTR DS:[BX].CMD
CBW
MOV SI,OFFSET CONTBL
ADD SI,AX
ADD SI,AX
CMP AL.ll
JA CMDERR

LES DI,DWORD PTR DS:[BX].TRANS

PUSH CS
POP DS
ASSUME DS:CODE

JMP WORD PTR [SI] ;GO DO COMMAND

PAGE

SUBROUTINES SHARED BY MULTIPLE DEVICES

EXIT - ALL ROUTINES RETURN THROUGH THIS PATH

BUSSEXIT: ;DEVICE BUSY EXIT
MOV AH,0000001 IB
JMP SHORT ERR1

CMDERR:
MOV AL,3 ; UN KNOWN COMMAND ERROR

ERRSEXIT:
MOV AH, 1000000 IB ;MARK ERROR RETURN
JMP SHORT ERR1

EXITP PROC FAR

EXIT: MOV AH,0000000 IB
ERR1: LDS BX,CS:[PTRSAV]

MOV WORD PTR [BX].STATUS,AX ;MARK
OPERATION COMPLETE

2 -3 6

M S -D O S PR O G R AM M E R 'S MANUAL DEVICE DRIVERS

EXITP

POP BX
POP ES
POP DS
POP BP
POP DI
POP DX
POP CX
POP AX
POP SI
RET
ENDP

;RESTORE REGS AND RETURN

; BREAK KEY HANDLING

BREAK:
MOV CS:ALTAH,3 INDICATE BREAK KEY SET

INTRET: IRET

PAGE

WARNING - Variables are very order dependent,
so be careful when adding new ones!

WRAP DB 0 ; 0 = WRAP, 1 = NO WRAP
STATE DW SI
MODE DB 3
MAXCOL DB 79
COL DB 0
ROW DB 0
SAVCR DW 0
ALTAH DB 0 ;Speciai key handling

CHROUT - WRITE OUT CHAR IN AL USING CURRENT ATTRIBUTE

ATTRW LABEL WORD
ATTR DB 0000011 IB CHARACTER ATTRIBUTE
BPAGE DB 0 ;BASE PAGE
base dw 0b800h

chrout: cmp al,13
jnz trylf
mov [col],0
jmp short setit

trylf: cmp al,10
jz If
cmp al,7
jnz tryback

torom:
mov bx,[attrw]
and bl,7
mov ah,14

2 -3 7

ret5:
try back:

outchr:

outchrl:

If:

setit:

scroll:

myscroll:

int
ret

10h

cmp al,8
jnz outchr
cmp [col],0
jz ret5
dec [col]
jmp short setit

mov bx,[attrw]
mov cx,l
mov ah,9
int 10h
inc [col]
mov al,[col]
cmp al,[maxcol]
jbe setit
cmp [wrap],0
jz outchrl
dec [col]
ret

mov [col],0
inc [row]
cmp [row],24
jb setit
mov [row],23
call scroll

mov dh,row
mov dl,col
xor bh,bh
mov ah,2
int 10h
ret

call getmod
cmp al,2
jz myscroll
cmp al,3
jz myscroll
mov al, 10
jmp torom

mov bh,[attr]
mov bl,“ ”
mov bp,80
mov ax,[base]
mov es,ax
mov ds,ax
xor di,di
mov si, 160

2 -3 8

M S -D O S PR O G R AM M E R 'S M ANUAL DEVICE DRIVERS

mov
cld

cx,23*80

cmp ax,0b800h
jz colorcard

rep movsw
mov ax,bx
mov cx,bp
rep stosw

sret: push cs
pop
ret

ds

colorcard:
mov dx,3dah

wait2: in al.dx
test al,8
jz wait2
mov al,25h
mov dx,3d8h
out dx,al
rep movsw
mov ax.bx
mov cx.bp
rep stosw
mov al,29h
mov dx,3d8h
out dx,al
jmp sret

GETMOD: MOV AH, 15
INT 16
MOV BPAGE, BH
DEC AH
MOV
RET

WORD PTR

;turn off video

;turn on video

;get column information

l ,A X

CONSOLE READ ROUTINE

CON$READ:
JCXZ CON$EXIT

CON$LOOP:
PUSH CX ;SAVE COUNT
CALL CHRIN ;GET CHAR IN AL
POP CX
STOSB ;STORE CHAR AT ES:DI
LOOP CONSLOOP

CON$EXIT:
JMP EXIT

; INPUT SINGLE CHAR INTO AL

CHRIN: XOR AX,AX

2 -3 9

XCHG AL,ALTAH ;GETCHARACTER & ZERO ALTAH
OR AL,AL
JNZ KEYRET

INAGN: XOR AH,AH
INT 22

ALT10:
OR AX,AX ;Check for non-key after BREAK
JZ INAGN
OR AL,AL ;SPECIAL CASE?
JNZ KEYRET
MOV ALTAH,AH ;STORE SPECIAL KEY

KEYRET: RET

KEYBOARD NON DESTRUCTIVE READ, NO WAIT

CON$RDND:
MOV AL,[ALTAH]
OR AL,AL
JNZ RDEXIT

RD1: MOV AH,1
INT 22
JZ CONBUS
OR AX,AX
JNZ RDEXIT
MOV AH,0
INT 22
JMP CONSRDND

RDEXIT: LDS BX,[PTRSAV]
MOV [BX].MEDIA,AL

EXVEC: JMP EXIT
CONBUS: JMP BUSSEXIT

; KEYBOARD FLUSH ROUTINE

CON$FLSH:
MOV [ALTAH],0 ;CIear out holding buffer

PUSH DS
XOR BP,BP
MOV DS,BP ;Select segment 0
MOV DS:BYTE PTR 41AH,1EH ;Reset KB queue head

;pointer
MOV DS:BYTE PTR 4ICH, 1 EH ;Reset tail pointer
POP DS
JMP EXVEC

; CONSOLE WRITE ROUTINE

CON$WRIT:

2 -40

M S -D O S PROGRAM M E R 'S MANUAL DEVICE DRIVERS

CON$LP:

COUT:

OUTC:

JCXZ EXVEC
PUSH cx
MOV AH,3
XOR BX,BX
INT 16
MOV WORD PTR [COL],DX
POP CX

MOV AL,ES:[DI]
INC DI
CALL OUTC
LOOP CONSLP
JMP EXVEC

STI
PUSH DS
PUSH CS
POP DS
CALL OUTC
POP
IRET

DS

PUSH AX
PUSH CX
PUSH DX
PUSH SI
PUSH DI
PUSH ES
PUSH BP
CALL VIDEO
POP BP
POP ES
POP DI
POP SI
POP DX
POP CX
POP
RET

AX

;SET CURRENT CURSOR POSITION

;GET CHAR

;OUTPUT CHAR
;REPEAT UNTIL ALL THROUGH

OUTPUT SINGLE CHAR IN AL TO VIDEO DEVICE

VIDEO: MOV SI,OFFSET STATE
JMP [SI]

SI: CMP AL,ESC ;ESCAPE SEQUENCE?
JNZ S1B
MOV
RET

WORD PTR [SI],OFFSET S2

S1B: CALL CHROUT
SIA: MOV

RET
WORD PTR [STATE],OFFSET SI

2-41

S2: PUSH AX
CALL GETMOD
POP AX
MOV BX,OFFSET CMDTABL-3

S7A: ADD BX,3
CMP BYTE PTR [BX],0
JZ S1A
CMP BYTE PTR [BX],AL
JNZ S7A
JMP WORD PTR [BX+1]

MOVCUR: CMP BYTE PTR [BX],AH
JZ SETCUR
ADD BYTE PTR [BX],AL

SETCUR: MOV DX,WORD PTR COL
XOR BX,BX
MOV AH,2
INT 16
JMP S1A

CUP: MOV
RET

WORD PTR [SIJ.OFFSET CUP1

CUP1: SUB AL,32
MOV BYTE PTR [ROW],AL
MOV
RET

WORD PTR [SI],OFFSET CUP2

CUP2: SUB AL.32
MOV BYTE PTR [COL],AL
JMP SETCUR

SM: MOV
RET

WORD PTR [SI],OFFSET S1A

CUH: MOV WORD PTR COL,0
JMP SETCUR

CUF: MOV AH,MAXCOL
MOV AL,1

CUF1: MOV BX,OFFSET COL
JMP MOVCUR

CUB: MOV AX.OOFFH
JMP CUF1

CUU: MOV AX,00FFH
CUU1: MOV BX,OFFSET ROW

JMP MOVCUR

CUD: MOV AX,23*256+1
JMP CUU1

2 -42

M S -D O S PRO G RAM M E R 'S MANUAL DEVICE DRIVERS

PSCP: MOV AX,WORD PTR COL
MOV SAVCR,AX
JMP SETCUR

PRCP: MOV AX,SAVCR
MOV WORD PTR COL,AX
JMP SETCUR

ED: CMP BYTE PTR [ROW],24
JAE ELI

MOV CX,WORD PTR COL
MOV DH,24
JMP ERASE

ELI: MOV BYTE PTR [COL],0
EL: MOV CX,WORD PTR [COL]
EL2 MOV DH,CH
ERASE: MOV DL,MAXCOL

MOV BH,ATTR
MOV AX,0600H
INT 16

ED3: JMP SETCUR

RM: MOV WORD PTR [SI],OFFSET RM1
RET

RM1: XOR CX,CX
MOV CH,24
JMP EL2

CONSINIT:
int 11h
and al,00110000b
cmp al,00110000b
jnz iscolor
mov [base],0b000h ;look for bw card

iscolor:
cmp al,00010000b ;look for 40 col mode
ja setbrk
mov [mode],0
mov [maxcol],39

setbrk:
XOR BX,BX
MOV DS,BX
MOV BX,BRKADR
MOV WORD PTR [BX],OFFSET BREAK
MOV WORD PTR [BX+2],CS

MOV BX,29H*4
MOV WORD PTR [BX],OFFSET COUT
MOV WORD PTR [BX+2],CS

2 -43

CODE

LDS BX,CS:[PTRSAV]
MOV WORD PTR [BX].TRANS,OFFSET CON$INIT

;SET BREAK ADDRESS
MOV [BX].TRANS+2,CS
JMP EXIT

ENDS
END

2 -44

M S -D O S PR O G R AM M E R 'S MANUAL TECHNICAL INFORMATION

CHAPTER 3
MS-DOS TECHNICAL INFORMATION

3.1 MS-DOS INITIALIZATION

MS-DOS initialization consists of several steps. Typically, a ROM
(Read Only Memory) bootstrap obtains control, and then reads the
boot sector off the disk. The boot sector then reads the following files:

10.SYS
MSDOS.SYS

Once these files are read, the boot process begins.

3.2 THE COMMAND PROCESSOR

The Command processor supplied with MS-DOS (file COMMAND.-
COM.) consists of 3 parts:

1. A resident part resides in memory immediately following
MSDOS.SYS and its data area. This part contains routines
to process Interrupts 23H (CONTROL-C Exit Address), and
24H (Fatal Error Abort Address), as well as a routine to
reload the transient part, if needed. All standard MS-DOS
error handling is done within this part of COMMAND.-
COM. This includes displaying error messages and proces
sing the Abort, Retry, or Ignore messages.

2. An initialization part follows the resident part. During start
up, the initialization part is given control; in contains the
AUTOEXEC file processor setup routine. The initialization
part determines the segment address at which programs can
be loaded. It is overlaid by the first program COMMAND.-
COM loads because it is no longer needed.

3-1

3. A transient part is loaded at the high end of memory. This
part contains all of the internal command processors and the
batch file processor.
The transient part of the command processor produces the
system prompt (such as A >), reads the command from
keyboard (or batch file) and causes it to be executed. For
external commands, this part builds a command line and
issues the EXEC system call (Function Request 4BH) to
load and transfer control to the program.

3 -2

M S -D O S PR O G R AM M E R 'S M ANUAL TECHNICAL INFORMATION

3.3 MS-DOS DISK ALLOCATION

The MS-DOS area is formatted as follows:
Reserved area - variable size
First copy of file allocation table - variable size
Second copy of file allocation table - variable size
(optional)
Additional copies of file
allocation table - variable
size (optional)
Root directory - variable size
File data area

Allocation of space for a file in the data area is not pre-allocated. The
space is allocated one cluster at a time. A cluster consists of one or
more consecutive sectors; all of the clusters for a file are “chained”
together in the File Allocation Table (FAT). (Refer to Section 3.5,
“File Allocation Table.”) There is usually a second copy of the FAT
kept, for consistency. Should the disk develop a bad sector in the
middle of the first FAT, the second can be used. This avoids loss of
data due to an unusable disk.

3.4 MS-DOS DISK DIRECTORY

FORMAT builds the root directory for all disks. Its location on disk
and the maximum number of entries are dependent on the media.
Since directories other than the root directory are regarded as files by
MS-DOS, there is no limit to the number of files they may contain.
All directory entries are 32 bytes in length, and are in the following
format (note that byte offsets are in hexadecimal):

3 -3

0-7 Filename. Eight characters, left aligned and padded, if
necessary, with blanks. The first byte of this field indicates
the file status as follows:

00H The directory entry has never been used. This is used
to limit the length of directory searches, for perfor
mance reasons.

2EH The entry is for a directory. If the second byte is also
2EH, then the cluster field contains the cluster num
ber of this cirectory’s parent directory (0000H if the
parent directory is the root directory). Otherwise,
bytes 01H through OAH are all spaces, and the cluster
field contains the cluster number of this directory.

E5H The file was used, but it has been erased.
Any other character is the first character of a filename.

8-OA Filename extension.
OB File attribute. The attribute byte is mapped as follows

(values are in hexadecimal):

01 File is marked read-only. An attempt to open the file
for writing using the Open File system call (Function
Request 3DH) results in an error code being returned.
This value can be used along with other values below.
Attempts to delete the file with the Delete File system
call (13H) or Delete a Directory Entry (41H) will also
fail.

02 Flidden file. The file is excluded from normal direc
tory searches.

04 System file. The file is excluded from normal direc
tory searches.

08 The entry contains the volume label in the first 11
bytes. The entry contains no other usable information
(except date and time of creation), and may exist only
in the root directory.

3 -4

M S -D O S PR O G R A M M E R ’S MANUAL TECHNICAL INFORMATION

10 The entry defines a sub-directory, and is excluded
from normal directory searches.

20 Archive bit. The bit is set to “on” whenever the file
has been written to and closed.
Note: The system files (10.SYS and MSDOS.SYS)
are marked as read-only, hidden, and system files.
Files can be marked hidden when they are created.
Also, the read-only, hidden, system, and archive
attributes may be changed through the Change Attri
butes system call (Function Request 43H).

QC-15 Reserved.
16-17 Time the file was created or last updated. The hour, minu

tes, and seconds are mapped into two bytes as follows:

Offset 17H
I H I H I H I H I H I M I M I M I

7 3 2

Offset 16H
I M I M I M I S I S I S I S I S I

5 4 0

where:

H is the binary number of hours (0-23)
M is the binary number of minutes (0-59)
S is the binary number of two-second increments

18-19 Date the file was created or last updated. The year, month,
and day are mapped into two bytes as follows:

Offset 19H
I Y I Y I Y I Y I Y I Y I Y I M I
7 1 0

Offset 18 H
I M I M I M I D I D I D I D I D I

5 4 0

3 -5

where:

Y is 0-119 (1980-2099)
M is 1-12
D is 1-31

1A-1B Starting cluster; the cluster number of the first cluster in the
file.

Note that the first cluster for data space on all disks is cluster
002.

The cluster number is stored with the least significant byte
first.

NOTE

Refer to Section 3.5.1, “How to Use the File
Allocation Table,” for details about conver
ting cluster numbers to logical sector num
bers.

1C-1F File size in bytes. The first word of this four-byte field is the
low-order part of the size.

3 -6

M S -D O S PR O G R A M M E R ’S MANUAL TECHNICAL INFORMATION

3.5 FILE ALLOCATION TABLE (FAT)

The following information is included for system programmers who
wish to write installable device drivers. This section explains how MS-
DOS uses the File Allocation Table to convert the clusters of a file to
logical sector numbers. The driver is then responsible for locating the
logical sector on disk. Programs must use the MS-DOS file manage
ment function calls for accessing files; programs that access the FAT
are not guaranteed to be upwardly-compatible with future releases of
MS-DOS.
The File Allocation Table is an array of 12-bit entries (1.5 bytes) for
each cluster on the disk. The first two FAT entries map a portion of
the directory; these FAT entries indicate the size and format of the
disk.
The second and third bytes currently always contain FFH.
The third FAT entry, which starts at byte offset 4, begins the mapping
of the data area (cluster 002). Files in the data area are not always
written sequentially on the disk. The data area is allocated one cluster
at a time, skipping over clusters already allocated. The first free clu
ster found will be the next cluster allocated, regardless of its physical
location on the disk. This permits the most efficient utilization of disk
space because clusters made available by erasing files can be allocated
for new files.
Each FAT entry contains three hexadecimal characters:

000 If the cluster is unused and available.
FF7 The cluster has a bad sector in it. MS-DOS will not allocate

such a cluster. CHKDSK counts the number of bad clu
sters for its report. These bad clusters are not part of any
allocation chain.

FF8-FFF Indicates the last cluster of a file.
XXX Any other characters that are the cluster number of the

next cluster in the file. The cluster number of the first
cluster in the file is kept in the file’s directory entry.

The File Allocation Table always begins on the first section after the
reserved sectors. If the FAT is larger than one sector, the sectors are
continguous. Two copies of the FAT are usually written for data
integrity. The FAT is read into one of the MS-DOS buffers whenever
needed (open, read, write, etc.). For performance reasons, this buffer
is given a high priority to keep it in memory as long as possible.

3 -7

3.5.1 How To Use The File Allocation Table

Use the directory entry to find the starting cluster of the file. Next, to
locate each subsequent cluster of the file:

1. Multiply the cluster number just used by 1.5 (each FAT
entry is 1.5 bytes long).

2. The whole part of the product is an offset into the FAT,
pointing to the entry that maps the cluster just used. That
entry contains the cluster number of the next cluster of the
file.

3. Use a MOV instruction to move the word at the calculated
FAT offset into a register.

4. If the last cluster used was an even number, keep the low-
order 12 bits of the register by ANDing it with FFF; other
wise, keep the high-order 12 bits by shifting the register right
4 bits with a SHR instruction.

5. If the resultant 12 bits are FF8H-FFFH, the file contains no
more clusters. Otherwise, the 12 bits contain the cluster
number of the next cluster in the file.

To convert the cluster to a logical sector number (relative sector, such
as that used by Interrupts 25H and 26H and by DEBUG):

1. Subtract 2 from the cluster number.
2. Multiply the result by the number of sectors per cluster.
3. Add to this result the logical sector number of the beginning

of the data area.

3 -8

M S -D O S PR O G R A M M E R ’S MANUAL TECHNICAL INFORMATION

3.6 MS-DOS STANDARD DISK FORMATS

On an MS-DOS disk, the clusters are arranged on disk to minimize
head movement for multi-sided media. All of the space on a track (or
cylinder) is allocated before moving on to the next track. This is
accomplished by using the sequential sectors on the lowest-numbe
red head, then all the sectors on the next head, and so on until all
sectors on all heads of the track are used. The next sector to be used
will be sector 1 on head 0 of the next track.
For disks, the following table can be used:

#
Sides

Sectors/
Track

FAT size
Sectors

Dir
Sectors

Dir
Entries

Sectors/
Cluster

1 8 1 4 64 1

2 8 1 7 112 2

1 9 2 4 64 1

2 9 2 7 112 2

Figure 4. 5-W’ Disk Format

The First byte of the FAT can sometimes be used to determine the
format of the disk. The following 5-¼11 formats have been defined for
the IBM Personal Computer, based on values of the first byte of the
FAT. The formats in Table 3.1 are considered to be the standard disk
formats for MS-DOS.

3 -9

Table 3.1 MS-DOS Standard Disk Formats

5-¼ 5-¼ 5-¼ 5-¼ 8 8 8
No. sides 1 1 2 2 1 1 2
Tracks/side 40 40 40 40 77 77 77
Bytes/sector 512 512 512 512 128 128 1024
Sectors/track 8 9 8 9 26 26 8
Sectors/allocation unit 1 1 2 2 4 4 1
Reserved sectors 1 1 1 l 1 4 1
No. FATS 2 2 2 2 2 2 2
Root directory entries 64 64 112 112 68 68 192
No. sectors 320 360 640 720 2002 2002 616
Media Descriptor Byte FE FC FF FD FE* FD FE*
Sectors for 1 FAT 1 2 1 2 6 6 2

* The two media descriptor bytes that are the same for 8“ disks
(FEH) is not a misprint. To establish whether a disk is single- or
double-density, a read of a single-density address mark should be
made. If an error occurs, the media is double-density.

3 -10

M S -D O S PR O G R A M M E R ’S MANUAL CONTROL BLOCKS AND WORK AREAS

CHAPTER 4
MS-DOS CONTROL BLOCKS AND WORK AREAS

4.1 TYPICAL MS-DOS MEMORY MAP

0000:0000 Interrupt vector table

XXXX :0000 IO.SYS - MS-DOS interface to hardware

XXXX:0000 MSDOS.SYS - MS-DOS interrupt handlers, service
routines (Interrupt 21H functions)

MS-DOS buffers, control areas, and installed device
drivers

XXXX:0000 Resident part of COMMAND.COM - Interrupt
handlers for Interrupts 22H (Terminate Address),
23H (CONTROL-C Exit Address), 24H (Fatal Error
Abort Address)
and code to reload the transient part

XXXX :0000 External command or utility - (.COM or .EXE file)

XXXX:0000 User stack for .COM files (256 bytes)

XXXX:0000 Transient part of COMMAND.COM - Command
interpreter, internal commands, batch processor

1. Memory map addresses are in segment .-offset format. For
example, 0090:0000 is absolute address 0900H.

2. User memory is allocated from the lowest end of available
memory that will meet the allocation request.

4-1

4.2 MS-DOS PROGRAM SEGMENT

When an external command is typed, or when you execute a program
through the EXEC system call, MS-DOS determines the lowest
available free memory address to use as the start of the program. This
area is called the Program Segment.
The first 256 bytes of the Program Segment are set up by the EXEC
system call for the program being loaded into memory. The program
is then loaded following this block. An .EXE file with minalloc and
maxalloc both set to zero is loaded as high as possible.
At offset 0 within the Program Segment, MS-DOS builds the Program
Segment Prefix control block. The program returns form EXEC by
one of four methods:

1. A long jump to offset 0 in the Program Segment Prefix
2. By issuing an INT 20H with CS:0 pointing at the PSP
3. By issuing an INT 21H with register AH = 0 with CS:0 poin

ting at the PSP, or 4CH and no restrictions on CS
4. By a long call to location 50H in the Program Segment Prefix

with AH = 0 or Function Request 4CH

NOTE

It is the responsibility of all programs to
ensure that the CS register contains the
segment address of the Program Segment
Prefix when terminating via any of these
methods, except Function Request 4CH.
For this reason, using Function Request
4CH is the preferred method.

All four methods result in transferring control to the program that
issued the EXEC. During this returning process, Interrupts 22H, 23H,
and 24H (Terminate Address, CONTROL-C Exit Address, and Fatal
Error Abort Address) addresses are restored from the values saved in
the Program Segment Prefix of the terminating program. Control is
then given to the terminate address. If this is a program returning to
COMMAND.COM, control transfers to its resident portion. If a batch
file was in process, it is continued; otherwise, COMMAND.COM
performs a checksum on the transient part, reloads it if necessary,
then issues the system prompt and waits for you to type the next
command.
When a program receives control, the following conditions are in
effect:
4 -2

M S -D O S PR O G R A M M E R ’S MANUAL CONTROL BLOCKS AND WORK AREAS

For all programs:
The segment address of the passed environment is contained at
offset 2CH in the Program Segment Prefix.
The environment is a series of ASCII strings (totaling less than
32K) in the form:

NAME = parameter
Each string is terminated by a byte of zeros, and the set of
strings is terminated by another byte of zeros. The environ
ment built by the command processor contains at least a COM-
SPEC = string (the parameters on COMSPEC define the path
used by MS-DOS to locate COMMAND.COM on disk). The
last PATH and PROMPT commands issued will also be in the
environment, along with any environment strings defined with
the MS-DOS SET command.
The environment that is passed is a copy of the invoking pro
cess environment. If your application uses a “keep process”
concept, you should be aware that the copy of the environment
passed to you is static. That is, it will not change even if subse
quent SET, PATH, or PROMPT commands are issued.
Offset 50H in the Program Segment Prefix contains code to call
the MS-DOS function dispatcher. By placing the desired func
tion request number in AH a program can issue a far call to
offset 50H to invoke an MS-DOS function, rather than issuing
an Interrupt 21H. Since this is a call and not an interrupt, MS-
DOS may place any code appropriate to making a system call at
this position. This makes the process of calling the system
portable.
The Disk Transfer Address (DTA) is set to 80H (default DTA
in the Program Segment Prefix).
File control blocks at 5CH and 6CH are formatted from the first
two parameters typed when the command was entered. If
either parameter contained a pathname, then the correspon
ding FCB contains only the valid drive number. The filename
field will not be valid.
An unformatted parameter area at 81H contains all the charac
ters typed after the command (including leading and imbedded
delimiters), with the byte at 80H set to the number of charac
ters. If the <, > , or parameters were typed on the command
line, they (and the filenames associated with them) will not
appear in this area; redirection of standard input and output is
transparent to applications.
Offset 6 (one word) contains the number of bytes available in
the segment.

4 -3

Register AX indicates whether or not the drive specifiers (ente
red with the first two parameters) are valid, as follows:

A1 = FF if the first parameter contained an
invalid drive specifier (otherwise AL = 00)
AH = FF if the second parameter contained
an invalid drive specifier (otherwise AH =
00)

Offset 2 (one word) contains the segment address of the first
byte of unavailable memory. Programs must not modify ad
dresses beyond this point unless they were obtained by alloca
ting memory via the Allocate Memory system call (Function
Request 48H).

4 - 4

M S -D O S PR O G R A M M E R ’S MANUAL CONTROL BLOCKS AND WORK AREAS

For Executable (EXE) programs:
DS and ES registers are set to point to the Program Segment
Prefix.
CS,IP,SS, and SP registers are set to the values passed by MS-
LINK.

For Executable (.COM) programs:
All four segment registers contain the segment address of the
initial allocation block that starts with the Program Segment
Prefix control block.
All of user memory is allocated to the program. If the program
invokes another program through Function Request 4BH, it
must first free some memory through the Set Block (4AH)
function call, to provide space for the program being executed.
The Instruction Pointer (IP) is set to 100H.
The Stack Pointer register is set to the end of the program’s
segment. The segment size at offset 6 is reduced by 100H to
allow for a stack of that size.
A word of zeros is placed on top of the stack. This is to allow a
user program to exit to COMMAND.COM by doing a RET
instruction last. This assumes, however, that the user has
maintained his stack and code segments.

4 - 5

Figure 5. illustrates the format of the Program Segment Prefix. All
offsets are in hexadecimal.

(offsets in hex)

1 NT hex 20
Top of
memory Reserved

Long call to
DOS function dis
patcher (5 bytes)2

Terminate address
(IP, CS)

CTRL-BREAK
exit address
(IP)

CTRL-BREAK
exit address
(CS)

CRITICAL ERROR
exit address
(IP, CS)

Used by DOS

2C

Note 3

ned FCB
Formatted Para
formatted as st£

meter Area 1
ndard unope

ned FCB
opened)

Formatted Parameter Area
form atted as standard unope
(overlaid if FCB at hex 5C is

A Unformatted parameter area A
(default disk transfer area)

1. First segment o f available memory is in segment (paragraph)
form (for example, hex 1000 would represent 64K).

2. The word at offset 6 contains the number o f bytes available in
the segment.

3. Offset hex 2C contains the segment address of the environment.

Figure 5 Program Segment Prefix

IMPORTANT

4 -6

Programs must not alter any part of the
Program Segment Prefix below offset 5CH.

M S -D O S PR O G R AM M E R 'S MANUAL EXE FILE STRUCTURE AND LOADING

CHAPTER 5
EXE FILE STRUCTURE AND LOADING

NOTE

This chapter describes .EXE file structure
and loading procedures for systems that use
a version of MS-DOS that is lower than 2.0.
For MS-DOS 2.0 and higher, use Function
Request 4BH, Load and Execute a Program,
to load (or load and execute) an .EXE file.

The .EXE files produced by MS-LINK consist of two parts:
Control and relocation information
The load module

The control and relocation information is at the beginning of the file
in an area called the header. The load module immediately follows
the header.
The header is formatted as follows. (Note that offsets are in hexadeci
mal.)

Offset Contents

00-01 Must contain 4DH, 5AH.

02-03 Number of bytes contained in last page; this is useful
in reading overlays.

04-05 Size of the file in 512-byte pages, including the hea
der.

06-07 Number of relocation entries in table.

5-1

08-09 Size of the header in 16-byte paragraphs. This is used to
locate the beginning of the load module in the file.

0A-0B Minimum number of 16-byte paragraphs required above the
end of the loaded program.

0C-0D Maximum number of 16-byte paragraphs required above
the end of the loaded program. If both minalloc and maxal-
loc are 0, then the program will be loaded as high as possi
ble.

0E-0F Initial value to be loaded into stack segment before starting
program execution. This must be adjusted by relocation.

10-11 Value to be loaded into the SP register before starting pro
gram execution.

12-13 Negative sum of all the words in the file.
14-15 Initial value to be loaded into the IP register before starting

program execution.
16-17 Initial value to be loaded into the CS register before starting

program execution. This must be adjusted by relocation.
18-19 Relative byte offset from beginning of run file to relocation

table.
1A-1B The number of the overlay as generated by MS-LINK.

The relocation table follows the formatted area described above. This
table consists of a variable number of relocation items. Each reloca
tion item contains two fields: a two-byte offset value, followed by a
two-byte segment value. These two fields contain the offset into the
load module of a word which requires modification before the mo
dule is given control. The following steps describe this process:

1. The formatted part of the header is read into memory. Its
size is 1BH.

2. A portion of memory is allocated depending on the size of
the load module and the allocation numbers (0A-0B and 0C-
0D). MS-DOS attempts to allocate FFFFH paragraphs. This
will always fail, returning the size of the largest free block. If
this block is smaller than minalloc and loadsize, then there
will be no memory error. If this block is larger than maxalloc
and loadsize, MS-DOS will allocate (maxalloc + loadsize).
Otherwise, MS-DOS will allocate the largest free block of
memory.

3. A Program Segment Prefix is built in the lowest part of the
allocated memory.

4. The load module size is calculated by subtracting the header
size from the file size. Offsets 04-05 and 08-09 can be used
for this calculation. The actual size is downward-adjusted

5 -2

M S -D O S PR O G R AM M E R 'S MANUAL EXE FILE STRUCTURE AND LOADING

based on the contents of offsets 02-03. Based on the setting
of the high/low loader switch, an appropriate segment is
determined at which to load the load module. This segment
is called the start segment.

5. The load module is read into memory beginning with the
start segment.

6. The relocation table items are read into a work area.
7. Each relocation table item segment value is added to the

start segment value. This calculated segment, plus the
relocation item offset value, points to a word in the load
module to which is added the start segment value. The
result is placed back into the word in the load module.

8. Once all relocation items have been processed, the SS and
SP registers are set from the values in the header. Then, the
start segment value is added to SS. The ES and DS registers
are set to the segment address of the Program Segment
Prefix. The start segment value is added to the header CS
register value. The result, along with the header IP value, is
the initial CS:IP to transfer to before starting execution of
the program.

5 -3

M S -D O S PR O G R A M M E R ’S MANUAL INDEX

INDEX

.COM f i l e .. 2-12

Absolute Disk Read (Interrupt 2 5 H) ...1-23
Absolute Disk Write (Interrupt 26H)...1-25
Allocate Memory (Function 4 8 H).. 1-128
Archive b i t .. 3-6
A S C IZ ..1-107
Attribute field .. 2-4
A ttribu tes...■.....................1-12
AUTOEXEC f ile ..3-2
Auxiliary Input (Function 0 3 H)..1-36
Auxiliary Output (Function 0 4 H)...1-37

Basic.. 1-1
BIOS .. 1-25,2-6
BIOS Parameter B lock...2-10, 2-13
Bit 8 ..2-9
Bit 9 ..2-9
Block device

Example.. 2-20
Block devices...2-1, 2-8, 2-10, 2-16
Boot sector ... 2-14
BPB ...2-10
BPB p o in te r... 2-12
Buffered Keyboard Input (Function 0A H).................................. 1-45
BUILD B PB .. 2-4, 2-8, 2-13
Busy b i t ...2-9, 2-17 to 2-18

Case m app ing ..1-108
Change Attributes (Function 43H) ... 1-120
Change Current Directory (Function 3BH)................................1-111
Character device .. 2-1, 2-5

Example.. 2-34
Check Keyboard Status (Function 0B H)..................................... 1-47
CLOCK device...2-4, 2-19
Close a File Handle (Function 3 E H) .. 1-115
Close File (Function 10H).. 1-53
Cluster .. 3-3

INDEX-1

Command code field ...2-7
Command processor... 3-2
COMMAND.COM.. 3-1 to 3-2
CO M SPEC=... 4-3
CON device ... 2-5
CONFIG.SYS... 2-6, 2-12
Console input/output c a l ls .. 1-3
Control b lo c k s .. 4-1
Control inform ation..5-1
CONTROL-C Check (Function 3 3 H)... 1-102
CONTROF-C Exit Address (Interrupt 23H) 1-19, 3-2
CP/M-compatible calling sequence..1-28
Create a File (Function 3 C H) ..1-112
Create File (Function 1 6 H) ... 1-65
Create Sub-Directory (Function 39H)..1-109
Current Disk (Function 1 9 H).. 1-69

D A T E ..2-19
Delete a Directory Entry (Function 41H).................................. 1-118
Delete File (Function 1 3 H) ... 1-59
Device drivers .. 3-7

Creating .. 2-5
D u m b ... 2-11
Example .. 2-20, 2-34
Installing.. 2-6
S m a r t ... 2-11

Device h e a d e r .. 2-3
Direct Console I/O (Function 06H) ...1-40
Direct Console Input (Function 07H) ..1-42
Directory e n try ...1-6
Disk allocation.. 3-3
Disk D irectory .. 3-4
Disk errors ..1-22
Disk format

IB M ...3-3
M S-D O S.. 3-7

Disk I/O calls ...1-3
Disk Reset (Function O D H)... 1-49
Disk Transfer Address ...1-63, 4-3
Display Character (Function 02H) ..1-35
Display String (Function 09H) ...1-44
Done bit ... 2-9
D river...2-2
Dumb device driver ...2-11
INDEX-2

M S -D O S PR O G R A M M E R ’S MANUAL INDEX

Duplicate a File Handle (Function 4 5 H) 1-125

Error c o d e s ... 1-20
Error h and ling .. 3-2
Example Block Device D river.. 2-20
Example Character Device Driver ..2-34
EXE f i l e s ... 5-1
Extended File Control B lo ck ... 1-6

FAT ... 1-11,2-8,2-13,3-3,3-7
FAT ID b y t e ... 2-13, 2-15
Fatal Error Abort Address (Interrupt 2 4 H)......................1-20, 3-2
F C B ..4-7
File Allocation T ab le .. 1-11, 3-3, 3-7
File Control Block.. 1-3, 1-51

Extended... 1-6, 4-10
Fields ...1-4, 1-7
O pened... 1-3
S tan d ard .. 4-8
U n o p en ed ..1-3

File control B lo c k ...4-7
File Size (Function 23H)... 1-76
Filename separators ... 1-88
Filename terminators... 1-88
Find Match File (Function 4EH) ..1-136
FLUSH ... 2-18
Flush Buffer (Function O C H)...1-48
Force Duplicate of Handle (Function 46H)............................... 1-126
FORMAT... 3-4
Fortran .. 1-2
Free Allocated Memory (Function 4 9 H) 1-129
Function call parameters...2-11
Function dispatcher ... 1-28
Function Request (Interrupt 2 1 H)..................................... 1-18, 4-3
Function Requests

Function 0 0 H ..1-33
Function 0 1 H ..1-34
Function 0 2 H ..1-35
Function 0 3 H ..1-36
Function 0 4 H ..1-37
Function 0 5 H ..1-38
Function 0 6 H ..1-40
Function 0 7 H ..1-42
Function 0 8 H ..1-43

IND EX -3

Function 09H ..1-44
Function OAH ...1-45
Function OBH ...1-47
Function OCH ...1-48
Function O D H ... 1-49, 1-63
Function OEH ...1-50
Function OFH .. 1-51,1-65
Function 10H ..1-53
Function 11H ..1-55
Function 12H ..1-57
Function 13H ..1-59
Function 14H ..1-61
Function 15H ..1-63
Function 16H ..1-65
Function 17H ..1-67
Function 19H ..1-69
Function IAH ...1-70
Function 2 1 H ..1-72
Function 2 2 H ..1-74
Function 2 3 H ..1-76
Function 2 4 H ..1-78
Function 25H .. 1-19, 1-79
Function 2 7 H ..1-81
Function 2 8 H ..1-84
Function 2 9 H ..1-87
Function 2AH ...1-90
Function 2BH ...1-92
Function 2CH ...1-94
Function 2DH ...1-95
Function 2EH ...1-97
Function 2FH ...1-99
Function 3 0 H ...1-100
Function 3 1 H ...1-101
Function 3 3 H ...1-102
Function 3 5 H ...1-104
Function 3 6 H ...1-105
Function 3 8 H ...1-106
Function 3 9 H ...1-109
Function 3A H ...1-110
Function 3 B H ...1-111
Function 3 C H ...1-112
Function 3 D H ...1-113
Function 3 E H ...1-115
Function 3 F H ...1-116

INDEX-4

M S -D O S PRO G RAM M E R 'S MANUAL INDEX

Function 4 0 H ...1-117
Function 4 1 H ...1-118
Function 4 2 H ...1-119
Function 4 3 H ...1-120
Function 4 4 H ...1-121
Function 4 5 H ...1-125
Function 4 6 H ...1-126
Function 4 7 H ...1-127
Function 4 8 H ...1-128
Function 4 9 H ...1-129
Function 4 A H ...1-130
Function 4 B H ...1-131
Function 4 C H ...1-134
Function 4D H ...1-135
Function 4 E H ...1-136
Function 4 F H ...1-138
Function 5 4 H ...1-139
Function 5 6 H ...1-140
Function 5 7 H ...1-141
Function O A H ...1-45

Get Date (Function 2 A H).. 1-90
Get Disk Free Space (Function 3 6 H).. 1-105
Get Disk Transfer Address (Function 2 F H)............................... 1-99
Get DOS Version Number (Function 30H) 1-100
Get Interrupt Vector (Function 3 5 H).. 1-104
Get Time (Function 2C H).. 1-94
G et/Set Date/Time of File (Function 5 7 H)1-141

Header .. 5-1
Hidden files .. 1-57, 3-5
Hierarchical directories.. 1-11
High-level languages..1-1

I/O Control for Devices (Function 44H) 1-121, 2-4
IBM disk fo rm a t... 3-3
I N I T .. 2-5, 2-10 to 2-12
Initial allocation block ... 1-101
Installable device drivers ...2-5
Instruction Pointer...4-4
Internal s ta c k ...1-29
Interrupt entry po in t..2-1
Interrupt hand lers..1-19, 4-1
Interrupt-handling rou tine .. 1-80

IND EX -5

In te rru p ts .. 1-14
Interrupt 20H ...1-16, 1-33
Interrupt 21H ...1-18, 1-28
Interrupt 2 2 H ..1-19
Interrupt 2 3 H 1-19, 1-34 to 1-35, 1-38, 1-43, 1-45
Interrupt 2 4 H ..1-20
Interrupt 2 5 H ..1-23
Interrupt 2 6 H ..1-25
Interrupt 2 7 H ..1-27

IO.SYS..3-1, 3-6
IOCIL b i t ... 2-4

Keep Process (Function 3 1 H) ..1-101

Load and Execute Program (Function 4 B H)............................ 1-131
Load m o d u le ... 5-1 to 5-2
Local buffering.. 2-6
Logical sector... 3-7
Logical sector n u m b e rs ...'3-8

M a c ro .. 1-10
MEDIA CHECK ..2-8, 2-12
Media descriptor b y te ... 2-10 to 2-11, 2-15
Modify Allocated Memory Blocks (Function 4 A H).................1-130
Move a Directory Entry (Function 5 6 H) 1-140
Move File Pointer (Function 42H) ...1-119
MS-DOS initialization...3-1
MS-DOS memory m a p ..4-1
M S-LIN K ... 5-1 to 5-2
MSDOS.SYS... 3-1 to 3-2, 3-6
Multiple m e d ia ... 2-11

Name f i e ld .. 2-5
NON DESTRUCTIVE READ NO W A IT 2-17
Non IBM form at... 2-8
Non IBM format b i t ...2-4, 2-13
NUL device.. 2-4

Offset 5 0 H .. 1-28
Open a File (Function 3D H).. 1-113
Open File (Function 0F H).. 1-51

Parse File Name (Function 2 9 H) ...1-87
P asca l... 1-2
INDEX-6

M S -D O S PR O G R A M M E R ’S MANUAL INDEX

P A T H ...4-3
Pointer to Next Device field ...2-3
Print Character (Function 0 5 H)..1-38
Printer input/output c a lls ... 1-3
Program segment .. 4-2
Program Segment P refix1-2 to 1-3, 1-20, 1-28, 4-2
Program Terminate (Interrupt 20H) ...1-16
PRO M PT...4-3

Random Block Read (Function 27H)...1-81
Random Block Write (Function 28H) .. 1-84
Random Read (Function 21H) ..1-72
Random Write (Function 2 2 H) ..1-74
Read From File/Device (Function 3 F H).................................. 1-116
Read Keyboard (Function 08H)..1-43
Read Keyboard and Echo (Function 01H).................................. 1-34
Read Only M em ory ..3-1
READ or WRITE ... 2-16
Record S iz e ... 1-63
Registers... 1-29
Relocation information ..5-1
Relocation item offset value ... 5-3
Relocation t a b l e ... 5-2
Remove a Directory Entry (Function 3AH)1-110
Rename File (Function 1 7 H) .. 1-67
Request H e a d e r ... 2-6
Retrieve Return Code (Function 4 D H)..................................... 1-135
Return Country-Dependent Info (Function 3 8 H)1-106
Return Current Setting (Function 54H)..................................... 1-139
Return Text of Current Directory (Function 47H)....................1-127
Returning control to M S-D O S.. 1-2
ROM ...3-1
Root d irecto ry ... 1-11, 3-4

Search for First Entry (Function 11H).............................1-55, 4-10
Search for Next Entry (Function 12H)..1-57
Select Disk (Function O EH)... 1-50
Sequential Read (Function 1 4 H) ...1-61
Sequential Write (Function 1 5 H)...1-63
S E T ..4-3
Set Date (Function 2BH) .. 1-92
Set Disk Transfer Address (Function 1 A H)............................... 1-70
Set Relative Record (Function 2 4 H) ...1-78
Set Time (Function 2 D H).. 1-95

INDEX-7

Set Vector (Function 25H) .. 1-19, 1-79
Set/Reset Verify Flag (Function 2 E H).. 1-97
Smart device driver... 2-11
Start segment v a lu e ..5-3
STATUS...2-18
Status w o rd ..2-9
Step Through Directory (Function 4 F H).................................. 1-138
Strategy entry p o in t ... 2-1
Strategy rou tines... 2-5
System files ...1-57, 3-5
System prom pt.. 3-2

Terminate a Process (Function 4 C H)..1-134
Terminate Address (Function 4 C H)... 4-2
Terminate Address (Interrupt 2 2 H) 1-19, 3-2
Terminate But Stay Resident (Interrupt 2 7 H).............................1-27
Terminate Program (Function 00H) ...1-33
TIME ..2-19
Type-ahead buffer ... 2-18

Unit c o d e ...2-7
User stack ..1-21, 4-1

Volume la b e l... 3-5

Wild card characters... 1-57, 1-59, 1-88
Write to a File/Device (Function 40H)..................................... 1-117

Xenix-compatible c a lls .. 1-11

INDEX-8

MS-LIB Library Manager

MS-LIB
CONTENTS

M S -D O S PR O G R AM M E R ’S MANUAL INTRODUCTION

Introduction
Features and Benefits o f MS-LIB
Overview of MS-LIB Operation4

Chapter 1 RUNNING MS-LIB

1.1 Invoking M S-LIB.. 1-1
1.1.1 Method 1: L I B ...1-2

Summary of Command Prom pts................. 1-2
Summary of Command Characters1-2

1.1.2 Method 2: LIB <library> <operations>,
< lis t in g > ...1-3

1.1.3 Method 3: LIB @ <fflespec>...........................1-5
1.2 Command Prom pts..1-7
1.3 Command Characters .. 1-9

+ - append.. 1-9
---- delete .. 1-9
* - extract... 1-10
; - default remaining prompts1-10
& - continuation...1-11
Control-C - program a b o r t 1-11

Chapter 2 ERROR MESSAGES

1

M S -D O S PR O G R AM M E R ’S MANUAL INTRODUCTION

INTRODUCTION

Features and Benefits

MS-LIB creates and modifies library files that are used with Micro
soft’s MS-LINK Linker Utility. MS-LIB can add object files to a lib
rary, delete modules from a library, or extract modules from a library
and place the extracted modules into separate object files.
MS-LIB provides a means of creating either general or special libra
ries for a variety of programs or for specific programs only. With MS-
LIB you can create a library for a language compiler, or you can create
a library for one program only, which would permit very fast linking
and possibly more efficient execution.
You can modify individual modules within a library by extracting the
modules, making changes, then adding the modules to the library
again. You can also replace an existing module with a different mo
dule or with a new version of an existing module.
The command scanner in MS-LIB is the same as the one used in
Microsoft’s MS-LINK, MS-Pascal, MS-FORTRAN, and other 16-bit
Microsoft products. If you have used any of these products, using
MS-LIB is familiar to you. Command syntax is straightforward, and
MS-LIB prompts you for any of the commands it needs that you have
not supplied. There are no surprises in the user interface.

3

MS-LIB performs two basic actions: it deletes modules from a library
file, and it changes object files into modules and appends them to a
library file. These two actions underlie five library manager functions:

delete a module
extract a module and place it in a separate object file
append an object file as a module of a library
replace a module in the library file with a new module
create a library file

During each library session, MS-LIB first deletes or extracts modules,
then appends new ones. In a single operation, MS-LIB reads each
module into memory, checks it for consistency, and writes it back to
the file. If you delete a module, MS-LIB reads in that module but
does not write it back to the file. When MS-LIB writes back the next
module to be retained, it places the module at the end of the last
module written. This procedure effectively “closes up” the disk space
to keep the library file from growing larger than necessary. When MS-
LIB has read through the whole library file, it appends any new mo
dules to the end of the file. Finally, MS-LIB creates the index, which
MS-LINK uses to find modules and symbols in the library file, and
outputs a cross reference listing of the PUBLIC symbols in the lib
rary, if you request such a listing. (Building the library index may take
some extra time, up to 20 seconds in some cases.)

For example:

LIB PASCAL+HEAP-HEAP;

first deletes the library module HEAP from the library file, then adds
the file HEAP.OBJ as the last module in the library. This order of
execution prevents confusion in MS-LIB when a new version of a
module replaces a version in the library file. Note that the replace
function is simply the delete-append functions in succession. Also
note that you can specify delete, append, or extract functions in any
order; the order is insignificant to the MS-LIB command scanner.

Overview of MS-LIB Operation

4

M S -D O S PRO G RAM M E R 'S MANUAL INTRODUCTION

Consistency
Check only

Delete
Module C;
Module D
written to
space of
Module C

5

Consistency 1 r

f ... -

D
I 1 f |

Check, then
output a
cross
reference
listing o f
P U B L I C
symbols

M S -L IB Q | a | J lEMC

....... 1........... j c R O S S L S T

6

M S -D O S PR O G R AM M E R 'S MANUAL RUNNING M S-LIB

CHAPTER 1
RUNNING MS-LIB

Running MS-LIB requires two types of commands: a command to
invoke MS-LIB and answers to command prompts. Usually you will
enter all the commands to MS-LIB on the terminal keyboard. As an
option, answers to the command prompts may be contained in a
Response File. Some special command characters exist. Some are
used as a required part of MS-LIB commands. Others assist you while
entering MS-LIB commands.

1.1 INVOKING MS-LIB

MS-LIB may be invoked three ways. By the first method, you enter
the commands as answers to individual prompts. By the second
method, you enter all commands on the line used to invoke MS-LIB.
By the third method, you create a Response File that contains all the
necessary commands.

Summary of Methods to invoke MS-LIB

Method 1 LIB
Method 2 LIB <library> <operations>,<listing>
Method 3 LIB @ <filespec>

1-1

1.1.1 Method 1: LIB

Enter:

LIB

MS-LIB will be loaded into memory. Then, MS-LIB returns a series
of three text prompts that appear one at a time. You answer the
prompts as commands to MS-LIB to perform specific tasks.
The Command Prompts and Command Characters are summarized
here. The Command Prompts and Command Characters are descri
bed fully in Sections 1.2 and 1.3.

Summary of Command Prompts

PROMPT RESPONSES

Library file: List filename of library to be manipulated
(default: filename extension .LIB)

Operation: List command character(s) followed by module
name(s) or object filename(s) (default action: no
changes, default object filename extension: .OBJ)

List file: List filename for a cross reference listing file
(default: NUL; no file)

Summary of Command Characters

Character Action

+ Append an object file as the last module

- Delete a module from the library
* Extract a module and place in an object file

Use default responses to remaining prompts

& Extend current physical line; repeat command
prompt

Control-C Abort library session.

1-2

M S -D O S PR O G R AM M E R 'S MANUAL RUNNING MS-LIB

1.1.2 Method 2: LIB <library> <operations>,<listing>

Enter:
LIB <library> <operations>,<listing>

The entries following LIB are responses to the command
prompts. The library and operations fields and all operations
entries must be separated by one of the command charac
ters plus, minus, and asterisk (+, -, *). If a cross reference
listing is wanted, the name of the file must be separated
from the last operations entry by a comma.

where: library is the name of a library file. MS-LIB assumes that the
filename extension is .OBJ, which you may override by
specifying a different extension. If the filename given for the
library fields does not exist, MS-LIB will prompt you:

Library file does not exist. Create?

Enter Yes (or any response beginning with Y) to create a
new library file. Enter No (or any other response not begin
ning with Y) to abort the library session,
operations is deleting a module, appending an object file as a
module, or extracting a module as an object file from the
library file. Use the three command characters plus (+),
minus (-), and asterisk (*) to direct MS-LIB what to do with
each module or object file.
listing is the name of the file you want to receive the cross
reference listing of PUBLIC symbols in the modules in the
library. The list is compiled after all module manipulation
has taken place.
To select the default for remaining field(s), you may enter
the semicolon command character.
If you enter a Library filename followed immediately by a
semicolon, MS-LIB will read through the library file and
perform a consistency check. No changes will be made to
the modules in the library file.
If you enter a Library filename followed immediately by a
comma and a List filename, MS-LIB will perform its consi
stency check of the library file, then produce the cross
reference listing file.

1 -3

Example
LIB PASCAL-HEAP+HEAP;

This example causes MS-LIB to delete the module HEAP
from the library file PASCAL.LIB, then append the object
file HEAP.OBJ as the last module of PASCAL.LIB (the
module will be named HEAP).
If you have many operations to perform during a library
session, use the ampersand (&) command character to
extend the line so that you can enter additional object
filenames and module names. Be sure to always include one
of the command characters for operations (+, -, *) before
the name of each module or object filename.

Example

LIB PASCAL<CR>

causes MS-LIB to perform a consistency check of the library
file PASCAL.LIB. No other action is performed.

Example

LIB PASCAL,PASCROSS.PUB

causes MS-LIB to perform a consitency check of the library
file PASCAL.LIB, then output a cross reference listing file
named PASCROSS.PUB.

1-4

M S -D O S PRO G RAM M E R 'S MANUAL RUNNING M S-LIB

1.1.3 Method 3: LIB @ <filespec>

Enter:
LIB @ <filespec>

where: filespec is the name of a Response File. A Response File
contains answers to the MS-LIB prompts (summarized
under method 1 for invoking and described fully in Section
1.2). Method 3 permits you to conduct the MS-LIB session
without interactive (direct) user responses to the MS-LIB
prompts.

IMPORTANT

Before using method 3 to invoke MS-LIB, you must first
create the Response File.

A Response File has text lines, one for each prompt. Re
sponses must appear in the same order as the command
prompts appear.
Use Command Characters in the Response File the same
way as they are used for responses entered on the terminal
keyboard.
When the library session begins, each prompt will be dis
played in turn with the responses from the response file. If
the response file does not contain answers for all the
prompts, MS-LIB will use the default responses (no changes
to the modules currently in the library file for Operation,
and no cross reference listing file created).
If you enter a Library filename followed immediately by a
semicolon, MS-LIB will read through the library file and
perform a consistency check. No changes will be made to
the modules in the library file.
If you enter a Library filename then only a carriage return of
Operations then a comma and a List filename, MS-LIB will
perform its consistency check of the library file, then pro
duce the cross reference listing file.

1-5

Example:

PASCAL<CR>
+CURSOR+HEAP-HEAP*FOIBLES<CR>
CROSSLST<CR>

This Response File will cause MS-LIB to delete the module
EIEAP from the PASCAL.LIB library file, extract the mo
dule FOIBLES and place in an object file named FOIBLES.
OBJ, then append the object files CURSOR.OBJ and HE-
AP.OBJ as the last two modules in the library. Then, MS-
LIB will create a cross reference file named CROSSLST.

M S -D O S PR O G R AM M E R ’S MANUAL RUNNING M S-LIB

1.2 COMMAND PROMPTS

MS-LIB is commanded by entering responses to three text prompts.
When you have entered your response to the current prompt, the
next appears. When the last prompt has been answered, MS-LIB
performs its library management functions without further command.
When the library session is finished, MS-LIB exits to the operating
system. When the operating system prompt is displayed, MS-LIB has
finished the library session successfully. If the library session is un
successful, MS-LIB returns the appropriate error message.
MS-LIB prompts you for the name of the library file, the operation(s)
you want to perform, and the name you want to give to a cross refe
rence listing file, if any.

Library file:
Enter the name of the library file that you want to manipulate.
MS-LIB assumes that the filename extension is .LIB. You can
override this assumption by giving a filename extension when
you enter the library filename. Because MS-LIB can manage
only one library file at a time, only one filename is allowed in
response to this prompt. Additional responses, except the
semicolon command character, are ignored.
If you enter a library filename and follow it immediately with a
semicolon command character, MS-LIB will perform a consi
stency check only, then return to the operating system. Any
errors in the file will be reported.
If the filename you enter does not exist, MS-LIB returns the
prompt:

Library file does not exist. Create?

You must enter either Yes or No, in either upper or lower (or
mixed) case. Actually, MS-LIB checks the response of the letter
Y as the first character. If any other character is entered first,
MS-LIB terminates and returns to the operating system.

1 -7

Operation:
Enter one of the three command characters for manipulating
modules (+, -, *), followed immediately (no space) by the
module name or the object filename. Plus sign appends an
object file as the last module in the library file (see further
discussion under the description of plus sign below). Minus
sign deletes a module from the library file. Asterisk extracts a
module from the library and places it in a separate object file
with the filename taken from the module name and a filename
extension .OBJ.
When you have a large number of modules to manipulate
(more than can be typed on one line), enter an ampersand (&)
as the last character on the line. MS-LIB will repeat the Opera
tion prompt, which permits you to enter additional module
names and object filenames.
MS-LIB allows you to enter operations on modules and object
files in any order you want.
More information about order of execution and what MS-LIB
does with each module is given in the descriptions of each
Command Character.

List file:
If you want a cross reference list of the PUBLIC symbols in the
modules in the library file after your manipulations, enter a
filename in which you want MS-LIB to place the cross refe
rence listing. If you do not enter a filename, no cross reference
listing is generated (a NUL file).
The response to the List file prompt is a file specification.
Therefore, you can specify, along with the filename, a drive (or
device) designation and a filename extension. The List file is
not given a default filename extension. If you want the file to
have a filename extension, you must specify it when entering
the filename.
The cross reference listing file contains two lists. The first list is
an alphabetical listing of all PUBLIC symbols. Each symbol
name is followed by the name of its module. The second list is
an alphabetical list of the modules in the library. Under each
module name is an alphabetical listing of the PUBLIC symbols
in that module.

1-8

M S -D O S PRO G RAM M E R 'S MANUAL RUNNING MS-LIB

1.3 COMMAND CHARACTERS

MS-LIB provides six command characters: three of the command
characters are required in responses to the Operation prompt; the
other three command characters provide you additional helpful
commands to MS-LIB.

+ The plus sign followed by an object filename appends the
object file as the last module in the library named in respon
se to the Library file prompt. When MS-LIB sees the plus
sign, it assumes that the filename extension is .OBJ. You
may override this assumption by specifying a different
filename extension.
MS-LIB strips the drive designation and the extension from
the object file specification, leaving only the filename. For
example, if the object file to be appended as a module to a
library is:

B:CURSOR.OBJ
a response to the Operation prompt of:

+B:CURSOR.OBJ

causes MS-LIB to strip off the B: and the .OBJ, leaving only
CURSOR, which becomes a module named CURSOR in
the library.

NOTE
The distinction between an object file and a
module (or object module) is that the file
possesses a drive designation (even if it is
default drive) and a filename extension.
Object modules possess neither of these.

The minus sign followed by a module name deletes that
module from the library file. MS-LIB then “closes up” the
file space left empty by the deletion. This cleanup action
keeps the library file from growing larger than necessary
with empty space. Remember that new modules, even
replacement modules are added to the end of the file, not
stuffed into space vacated by deleting modules.

1-9

The asterisk followed by a module name extracts that mo
dule from the library file and places it into a separate object
file. The module will still exist in the library (extract means,
essentially, copy the module to a separate object file). The
module name is used as the filename. MS-LIB adds the
default drive designation and the filename extension .OBJ.
For example, if the module to be extracted is:

CURSOR

and the current default disk drive is A:, a reponse to the
Operation prompt of:

^CURSOR

causes MS-LIB to extract the module named CURSOR
from the library file and to set it up as an object file with the
file specification of:

default drive:CURSOR.OBJ

(The drive designation and filename extension cannot be
overridden. You can, however, rename the file, giving a new
filename extension, and/or copy the file to a new disk drive,
giving a new filename and/or filename extension.)

Use a single semicolon (;) followed immediately by a car
riage return at any time after responding to the first prompt
(from Library file on) to select default responses to the
remaining prompts. This feature saves time and overrides
the need to answer additional prompts.

NOTE
Once the semicolon has been entered, you
can no longer respond to any of the prompts
for that library session. Therefore, do not
use the semicolon to skip over some
prompts. For this, use carriage return.

Example:

Library file: FUN <CR>
Operation: +CURSOR;<CR>

M S -D O S PR O G R A M M E R ’S MANUAL RUNNING M S-LIB

The remaining prompt will not appear, and MS-LIB will use
the default value (no cross reference file).

& Use the ampersand to extend the current physical line. This
command character will only be needed for the Operation
prompt. MS-LIB can perform many functions during a
single library session. The number of modules you can
append is limited only by disk space. The number of mo
dules you can replace or extract is also limited only by disk
space. The number of modules you can delete is limited
only by the number of modules in the library file. However,
the line length for a response to any prompt is limited to the
line length of your system. For a large number of responses
to the Operation prompt, place an ampersand at the end of a
line. MS-LIB will display the Operation prompt again, then
enter more responses. You may use the ampersand charac
ter as many times as you need. For example:

Library file: FUN<CR>
Operation: +CURSOR-HEAP+HEAP*FOIBLES&
Operation: *INIT+ASSUME+RIDE;<CR>

MS-LIB will delete the module HEAP, extract the modules
FOIBLES and INIT (creating two files, FOIBLES.OBJ and
INIT.OBJ), then append the object files CURSOR, HEAP,
ASSUME, and RIDE. Note, however, that MS-LIB allows
you to enter your Operation responses in any order.

Control-C
Use Control-C at any time to abort the library session. If you
enter an erroneous response, such as the wrong filename or
module name, or an incorrectly spelled filename or module
name, you must press CTRL-C to exit MS-LIB then rein
voke MS-LIB and start over. If the error has been typed but
not entered, you may delete the erroneous characters, but
for that line only.

1 - 1 1

M S -D O S PR O G R AM M E R ’S MANUAL ERROR MESSAGES

CHAPTER 2
ERROR MESSAGES

<symbol> is a multiply defined PUBLIC. Proceed?
Cause: two modules define the same public symbol. The user
is asked to confirm the removal of the definition of the old
symbol. A No response leaves the library in an undetermined
state.
Cure: Remove the PUBLIC declaration from one of the object
modules and recompile or reassemble.

Allocate error on VM.TMP
Cause: out of space

Cannot create extract file
Cause: no room in directory for extract file

Cannot create list file
Cause: No room in directory for library file

Cannot nest response file
Cause: “@filespec” in response (or indirect) file

Cannot open VM.TMP
Cause: no room for VM.TMP in disk directory

Cannot write library file
Cause: Out of space

Close error on extract file
Cause: out of space

Error: An internal error has occurred.
Contact Microsoft, Inc.

Fatal Error: Cannot open input file
Cause: Mistyped object file name

Fatal Error: Module is not in the library
Cause: trying to delete a module that is not in the library

Input file read error
Cause: bad object module or faulty disk

Invalid object module/library
Cause: bad object and/or library

Library Disk is full
Cause: no more room on diskette

Listing file write error
Cause: out of space

2 - 1

No library file specified
Cause: no response to Library File prompt

Read error on VM.TMP
Cause: disk not ready for read

Symbol table capacity exceeded
Cause: too many public symbols (about 30K chars in symbols)

Too many object modules
Cause: more than 500 object modules

Too many public symbols
Cause: 1024 public symbols maximum

Write error on library/extract file
Cause: Out of space

Write error on VM.TMP
Cause: out of space

2-2

DEBUG Utility

>

DEBUG UTILITY

DEBUG UTILITY
CONTENTS

INTRODUCTION

Chapter 1 INTRODUCTION
1.1 Overview of DEBUG.. 1-1
1.2 Elow to Start D E B U G 1-1

Chapter 2 COMMANDS
2.1 Command Information..................................... 2-1
2.2 Parameters..2-3
2.3 Error M essages... 2-36

1

DEBUG UTILITY

CHAPTER 1
INTRODUCTION

INTRODUCTION

1.1 OVERVIEW OF DEBUG

The Microsoft DEBUG Utility (DEBUG) is a debugging program that
provides a controlled testing environment for binary and executable
object files. Note that EDLIN is used to alter source files; DEBUG is
EDLIN’s counterpart for binary files. DEBUG eliminates the need to
reassemble a program to see if a problem has been fixed by a minor
change. It allows you to alter the contents of a file or the contents of a
CPU register, and then to immediately reexecute a program to check
on the validity of the changes.
All DEBUG commands may be aborted at any time by pressing
<CONTROL-C>. <CONTROL-S> suspends the display, so that
you can read it before the output scrolls away. Entering any key other
than <CONTROL-C> or <CONTROL-S> restarts the display. All of
these commands are consistent with the control character functions
available at the MS-DOS command level.

1.2 HOW TO START DEBUG

DEBUG may be started two ways. By the first method, you type all
commands in response to the DEBUG prompt (a hyphen). By the
second method, you type all commands on the line used to start
DEBUG.

Summary of Methods to Start DEBUG

Method 1 DEBUG
Method 2 DEBUG [<filespec> [<arglist>]]

1 - 1

1.2.1 Method 1: DEBUG

To start DEBUG using method 1, type:

DEBUG

DEBUG responds with the hyphen (-) prompt, signaling that it is
ready to accept your commands. Since no filename has been speci
fied, current memory, disk sectors, or disk files can be worked on by
using other commands.

Warnings

1. When DEBUG (Version 2.0) is started, it sets up a program
header at offset 0 in the program work area. On previous
versions of DEBUG, you could overwrite this header. You
can still overwrite the default header if no <filespec> is
given to DEBUG. If you are debugging a .COM or .EXE file,
however, do not tamper with the program header below
address 5CH, or DEBUG will terminate.

2. Do not restart a program after the “Program terminated
normally” message is displayed. You must reload the pro
gram with the N and L commands for it to run properly.

1.2.2 Method 2 : Command Line

To start DEBUG using a command line, type:

DEBUG [<filespec> [<arglist>]]

For example, if a <filespec> is specified, then the following is a
typical command to start DEBUG:

DEBUG FILE.EXE

DEBUG then loads FILE.EXE into memory starting at 100 hexadeci
mal in the lowest available segment. The BX:CX registers are loaded
with the number of bytes placed into memory.
An <arglist> may be specified if <filespec> is present. The <arg-
list> is a list of filename parameters and switches that are to be passed
to the program <filespec> . Thus, when <filespec> is loaded into
memory, it is loaded as if it had been started with the command:
1 - 2

DEBUG UTILITY INTRODUCTION

<filespec> <arglist>

Here, <filespec> is the file to be debugged, and the <arglist> is the
rest of the command line that is used when <filespec> is invoked
and loaded into memory.

1-3

DEBUG UTILITY

CHAPTER 2
COMMANDS

COM M ANDS

2.1 COMMAND INFORMATION

Each DEBUG command consists of a single letter followed by one or
more parameters. Additionally, the control characters and the special
editing functions described in the MS-DOS User’s Guide, apply inside
DEBUG.

If a syntax error occurs in a DEBUG command, DEBUG reprints the
command line and indicates the error with an up-arrow () and the
word “error.”

For example:

des :100 cs: 110
error

Any combination of uppercase and lowercase letters may be used in
commands and parameters.

The DEBUG commands are summarized in Table 2.1 and are de
scribed in detail, with examples, following the description of com
mand parameters.

2 - 1

Table 2.1 DEBUG COMMANDS

DEBUG Command Function

A[<address>] Assemble
C<range> <address> Compare
D[<range>] Dump
E<address> [<list>] Enter
F<range> <list> Fill
G[=<address> [<address>...]] Go
H<value> <value> Hex
Kvalue> Input
L[<address> [<drive> <record> <record>]] Load
M<range> <address> Move
N<filename> [<filename>] Name
0<value> <byte> Output
Q Quit
R[<register-name>] Register
S<range> <list> Search
T[=<address>] [<value>] Trace
U[<range>] Unassemble
W[<address> [<drive> <record> <record>]] Write

2-2

DEBUG UTILITY CO M M AND S

2.2 PARAMETERS

All DEBUG commands accept parameters, except the Quit com
mand. Parameters may be separated by delimiters (spaces or com
mas), but a delimiter is required only between two consecutive hexa
decimal values. Thus, the following commands are equivalent:

des:100 110
d cs:100 110
d,cs :100,110

PARAMETER DEFINITION
<drive> A one-digit hexadecimal value to indicate which

<byte>

drive a file will be loaded from or written to. The
valid values are 0-3. These values designate the
drives as follows: 0=A:, 1=B:, 2=C:, 3=D:.
A two-digit hexadecimal value to be placed in or read
from an address or register.

<record> A 1- to 3-digit hexadecimal value used to indicate the
logical record number on the disk and the number of
disk sectors to be written or loaded. Logical records
correspond to sectors. However, their numbering
differs since they represent the entire disk space.

<value> A hexadecimal value up to four digits used to specify
a port number or the number of times a command
should repeat its functions.

<address> A two-part designation consisting of either an al
phabetic segment register designation or a four-digit
segment address plus an offset value. The segment
designation or segment address may be omitted, in
which case the default segment is used. DS is the
default segment for all commands except G, L, T, U,
and W, for which the default segment is CS. All
numeric values are hexadecimal.

For example:

CS:0100
04BA :0100

The colon is required between a segment designation
(whether numeric or alphabetic) and an offset.

2 -3

<range<

<list>

<string>

Two <address>es: e.g., <address> <address>; or
one <address>,anL,and a<value>: e.g.,<adress>
L <value> where <value> is the number of lines
the command should operate on, and LBO is as
sumed. The last form cannot be used if another hex
value follows the <range>, since the hex value
would be interpreted as the second <address> of the
<range>.
Examples:

CS:100 110
CS: 100 L 10
CS: 100

The following is illegal:

CS:100 CS :110
error

The limit for <range> is 10 000 hex. To specify a
<value> of 10 000 hex within four digits, type 0000
(or 0).
A series of <byte> values or of <string>s. <list>
must be the last parameter on the command line.

Example:

fcs:100 42 45 52 54 41

Any number of characters enclosed in quote marks.
Quote marks may be either single (’) or double (“). If
the delimiter quote marks must appear within a
<string>, the quote marks must be doubled. For
example, the following strings are legal:

’This is a “string” is okay.’
’This is a “string” is okay.’

However, this string is illegal:

’This is a ’string’ is not.’

Similarly, these strings are legal:

2 -4

This is a ’string’ is okay.”
This is a ““string”” is okay.

DEBUG UTILITY COM M ANDS

However, this string is illegal:

“This is a “string” is not.”

Note that the double quote marks are not necessary
in the following strings:

“This is a ’’string” is not necessary.”
’This is a ““string”” is not necessary.’

The ASCII values of the characters in the string are
used as a <list> of byte values.

2 -5

NAME Assemble

PURPOSE

SYNTAX

COMMENTS

Assembles 8086/8087/8088 mnemonics directly into
memory.

A[<address>]

If a syntax error is found, DEBUG responds with

Error

and redisplays the current assembly address.
All numeric values are hexadecimal and must be
entered as 1-4 characters. Prefix mnemonics must be
specified in front of the opcode to which they refer.
They may also be entered on a separate line.
The segment override mnemonics are CS:, DS:, ES:,
and SS:. The mnemonic for the far return is RETF.
String manipulation mnemonics must explicitly state
the string size. For example, use MOVSW to move
word strings and MOVSB to move byte strings.
The assembler will automatically assemble short,
near or far jumps and calls, depending on byte dis
placement to the destination address. These may be
overridden with the NEAR or FAR prefix. For exam
ple:

0100:0500 JMP 502 ; a 2-byte short jump
0100:0502 JMP NEAR 505 ; a 3-byte near jump
0100:505 JMP FAR 50A ; a 5-byte far jump

The NEAR prefix may be abbreviated to NE, but the
FAR prefix cannot be abbreviated.
DEBUG cannot tell whether some operands refer to
a word memory location or to a byte memory loca
tion. In this case, the data type must be explicitly
stated with the prefix “WORD PTR” or “BYTE
PTR”. Acceptable abbreviations are “WO” and “BY”.
For example:

NEG BYTE PTR [128]
DEC WO [SI]

2 - 6

DEBUG UTILITY CO M M AND S

DEBUG also cannot tell whether an operand refers
to a memory location or to an immediate operand.
DEBUG uses the common convention that operands
enclosed in square brackets refer to memory. For
example:

MOV AX,21 ; Load AX with 21H
MOV AX,[21] ; Load AX with the

; contents
; of memory location 21H

Two popular pseudo-instructions are available with
Assemble. The DB opcode will assemble byte values
directly into memory. The DW opcode will assemble
word values directly into memory. For example:

DB 1,2,3,4,“THIS IS AN EXAMPLE”
DB ’THIS IS A QUOTE: “ ’
DB “THIS IS A QUOTE: ’ ”

DW 1000,2000,3000,“BACH”

Assemble supports all forms of register indirect
commands. For example:

ADD BX,34[BP+2].[SI-1]
POP [BP+DI]
PUSH [SI]

All opcode synonyms are also supported. For exam
ple:

LOOPZ 100
LOOPE 100

JA 200
JNBE 200

For 8087 opcodes, the WAIT or FWAIT must be
explicitly specified. For example:

FWAIT FADD ST,ST(3) ; This line will assemble
; an FWAIT prefix

LD TBYTE PTR [BX] ; This line will not
2 - 7

NAME Compare

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Compares the portion of memory specified by
<range> to a portion of the same size beginning at
<address>.

C<range> <address>

If the two areas of memory are identical, there is no
display and DEBUG returns with the MS-DOS
prompt. If there are differences, they are displayed in
this format:

<addressl> <bytel> <byte2> <address2>

The following commands have the same effect:

C100,1FF 300
or

C100L100 300

Each command compares the block of memory from
100 to 1FFH with the block of memory from 300 to
3FFH.

2 - 8

DEBUG UTILITY COM M ANDS

NAME

PURPOSE

SYNTAX

COMMENTS

Dump

Displays the contents of the specified region of
memory.

D[<range>]

If a range of addresses is specified, the contents of
the range are displayed. If the D command is typed
without parameters, 128 bytes are displayed at the
first address (DS :100) after the address displayed by
the previous Dump command.
The dump is displayed in two portions: a hexadeci
mal dump (each byte is shown in hexadecimal value)
and an ASCII dump (the bytes are shown in ASCII
characters). Nonprinting characters are denoted by a
period (.) in the ASCII portion of the display. Each
display line shows 16 bytes with a hyphen between
the eighth and ninth bytes. At times, displays are split
in this manual to fit them on the page. Each dis
played line begins on a 16-byte boundary.

If you type the command:

des :100 110

DEBUG displays the dump in the following format:

04BA:0100 42 45 52 54 41. . . 4E 44 TOM SAWYER

If you type the following command:

D

the display is formatted as described above. Each line
of the display begins with an address, incremented by
16 from the address on the previous line. Each subse
quent D (typed without parameters) displays the
bytes immediately following those last displayed.

2-9

DCS :100 L 20

the display is formatted as described above, but 20H
bytes are displayed.
If then you type the command:

DCS :100 115

the display is formatted as described above, but all
the bytes in the range of lines from 100H to 115H in
the CS segment are displayed.

If you type the command:

2 - 1 0

DEBUG UTILITY COM M ANDS

NAME

PURPOSE

SYNTAX

COMMENTS

Enter

Enters byte values into memory at the specified
<address>.

E<address> [<list>]

If the optional <list> of values is typed, the replace
ment of byte values occurs automatically. (If an error
occurs, no byte values are changed.)
If the <address> is typed without the optional
<list>, DEBUG displays the address and its con
tents, then repeats the address on the next line and
wait for your input. At this point, the Enter com
mand waits for you to perform one of the following
actions:

1. Replace a byte value with a value you type. Simply
type the value after the current value. If the value
typed in is not a legal hexadecimal value or if more
than two digits are typed, the illegal or extra
character is not echoed.

2. Press the <SPACE> bar to advance to the next
byte. To change the value, simply type the new
value as described in (1.) above. If you space
beyond an 8-byte boundary, DEBUG starts a new
display line with the address displayed at the
beginning.

3. Type a hyphen (-) to return to the preceding byte.
If you decide to change a byte behind the current
position, typing the hyphen returns the current
position to the previous byte. When the hyphen is
typed, a new line is started with the address and its
byte value displayed.

4. Press the <RETURN> key to terminate the Enter
command. The <RETURN> key may be pressed
at any byte position.

2 - 1 1

EXAMPLE Assume that the following command is typed:

ECS :100

DEBUG displays:

04BA :0100 EB.-

To change this value to 41, type 41 as shown:
04BA:0100 EB.41-

To step through the subsequent bytes, press the
<SPACE> bar to see:

04BA:0100 EB.41 10. 00. BC.-

To change BC to 42:

04BA:0100 EB.41 10. 00. BC.42-

Now, realizing that 10 should be 6F, type the hyphen
as many times as needed to return to byte 0101
(value 10), then replace 10 with 6F:

04BA:0100 EB.41 10. 00. BC.42-
04BA :0102 00.--
04BA:0101 10.6F-

Pressing the <RETURN> key ends the Enter com
mand and returns to the DEBUG command level.

2 - 1 2

DEBUG UTILITY COM M ANDS

NAME

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Fill

Fills the addresses in the <range> with the values in
the <list>.

F<range> <list>

If the <range> contains more bytes than the number
of values in the <list>, the <list> will be used
repeatedly until all bytes in the <range> are filled. If
the <list> contains more values than the number of
bytes in the <range>, the extra values in the <list>
will be ignored. If any of the memory in the <range>
is not valid (bad or nonexistent), the error will occur
in all succeeding locations.

Assume that the following command is typed:

F04BA:100 L 100 42 45 52 54 41

DEBUG fills memory locations 04BA:100 through
04BA:1FF with the bytes specified. The five values
are repeated until all 100H bytes are filled.

2 -13

NAME Go

PURPOSE

SYNTAX

COMMENTS

Executes the program currently in memory.

G [=<address> [<address>.. .]]

If only the Go command is typed, the program exe
cutes as if the program had run outside DEBUG.
If = <address> is set, execution begins at the address
specified. The equal sign (=) is required, so that
DEBUG can distinguish the start = <address> from
the breakpoint <address>es.
With the other optional addresses set, execution
stops at the first <address> encountered, regardless
of that address’ position in the list of addresses to halt
execution or program branching. When program
execution reaches a breakpoint, the registers, flags,
and decoded instruction are displayed for the last
instruction executed. (The result is the same as if you
had typed the Register command for the breakpoint
address.)
Up to ten breakpoints may be set. Breakpoints may
be set only at addresses containing the first byte of an
8086 opcode. If more than ten breakpoints are set,
DEBUG returns the BP Error message.
The user stack pointer must be valid and have 6 bytes
available for this command. The G command uses an
IRET instruction to cause a jump to the program
under test. The user stack pointer is set, and the user
flags, Code Segment register, and Instruction Pointer
are pushed on the user stack. (Thus, if the user stack
is not valid or is too small, the operating system may
crash.) An interrupt code (OCCH) is placed at the
specified breakpoint address(es).
When an instruction with the breakpoint code is
encountered, all breakpoint addresses are restored to
their original instructions. If execution is not halted
at one of the breakpoints, the interrupt codes are not
replaced with the original instructions.

2 - U

DEBUG UTILITY COM M ANDS

EXAMPLE Assume that the following command is typed:

GCS :7550

The program currently in memory executes up to the
address 7550 in the CS segment. DEBUG then
displays registers and flags, after which the Go com
mand is terminated.
After a breakpoint has been encountered, if you type
the Go command again, then the program executes
just as if you had typed the filename at the MS-DOS
command level. The only difference is that program
execution begins at the instruction after the break
point rather than at the usual start address.

2 -15

NAME Hex

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Performs hexadecimal arithmetic on the two parame
ters specified.

H<value> <value>

First, DEBUG adds the two parameters, then sub
tracts the second parameter from the first. The
results of the arithmetic are displayed on one line;
first the sum, then the difference.

Assume that the following command is typed:

H19F 10A

DEBUG performs the calculations and then displays
the result:

02A9 0095

2 -16

DEBUG UTILITY COM M ANDS

NAME

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Input

Inputs and displays one byte from the port specified
by <value>.

I<value>

A 16-bit port address is allowed.

Assume that you type the following command:

I2F8

Assume also that the byte at the port is 42H.
DEBUG inputs the byte and displays the value:

42

2 -1 7

NAME Load

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

2 -1 8

Loads a file into memory.

L[<address> [<drive> <record> <record>]]

Set BX:CX to the number of bytes read. The file
must have been named either when DEBUG was
started or with the N command. Both the DEBUG
invocation and the N command format a filename
properly in the normal format of a file control block
at CS:5C.
If the L command is typed without any parameters,
DEBUG loads the file into memory beginning at
address CS: 100 and sets BX:CX to the number of
bytes loaded. If the L command is typed with an
address parameter, loading begins at the memory
<address> specified. If L is typed with all parame
ters, absolute disk sectors are loaded, not a file. The
<record>s are taken from the <drive> specified (the
drive designation is numeric here-0=A:, 1=8:, 2=C:,
etc.); DEBUG begins loading with the first <record>
specified, and continues until the number of sectors
specified in the second <record> have been loaded.

Assume that the following commands are typed:

A>DEBUG
-NFILE.COM

Now, to load FILE.COM, type:

L

DEBUG loads the file and then displays the DEBUG
prompt. Assume that you want to load only portions
of a file or certain records from a disk. To do this,
type:

L04BA:100 2 OF 6D

DEBUG then loads 109 (6D hex) records beginning
with logical record number 15 into memory begin
ning at address 04BA:0100. When the records have
been loaded, DEBUG simply returns the - prompt.

DEBUG UTILITY COM M ANDS

If the file has a .EXE extension, it is relocated to the
load address specified in the header of the .EXE file:
the <address> parameter is always ignored for .EXE
files. The header itself is stripped off the .EXE file
before it is loaded into memory. Thus the size of an
.EXE file on disk will differ from its size in memory.
If the file named by the Name command or specified
when DEBUG is started is a .HEX file, then typing
the L command with no parameters causes DEBUG
to load the file beginning at the address specified in
the .HEX file. If the L command includes the option
<address>, DEBUG adds the <address> specified
in the L command to the address found in the .HEX
file to determine the start address for loading the file.

2 -19

NAME Move

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Moves the block of memory specified by <range> to
the location beginning at the <address> specified.

M<range> <address>

Overlapping moves (i.e., moves where part of the
block overlaps some of the current addresses) are
always performed without loss of data. Addresses
that could be overwritten are moved first. The
sequence for moves from higher addresses to lower
addresses is to move the data beginning at the block’s
lowest address and then to work towards the highest.
The sequence for moves from lower addresses to
higher addresses is to move the data beginning at the
block’s highest address and to work towards the
lowest.
Note that if the addresses in the block being moved
will not have new data written to them, the data there
before the move will remain. The M command
copies the data from one area into another, in the
sequence described, and writes over the new addres
ses. This is why the sequence of the move is impor
tant.

Assume that you type:

MCSilOO 110 CS:500

DEBUG first moves address CS.T10 to address
CS:510, then CS:10F to CS:50F, and so on until
CS:100 is moved to CS:500. You should type the D
command, using the <address> typed for the M
command, to review the results of the move.

2 - 2 0

DEBUG UTILITY COM M ANDS

NAME

PURPOSE

SYNTAX

COMMENTS

Name

Sets filenames.

N<filename> [<filename> . . .]

The Name command performs two functions. First,
Name is used to assign a filename for a later Load or
Write command. Thus, if you start DEBUG without
naming any file to be debugged, then the N<file-
name> command must be typed before a file can be
loaded. Second, Name is used to assign filename
parameters to the file being debugged. In this case,
Name accepts a list of parameters that are used by
the file being debugged.
These two functions overlap. Consider the following
set of DEBUG commands:

-NFILE1.EXE
-L
-G

Because of the effects of the Name command, Name
will perform the following steps:
1. (N)ame assigns the filename FILE1.EXE to the

filename to be used in any later Load or Write
commands.

2. (N)ame also assigns the filename FILE1.EXE to
the first filename parameter used by any program
that is later debugged.

3. (L)oad loads FILE1.EXE into memory.
4. (G)o causes FILE1.EXE to be executed with

FILE1.EXE as the single filename parameter (that
is, FILE1.EXE is executed as ifFILEl.EXE had
been typed at the command level).

2-21

EXAMPLE

A more useful chain of commands might look like
this:

-NFILE1.EXE
-L
-NFILE2.DAT FILE3.DAT
-G

Here, Name sets FILE1.EXE as the filename for the
subsequent Load command. The Load command
loads FILE1.EXE into memory, and then the Name
command is used again, this time to specify the
parameters to be used by FILE1.EXE. Finally, when
the Go command is executed, FILE1.EXE is exe
cuted as if FILE1 FILE2.DAT FILE3.DAT had been
typed at the MS-DOS command level. Note that if a
Write command were executed at this point, then
FILE1.EXE - the file being debugged - would be
saved with the name FILE2.DAT! To avoid such
undesired results, you should always execute a Name
command before either a Load or a Write.
There are four regions of memory that can be affec
ted by the Name command:

CS:5C FCB for file 1
CS:6C FCB for file 2
CS:80 Count of characters
CS:81 All characters typed

A File Control Block (FCB) for the first filename
parameter given to the Name command is set up at
CS:5C. If a second filename parameter is typed, then
an FCB is set up for it beginning at CS:6C. The
number of characters typed in the Name command
exclusive of the first character, “N”) is given at loca
tion CS:80. The actual stream of characters given by
the Name command (again, exclusive of the letter
“N”) begins at CS:81. Note that this stream of
characters may contain switches and delimiters that
would be legal in any command typed at the MS-
DOS command level.
A typical use of the Name command is:

DEBUG PROG.COM
-NPARAM1 PARAM2/C
-G

2-22

DEBUG UTILITY COM M ANDS

In this case, the Go command executes the file in
memory as if the following command line had been
typed:

PROG PARAM1 PARAM2/C

Testing and debugging therefore reflect a normal
runtime environment for PROG.COM.

2 -23

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

NAME

Sends the <byte> specified to the output port speci
fied by <value>.

0<value> <byte>

A 16-bit port address is allowed.

Type:

Output

02F8 4F

DEBUG outputs the byte value 4F to output port
2F8.

2 -2 4

DEBUG UTILITY COM M ANDS

NAME Quit

PURPOSE Terminates the DEBUG utility.

SYNTAX Q

COMMENTS The Q command takes no parameters and exits
DEBUG without saving the file currently being
operated on. You are returned to the MS-DOS
command level.

EXAMPLE To end the debugging session, type:

Q<RETURN>

DEBUG has been terminated, and control returns to
the MS-DOS command level.

2 -2 5

PURPOSE

SYNTAX

COMMENTS

NAME

Displays the contents of one or more CPU registers.

R[<register-name>]

If no <register-name> is typed, the R command
dumps the register save area and displays the con
tents of all registers and flags.
If a register name is typed, the 16-byte value of that
register is displayed in hexadecimal, and then a colon
appears as a prompt. You then either type a <value>
to change the register, or simply press the <RE-
TURN> key if no change is wanted.
The only valid <register-name>s are:

Register

AX BP SS
BX SI CS
CX DI IP (IP and PC both refer to
DX DS PC the Instruction Pointer.)
SP ES F

Any other entry for <register-name> results in a BR
Error message.
If F is entered as the <register-name>, DEBUG dis
plays each flag with a two-character alphabetic code.
To alter any flag, type the opposite two-letter code.
The flags are either set or cleared.

2 -2 6

DEBUG UTILITY COM M ANDS

The flags are listed below with their codes for SET
and CLEAR:

FLAG NAME SET CLEAR

Overflow OV NV

Direction DN Decrement UP Increment

Interrupt El Enabled DI Disabled

Sign NG Negative PL Plus

Zero ZR NZ

Auxiliary Carry AC NA

Parity PE Even PO Odd

Carry CY NC

Whenever you type the command RF, the flags are
displayed in the order shown above in a row at the
beginning of a line. At the end of the list of flags,
DEBUG displays a hyphen (-). You may enter new
flag values as alphabetic pairs. The new flag values
can be entered in any order. You do not have to leave
spaces between the flag entries. To exit the R com
mand, press the <RETURN> key. Flags for which
new values were not entered remain unchanged.
If more than one value is entered for a flag, DEBUG
returns a DF Error message. If you enter a flag code
other than those shown above, DEBUG returns a BF
Error message. In both cases, the flags up to the error
in the list are changed; flags at and after the error are
not.
At startup, the segment registers are set to the bot
tom of free memory, the Instruction Pointer is set to
0100H, all flags are cleared, and the remaining regis
ters are set to zero.

2 -2 7

EXAMPLE Type:

R

DEBUG displays all registers, flags, and the decoded
instruction for the current location. If the location is
CS:11A, then the display will look similar to this:

AX=0E00 BX=00FF CX=0007 DX=01FF SP=039D
BP=0000 SI=005C DI=0000 DS=04BA ES=04BA
SS=04BA CS=04BA IP=011A
NV UP DI NG NZ AC PE NC
04BA:011A CD21 INT 21

If you type:

RF

DEBUG will display the flags:

NV UP DI NG NZ AC PE NC - -

Now, type any valid flag designation, in any order,
with or without spaces.

For example:

NV UP DI NG NZ AC PE NC - PLEICY<RETURN>

DEBUG responds only with the DEBUG prompt. To
see the changes, type either the R or RF command:

RF
NV UP El PL NZ AC PE CY - -

Press <RETURN> to leave the flags this way, or to
specify different flag values.

2 -2 8

DEBUG UTILITY COM M ANDS

NAME

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Search

Searches the <range< specified for the <list> of
bytes specified.

S<range> <list>

The <list> may contain one or more bytes, each se
parated by a space or comma. If the <list> contains
more than one byte, only the first address of the byte
string is returned. If the <list> contains only one
byte, all addresses of the byte in the <range> are
displayed.

If you type:

SCS:100 110 41

DEBUG will display a response similar to this:

04BA :0104
04BA:010D
-type:

2 -29

PURPOSE

SYNTAX

COMMENTS

NAME

EXAMPLE

Executes one instruction and displays the contents of
all registers and flags, and the decoded instruction.

T[=<address>] [<value>]

If the optional =<address> is typed, tracing occurs at
the =<address> specified. The optional <value>
causes DEBUG to execute and trace the number of
steps specified by <value>.
The T command uses the hardware trace mode of
the 8086 or 8088 microprocessor. Consequently, you
may also trace instructions stored in ROM (Read
Only Memory).

TYPE:

T

DEBUG returns a display of the registers, flags, and
decoded instruction for that one instruction. Assume
that the current position is 04BA:011A; DEBUG
might return the display:
AX=0E00 BX=00FF CS=0007 DX=01FF SP=039D
BP=0000 SI-005C DI=0000 DS=04BA ES=04BA
SS=04BA CS=04BA IP=011A
NV UP DI NG NZ AC PE NC
04BA:011A CD21 INT 21

If you type

T=011A 10

Trace

2 -3 0

DEBUG UTILITY COM M ANDS

DEBUG executes sixteen (10 hex) instructions
beginning at Oil A in the current segment, and then
displays all registers and flags for each instruction as
it is executed. The display scrolls away until the last
instruction is executed. Then the display stops, and
you can see the register and flag values for the last
few instructions performed. Remember that <CON-
TROL-S> suspends the display at any point, so that
you can study the registers and flags for any instruc
tion.

2-31

NAME Unassemble

PURPOSE

SYNTAX

COMMENTS

EXAMPLE

Disassembles bytes and displays the source state
ments that correspond to them, with addresses and
byte values.

U[<range>]

The display of disassembled code looks like a listing
for an assembled file. If you type the U command
without parameters, 20 hexadecimal bytes are disas
sembled at the first address after that displayed by
the previous Unassemble command. If you type the
U command with the <range> parameter, then
DEBUG disassembles all bytes in the range. If the
<range> is given as an <address> only, then 20H
bytes are disassembled instead of 80H.

Type:

U04BA:100 L10

DEBUG disassembles 16 bytes beginning at address
04BA:0100:

04BA:0100 206472
04BA :0103 69
04BA :0104 7665
04BA:0106 207370
04BA:0109 65
04BA:010A 63
04BA:010B 69
04BA:010C 66
04BA.-010D 69
04BA:010E 63
04BA:010F 61

If you type

004ba:0100 0108

AND [SI+72],AH
DB 69
JBE 016B
AND [BP+DI+70],DH
DB 65
DB 63
DB 69
DB 66
DB 69
DB 63
DB 61

2 -32

DEBUG UTILITY COM M ANDS

The display will show:

04BA:0100 206472 AND [SI+72],AH
04BA:0103 69 DB 69
04BA:0104 7665 JBE 016B
04BA:0106 207370 AND [BP+DI+70],DH

If the bytes in some addresses are altered, the disas
sembler alters the instruction statements. The U
command can be typed for the changed locations, the
new instructions viewed, and the disassembled code
used to edit the source file.

2 -33

NAME Write

PURPOSE Wirtes the file being debugged to a disk file.

SYNTAX W[<address> [<drive> <record> <records>]]

COMMENTS If you type W with no parameters, BX:CX must al
ready be set to the number of bytes to be written; the
file is written beginning from CS :100. If the W com
mand is typed with just an address, then the file is
written beginning at that address. If a G or T com
mand has been used, BX:CX must be reset before
using the Write command without parameters. Note
that if a file is loaded and modified, the name, length,
and starting address are all set correctly to save the
modified file (as long as the length has not changed).
The file must have been named either with the
DEBUG invocation command or with the N com
mand (refer to the Name command earlier in this
manual). Both the DEBUG invocation and the N
command format a filename properly in the normal
format of a file control block at CS:5C.
If the W command is typed with parameters, the
write begins from the memory address specified; the
file is written to the <drive> specified (the drive
designation is numeric here-0=A:, 1=B:, 2=C:, etc.);
DEBUG writes the file beginning at the logical record
number specified by the first <record>; DEBUG
continues to write the file until the number of sectors
specified in the second <record> have been written.

WARNING

Writing to absolute sectors is EXTREMELY
dangerous because the process bypasses the
file handler.

2 -34

DEBUG UTILITY COM M ANDS

EXAMPLE Type:

W

DEBUG will write the file to disk and then display
the DEBE1G prompt. Two examples are shown
below.

W

WCS.TOO 1 37 2B

DEBUG writes out the contents of memory, begin
ning with the address CS:100 to the disk in drive B:.
The data written out starts in disk logical record
number 37H and consists of 2BH records. When the
write is complete, DEBUG displays the prompt:

WCS:100 1 37 2B

2 -35

2.3 ERROR MESSAGES

During the DEBUG session, you may receive any of the following
error messages. Each error terminates the DEBUG command under
which it occurred, but does not terminate DEBUG itself.

ERROR CODE DEFINITION

BF Bad flag
You attempted to alter a flag, but the charac
ters typed were not one of the acceptable
pairs of flag values. See the Register com
mand for the list of acceptable flag entries.

BP Too many breakpoints
You specified more than ten breakpoints as
parameters to the G command. Retype the
Go command with ten or fewer breakpoints.

BR Bad register
You typed the R command with an invalid
register name. See the Register command
for the list of valid register names.

DF Double flag
You typed two values for one flag. You may
specify a flag value only once per RF com
mand.

2 -3 6

