N C R

GW™-BASIC
(Interpreter/Compiler)
Reference Manual
and

-— User’s Guide

|
r N ’

-’

For MS™-DOS

NCR Corporation is pleased to provide GW-BASIC software for
implementation on your NCR Decision Mate V. Your GW-BASIC
package contains an NCR GW-BASIC Reference Manual, a GW-BASIC
User’s Guide for either the GW-BASIC Interpreter or the GW-BASIC
Compiler, and a disk which holds the following files:

NCR GW-BASIC (Interpreter) NCR GW-BASIC Compiler

For MS™-DOS For MS™-DOS
Disk1of 1 Disk 1 of 1
GWBASIC.EXE GWBCOM.COM
GWCONF.COM BASCOMG.LIB
DUMPCL.OBJ BASRUNG.LIB
BASRUNG.EXE
GWCONF.COM
DEMO.BAS

LINK.EXE

NCR GW-BASIC Compiler

The GW-BASIC Compiler program has been pre-installed for your
NCR Decision Mate V.

No programmable function key assignments have been made. To
define your own, see the KEY Statement in Chapter 4, Section 4.61, of
your NCR GW-BASIC Reference Manual.

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

F17

F18
F19
F20

NCR GW-BASIC (Interpreter)

The GW-BASIC program has been pre-installed for your NCR
Decision Mate V. The programmable function keys have been assigned
the values which appear below. See the KEY Statement in Chapter 4,
Section 4.61 of your GW-BASIC REFERENCE MANUAL for detailed
instructions in utilizing these function keys.

F1 LOAD

F2 RUN

F3 CONT

F4 SAVE

F5 LIST

F6 EDIT

F1 TRON

F8 TROFF
F9 PRINT
F10 PRINT USING
F11 GOTO
F12 GOSUB
F13 IF

F14 THEN
F15 ELSE
F16 CHR$
F17 STRING$
F18 LINE

F19 CIRCLE
F20 DRAW

N CR

GW™-BASIC
Reference Manual

For MS™-DOS

COPYRIGHT NOTICE
Copyright® 1983 by Microsoft Corporation, all rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Microsoft Corporation.

TRADEMARKS

Microsoft and the Microsoft logo are registered trademarks of Microsoft Corporation.
MS, GW, Music Macro Language, and Graphics Macro Language are trademarks of
Microsoft Corporation. Teletype is a registered trademark of Teletype Corporation.

DISCLAIMER OF WARRANTY

NCR Corporation and Microsoft Corporation make no representations or warranties
with respect to the contents hereof and specifically disclaim any implied warranties of
merchantability or fitness for any particular purpose. Further, NCR Corporation and
Microsoft Corporation reserve the right to revise this publication and to make changes
from time to time in the content hereof without obligation to notify any person or
organization of such revisions or changes.

The GW-BASIC Compiler Software and Manual are sold ASIS and without warranty as
to performance. While NCR Corporation and Microsoft Corporation firmly believe this
to be a high quality product, the user must assume all risks of using the program.

INTRODUCTION

INTRODUCTION

NCR GW™-BASIC extends the capabilities of MS™-BASIC for
MS™-DOS by providing graphies, sound and music, communications,
device- independent input/output, event trapping and other enhance-
ments for implementation on your NCR Decision Mate V.

This Reference Manual describes the capabilities that are provided
with the NCR GW-BASIC Interpreter and the NCR GW-BASIC
Compiler.

This Introduction explains how the manual is organized and gives the
syntax notation used throughout the document.

Chapter 1, “GW-BASIC Features,” briefly describes some of the
special features that are supported by GW-BASIC.

Chapter 2, “GW-BASIC Editor,” explains how programs are edited
with GW-BASIC.

Chapter 3, “General Information About GW-BASIC,” covers a
variety of topics you need to know about when using GW-BASIC.
Described here are GW-BASIC line format, character set, operators,
etc. Some of these items differ from the interpreter to the compiler.
Any differences will be pointed-out in this chapter.

Chapter 4, “GW-BASIC Commands, Statements, and Functions”,
provides detailed descriptions of the GW-BASIC language. Differ-
ences between the interpreted and compiled versions are noted.

Appendix A identifies error codes and messages and specifies those
which are unique to the GW-BASIC Compiler.

Other Appendices list mathematical functions, ASCII character
codes, and reserved words.

GW-BASIC REFERENCE MANUAL i

INTRODUCTION

SYNTAX NOTATION
When commands are discussed in this document, the following
notation will be followed:

[] Square brackets indicate that the enclosed entry is
optional.
<> Angle brackets indicate user-entered data. When the

angle brackets enclose lowercase text, the user must
type in an entry defined by the text; for example,
<filename>. When the angle brackets enclose
uppercase text, the user must press the key named by
the text; for example, <RETURN>.

{} Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the entries
are also enclosed in square brackets.

I Vertical bars separate choices within braces. At least
one of the entries separated by bars must be chosen
unless the entries are also enclosed in square brack-
ets.

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

CAPS Capital letters indicate portions of statements or
commands that must be entered exactly as shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs, must be entered exactly as shown.

ii GW-BASIC REFERENCE MANUAL

INTRODUCTION

GW-BASIC Reference Manual

Contents
Introduction
Syntax Notation ii
Chapter 1 NCR GW-BASIC Features
1.1 Graphics . Coe 1-1
1.2 Screen Modes 1-1
1.2.1 Text Mode . . 1-1
1.2.2 Graphics Mode . . . 1-2
1.2.3 X and Y Coordinates . 1-3
1.3 Color Selection . 1-4
1.4 Music Selection . 1-6
1.5 Communications 1-7
1.6 Full Screen Editor 1-7
1.7 Peripheral Support 1-7
1.8 Event Trapping . 1-7
1.9 Device-Independent Input/Output 1-8
Chapter 2 GW-BASIC Editor
2.1 Line Editing . 2-1
2.2 EDIT Command 2-1
2.3 Full Screen Editor 2-2
Chapter 3 General Information About GW-BASIC
3.1 Modes of Operation 381
32 Line Format 3-1
3.3 Default Device . . . e e 3-2
3.4 Active and Visual (Dlsplay) Pages e ... 82
3.5 Character Set e 3-2
3.5.1 Special Characters 3-2
3.5.2 Control Characters 3-3
3.6 Constants e 34
3.6.1 String and Numerlc Constants Coe e .o 3-5
3.6.2 Single/Double Precision Form for Numerlc
Constants 3-6
3.7 Variables 3-7
3.7.1 Variable Names and Declaratlon Characters .. 3-7
3.7.2 Array Variables 3-8
3.7.3 Space Requirements 39

GW-BASIC REFERENCE MANUAL iii

INTRODUCTION

3.8 Type Conversion .
3.9 Expressions and Operators
3.9.1 Arithmetic Operators
3.9.1.1 Integer Division and Modulus Arlthmetlc
3.9.1.2 Overflow and Division By Zero
3.9.2 Relational Operators . .
3.9.3 Logical Operators .
3.9.4 Functional Operators
3.9.5 String Operators
3.10 Error Messages

Chapter 4— GW-BASIC Commands, Statements, and

Functions
4.1 ABS Function
4.2 ASC Function
4.3 ATN Function .
44 AUTO Command
4.5 BEEP Statement
4.6 BLOAD Statement
47 BSAVE Statement .
48 CALL Statement .
4.9 CALLS Statement .
4.10 CDBL Function . .
4.11 CHAIN Statement .
4.12 CHRS$ Function .
4.13 CINT Function .
414 CIRCLE Statement
415 CLEAR Statement .
4.16 CLOSE Statement .
417 CLS Statement . .
4.18 COLOR Statement .
4.19 COM Statement . . .
4.20 COMMON Statement .
4.21 CONT Command
422 COS Function .
4.23 CSNG Function . .
424 CSRLIN Function
4.25 CVI, CVS, CVD Functions .
426 DATA Statement .
4.27 DATES$ Statement .
428 DATES$ Function .
4.29 DEF FN Statement . .
4.30 DEFINT/SNG/DBL/STR Statements
4.31 DEF SEG Statement .

3-11
3-11
3-13
3-14
3-15
3-16
3-18
3-18
3-19

4-4

4-5

4-6

4-7

4-8

4-9
4-11
4-13
4-15
4-16
4-17
4-21
4-22
4-23
4-26
4-28
4-29
4-30
4-32
4-33
4-36
4-37
4-38
4-39
4-40
4-41
4-42
4-43
4-44
4-46
4-48

GW-BASIC REFERENCE MANUAL

4.32
4.33
4.34
4.35
4.36
4.37
4.38
4.39
4.40
441
4.42
4.43
4.44
4.45
4.46
447
448
4.49
4.50
4.51
4.52
4.53
4.54
4.55
4.56
4.57
4.58
4.59
4.60
4.61
4.62
4.63
4.64
4.65
4.66
4.67
4.68
4.69
4.70
4.71
4.72
4.73
4.74

DEF USR Statement .
DELETE Command

DIM Statement .

DRAW Statement .

EDIT Command

END Statement .

EOF Function

ERASE Statement . . .
ERR and ERL Variables
ERROR Statement

EXP Function . .

FIELD Statement .

FILES Statement .

FIX Function . . .
FOR..NEXT Statement .
FRE Function

GET Statement . . .
GET and PUT Statements ..
GOSUB...RETURN Statements
GOTO Statement

HEX$ Function .

IF..THEN [..ELSE)/IF..GOTO Statements

INKEY$ Function .
INP Function . .
INPUT Statement .
INPUT# Statement
INPUT$ Function .
INSTR Function
INT Function .
KEY Statement .
KEY(N) Statement
KILL Statement .
LCOPY Statement .
LEFT$ Function
LEN Function

LET Statement .
LINE Statement .
LINE INPUT Statement .
LINE INPUT# Statement .
LIST Statement .
LOAD Command
LOC Function . .
LOCATE Statement

GW-BASIC REFERENCE MANUAL

INTRODUCTION

4-49
4-50
4-51
4-53
4-56
4-57
4-58
4-60
4-61
4-62
4-64
4-65
4-68
4-69
4-70
4-73
4-74
4-75
4-80
4-82
4-83
4-84
4-87
4-88
4-89
4-91
4-92
4-93
4-94
4-95
4-98
4-100
4-101
4-105
4-106
4-107
. 4-108
4-111
4-112
4-113
4-115
4-116
4-117

INTRODUCTION

vi

4.75 LOF Function
4.76 LOG Function .
4.77 LPOS Function .

478 LPRINT and LPRINT USING Statements .

4.79 LSET and RSET Statements .
4.80 MERGE Command

4.81 MIDS$ Statement

4.82 MID$ Function
4.83 MKI$, MKS$, MKD$ Functlons .
4.84 NAME Statement .

4.85 NEW Command

4.86 OCT$ Function . . .

487 ON COM(n) Statement . . .
4.88 ON ERROR GOTO Statement . .
4.89 ON..GOSUB and ON..GOTO Statements
490 ON KEY(n) Statement

491 ON STRIG Statement

492 OPEN Statement ..

4.93 OPEN COM Statement . .
494 OPTION BASE Statement .

495 OUT Statement . .

496 PAINT Statement .

497 PEEK Function .

498 PLAY Statement

4.99 POINT Function

4.100 POKE Statement

4.101 POS Function . .

4.102 PRESET Statement

4103 PRINT Statement
4.104 PRINT USING Statement .

4105 PRINT# and PRINT# USING Statements .

4.106 PSET Statement

4.107 PUT Statement . . .
4108 RANDOMIZE Statement
4.109 READ Statement .
4.110 REM Statement .
4.111 RENUM Command
4112 RESET Command .
4.113 RESTORE Statement
4.114 RESUME Statement .
4115 RETURN Statement .
4.116 RIGHTS$ Function .
4.117 RND Function

4-119
4-120
4-121
4-122
4-123
4-124
4-125
4-126
4-127
4-128
4-129
4-130
4-131
4-133
4-134
4-135
4-137
4-139
4-141
4-145
4-146
4-147
4-149
4-150
4-153
4-154
4-155
4-156
4-157
4-160
4-166
4-169
4-170
4-171
4-172
4-174
4-175
4-177
4-178
4-179
4-181
4-182
4-183

GW-BASIC REFERENCE MANUAL

INTRODUCTION

4.118 RUN Statement/Command 4-184
4119 SAVE Command 4-186
4120 SCREEN Function 4187
4121 SCREEN Statement 4-188
4122 SGN Funection 4189
4123 SIN Funetion 4190
4124 SOUND Statement 419
4125 SPACES$ Function 4194
4126 SPC Funetion 4-19
4127 SQR Function 419
4128 STICK Function 4197
4129 STOP Statement 4-198
4.130 STR$ Function . . . Y £ 1)
4.131 STRIG Statement/ Functlon 4200
4132 STRINGS$ Funetion 4-202
4133 SWAP Statement 4-203
4134 SYSTEM Command 4-204
4135 TAB Function 4-205
4136 TAN Function 4-206
4137 TIME$ Statement 4207
4.138 TIME$ Function 4-208
4.139 TRON/TROFF Statements/ Commands 4-209
4140 USR Funetion 4210
4.141 VAL Funetion 4-212
4142 VARPTR Funetion 4-213
4143 VARPTRS$ Funetion 4-214
4144 WAIT Statement 4215
4145 WHILE..WEND Statement Y 2
4146 WIDTH Statement 4-218
4.147 WRITE Statement 4-220
4148 WRITE# Statement 4-221

Appendix A—Error Codes and Error Messages

A1 Runtime Error Messages . . . - S |
A.2 Compiler Invocation Error Messages A1l
A.3 Compiletime Error Messages A-13
A31SevereErrors A-13
A32 Warning Errors A17
A.4 MS-LINK Error Messages A-17

Appendix B—Mathematical Functions

GW-BASIC REFERENCE MANUAL vii

INTRODUCTION

Appendix C—ASCII Character Codes

Appendix D—GW-BASIC Reserved Words

viii GW-BASIC REFERENCE MANUAL

Chapter 1

NCR-GW-BASIC Features

This chapter describes the special features that are part of NCR
GW-BASIC. These features include graphics, sound and music,
peripherals support, device-independent 1/0, event trapping, and
others.

1.1 GRAPHICS

GW-BASIC allows you to use color, draw various figures, and
perform animation. The statements and functions that are used for
graphics include:

CIRCLE PAINT
COLOR POINT
DRAW PRESET
GET and PUT PSET
LINE SCREEN

These statements and functions are described in Chapter 4.

1.2 SCREEN MODES

NCR GW-BASIC operates in either of two modes. Mode O is text
mode; it is the default (usual) mode. Mode 1 is graphics mode. You
must switch the system into this mode (with the SCREEN statement)
whenever you use certain statements. Why you must do this becomes
clear if you know more about how GW-BASIC Interpreter and
Compiler handle screen input and output.

1.2.1 Text Mode

In text mode, the software considers the screen to have 25 lines (from
top to bottom) and 80 characters per line. (Line 25 is reserved for
programmable function key display.)

GW-BASIC REFERENCE MANUAL 1-1

CHAPTER 1
FEATURES

A

80 Characters >

an

—nmZ—-r

Text Mode Screen

When the software displays a character you enter on the keyboard, it
internally translates the key you press and displays its image at the
cursor position. In text mode, you are working with a specific
character set: those characters you see on your keyboard.

1.2.2 Graphics Mode

Graphics mode is more sophisticated. To allow you to draw pictures
and other shapes, the software considers the screen to be made up of
pixels. A pixel is simply a dot on the screen. Your NCR DECISION
MATE V has 640 pixels across and 400 pixels down.

- 640 Pixels
0,0

\

“+— O mMmXxX-—71 oo N~ —P

Graphics Mode Screen

Of the statements and functions available in GW-BASIC, the
following ones must be used in graphics mode. (Being “in graphics

mode” simply means you have entered a screen statement specifying
mode 1.)

1-2 GW-BASIC REFERENCE MANUAL

CHAPTER 1

FEATURES
CIRCLE LINE GET
DRAW PRESET PUT
PAINT PSET POINT (Function)

Remember you may use any other BASIC statements while in
graphics mode, but you must be in graphics mode to use any graphics
statement. Because screen handling for a graphics is more complex
than for text, always shift back to text mode when the graphics
portion of your program is complete and always be in text mode when
editing your program.

1.2.3 X and Y Coordinates ‘
The graphics statements require both an x and a y coordinate that
describe where on the screen you want to begin to draw. The x
coordinate is the horizontal position on the screen; the y coordinate is
the vertical position. 0,0 is the first pixel position in the upper
left-hand corner of the screen.

With most graphics statements, you can specify the coordinates in
either of two forms: an absolute form where x,y specify the exact
position, or an offset form where x,y are the offset values from the
last point referenced. When specifying the coordinates in offset form,
you must include the word STEP to let the software know you are
“stepping” from a previously established point.

Consider the following two examples:

10 SCREEN 1 10 SCREEN 1

20 LINE (100,100)-(150,100) 20 LINE (100,100)-STEP (50,0)
30 LINE (150,100)-(200,150) 30 LINE-STEP (50,50)
Example 1 Absolute Form Example 2 Offset Form

Both examples produce the following lines on your screen. Both
specify the starting pixel location at 100,100.

GW-BASIC REFERENCE MANUAL 1-3

CHAPTER 1
FEATURES

=

50 Pixels

1.3 COLOR SELECTION

If you have a color screen, you can select different colors for the
foreground (the character or graphics image) and the background
(the screen itself). On the monochrome model, the characters are
green displayed on a black background. You specify the colors you
want with the Color statement or, if drawing a graphics image, with
the graphics statement.

The colors available on your NCR DECISION MATE V are shown in
the following list. (The numbers are used to indicate the color on the
graphics statements.)

0 = black 4 = red

1 = blue 5 = magenta
2 = green 6 = yellow

3 = cyan 7 = white

When using colors, you should be aware of how they are stored in
memory, especially if you are going to print out your screen image.
This information may affect your decision on what colors you use for
‘your images.

The various colors are stored in different memories and only one
memory may be printed at a time; therefore, depending on which
colors you use, you may or may not get a complete image printout. The
following table lists in which memory a color is stored. Note that the
colors are grouped by primary color and some colors are stored in
more than one memory.

14 GW-BASIC REFERENCE MANUAL

Memory 1
Blue

Cyan
Magenta

White

Memory 2
Green

Cyan

Yellow
White

Memory 4
Red

Magenta
Yellow

White

CHAPTER 1
FEATURES

You print the screen image by specifying the memory you want
printed either with the GW-BASIC Configure routine or by including
special coding within your program. (Both methods are discussed
later in your GW-BASIC User’s Guide.) For now assume that the
following image is on your screen. Each of the 8 colors is a vertical

bar.

XO>»rwo

mCcrm-—-
Zmm>ID O

Zr»<0Ow

Om>I &

>H4zZmMmO>» I wm

SOrrm<o

mA4—IS~

Now look at how the image would be printed, depending on the
memory specified.

GW-BASIC REFERENCE MANUAL

CHAPTER 1
FEATURES

Memory 1 (Blue) Print

Memory 2 (Green) Print

Memory 4 (Red) Print

1.4 MUSIC SELECTION

NCR GW-BASIC includes statements that allow you to play music (or
even just make noise). These statements are BEEP, SOUND, and
PLAY. Of the statements, PLAY is the most powerful, since with it
you can generate an entire musical piece with one statement. SOUND,
on the other hand, generates a single note, while BEEP does exactly
what its name suggests. The above statements are discussed in-detail
in Chapter 4.

1-6 GW-BASIC REFERENCE MANUAL

CHAPTER 1
FEATURES

1.5 COMMUNICATIONS

Using NCR GW-BASIC, you can communicate with any other
computer, printer, or device that uses an RS-232 asynchronous
interface. To implement communications, you must first describe the
communications device with the GW-BASIC Configure routine. See
your NCR GW-BASIC or NCR GW-BASIC Compiler User’s Guide for
detailed information concerning communications implementation on
your NCR Decision Mate V.

1.6 FULL SCREEN EDITOR
Like BASIC, GW-BASIC operates in either direct or indirect mode
and uses the same programming conventions. As examples, the

BASIC rules for data types, data entry, program lines also apply in
GW-BASIC.

With GW-BASIC, however, you have a full screen editor. This feature
simply means you can quickly edit any line of text anywhere on your
screen.

Note that generally, you can enter and edit text only with the
GW-BASIC Interpreter. With the GW-BASIC Compiler, however,
you can use some of the line editing capabilities when you are
entering text in response to an INPUT statement.

GW-BASIC editor features are more fully explained in Chapter 2 of
this manual.

1.7 PERIPHERAL SUPPORT

The joystick feature is available as a peripheral device for implemen-
tation on the NCR Decision Mate V. The joystick feature is supported
by the STICK function and the STRIG statement/function. (See
Chapter 4 for complete descriptions of STICK and STRIG.)

1.8 EVENT TRAPPING

~Event trapping allows a program to transfer control to a specific
program line when a certain event occurs. Control is transferred as if
a GOSUB statement had been executed to the trap routine starting at
the specified line number. The trap routine, after servicing the event,
executes a RETURN statement that causes the program to resume
execution at the place where it was when the event trap occurred.

The events that can be trapped are receipt of characters from
communications port (ON COM), function key activation (ON KEY),
and joystick trigger activation (ON STRIG).

For more details on individual statements, see Chapter 4.

GW-BASIC REFERENCE MANUAL 1-7

CHAPTER 1
FEATURES

1.9 DEVICE-INDEPENDENT INPUT/OUTPUT

GW-BASIC provides device-independent input/output that works
with various operating systems, stand-alone systems, disk-based
RAM systems, non-disk ROM systems, and hooked systems. Any
modifications that may be required are minimal.

The following statements, commands, and functions support device-
independent I/0 (see individual descriptions in Chapter 4):

BLOAD
BSAVE
CHAIN
CLOSE
EOF
FILES
GET
INPUT
INPUT$
KILL
LINE
LIST
LLIST
LOAD
LOC

1-8

LOF

LPOS
LPRINT
MERGE
NAME
OPEN
OPEN COM
POS

PRINT
PRINT USING
PUT
RESET
RUN

SAVE
WIDTH
WRITE

GW-BASIC REFERENCE MANUAL

Chapter 2

GW-BASIC Editor

GW-BASIC provides three ways to enter and edit text: you can use the
line editing capabilities, issue an EDIT command to place you in edit
mode, or use the full screen editor. Generally, you can enter and edit
text only with the GW-BASIC Interpreter. With the GW-BASIC
Compiler, however, you can use some of the line editing capabilities
when you are entering text in response to an INPUT statement. See
Chapter 4 for information concerning the EDIT command and
INPUT statement.

2.1 LINE EDITING

If the cursor is currently on a line, you can make the following
changes. If you are entering a line in response to an INPUT
statement, you can use the first two items in the list:

1. Delete an incorrect character from the line that is being typed, by
pressing the backspace key or Control-H. Both these actions
delete the last character entered, or the character to the left of the
Cursor.

2. Delete the entire line that is being typed by pressing Control-U.

3. Correct program lines for a program that is currently in memory
by retyping the line, using the same line number. GW-BASIC will
automatically replace the old line with the new one.

4. Delete the entire program currently residing in memory by
entering the NEW command. NEW is usually used to clear
memory prior to entering a new program. See Chapter 4 for more
information about NEW.

2.2 EDIT COMMAND

The EDIT command places the cursor on a specified line so that
changes can be made to the line. See Chapter 4 for a description of the
EDIT command.

GW-BASIC REFERENCE MANUAL 2-1

CHAPTER 2
GW-BASIC EDITOR

2.3 FULL SCREEN EDITOR
Like BASIC, GW-BASIC operates in either direct or indirect mode
and uses the same programming conventions.

With GW-BASIC, however, you have a full screen editor. This feature

simply means you can quickly edit any line of text anywhere on your
screen.

Table 1 lists the keys that control the movement of the cursor. In some
cases, you have a choice of keys; use the one most comfortable for your
entry. When a combination of keys must be used (as with
CONTROL-J), hold down the CONTROL key and press the second key.

Besides providing full screen movement, the editor also allows for
more efficient editing. Use the LIST statement to modify existing
program lines, being sure to RETURN to store the modified line in the
program.

® Occasionally, GW-BASIC may return to direct mode with the
cursor positioned on a line containing a message, such as OK.
When this occurs, the line is automatically erased. If it were not
erased and you entered RETURN, the message would be given to
GW-BASIC for interpretation and a syntax error would result.
BASIC messages end with hexadecimal FF to distinguish them
from user text.

e After you alter a line, you do not need to move the cursor to the
end of the logical line before typing RETURN. The editor
remembers where each logical line ends and transfers the line,
even if RETURN is typed at the beginning of a line.

The editor also functions during program execution. If a syntax error
occurs, GW-BASIC automatically enters edit at the line that caused
the error. For example,

10 A = 2§12

RUN

? Syntax Error in 10
10 A = 2$12

The editor displays the line in error and positions the cursor under
the digit 1. You would move the cursor to the dollar sign ($) and
change it to an up-arrow (4), followed by a RETURN. The corrected
line is now stored back in the program.

In this example, storing the line back in the program causes all
variables to be lost. Had you wanted to examine the contents of some
variable before making the change, Control-C would be typed to

2-2 GW-BASIC REFERENCE MANUAL

CHAPTER 2
GW-BASIC EDITOR

return to Direct Mode. The variables would be preserved since no

program line was changed, and after you were satisfied, you could edit
the line and re-run the program.

GW-BASIC REFERENCE MANUAL

2-3

CHAPTER 2

GW-BASIC EDITOR
Key(s) s
(hex/dec value) Name Description
d RETURN Sends the line (up to the cursor) to
or GW-BASIC for interpretation.
CONTROL-M
(0D/13)
CONTROL-J LINE FEED Moves the cursor to the first
(0A/10) position on the next line. (Scrolling
will occur if cursor is on line 24.)
x HOME Moves the cursor to the upper
or left-hand corner of the screen.
CONTROL-K
(0B/11)
A CURSOR UP Moves the cursor up 1 line.
or
CONTROL- A
(1E/30)
v CURSOR Moves the cursor down 1 line.
or DOWN
CONTROL-0
(1F/31)
< CURSOR Moves the cursor 1 position left.
or LEFT When advanced beyond the left of
CONTROL-] the screen, the cursor is moved to
(1D/29) the right side of the preceding line.
> CURSOR Moves the cursor 1 position right.
or RIGHT When advanced beyond the right of
CONTROL-\ the screen, the cursor is moved to
(1C/28) the left side of the next line.
CONTROL-> NEXT Moves the cursor right, to the next
or WORD word. “Next word” is the next
CONTROL-F character to the right of the cursor
(06/06) (or on the next line) in the set A-Z or
0-8.
CONTROL-« PREVIOUS Moves the cursor left, to the
or WORD previous word. “Previous word” is
CONTROL-B the next character to the left of the
(02/02) cursor (or on the previous line) in
the set A-Z or 0-9.

Table 1 Editing Keys (1 of 3)

24 GW-BASIC REFERENCE MANUAL

CHAPTER 2

GW-BASIC EDITOR
(hex;f;:{:(?alue) Name Description
1< BACK Deletes the last character entered,
or SPACE or the character to the left of the
CONTROL-H cursor. (If the character is in the first
(08/08) column, it moves off the screen.) All
characters to the right of the cursor
are moved left 1 position. If a logical
line extends beyond a physical line,
subsequent characters are shifted
left and up to fill the line.
CONTROL-E ERASE TO Erases to the end of a logical line
(05/05) END from the current cursor position.
CONTROL- % CLEAR Clears the screen and positions the
or SCREEN cursor in the upper left-hand corner
CONTROL-L of the screen.
(0C/12)
CONTROL-U ESCAPE Erases the entire logical line.
(15/21)
CONTROL-C BREAK Returns to direct mode without
(03/03) saving any changes that were made
to the current line.
CONTROL-T FUNCTION Advances the display of function
(14/20) KEY DISPLAY keys on line 25.
CONTROL-Q MARK LINE Marks a line for deletion.
(11/17)
CONTROL-R INSERT Turns insert mode either on or off.
(12/18) (Insert mode is used to place

characters between charactersin a
line.) If insert mode is off, pressing
this key turns it on; if insert mode is
on, pressing this key turns it off.

When in insert mode, characters
following the cursor are moved to
the right as typed characters are
inserted at the current position. For
each keystroke, the cursor moves
one position to the right. If
characters (or blanks) move off the
right side of the screen, they are
inserted from the left on
subsequent lines.

When out of insert mode,
characters typed replace existing
characters on the line.

Table 1 Editing Keys (2 of 3)

GW-BASIC REFERENCE MANUAL

CHAPTER 2

Description

When out of insert mode, pressing
the key moves the cursor over
characters until the next tab stop is
reached. Tab stops occur every 8
character positions.

When in insert mode, pressing the
key causes blanks to be inserted
from the current cursor position to
the next tab stop.

Moves the cursor to the end of the
logical line. Characters typed from
this position are appended to the
line.

GW-BASIC EDITOR
Key(s)
(hex/dec value) Name
CONTROL-I TAB
(09/09)
CONTROL-N END
(OE/14)
Table 1

2-6

Editing Keys (3 of 3)

GW-BASIC REFERENCE MANUAL

N’

Chapter 3

General Information About GW-BASIC

For full instructions for initializing GW-BASIC or GW-BASIC
Compiler on your NCR Decision Mate V, see you NCR GW-BASIC
(Interpreter) or NCR GW-BASIC Compiler User’s Guide.

3.1 MODES OF OPERATION

GW-BASIC Interpreter may be used in either of two modes: direct
mode or indirect mode. These modes do not apply to the GW-BASIC
Compiler.

In direct mode, statements and commands are not preceded by line
numbers. They are executed as they are entered. Results of arithmetic
and logical operations may be displayed immediately and stored for
later use, but the instructions themselves are lost after execution.
Direct mode is useful for debugging and for using GW-BASIC
Interpreter as a calculator for quick computations that do not require
a complete program.

Indirect mode is used for entering programs. Program lines are
preceded by line numbers and may be stored in memory. The program
stored in memory is executed by entering the RUN command.

3.2 LINE FORMAT
GW-BASIC program lines have the following format (square brack-
ets indicate optional input):

nnnnn BASIC statement [:BASIC statement...] <carriage return>

More than one GW-BASIC statement may be placed on a line, but
each must be separated from the last by a colon.

A GW-BASIC program line always begins with a line number and
ends with a carriage return. Line numbers indicate the order in which
the program lines are stored in memory. Line numbers are also used
as references in branching and editing. Line numbers must be in the
range 0 to 65529.

GW-BASIC REFERENCE MANUAL 3-1

CHAPTER 3
GENERAL INFORMATION

With the interpreter, a line may contain a maximum of 255
characters. With the compiler, the maximum number of characters
per line is 253.

With the interpreter, you can extend a logical line over more than one
physical line by using the <linefeed> key. <linefeed> lets you
continue typing a logical line on the next physical line without
entering a <carriage return>.

With the compiler, the line continuation character is an underscore
(—). Enter the underscore as the last character before you press
<RETURN> to drop down to the next line. The underscore removes
the significance of the carriage return in the <carriage
return> <linefeed> sequence that ends each line, so that just the
linefeed is presented to the compiler.

A period (.) may be used in EDIT, LIST, AUTO, and DELETE
commands to refer to the current line. Note that these commands work
only with the interpreter, not with the compiler.

3.3 DEFAULT DEVICE

When a filespec is given (in commands or statements such as FILES,
OPEN, KILL), the default disk drive is the one that was the default in
MS-DOS before GW-BASIC was invoked.

3.4 ACTIVE AND VISUAL (DISPLAY) PAGES

Every command that reads to or writes from the screen is actually
reading/writing from or to the active page. The visual, or display,
page is the active page that is shown on the terminal screen.

The size of these pages is set by the SCREEN statement. (Section
4.121.)

3.5 CHARACTER SET
The GW-BASIC character set consists of alphabetic characters,
numeric characters, and special characters.

The alphabetic characters in GW-BASIC are the uppercase and
lowercase letters of the alphabet.

The GW-BASIC numeric characters are the digits 0 through 9.

3.5.1 Special Characters

The following special characters and terminal keys are recognized by
GW-BASIC:

32 GW-BASIC REFERENCE MANUAL

Character

«_;F!-c_%itﬁ\.//_»\ *|+"

- .

® VA"

<backspace>
<escape>

<tab>
<linefeed>

<carriage
return>

CHAPTER 3
GENERAL INFORMATION

Action

Blank

Equals sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiplication symbol
Slash or division symbol

Up arrow or exponentiation symbol
Left parenthesis

Right parenthesis

Percent

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Period or decimal point

Single quotation mark (apostrophe)
Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol
At sign

Underscore

Deletes last character typed.
Escapes edit mode subcommands (inter-
preter only).

Moves print position to next tab stop. Tab
stops are set every eight columns.
Moves to next physical line (interpreter
only).

Terminates input of a line.

3.5.2 Control Characters
GW-BASIC supports the following control characters:

GW-BASIC REFERENCE MANUAL 33

CHAPTER 3
GENERAL INFORMATION

Control
Character

Control-A

Control-C

Control-G

Control-H

Control-I

Control-O

Control-R

Control-S

Control-Q

Control-U

3.6 CONSTANTS

Action

Enters edit mode on the line
being typed (interpreter only).

With the interpreter, interrupts
program execution and returns
to BASIC command level. With
the compiler, returns to the
operating system level if the /D
(debug) switch is active.

Rings the bell at the terminal.

Backspaces. Deletes the last
character typed.

Tabs to the next tab stop. Tab
stops are set every eight col-
umns.

Halts program output while
execution continues. A second
Control-O resumes output.

Lists the line that is currently
being typed.

Suspends program execution
(interpreter only).

Resumes program execution
after a Control-S (interpreter
only).

Deletes the line that is cur-
rently being typed.

Constants are the values GW-BASIC uses during execution. There are
two types of constants: string and numeric.

34

GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

3.6.1 String and Numeric Constants
A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks.

Examples:

“HELLO”
$25,000.00”

“Number of Employees”

Numeric constants are positive or negative numbers. GW-BASIC
numeric constants cannot contain commas. There are five types of

numeric constants:

1. Integer constants

2. Fixed-point
constants

3. Floating-point
constants

GW-BASIC REFERENCE MANUAL

Whole numbers between -32768
and 32767. Integer constants do
not contain decimal points.

Positive or negative real num-
bers, i.e., numbers that contain
decimal points.

Positive or negative numbers
represented in exponential form
(similar to scientific notation). A
floating-point constant consists
of an optionally signed integer or
fixed-point number (the
mantissa) followed by the letter
E and an optionally signed inte-
ger (the exponent). The allowable
range for floating-point con-
stants is 10-38 to 10+38.

Examples:

235.988E-7 = 0000235988
2359E6 = 2359000000

(Double precision floating-point
constants are denoted by the
letter D instead of E. See Section
3.1.2)

3-5

CHAPTER 3
GENERAL INFORMATION

4. Hex constants Hexadecimal numbers, denoted
by the prefix &H.

Examples:

&H76
&H32F

5. Octal constants Octal numbers, denoted by the
prefix &0 or &.

Examples:

&0347
&1234

6. Binary constants Binary numbers, denoted by the
prefix &B.

Examples:

&B123
&B47

3.6.2 Single/Double Precision Form For Numeric Constants
Numeric constants may be either single precision or double precision
numbers. Single precision numeric constants are stored with 7 digits
of precision, and printed with up to 6 digits of precision. Double
precision numeric constants are stored with 16 digits of precision and
printed with up to 16 digits.

A single precision constant is any numeric constant that has one of
the following characteristics:

1. Seven or fewer digits.
2. Exponential form using E.

3. A trailing exclamation point (!).
Examples:
46.8

-1.09E-06

3489.0
22.5!

3-6 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

A double precision constant is any numeric constant that has one of
these characteristics:

1. Eight or more digits.
2. Exponential form using D.

3. A trailing number sign (#).

Examples:

345692811
-1.09432D-06

3489.0#

7654321.1234

3.7 VARIABLES

Variables are names used to represent values used in a BASIC
program. The value of a variable may be assigned explicitly by the
programmer, or it may be assigned as the result of calculations in the
program. Before a variable is assigned a value, its value is assumed to
be zero (or null for a string variable).

3.7.1 Variable Names and Declaration Characters

GW-BASIC variable names may be any length. Up to 40 characters
are significant. Variable names can contain letters, numbers, and the
decimal point. However, the first character must be a letter. Special
type declaration characters (listed below) are also allowed.

A variable name may not be a reserved word, but embedded reserved
words are allowed. Reserved words include all GW-BASIC com-
mands, statements, function names, and operator names. If a variable
begins with FN, it is assumed to be a call too a user-defined function.

Variables may represent either a numeric value or a string. String
variable names can be written with a dollar sign ($) as the last
character. For example: A$ = “SALES REPORT”. The dollar signisa
variable type declaration character; that is, it “declares” that the
variable will represent a string.

Numeric variable names may declare integer, single precision, or
double precision values. The type declaration characters for these
variable names are as follows:

GW-BASIC REFERENCE MANUAL 3-7

CHAPTER 3
GENERAL INFORMATION

% Integer variable
! Single precision variable

Double precision variable
The default type for a numeric variable name is single precision.

With the GW-BASIC Compiler, we recommend that you use integer
variables whenever possible. Integer variables produce the fastest
and most compact object code. For example, the following program
executes approximately 30 times faster when the loop control
variable “I” is replaced with “I%”, or when I is declared an integer
variable with DEFINT.

FOR I=1TO 10
A(M)=0
NEXT I

Examples of GW-BASIC variable names:

PI# Declares a double precision value.
MINIMUM! Declares a single precision value.
LIMIT% Declares an integer value.

N$ Declares a string value.

ABC Represents a single precision value.

Variable types may also be declared by including the GW-BASIC
statements DEFINT, DEFSTR, DEFSNG, and DEFDBL in a pro-
gram. These statements are described in detail in Section 4.30.

NOTE: With the interpreter, loop control variables must be single
precision. With the compiler, however, they may be either
single or double precision. Double precision loop control
variables let you increase the precision of the increment or
increase the range of the loop.

3.7.2 Array Variables

An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable
that is subscripted with an integer or an integer expression. An array
variable name has as many subscripts as there are dimensions in the
array. For example V(10) would reference a value in a one-dimension
array, T(1,4) would reference a value in a two-dimension array, and so
on. The maximum number of dimensions for an array is 255. The
maximum number of elements per dimension is 32,767.

3-8 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

3.7.3 Space Requirements

The following list gives only the number of bytes occupied by the
values represented by the variable names. Additional requirements
may vary according to implementation.

Variables
Type Bytes
Integer 2
Single precision 4
Double precision 8
Arrays
Type Bytes
Integer 2 per element
Single precision 4 per element
Double precision 8 per element

The compiler and interpreter differ in their implementations and
maintenance of string space. Most implementations of the inter-
preter support strings of up to 255 characters. The number of bytes ¢
required for the string descriptor varies with the implementation.
With the compiler, strings of up to 32767 characters are supported,
and the string descriptor requires 4 bytes of memory.

NOTE: With the compiler, using either POKE with PEEK and
VARPTR, or using assembly language subroutines to change
string descriptors may cause a “String Space Corrupt” error.

3.8 TYPE CONVERSION

When necessary, GW-BASIC will convert a numeric constant from
one type to another. The following rules and examples apply to
conversions.

1. If a numeric constant of one type is set equal to a numeric
variable of a different type, the number will be stored as the type
declared in the variable name. (If a string variable is set equal to a
numeric value or vice versa, a “Type mismatch” error occurs.)

GW-BASIC REFERENCE MANUAL 3-9

CHAPTER 3
GENERAL INFORMATION

2.

3-10

Example:

10 A% =23.42
20 PRINT A%
will yield

23

During expression evaluation, all of the operands in an arithme-
tic or relational operation are converted to the same degree of
precision, i.e., that of the most precise operand. Also, the result of
an arithmetic operation is returned to this degree of precision.

Examples:

10 D#=6#/7

20 PRINT D#

will yield
.8571428571428571

The arithmetic was performed in double precision and the result
was returned in D# as a double precision value.

10 D=6#/7

20 PRINT D

will yield
.857143

The arithmetic was performed in double precision, and the result
was returned to D (single precision variable), rounded, and
printed as a single precision value.

. Logical operators (see Section 3.10.3) convert their operands to

integers and return an integer result. Operands must be in the
range -32768 to 32767 or an “Overflow” error occurs.

. When a floating-point value is converted to an integer, the

fractional portion is rounded.
Example:

10 C% =55.88

20 PRINT C%

will yield
56

GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

5. If a double precision variable is assigned a single precision value,
only the first seven digits (rounded) of the converted number will
be valid. This is because only seven digits of accuracy were
supplied with the single precision value. The absolute value of the
difference between the printed double precision number and the
original single precision value will be less than 6.3E-8 times the
original single precision value.

Example:

10 A=2.04
20 B#=A
30 PRINT A;B#
will yield
2.04 2.039999961853027

3.9 EXPRESSIONS AND OPERATORS

An expression may be a string or numeric constant, a variable, or a
combination of constants and variables with operators. An expres-
sion always produces a single value.

Operators perform mathematical or logical operations on values.
GW-BASIC operators may be divided into four categories:

1. Arithmetic
2. Relational
3. Logical

4. Functional

Each category is described in the following sections.

3.9.1 Arithmetic Operators
The arithmetic operators, in order of evaluation, are:

GW-BASIC REFERENCE MANUAL 3-11

CHAPTER 3
GENERAL INFORMATION

Operator Operation Sample Expression
A Exponentiation XY
- Negation —X
*/ Multiplication, Floating- XY
point Division X/Y
\ Integer division 12\6=2
MOD Modulus arithmetic 10.4 MOD 4=2
(10/4=2 with remainder 2)
+,— Addition, Subtraction X+Y

With the interpreter, you can change the order of evaluation by using
parentheses. Operations within parentheses are performed first.
Inside parentheses, the usual order of operations is maintained. With
the compiler, however, parentheses will not always redirect the order
of evaluation.

Note the additional differences between the interpreter and compiler:

1.

3-12

Numeric calculations involving numbers with a large number of
decimal places may not produce exactly the same results with the
interpreter as with the compiler. This difference affects only
calculations involving very precise numbers.

. During expression evaluation, the GW-BASIC Compiler converts

operands of difference types to the type of the more precise
operand.

For instance, the following expression causes J% to be converted
to single precision and added to A!:
QR=J% +A!+Q#

The resultant sum is then converted to double precision and
added to Q#.

3. The interpreter always performs transcendental functions in
single precision. The compiler performs them in double
precision if requested.

The following list gives some sample algebraic expressions and
their GW-BASIC counterparts.

GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

Algebraic Expression BASIC Expression
X+2Y X+Y*2
X Y X-=Y/Z
z
XY X*Y/Z
p4
X+Y (X+Y)/Z
z
2
(X)Y (XA2)AY
z
Y XA (YAZ)
X
X(—Y) X*(—Y) Two consecutive
operators must
be separated by
parentheses.

3.9.1.1 Integer Division and Modulus Arithmetic

In addition to the six standard operators (addition, subtraction,
multiplication, division, negation, exponentiation), GW-BASIC sup-
ports integer division and modulus arithmetic.

Integer division is denoted by the backslash (\). The operands are
rounded to integers (must be in the range -32768 to 32767) before the
division is performed, and the quotient is truncated to an integer.

Examples:

10\4=2
25.681 6.99=3

Modulus arithmetic is denoted by the operator MOD. Modulus
arithmetic yields the integer value that is the remainder of an integer
division.

Examples:

10.4 MOD 4=2 (10/4=2 with a remainder 2)
25.68 MOD 6.99=5 (26/7=3 with a remainder 5)

GW-BASIC REFERENCE MANUAL 3-13

CHAPTER 3
GENERAL INFORMATION

3.9.1.2 Overflow and Division by Zero

With the interpreter, if division by zero is encountered during the
evaluation of an expression, a “Division by zero” error message
displayed. Machine infinity (the largest number than can be
represented in floating-point format) with the sign of the numerator
is supplied as the result of the division, and execution continues. If the
evaluation of an exponentiation operator results in zero being raised
to a negative power, the “Division by zero” error message is
displayed, positive machine infinity is supplied as the result of the
exponentiation, and execution continues.

If overflow occurs, the interpreter displays an “Overflow” error
message, supplies machine infinity with the algebraically correct
sign as the result, and continues execution.

The compiler is more limited than the interpreter in handling
numeric overflow. For example, when run on the interpreter, the
following statements yield 40000 for A%.

1% =20000
J % =20000
A% =1%+I%

That is, J% is added to I1%. Because the number is too large for an
integer representation, the interpreter converts the result into a
floating-point number. The result (40000) is found and converted back
to an integer and saved as A%.

The GW-BASIC Compiler, however, must make type conversion
decisions during compilation. It cannot defer until actual values are
known. Thus, the compiler generates code to perform the entire
operation in integer mode, and arithmetic overflow occurs. If the /D
(Debug) switch is set, the error is detected. Otherwise, an incorrect
answer is produced.

When the above example is executed with the compiler, 1% +J%
yields the integer value -25536. This value is then converted to a
floating-point value and saved in A%.

Besides these type conversion decisions, the compiler performs
certain valid optimizing algebraic transformations before generating
code. For example, the following program could produce an incorrect
result when run:

1% =20000
J% =-18000

3-14 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

K% =20000
M% =1% +J% +K%

If the compiler actually performs the arithmetic in the order shown,
no overflow occurs. However, if the compiler performs 1% +K% first
and then adds J%, overflow does occur.

The compiler follows the rules of operator evaluation, but no other
guarantee of evaluation order can be made; even the use of
parentheses may not always direct the order of evaluation.

3.9.2 Relational Operators

Relational operators are used to compare two values. The result of the
comparison is either “true” (-1) or “false” (0). This result may then be
used to make a decision regarding program flow. (See IF statements,
Section 4.53.)

The relational operators are:

Operator Relation Tested Example
= Equality X=Y
<> Inequality X<>Y
< Less than X<Y
> Greater than X>Y
<= Less than or equal to X<=Y
>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a variable. See the
LET statement, Section 4.67.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For example,
the expression

X+Y<(T-1)/Z
is true if the value of X plus Y is less than the value of T-1 divided by Z.

More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J<>0 THEN K=K+1

GW-BASIC REFERENCE MANUAL 3-15

CHAPTER 3
GENERAL INFORMATION

3.9.3 Logical Operators

Logical operators perform tests on multiple relations, bit manipula-
tion, or Boolean operations. The logical operator performs bit-by-bit
calculation and returns a result which is either “true” (not zero) or
“false” (zero). In an expression, logical operations are performed
after arithmetic and relational operations. The outcome of a logical
operation is determined as shown in Table 3-1. The operators are
listed in order of precedence.

NOT
NOT X

O = X
o

AND
X AND Y

0O =2 X
O w0 <
OO

OR

x
o
D
<

0O 24X
O 20 <

XOR

x
x

D0
<

0O = aX
(= RS

EQV

x
m
<
<

0O = a4 X
O w0 =<

IMP
XIMPY
1

0O = a4 X
w0 a<

0
1
1

Table 3-1 GW-BASIC Relational Operators Truth Table

Just as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two or more
relations and return a true or false value to be used in a decision (see
IF statements, Section 4.53).

3-16 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

Example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50

IF NOT P THEN 100

Logical operators work by converting their operands to 16-bit, signed,
two’s complement integers in the range -32768 to 32767. (If the
operands are not in this range, an error results.) If both operands are
supplied as 0 or -1, logical operators return 0 or -1. The given
operation is performed on these integers bit-by-bit; i.e., each bit of the
result is determined by the corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be used to
“mask” all but one of the bits of a status byte at a machine I/0 port.
The OR operator may be used to “merge” two bytes to create a
particular binary value. The following examples will help demon-
strate how the logical operators work.

63 AND 16 = 16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16.

15AND 14 = 14 15 = binary 1111 and 14 = binary
1110, so 15 AND 14 = 14 (binary
1110).

-1AND 8 =8 -1 = binary 1111111111111111 and 8

= binary 1000, so -1 AND 8 = 8.

40R2 =6 4 = binary 100 and 2 = binary 10, so
4 OR 2 = 6 (binary 110).

10 OR 10 = 10 10 = binary 1010, so 1010 OR 1010 =
1010 (decimal 10).

-10R-2=-1 -1 = binary 1111111111111111 and -2
= binary 1111111111111110, so -1 OR
-2 = -1. The bit complement of
sixteen zeros is sixteen ones, which is
the two’s complement representation
of -1.

GW-BASIC REFERENCE MANUAL 3-17

CHAPTER 3
GENERAL INFORMATION

NOT X = -(X+1) The two’s complement of any integer
is the bit complement plus one.

3.9.4 Functional Operators

When a function is used in an expression, it calls a predetermined
operation that is to be performed on an operand. GW-BASIC has
“intrinsic” functions that reside in the system, such as SQR (square
root) or SIN (sine). All GW-BASIC intrinsic functions are described
in Chapter 4.

GW-BASIC also allows “user-defined” functions that are written by
the programmer. See “DEF FN Statement,” Section 4.29.

3.9.5 String Operators
Strings may be concatenated by using the plus sign (+). For example:

10 A$=“FILE” : B§=“NAME”
20 PRINT A$+B$

30 PRINT “NEW ”+A$+B$
will yield

FILENAME

NEW FILENAME

Strings may be compared using the same relational operators that
are used with numbers:

= <> < > <= >=

String comparisons are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes are
the same, the strings are equal. If the ASCII codes differ, the lower
code number precedes the higher. If during string comparison the end
of one string is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant.

Examples:

“AAP<“AR”
“FILENAME”=“FILENAME”

“Y &> #”

“CL ”>“CL”

“kgn>uKGn

“SMYTH” <“SMYTHE”

B$<“9/12/78” where B§="8/12/78”

3-18 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

Thus, string comparisons can be used to test string values or to
alphabetize strings. All string constants used in comparison expres-
sions must be enclosed in quotation marks.

3.10 ERROR MESSAGES
If an error causes program execution to terminate, an error message
is printed. For a complete list of GW-BASIC error codes and error

messages, see Appendix A.

GW-BASIC REFERENCE MANUAL 3-19

Chapter 4

~ GW-BASIC Commands, Statements,

and Functions

GW-BASIC commands and statements are described in this chapter.
Briefly, these elements can be defined as:

Command
_ Statement

Function
"

An instruction that returns control to the operat-
ing system after the instruction has been per-
formed. LIST and MERGE, for example, are
commands. Commands are used only with the
GW-BASIC Interpreter; they are not supported by the
GW-BASIC Comprler.

An instruction that is entered as part of a
program source line. For example, LET and LINE
are statements.

A function converts a value into some other value
according to a fixed formula. The functions
described in this chapter are built-in, or
“intrinsic” to GW-BASIC. These functions may
be called from any program without further
definition.

Arguments to functions are always enclosed in
parentheses. In the syntax given for the functions
in this chapter, the arguments have been abbrevi-
ated as follows:

XandY Represent any numeric expres-
sions.

Iand J Represent integer expressions.

X$ and Y$ Represent string expressions.

GW-BASIC REFERENCE MANUAL 4-1

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

If a floating-point value is supplied where an
integer is required, GW-BASIC will round the
fractional portion and use the resulting integer.

Note that with GW-BASIC Interpreter, only integer
and single precision results are returned by func-

tions. Double precision functions are supported only
by the GW-BASIC Compiler.

See Appendix B for information about mathe-
matical functions that are not intrinsic to GW-
BASIC.

Each description in this chapter is formatted as follows:

Syntax

Purpose

Remarks

Example

Note

42

Shows the correct syntax for the instruction or
function. See the introduction to this manual for
syntax notation.

When the term “filespec” is used as an option in
the syntax, it refers to a combination of device
name and filename, in the correct format for the
operating system.

Tells what the instruction or funection is used for.

Describes in detail how the instruction or func-
tion is used.

Shows sample programs or program segments
that demonstrate the use of the instruction or
function.

In some of the examples in this chapter, interpreter
commands are included so that results can be shown
more clearly. Though these commands would not be
used with the GW-BASIC Compiler, the results of the
statement or function would be the same.

Describes special cases or provides additional
pertinent information.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC

Compiler Describes ways in which the instruction or
function differs between the GW-BASIC Com-
piler and GW-BASIC Interpreter. If this section
is not present, the usage is the same for the
interpreter and compiler.

GW-BASIC REFERENCE MANUAL .3

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.1 ABS FUNCTION

Syntax ABS(X)
Purpose To return the absolute value of the expression X.
‘Example PRINT ABS(7*(-5))
will yield
35

4-4 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.2 ASC FUNCTION

Syntax

Purpose

Remarks

Example

ASC(X$)

To return a numerical value that is the ASCII
code for the first character of the string X$. (See
Appendix C for ASCII codes.)

If X$ is null, an “Illegal function call” error is
returned.

10 X$=“TEST”
20 PRINT ASC(X$)
will yield

84

See the CHR$ function, Section 4.12, for details
on ASCII-to-string conversion.

GW-BASIC REFERENCE MANUAL 4-5

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.3 ATN FUNCTION

Syntax ATN(X)

Purpose To return the arctangent of X, where X is in
radians. Result is in the range -pi/2 to pi/2
radians.

Remarks The expression X may be any numeric type, but

the evaluation of ATN is always performed in
single precision.

Example 10 INPUT X
20 PRINT ATN(X)
will yield
73
1.249046

4-6 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.4 AUTO COMMAND

Syntax

Purpose

Remarks

Example

GW-BASIC
Compiler

AUTO [<line number>[,<increment>]]

To automatically generate line numbers during
program entry.

AUTO begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is followed by a comma but
<increment>> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk
will save the existing line and generate the next
line number.

If the cursor is moved to another line on the
screen, numbering will resume there.

AUTO is terminated by typing CONTROL-C. The
line in which CONTROL-C is typed will not be
saved. After CONTROL-C is typed, GW-BASIC
returns to command level.

AUTO 100,50

Generates line numbers 100,
150, 200

AUTO
Generates line numbers 10,

20, 30,40

The AUTO command is not supported by the
GW-BASIC Compiler.

GW-BASIC REFERENCE MANUAL 4-7

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.5 BEEP STATEMENT

Syntax BEEP
Purpose Sounds the speaker at 830 Hz for 240ms.
Remarks Non-graphic versions of MS-BASIC use PRINT

CHRS$ to send an ASCII Bell Character.

Example 2430 IF X < 20 THEN BEEP ’X is out or range,
complain.

4-8 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.6 BLOAD STATEMENT

Syntax

Purpose

Remarks

BLOAD <filespec> [,<<offset>]

The device designation portion of the filespec is
optional. The filename may be 1 to 8 characters
long.

< offset> is a numeric expression returning an
unsigned integer in the range 0 to 65535. This is
the offset address at which loading is to start in
the segment declared by the last DEF SEG
statement.

To load a specified memory image file into
memory from disk.

The BLOAD statement allows a program or data
that has been saved as a memory image file to be
loaded anywhere in memory. A memory image
file is a byte-for-byte copy of what was originally
in memory. See “BSAVE Statement,” Section 4.7,
for information about saving memory image
files.

If the offset is omitted, the segment address and
offset contained in the file (i.e., the address
specified by the BSAVE statement when the file
was created) are used. Therefore, the file is
loaded into the same location from which it was
saved.

If offset is specified, the segment address used is
the one given in the most recently executed DEF
SEG statement. If no DEF SEG statement has
been given, the GW-BASIC data segment will be
used as the default (because it is the default for
DEF SEG).

CAUTION: BLOAD does not perform an
address range check. It is
therefore possible to load a file
anywhere in memory. The user
must be careful not to load over

GW-BASIC REFERENCE MANUAL 4-9

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC or the operating
system.

Example 10 ‘Load subroutine at 60:F000
20 DEF SEG=&H6000 ‘Set segment at 6000
Hex
30 BLOAD“PROG1”,&HF000 ‘Load PROG1

This example sets the segment address at 6000
Hex and loads PROG1 at F000.

GW-BASIC
Compiler The BLOAD statement is not supported by the
GW-BASIC Compiler.

4-10 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.7 BSAVE STATEMENT

Syntax

Purpose

Remarks

Example

BSAVE <filespec>,<<offset>,<length>

The device designation portion of the filespec is
optional. The filename may be 1 to 8 characters
long.

<offset> is a numeric expression returning an
unsigned integer in the range 0 to 65535. This is
the offset address to start saving from in the
segment declared by the last DEF SEG

statement.

<length> is a numeric expression returning an
unsigned integer in the range 1 to 65535. This is
the length in bytes of the memory image file to be
saved.

To save the contents of the specified area of
memory as a disk file.

The <filespec>, <offset>, and <length> are
required in the syntax.

The BSAVE statement allows data or programs
to be saved as memory image files on disk or
cassette. A memory image file is a byte-for-byte
copy of what is in memory.

If the offset is omitted, a “Bad file name” error is
issued and the save is aborted. A DEF SEG
statement must be executed before the BSAVE.
The last known DEF SEG address will be used for

the save.

If length is omitted, a “Bad file name” error is
issued and the save is aborted.

10 ‘Save PROG1
20 DEF SEG =$H6000
30 BSAVE“PROG1”,&HF000,256

This example saves 256 bytes starting at
6000:F000 in the file PROGI.

GW-BASIC REFERENCE MANUAL 4-11

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler The BSAVE statement is not supported by the
GW-BASIC Compiler.

4-12 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.8 CALL STATEMENT

Syntax

Purpose

Remarks

Example

GW-BASIC
Compiler

CALL <variable name>[(<argument list>)]

where <variable name> contains an address
that is the starting point in memory of the
subroutine. <variable name> may not be an
array variable name.

<argument list>> contains the arguments that
are passed to the external subroutine.
<argument list> may contain only variables.

To call an assembly language subroutine or a
compiled routine written in another high level
language.

The CALL statement is one way to transfer
program flow to an external subroutine. (See also
the USR function, Section 4.140.)

The CALL statement generates the same calling
sequence used by Microsoft FORTRAN and
Microsoft BASIC compilers.

110 MYROUT =&HD000
120 CALL MYROUT(I,J,K)

In a compiled GW-BASIC program, line 110 in
the above example is not required because the
address of MYROUT will be assigned by the
linking loader at load time.

Additional differences for GW-BASIC Compiler
are:

1. The <variable name> is the name of the
subroutine that is to be called. The name
must be 1 to 31 characters long and must be
recognized by MS-LINK as a global symbol.

GW-BASIC REFERENCE MANUAL 4-13

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4-14

That is, <variable name> must be a
PUBLIC symbol in an assembly language
routine.

Since GW-BASIC Compiler allows strings to
be up to 32767 bytes long, the string
descriptor requires four bytes rather than
three as in the interpreter. The four bytes
are: low byte, high byte of the length,
followed by low byte, high byte of the
address. If the assembly language routine
uses string arguments, it may need to be
recoded to account for this difference. (See
the NCR GW-BASIC Compiler User’s Guide,
Chapter 9.)

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.9 CALLS STATEMENT

The CALLS statement is just like CALL, except that the segmented
addresses of all arguments are passed. (CALL passes unsegmented
addresses.) CALLS should be used when accessing routines written
with FORTRAN calling conventions, since all FORTRAN parameters
are call-by-reference segmented addresses.

With the interpreter only, CALLS uses the segment address defined
by the most recently executed DEF SEG statement to locate the
routine being called.

GW-BASIC REFERENCE MANUAL 4-15

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.10 CDBL FUNCTION

Syntax CDBL(X)
Purpose To convert X to a double precision number.
Example 10 A=454.67

20 PRINT A;CDBL(A)

will yield

454.67 454.6699829101563

4-16 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.11 CHAIN STATEMENT

Syntax

Purpose

Remarks

CHAIN [MERGE]<filespec>[,[<line number
exp>] [ALL],DELETE <range>]]

See the examples below for illustration of the
syntax options.

To call a program and pass variables to it from
the current program.

<filespec> is the spec of the program that is
called.

The COMMON statement may be used to pass
variables (see Section 4.20).

<line number exp> is a line number or an
expression that evaluates to a line number in the
called program. It is the starting point for
execution of the called program. If it is omitted,
execution begins at the first line. <line number
exp> is not affected by a RENUM command.

With the ALL option, every variable in the
current program is passed to the called program.
If the ALL option is omitted, the current program
must contain a COMMON statement to list the
variables that are passed. See Section 4.20 for
information about COMMON.

If the ALL option is used and <line number
expression> is not, a comma must hold the place
of <line number expression>. For example,
CHAIN “NEXTPROG”, ALL is correct; CHAIN
“NEXTPROG”,ALL is incorrect. In the latter
case, GW-BASIC assumes that ALL is a variable
name and evaluates it as a line number
expression.

The MERGE option allows a subroutine to be
brought into the GW-BASIC program as an
overlay. That is, the current program and the
called program are merged (see “MERGE

GW-BASIC REFERENCE MANUAL 4-17

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

Example 1

Example 2

Example 3

4-18

Command,” Section 4.80). The called program
must be an ASCII file if it is to be merged.

After an overlay is used, it is usually desirable to
delete it so that a new overlay may be brought in.
To do this, use the DELETE option.

The line numbers in <range> are affected by
the RENUM command.

10 REM THIS PROGRAM DEMONSTRATES
CHAINING USING COMMON TO PASS
VARIABLES.

20 REM SAVE THIS MODULE ON DISK AS
“PROG1” USING THE A OPTION.

30 DIM A$(2),B$(2)

40 COMMON A$(),B$()

50 A$(1)=“VARIABLES IN COMMON MUST
BE ASSIGNED”

60 A$(2)=“VALUES BEFORE CHAINING.”
70 B$(1)=“": B$(2) — 66

80 CHAIN “PROG2”

90 PRINT: PRINT B$(1): PRINT: PRINT B$(2):
PRINT

100 END

10 REM THE STATEMENT “DIM A$(2),B$(2)”
MAY ONLY BE EXECUTED ONCE.

20 REM HENCE, IT DOES NOT APPEAR IN
THIS MODULE.

30 REM SAVE THIS MODULE ON THE DISK
AS “PROG2” USING THE A OPTION.

40 COMMON A$(),B$()

50 PRINT:PRINT A$(1);A$(2)

60 B$(1)="“NOTE HOW THE OPTION OF
SPECIFYING A STARTING LINE NUMBER”
70 B$(2)=“WHEN CHAINING AVOIDS THE
DIMENSION STATEMENT IN ‘PROG1’.”

80 CHAIN “PROG1”,90

90 END

10 REM THIS PROGRAM DEMONSTRATES

CHAINING USING THE MERGE, ALL, AND
DELETE OPTIONS.

GW-BASIC REFERENCE MANUAL

Note

GW-BASIC
Compiler

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

20 REM SAVE THIS MODULE ON THE DISK

AS “MAINPRG”.

30 A$=“MAINPRG”

40 CHAIN MERGE “OVRLAY1”,1010,ALL
50 END

1000 REM SAVE THIS MODULE ON THE
DISK AS “OVRLAY1” USING THE A
OPTION.

1010 PRINT A$; “ HAS CHAINED TO
OVRLAY1.”

1020 A$=“OVRLAY1”

1030 B§=“OVRLAY2”

1040 CHAIN MERGE “OVRLAY2”,1010,ALL,
DELETE 1000-1050

1050 END

1000 REM SAVE THIS MODULE ON THE
DISK AS “OVRLAY2” USING THE A
OPTION.

1010 PRINT AS$; “ HAS CHAINED TO “;B$:.”.”
1020 END

The CHAIN statement with MERGE option
leaves the files open and preserves the current
OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined functions
for use by the chained program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or
DEFFN statements containing shared variables
must be restated in the chained program.

When using the MERGE option, user-defined
functions should be placed before any CHAIN
MERGE statements in the program. Otherwise,
the user-defined functions will be undefined after
the merge is complete.

The GW-BASIC Compiler does not support the
ALL, MERGE, DELETE, and <line number
exp> options to CHAIN. Thus, the statement

GW-BASIC REFERENCE MANUAL 4-19

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

syntax is CHAIN <filespec>. If you wish to
maintain compatibility with GW-BASIC
Compiler, we recommend that you use COMMON
to pass variables and that you do not use overlays.
The CHAIN statement leaves the files open
during chaining.

See the “GW-BASIC Compiler” portion of the
COMMON statement, Section 4.20, for more
information about chaining with COMMON.

4-20 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.12 CHR$ FUNCTION

Syntax

Purpose

Remarks

Example

CHR$(I)

To return a string whose one character is ASCII
character I. (ASCII codes are listed in Appendix
C.)

CHR$ is commonly used to send a special
character to the terminal. For instance, the
BELL character (CHR$(7)) could be sent as a
preface to an error message, or a form feed
(CHR$(12)) could be sent to clear a terminal
screen and return the cursor to the home position.

PRINT CHR$(66)
will yield
B

See the ASC function, Section 4.2, for details on
ASCII-to-numeric conversion.

GW-BASIC REFERENCE MANUAL 4-21

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.13 CINT FUNCTION

Syntax

Purpose

Remarks

Example

422

CINT(X)

To convert X to an integer by rounding the
fractional portion.

If X is not in the range -32768 to 32767, an
“Overflow” error occurs.

PRINT CINT(45.67)
will yield
46

See the CDBL and CSNG functions for details on
converting numbers to the double precision and
single precision data type, respectively. See also
the FIX and INT funections, both of which return
integers.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.14 CIRCLE STATEMENT

Syntax

Purpose

Remarks

CIRCLE (x,y), radius [,color[,start,end[,aspect]]]

Draws an ellipse according to the follox}sfing
definitions:

X,y
Specifies the coordinates of the center of the

ellipse.

radius
Specifies the radius (major axis) in points.

color

Specifies the color of the circle (0-7, see Color
statement). If not specified, the color is the
foreground color.

start,end

Specifies in radians where the drawing is to begin
and end. The values may range from -2*PI to
2*PI, where PI = 3.141593. (See also remarks.)

aspect

Specifies the ratio of the X radius to the Y radius.
(If not specified, the ratio is assumed to be 1/1, a
circle.) If the ratio is less than 1, the radius is the
X radius; if the ratio is greater than 1, the radius
is the Y radius.

The first two arguments (x,y coordinates and
radius) are the only ones required to draw a
circle. Use the last two arguments to draw other
“curved” shapes. Start and end, for example,
allow you to control how much of the circle is to
be drawn. The values of start and end are in
radians, positioned in the standard
mathematical way.

GW-BASIC REFERENCE MANUAL 4-23

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

PI/2

0*PI

P 2*PI

3'PIf2

Either start or end value may be negative (-0,
however, is not allowed) in which case the angle is
connected to the center point with a line. For
example, start and end values of -P1/2, -2PI
would draw part of a circle.

Use the aspect argument to draw an ellipse other
than a circle. If the aspect ratio is less than 1,
then ris the X radius; if the aspect ratio is greater
than 1, then r is the Y radius. For example,

10 SCREEN 1
20 CIRCLE (160,100),60,,,,5/18

will draw an ellipse like this:

4-24 GW-BASIC REFERENCE MANUAL

NCR Corporation is pleased to provide GW-BASIC software for
implementation on your NCR Decision Mate V. Your GW-BASIC
package contains an NCR GW-BASIC Reference Manual, a GW-BASIC
User’s Guide for either the GW-BASIC Interpreter or the GW-BASIC
Compiler, and a disk which holds the following files:

NCR GW-BASIC (Interpreter) NCR GW-BASIC Compiler

For MS™-DOS For MS™-DOS
Disk 1 of 1 Disk 1 of 1
GWBASIC.EXE GWBCOM.COM
GWCONF.COM BASCOMG.LIB
DUMPCL.OBJ BASRUNG.LIB
BASRUNG.EXE
GWCONF.COM
DEMO.BAS

LINK.EXE

NCR GW-BASIC Compiler

The GW-BASIC Compiler program has been pre-installed for your
NCR Decision Mate V.

No programmable function key assignments have been made. To
define your own, see the KEY Statement in Chapter 4, Section 4.61, of
your NCR GW-BASIC Reference Manual.

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16
F17

F18

F19

F20

NCR GW-BASIC (Interpreter)

The GW-BASIC program has been pre-installed for your NCR
Decision Mate V. The programmable function keys have been assigned
the values which appear below. See the KEY Statement in Chapter 4,
Section 4.61 of your GW-BASIC REFERENCE MANUAL for detailed
instructions in utilizing these function keys.

F1 LOAD

F2 RUN

F3 CONT

F4 SAVE

F5 LIST

F6 EDIT

F7 TRON

F8 TROFF
F9 PRINT
F10 PRINT USING
F11 GOTO
F12 GOSUB
F13 IF

F14 THEN
F15 ELSE
F16 CHR$
F17 STRING$
F18 LINE

F19 CIRCLE
F20 DRAW

N CR

GW™-BASIC
Reference Manual

For MS™-DOS

COPYRIGHT NOTICE

Copyright® 1983 by Microsoft Corporation, all rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Microsoft Corporation.

TRADEMARKS

Microsoft and the Microsoft logo are registered trademarks of Microsoft Corporation.
MS, GW, Music Macro Language, and Graphics Macro Language are trademarks of
Microsoft Corporation. Teletype is a registered trademark of Teletype Corporation.

DISCLAIMER OF WARRANTY

NCR Corporation and Microsoft Corporation make no representations or warranties
with respect to the contents hereof and specifically disclaim any implied warranties of
merchantability or fitness for any particular purpose. Further, NCR Corporation and
Microsoft Corporation reserve the right to revise this publication and to make changes
from time to time in the content hereof without obligation to notify any person or
organization of such revisions or changes.

The GW-BASIC Compiler Software and Manual are sold AS IS and without warranty as
to performance. While NCR Corporation and Microsoft Corporation firmly believe this
to be a high quality product, the user must assume all risks of using the program.

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Points that are off the screen are not drawn by
the Circle statement.

GW-BASIC REFERENCE MANUAL 4-25

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.15 CLEAR STATEMENT

Syntax

Purpose

Remarks

Note

426

CLEAR [,[<expressionl>],<expression2>]]

To set all numeric variables to zero, all string
variables to null, and to close all open files; and,
optionally, to set the end of memory and the
amount of stack space.

<<expressionl> is a memory location that, if
specified, sets the highest location available for
use by GW-BASIC.

<expression2> sets aside stack space for
GW-BASIC. The default is 768 bytes or
one-eighth of the available memory, whichever is
smaller.

GW-BASIC allocates string space dynamically.
An “Out of string space” error occurs only if
there is no free memory left for GW-BASIC to
use.

The CLEAR statement performs the following
actions:

Closes all files.

Clears all COMMON variables.

Resets numeric variables and arrays to
Zero.

Resets the stack and string space.
Resets all string variables and arrays to
null.

Releases all disk buffers.

Resets all DEF FN and
DEF/SNG/DBL/STR statements (for
interpreter only).

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Examples CLEAR
CLEAR ,32768
CLEAR ,,2000
CLEAR ,32768,2000

GW-BASIC

Compiler GW-BASIC Compiler supports the CLEAR
statement with the restriction that
<expressionl> and < expression2> must be
integer expressions. If a value of 0 is given for
either expression, the appropriate default is used.
The default stack size is 768 bytes, and the default
top of memory is the current top of memory.

GW-BASIC REFERENCE MANUAL 4-27

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.16 CLOSE STATEMENT

Syntax

Purpose

Remarks

Example

428

CLOSE [[#]<file number>[,[#]<file
number...>]]

To conclude I/0 to a file. The CLOSE statement is
complementary to the OPEN statement.

<file number> is the number under which the
file was opened. A CLOSE with no arguments
closes all open files.

The association between a particular file and file
number terminates upon execution of a CLOSE
statement. The file may then be reopened using
the same or a different file number; likewise, that
file number may now be reused to open any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command
always close all disk files automatically. (STOP
does not close disk files.)

CLOSE #1,#2

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.17 CLS STATEMENT
Syntax CLS

Purpose Erases the screen to the currently selected
background color.

Remarks You may also clear the screen with the
CONTROL-L or CONTROL-HOME (X) keys.
(The SCREEN statement also clears the screen.)

If the KEY ON statement is in effect when you
use the CLS statement, the screen is cleared;
however, the function line at the bottom of the
screen is renewed with the currently active
background/foreground colors.

GW-BASIC REFERENCE MANUAL 4-29

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.18 COLOR STATEMENT

Syntax

Purpose

Remarks

430

COLOR [foreground] [,background]

foreground
Specifies the character color. Enter an unsigned
integer in the range 0-7 (see following chart).

background
Specifies the screen color. Enter an unsigned
integer in the range 0-7 (see following chart).

Changes either (or both) the foreground or
background colors. The colors are specified by
codes:

o
I

lack

Il
o o
Pt
=
[}

reen

Il
w

Il

<
©
=]

I
8

agenta
ellow
hite

IO T O DD
I I
< 80
o

I
g

You may omit either parameter, in which case the
value from a previous COLOR statement (if any)
is assumed.

The foreground and background colors may be
the same, making the characters invisible.

If converting programs, note that NCR
GW-BASIC accepts a third parameter and codes
8-31 without displaying an error message. Also,
the syntax does not differ for text and graphics
mode.

An illegal parameter value results in an “Illegal
Function Call” message. The screen colors
remain as they were before the statement was
entered.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Examples 10 COLOR 4,7 Uses red characters on a white
background.

20 COLOR ,,4 Changes the background to red;
character are invisible.

30 COLOR 2,0 Uses green characters on a black
background.

GW-BASIC REFERENCE MANUAL 4-31

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.19 COM STATEMENT

Syntax

Purpose

The COM(n)

Note

Example

GW-BASIC
Compiler

COM(n) ON
COM(n) OFF
COM(n) STOP

where (n) is the number of the communications
channel. The range for (n) is specified by the
implementor.

To enable or disable event trapping of
communications activity on the specified
channel.

ON statement enables communications event
trapping by an ON COM statement (see “ON
COM Statement,” Section 4.87). While trapping is
enabled, and if a non-zero line number is
specified in the ON COM statement, GW-BASIC
checks between every statement to see if activity
has occurred on the communications channel. If
it has, the ON COM statement is executed.

COM(n) OFF disables communications event
trapping. If an event takes place, it is not
remembered.

COM(n) STOP disables communications event
trapping, but if an event oceurs, it is remembered
and ON COM will be executed as soon as trapping
is enabled.

For additional information on communications
event trapping, see “Event Trapping,” Section
1.6, and “ON COM Statement,” Section 4.87.

10 COM(1) ON

Enables error trapping of communications
activity on channel 1.

See compiler note under “ON COM Statement,”
Section 4.87.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.20 COMMON STATEMENT

Syntax
Purpose

Remarks

Example

GW-BASIC
Compiler

COMMON <list of variables>
To pass variables to a chained program.

The COMMON statement is used in conjunction
with the CHAIN statement. COMMON
statements may appear anywhere in a program,
though it is recommended that they appear at the
beginning. The same variable cannot appear in
more than one COMMON statement. Array
variables are specified by appending “()” to the
variable name. If all variables are to be passed,
use CHAIN with the ALL option and omit the
COMMON statement.

Some Microsoft products allow the number of
dimensions in the array to be included in the
COMMON statement. GW-BASIC will accept
that syntax, but will ignore the numeric
expression itself. For example, the following
statements are both valid and are considered
equivalent:

COMMON A()
COMMON A(3)

The number in parentheses is the number of
dimensions, not the dimensions themselves. For
example, the variable A(3) in this example might
correspond to a DIM statement of DIM A(5,8,4).

100 COMMON A,B,C,D(),G$
110 CHAIN “PROG3”,10

With the compiler, the COMMON statement
must appear in a program before any executable
statements. The current nonexecutable
statements are:

GW-BASIC REFERENCE MANUAL 4-33

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4-34

COMMON

DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM

OPTION BASE

REM

$INCLUDE (see GW-BASIC Operations
Guide)

Array variables used in a COMMON statement
must be declared in a preceding DIM statement.

The standard form of the COMMON statement is
referred to as “blank” COMMON. The
GW-BASIC Compiler also supports Microsoft
FORTRAN Compiler-style “named” COMMON
areas; however, the variables are not preserved
across chains. The syntax for named COMMON
is:

COMMON /<name>/ <list of variables>

where <name> consists of 1 to 6 alphanumeric
characters starting with a letter. This is useful
for communicating with programs that use
FORTRAN calling conventions and assembly
language routines, without having to explicitly
pass parameters in the CALL statement.

With the compiler, the order of variables must be
the same for all COMMON statements
communicating between chaining and chained-to
programs. If the size of the common region in the
chained-to program is smaller than the region in
the chaining program, the extra COMMON
variables in the chaining program are ignored. If
the size of the common region in the chained-to
program is larger, the additional COMMON
variables are initialized to zeros and null strings.

To ensure that common areas can be shared
between programs, place COMMON declarations
in a single include file and use the $INCLUDE
statement in each program. (See the NCR GW-
BASIC User’s Guide for discussion of the
$INCLUDE statement.) For example:

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 REM This file is MENU.BAS
20 REM $INCLUDE:‘COMDEF’

1000 CHAIN “PROG1”

10 REM This file is PROG1.BAS
20 REM $INCLUDE:‘COMDEF.BAS’

2600 CHAIN “MENU”

10 REM This file is COMDEF.BAS
100 DIM A(100),B$(200)

110 COMMON LJ,K,A()

120 COMMON A$,B$(),X,Y,Z

130 REM End COMDEF.BAS

The BASCOMG.LIB runtime library does not
support COMMON with chained programs.
Therefore, programs should not be compiled with
the /0 switch if they use the COMMON statement
in conjunction with the CHAIN statement.

GW-BASIC REFERENCE MANUAL 4-35

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.21 CONT COMMAND

Syntax

Purpose

Remarks

Example

GW-BASIC
Compiler

436

CONT

To continue program execution after a Control-C
has been typed or a STOP or END statement has
been executed.

Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (“?” or prompt
string).

CONT is usually used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and
changed using direct mode statements. Execution
may be resumed with CONT or a direct mode
GOTO, which resumes execution at a specified
line number. CONT may be used to continue
execution after an error has occurred.

CONT is invalid if the program has been edited
during the break.

See “STOP Statement,” Section 4.129.

The CONT command is not supported by the
GW-BASIC Compiler.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.22 COS FUNCTION

Syntax

Purpose

Remarks

Example

COS(X)

To return the cosine of X, where X is in radians.

The calculation of COS(X) is performed in single
precision.

10 X=2*COS(.4)

20 PRINT X

will yield
1.842122

GW-BASIC REFERENCE MANUAL 4-37

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.23 CSNG FUNCTION

Syntax CSNG(X)
Purpose To convert X to a single precision number.
Example 10 A# = 975.3421#

20 PRINT A#; CSNG(A#)

will yield

975.3421 975.3421

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types, respectively.

4-38 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.24 CSRLIN FUNCTION

Syntax

Purpose

Example

X = CSRLIN

X
Specifies any numeric variable for which the
software returns a value in the range 1 through
24.

Returns the current line position of the cursor.

In the following example, the statement in line 10
returns the current line position. In line 20 the
statement returns the current column position; in
line 80 it prints HELLO in the middle of the
screen, and in line 40 it restores the position of
the cursor to the previous line and column. The
software returns a value for X = POS(0) in the
range 1 through 80.

10 Y = CSRLIN
20 X = POS(0)
30 LOCATE 12,40 :PRINT “HELLO”
40 LOCATE Y,X

GW-BASIC REFERENCE MANUAL 4-39

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.25 CVI, CVS, CVD FUNCTIONS

Syntax

Purpose

Remarks

Example

4-40

CVI(<2-byte string>)
CVS(<4-byte string>)
CVD(<8-byte string>)

To convert string values to numeric values.

Numeric values that are read in from a random
disk file must be converted from strings back into
numbers. CVI converts 2-byte string to an
integer. CVS converts a 4-byte string to a single
precision number. CVD converts an 8-byte string
to a double precision number.

70 FIELD #1,4 AS N$, 12 AS BS, ...
80 GET #1
90 Y=CVS(N$)

See also “MKI$, MKS$, MKD$ Functions,”
Section 4.83.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.26 DATA STATEMENT

Syntax

Purpose

Remarks

Example

DATA <list of constants>

To store the numeric and string constants that
are accessed by the program’s READ
statement(s). (See “READ Statement,” Section
4.109.)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas). Any number
of DATA statements may be used in a program.
READ statements access DATA statements in
order (by line number). The data contained
therein may be thought of as one continuous list
of items, regardless of how many items are on a
line or where the lines are placed in the program.

<list of constants> may contain numeric
constants in any format; i.e. fixed-point,
floating-point, or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be
surrounded by double quotation marks only if
they contain commas, colons, or significant
leading or trailing spaces. Otherwise, quotation
marks are not needed.

The variable type (numeric or string) given in the
READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the
beginning by use of the RESTORE statement
(Section 4.113).

See “READ Statement,” Section 4.109.

GW-BASIC REFERENCE MANUAL 4-41

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.27 DATE$ STATEMENT
Syntax DATE$= <string expression>

< string expression> returns a string in one of
the following forms:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

Purpose To set the current date. This statement
complements the DATE$ function, which
retrieves the current date.

Example 10 DATE$=01-15-1984"

The current date is set at January 15, 1984.

4-42 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.28 DATE$ FUNCTION

Syntax

Purpose

Remarks

Example

x$=DATES$

To retrieve the current date. (To set the date, use
the DATES$ statement, described in Section 4.27.)

The DATE$ function returns a ten-character
string in the form mm-dd-yyyy, where mm is the
month (01 through 12), dd is the day (01 through
31), and yyyy is the year (1980 through 2099).

10 PRINT DATE$

The DATES$ function prints the date, calculated
from the date set with the DATE$ statement.

GW-BASIC REFERENCE MANUAL 443

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.29 DEF FN STATEMENT

Syntax

Purpose

Remarks

4-44

DEF FN<name>[(<parameter list>)]=
<function definition>

To define and name a function that is written by
the user.

<name> must be a legal variable name. This
name, preceded by FN, becomes the name of the
function.

<parameter list> consists of those variable
names in the function definition that are to be
replaced when the function is called. The items in
the list are separated by commas.

<function definition> is an expression that
performs the operation of the function. It is
limited to one logical line. Variable names that
appear in this expression serve only to define the
function; they do not affect program variables
that have the same name. A variable name used
in a function definition may or may not appear in
the parameter list. If it does, the value of the
parameter is supplied when the function is called.
Otherwise, the current value of the variable is
used.

The variables in the parameter list represent, on
a one-to-one basis, the argument variables or
values that will be given in the function call.

This statement may define either numeric or
string functions. If a type is specified in the
function name, the value of the expression is
forced to that type before it is returned to the
calling statement. If a type is-specified in the
function name and the argument type does not
match, a “Type mismatch” error occurs.

A DEF FN statement must be encountered before

the function it defines may be called. If a function
is called before it has been defined, an

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

“Undefined user function” error occurs. DEF FN
is illegal in the direct mode.

Example

410 DEF FNAB(X,Y)=X 13/ 12
420 T=FNAB(LJ)

Line 410 defines the function FNAB. The function
is called in line 420.

GW-BASIC REFERENCE MANUAL 4-45

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.30 DEFINT/SNG/DBL/STR STATEMENTS

Syntax

Purpose

Remarks

Examples

GW-BASIC
Compiler

4-46

DEF <type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

To declare variable types as integer, single
precision, double precision, or string.

Any variable names beginning with the letter(s)
specified in <range of letters> will be
considered the type of variable specified in the
<type> portion of the statement. However, a
type declaration character always takes
precedence over a DEFtype statement. (See
“Variable Names and Declaration Characters,”
Section 3.7.1.)

If no type declaration statements are
encountered, GW-BASIC assumes that all
variables without declaration characters are
single precision variables.

10 DEFDBL L-P
All variables beginning with the letters L, M,
N, O. and P will be double precision variables.

10 DEFSTR A
All variables beginning with the letter A will
be string variables.

10 DEFINT I-N,W-Z
All variables beginning with the letters I, J,
K, L, M, N, W, X, Y, Z will be integer
variables.

The compiler does not ‘“execute” a DEFxxx
statement, as it does a PRINT statement, for
example. A DEFxxx statement takes effect as
soon as it is encountered in the program during
compilation. Once the type has been defined for
the listed variables, that type remains in effect
either until the end of the program or until

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

another DEFxxx statement alters the type of the
variable. Unlike the interpreter, the compiler
cannot circumvent the DEFxxx statement by
directing flow of control around it with a GOTO
statement. For variables given with a precision
designator (i.e., %, !, #, as in A% =B), the type is
not affected by the DEFxxx statement.

At compiletime, the compiler allocates memory
for storage of designated variables, and assigns
them one of the following data types:

1. Integer (INT)
2. Single precision floating-point (SNG)
3. Double precision floating-point (DBL)

4. String (STR)

GW-BASIC REFERENCE MANUAL 4-47

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.31 DEF SEG STATEMENT
Syntax DEF SEG [= <address>]

where <address> is a numeric expression
returning an unsigned integer in the range 0 to
65535.

Purpose To assign the current segment address to be
referenced by a subsequent BLOAD, BSAVE,
CALL, CALLS, or POKE statement or by a USR
or PEEK function.

Remarks The address specified is saved for use as the
segment required by BLOAD, BSAVE, CALL,
CALLS, POKE, USR, and PEEK.

Entry of any value outside the <address> range
0 through 65535 will result in an “Illegal function
call” error, and the previous value will be
retained.

If the <address> option is omitted, the segment
to be used is set to the GW-BASIC data segment
(DS). This is the initial default value.

If the <address> option is given, it should be
based on a 16-byte boundary. GW-BASIC does
not check the validity of the specified address.

Note DEF and SEG must be separated by a space.
Otherwise, GW-BASIC will interpret the
statement DEFSEG=100 to mean “assign the
value 100 to the variable DEFSEG.”

Example 10 DEF SEG =&HB800 ‘Seg segment to &800 Hex
20 DEF SEG ‘Restore segment to GW-BASIC
data segment

GW-BASIC

Compiler With the compiler, DEF SEG is referenced only
by the POKE statement and the PEEK and USR
functions.

4-48 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.32 DEF USR STATEMENT

Syntax

Purpose

Remarks

Example

DEF USR[<digit>]= <integer expression>

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of
<integer expression> is the starting address of
the USR routine.

Any number of DEF USR statements may appear
in a program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

200 DEF USRO0=24000
210 X=USRO(Y 12/2.89)

GW-BASIC REFERENCE MANUAL 4-49

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.33 DELETE COMMAND

Syntax DELETE [<line number>]-<line number>]
Purpose To delete program lines.
Remarks GW-BASIC always returns to command level

after a DELETE is executed. If <line number>
does not exist, an “Illegal function call” error
occurs.

Examples DELETE 40
Deletes line 40.

DELETE 40-100
Deletes lines 40 through 100, inclusive.

DELETE -40
Deletes all lines up to and including line 40.

GW-BASIC
Compiler The DELETE command is not supported by the
GW-BASIC Compiler.

4-50 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.34 DIM STATEMENT

Syntax

Purpose

Remarks

Example

GW-BASIC
Compiler

DIM <list of subscripted variables>

To specify the maximum values for array
variable subscripts and allocate storage
accordingly.

If an array variable name is used without a DIM
statement, the maximum value of the array’s
subscript(s) is assumed to be 10. If a subscript is
used that is greater than the maximum specified,
a “Subscript out of range” error occurs. The
minimum value for a subscript is always 0, unless
otherwise specified with the OPTION BASE
statement (see Section 4.94).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

Theoretically, the maximum number of
dimensions allowed in a DIM statement is 255. In
reality, however, that number would be
impossible, since the name and punctuation are
also counted as spaces on the line, and the line
itself has a limit of 255 characters. The number of
dimensions is further limited by the amount of
available memory.

10 DIM A(20)
20 FOR 1=0 TO 20
30 READ A(])

40 NEXT I

With the compiler, the DIM statement is scanned
rather than executed. That is, DIM takes effect
when it is encountered at compiletime and
remains in effect until the end of the program. It
cannot be reexecuted at runtime.

GW-BASIC REFERENCE MANUAL 4-51

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4-52

If the default dimension (10) has already been
established for an array variable, and that
variable is later encountered in a DIM statement,
an “Array already dimensioned” error results.
Therefore, the practice of putting a collection of
DIM statements in a subroutine at the end of a
program generates severe errors. In that case, the
compiler sees the DIM statement only after it has
already assigned the default dimension to arrays
declared earlier in the program.

The values of the subscripts in a DIM statement
must be integer constants; they may not be
variables, arithmetic expressions, or
floating-point values.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.35 DRAW STATEMENT

Syntax

Purpose

Remarks

DRAW <string expression>

Draws an object as specified by the string
expression.

With the Draw statement you can draw an object
using object definition language commands. A
language command is a single character within a
string, optionally followed by one or more
arguments. The string expression defines an
object which is drawn on the screen when BASIC
executes the DRAW statement.

The following movement commands begin
movement from the coordinates of the last point
plotted with another language command, LINE
statement, or PSET statement. When a program
is RUN, movement begins from the center of the
screen (320,200).

U [<n>] Move up

D [<n>] Move down

L [<n>] Move left

R [<n>] Move right

E [<n>] Move diagonally up and right

F [<n>] Move diagonally down and right
G [<n>] Move diagonally down and left
H [<n>] Move diagonally up and left

The n in the preceding commands indicates the
distance to move. The number of points moved is
n times the scale factor (see S below). If you do
not specify n, commands move one unit.

M<x,y>

Move absolute or offset (see Chapter 1 for
discussion of x and y coordinates). If x is preceded
by a + or -,x and y are added to the coordinates of
the last point plotted and connected to the
current point by a line. If no + or - is added, a line
is drawn to point (x,y) from the current point.

GW-BASIC REFERENCE MANUAL 4-53

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

Examples

4-54

The following prefix commands may precede any
of the above movement commands:

B
Move but do not plot any points.

N
Move but return to original position when done.

A <n>

Set angle n. n may range from 0 to 3, where 0 is 0
degrees, 1 is 90 degrees, 2 is 180 degrees, and 3 is
270 degrees.

C <n>
Set color n. n may range from 0 to 7 (see Color
statement).

S <n>

Set scale factor. n may range from 1 to 255. The
scale factor multiplied by the distances given
with the U, D, L, R, E, F, G, H, and M commands
gives the actual distance moved.

X <string>

Execute substring. Allows you to execute a second
substring from a string, much like GOSUB in
BASIC. Arguments can be constants like 123 or
=variable, where variable is the name of a
variable.

To draw a triangle:

10 SCREEN 1
20 DRAW “E60;F60;L.120”

To draw a box:

10 SCREEN 1
20 V =100
30 DRAW “U=V;R=V;D=V,L=V"

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC

Compiler The GW-BASIC Compiler does not support the X
<string expression> subcommand. However,
you can execute a substring by appending the
character form of the address to “X”. For
example, the following two statements are
equivalent. The first statement would be used
with the interpreter, the second with the
compiler.

DRAW “XAS$;”

DRAW “X”+VARPTR$(A$)

GW-BASIC REFERENCE MANUAL 4-55

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.36 EDIT COMMAND

Syntax

Purpose

Remarks

GW-BASIC
Compiler

456

EDIT <line number>

line number

Specifies the line number of a line in the
program. If there is no such line, an “Undefined
Line Number” error message is displayed.

Displays a line for editing.

The EDIT statement simply displays the line
specified and positions the cursor under the first
digit of the line number. You may then modify
the line using the keys described in the Full
Screen Editor section of Chapter 2.

A period (.) always refers to the current line. If
you have just entered a line and want to go back
and edit it, you may enter EDIT. to redisplay the
line.

The EDIT command is not supported by the
GW-BASIC Compiler.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.37 END STATEMENT

Syntax

Purpose

Remarks

Example

END

To terminate program execution, close all files,
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the
STOP statement, END does not cause a “Break in
line nnnnn” message to be printed. An END
statement at the end of a program is optional.
GW-BASIC always returns to command level
after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

GW-BASIC REFERENCE MANUAL 4-57

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.38 EOF FUNCTION
The EOF function may be used with random access files as well as
sequential files.

Syntax EOF(<file number>)
Purpose To test for the end-of-file condition.

For sequential files, the EOF function returns
true (-1) if there is no more data in the file. The
file is empty if the next input operation (INPUT,
LINE INPUT, INPUTS$, for example) would cause

an “Input past end” error.

For random access files, the EOF function
returns true (-1) if the most recently executed
GET statement attempts to read beyond the
end-of-file.

Remarks Because MS-BASIC allocates 128 bytes to a file at
a time, it is possible that EOF will not accurately
detect the end of a random access file which has
been opened with a record length of less than 128
bytes. For example, if a file is opened with a
record length of 64 bytes and one record is
written to the file (e.g., PUT#1,1), EOF will
return false if a GET statement is attempted on
the second record of the file (e.g.,, GET#1,2). This
will occur even though this record has not
actually been written to.

Example 10 REM
20 REM Open the library catalog file,
30 REM LIBRARY.DAT.
40 OPEN “R”,#1,“LIBRARY.DAT”
50 REM The first 35 bytes of the
60 REM record contain the title,
70 REM the remaining 93 bytes con-
80 REM tain additional information which
90 REM is not used by this program.
100 FIELD+1,35 AS TITLE$,93 AS G$
110 REM
120 REM Initialize the number of books seen.
130 REM

4-58 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

140 NBOOKS=0

150 REM Attempt to fetch the next record.
160 REM Note that the record number

170 REM argument of GET isn’t specified
180 REM so the next record of the

190 REM file is fetched.

200 GET #1

210 REM

220 REM Is this the end of the file?

230 REM

240 IF EOF(1) THEN 1000

250 REM No, increment the count of books,
260 REM print the current title, and

270 REM loop back to read the next

280 REM record.

290 NBOOKS=NBOOKS+1

300 PRINT TITLES$

310 GOTO 200

1000 REM Here when the end of file has
1010 REM been reached. Print a blank line
1020 REM and the number of books, close the
1030 REM file and terminate the program.
1040 PRINT “These are “;NBOOKS;” books in”;
1050 PRINT “your library.”

1060 CLOSE

1070 END

This sample program lists the titles of the books
cataloged in the file LIBRARY.DAT. It also
counts the books in the library by counting the
number of records which are read from
LIBRARY.DAT before the end-of-file is encoun-
tered.

Eachrecord of LIBRARY.DAT contains informa-
tion on one book in the library. The record length
is 128 bytes. The first 35 bytes contain the title of
the book; the remaining 93 bytes contain addi-
tional information about the book (e.f., author,
publisher, location, etc.). This information is not
used in this example.

GW-BASIC REFERENCE MANUAL 4-59

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.39 ERASE STATEMENT

Syntax
Purpose

Remarks

Example

GW-BASIC
Compiler

4-60

ERASE <list of array variables>
To eliminate arrays from memory.

Arrays may be redimensioned after they are
erased, or the previously allocated array space in
memory may be used or other purposes. If an
attempt is made to redimension an array without
first erasing it, a “Duplicate definition” error
occurs.

450 ERASE A,B

460 DIM B(99)

GW-BASIC Compiler does not support ERASE.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.40 ERR AND ERL VARIABLES
When an error handling routine is entered, the variable ERR contains
the error code for the error and the variable ERL contains the line
number of the line in which the error was detected. The ERR and ERL
variables are usually used in IF...THEN statements to direct program
flow in the error handling routine.

With the GW-BASIC Interpreter, if the statement that caused the
error was a direct mode statement, ERL will contain 65535. To test
whether an error occurred in a direct statement, use IF 65535=ERL
THEN Otherwise, use

IF ERR=error code THEN ...

IF ERL=line number THEN ...

If the line number is not on the right side of the relational operator, it
cannot be renumbered with RENUM. Because ERL and ERR are
reserved variables, neither may appear to the left of the equal sign in
a LET (assignment) statement. GW-BASIC error codes are listed in
Appendix A.

GW-BASIC REFERENCE MANUAL 4-61

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.41 ERROR STATEMENT

Syntax

Purpose

Remarks

Example 1

4-62

ERROR <integer expression>

To simulate the occurrence of a BASIC error, or
to allow error codes to be defined by the user.

ERROR can be used as a statement (part of a
program source line) or as a command (in direct
mode).

The value of <integer expression> must be
greater than 0 and less than 255. If the value of
<integer expression> equals an error code
already in use by BASIC (see Appendix A), the
ERROR statement will simulate the occurrence
of that error and the corresponding error
message will be printed. (See Example 1.)

To define your own error code, use a value that is
greater than any used by GW-BASIC error codes.
(It is preferable to use the highest available
values, so compatibility may be maintained when
more error codes are added to GW-BASIC.) This
user-defined error code may then be conveniently
handled in an error handling routine. (See
Example 2.)

If an ERROR statement specifies a code for
which no error message has been defined,
GW-BASIC responds with the “Unprintable
error” error message. Execution of an ERROR
statement for which there is no error handling
routine causes an error message to be printed and
execution to halt.

10 S=10

20 T=5

30 ERROR S+T

40 END

will yield

String too long in line 30

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Or, in direct mode (interpreter only):

Ok

ERROR 15 (You type this line.)

String too long (GW-BASIC types this line.)
Ok

Example 2

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET”:B
130 IF B>5000 THEN ERROR 210

460 IF ERR=210 THEN PRINT “HOUSE
LIMIT IS $5000”
410 IF ERL=130 THEN RESUME 120

GW-BASIC REFERENCE MANUAL 4-63

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.42 EXP FUNCTION

Syntax EXP(X)

Purpose To return e (base of natural logarithms) to the
power of X. X must be <= 88.02969.

Remarks If x is greater than 88.02969, the “Overflow” error
message is displayed, machine infinity with the
appropriate sign is supplied as the result, and
execution continues.

Example 10 X=5
20 PRINT EXP(X-1)
will yield
54.59815

4-64 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.43 FIELD STATEMENT

Syntax

Purpose

Remarks

Note

Example 1

FIELD [#]<file number>,<field width> AS
<string variable>...

To allocate space for variables in a random file
buffer.

Before a GET statement or PUT statement can be
executed, a FIELD statement must be executed to
format the random file buffer.

<file number> is the number under which the
file was opened. <field width> is the number of
characters to be allocated to <string variable>.

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was opened.
Otherwise, a “Field overflow” error occurs. (The
default record length is 128 bytes.)

Any number of FIELD statements may be
executed for the same file. All FIELD statements
that have been executed will remain in effect at
the same time.

Do not use a fielded variable name in an INPUT
or LET statement. Once a variable name is
fielded, it points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is exe-
cuted, the variable’s pointer is moved to string
space.

FIELD 1,20 AS N$,10 AS ID$,40 AS ADD$

Allocates the first 20 positions (bytes) in the
random file buffer to the string variable N§, the
next 10 positions to ID$, and the next 40 positions
to ADDS$. FIELD does not place any data in the
random file buffer. (See also “GET Statement,”
Section 4.48, and “LSET and RSET Statements,”
Section 4.79.)

GW-BASIC REFERENCE MANUAL 4-65

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

Example 2

Example 3

Example 4

4-66

10 OPEN “R,”#1,“A:PHONELST”,35

15 FIELD #1,2 AS RECNBR$,33 AS DUMMY$
20 FIELD #1,25 AS NAMES,10 AS
PHONENBRS$

25 GET #1

30 TOTAL=CVI(RECNBR)$

35 FOR I=2 TO TOTAL

40 GET #1,1

45 PRINT NAMES, PHONENBR$

50 NEXT I

Illustrates a multiple defined FIELD statement.
In statement 15, the 35-byte field is defined for
the first record to keep track of the number of
records in the file. In the next loop of statements
(35-50), statement 20 defines the field for individ-
ual names and phone numbers.

10 FOR LOOP% =0 TO 7

20 FIELD #1,(LOOP%*16) AS OFFSET$,16 AS
A$(LOOP%)

30 NEXT LOOP%

Shows the construction of a FIELD statement
using an array of elements of equal size. The
result is equivalent to the single declaration:

FIELD #1,16 AS A$(0),16 AS A$(1),..,16 AS
A$(6),16 AS A$(7)

10 DIM SIZE% (4%): REM ARRAY OF FIELD
SIZES

20 FOR LOOP% =0 TO 4%:READ SIZE%

(LOOP%): NEXT LOOP%

30 DATA 9,10,12,21,41

120 DIM A$(4%): REM ARRAY OF FIELDED
VARIABLES

130 OFFSET% =0

140 FOR LOOP% =0 TO 4%

150 FIELD #1,0FFSET% AS
OFFSET$,SIZE% (LOOP%)

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS
AS A$(LOOP%)
160 OFFSET% =OFFSET% +SIZE% (LOOP%)
170 NEXT LOOP%

Creates a field in the same manner as Example 3.
However, the element size varies with each
element. The equivalent declaration is:

FIELD #1,SIZE%(0) AS A$(0),SIZE% (1) AS
AS$(1),...
SIZE% (48) AS A$(4%)

GW-BASIC
Compiler The compiler does not permit fielded strings to be
passed in COMMON.

GW-BASIC REFERENCE MANUAL 4-67

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.44 FILES STATEMENT

Syntax

Purpose

Remarks

Examples

4-68

FILES [<filespec>]

where <filespec> includes a filename and
optional device designation.

To print the names of files residing on the
specified disk.

If <filespec> is omitted, all the files on the
currently selected drive will be listed.
<filespec> is a string formula which may
contain question marks (?) or asterisks (*) used
as wild cards. A question mark will match any
single character in the filename or extension. An
asterisk will match one or more characters
starting at that position. The asterisk is a
shorthand notation for a series of question
marks.

FILES

Shows all files on currently logged disk.
FILES “* BAS”

Shows all files with extension .BAS.
FILES “B:*.*”

Shows all files on drive B.

FILES “B:” (equivalent to “B:*.*”)
FILES “TEST?.BAS”

Shows all five-letter files whose names start with
“TEST” and end with the .BAS extension.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.45 FIX FUNCTION

Syntax

Purpose

Remarks

Examples

FIX(X)
To return the truncated integer part of X.

FIX(X) is equivalent to SGN(X)*INT(ABS(X)).
The difference between FIX and INT is that FIX
does not return the next lower number for
negative X.

PRINT FIX(58.75)
will yield
58

PRINT FIX(-58.75)
will yield
-58

GW-BASIC REFERENCE MANUAL 4-69

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.46 FOR...NEXT STATEMENT

Syntax

Purpose

Remarks

4-70

FOR <variable>=x TO y [STEP z]

NEXT [<variable>],<variable>...]
where X, y, and z are numeric expressions.

To allow a series of instructions to be performed
in a loop a given number of times.

<variable> is used as a counter. The first
numeric expression (x) is the initial value of the
counter. The second numeric expression (y) is the
final value of the counter. The program lines
following the FOR statement are executed until
the NEXT statement is encountered. Then the
counter is adjusted by the amount specified by
STEP. A check is performed to see if the value of
the counter is now greater than the final value
(y). If it is not greater, GW-BASIC branches back
to the statement after the FOR statement and the
process is repeated. If it is greater, execution
continues with the statement following the
NEXT statement. This is a FOR..NEXT loop.

If STEP is not specified, the increment is
assumed to be one. If STEP is negative, the final
value of the counter is set to be less than the
initial value. The counter is decreased each time
through the loop. The loop is executed until the
counter is less than the final value.

The counter must be an integer or single
precision numeric constant. If a double precision
numeric constant is used, a “Type mismatch”
error will result.

The body of the loop is skipped if the initial value

of the loop times the sign of the STEP exceeds the
final value times the sign of the STEP.

GW-BASIC REFERENCE MANUAL

Example 1

Example 2

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Nested Loops

FOR..NEXT loops may be nested; that is, a
FOR..NEXT loop may be placed within the
context of another FOR..NEXT loop. When loops
are nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.

The variable(s) in the NEXT statement may be
omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its correspond-
ing FOR statement, a “NEXT without FOR”
error message is issued and execution is termi-
nated.

10 K=10
20 FOR I=1TO K STEP 2
30 PRINT [;
40 K=K+10
50 PRINT K
60 NEXT
will yield

1 20
30
40
50
60

© 3 Ot W

10 J=0

20 FORI=1TOJ
30 PRINT I

40 NEXT I

In this example, the loop does not execute because
the initial value of the loop exceeds the final
value.

GW-BASIC REFERENCE MANUAL 4-71

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS
Example 3 10 I=5
20 FOR I=1TO I+5
30 PRINT I;
40 NEXT
will yield
1 23 456 789 10
In this example, the loop executes ten times. The
final value for the loop variable is always set
before the initial value is set.
GW-BASIC
Compiler Double precision FOR..NEXT loops may e used

with the compiler if extra precision is desired.

4-72 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.47 FRE FUNCTION

Syntax

Purpose

Remarks

Example

GW-BASIC
Compiler

FRE(0)
FRE(&(”)

With a numeric argument, FRE returns the
number of bytes in memory that are not being
used by GW-BASIC. Arguments to FRE are
dummy arguments.

FRE(‘“”) forces a garbage collection before
returning the number of free bytes. With the
interpreter, garbage collection may take1to11/2
minutes. It is much faster with the compiler.

GW-BASIC will not initiate garbage collection
until all free memory has been used up.
Therefore, using FRE(*”’) periodically will result
in shorter delays for each garbage collection.

PRINT FRE(0)
will yield
14542

With the compiler, FRE with a numeric
argument returns the size of the largest block of
free string space. With a string argument,
garbage collection is performed as in the
interpreter, but FRE returns the amount of
available string space only.

GW-BASIC REFERENCE MANUAL 4-73

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.48 GET STATEMENT

Syntax

Purpose

Remarks

Example

Note

4-74

GET [#]<file number>[,<record number>]

To read a record from a random disk file into a
random buffer.

<file number> is the number under which the
file was OPENed. If <record number> is
omitted, the next record (after the last GET) is
read into the buffer. The largest possible record
number is 32767.

The GET and PUT statements allow fixed-length
input and output for GW-BASIC COM files.
However, because of the low performance
associated with telephone line communications,
we recommend that you do not use GET and PUT
for telephone communication.

See “GET and PUT Statements” in this chapter,
for discussion of the GET and PUT statements
used with screen capabilities.

GET #1,75

After a GET statement has been executed,
INPUT# and LINE INPUT # may be executed to
read characters from the random file buffer.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.49 GET AND PUT STATEMENTS

Syntax

Purpose

Remarks

GET (x1,y1)-(x2,y2),<<array name>
PUT (x1,yl),<array name>[,<action verb>]

The GET and PUT statements transfer graphics
images to and from the screen. The statements
also make it possible to perform animation and
high-speed image motion.

GET (x1,y1)-(x2,y2),<array name>

(x1,y1) and (x2,y2)
Coordinates in absolute or offset form (see
Chapter 1) of the opposite corners of a rectangle.

array name
Your name of the array which will hold image
information.

GET reads into an array the colors of the points
in the screen image bounded by the rectangle. The
rectangle is defined the same way as the
rectangle drawn by the Line statement using the
“b” option.

The array is used simply as a place to hold the
image bounded by the rectangle. It must be
numeric and dimensioned large enough to hold
the entire image. You may determine the
required array size in bytes using the following
formula:

(x+7)* bits*

INT 8 pixely

+4

where x is the length of a horizontal side of the
rectangle and y is the length of a vertical side of
the rectangle. Bits per pixel is 3 in color mode and
1in black and white mode. The bytes per element
of an array are:

2 for integer
4 for single precision

GW-BASIC REFERENCE MANUAL 4-75

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4-76

8 for double precision

For example, if you want to use the GET
statement to put a 10 by 12 image into an array,
the number of bytes required is:

INT(m—é”)*s*12+4 or 76 bytes.

So you would need an integer array (%) of at
least 38 bytes.

The storage format in the array is as follows:

2 bytes giving x dimension in bits
2 bytes giving y dimension in bits
the array data

The data for each row of points is left justified on
a byte boundary. If there is less than a multiple of
8 bits stored, the rest of the byte will be filled out
with zeroes.

PUT(x1,y1),<array>[,<action verb>]

(x1,y1)

Coordinates of the top left corner of the image to
be transferred to the screen. An “Illegal Function
Call” error will result if the image is too large to
fit on the screen.

array
Name of the numeric array which contains the
image to be transferred.

action verb

Used to interact the transferred image with the
screen. Valid entries are: PSET, PRESET, AND,
OR, or XOR. The default is XOR.

The PUT statement transfers the image stored in
the array onto the screen.

PSET
Transfers data from the array onto the screen
verbatim.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

PRESET
This is the same as PSET except that a negative
image is produced.

AND

Use AND only when you want to transfer the
image to the screen and an image already exists
on the screen. Only the points which are in both
images will show on the screen.

OR
Use OR to superimpose the image onto an
existing image.

XOR

XOR is the default action. It causes the points on
the screen to be inverted where a point exists in
the array image. You may also use XOR to
animate an image. When you PUT an image
against a complex background twice, the
background remains unchanged. This allows you
to move an object around the screen without
removing the background.

You may animate an image by following this
sequence:

1. Using XOR, PUT the image on the screen.

2. Calculate the new location of the image.

3. Using XOR, PUT the image on the screen a
second time at the first location. This action
removes the image from the first location.

4. Gobacktostepl. Use XOR to PUT the image
at the new location.

Movement done this way will leave the
background unchanged. You can reduce flicker by
minimizing the time between steps 4 and 1 and by
making sure that there is enough time delay
between steps 1 and 3.

If you are animating more than one image, each

image should be processed separately, one step at
a time.

GW-BASIC REFERENCE MANUAL 4-77

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4-78

If preserving the background is not important,
you may animate an image using PSET.
However, you must have a rectangle large enough
to contain both first and new images. If the area
is large enough, the extra area will erase the first
image. You may find this method faster than the
method using XOR because only one PUT is
required, although you must PUT a larger area.
In the following example, line 20 sets the
dimensions of the screen area to be used. Line 30
draws a filled-in box in color 6, and line 40 reads
that box into an array. Lines 50 through 90 PUT
the box back on the screen and move it left.

10 SCREEN 1

20 DIM M(1000)

30 LINE(0,0)-(30,30),6,BF

40 GET(0,0)-(60,30),M

50 FOR I=579 TO 10 STEP-1
60 PUT(1,200),M,PSET

70 NEXTI

80 GOTO 60

AND

Screen Color

~0—00 <®-=~~=~>
N O oA WO N 2O

O O O O O O O o O
. O 1 O - O = O =
NN O O MNMMNNDOODN
W N 2 O0OWN 2 O W
S~ A A O O O O &
(&, B ¢ =R = R d) |
oo NN O OO
~NOoO A WON 2 O N

GW-BASIC REFERENCE MANUAL

AND FUNCTIONS

CHAPTER 4 COMMANDS, STATEMENTS,

OR

Screen Color

XOR

Screen Color

4-79

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.50 GOSUB...RETURN STATEMENTS

Syntax

Purpose

Remarks

Example

4-80

GOSUB <line number>

RETURN [<line number>]
To branch to, and return from, a subroutine.

<line number> in the GOSUB statement is the
first line of the subroutine.

A subroutine may be called any number of times
in a program. A subroutine also may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

Simple RETURN statement(s) in a subroutine
cause GW-BASIC to branch back to the
statement following the most recent GOSUB
statement. A subroutine may contain more than
one RETURN statement, should logic dictate a
return at different points in the subroutine.

The <line number> option may be included in
the RETURN statement to return to a specific
line number from the subroutine. Use this type of
return with care, however, because any other
GOSUBs, WHILES, or FORs that were active at
the time of the GOSUB will remain active, and
errors such as “FOR without NEXT” may result.

Subroutines may appear anywhere in the
program, but it is recommended that the
subroutine be readily distinguishable from the
main program. To prevent inadvertent entry into
the subroutine, precede it with a STOP, END, or
GOTO statement that directs program control
around the subroutine.

10 GOSUB 40
20 PRINT “BACK FROM SUBROUTINE”
30 END

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

40 PRINT “SUBROUTINE”;
50 PRINT “ IN”;

60 PRINT “ PROGRESS”

70 RETURN

will yield

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

GW-BASIC

Compiler In addition to the simple RETURN statement,
the compiler supports RETURN <line
number>. This allows a RETURN from a
GOSUB statement to the specified line number,
rather than a normal return to the statement
following the GOSUB statement.

GW-BASIC REFERENCE MANUAL 4-81

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.51 GOTO STATEMENT

Syntax

Purpose

Remarks

Example

4-82

GOTO <line number>

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number>.

10 READ R

20 PRINT “R =";R,

30 A=3.14*Rr2

40 PRINT “AREA =";A

50 GOTO 10

60 DATA 5,7,12

will yield

R=5 AREA = 785
R="7 AREA = 153.86
R =12 AREA = 452.16
Out of data in 10

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.52 HEX$ FUNCTION

Syntax

Purpose

Remarks

Example

HEXS$(X)

To return a string that represents the
hexadecimal value of the decimal argument.

X is rounded to an integer before HEX$(X) is
evaluated.

10 INPUT X
20 A$=HEX$(X)
30 PRINT X “DECIMAL IS ” A$ “
HEXADECIMAL”
will yield
? 32

32 DECIMAL IS 20 HEXADECIMAL

See the OCTS$ function, Section 4.86, for details on
octal conversion.

GW-BASIC REFERENCE MANUAL 4-83

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.53 IF...THEN[...ELSE]/IF..GOTO STATEMENTS

Syntax

Syntax

Purpose

Remarks

484

IF <expression> THEN {<statement(s))> !
<line number>}

[ELSE {<statement(s)> ! <line number>}]
IF <expression> GOTO <line number>
[ELSE {<statement(s)> ! <line number>}]

To make a decision regarding program flow based
on the result returned by an expression.

If the result of <<expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching or
one or more statements to be executed. GOTO is
always followed by a line number. If the result of
<expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if present,
if executed. Execution continues with the next
executable statement. A comma is allowed before
THEN.

Nesting of IF' Statements

IF..THEN..ELSE statements may be nested.
Nesting is limited only by the length of the line.
For example,

IF X>Y THEN PRINT “GREATER” ELSE IF
Y>X THEN PRINT “LESS THAN” ELSE
PRINT “EQUAL”

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT “A=C"
ELSE PRINT “A<>(C”

will not print “A<>C” where A<>B.

GW-BASIC REFERENCE MANUAL

-’

Note

Example 1

Example 2

Example 3

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

If an IF..THEN statement is followed by a line
number in direct mode, an “Undefined line” error
results, unless a statement with the specified line
number had previously been entered in indirect
mode. :

When using IF to test equality for a value that is
the result of a floating-point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test should
be against the range over which the accuracy of
the value may vary. For example, to test a
computed variable A against the value 1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0 with
a relative error of less than 1.0E-6.

200 IF I THEN GET#1,1

This statement GETs record number I if I is not
zZero.

100 IF(I<20)*(I>10) THEN DB=1979-1:GOTO
300
110 PRINT “OUT OF RANGE”

In this example, a test determines if I is greater
than 10 and less than 20. If I is in this range, DB is
calculated and execution branches to line 300. If I
is not in this range, execution continues with line
110.

210 IF IOFLAG THEN PRINT A$ ELSE
LPRINT A$

This statement causes printed output to go either
to the terminal or the line printer, depending on
the value of the variable IOFLAG. If IOFLAG is
zero, output goes to the line printer; otherwise,
output goes to the terminal.

GW-BASIC REFERENCE MANUAL 4-85

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC

Compiler The compiler allows indefinite line continuation
with the underscore character. Thus, fully nested
IF..THEN...ELSE control structures may be set
up by using extra-long statements.

4-86 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.54 INKEY$ FUNCTION

Syntax

Purpose

Remarks

Example

Note

INKEY$

To return either a one-character string
containing a character read from the terminal or
a null string if no character is pending at the
terminal.

No characters will be echoed. All characters are
passed through to the program except for
Control-C, which terminates the program. (With
GW-BASIC Compiler, Control-C is also passed
through to the program.)

1000 ‘TIMED INPUT SUBROUTINE

1010 RESPONSE$=""

1020 FOR 1% =1 TO TIMELIMIT%

1030 A$=INKEY$: IF LEN(A$)=0 THEN
1060

1040 IF ASC(A$)=13 THEN TIMEOUT% =0 :
RETURN

1050 RESPONSE$=RESPONSE$+ A$

1060 NEXT 1%

1070 TIMEOUT% =1 : RETURN

Some keys may return a two-byte string,
depending on your implementation.

GW-BASIC REFERENCE MANUAL 4-87

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.55 INP FUNCTION
Syntax INP(I)

Purpose To return the byte read from port I. I must be in
the range 0 to 65535.

Remarks INP is the complementary function to the OUT
statement.
Example 100 A=INP(54321)

In 8086 assembly language, this is equivalent to:

MOV DX,54321
IN ALDX

4-88 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.56 INPUT STATEMENT

Syntax

Purpose

Remarks

INPUT(;] [<“prompt string”>;]<list of
variables>

To allow input from the keyboard during
program execution.

When an INPUT statement is encountered,
program execution pauses and a question mark is
printed to indicate the program is waiting for
data. If <“prompt string”> is included, the
string is printed before the question mark. The
required data is then entered at the keyboard.

A comma may be used instead of a semicolon
after the prompt string to suppress the question
mark. For example, the statement INPUT
“ENTER BIRTHDATE”,B$ will print the prompt
with no question mark.

If INPUT is immediately followed by a semicolon,
then the carriage return typed by the user to
input data does not echo a carriage
return/linefeed sequence.

The data that is entered is assigned to the
variable(s) given in <variable list>. The number
of data items supplied must be the same as the
number of variables in the list. Data items are
separated by commas.

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statement need not be surrounded by quotation
marks.)

Responding to INPUT with too many or too few
items or with the wrong type of value (numeric
instead of string, etc.) causes the message “?Redo
from start” to be printed. No assignment of input

GW-BASIC REFERENCE MANUAL 4-89

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

values is made until an acceptable response is
given.

Examples 10 INPUT X
20 PRINT X “SQUARED IS” X2
30 END
will yield
? 5 (The 5 was typed in by the user in
response to the question mark.)
5 SQUARED IS 25

10 PI=3.14

20 INPUT “WHAT IS THE RADIUS”;R

30 A=PI*RA2

40 PRINT “THE AREA OF THE CIRCLE
IS”;A

50 PRINT

60 GOTO 20

will yield

WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

4-90 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.57 INPUT# STATEMENT

Syntax

Purpose

Remarks

Example

INPUT# <file number>,<variable list>

To read data items from a sequential device or
file and assign them to program variables.

<file number> is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must match
the type specified by the variable name.) With
INPUT#, no question mark is printed, as with
INPUT.

The data items in the file should appear just as
they would if data were being typed in response to
an INPUT statement. With numeric values,
leading spaces, carriage returns, and linefeeds
are ignored. The first character encountered that
is not a space, carriage return, or linefeed is
assumed to be the start of a number. The number
terminates on a space, carriage return, linefeed,
or comma.

If GW-BASIC is scanning the sequential data file
for a string item, it will also ignore leading
spaces, carriage returns, and linefeeds. The first
character encountered that is not a space,
carriage return, or linefeed is assumed to be the
start of a string item. If this first character is a
quotation mark (*), the string item will consist of
all characters read between the first quotation
mark and the second. Thus, a quoted string may
not contain a quotation mark as a character. If
the first character of the string is not a quotation
mark, the string is an unquoted string, and will
terminate on a comma, carriage return, or
linefeed (or after 255 characters have been read).
If end-of-file is reached when a numeric or string
item is being INPUT, the item is terminated.

INPUT#2A,BC - - Mo

GW-BASIC REFERENCE MANUAL : o 4-91

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.58 INPUT$ FUNCTION
Syntax INPUTS$(X[,[#]Y])

Purpose To return a string of X characters, read from file
number Y. If the file number is not specified, the
characters will be read from the screen.

Remarks If the keyboard is used for input, no characters
will be echoed on the screen. All control
characters are passed through except Control-C,
which is used to interrupt the execution of the
INPUTS$ function.

Example 1 5 ‘LIST THE CONTENTS OF A SEQUENTIAL
FILE IN HEXADECIMAL
10 OPEN“I”,1,“DATA”
20 IF EOF(1) THEN 50
30 PRINT HEX$(ASC(INPUT$(1,#1)));
40 GOTO 20
50 PRINT
60 END

Example 2

100 PRINT “TYPE P TO PROCEED OR S TO
STOP”

110 X$=INPUT$(1)

120 IF X$=“P” THEN 500

130 IF X$=“S” THEN 700 ELSE 100

4-92 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.59 INSTR FUNCTION

Syntax

Purpose

Remarks

Example

INSTR([L,]X$,Y$)

To search for the first occurrence of string Y$ in
X$, and returns the position at which the match is
found. Optional offset I sets the position for
starting the search.

I must be in the range 1 to 255. If I is greater than
the number of characters in X$ (LEN(X$)), or if
X$ is null or Y$ cannot be found, INSTR returns
0. If Y$ is null, INSTR returns I or 1. X$ and Y$
may be string variables, string expressions, or
string literals.

10 X$="“ABCDEB”
20 Y$=“B”
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
will yield
2 6

GW-BASIC REFERENCE MANUAL 4-93

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.60 INT FUNCTION

Syntax INT(X)
Purpose To return the largest integer <=X.
Examples PRINT INT(99.89)
will yield
99

PRINT INT(-12.11)
will yield
-13

See the CINT and FIX functions, Sections 4.13
and 4.45, respectively, which also return integer
values.

4-94 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.61 KEY STATEMENT

Syntax

Purpose

Remarks

KEY <key number>,<string expression>
KEY LIST

KEY ON

KEY OFF

key number
Specifies the programmable function key number
in the range 1 to 20 (see list below).

string expression
Specifies the string expression which will be
assigned to the programmable function key.

Allows you to assign a string expression to
programmable function keys. You may assign a
string of up to 15 characters to any one or all of
the keys. When you press the key, the string will
be input to BASIC.

Initially, for GW-BASIC Interpreter, the
programmable function keys are assigned the
following values:

F1 LOAD” F11 GOTOA
F2 RUN < F12 GOSUBZA
F3 CONT < F13 IFz

F4 SAVE” F14 THENZA
F5 LISTA F15 ELSEA
F6 EDITA F16 CHR$(
F7TRON < F17 STRING$(
F8 TROFF <« F18 LINEA(
F9 PRINTA F19 CIRCLEA(

F10 PRINTA USINGZ F20 DRAWIA

KEY ON

This is the initial setting which causes keys F1
through F7 to be displayed on the 25th line. To
display the next seven keys, press CONTROL-T.
To display the last six keys, press CONTROL-T
again. To start the sequence again, press
CONTROL-T.

GW-BASIC REFERENCE MANUAL 4-95

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

Examples

496

KEY OFF

Erases the programmable function key display
from the 25th line, but it does not disable the
function keys.

KEY LIST
Lists all 20 programmable function key values on
the screen. All 15 characters of each value are
displayed.

KEY <key number>,<string expression>
Assigns the string expression to the specified
key. The string expression may be 1 to 15
characters in length. If it is longer than 15
characters, only the first 15 characters are
assigned.

If you specify a value for <key number> which
is not in the range 1 to 20, an “Illegal Function
Call” error occurs. The previous key string
assignment is retained.

Assigning a string of length 0 to a programmable
function key disables the key. It will remain
disabled until another error string expression is
assigned to it.

When a programmable function key is assigned,
the INKEY$ function returns one character of
the string each time it is called. If the program-
mable function key is disabled, INKEY$ returns
a string of length 2. The first character is binary
zero, and the second is the key scan code.

In the following example, the statement in line 10
assigns the string ‘MENU’ <carriage return> to
key F1. This assignment might be used in a
program to select a menu display when entered
by the user. Line 20 disables the key.

10 KEY 1,“MENU”+CHR$(13)
20 KEY 1,*”

The following routine initializes the first 5
programmable function keys:

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 KEY OFF

20 DATA KEY1,KEY2KEY3 KEY4 KEY5

30 FOR I=1 to 5:READ FUNCTIONKEYS$(I)
40 KEYL,FUNCTIONKEYSS$(I)

50 NEXT I
60 KEY ON
GW-BASIC
Compiler With the compiler, programmable function key

string values are not preserved across chains.

GW-BASIC REFERENCE MANUAL 4-97

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.62 KEY(N) STATEMENT

Syntax

Purpose

Remarks

498

KEY(n) ON
KEY(n) OFF
KEY(n) STOP

where (n) is the number of a programmable
function key or cursor direction key. (See “KEY
Statement,” Section 4.61, for information on
assigning programmable function key values to
function keys.) The cursor direction keys are
numbered sequentially after the function keys in
the following order: up, left, right, down.

To enable or disable event trapping of
programmable function key or cursor direction
key activity for the specified function key.

Note that the KEY statement described in
Section 4.61 assigns programmable function key
and cursor direction values to function keys and
displays the values. Do not confuse KEY ON and
KEY OFF, which display and erase these values,
with the event trapping statements described in
this section.

The KEY(n) ON statement enables
programmable function key or cursor direction
key event trapping by an ON KEY statement (see
“ON KEY Statement,” Section 4.90). While
trapping is enabled, and if a non-zero line number
is specified in the ON KEY statement,
GW-BASIC checks between every statement to
see if a programmable function key or cursor
direction key has been used. If it has, the ON KEY
statement is executed.

KEY(n) OFF disables the event trap. If an event
takes place, it is not remembered.

KEY(n) STOP disables the event trap, but if an
event occurs, it is remembered and an ON KEY
statement will be executed as soon as trapping is
enabled.

GW-BASIC REFERENCE MANUAL

Note

Example

GW-BASIC
Compiler

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

For additional information on key event
trapping, see “Event Trapping,” Section 1.6, and
“ON KEY Statement,” Section 4.90.

10 KEY 4,SCREEN 0,0 ’ assigns programmable
function key 4
20 KEY(4) ON ’enables event trapping

70 ON KEY(4) GOSUB 200
k;zy 4 pressed

200 ’Subroutine for screen

See compiler note under “ON KEY Statement,”
Section 4.90.

GW-BASIC REFERENCE MANUAL 4.99

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.63 KILL STATEMENT

Syntax

Purpose

Remarks

Examples

4-100

KILL <filespec>
To delete a file from disk.

If a KILL statement is given for a file that is
currently OPEN, a “File already open” error
oceurs.

KILL is used for all types of disk files: program
files, random data files, and sequential data files.
The filespec may contain question marks (?) or
asterisks (*) used as wildcards. A question mark
will match any single character in the filename
or extension. An asterisk will match one or more
characters starting at its position.

WARNING: Be extremely careful when
using wildcards with this com-
mand.

200 KILL “DATA1?.DAT”

The position taken by the question mark can
contain any valid filename character.

210 KILL “DATA1.*”

Kills all files named DATAL.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.64 LCOPY STATEMENT

Syntax

Purpose

Remarks

LCOPY

Prints the screen memory (1, 2, 4) established
with the GW-BASIC configuration routine.(See
“Configuring for GW-BASIC” in your User’s
Guide.)

You may use LCOPY to print both graphics
images and text if the text is also in graphics
mode.

With a monochrome model LCOPY prints the
entire graphics image (and text in graphics
mode).

The GW-BASIC Interpreter disk contains an
object module which you may use for program
control of color graphics printing. The module is
called DUMPCL (dump color) and allows you to
specify within a program a color memory (1,2,4)
to be printed.

Before you can use DUMPCL, it must be
established as a separate file on your GW-BASIC
disk. This is accomplished by using MS-LINK
(see MS-DOS User’s Guide) and DEBUG, which
allows you to read the address of the DUMPCL
module. These are on your MS-DOS disk. If you
have a single flexible disk drive, follow the
sequence below to establish DUMPCL as a file. If
you have 2 flexible disk drives, note the
instructions in parentheses in each step.

1. Insert the MS-DOS disk. (For 2 disk drives,
insert the MS-DOS disk and the GW-BASIC
disk.)

2. The system displays A>. Enter LINK. (For 2
disk drives, move operations to drive B. Enter
B:;, and when the system displays B>, enter
A:LINK))

3. The system displays:

GW-BASIC REFERENCE MANUAL 4-101

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4-102

Microsoft Object Linker V2.00
(¢) Copyright 1982 by Microsoft Inc.

Object Modules [.OBJT:

Insert the GW-BASIC disk. Enter DUMPCL.
(For 2 disk drives, simply enter DUMPCL.)
The system displays:

Run File [DUMPCL.EXE]}:

Enter /H to specify the highest address in
memory. (For 2 disk drives, enter B: /H.)
The system displays:

List File [NUL.MAP].

Press RETURN.
The system displays:

Libraries [.LIB]:

Press RETURN.
The system displays:

Warning: No STACK segment
There was 1 error detected.

A>

The warning and error detected do not affect
the procedure. Insert the MS-DOS disk and
enter DEBUG. (For 2 disk drives, the prompt
will be B>. Enter A:DEBUG DUMPCL.EXE.
The DUMPCL.EXE file is loaded directly into
DEBUG.)

The system displays a dash (-). Insert the
GW-BASIC disk and enter NDUMPCL.EXE.
This specifies the new DUMPCL.EXE file to
DEBUG. (For 2 disk drives, enter R to display
all registers. Then go to step 11.)

The system displays a dash (-). Enter L to
load DUMPCL.EXE into DEBUG.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10. The system displays a dash (-). Enter R to
display all registers.
11. The system displays the following:

AX=FFFF BX-0000 CX-0026 DX=0000 SP=0000 BP=0000 SI=0000 Di=0000
DS=0AAO0 ES-0AA0 SS=1FE0CS=1FEOIP=0000 NV UP DI PL NZ NA PO NC
1FEO0:0000 55 PUSH BP

Note the address CS=1FE0. CS represents
the address of the DUMPCL module. The
address given here (1IFEQ) is only an example.
You should note the address for CS on your
machine. Write it down for later use.

12. The system displays a dash (-). Enter
NGWBASIC.EXE. This specifies the
GWBASIC.EXE file.

13. The system displays a dash (-). Enter L to
load GWBASIC.EXE to memory.

14. The system displays a dash (-). Enter G to go
to GWBASIC.EXE.

You are now in GW-BASIC.
15. Enter the following lines:

DEF SEG=&HIFE0
BSAVE “DUMPCL.COM”,&H0,&H30

Note that the DEF SEG value entered is the
address of the DUMPCL module. You should
insert the value for CS that was displayed on
your machine (Step 11). DUMPCL.COM in
the second line is the new file name to be
saved. The last two entries of the second line
are the offset address from the address given
in the DEF SEG statement and the length in
bytes of the file to be saved (the DUMPCL file
always has the length given here). Refer to
the BSAVE statement in the MS-DOS
Extension, Section 2.

The file is now saved on your disk. Exit
GW-BASIC by entering SYSTEM. Exit
DEBUG by entering Q. You may now load
GW-BASIC.

GW-BASIC REFERENCE MANUAL 4-103

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

Example

GW-BASIC
Compiler

4-104

Now that you have your DUMPCL.COM file
on disk, you may use it for program control of
color graphics printing. To use your file, you
must include the following BASIC
statements in your program:

10 DEF SEG=&HI1FE0

20 BLOAD“DUMPCL.COM”,&HO0
30 A% =1

40 CALL &HO(A %)

50 LCOPY

In line 10 you will enter the address of the
DUMPCL module which was displayed with
step 11. In line 30, specify the color memory
your want printed. Enter 1 for blue
foreground, 2 for green, and 4 for red.

For an example of selecting screen images for
printing, see “Color Selection” in Chapter 1.

The compiler uses GWCONF only to set-up
memory print; consequently, the program control
of color graphics printing mentioned above does
not apply. For monochrome machines, however,
you must select green foreground color dump
before executing your program.

GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.65 LEFT$ FUNCTION

Syntax

Purpose

Remarks

Example

LEFTS$(X$,I)

To return a string comprising the leftmost I
characters of X$.

I must be in the range 0 to 255. If I is greater than
the number of characters in X$ (LEN(X$)), the
entire string (X$) will be returned. If I = 0, the
null string (length zero) is returned.

10 A$=“BASIC”

20 B§=LEFT$(A$,5)
30 PRINT BS$

will yield

BAS

Also see the MID$ and RIGHT$ functions,
Sections 4.82 and 4.116, respectively.

GW-BASIC REFERENCE MANUAL 4-105

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.66 LEN FUNCTION
Syntax LEN(XS$)

Purpose To return the number of characters in X§$.
Nonprinting characters and blanks are counted.

Example 10 X$=“PORTLAND, OREGON”
20 PRINT LEN(X$)
will yield
16

4-106 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.67 LET STATEMENT

Syntax

Purpose

Remarks

Example

[LET]<variable> = <<expression>
To assign the value of an expression to a variable.

Notice that the word LET is optional; i.e., the
equal sign is sufficient for assigning an
expression to a variable name.

110 LET D=12

120 LET E=12A2

130 LET F=1214

140 LET SUM=D+E+F

or

110 D=12

120 E=1212

130 F=12r4

140 SUM=D+E+F

GW-BASIC REFERENCE MANUAL 4-107

CHAPTER 4 COMMANDS, STATEMENTS,

AND FUNCTIONS

4.68 LINE STATEMENT

Syntax

Purpose

Remarks

4-108

LINE [(x1,y1)]-(x2,y2)[,[color][b[f]]

Draws a line, box, or filled-in box on the
screen.

(x1,y1),(x2,y2)

Specifies the coordinates in either absolute or
offset form (see X and Y coordinates in Chapter
1). If (x1,y1) point coordinates are not specified,
the beginning point of the line is the last point
specified by (x2,y2) in a previous statement.

color

Specifies color of line, box, or filled-in box (0-7,
see Color statement, Section 4.18). If not
specified, color is foreground color.

b or bf

Specifies box or filled-in box. The b tells BASIC to
draw a rectangle with the points (x1,y1) and
(x2,y2) as opposite corners. This avoids having to
give four LINE commands which perform the
same function:

LINE (x1,y1)-(x2,y1)
LINE (x1,y1)-(x1,y2)
LINE (x2,y1)-(x2,y2)
LINE (x1,y2)-(x2,y2)

The bf tells BASIC to draw the same rectangle as
b and also to fill in the interior points in the same
color as b.

The offset coordinate form can be used wherever
a coordinate is used. Note that all of the graphics
statements and functions update the most recent
point used. If the offset form is used with the
second coordinate, the coordinate is offset from
the first coordinate in the statement. For
example, the following draws a line from (60,40)
to 70,50):

GW-BASIC REFERENCE MANUAL

Examples

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

LINE (60,40)-STEP(10,10)

If you specify a coordinate which is out of range,
the coordinate is given the closest valid value. In
other words, negative values become 0, y values

greater than 399 become 399, and x values greater
than 639 become 639.

Draw a line from the last point specified to the
point (x2,y2):

LINE -(x2,y2)

Include a starting point for a line diagonally
down the screen:

LINE (0,0)-(639,399)

Draw a line across the screen:

LINE (0,200)-(639,200)

Draw a line in color number 2:

LINE (10,0)-(20,20),2

Draw a box in foreground color:

LINE (0,0)-(100,100),,b

Draw a box and fill it in with color number 2:
LINE (0,0)-(200,200),2,bf

Draw lines continuously using random colors:
10 SCREEN 1

20 CLS

30 LINE -(rnd*639,rnd*399),rnd*7

40 GO TO 20

Draw alternating pattern - line on, line off:

GW-BASIC REFERENCE MANUAL 4-109

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 SCREEN 1

20 FOR X=0 TO 639

30 LINE (X,0)-(X,399),X AND 1
40 NEXT

Draw random filled boxes in random colors:

10 SCREEN 1

20 CLS

30 LINE -(rnd*639,rnd*399),rnd*7,bf
40 GO TO 20

4-110 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.69 LINE INPUT STATEMENT

Syntax

Purpose

Remarks

Example

LINE INPUT[;] [<“prompt string”>;]
<string variable>

To input an entire line (up to 254 characters) to a
string variable, without the use of delimiters.

<“prompt string”> is a string literal that is
printed at the terminal before input is accepted.
A question mark is not printed unless it is part of
<“prompt string”>. All input from the end of
<“prompt string”> to the carriage return is
assigned to <(string variable>. However, if a
linefeed/carriage return sequence (this order
only) is encountered, both characters are echoed;
but the carriage return is ignored, the linefeed is
put into <string variable>, and data input
continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a carriage
return/linefeed sequence at the terminal.

A LINE INPUT statement may be aborted by
typing Control-C. GW-BASIC will return to
command level. If you are using the interpreter,
typing CONT resumes execution at the LINE
INPUT.

See “LINE INPUT# Statement,” Section 4.70.

GW-BASIC REFERENCE MANUAL 4111

CHAPTER 4 COMMANDS, STATEMENTS, L“L‘—‘(M“r ¥ M L>2s ‘-(
AND FUNCTIONS N R N YT A &

T A e el d’\
4.70 LINE INPUT# STATEMENT e g~on

Cuplbos : Shog Spaee Gor

Syntax LINE INPUT# <file number> <string pay Q@
variable> C.
Purpose To read an entire line (up to 254 characters), ~

without delimiters, from a sequential disk data
file to a string variable.

Remarks <file number> is the number under which the
file was OPENed. <string variable> is the
variable name to which the line will be assigned.
LINE INPUT# reads all characters in the
sequential file up to a carriage return. It then
skips over the carriage return/linefeed sequence.
The next LINE INPUT# reads all characters up
to the next -carriage return. ((If a
linefeed/carriage return sequence is
encountered, it is preserved.)

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
GW-BASIC program saved in ASCII format is
being read as data by another program. (See
“SAVE Command,” Section 4.119.)

Example 10 OPEN “0”,1,“LIST”
20 LINE INPUT “CUSTOMER
INFORMATION? ”;C$
30 PRINT #$1, C$
40 CLOSE 1
50 OPEN “I”,1,“LIST”
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
will yield
CUSTOMER INFORMATION? LINDA
JONES 2344 MEMPHIS ~
LINDA JONES 2344 MEMPHIS
PRINTAY AR Gy 2 T
Lide 8.7 ay Al v
~ Q

4-112 RN T T ‘N (. . GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.71 LIST STATEMENT

Syntax

Purpose

Remarks

LIST [[<line number>[- [<line number>]]]
[[<dev<]]

line number
Specifies the line number in the range 0 to 65529.

dev
String expression for one of the following devices:

“SCRN:” Screen
“LPT1:” <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>