
N C R

GW™-BASIC
(Interpreter/Compiler)
Reference Manual
and
User’s Guide

For MS™-DOS BI19317 May 1984

NCR Corporation is pleased to provide GW-BASIC software for
implementation on your NCR Decision Mate V. Your GW-BASIC
package contains an NCR GW-BASIC Reference Manual, a GW-BASIC
User’s Guide for either the GW-BASIC Interpreter or the GW-BASIC
Compiler, and a disk which holds the following files:

NCR GW-BASIC (Interpreter) NCR GW-BASIC Compiler

For MS™-DOS For MS™-DOS
Disk 1 of 1 Disk 1 of 1

GWBASIC.EXE
GWCONF.COM
DUMPCL.OBJ

GWBCOM.COM
BASCOMG.LIB
BASRUNG.LIB
BASRUNG.EXE
GWCONF.COM
DEMO.BAS
LINK.EXE

NCR GW-BASIC Compiler

The GW-BASIC Compiler program has been pre-installed for your
NCR Decision Mate V.

No programmable function key assignments have been made. To
define your own, see the KEY Statement in Chapter 4, Section 4.61, of
your NCR GW-BASIC Reference Manual

Fl
F2
F3
F4
F5
F6
F7
F8
F9
F10
F ll
F12
F13
F14
F15

F16
F17
F18
F19
F20

NCR GW-BASIC (Interpreter)

The GW-BASIC program has been pre-installed for your NCR
Decision Mate V. The programmable function keys have been assigned
the values which appear below. See the KEY Statement in Chapter 4,
Section 4.61 of your GW-BASIC REFERENCE MANUAL for detailed
instructions in utilizing these function keys.

Fl LOAD
F2 RUN
F3 CONT
F4 SAVE
F5 LIST
F6 EDIT
F7 TRON
F8 TROFF
F9 PRINT
F10 PRINT USING
F ll GOTO
F12 GOSUB
F13 IF
F14 THEN
F15 ELSE

F16 CHR$
F17 STRING$
F18 LINE
F19 CIRCLE
F20 DRAW

N C

GW'-BASIC
Reference Manual

For MS™-DOS

COPYRIGHT NOTICE
Copyright® 1983 by Microsoft Corporation, all rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Microsoft Corporation.

TRADEMARKS
Microsoft and the Microsoft logo are registered trademarks of Microsoft Corporation.
MS, GW, Music Macro Language, and Graphics Macro Language are trademarks of
Microsoft Corporation. Teletype is a registered trademark of Teletype Corporation.

DISCLAIMER OF WARRANTY
NCR Corporation and Microsoft Corporation make no representations or warranties
with respect to the contents hereof and specifically disclaim any implied warranties of
merchantability or fitness for any particular purpose. Further, NCR Corporation and
Microsoft Corporation reserve the right to revise this publication and to make changes
from time to time in the content hereof without obligation to notify any person or
organization of such revisions or changes.
The GW-BASIC Compiler Software and Manual are sold AS IS and without warranty as
to performance. While NCR Corporation and Microsoft Corporation firmly believe this
to be a high quality product, the user must assume all risks of using the program.

INTRODUCTION

INTRODUCTION

NCR GW™-BASIC extends the capabilities of MS™-BASIC for
MS™-DOS by providing graphics, sound and music, communications,
device- independent input/output, event trapping and other enhance­
ments for implementation on your NCR Decision Mate V.

This Reference Manual describes the capabilities that are provided
with the NCR GW-BASIC Interpreter and the NCR GW-BASIC
Compiler.

This Introduction explains how the manual is organized and gives the
syntax notation used throughout the document.

Chapter 1, “GW-BASIC Features,” briefly describes some of the
special features that are supported by GW-BASIC.

Chapter 2, “GW-BASIC Editor,” explains how programs are edited
with GW-BASIC.

Chapter 3, “General Information About GW-BASIC,” covers a
variety of topics you need to know about when using GW-BASIC.
Described here are GW-BASIC line format, character set, operators,
etc. Some of these items differ from the interpreter to the compiler.
Any differences will be pointed-out in this chapter.

Chapter 4, “GW-BASIC Commands, Statements, and Functions”,
provides detailed descriptions of the GW-BASIC language. Differ­
ences between the interpreted and compiled versions are noted.

Appendix A identifies error codes and messages and specifies those
which are unique to the GW-BASIC Compiler.

Other Appendices list mathematical functions, ASCII character
codes, and reserved words.

GW-BASIC REFERENCE MANUAL i

INTRODUCTION

SYNTAX NOTATION
When commands are discussed in this document, the following
notation will be followed:

[] Square brackets indicate that the enclosed entry is
optional.

< > Angle brackets indicate user-entered data. When the
angle brackets enclose lowercase text, the user must
type in an entry defined by the text; for example,
<filename>. When the angle brackets enclose
uppercase text, the user must press the key named by
the text; for example, <RETURN>.

{ } Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the entries
are also enclosed in square brackets.

I Vertical bars separate choices within braces. At least
one of the entries separated by bars must be chosen
unless the entries are also enclosed in square brack­
ets.

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

CAPS Capital letters indicate portions of statements or
commands that must be entered exactly as shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs, must be entered exactly as shown.

ii GW-BASIC REFERENCE MANUAL

INTRODUCTION

GW-BASIC Reference Manual

Contents

Introduction
Syntax N o ta tio n ... ii

Chapter 1 NCR GW-BASIC Features
1.1 G rap h ics .. 1-1
1.2 Screen M o d e s ... 1-1
1.2.1 Text M o d e ... 1-1
1.2.2 Graphics M ode.. 1-2
1.2.3 X and Y Coordinates... 1-3

1.3 Color Selection... 1-4
1.4 Music Selection... 1-6
1.5 Com m unications.. 1-7
1.6 Full Screen E d i t o r .. 1-7
1.7 Peripheral S u p p o r t .. 1-7
1.8 Event T r a p p in g .. 1-7
1.9 Device-Independent Input/O utput........................... 1-8

Chapter 2 GW-BASIC Editor
2.1 Line Editing... 2-1
2.2 EDIT C o m m a n d .. 2-1
2.3 Full Screen E d i t o r .. 2-2

Chapter 3 General Information About GW-BASIC
3.1 Modes of O p era tio n .. 3-1
3.2 Line Form at... 3-1
3.3 Default D evice... 3-2
3.4 Active and Visual (Display) Pages........................... 3-2
3.5 Character S e t ... 3-2
3.5.1 Special C h a r a c te r s ... 3-2
3.5.2 Control C h a ra c te rs ... 3-3

3.6 Constants.. 3-4
3.6.1 String and Numeric C o n stan ts 3-5
3.6.2 Single/Double Precision Form for Numeric

Constants... 3-6
3.7 V ariables.. 3-7
3.7.1 Variable Names and Declaration Characters . . 3-7
3.7.2 Array V a r ia b le s .. 3-8
3.7.3 Space Requirements... 3-9

GW-BASIC REFERENCE MANUAL Hi

INTRODUCTION

3.8 Type C onversion .. 3-9
3.9 Expressions and O p e ra to r s 3-11
3.9.1 Arithmetic Operators ... 3-11
3.9.1.1 Integer Division and Modulus Arithmetic . . 3-13
3.9.1.2 Overflow and Division By Z e r o 3-14
3.9.2 Relational Operators.. 3-15
3.9.3 Logical O perators.. 3-16
3.9.4 Functional O p e r a to r s ... 3-18
3.9.5 String O p e ra to rs .. 3-18

3.10 Error M essages.. 3-19
Chapter 4— GW-BASIC Commands, Statements, and

Functions
4.1 ABS F u n c t io n .. 4-4
4.2 ASC F u n c t io n .. 4-5
4.3 ATN F u n c tio n .. 4-6
4.4 AUTO C om m an d .. 4-7
4.5 BEEP S ta te m e n t.. 4-8
4.6 BLOAD S ta te m e n t ... 4-9
4.7 BSAVE Statem ent.. 4-11
4.8 CALL S ta te m e n t.. 4-13
4.9 CALLS Statem ent.. 4-15
4.10 CDBL Function.. 4-16
4.11 CHAIN Statem ent.. 4-17
4.12 CHR$ Function.. 4-21
4.13 CINT F u n c tio n .. 4-22
4.14 CIRCLE S ta te m e n t ... 4-23
4.15 CLEAR Statem ent.. 4-26
4.16 CLOSE Statem ent.. 4-28
4.17 CLS S ta tem en t.. 4-29
4.18 COLOR Statem ent.. 4-30
4.19 COM Statem ent.. 4-32
4.20 COMMON Statem ent... 4-33
4.21 CONT C o m m an d .. 4-36
4.22 COS F u n c t io n .. 4-37
4.23 CSNG Function.. 4-38
4.24 CSRLIN F unction .. 4-39
4.25 CVI, CVS, CVD Functions.................................... 4-40
4.26 DATA S ta te m e n t.. 4-41
4.27 DATE$ Statem ent.. 4-42
4.28 DATE$ F u n c tio n .. 4-43
4.29 DEF FN S ta te m e n t... 4-44
4.30 DEFINT/SNG/DBL/STR Statem ents.................. 4-46
4.31 DEF SEG Statem ent... 4-48

iv GW-BASIC REFERENCE MANUAL

INTRODUCTION

4.32 DEF USR Statem ent.. 4-49
4.33 DELETE C om m and ...4-50
4.34 DIM Statem ent..4-51
4.35 DRAW Statem ent... 4-53
4.36 EDIT C o m m a n d ... 4-56
4.37 END Statem ent..4-57
4.38 EOF F u n c t io n ..4-58
4.39 ERASE Statement... 4-60
4.40 ERR and ERL V a r ia b le s ... 4-61
4.41 ERROR S ta te m e n t ...4-62
4.42 EXP F u n c t io n ..4-64
4.43 FIELD S tatem ent... 4-65
4.44 FILES S ta tem en t... 4-68
4.45 FIX F u n c t io n ..4-69
4.46 FOR...NEXT S tatem ent.. 4-70
4.47 FRE F u n c t io n ..4-73
4.48 GET Statem ent..4-74
4.49 GET and PUT Statem ents..4-75
4.50 GOSUB...RETURN S ta tem en ts4-80
4.51 GOTO S ta te m e n t... 4-82
4.52 HEX$ Function..4-83
4.53 IF...THEN [...ELSEJ/IF...GOTO Statements . . 4-84
4.54 INKEY$ Function ... 4-87
4.55 INP F u n c t io n ..4-88
4.56 INPUT S tatem ent... 4-89
4.57 INPUT# S ta te m e n t...4-91
4.58 INPUT$ F u n c tio n ... 4-92
4.59 INSTR F u n c t io n ... 4-93
4.60 INT F u n c t io n ..4-94
4.61 KEY Statem ent..4-95
4.62 KEY(N) S ta te m e n t ...4-98
4.63 KILL S ta te m e n t ... 4-100
4.64 LCOPY Statem ent... 4-101
4.65 LEFT$ F u n c t io n ... 4-105
4.66 LEN F u n c tio n ..4-106
4.67 LET S tatem ent..4-107
4.68 LINE S ta te m e n t ... 4-108
4.69 LINE INPUT S ta te m e n t ..4-111
4.70 LINE INPUT# S ta tem en t..4-112
4.71 LIST Statem ent..4-113
4.72 LOAD C om m an d ... 4-115
4.73 LOC F u n c t io n ..4-116
4.74 LOCATE S ta te m e n t...4-117

VGW-BASIC REFERENCE MANUAL

INTRODUCTION

4.75 LOF F u n c t io n .. 4-119
4.76 LOG F u n c tio n .. 4-120
4.77 LPOS F unction .. 4-121
4.78 LPRINT and LPRINT USING Statements . . . 4-122
4.79 LSET and RSET S ta tem en ts................................4-123
4.80 MERGE C o m m a n d ... 4-124
4.81 MID$ S ta te m e n t ..4-125
4.82 MID$ F unction .. 4-126
4.83 MKI$, MKS$, MKD$ F u n ctions........................... 4-127
4.84 NAME S ta tem en t..4-128
4.85 NEW C o m m a n d ..4-129
4.86 OCT$ F unction .. 4-130
4.87 ON COM(n) S ta te m e n t...4-131
4.88 ON ERROR GOTO S ta te m e n t4-133
4.89 ON...GOSUB and ON...GOTO Statements . . . 4-134
4.90 ON KEY(n) S ta te m e n t.. 4-135
4.91 ON STRIG S ta te m e n t .. 4-137
4.92 OPEN S ta te m e n t... 4-139
4.93 OPEN COM S ta te m e n t.. 4-141
4.94 OPTION BASE S tatem ent..4-145
4.95 OUT Statem ent.. 4-146
4.96 PAINT Statement .. 4-147
4.97 PEEK Function..4-149
4.98 PLAY S ta te m e n t..4-150
4.99 POINT F u n c t io n ... 4-153
4.100 POKE S ta te m e n t..4-154
4.101 POS F u n c t io n .. 4-155
4.102 PRESET S ta te m e n t...4-156
4.103 PRINT S tatem ent..4-157
4.104 PRINT USING S ta tem en t..4-160
4.105 PRINT# and PRINT# USING Statements . . . 4-166
4.106 PSET S ta te m e n t ..4-169
4.107 PUT Statem ent.. 4-170
4.108 RANDOMIZE S ta te m e n t.. 4-171
4.109 READ S ta tem en t..4-172
4.110 REM S ta te m e n t ..4-174
4.111 RENUM C o m m a n d ... 4-175
4.112 RESET Command..4-177
4.113 RESTORE S ta te m e n t .. 4-178
4.114 RESUME S ta tem en t... 4-179
4.115 RETURN S ta tem en t... 4-181
4.116 RIGHT$ F unction ..4-182
4.117 RND F u n c tio n .. 4-183

GW-BASIC REFERENCE MANUAL

INTRODUCTION

4.118 RUN Statem ent/C om m and................................... 4-184
4.119 SAVE C o m m an d ..4-186
4.120 SCREEN Function ...4-187
4.121 SCREEN S ta te m e n t... 4-188
4.122 SGN F u n c tio n .. 4-189
4.123 SIN F u n c t io n .. 4-190
4.124 SOUND S ta te m e n t ... 4-191
4.125 SPACE$ Function..4-194
4.126 SPC Function . .. 4-195
4.127 SQR F u n c tio n .. 4-196
4.128 STICK F u n c t io n ... 4-197
4.129 STOP S ta te m e n t... 4-198
4.130 STR$ F unction ..4-199
4.131 STRIG Statem ent/Function................................... 4-200
4.132 STRING$ F u n c t io n ...4-202
4.133 SWAP S ta tem en t... 4-203
4.134 SYSTEM C om m and ...4-204
4.135 TAB F u n c t io n ..4-205
4.136 TAN F u n c tio n ..4-206
4.137 TIME$ S ta tem en t... 4-207
4.138 TIME$ F u n c t io n ... 4-208
4.139 TRON/TROFF Statements/Commands 4-209
4.140 USR F u n c t io n ..4-210
4.141 VAL F u n c tio n ..4-212
4.142 VARPTR F u n c t io n ...4-213
4.143 VARPTR$ F u n c tio n ...4-214
4.144 WAIT S ta te m e n t... 4-215
4.145 WHILE...WEND S ta te m e n t 4-216
4.146 WIDTH S ta te m e n t ...4-218
4.147 WRITE Statem ent... 4-220
4.148 WRITE# S ta tem en t...4-221

Appendix A—Error Codes and Error Messages
A.l Runtime Error M essages... A-l
A.2 Compiler Invocation Error M e s s a g e sA-ll
A.3 Compiletime Error M e ssa g e s A-13
A.3.1 Severe E r r o r s ...A-13
A.3.2 Warning E r r o r s .. A-17

A.4 MS-LINK Error M e s sa g e s ...A-17

Appendix B— Mathematical Functions

GW-BASIC REFERENCE MANUAL vii

INTRODUCTION

Appendix C—ASCII Character Codes

Appendix D—GW-BASIC Reserved Words

viii GW-BASIC REFERENCE MANUAL

Chapter 1

NCR-GW-BASIC Features

This chapter describes the special features that are part of NCR
GW-BASIC. These features include graphics, sound and music,
peripherals support, device-independent I/O, event trapping, and
others.

1.1 GRAPHICS
GW-BASIC allows you to use color, draw various figures, and
perform animation. The statements and functions that are used for
graphics include:

These statements and functions are described in Chapter 4.

1.2 SCREEN MODES
NCR GW-BASIC operates in either of two modes. Mode 0 is text
mode; it is the default (usual) mode. Mode 1 is graphics mode. You
must switch the system into this mode (with the SCREEN statement)
whenever you use certain statements. Why you must do this becomes
clear if you know more about how GW-BASIC Interpreter and
Compiler handle screen input and output.

1.2.1 Text Mode
In text mode, the software considers the screen to have 25 lines (from
top to bottom) and 80 characters per line. (Line 25 is reserved for
programmable function key display.)

GW-BASIC REFERENCE MANUAL 1-1

CIRCLE
COLOR
DRAW

PAINT
POINT
PRESET
PSET
SCREEN

GET and PUT
LINE

CHAPTER 1
FEATURES

-------------------------- 80 Characters------------------ ----------►

t|
2
5

L
I
N
E
S

V ______________________________________
Text Mode Screen

When the software displays a character you enter on the keyboard, it
internally translates the key you press and displays its image at the
cursor position. In text mode, you are working with a specific
character set: those characters you see on your keyboard.

1.2.2 Graphics Mode
Graphics mode is more sophisticated. To allow you to draw pictures
and other shapes, the software considers the screen to be made up of
pixels. A pixel is simply a dot on the screen. Your NCR DECISION
MATE V has 640 pixels across and 400 pixels down.

t
4
0
0
P
I
X
E
L
5

\
Of the statements and functions available in GW-BASIC, the
following ones must be used in graphics mode. (Being “in graphics
mode” simply means you have entered a screen statement specifying
mode 1.)

----------------------------- 640 Pixels

0,0

Graphics Mode Screen

1-2 GW-BASIC REFERENCE MANUAL

CHAPTER 1
FEATURES

CIRCLE
DRAW
PAINT

LINE
PRESET
PSET

GET
PUT
POINT (Function)

Remember you may use any other BASIC statements while in
graphics mode, but you must be in graphics mode to use any graphics
statement. Because screen handling for a graphics is more complex
than for text, always shift back to text mode when the graphics
portion of your program is complete and always be in text mode when
editing your program.

1.2.3 X and Y Coordinates
The graphics statements require both an x and a y coordinate that
describe where on the screen you want to begin to draw. The x
coordinate is the horizontal position on the screen; the y coordinate is
the vertical position. 0,0 is the first pixel position in the upper
left-hand corner of the screen.

With most graphics statements, you can specify the coordinates in
either of two forms: an absolute form where x,y specify the exact
position, or an offset form where x,y are the offset values from the
last point referenced. When specifying the coordinates in offset form,
you must include the word STEP to let the software know you are
“stepping” from a previously established point.

Consider the following two examples:

Both examples produce the following lines on your screen. Both
specify the starting pixel location at 100,100.

10 SCREEN 1
20 LINE (100,100)-(150,100)
30 LINE (150,100)-(200,150)

10 SCREEN 1
20 LINE (100,100)-STEP (50,0)
30 LINE-STEP (50,50)

Example 1 Absolute Form Example 2 Offset Form

GW-BASIC REFERENCE MANUAL 1-3

CHAPTER 1
FEATURES

50 Pixels

1.3 COLOR SELECTION
If you have a color screen, you can select different colors for the
foreground (the character or graphics image) and the background
(the screen itself). On the monochrome model, the characters are
green displayed on a black background. You specify the colors you
want with the Color statement or, if drawing a graphics image, with
the graphics statement.

The colors available on your NCR DECISION MATE V are shown in
the following list. (The numbers are used to indicate the color on the
graphics statements.)

0 = black
1 = blue
2 = green
3 = cyan

4 = red
5 = magenta
6 = yellow
7 = white

When using colors, you should be aware of how they are stored in
memory, especially if you are going to print out your screen image.
This information may affect your decision on what colors you use for
your images.

The various colors are stored in different memories and only one
memory may be printed at a time; therefore, depending on which
colors you use, you may or may not get a complete image printout. The
following table lists in which memory a color is stored. Note that the
colors are grouped by primary color and some colors are stored in
more than one memory.

1-4 GW-BASIC REFERENCE MANUAL

CHAPTER 1
FEATURES

Memory 1
Blue

Memory 2 Memory 4
Green Red

Cyan Cyan
Magenta

Yellow
White White

Magenta
Yellow
White

You print the screen image by specifying the memory you want
printed either with the GW-BASIC Configure routine or by including
special coding within your program. (Both methods are discussed
later in your GW-BASIC User's Guide.) For now assume that the
following image is on your screen. Each of the 8 colors is a vertical
bar.

0 1
B B
L L
A U
C E
K

2 3
G C
R Y
E A
E N
N

4 5
R M
E A
D G

E
N
T
A

6 7
Y W
E H
L I
L T
0
W

E

Now look at how the image would be printed, depending on the
memory specified.

GW-BASIC REFERENCE MANUAL 1-5

CHAPTER 1
FEATURES

1.4 MUSIC SELECTION
NCR G W-BASIC includes statements that allow you to play music (or
even just make noise). These statements are BEEP, SOUND, and
PLAY. Of the statements, PLAY is the most powerful, since with it
you can generate an entire musical piece with one statement. SOUND,
on the other hand, generates a single note, while BEEP does exactly
what its name suggests. The above statements are discussed in-detail
in Chapter 4.

1-6 GW-BASIC REFERENCE MANUAL

CHAPTER 1
FEATURES

15 COMMUNICATIONS
Using NCR GW-BASIC, you can communicate with any other
computer, printer, or device that uses an RS-232 asynchronous
interface. To implement communications, you must first describe the
communications device with the GW-BASIC Configure routine. See
your NCR GW-BASIC or NCR GW-BASIC Compiler User's Guide for
detailed information concerning communications implementation on
your NCR Decision Mate V.

16 FULL SCREEN EDITOR
Like BASIC, GW-BASIC operates in either direct or indirect mode
and uses the same programming conventions. As examples, the
BASIC rules for data types, data entry, program lines also apply in
GW-BASIC.
With GW-BASIC, however, you have a full screen editor. This feature
simply means you can quickly edit any line of text anywhere on your
screen.

Note that generally, you can enter and edit text only with the
GW-BASIC Interpreter. With the GW-BASIC Compiler, however,
you can use some of the line editing capabilities when you are
entering text in response to an INPUT statement.

GW-BASIC editor features are more fully explained in Chapter 2 of
this manual.

17 PERIPHERAL SUPPORT
The joystick feature is available as a peripheral device for implemen­
tation on the NCR Decision Mate V. The joystick feature is supported
by the STICK function and the STRIG statement/function. (See
Chapter 4 for complete descriptions of STICK and STRIG.)

18 EVENT TRAPPING
Event trapping allows a program to transfer control to a specific
program line when a certain event occurs. Control is transferred as if
a GOSUB statement had been executed to the trap routine starting at
the specified line number. The trap routine, after servicing the event,
executes a RETURN statement that causes the program to resume
execution at the place where it was when the event trap occurred.

The events that can be trapped are receipt of characters from
communications port (ON COM), function key activation (ON KEY),
and joystick trigger activation (ON STRIG).

For more details on individual statements, see Chapter 4.

GW-BASIC REFERENCE MANUAL 1-7

CHAPTER 1
FEATURES

1.9 DEVICE-INDEPENDENT INPUT/OUTPUT
GW-BASIC provides device-independent input/output that works
with various operating systems, stand-alone systems, disk-based
RAM systems, non-disk ROM systems, and hooked systems. Any
modifications that may be required are minimal.

The following statements, commands, and functions support device­
independent I/O (see individual descriptions in Chapter 4):

BLOAD LOF
BSAVE LPOS
CHAIN LPRINT
CLOSE MERGE
EOF NAME
FILES OPEN
GET OPEN COM
INPUT POS
INPUT$ PRINT
KILL PRINT USING
LINE PUT
LIST RESET
LLIST RUN
LOAD SAVE
LOC WIDTH

WRITE

1-8 GW-BASIC REFERENCE MANUAL

Chapter 2

GW-BASIC Editor

GW-BASIC provides three ways to enter and edit text: you can use the
line editing capabilities, issue an EDIT command to place you in edit
mode, or use the full screen editor. Generally, you can enter and edit
text only with the GW-BASIC Interpreter. With the GW-BASIC
Compiler, however, you can use some of the line editing capabilities
when you are entering text in response to an INPUT statement. See
Chapter 4 for information concerning the EDIT command and
INPUT statement.

2.1 LINE EDITING
If the cursor is currently on a line, you can make the following
changes. If you are entering a line in response to an INPUT
statement, you can use the first two items in the list:

1. Delete an incorrect character from the line that is being typed, by
pressing the backspace key or Control-H. Both these actions
delete the last character entered, or the character to the left of the
cursor.

2. Delete the entire line that is being typed by pressing Control-U.

3. Correct program lines for a program that is currently in memory
by retyping the line, using the same line number. GW-BASIC will
automatically replace the old line with the new one.

4. Delete the entire program currently residing in memory by
entering the NEW command. NEW is usually used to clear
memory prior to entering a new program. See Chapter 4 for more
information about NEW.

2.2 EDIT COMMAND
The EDIT command places the cursor on a specified line so that
changes can be made to the line. See Chapter 4 for a description of the
EDIT command.

GW-BASIC REFERENCE MANUAL 2-1

CHAPTER 2
GW-BASIC EDITOR

2.3 FULL SCREEN EDITOR
Like BASIC, GW-BASIC operates in either direct or indirect mode
and uses the same programming conventions.
With GW-BASIC, however, you have a full screen editor. This feature
simply means you can quickly edit any line of text anywhere on your
screen.

Table 1 lists the keys that control the movement of the cursor. In some
cases, you have a choice of keys; use the one most comfortable for your
entry. When a combination of keys must be used (as with
CONTROL-J), hold down the CONTROL key and press the second key.
Besides providing full screen movement, the editor also allows for
more efficient editing. Use the LIST statement to modify existing
program lines, being sure to RETURN to store the modified line in the
program.

• Occasionally, GW-BASIC may return to direct mode with the
cursor positioned on a line containing a message, such as OK.
When this occurs, the line is automatically erased. If it were not
erased and you entered RETURN, the message would be given to
GW-BASIC for interpretation and a syntax error would result.
BASIC messages end with hexadecimal FF to distinguish them
from user text.

• After you alter a line, you do not need to move the cursor to the
end of the logical line before typing RETURN. The editor
remembers where each logical line ends and transfers the line,
even if RETURN is typed at the beginning of a line.

The editor also functions during program execution. If a syntax error
occurs, GW-BASIC automatically enters edit at the line that caused
the error. For example,

10 A = 2$12
RUN
? Syntax Error in 10
10 A = 2$12

The editor displays the line in error and positions the cursor under
the digit 1. You would move the cursor to the dollar sign ($) and
change it to an up-arrow (*), followed by a RETURN. The corrected
line is now stored back in the program.
In this example, storing the line back in the program causes all
variables to be lost. Had you wanted to examine the contents of some
variable before making the change, Control-C would be typed to

2-2 GW-BASIC REFERENCE MANUAL

CHAPTER 2
GW-BASIC EDITOR

return to Direct Mode. The variables would be preserved since no
program line was changed, and after you were satisfied, you could edit
the line and re-run the program.

GW-BASIC REFERENCE MANUAL 2-3

CHAPTER 2
GW-BASIC EDITOR

Key(s)
(hex/dec value) Name Description

J
or

CONTROL-M
(OD/13)

RETURN Sends the line (up to the cursor) to
GW-BASIC for interpretation.

CONTROL-J
(0A/10)

LINE FEED Moves the cursor to the first
position on the next line. (Scrolling
will occur if cursor is on line 24.)

X
or

CONTROL-K
(OB/11)

HOME Moves the cursor to the upper
left-hand corner of the screen.

*
or

CONTROL-a
(1E/30)

CURSOR UP Moves the cursor up 1 line.

or
CONTROL-O

(1F/31)

CURSOR
DOWN

Moves the cursor down 1 line.

■4-
or

CONTROL-]
(1D/29)

CURSOR
LEFT

Moves the cursor 1 position left.
When advanced beyond the left of
the screen, the cursor is moved to
the right side of the preceding line.

-►
or

CONTROL- \
(1C/28)

CURSOR
RIGHT

Moves the cursor 1 position right.
When advanced beyond the right of
the screen, the cursor is moved to
the left side of the next line.

CONTROL-^
or

CONTROL-F
(06/06)

NEXT
WORD

Moves the cursor right, to the next
word. ‘‘Next word” is the next
character to the right of the cursor
(or on the next line) in the set A-Z or
0-9.

CONTROL-^
or

CONTROL-B
(02/02)

PREVIOUS
WORD

Moves the cursor left, to the
previous word. ‘‘Previous word” is
the next character to the left of the
cursor (or on the previous line) in
the set A-Z or 0-9.

Table 1 Editing Keys (1 of 3)

2-4 GW-BASIC REFERENCE MANUAL

CHAPTER 2
GW-BASIC EDITOR

Key(s)
(hex/dec value) Name Description

l*H
or

CONTROL-H
(08/08)

BACK
SPACE

Deletes the last character entered,
or the character to the left of the
cursor. (If the character is in the first
column, it moves off the screen.) All
characters to the right of the cursor
are moved left 1 position. If a logical
line extends beyond a physical line,
subsequent characters are shifted
left and up to fill the line.

CONTROL-E
(05/05)

ERASE TO
END

Erases to the end of a logical line
from the current cursor position.

CONTROL- *
or

CONTROL-L
(OC/12)

CLEAR
SCREEN

Clears the screen and positions the
cursor in the upper left-hand corner
of the screen.

CONTROL-U
(15/21)

ESCAPE Erases the entire logical line.

CONTROL-C
(03/03)

BREAK Returns to direct mode without
saving any changes that were made
to the current line.

CONTROL-T
(14/20)

FUNCTION
KEY DISPLAY

Advances the display of function
keys on line 25.

CONTROL-Q
(11/17)

MARK LINE Marks a line for deletion.

CONTRQL-R
(12/18)

INSERT Turns insert mode either on or off.
(Insert mode is used to place
characters between characters in a
line.) If insert mode is off, pressing
this key turns it on; if insert mode is
on, pressing this key turns it off.

When in insert mode, characters
following the cursor are moved to
the right as typed characters are
inserted at the current position. For
each keystroke, the cursor moves
one position to the right. If
characters (or blanks) move off the
right side of the screen, they are
inserted from the left on
subsequent lines.

When out of insert mode,
characters typed replace existing
characters on the line.

Table 1 Editing Keys (2 of 3)

GW-BASIC REFERENCE MANUAL 2-5

CHAPTER 2
GW-BASIC EDITOR

Key(s)
(hex/dec value) Name Description

CONTROL-I TAB When out of insert mode, pressing
(09/09) the key moves the cursor over

characters until the next tab stop is
reached. Tab stops occur every 8
character positions.

When in insert mode, pressing the
key causes blanks to be inserted
from the current cursor position to
the next tab stop.

CONTROL-N END Moves the cursor to the end of the
(OE/14) logical line. Characters typed from

this position are appended to the
line.

Table 1 Editing Keys (3 of 3)

2-6 GW-BASIC REFERENCE MANUAL

Chapter 3

General Information About GW-BASIC

For full instructions for initializing GW-BASIC or GW-BASIC
Compiler on your NCR Decision Mate V, see you NCR GW-BASIC
(Interpreter) or NCR GW-BASIC Compiler User’s Guide.

3.1 MODES OF OPERATION
GW-BASIC Interpreter may be used in either of two modes: direct
mode or indirect mode. These modes do not apply to the GW-BASIC
Compiler.

In direct mode, statements and commands are not preceded by line
numbers. They are executed as they are entered. Results of arithmetic
and logical operations may be displayed immediately and stored for
later use, but the instructions themselves are lost after execution.
Direct mode is useful for debugging and for using GW-BASIC
Interpreter as a calculator for quick computations that do not require
a complete program.

Indirect mode is used for entering programs. Program lines are
preceded by line numbers and may be stored in memory. The program
stored in memory is executed by entering the RUN command.

3.2 LINE FORMAT
GW-BASIC program lines have the following format (square brack­
ets indicate optional input):

nnnnn BASIC statement [:BASIC statement...] <carriage return>

More than one GW-BASIC statement may be placed on a line, but
each must be separated from the last by a colon.

A GW-BASIC program line always begins with a line number and
ends with a carriage return. Line numbers indicate the order in which
the program lines are stored in memory. Line numbers are also used
as references in branching and editing. Line numbers must be in the
range 0 to 65529.

GW-BASIC REFERENCE MANUAL 3-1

CHAPTER 3
GENERAL INFORMATION

With the interpreter, a line may contain a maximum of 255
characters. With the compiler, the maximum number of characters
per line is 253.

With the interpreter, you can extend a logical line over more than one
physical line by using the <linefeed> key. <linefeed> lets you
continue typing a logical line on the next physical line without
entering a <carriage return>.
With the compiler, the line continuation character is an underscore
(_). Enter the underscore as the last character before you press
<RETURN> to drop down to the next line. The underscore removes
the significance of the carriage return in the Ccarriage
return><linefeed> sequence that ends each line, so that just the
linefeed is presented to the compiler.

A period (.) may be used in EDIT, LIST, AUTO, and DELETE
commands to refer to the current line. Note that these commands work
only with the interpreterf not with the compiler.

3.3 DEFAULT DEVICE
When a filespec is given (in commands or statements such as FILES,
OPEN, KILL), the default disk drive is the one that was the default in
MS-DOS before GW-BASIC was invoked.

3.4 ACTIVE AND VISUAL (DISPLAY) PAGES
Every command that reads to or writes from the screen is actually
reading/writing from or to the active page. The visual, or display,
page is the active page that is shown on the terminal screen.

The size of these pages is set by the SCREEN statement. (Section
4.121.)

3.5 CHARACTER SET
The GW-BASIC character set consists of alphabetic characters,
numeric characters, and special characters.

The alphabetic characters in GW-BASIC are the uppercase and
lowercase letters of the alphabet.

The GW-BASIC numeric characters are the digits 0 through 9.

3.5.1 Special Characters
The following special characters and terminal keys are recognized by
GW-BASIC:

3-2 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

Character Action

II +
1

Blank
Equals sign or assignment symbol
Plus sign
Minus sign

*
/
l
(
)
%
#
$
t

Asterisk or multiplication symbol
Slash or division symbol
Up arrow or exponentiation symbol
Left parenthesis
Right parenthesis
Percent
Number (or pound) sign
Dollar sign
Exclamation point

i
]
y

>

y

Left bracket
Right bracket
Comma
Period or decimal point
Single quotation mark (apostrophe)
Semicolon
Colon

&
?
<
>
\
@

Ampersand
Question mark
Less than
Greater than
Backslash or integer division symbol
At sign
Underscore

<backspace>
<escape>

Deletes last character typed.
Escapes edit mode subcommands (inter­
preter only).

< tab > Moves print position to next tab stop. Tab
stops are set every eight columns.

<linefeed> Moves to next physical line (interpreter
only).

<carriage
return > Terminates input of a line.

3.5.2 Control Characters
GW-BASIC supports the following control characters:

GW-BASIC REFERENCE MANUAL 3-3

CHAPTER 3
GENERAL INFORMATION

Control
Character Action

Control-A Enters edit mode on the line
being typed (interpreter only).

Control-C With the interpreter, interrupts
program execution and returns
to BASIC command level. With
the compiler, returns to the
operating system level if the /D
(debug) switch is active.

Control-G Rings the bell at the terminal.

Control-H Backspaces. Deletes the last
character typed.

Control-I Tabs to the next tab stop. Tab
stops are set every eight col­
umns.

Control-0 Halts program output while
execution continues. A second
Control-0 resumes output.

Control-R Lists the line that is currently
being typed.

Control-S Suspends program execution
(interpreter only).

Control-Q Resumes program execution
after a Control-S (interpreter
only).

Control-U Deletes the line that is cur­
rently being typed.

3.6 CONSTANTS
Constants are the values GW-BASIC uses during execution. There are
two types of constants: string and numeric.

3-4 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

3.6.1 String and Numeric Constants
A string constant is a sequence of up to 255 alphanumeric characters
enclosed in double quotation marks.
Examples:

“HELLO”
“$25,000.00”
“Number of Employees”

Numeric constants are positive or negative numbers. GW-BASIC
numeric constants cannot contain commas. There are five types of
numeric constants:

1. Integer constants

2. Fixed-point
constants

3. Floating-point
constants

Whole numbers between -32768
and 32767. Integer constants do
not contain decimal points.

Positive or negative real num­
bers, i.e., numbers that contain
decimal points.

Positive or negative numbers
represented in exponential form
(similar to scientific notation). A
floating-point constant consists
of an optionally signed integer or
fixed-point number (the
mantissa) followed by the letter
E and an optionally signed inte­
ger (the exponent). The allowable
range for floating-point con­
stants is 10-38 to 10 + 38.

Examples:

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double precision floating-point
constants are denoted by the
letter D instead of E. See Section
3.7.2.)

GW-BASIC REFERENCE MANUAL 3-5

CHAPTER 1
GENERAL INFORMATION

4. Hex constants Hexadecimal numbers, denoted
by the prefix &H.

Examples:

&H76
&H32F

5. Octal constants Octal numbers, denoted by the
prefix &O or &.

Examples:

&0347
&1234

6. Binary constants Binary numbers, denoted by the
prefix &B.

Examples:

&B123
&B47

3.6.2 Single/Double Precision Form For Numeric Constants
Numeric constants may be either single precision or double precision
numbers. Single precision numeric constants are stored with 7 digits
of precision, and printed with up to 6 digits of precision. Double
precision numeric constants are stored with 16 digits of precision and
printed with up to 16 digits.

A single precision constant is any numeric constant that has one of
the following characteristics:

1. Seven or fewer digits.

2. Exponential form using E.

3. A trailing exclamation point (!).
Examples:

46.8
-1.09E-06
3489.0
22.5!

3-6 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

A double precision constant is any numeric constant that has one of
these characteristics:

1. Eight or more digits.

2. Exponential form using D.

3. A trailing number sign (#).

Examples:

345692811
-1.09432D-06
3489.0#
7654321.1234

3.7 VARIABLES
Variables are names used to represent values used in a BASIC
program. The value of a variable may be assigned explicitly by the
programmer, or it may be assigned as the result of calculations in the
program. Before a variable is assigned a value, its value is assumed to
be zero (or null for a string variable).

3.7.1 Variable Names and Declaration Characters
GW-BASIC variable names may be any length. Up to 40 characters
are significant. Variable names can contain letters, numbers, and the
decimal point. However, the first character must be a letter. Special
type declaration characters (listed below) are also allowed.

A variable name may not be a reserved word, but embedded reserved
words are allowed. Reserved words include all GW-BASIC com­
mands, statements, function names, and operator names. If a variable
begins with FN, it is assumed to be a call too a user-defined function.

Variables may represent either a numeric value or a string. String
variable names can be written with a dollar sign ($) as the last
character. For example: A$ = “SALES REPORT”. The dollar sign is a
variable type declaration character; that is, it “declares” that the
variable will represent a string.

Numeric variable names may declare integer, single precision, or
double precision values. The type declaration characters for these
variable names are as follows:

GW-BASIC REFERENCE MANUAL 3-7

CHAPTER 3
GENERAL INFORMATION

% Integer variable

! Single precision variable

Double precision variable
The default type for a numeric variable name is single precision.
With the GW-BASIC Compiler, we recommend that you use integer
variables whenever possible. Integer variables produce the fastest
and most compact object code. For example, the following program
executes approximately 30 times faster when the loop control
variable “I” is replaced with “I%”, or when I is declared an integer
variable with DEFINT.

FOR 1 = 1 TO 10
A(i)—o
NEXT I

Examples of GW-BASIC variable names:

PI#
MINIMUM!
LIMIT%
N$
ABC

Declares a double precision value.
Declares a single precision value.
Declares an integer value.
Declares a string value.
Represents a single precision value.

Variable types may also be declared by including the GW-BASIC
statements DEFINT, DEFSTR, DEFSNG, and DEFDBL in a pro­
gram. These statements are described in detail in Section 4.30.

NOTE: With the interpreter, loop control variables must be single
precision. With the compiler, however, they may be either
single or double precision. Double precision loop control
variables let you increase the precision of the increment or
increase the range of the loop.

3.7.2 Array Variables
An array is a group or table of values referenced by the same variable
name. Each element in an array is referenced by an array variable
that is subscripted with an integer or an integer expression. An array
variable name has as many subscripts as there are dimensions in the
array. For example V(10) would reference a value in a one-dimension
array, T(l,4) would reference a value in a two-dimension array, and so
on. The maximum number of dimensions for an array is 255. The
maximum number of elements per dimension is 32,767.

3-8 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

3.7.3 Space Requirements
The following list gives only the number of bytes occupied by the
values represented by the variable names. Additional requirements
may vary according to implementation.

Variables
Type Bytes

Integer 2
Single precision 4
Double precision 8

The compiler and interpreter differ in their implementations and
maintenance of string space. Most implementations of the inter­
preter support strings of up to 255 characters. The number of bytes
required for the string descriptor varies with the implementation.
With the compiler, strings of up to 32767 characters are supported,
and the string descriptor requires 4 bytes of memory.

NOTE: With the compiler, using either POKE with PEEK and
VARPTR, or using assembly language subroutines to change
string descriptors may cause a “String Space Corrupt” error.

3.8 TYPE CONVERSION
When necessary, GW-BASIC will convert a numeric constant from
one type to another. The following rules and examples apply to
conversions.

1. If a numeric constant of one type is set equal to a numeric
variable of a different type, the number will be stored as the type
declared in the variable name. (If a string variable is set equal to a
numeric value or vice versa, a “Type mismatch” error occurs.)

GW-BASIC REFERENCE MANUAL 3-9

Arrays

Type Bytes

Integer
Single precision
Double precision

2 per element
4 per element
8 per element

CHAPTER 3
GENERAL INFORMATION

Example:

10 A% =23.42
20 PRINT A%
will yield
23

2. During expression evaluation, all of the operands in an arithme­
tic or relational operation are converted to the same degree of
precision, i.e., that of the most precise operand. Also, the result of
an arithmetic operation is returned to this degree of precision.

Examples:

10 D# = 6#/7
20 PRINT D#
will yield

.8571428571428571

The arithmetic was performed in double precision and the result
was returned in D# as a double precision value.

10 D=6#/7
20 PRINT D
will yield
.857143

The arithmetic was performed in double precision, and the result
was returned to D (single precision variable), rounded, and
printed as a single precision value.

3. Logical operators (see Section 3.10.3) convert their operands to
integers and return an integer result. Operands must be in the
range -32768 to 32767 or an “Overflow” error occurs.

4. When a floating-point value is converted to an integer, the
fractional portion is rounded.

Example:

10 C% =55.88
20 PRINT C%
will yield
56

3-10 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

5. If a double precision variable is assigned a single precision value,
only the first seven digits (rounded) of the converted number will
be valid. This is because only seven digits of accuracy were
supplied with the single precision value. The absolute value of the
difference between the printed double precision number and the
original single precision value will be less than 6.3E-8 times the
original single precision value.

Example:

10 A = 2.04
20 B# = A
30 PRINT A;B#
will yield
2.04 2.039999961853027

3,9 EXPRESSIONS AND OPERATORS
An expression may be a string or numeric constant, a variable, or a
combination of constants and variables with operators. An expres­
sion always produces a single value.

Operators perform mathematical or logical operations on values.
GW-BASIC operators may be divided into four categories:

1. Arithmetic

2. Relational

3. Logical

4. Functional

Each category is described in the following sections.

3.9.1 Arithmetic Operators
The arithmetic operators, in order of evaluation, are:

GW-BASIC REFERENCE MANUAL 3-11

r'NAPTFR 1
GENERAL INFORMATION

Operator Operation Sample Expression

A Exponentiation X aY
- Negation - X
V Multiplication, Floating­ X*Y

point Division X/Y
\ Integer division 12\6=2
MOD Modulus arithmetic 10.4 MOD 4=2

(10/4=2 with remainder 2)
Addition, Subtraction X + Y

With the interpreter, you can change the order of evaluation by using
parentheses. Operations within parentheses are performed first.
Inside parentheses, the usual order of operations is maintained. With
the compiler, however, parentheses will not always redirect the order
of evaluation.

Note the additional differences between the interpreter and compiler:

1. Numeric calculations involving numbers with a large number of
decimal places may not produce exactly the same results with the
interpreter as with the compiler. This difference affects only
calculations involving very precise numbers.

2. During expression evaluation, the GW-BASIC Compiler converts
operands of difference types to the type of the more precise
operand.

For instance, the following expression causes J% to be converted
to single precision and added to A!:

QR=J% +A!+Q#

The resultant sum is then converted to double precision and
added to Q#.

3. The interpreter always performs transcendental functions in
single precision. The compiler performs them in double
precision if requested.

The following list gives some sample algebraic expressions and
their GW-BASIC counterparts.

3-12 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

Algebraic Expression BASIC Expression

X+2Y X+Y*2

x - Y X - Y / Z
Z

XY X*Y/Z
Z

X + Y (X + Y)/Z
Z

<X2)Y (X a 2) a Y

z
Y X a (Y a Z)

X

X(—Y) X*(—Y) T w o co n se cu tive
o p e ra to rs m ust
be se p a ra ted by
pa ren theses.

3.9.1.1 Integer Division and Modulus Arithmetic
In addition to the six standard operators (addition, subtraction,
multiplication, division, negation, exponentiation), GW-BASIC sup­
ports integer division and modulus arithmetic.

Integer division is denoted by the backslash (\) . The operands are
rounded to integers (must be in the range -32768 to 32767) before the
division is performed, and the quotient is truncated to an integer.

Examples:

10\4=2
25.68\6.99=3

Modulus arithmetic is denoted by the operator MOD. Modulus
arithmetic yields the integer value that is the remainder of an integer
division.

Examples:

10.4 MOD 4=2 (10/4 = 2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

GW-BASIC REFERENCE MANUAL 3-13

CHAPTER 3
GENERAL INFORMATION

3.9.1.2 Overflow and Division by Zero
With the interpreter, if division by zero is encountered during the
evaluation of an expression, a “Division by zero” error message
displayed. Machine infinity (the largest number than can be
represented in floating-point format) with the sign of the numerator
is supplied as the result of the division, and execution continues. If the
evaluation of an exponentiation operator results in zero being raised
to a negative power, the “Division by zero” error message is
displayed, positive machine infinity is supplied as the result of the
exponentiation, and execution continues.
If overflow occurs, the interpreter displays an “Overflow” error
message, supplies machine infinity with the algebraically correct
sign as the result, and continues execution.

The compiler is more limited than the interpreter in handling
numeric overflow. For example, when run on the interpreter, the
following statements yield 40000 for A%.

1% =20000
J% =20000
A% =1% +J%

That is, J% is added to 1%. Because the number is too large for an
integer representation, the interpreter converts the result into a
floating-point number. The result (40000) is found and converted back
to an integer and saved as A%.

The GW-BASIC Compiler, however, must make type conversion
decisions during compilation. It cannot defer until actual values are
known. Thus, the compiler generates code to perform the entire
operation in integer mode, and arithmetic overflow occurs. If the /D
(Debug) switch is set, the error is detected. Otherwise, an incorrect
answer is produced.

When the above example is executed with the compiler, 1% -f-J%
yields the integer value -25536. This value is then converted to a
floating-point value and saved in A%.

Besides these type conversion decisions, the compiler performs
certain valid optimizing algebraic transformations before generating
code. For example, the following program could produce an incorrect
result when run:

1% =20000
J% =-18000

3-14 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

K% =20000
M% =1% + J% +K%

If the compiler actually performs the arithmetic in the order shown,
no overflow occurs. However, if the compiler performs 1% +K% first
and then adds J%, overflow does occur.

The compiler follows the rules of operator evaluation, but no other
guarantee of evaluation order can be made; even the use of
parentheses may not always direct the order of evaluation.

3.9.2 Relational Operators
Relational operators are used to compare two values. The result of the
comparison is either “true” (-1) or “false” (0). This result may then be
used to make a decision regarding program flow. (See IF statements,
Section 4.53.)

The relational operators are:

Operator Relation Tested Example

= Equality X=Y
< > Inequality X o Y
< Less than X<Y
> Greater than X>Y
< = Less than or equal to X< = Y
> = Greater than or equal to X> = Y

(The equal sign is also used to assign a value to a variable. See the
LET statement, Section 4.67.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For example,
the expression

X + Y<(T-1)/Z

is true if the value of X plus Y is less than the value of T-l divided by Z.

More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J o O THEN K=K + 1

GW-BASIC REFERENCE MANUAL 3-15

CHAPTER 3
GENERAL INFORMATION

3.9.3 Logical Operators
Logical operators perform tests on multiple relations, bit manipula­
tion, or Boolean operations. The logical operator performs bit-by-bit
calculation and returns a result which is either “true” (not zero) or
“false” (zero). In an expression, logical operations are performed
after arithmetic and relational operations. The outcome of a logical
operation is determined as shown in Table 3-1. The operators are
listed in order of precedence.

Just as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two or more
relations and return a true or false value to be used in a decision (see
IF statements, Section 4.53).

3-16 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

Example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<0 THEN 50

IF NOT P THEN 100
Logical operators work by converting their operands to 16-bit, signed,
two’s complement integers in the range -32768 to 32767. (If the
operands are not in this range, an error results.) If both operands are
supplied as 0 or -1, logical operators return 0 or -1. The given
operation is performed on these integers bit-by-bit; i.e., each bit of the
result is determined by the corresponding bits in the two operands.

Thus, it is possible to use logical operators to test bytes for a
particular bit pattern. For instance, the AND operator may be used to
“mask” all but one of the bits of a status byte at a machine I/O port.
The OR operator may be used to “merge” two bytes to create a
particular binary value. The following examples will help demon­
strate how the logical operators work.

63 AND 16 = 16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16.

15 AND 14 = 14

-1 AND 8 = 8

4 OR 2 = 6

10 OR 10 = 10

-1 OR -2 = -1

15 = binary 1111 and 14 = binary
1110, so 15 AND 14 = 14 (binary
1110).

-1 = binary 1111111111111111 and 8
= binary 1000, so -1 AND 8 = 8.

4 = binary 100 and 2 = binary 10, so
4 OR 2 = 6 (binary 110).

10 = binary 1010, so 1010 OR 1010 =
1010 (decimal 10).

-1 = binary 1111111111111111 and -2
= binary 1111111111111110, so -1 OR
-2 = -1. The bit complement of
sixteen zeros is sixteen ones, which is
the two’s complement representation
of -1.

GW-BASIC REFERENCE MANUAL 3-17

rUAPTER
GENERAL INFORMATION

NOT X = -(X + l) The two’s complement of any integer
is the bit complement plus one.

3.9.4 Functional Operators
When a function is used in an expression, it calls a predetermined
operation that is to be performed on an operand. GW-BASIC has
“intrinsic” functions that reside in the system, such as SQR (square
root) or SIN (sine). All GW-BASIC intrinsic functions are described
in Chapter 4.

GW-BASIC also allows “user-defined” functions that are written by
the programmer. See “DEF FN Statement,” Section 4.29.

3.9.5 String Operators
Strings may be concatenated by using the plus sign (+). For example:

10 A$=“FILE” : B$=“NAME”
20 PRINT A$+B$
30 PRINT “NEW ” + A$ + B$
will yield
FILENAME
NEW FILENAME

Strings may be compared using the same relational operators that
are used with numbers:

= < > < > < = > =

String comparisons are made by taking one character at a time from
each string and comparing the ASCII codes. If all the ASCII codes are
the same, the strings are equal. If the ASCII codes differ, the lower
code number precedes the higher. If during string comparison the end
of one string is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant.

Examples:

“AA”< “AB”
“FILENAME” = “FILENAME”
“X&”> “X#”
“CL ”> “CL”
“kg”> “KG”
“SMYTH”< “SMYTHE”
B$ < “9/12/78” where B$= “8/12/78”

3-18 GW-BASIC REFERENCE MANUAL

CHAPTER 3
GENERAL INFORMATION

Thus, string comparisons can be used to test string values or to
alphabetize strings. All string constants used in comparison expres­
sions must be enclosed in quotation marks.

3.10 ERROR MESSAGES
If an error causes program execution to terminate, an error message
is printed. For a complete list of GW-BASIC error codes and error
messages, see Appendix A.

GW-BASIC REFERENCE MANUAL 3-19

Chapter 4

GW-BASIC Command, ,
and Functions

GW-BASIC commands and statements are described in this chapter.
Briefly, these elements can be defined as:

Command An instruction that returns control to the operat­
ing system after the instruction has been per­
formed. LIST and MERGE, for example, are
commands. Commands are used only with the
GW-BASIC Interpreter; they are not supported by the
GW-BASIC Compiler.

Statement An instruction that is entered as part of a
program source line. For example, LET and LINE
are statements.

Function A function converts a value into some other value
according to a fixed formula. The functions
described in this chapter are built-in, or
“intrinsic” to GW-BASIC. These functions may
be called from any program without further
definition.

Arguments to functions are always enclosed in
parentheses. In the syntax given for the functions
in this chapter, the arguments have been abbrevi­
ated as follows:

X and Y Represent any numeric expres­
sions.

I and J Represent integer expressions.

X$ and Y$ Represent string expressions.

GW-BASIC REFERENCE MANUAL 4-1

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

If a floating-point value is supplied where an
integer is required, GW-BASIC will round the
fractional portion and use the resulting integer.

Note that with GW-BASIC Interpreter, only integer
and single precision results are returned by func­
tions. Double precision functions are supported only
by the GW-BASIC Compiler.

See Appendix B for information about mathe­
matical functions that are not intrinsic to GW-
BASIC.

Each description in this chapter is formatted as follows:

Syntax

Purpose

Remarks

Example

Note

Shows the correct syntax for the instruction or
function. See the introduction to this manual for
syntax notation.

When the term “filespec” is used as an option in
the syntax, it refers to a combination of device
name and filename, in the correct format for the
operating system.

Tells what the instruction or function is used for.

Describes in detail how the instruction or func­
tion is used.

Shows sample programs or program segments
that demonstrate the use of the instruction or
function.

In some of the examples in this chapter, interpreter
commands are included so that results can be shown
more clearly. Though these commands would not be
used with the GW-BASIC Compiler, the results of the
statement or function would be the same.

Describes special cases or provides additional
pertinent information.

4-2 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANPS, STA TEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler Describes ways in which the instruction or

function differs between the GW-BASIC Com­
piler and GW-BASIC Interpreter. If this section
is not present, the usage is the same for the
interpreter and compiler.

GW-BASIC REFERENCE MANUAL 4-3

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.1 ABS FUNCTION

Syntax ABS(X)

Purpose To return the absolute value of the expression X.

Example PRINT ABS(7*(-5))
will yield
35

4-4 GW-BASIC REFERENCE MANUAL

4.2 ASC FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

ASC(X$)

To return a numerical value that is the ASCII
code for the first character of the string X$. (See
Appendix C for ASCII codes.)

If X$ is null, an “Illegal function call” error is
returned.

10 X$ = “TEST”
20 PRINT ASC(X$)
will yield
84

See the CHR$ function, Section 4.12, for details
on ASCII-to-string conversion.

GW-BASIC REFERENCE MANUAL 4-5

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.3 ATN FUNCTION

Syntax ATN(X)

Purpose To return the arctangent of X, where X is in
radians. Result is in the range -pi/2 to pi/2
radians.

Remarks The expression X may be any numeric type, but
the evaluation of ATN is always performed in
single precision.

Example 10 INPUT X
20 PRINT ATN(X)
will yield
? 3
1.249046

4-6 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.4 AUTO COMMAND

Syntax AUTO [<line number>[,<increment>]]

Purpose To automatically generate line numbers during
program entry.

Remarks AUTO begins numbering at <line number> and
increments each subsequent line number by
<increment>. The default for both values is 10.
If <line number> is followed by a comma but
<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk is printed after the
number to warn the user that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk
will save the existing line and generate the next
line number.

If the cursor is moved to another line on the
screen, numbering will resume there.

AUTO is terminated by typing CONTROL-C. The
line in which CONTROL-C is typed will not be
saved. After CONTROL-C is typed, GW-BASIC
returns to command level.

Example AUTO 100,50

Generates line numbers 100,
150, 200

AUTO

Generates line numbers 10,
20, 30, 40 ___

GW-BASIC
Compiler The AUTO command is not supported by the

GW-BASIC Compiler.

GW-BASIC REFERENCE MANUAL 4-7

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.5 BEEP STATEMENT

Syntax BEEP

Purpose Sounds the speaker at 830 Hz for 240ms.

Remarks Non-graphic versions of MS-BASIC use PRINT
CHR$ to send an ASCII Bell Character.

Example 2430 IF X < 20 THEN BEEP ’X is out or range,
complain.

4-8 GW-BASIC REFERENCE MANUAL

4.6 BLOAD STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

BLOAD <filespec> [,<offset>]

The device designation portion of the filespec is
optional. The filename may be 1 to 8 characters
long.

<offset> is a numeric expression returning an
unsigned integer in the range 0 to 65535. This is
the offset address at which loading is to start in
the segment declared by the last DEF SEG
statement.

To load a specified memory image file into
memory from disk.

The BLOAD statement allows a program or data
that has been saved as a memory image file to be
loaded anywhere in memory. A memory image
file is a byte-for-byte copy of what was originally
in memory. See “BSAVE Statement/' Section 4.7,
for information about saving memory image
files.

If the offset is omitted, the segment address and
offset contained in the file (i.e., the address
specified by the BSAVE statement when the file
was created) are used. Therefore, the file is
loaded into the same location from which it was
saved.

If offset is specified, the segment address used is
the one given in the most recently executed DEF
SEG statement. If no DEF SEG statement has
been given, the GW-BASIC data segment will be
used as the default (because it is the default for
DEF SEG).

CAUTION: BLOAD does not perform an
address range check. It is
therefore possible to load a file
anywhere in memory. The user
must be careful not to load over

GW-BASIC REFERENCE MANUAL 4-9

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC or the operating
system.

Example

GW-BASIC
Compiler

10 ‘Load subroutine at 60:F000
20 DEF SEG = &H6000 ‘Set segment at 6000
Hex
30 BLOAD“PROG1”,&HFOOO ‘Load PROG1

This example sets the segment address at 6000
Hex and loads PROG1 at F000.

The BLOAD statement is not supported by the
GW-BASIC Compiler.

4-10 GW-BASIC REFERENCE MANUAL

4.7 BSAVE STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

BSAVE <filespec>,<offset>,<length>

The device designation portion of the filespec is
optional. The filename may be 1 to 8 characters
long.

<offset> is a numeric expression returning an
unsigned integer in the range 0 to 65535. This is
the offset address to start saving from in the
segment declared by the last DEF SEG
statement.

<length> is a numeric expression returning an
unsigned integer in the range 1 to 65535. This is
the length in bytes of the memory image file to be
saved.

To save the contents of the specified area of
memory as a disk file.

The <filespec>, <offset>, and <length> are
required in the syntax.

The BSAVE statement allows data or programs
to be saved as memory image files on disk or
cassette. A memory image file is a byte-for-byte
copy of what is in memory.

If the offset is omitted, a “Bad file name” error is
issued and the save is aborted. A DEF SEG
statement must be executed before the BSAVE.
The last known DEF SEG address will be used for
the save.

If length is omitted, a “Bad file name” error is
issued and the save is aborted.

10 ‘Save PROG1
20 DEF SEG = $H6000
30 BSAVE“PROG1”,&HFOOO,256

This example saves 256 bytes starting at
6000:F000 in the file PROG1.

GW-BASIC REFERENCE MANUAL 4-11

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler The BSAVE statement is not supported by the

GW-BASIC Compiler.

4-12 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.8 CALL STATEMENT

Syntax CALL < variable name>[(<argument list>)]

where <variable name> contains an address
that is the starting point in memory of the
subroutine. <variable name> may not be an
array variable name.

<argument list> contains the arguments that
are passed to the external subroutine.
<argument list> may contain only variables.

Purpose To call an assembly language subroutine or a
compiled routine written in another high level
language.

Remarks The CALL statement is one way to transfer
program flow to an external subroutine. (See also
the USR function, Section 4.140.)

The CALL statement generates the same calling
sequence used by Microsoft FORTRAN and
Microsoft BASIC compilers.

Example 110 MYROUT = &HD000
120 CALL MYROUT(I,J,K)

GW-BASIC
Compiler In a compiled GW-BASIC program, line 110 in

the above example is not required because the
address of MYROUT will be assigned by the
linking loader at load time.

Additional differences for GW-BASIC Compiler
are:

1. The Cvariable name> is the name of the
subroutine that is to be called. The name
must be 1 to 31 characters long and must be
recognized by MS-LINK as a global symbol.

GW-BASIC REFERENCE MANUAL 4-13

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

That is, Cvariable name> must be a
PUBLIC symbol in an assembly language
routine.

2. Since GW-BASIC Compiler allows strings to
be up to 32767 bytes long, the string
descriptor requires four bytes rather than
three as in the interpreter. The four bytes
are: low byte, high byte of the length,
followed by low byte, high byte of the
address. If the assembly language routine
uses string arguments, it may need to be
recoded to account for this difference. (See
the NCR GW-BASIC Compiler User’s Guide,
Chapter 9.)

4-14 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.9 CALLS STATEMENT
The CALLS statement is just like CALL, except that the segmented
addresses of all arguments are passed. (CALL passes unsegmented
addresses.) CALLS should be used when accessing routines written
with FORTRAN calling conventions, since all FORTRAN parameters
are call-by-reference segmented addresses.

With the interpreter only, CALLS uses the segment address defined
by the most recently executed DEF SEG statement to locate the
routine being called.

GW-BASIC REFERENCE MANUAL 4-15

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.10 CDBL FUNCTION

Syntax CDBL(X)

Purpose To convert X to a double precision number.

Example 10 A=454.67
20 PRINT A;CDBL(A)
will yield
454.67 454.6699829101563

4-16 GW-BASIC REFERENCE MANUAL

4.11 CHAIN STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
a n d Fu n c tio n s

Syntax

Purpose

Remarks

CHAIN [MERGE]<filespec>[,[<line number
exp>] [,ALL][,DELETE <range>]]

See the examples below for illustration of the
syntax options.

To call a program and pass variables to it from
the current program.

<filespec> is the spec of the program that is
called.

The COMMON statement may be used to pass
variables (see Section 4.20).

Cline number exp> is a line number or an
expression that evaluates to a line number in the
called program. It is the starting point for
execution of the called program. If it is omitted,
execution begins at the first line. Cline number
exp> is not affected by a RENUM command.

With the ALL option, every variable in the
current program is passed to the called program.
If the ALL option is omitted, the current program
must contain a COMMON statement to list the
variables that are passed. See Section 4.20 for
information about COMMON.

If the ALL option is used and Cline number
expression> is not, a comma must hold the place
of Cline number expressions For example,
CHAIN “NEXTPROG”„ALL is correct; CHAIN
“NEXTPROG”,ALL is incorrect. In the latter
case, GW-BASIC assumes that ALL is a variable
name and evaluates it as a line number
expression.

The MERGE option allows a subroutine to be
brought into the GW-BASIC program as an
overlay. That is, the current program and the
called program are merged (see “MERGE

GW-BASIC REFERENCE MANUAL 4-17

CHAPTER 4 COMMANDS, STA TEMENTS,
AND FUNCTIONS

Example 1

Command,” Section 4.80). The called program
must be an ASCII file if it is to be merged.

After an overlay is used, it is usually desirable to
delete it so that a new overlay may be brought in.
To do this, use the DELETE option.

The line numbers in <range> are affected by
the RENUM command.

10 REM THIS PROGRAM DEMONSTRATES
CHAINING USING COMMON TO PASS
VARIABLES.
20 REM SAVE THIS MODULE ON DISK AS
“PROG1” USING THE A OPTION.
30 DIM A$(2),B$(2)
40 COMMON A$(),B$()
50 A$(l) = “VARIABLES IN COMMON MUST
BE ASSIGNED”
60 A$(2) = “VALUES BEFORE CHAINING.”
70 B$(l) = “”: B$(2) = “”
80 CHAIN “PROG2”
90 PRINT: PRINT B$(l): PRINT: PRINT B$(2):
PRINT
100 END

Example 2 10 REM THE STATEMENT “DIM A$(2),B$(2)”
MAY ONLY BE EXECUTED ONCE.
20 REM HENCE, IT DOES NOT APPEAR IN
THIS MODULE.
30 REM SAVE THIS MODULE ON THE DISK
AS “PROG2” USING THE A OPTION.
40 COMMON A$(),B$()
50 PRINT:PRINT A$(1);A$(2)
60 B$(l) = “NOTE HOW THE OPTION OF
SPECIFYING A STARTING LINE NUMBER”
70 B$(2) = “WHEN CHAINING AVOIDS THE
DIMENSION STATEMENT IN ‘PROG1’.”
80 CHAIN “PROG1”,90
90 END

Example 3 10 REM THIS PROGRAM DEMONSTRATES
CHAINING USING THE MERGE, ALL, AND
DELETE OPTIONS.

4-18 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Note

GW-BASIC
Compiler

20 REM SAVE THIS MODULE ON THE DISK
AS “MAINPRG”.
30 A$=“MAINPRG”
40 CHAIN MERGE “OVRLAY1”, 1010,ALL
50 END

1000 REM SAVE THIS MODULE ON THE
DISK AS “OVRLAY1” USING THE A
OPTION.
1010 PRINT A$; “ HAS CHAINED TO
OVRLAY1.”
1020 A $=“OVRLAYl”
1030 B$ = “OVRLAY2”
1040 CHAIN MERGE “OVRLAY2”, 1010,ALL,
DELETE 1000-1050
1050 END

1000 REM SAVE THIS MODULE ON THE
DISK AS “OVRLAY2” USING THE A
OPTION.
1010 PRINT A$; “ HAS CHAINED TO “;B$:”.”
1020 END

The CHAIN statement with MERGE option
leaves the files open and preserves the current
OPTION BASE setting.

If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined functions
for use by the chained program. That is, any
DEFINT, DEFSNG, DEFDBL, DEFSTR, or
DEFFN statements containing shared variables
must be restated in the chained program.

When using the MERGE option, user-defined
functions should be placed before any CHAIN
MERGE statements in the program. Otherwise,
the user-defined functions will be undefined after
the merge is complete.

The GW-BASIC Compiler does not support the
ALL, MERGE, DELETE, and <line number
exp> options to CHAIN. Thus, the statement

GW-BASIC REFERENCE MANUAL 4-19

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

syntax is CHAIN <filespec>. If you wish to
maintain compatibility with GW-BASIC
Compiler, we recommend that you use COMMON
to pass variables and that you do not use overlays.
The CHAIN statement leaves the files open
during chaining.

See the “GW-BASIC Compiler” portion of the
COMMON statement, Section 4.20, for more
information about chaining with COMMON.

4-20 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.12 CHR$ FUNCTION

Syntax CHR$(I)

Purpose To return a string whose one character is ASCII
character I. (ASCII codes are listed in Appendix
C.)

Remarks CHR$ is commonly used to send a special
character to the terminal. For instance, the
BELL character (CHR$(7)) could be sent as a
preface to an error message, or a form feed
(CHR$(12)) could be sent to clear a terminal
screen and return the cursor to the home position.

Example PRINT CHR$(66)
will yield
B

See the ASC function, Section 4.2, for details on
ASCII-to-numeric conversion.

GW-BASIC REFERENCE MANUAL 4-21

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.13 CINT FUNCTION

Syntax CINT(X)

Purpose To convert X to an integer by rounding the
fractional portion.

Remarks If X is not in the range -32768 to 32767, an
“Overflow” error occurs.

Example PRINT CINT(45.67)
will yield
46

See the CDBL and CSNG functions for details on
converting numbers to the double precision and
single precision data type, respectively. See also
the FIX and INT functions, both of which return
integers.

4-22 GW-BASIC REFERENCE MANUAL

4.14 CIRCLE STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

CIRCLE (x,y), radius [,color[,start,end[,aspect]]]

Draws an ellipse according to the following
definitions:

x,y
Specifies the coordinates of the center of the
ellipse.

radius
Specifies the radius (major axis) in points.

color
Specifies the color of the circle (0-7, see Color
statement). If not specified, the color is the
foreground color.

start,end
Specifies in radians where the drawing is to begin
and end. The values may range from -2*PI to
2*PI, where PI = 3.141593. (See also remarks.)

aspect
Specifies the ratio of the X radius to the Y radius.
(If not specified, the ratio is assumed to be 1/1, a
circle.) If the ratio is less than 1, the radius is the
X radius; if the ratio is greater than 1, the radius
is the Y radius.

The first two arguments (x,y coordinates and
radius) are the only ones required to draw a
circle. Use the last two arguments to draw other
“curved” shapes. Start and end, for example,
allow you to control how much of the circle is to
be drawn. The values of start and end are in
radians, positioned in the standard
mathematical way.

GW-BASIC REFERENCE MANUAL 4-23

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

PI 0*PI
2*PI

3*PI/2

Either start or end value may be negative (-0,
however, is not allowed) in which case the angle is
connected to the center point with a line. For
example, start and end values of -PI/2, -2PI
would draw part of a circle.

Use the aspect argument to draw an ellipse other
than a circle. If the aspect ratio is less than 1,
then r is the X radius; if the aspect ratio is greater
than 1, then r is the Y radius. For example,

10 SCREEN 1
20 CIRCLE (160,100),60„„5/18

will draw an ellipse like this:

4-24 GW-BASIC REFERENCE MANUAL

NCR Corporation is pleased to provide GW-BASIC software for
implementation on your NCR Decision Mate V. Your GW-BASIC
package contains an NCR GW-BASIC Reference Manual, a GW-BASIC
User’s Guide for either the GW-BASIC Interpreter or the GW-BASIC
Compiler, and a disk which holds the following files:

NCR GW-BASIC (Interpreter) NCR GW-BASIC Compiler

For MS™-DOS For MS™-DOS
Disk 1 of 1 Disk 1 of 1

GWBASIC.EXE
GWCONF.COM
DUMPCL.OBJ

GWBCOM.COM
BASCOMG.LIB
BASRUNG.LIB
BASRUNG.EXE
GWCONF.COM
DEMO.BAS
LINK.EXE

NCR GW-BASIC Compiler

The GW-BASIC Compiler program has been pre-installed for your
NCR Decision Mate V.

No programmable function key assignments have been made. To
define your own, see the KEY Statement in Chapter 4, Section 4.61, of
your NCR GW-BASIC Reference Manual.

Fl
F2
F3
F4
F5
F6
F7
F8
F9
F10
F ll
F12
F13
F14
F15

F16
F17
F18
F19
F20

NCR GW-BASIC (Interpreter)

The GW-BASIC program has been pre-installed for your NCR
Decision Mate V. The programmable function keys have been assigned
the values which appear below. See the KEY Statement in Chapter 4,
Section 4.61 of your GW-BASIC REFERENCE MANUAL for detailed
instructions in utilizing these function keys.

Fl LOAD
F2 RUN
F3 CONT
F4 SAVE
F5 LIST
F6 EDIT
F7 TRON
F8 TROFF
F9 PRINT
F10 PRINT USING
F ll GOTO
F12 GOSUB
F13 IF
F14 THEN
F15 ELSE

F16 CHR$
F17 STRING$
F18 LINE
F19 CIRCLE
F20 DRAW

N C R

GWT-BASIC
Reference Manual

COPYRIGHT NOTICE
Copyright® 1983 by Microsoft Corporation, all rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Microsoft Corporation.

TRADEMARKS
Microsoft and the Microsoft logo are registered trademarks of Microsoft Corporation.
MS, GW, Music Macro Language, and Graphics Macro Language are trademarks of
Microsoft Corporation. Teletype is a registered trademark of Teletype Corporation.

DISCLAIMER OF WARRANTY
NCR Corporation and Microsoft Corporation make no representations or warranties
with respect to the contents hereof and specifically disclaim any implied warranties of
merchantability or fitness for any particular purpose. Further, NCR Corporation and
Microsoft Corporation reserve the right to revise this publication and to make changes
from time to time in the content hereof without obligation to notify any person or
organization of such revisions or changes.
The GW-BASIC Compiler Software and Manual are sold AS IS and without warranty as
to performance. While NCR Corporation and Microsoft Corporation firmly believe this
to be a high quality product, the user must assume all risks of using the program.

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Points that are off the screen are not drawn by
the Circle statement.

GW-BASIC REFERENCE MANUAL 4-25

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.15 CLEAR STATEMENT

Syntax CLEAR [,[<expressionl>][,<expression2>]]

Purpose To set all numeric variables to zero, all string
variables to null, and to close all open files; and,
optionally, to set the end of memory and the
amount of stack space.

Remarks <expressionl> is a memory location that, if
specified, sets the highest location available for
use by GW-BASIC.

<expression2> sets aside stack space for
GW-BASIC. The default is 768 bytes or
one-eighth of the available memory, whichever is
smaller.

Note GW-BASIC allocates string space dynamically.
An “Out of string space” error occurs only if
there is no free memory left for GW-BASIC to
use.

The CLEAR statement performs the following
actions:

Closes all files.
Clears all COMMON variables.
Resets numeric variables and arrays to
zero.
Resets the stack and string space.
Resets all string variables and arrays to
null.
Releases all disk buffers.
Resets all DEF FN and
DEF/SNG/DBL/STR statements (for
interpreter only).

4-26 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Examples

GW-BASIC
Compiler

CLEAR

CLEAR ,32768

CLEAR „2000

CLEAR ,32768,2000

GW-BASIC Compiler supports the CLEAR
statement with the restriction that
<expressionl> and <expression2> must be
integer expressions. If a value of 0 is given for
either expression, the appropriate default is used.
The default stack size is 768 bytes, and the default
top of memory is the current top of memory.

GW-BASIC REFERENCE MANUAL 4-27

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.16 CLOSE STATEMENT

Syntax CLOSE [[#]<file number>[,[#]<file
number...>]]

Purpose To conclude I/O to a file. The CLOSE statement is
complementary to the OPEN statement.

Remarks <file number> is the number under which the
file was opened. A CLOSE with no arguments
closes all open files.

The association between a particular file and file
number terminates upon execution of a CLOSE
statement. The file may then be reopened using
the same or a different file number; likewise, that
file number may now be reused to open any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command
always close all disk files automatically. (STOP
does not close disk files.)

Example CLOSE #1,#2

4-28 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.17 CLS STATEMENT

Syntax CLS

Purpose Erases the screen to the currently selected
background color.

Remarks You may also clear the screen with the
CONTROL-L or CONTROL-HOME (X) keys.
(The SCREEN statement also clears the screen.)

If the KEY ON statement is in effect when you
use the CLS statement, the screen is cleared;
however, the function line at the bottom of the
screen is renewed with the currently active
background/foreground colors.

GW-BASIC REFERENCE MANUAL 4-29

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.18 COLOR STATEMENT

Syntax COLOR [foreground] [,background]

foreground
Specifies the character color. Enter an unsigned
integer in the range 0-7 (see following chart).

background
Specifies the screen color. Enter an unsigned
integer in the range 0-7 (see following chart).

Purpose Changes either (or both) the foreground or
background colors. The colors are specified by
codes:

0 = black
1 = blue
2 = green
3 = cyan
4 = red
5 = magenta
6 = yellow
7 = white

Remarks You may omit either parameter, in which case the
value from a previous COLOR statement (if any)
is assumed.

The foreground and background colors may be
the same, making the characters invisible.

If converting programs, note that NCR
GW-BASIC accepts a third parameter and codes
8-31 without displaying an error message. Also,
the syntax does not differ for text and graphics
mode.

An illegal parameter value results in an “Illegal
Function Call” message. The screen colors
remain as they were before the statement was
entered.

4-30 GW-BASIC REFERENCE MANUAL

Examples

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 COLOR 4,7 Uses red characters on a white
background.

20 COLOR „4 Changes the background to red;
character are invisible.

30 COLOR 2,0 Uses green characters on a black
background.

GW-BASIC REFERENCE MANUAL 4-31

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.19 COM STATEMENT

Syntax COM(n) ON
COM(n) OFF
COM(n) STOP

where (n) is the number of the communications
channel. The range for (n) is specified by the
implementor.

Purpose To enable or disable event trapping of
communications activity on the specified
channel.

The COM(n) ON statement enables communications event
trapping by an ON COM statement (see “ON
COM Statement,” Section 4.87). While trapping is
enabled, and if a non-zero line number is
specified in the ON COM statement, GW-BASIC
checks between every statement to see if activity
has occurred on the communications channel. If
it has, the ON COM statement is executed.

COM(n) OFF disables communications event
trapping. If an event takes place, it is not
remembered.

COM(n) STOP disables communications event
trapping, but if an event occurs, it is remembered
and ON COM will be executed as soon as trapping
is enabled.

Note For additional information on communications
event trapping, see “Event Trapping,” Section
1.6, and “ON COM Statement,” Section 4.87.

Example 10 COM(l) ON

Enables error trapping of communications
activity on channel 1.

GW-BASIC
Compiler See compiler note under “ON COM Statement,”

Section 4.87.

4-32 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.20 COMMON STATEMENT

Syntax COMMON c lis t of variables>

Purpose To pass variables to a chained program.

Remarks The COMMON statement is used in conjunction
with the CHAIN statement. COMMON
statements may appear anywhere in a program,
though it is recommended that they appear at the
beginning. The same variable cannot appear in
more than one COMMON statement. Array
variables are specified by appending “()” to the
variable name. If all variables are to be passed,
use CHAIN with the ALL option and omit the
COMMON statement.

Some Microsoft products allow the number of
dimensions in the array to be included in the
COMMON statement. GW-BASIC will accept
that syntax, but will ignore the numeric
expression itself. For example, the following
statements are both valid and are considered
equivalent:

COMMON A()
COMMON A(3)

The number in parentheses is the number of
dimensions, not the dimensions themselves. For
example, the variable A(3) in this example might
correspond to a DIM statement of DIM A(5,8,4).

Example 100 COMMON A,B,C,D(),G$
110 CHAIN “PROG3”,10

GW-BASIC
Compiler With the compiler, the COMMON statement

must appear in a program before any executable
statements. The current nonexecutable
statements are:

GW-BASIC REFERENCE MANUAL 4-33

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

COMMON
DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM
OPTION BASE
REM
$INCLUDE (see GW-BASIC Operations
Guide)

Array variables used in a COMMON statement
must be declared in a preceding DIM statement.

The standard form of the COMMON statement is
referred to as “blank” COMMON. The
GW-BASIC Compiler also supports Microsoft
FORTRAN Compiler-style “named” COMMON
areas; however, the variables are not preserved
across chains. The syntax for named COMMON
is:

COMMON /< n a m e > / c lis t of variables>

where <nam e> consists of 1 to 6 alphanumeric
characters starting with a letter. This is useful
for communicating with programs that use
FORTRAN calling conventions and assembly
language routines, without having to explicitly
pass parameters in the CALL statement.

With the compiler, the order of variables must be
the same for all COMMON statements
communicating between chaining and chained-to
programs. If the size of the common region in the
chained-to program is smaller than the region in
the chaining program, the extra COMMON
variables in the chaining program are ignored. If
the size of the common region in the chained-to
program is larger, the additional COMMON
variables are initialized to zeros and null strings.

To ensure that common areas can be shared
between programs, place COMMON declarations
in a single include file and use the $INCLUDE
statement in each program. (See the NCR GW-
BASIC User’s Guide for discussion of the
$INCLUDE statement.) For example:

4-34 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 REM This file is MENU.BAS
20 REM $INCLUDE:‘COMDEF’

1000 CHAIN “PROG1”

10 REM This file is PROG1.BAS
20 REM $INCLUDE:‘COMDEF.BAS’

2000 CHAIN “MENU”

10 REM This file is COMDEF.BAS
100 DIM A(100),B$(200)
110 COMMON I,J,K,A()
120 COMMON A$,B$(),X,Y,Z
130 REM End COMDEF.BAS

The BASCOMG.LIB runtime library does not
support COMMON with chained programs.
Therefore, programs should not be compiled with
the /0 switch if they use the COMMON statement
in conjunction with the CHAIN statement.

GW-BASIC REFERENCE MANUAL 4-35

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.21 CONT COMMAND

Syntax CONT

Purpose To continue program execution after a Control-C
has been typed or a STOP or END statement has
been executed.

Remarks Execution resumes at the point where the break
occurred. If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (“?” or prompt
string).

CONT is usually used in conjunction with STOP
for debugging. When execution is stopped,
intermediate values may be examined and
changed using direct mode statements. Execution
may be resumed with CONT or a direct mode
GOTO, which resumes execution at a specified
line number. CONT may be used to continue
execution after an error has occurred.

CONT is invalid if the program has been edited
during the break.

Example See “STOP Statement/' Section 4.129.

GW-BASIC
Compiler The CONT command is not supported by the

GW-BASIC Compiler.

4-36 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.22 COS FUNCTION

Syntax COS(X)

Purpose To return the cosine of X, where X is in radians.

Remarks The calculation of COS(X) is performed in single
precision.

Example 10 X=2*COS(.4)
20 PRINT X
will yield
1.842122

GW-BASIC REFERENCE MANUAL 4-37

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.23 CSNG FUNCTION

Syntax CSNG(X)

Purpose To convert X to a single precision number.

Example 10 A# = 975.3421#
20 PRINT A#; CSNG(A#)
will yield
975.3421 975.3421

See the CINT and CDBL functions for converting
numbers to the integer and double precision data
types, respectively.

4-38 GW-BASIC REFERENCE MANUAL

4.24 CSRLIN FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Example

X = CSRLIN

X
Specifies any numeric variable for which the
software returns a value in the range 1 through
24.

Returns the current line position of the cursor.

In the following example, the statement in line 10
returns the current line position. In line 20 the
statement returns the current column position; in
line 30 it prints HELLO in the middle of the
screen, and in line 40 it restores the position of
the cursor to the previous line and column. The
software returns a value for X = POS(O) in the
range 1 through 80.

10 Y = CSRLIN
20 X = POS(O)
30 LOCATE 12,40 :PRINT “HELLO”
40 LOCATE Y,X

GW-BASIC REFERENCE MANUAL 4-39

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.25 CVI, CVS, CVD FUNCTIONS

Syntax CVI(<2-byte string>)
CVS(<4-byte string>)
CVD(<8-byte string>)

Purpose To convert string values to numeric values.

Remarks Numeric values that are read in from a random
disk file must be converted from strings back into
numbers. CVI converts 2-byte string to an
integer. CVS converts a 4-byte string to a single
precision number. CVD converts an 8-byte string
to a double precision number.

Example

70 FIELD #1,4 AS N$, 12 AS B$, ...
80 GET #1
90 Y = CVS(N$)

See also “MKI$, MKS$, MKD$ Functions,”
Section 4.83.

4-40 GW-BASIC REFERENCE MANUAL

4.26 DATA STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

DATA <list of constants>

To store the numeric and string constants that
are accessed by the program's READ
statement(s). (See “READ Statement," Section
4.109.)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a line (separated by commas). Any number
of DATA statements may be used in a program.
READ statements access DATA statements in
order (by line number). The data contained
therein may be thought of as one continuous list
of items, regardless of how many items are on a
line or where the lines are placed in the program.

c lis t of constants> may contain numeric
constants in any format; i.e., fixed-point,
floating-point, or integer. (No numeric
expressions are allowed in the list.) String
constants in DATA statements must be
surrounded by double quotation marks only if
they contain commas, colons, or significant
leading or trailing spaces. Otherwise, quotation
marks are not needed.

The variable type (numeric or string) given in the
READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the
beginning by use of the RESTORE statement
(Section 4.113).

See “READ Statement," Section 4.109.

GW-BASIC REFERENCE MANUAL 4-41

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.27 DATES STATEMENT

Syntax DATE$= <string expression>

<string expression> returns a string in one of
the following forms:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

Purpose To set the current date. This statement
complements the DATE$ function, which
retrieves the current date.

Example 10 DATE$=“01-15-1984”

The current date is set at January 15, 1984.

4-42 GW-BASIC REFERENCE MANUAL

4.28 DATES FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

x$ = DATE$

To retrieve the current date. (To set the date, use
the DATE$ statement, described in Section 4.27.)

The DATE$ function returns a ten-character
string in the form mm-dd-yyyy, where mm is the
month (01 through 12), dd is the day (01 through
31), and yyyy is the year (1980 through 2099).

10 PRINT DATE$

The DATE$ function prints the date, calculated
from the date set with the DATE$ statement.

GW-BASIC REFERENCE MANUAL 4-43

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.29 DEF FN STATEMENT

Syntax DEF FN<name>[(<parameter list>)] =
<function definition>

Purpose To define and name a function that is written by
the user.

Remarks <nam e> must be a legal variable name. This
name, preceded by FN, becomes the name of the
function.

<parameter list> consists of those variable
names in the function definition that are to be
replaced when the function is called. The items in
the list are separated by commas.

<function definition> is an expression that
performs the operation of the function. It is
limited to one logical line. Variable names that
appear in this expression serve only to define the
function; they do not affect program variables
that have the same name. A variable name used
in a function definition may or may not appear in
the parameter list. If it does, the value of the
parameter is supplied when the function is called.
Otherwise, the current value of the variable is
used.

The variables in the parameter list represent, on
a one-to-one basis, the argument variables or
values that will be given in the function call.

This statement may define either numeric or
string functions. If a type is specified in the
function name, the value of the expression is
forced to that type before it is returned to the
calling statement. If a type is specified in the
function name and the argument type does not
match, a “Type mismatch” error occurs.

A DEF FN statement must be encountered before
the function it defines may be called. If a function
is called before it has been defined, an

4-44 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

“Undefined user function” error occurs. DEF FN
is illegal in the direct mode.

Example

410 DEF FNAB(X,Y) = X a3/Y a 2
420 T = FNAB(I,J)

Line 410 defines the function FNAB. The function
is called in line 420.

GW-BASIC REFERENCE MANUAL 4-45

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.30 DEFINT/SNG/DBL/STR STATEMENTS

Syntax DEF<type> <range(s) of letters>

where <type> is INT, SNG, DBL, or STR

Purpose To declare variable types as integer, single
precision, double precision, or string.

Remarks Any variable names beginning with the letter(s)
specified in Crange of letters> will be
considered the type of variable specified in the
<type> portion of the statement. However, a
type declaration character always takes
precedence over a DEFtype statement. (See
“Variable Names and Declaration Characters,”
Section 3.7.1.)

If no type declaration statements are
encountered, GW-BASIC assumes that all
variables without declaration characters are
single precision variables.

Examples 10 DEFDBL L-P
All variables beginning with the letters L, M,
N, 0. and P will be double precision variables.

10 DEFSTR A
All variables beginning with the letter A will
be string variables.

10 DEFINT I-N,W-Z
All variables beginning with the letters I, J,
K, L, M, N, W, X, Y, Z will be integer
variables.

GW-BASIC
Compiler The compiler does not “execute” a DEFxxx

statement, as it does a PRINT statement, for
example. A DEFxxx statement takes effect as
soon as it is encountered in the program during
compilation. Once the type has been defined for
the listed variables, that type remains in effect
either until the end of the program or until

4-46 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

another DEFxxx statement alters the type of the
variable. Unlike the interpreter, the compiler
cannot circumvent the DEFxxx statement by
directing flow of control around it with a GOTO
statement. For variables given with a precision
designator (i.e., % ,!,#, as in A% = B), the type is
not affected by the DEFxxx statement.

At compiletime, the compiler allocates memory
for storage of designated variables, and assigns
them one of the following data types:

1. Integer (INT)

2. Single precision floating-point (SNG)

3. Double precision floating-point (DBL)

4. String (STR)

GW-BASIC REFERENCE MANUAL 4-47

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.31 DEF SEG STATEMENT

Syntax DEF SEG [=<address>]

where < address > is a numeric expression
returning an unsigned integer in the range 0 to
65535.

Purpose To assign the current segment address to be
referenced by a subsequent BLOAD, BSAVE,
CALL, CALLS, or POKE statement or by a USR
or PEEK function.

Remarks The address specified is saved for use as the
segment required by BLOAD, BSAVE, CALL,
CALLS, POKE, USR, and PEEK.

Entry of any value outside the <address> range
0 through 65535 will result in an “Illegal function
call” error, and the previous value will be
retained.

If the <address> option is omitted, the segment
to be used is set to the GW-BASIC data segment
(DS). This is the initial default value.

If the <address> option is given, it should be
based on a 16-byte boundary. GW-BASIC does
not check the validity of the specified address.

Note DEF and SEG must be separated by a space.
Otherwise, GW-BASIC will interpret the
statement DEFSEG=100 to mean “assign the
value 100 to the variable DEFSEG.”

Example 10 DEF SEG = &HB800 ‘Seg segment to &800 Hex
20 DEF SEG ‘Restore segment to GW-BASIC
data segment

GW-BASIC
Compiler With the compiler, DEF SEG is referenced only

by the POKE statement and the PEEK and USR
functions.

4-48 GW-BASIC REFERENCE MANUAL

4.32 DEF USR STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

DEF USR[<digit>] = <integer expression>

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of
cinteger expression> is the starting address of
the USR routine.

Any number of DEF USR statements may appear
in a program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

200 DEF USRO=24000
210 X = USR0(Y A 2/2.89)

GW-BASIC REFERENCE MANUAL 4-49

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.33 DELETE COMMAND

Syntax DELETE [<line number>][-<line number>]

Purpose To delete program lines.

Remarks GW-BASIC always returns to command level
after a DELETE is executed. If Cline number>
does not exist, an “Illegal function call” error
occurs.

Examples DELETE 40
Deletes line 40.

DELETE 40-100
Deletes lines 40 through 100, inclusive.

DELETE -40
Deletes all lines up to and including line 40.

GW-BASIC
Compiler The DELETE command is not supported by the

GW-BASIC Compiler.

4-50 GW-BASIC REFERENCE MANUAL

4.34 DIM STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

GW-BASIC
Compiler

DIM <list of subscripted variables>

To specify the maximum values for array
variable subscripts and allocate storage
accordingly.

If an array variable name is used without a DIM
statement, the maximum value of the array’s
subscript(s) is assumed to be 10. If a subscript is
used that is greater than the maximum specified,
a ‘'Subscript out of range” error occurs. The
minimum value for a subscript is always 0, unless
otherwise specified with the OPTION BASE
statement (see Section 4.94).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

Theoretically, the maximum number of
dimensions allowed in a DIM statement is 255. In
reality, however, that number would be
impossible, since the name and punctuation are
also counted as spaces on the line, and the line
itself has a limit of 255 characters. The number of
dimensions is further limited by the amount of
available memory.

10 DIM A(20)
20 FOR 1 = 0 TO 20
30 READ A(I)
40 NEXT I

With the compiler, the DIM statement is scanned
rather than executed. That is, DIM takes effect
when it is encountered at compiletime and
remains in effect until the end of the program. It
cannot be reexecuted at runtime.

GW-BASIC REFERENCE MANUAL 4-51

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

If the default dimension (10) has already been
established for an array variable, and that
variable is later encountered in a DIM statement,
an “Array already dimensioned,, error results.
Therefore, the practice of putting a collection of
DIM statements in a subroutine at the end of a
program generates severe errors. In that case, the
compiler sees the DIM statement only after it has
already assigned the default dimension to arrays
declared earlier in the program.

The values of the subscripts in a DIM statement
must be integer constants; they may not be
variables, arithmetic expressions, or
floating-point values.

4-52 GW-BASIC REFERENCE MANUAL

4.35 DRAW STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

DRAW <string expression>

Draws an object as specified by the string
expression.

With the Draw statement you can draw an object
using object definition language commands. A
language command is a single character within a
string, optionally followed by one or more
arguments. The string expression defines an
object which is drawn on the screen when BASIC
executes the DRAW statement.

The following movement commands begin
movement from the coordinates of the last point
plotted with another language command, LINE
statement, or PSET statement. When a program
is RUN, movement begins from the center of the
screen (320,200).

U [< n>]
D [< n>]
L [< n>]
R [< n>]
E [< n>]
F [< n>]
G [< n>]
H [< n>]

Move up
Move down
Move left
Move right
Move diagonally up and right
Move diagonally down and right
Move diagonally down and left
Move diagonally up and left

The n in the preceding commands indicates the
distance to move. The number of points moved is
n times the scale factor (see S below). If you do
not specify n, commands move one unit.

M<x,y>
Move absolute or offset (see Chapter 1 for
discussion of x and y coordinates). If x is preceded
by a + or -, x and y are added to the coordinates of
the last point plotted and connected to the
current point by a line. If no + or - is added, a line
is drawn to point (x,y) from the current point.

GW-BASIC REFERENCE MANUAL 4-53

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Examples

The following prefix commands may precede any
of the above movement commands:

B
Move but do not plot any points.

N
Move but return to original position when done.

A < n >
Set angle n. n may range from 0 to 3, where 0 is 0
degrees, 1 is 90 degrees, 2 is 180 degrees, and 3 is
270 degrees.

C < n >
Set color n. n may range from 0 to 7 (see Color
statement).

S < n >
Set scale factor, n may range from 1 to 255. The
scale factor multiplied by the distances given
with the U, D, L, R, E, F, G, H, and M commands
gives the actual distance moved.

X <string>
Execute substring. Allows you to execute a second
substring from a string, much like GOSUB in
BASIC. Arguments can be constants like 123 or
= variable, where variable is the name of a
variable.

To draw a triangle:

10 SCREEN 1
20 DRAW “E60;F60;L120”

To draw a box:

10 SCREEN 1
20 V = 100
30 DRAW “U=V;R=V;D=V;L=V”

4-54 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler The GW-BASIC Compiler does not support the X

<string expression> subcommand. However,
you can execute a substring by appending the
character form of the address to “X”. For
example, the following two statements are
equivalent. The first statement would be used
with the interpreter, the second with the
compiler.

DRAW “XA$;”

DRAW “X” + VARPTR$(A$)

GW-BASIC REFERENCE MANUAL 4-55

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.36 EDIT COMMAND

Syntax EDIT Cline number>

line number
Specifies the line number of a line in the
program. If there is no such line, an “Undefined
Line Number” error message is displayed.

Purpose Displays a line for editing.

Remarks The EDIT statement simply displays the line
specified and positions the cursor under the first
digit of the line number. You may then modify
the line using the keys described in the Full
Screen Editor section of Chapter 2.

A period (.) always refers to the current line. If
you have just entered a line and want to go back
and edit it, you may enter EDIT, to redisplay the
line.

GW-BASIC
Compiler The EDIT command is not supported by the

GW-BASIC Compiler.

4-56 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.37 END STATEMENT

Syntax END

Purpose To terminate program execution, close all files,
and return to command level.

Remarks END statements may be placed anywhere in the
program to terminate execution. Unlike the
STOP statement, END does not cause a ‘'Break in
line nnnnn” message to be printed. An END
statement at the end of a program is optional.
GW-BASIC always returns to command level
after an END is executed.

Example 520 IF K>1000 THEN END ELSE GOTO 20

GW-BASIC REFERENCE MANUAL 4-57

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.38 EOF FUNCTION
The EOF function may be used with random access files as well as
sequential files.

Syntax EOF(<file number>)

Purpose To test for the end-of-file condition.

For sequential files, the EOF function returns
true (-1) if there is no more data in the file. The
file is empty if the next input operation (INPUT,
LINE INPUT, INPUT$, for example) would cause
an “Input past end” error.

For random access files, the EOF function
returns true (-1) if the most recently executed
GET statement attempts to read beyond the
end-of-file.

Remarks Because MS-BASIC allocates 128 bytes to a file at
a time, it is possible that EOF will not accurately
detect the end of a random access file which has
been opened with a record length of less than 128
bytes. For example, if a file is opened with a
record length of 64 bytes and one record is
written to the file (e.g., PUT#1,1), EOF will
return false if a GET statement is attempted on
the second record of the file (e.g., GET#1,2). This
will occur even though this record has not
actually been written to.

Example 10 REM
20 REM Open the library catalog file,
30 REM LIBRARY.DAT.
40 OPEN “R”,# l,“LIBRARY.DAT”
50 REM The first 35 bytes of the
60 REM record contain the title,
70 REM the remaining 93 bytes con-
80 REM tain additional information which
90 REM is not used by this program.
100 FIELD+ 1,35 AS TITLE$,93 AS G$
110 REM
120 REM Initialize the number of books seen.
130 REM

4-58 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

140 NBOOKS=0
150 REM Attempt to fetch the next record.
160 REM Note that the record number
170 REM argument of GET isn’t specified
180 REM so the next record of the
190 REM file is fetched.
200 GET #1
210 REM
220 REM Is this the end of the file?
230 REM
240 IF EOF(l) THEN 1000
250 REM No, increment the count of books,
260 REM print the current title, and
270 REM loop back to read the next
280 REM record.
290 NBOOKS=NBOOKS + l
300 PRINT TITLE$
310 GOTO 200
1000 REM Here when the end of file has
1010 REM been reached. Print a blank line
1020 REM and the number of books, close the
1030 REM file and terminate the program.
1040 PRINT “These are “;NBOOKS;” books in”;
1050 PRINT “your library.”
1060 CLOSE
1070 END

This sample program lists the titles of the books
cataloged in the file LIBRARY.DAT. It also
counts the books in the library by counting the
number of records which are read from
LIBRARY.DAT before the end-of-file is encoun­
tered.

Each record of LIBRARY.DAT contains informa­
tion on one book in the library. The record length
is 128 bytes. The first 35 bytes contain the title of
the book; the remaining 93 bytes contain addi­
tional information about the book (e.f., author,
publisher, location, etc.). This information is not
used in this example.

GW-BASIC REFERENCE MANUAL 4-59

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.39 ERASE STATEMENT

Syntax ERASE <list of array variables>

Purpose To eliminate arrays from memory.

Remarks Arrays may be redimensioned after they are
erased, or the previously allocated array space in
memory may be used or other purposes. If an
attempt is made to redimension an array without
first erasing it, a “Duplicate definition” error
occurs.

Example

450 ERASE A,B
460 DIM B(99)

GW-BASIC
Compiler GW-BASIC Compiler does not support ERASE.

4-60 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.40 ERR AND ERL VARIABLES
When an error handling routine is entered, the variable ERR contains
the error code for the error and the variable ERL contains the line
number of the line in which the error was detected. The ERR and ERL
variables are usually used in IF...THEN statements to direct program
flow in the error handling routine.

With the GW-BASIC Interpreter, if the statement that caused the
error was a direct mode statement, ERL will contain 65535. To test
whether an error occurred in a direct statement, use IF 65535 = ERL
THEN Otherwise, use

IF ERR = error code THEN ...

IF ERL = line number THEN ...

If the line number is not on the right side of the relational operator, it
cannot be renumbered with RENUM. Because ERL and ERR are
reserved variables, neither may appear to the left of the equal sign in
a LET (assignment) statement. GW-BASIC error codes are listed in
Appendix A.

GW-BASIC REFERENCE MANUAL 4-61

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.41 ERROR STATEMENT

Syntax ERROR cinteger expression>

Purpose To simulate the occurrence of a BASIC error, or
to allow error codes to be defined by the user.

Remarks ERROR can be used as a statement (part of a
program source line) or as a command (in direct
mode).

The value of cinteger expression> must be
greater than 0 and less than 255. If the value of
Cinteger expression> equals an error code
already in use by BASIC (see Appendix A), the
ERROR statement will simulate the occurrence
of that error and the corresponding error
message will be printed. (See Example 1.)

To define your own error code, use a value that is
greater than any used by GW-BASIC error codes.
(It is preferable to use the highest available
values, so compatibility may be maintained when
more error codes are added to GW-BASIC.) This
user-defined error code may then be conveniently
handled in an error handling routine. (See
Example 2.)

If an ERROR statement specifies a code for
which no error message has been defined,
GW-BASIC responds with the “Unprintable
error” error message. Execution of an ERROR
statement for which there is no error handling
routine causes an error message to be printed and
execution to halt.

Example 1 10 S = 10
20 T = 5
30 ERROR S + T
40 END
will yield
String too long in line 30

4-62 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Or, in direct mode (interpreter only):

Ok
ERROR 15 (You type this line.)
String too long (GW-BASIC types this line.)
Ok

Example 2

110 ON ERROR GOTO 400
120 INPUT “WHAT IS YOUR BET”;B
130 IF B>5000 THEN ERROR 210

400 IF ERR=210 THEN PRINT “HOUSE
LIMIT IS $5000”
410 IF ERL = 130 THEN RESUME 120

GW-BASIC REFERENCE MANUAL 4-63

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.42 EXP FUNCTION

Syntax EXP(X)

Purpose To return e (base of natural logarithms) to the
power of X. X must be < = 88.02969.

Remarks If x is greater than 88.02969, the “Overflow” error
message is displayed, machine infinity with the
appropriate sign is supplied as the result, and
execution continues.

Example 10 X = 5
20 PRINT EXP(X-l)
will yield
54.59815

4-64 GW-BASIC REFERENCE MANUAL

4.43 FIELD STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Note

Example 1

FIELD [#]<file number>,<field width> AS
<string variable>...

To allocate space for variables in a random file
buffer.

Before a GET statement or PUT statement can be
executed, a FIELD statement must be executed to
format the random file buffer.

<file number> is the number under which the
file was opened. <field width> is the number of
characters to be allocated to <string variable>.

The total number of bytes allocated in a FIELD
statement must not exceed the record length that
was specified when the file was opened.
Otherwise, a “Field overflow” error occurs. (The
default record length is 128 bytes.)

Any number of FIELD statements may be
executed for the same file. All FIELD statements
that have been executed will remain in effect at
the same time.

Do not use a fielded variable name in an INPUT
or LET statement. Once a variable name is
fielded, it points to the correct place in the
random file buffer. If a subsequent INPUT or
LET statement with that variable name is exe­
cuted, the variable’s pointer is moved to string
space.

FIELD 1,20 AS N$,10 AS ID$,40 AS ADD$

Allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$, the
next 10 positions to ID$, and the next 40 positions
to ADD$. FIELD does not place any data in the
random file buffer. (See also “GET Statement,”
Section 4.48, and “LSET and RSET Statements,”
Section 4.79.)

GW-BASIC REFERENCE MANUAL 4-65

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Example 2

Example 3

Example 4

10 OPEN “R,”# l,“A:PHONELST”,35
15 FIELD #1,2 AS RECNBR$,33 AS DUMMY$
20 FIELD #1,25 AS NAMES,10 AS
PHONENBR$
25 GET #1
30 TOTAL=CVI(RECNBR)$
35 FOR 1=2 TO TOTAL
40 GET #1, I
45 PRINT NAMES, PHONENBR$
50 NEXT I

Illustrates a multiple defined FIELD statement.
In statement 15, the 35-byte field is defined for
the first record to keep track of the number of
records in the file. In the next loop of statements
(35-50), statement 20 defines the field for individ­
ual names and phone numbers.

10 FOR LOOP% =0 TO 7
20 FIELD #l,(LOOP%*16) AS OFFSET$,16 AS
A$(LOOP%)
30 NEXT LOOP%

Shows the construction of a FIELD statement
using an array of elements of equal size. The
result is equivalent to the single declaration:

FIELD #1,16 AS A$(0),16 AS A$(l),...,16 AS
A$(6),16 AS A$(7)

10 DIM SIZE% (4%): REM ARRAY OF FIELD
SIZES

20 FOR LOOP% =0 TO 4%:READ SIZE%
(LOOP%): NEXT LOOP%
30 DATA 9,10,12,21,41

120 DIM A$(4%): REM ARRAY OF FIELDED
VARIABLES

130 OFFSET% =0
140 FOR LOOP% =0 TO 4%
150 FIELD #l,OFFSET% AS

OFFSET$,SIZE% (LOOP%)

4-66 GW-BASIC REFERENCE MANUAL

GW-BASIC
Compiler

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

AS A$(LOOP%)
160 OFFSET% =OFFSET% + SIZE%(LOOP%)
170 NEXT LOOP%

Creates a field in the same manner as Example 3.
However, the element size varies with each
element. The equivalent declaration is:

FIELD #1,SIZE%(0) AS A$(0),SIZE%(1) AS
A$(l),...
SIZE%(4$) AS A$(4%)

The compiler does not permit fielded strings to be
passed in COMMON.

GW-BASIC REFERENCE MANUAL 4-67

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.44 FILES STATEMENT

Syntax FILES [<filespec>]

where <filespee> includes a filename and
optional device designation.

Purpose To print the names of files residing on the
specified disk.

Remarks If <filespec> is omitted, all the files on the
currently selected drive will be listed.
<filespec> is a string formula which may
contain question marks (?) or asterisks (*) used
as wild cards. A question mark will match any
single character in the filename or extension. An
asterisk will match one or more characters
starting at that position. The asterisk is a
shorthand notation for a series of question
marks.

Examples FILES

Shows all files on currently logged disk.

FILES “*.BAS”

Shows all files with extension .BAS.

FILES “B:*.*”

Shows all files on drive B.

FILES “B:” (equivalent to “B:*.*”)

FILES “TEST7.BAS”

Shows all five-letter files whose names start with
“TEST” and end with the .BAS extension.

4-68 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.45 FIX FUNCTION

Syntax FIX(X)

Purpose To return the truncated integer part of X.

Remarks FIX(X) is equivalent to SGN(X)*INT(ABS(X)).
The difference between FIX and INT is that FIX
does not return the next lower number for
negative X.

Examples PRINT FIX(58.75)
will yield
58 1

PRINT FIX(-58.75)
will yield
-58

GW-BASIC REFERENCE MANUAL 4-69

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.46 FOR...NEXT STATEMENT

Syntax FOR <variable> = x TO y [STEP z]

Purpose

NEXT [<variable>][,<variable>...]

where x, y, and z are numeric expressions.

To allow a series of instructions to be performed
in a loop a given number of times.

Remarks <variable> is used as a counter. The first
numeric expression (x) is the initial value of the
counter. The second numeric expression (y) is the
final value of the counter. The program lines
following the FOR statement are executed until
the NEXT statement is encountered. Then the
counter is adjusted by the amount specified by
STEP. A check is performed to see if the value of
the counter is now greater than the final value
(y). If it is not greater, GW-BASIC branches back
to the statement after the FOR statement and the
process is repeated. If it is greater, execution
continues with the statement following the
NEXT statement. This is a FOR...NEXT loop.

If STEP is not specified, the increment is
assumed to be one. If STEP is negative, the final
value of the counter is set to be less than the
initial value. The counter is decreased each time
through the loop. The loop is executed until the
counter is less than the final value.

The counter must be an integer or single
precision numeric constant. If a double precision
numeric constant is used, a “Type mismatch”
error will result.

The body of the loop is skipped if the initial value
of the loop times the sign of the STEP exceeds the
final value times the sign of the STEP.

4-70 GW-BASIC REFERENCE MANUAL

Example 1

Example 2

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Nested Loops

FOR...NEXT loops may be nested; that is, a
FOR...NEXT loop may be placed within the
context of another FOR...NEXT loop. When loops
are nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.

The variable(s) in the NEXT statement may be
omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its correspond­
ing FOR statement, a “NEXT without FOR”
error message is issued and execution is termi­
nated.

10 K = 10
20 FOR 1 = 1 TO K STEP 2
30 PRINT I;
40 K = K + 10
50 PRINT K
60 NEXT
will yield
1 20
3 30
5 40
7 50
9 60

10 J = 0
20 FOR 1 = 1 TO J
30 PRINT I
40 NEXT I

In this example, the loop does not execute because
the initial value of the loop exceeds the final
value.

GW-BASIC REFERENCE MANUAL 4-71

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Example 3 101=5
20 FOR 1 = 1 TO 1+5
30 PRINT I;
40 NEXT
will yield
1 2 3 4 5 6 7 8 9 10

In this example, the loop executes ten times. The
final value for the loop variable is always set
before the initial value is set.

GW-BASIC
Compiler Double precision FOR...NEXT loops may e used

with the compiler if extra precision is desired.

l

4-72 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.47 FRE FUNCTION

Syntax FRE(O)
FRE(“”)

Purpose With a numeric argument, FRE returns the
number of bytes in memory that are not being
used by GW-BASIC. Arguments to FRE are
dummy arguments.

Remarks FRE(“”) forces a garbage collection before
returning the number of free bytes. With the
interpreter, garbage collection may take 1 to 11/2
minutes. It is much faster with the compiler.

GW-BASIC will not initiate garbage collection
until all free memory has been used up.
Therefore, using FRE(“”) periodically will result
in shorter delays for each garbage collection.

Example PRINT FRE(O)
will yield
14542

GW-BASIC
Compiler With the compiler, FRE with a numeric

argument returns the size of the largest block of
free string space. With a string argument,
garbage collection is performed as in the
interpreter, but FRE returns the amount of
available string space only.

GW-BASIC REFERENCE MANUAL 4-73

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.48 GET STATEMENT

Syntax GET [#]<file number>[,<record number>]

Purpose To read a record from a random disk file into a
random buffer.

Remarks <file number> is the number under which the
file was OPENed. If Crecord number> is
omitted, the next record (after the last GET) is
read into the buffer. The largest possible record
number is 32767.

The GET and PUT statements allow fixed-length
input and output for GW-BASIC COM files.
However, because of the low performance
associated with telephone line communications,
we recommend that you do not use GET and PUT
for telephone communication.

See “GET and PUT Statements” in this chapter,
for discussion of the GET and PUT statements
used with screen capabilities.

Example GET #1,75

Note After a GET statement has been executed,
INPUT# and LINE INPUT # may be executed to
read characters from the random file buffer.

4-74 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.49 GET AND PUT STATEMENTS

Syntax GET (xl,yl)-(x2,y2),<array name>
PUT (xl,yl),<array name>[,<action verb>]

Purpose The GET and PUT statements transfer graphics
images to and from the screen. The statements
also make it possible to perform animation and
high-speed image motion.

Remarks GET (xl,yl)-(x2,y2),<array name>

(xl,yl) and (x2,y2)
Coordinates in absolute or offset form (see
Chapter 1) of the opposite corners of a rectangle.

array name
Your name of the array which will hold image
information.

GET reads into an array the colors of the points
in the screen image bounded by the rectangle. The
rectangle is defined the same way as the
rectangle drawn by the Line statement using the
“,b” option.

The array is used simply as a place to hold the
image bounded by the rectangle. It must be
numeric and dimensioned large enough to hold
the entire image. You may determine the
required array size in bytes using the following
formula:

INT(x + 7)* bits*
8 pixely + 4

where x is the length of a horizontal side of the
rectangle and y is the length of a vertical side of
the rectangle. Bits per pixel is 3 in color mode and
1 in black and white mode. The bytes per element
of an array are:

2 for integer
4 for single precision

GW-BASIC REFERENCE MANUAL 4-75

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

8 for double precision

For example, if you want to use the GET
statement to put a 10 by 12 image into an array,
the number of bytes required is:

INT(^±I)*3*12+4 or 76 bytes.
O

76So you would need an integer array of at
least 38 bytes.

The storage format in the array is as follows:

2 bytes giving x dimension in bits
2 bytes giving y dimension in bits
the array data

The data for each row of points is left justified on
a byte boundary. If there is less than a multiple of
8 bits stored, the rest of the byte will be filled out
with zeroes.

PUT(xl,yl),<array>[,<action verb>]

(xl,yl)
Coordinates of the top left corner of the image to
be transferred to the screen. An “Illegal Function
Call” error will result if the image is too large to
fit on the screen.

array
Name of the numeric array which contains the
image to be transferred.

action verb
Used to interact the transferred image with the
screen. Valid entries are: PSET, PRESET, AND,
OR, or XOR. The default is XOR.

The PUT statement transfers the image stored in
the array onto the screen.

PSET
Transfers data from the array onto the screen
verbatim.

4-76 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

PRESET
This is the same as PSET except that a negative
image is produced.

AND
Use AND only when you want to transfer the
image to the screen and an image already exists
on the screen. Only the points which are in both
images will show on the screen.

OR
Use OR to superimpose the image onto an
existing image.

XOR
XOR is the default action. It causes the points on
the screen to be inverted where a point exists in
the array image. You may also use XOR to
animate an image. When you PUT an image
against a complex background twice, the
background remains unchanged. This allows you
to move an object around the screen without
removing the background.

You may animate an image by following this
sequence:

1. Using XOR, PUT the image on the screen.
2. Calculate the new location of the image.
3. Using XOR, PUT the image on the screen a

second time at the first location. This action
removes the image from the first location.

4. Go back to step 1. Use XOR to PUT the image
at the new location.

Movement done this way will leave the
background unchanged. You can reduce flicker by
minimizing the time between steps 4 and 1 and by
making sure that there is enough time delay
between steps 1 and 3.

If you are animating more than one image, each
image should be processed separately, one step at
a time.

GW-BASIC REFERENCE MANUAL 4-77

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

If preserving the background is not important,
you may animate an image using PSET.
However, you must have a rectangle large enough
to contain both first and new images. If the area
is large enough, the extra area will erase the first
image. You may find this method faster than the
method using XOR because only one PUT is
required, although you must PUT a larger area.
In the following example, line 20 sets the
dimensions of the screen area to be used. Line 30
draws a filled-in box in color 6, and line 40 reads
that box into an array. Lines 50 through 90 PUT
the box back on the screen and move it left.

10 SCREEN 1
20 DIM M(1000)
30 LINE(0,0)-(30,30),6,BF
40 GET(0,0)-(60,30),M
50 FOR 1 = 579 TO 10 STEP-1
60 PUT(1,200),M,PSET
70 NEXTI
80 GOTO 60

AND

Screen Color

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
2 0 0 2 2 0 0 2 2
3 0 1 2 3 0 1 2 3
4 0 0 0 0 4 4 4 4
5 0 1 0 1 4 5 4 5
6 0 0 2 2 4 4 6 6
7 0 1 2 3 4 5 6 7

4-78 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

OR

Screen Color

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 1 3 3 5 5 7 7
2 2 3 2 3 6 7 6 7
3 3 3 3 3 7 7 7 7
4 4 5 6 7 4 5 6 7
5 5 5 7 7 5 5 7 7
6 6 7 6 7 6 7 6 7
7 7 7 7 7 7 7 7 7

XOR

Screen Color

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 6 2 3 0 1
7 7 6 5 4 3 2 1 0

GW-BASIC REFERENCE MANUAL 4-79

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.50 GOSUB...RETURN STATEMENTS

Syntax GOSUB d in e number>

Purpose

RETURN [d in e number>]

To branch to, and return from, a subroutine.

Remarks d in e number> in the GOSUB statement is the
first line of the subroutine.

A subroutine may be called any number of times
in a program. A subroutine also may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

Simple RETURN statement(s) in a subroutine
cause GW-BASIC to branch back to the
statement following the most recent GOSUB
statement. A subroutine may contain more than
one RETURN statement, should logic dictate a
return at different points in the subroutine.

The d in e number> option may be included in
the RETURN statement to return to a specific
line number from the subroutine. Use this type of
return with care, however, because any other
GOSUBs, WHILEs, or FORs that were active at
the time of the GOSUB will remain active, and
errors such as “FOR without NEXT” may result.

Subroutines may appear anywhere in the
program, but it is recommended that the
subroutine be readily distinguishable from the
main program. To prevent inadvertent entry into
the subroutine, precede it with a STOP, END, or
GOTO statement that directs program control
around the subroutine.

Example 10 GOSUB 40
20 PRINT “BACK FROM SUBROUTINE”
30 END

4-80 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler

40 PRINT “SUBROUTINE”;
50 PRINT “ IN”;
60 PRINT “ PROGRESS”
70 RETURN
will yield
SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

In addition to the simple RETURN statement,
the compiler supports RETURN d in e
number> . This allows a RETURN from a
GOSUB statement to the specified line number,
rather than a normal return to the statement
following the GOSUB statement.

GW-BASIC REFERENCE MANUAL 4-81

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.51 GOTO STATEMENT

Syntax GOTO <line number>

Purpose To branch unconditionally out of the normal
program sequence to a specified line number.

Remarks If Cline number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after Cline number>.

Example 10 READ R
20 PRINT “R = ”;R,
30 A=3.14*Ra2
40 PRINT “AREA = ”;A
50 GOTO 10
60 DATA 5,7,12
will yield
R = 5 AREA = 78.5
R = 7 AREA = 153.86
R = 12 AREA = 452.16
Out of data in 10

4-82 GW-BASIC REFERENCE MANUAL

4.52 HEX$ FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

HEX$(X)

To return a string that represents the
hexadecimal value of the decimal argument.

X is rounded to an integer before HEX$(X) is
evaluated.

10 INPUT X
20 A$ = HEX$(X)
30 PRINT X “DECIMAL IS ” A$ “
HEXADECIMAL”
will yield
? 32
32 DECIMAL IS 20 HEXADECIMAL

See the OCT$ function, Section 4.86, for details on
octal conversion.

GW-BASIC REFERENCE MANUAL 4-83

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.53 IF...THEN[...ELSE]/IF...GOTO STATEMENTS

Syntax IF <expression> THEN {<statem ents))> 1
<line num ber>}

[ELSE {<statement(s)> 1 <line number>}]

Syntax IF <expression> GOTO <line number>

[ELSE [<statement(s)> I <line number>}]

Purpose To make a decision regarding program flow based
on the result returned by an expression.

Remarks If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching or
one or more statements to be executed. GOTO is
always followed by a line number. If the result of
<expression> is zero, the THEN or GOTO
clause is ignored and the ELSE clause, if present,
if executed. Execution continues with the next
executable statement. A comma is allowed before
THEN.

Nesting of IF Statements

IF...THEN...ELSE statements may be nested.
Nesting is limited only by the length of the line.
For example,

IF X>Y THEN PRINT “GREATER” ELSE IF
Y>X THEN PRINT “LESS THAN” ELSE
PRINT “EQUAL”

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A = B THEN IF B=C THEN PRINT “A = C”
ELSE PRINT “A o C ”

will not print “A o C ” where A<>B.

4-84 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Note

If an IF...THEN statement is followed by a line
number in direct mode, an “Undefined line” error
results, unless a statement with the specified line
number had previously been entered in indirect
mode.

When using IF to test equality for a value that is
the result of a floating-point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test should
be against the range over which the accuracy of
the value may vary. For example, to test a
computed variable A against the value 1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0 with
a relative error of less than 1.0E-6.

Example 1 200 IF I THEN GET#1,I

This statement GETs record number I if I is not
zero.

Example 2 100 IF(I<20)*(I>10) THEN DB = 1979-l:GOTO
300
110 PRINT “OUT OF RANGE”

Example 3

In this example, a test determines if I is greater
than 10 and less than 20. If I is in this range, DB is
calculated and execution branches to line 300. If I
is not in this range, execution continues with line
110.

210 IF IOFLAG THEN PRINT A$ ELSE
LPRINT A$

This statement causes printed output to go either
to the terminal or the line printer, depending on
the value of the variable IOFLAG. If IOFLAG is
zero, output goes to the line printer; otherwise,
output goes to the terminal.

GW-BASIC REFERENCE MANUAL 4-85

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler The compiler allows indefinite line continuation

with the underscore character. Thus, fully nested
IF...THEN...ELSE control structures may be set
up by using extra-long statements.

4-86 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.54 INKEY$ FUNCTION

Syntax INKEY$

Purpose To return either a one-character string
containing a character read from the terminal or
a null string if no character is pending at the
terminal.

Remarks No characters will be echoed. All characters are
passed through to the program except for
Control-C, which terminates the program. (With
GW-BASIC Compiler, Control-C is also passed
through to the program.)

Example 1000 ‘TIMED INPUT SUBROUTINE
1010 RESPONSE*»“”
1020 FOR 1% =1 TO TIMELIMIT%
1030 A$=INKEY$: IF LEN(A$) = 0 THEN
1060
1040 IF ASC(A$) = 13 THEN TIMEOUT% =0 :
RETURN
1050 RESPONSES RESPONSE$+A$
1060 NEXT 1%
1070 TIMEOUT% =1 : RETURN

Note Some keys may return a two-byte string,
depending on your implementation.

GW-BASIC REFERENCE MANUAL 4-87

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.55 INP FUNCTION

Syntax INP(I)

Purpose To return the byte read from port 1.1 must be in
the range 0 to 65535.

Remarks INP is the complementary function to the OUT
statement.

Example 100 A = INP(54321)

In 8086 assembly language, this is equivalent to:

MOV DX,54321
IN AL,DX

4-88 GW-BASIC REFERENCE MANUAL

4.56 INPUT STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

INPUT[;] [< “prompt string”>;]< list of
variables>

To allow input from the keyboard during
program execution.

When an INPUT statement is encountered,
program execution pauses and a question mark is
printed to indicate the program is waiting for
data. If < “prompt string”> is included, the
string is printed before the question mark. The
required data is then entered at the keyboard.

A comma may be used instead of a semicolon
after the prompt string to suppress the question
mark. For example, the statement INPUT
“ENTER BIRTHD ATE”,B$ will print the prompt
with no question mark.

If INPUT is immediately followed by a semicolon,
then the carriage return typed by the user to
input data does not echo a carriage
return/linefeed sequence.

The data that is entered is assigned to the
variable(s) given in < variable list>. The number
of data items supplied must be the same as the
number of variables in the list. Data items are
separated by commas.

The variable names in the list may be numeric or
string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
statement need not be surrounded by quotation
marks.)

Responding to INPUT with too many or too few
items or with the wrong type of value (numeric
instead of string, etc.) causes the message “?Redo
from start” to be printed. No assignment of input

GW-BASIC REFERENCE MANUAL 4-89

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Examples

values is made until an acceptable response is
given.

10 INPUT X
20 PRINT X “SQUARED IS” Xa2
30 END
will yield
? 5 (The 5 was typed in by the user in

response to the question mark.)
5 SQUARED IS 25

10 PI = 3.14
20 INPUT “WHAT IS THE RADIUS”;R
30 A = PI*R a2
40 PRINT “THE AREA OF THE CIRCLE
IS”;A
50 PRINT
60 GOTO 20
will yield
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

4-90 GW-BASIC REFERENCE MANUAL

4.57 INPUT# STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

INPUT#<file number>,<variable list>

To read data items from a sequential device or
file and assign them to program variables.

<file number> is the number used when the file
was OPENed for input. Cvariable list> contains
the variable names that will be assigned to the
items in the file. (The variable type must match
the type specified by the variable name.) With
INPUT#, no question mark is printed, as with
INPUT.

The data items in the file should appear just as
they would if data were being typed in response to
an INPUT statement. With numeric values,
leading spaces, carriage returns, and linefeeds
are ignored. The first character encountered that
is not a space, carriage return, or linefeed is
assumed to be the start of a number. The number
terminates on a space, carriage return, linefeed,
or comma.

If GW-BASIC is scanning the sequential data file
for a string item, it will also ignore leading
spaces, carriage returns, and linefeeds. The first
character encountered that is not a space,
carriage return, or linefeed is assumed to be the
start of a string item. If this first character is a
quotation mark (“), the string item will consist of
all characters read between the first quotation
mark and the second. Thus, a quoted string may
not contain a quotation mark as a character. If
the first character of the string is not a quotation
mark, the string is an unquoted string, and will
terminate on a comma, carriage return, or
linefeed (or after 255 characters have been read).
If end-of-file is reache/d when a numeric or string
item is being INPUT,/the item is terminated.

INPUT#2,A,B,C

€,
- i

GW-BASIC REFERENCE MANUAL 4-91

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.58 INPUTS FUNCTION

Syntax INPUT$(X[,[#]Y])

Purpose To return a string of X characters, read from file
number Y. If the file number is not specified, the
characters will be read from the screen.

Remarks If the keyboard is used for input, no characters
will be echoed on the screen. All control
characters are passed through except Control-C,
which is used to interrupt the execution of the
INPUT? function.

Example 1 5 ‘LIST THE CONTENTS OF A SEQUENTIAL
FILE IN HEXADECIMAL
10 OPEN“I”,l,“DATA”
20 IF EOF(l) THEN 50
30 PRINT HEX$(ASC(INPUT$(1,#1)));
40 GOTO 20
50 PRINT
60 END

Example 2

100 PRINT “TYPE P TO PROCEED OR S TO
STOP”
110 X$=INPUT$(1)
120 IF X$=“P” THEN 500
130 IF X?=“S” THEN 700 ELSE 100

4-92 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STA TEMENTS,
AND FUNCTIONS

4.59 INSTR FUNCTION

Syntax INSTR([I,]X$,Y$)

Purpose To search for the first occurrence of string Y$ in
X$, and returns the position at which the match is
found. Optional offset I sets the position for
starting the search.

Remarks I must be in the range 1 to 255. If I is greater than
the number of characters in X$ (LEN(X$)), or if
X$ is null or Y$ cannot be found, INSTR returns
0. If Y$ is null, INSTR returns I or 1. X$ and Y$
may be string variables, string expressions, or
string literals.

Example 10 X$ = “ABCDEB”
20 Y$ = “B”
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
will yield
2 6

GW-BASIC REFERENCE MANUAL 4-93

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.60 INT FUNCTION

Syntax INT(X)

Purpose To return the largest integer < = X.

Examples PRINT INT(99.89)
will yield
99

PRINT INT(-12.11)
will yield
-13

See the CINT and FIX functions, Sections 4.13
and 4.45, respectively, which also return integer
values.

4-94 GW-BASIC REFERENCE MANUAL

4.61 KEY STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

KEY <key number>,<string expression>
KEY LIST
KEY ON
KEY OFF

key number
Specifies the programmable function key number
in the range 1 to 20 (see list below).

string expression
Specifies the string expression which will be
assigned to the programmable function key.

Allows you to assign a string expression to
programmable function keys. You may assign a
string of up to 15 characters to any one or all of
the keys. When you press the key, the string will
be input to BASIC.

Initially, for GW-BASIC Interpreter, the
programmable function keys are assigned the
following values:

FI LOAD”
F2 RUN
F3 CONT
F4 SAVE”
F5 LISTJZf
F6 EDITJZJ
F7 TRON J
F8 TROFF
F9 PRINTjZf
F10 PRINTjZf USINGJZ

KEY ON
This is the initial setting which causes keys FI
through F7 to be displayed on the 25th line. To
display the next seven keys, press CONTROL-T.
To display the last six keys, press CONTROL-T
again. To start the sequence again, press
CONTROL-T.

F ll GOTOlZf
F12 GOSUBjZf
F13 IFjZf
F14 THENJZf
F15 ELSEjZf
F16 CHR$(
F17 STRING^
F18 LINEjZf(
F19 CIRCLE0(
F20 DRAW0

GW-BASIC REFERENCE MANUAL 4-95

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Examples

KEY OFF
Erases the programmable function key display
from the 25th line, but it does not disable the
function keys.

KEY LIST
Lists all 20 programmable function key values on
the screen. All 15 characters of each value are
displayed.

KEY <key number> ,< string expression>
Assigns the string expression to the specified
key. The string expression may be 1 to 15
characters in length. If it is longer than 15
characters, only the first 15 characters are
assigned.

If you specify a value for <key number> which
is not in the range 1 to 20, an ‘Illegal Function
Call” error occurs. The previous key string
assignment is retained.

Assigning a string of length 0 to a programmable
function key disables the key. It will remain
disabled until another error string expression is
assigned to it.

When a programmable function key is assigned,
the INKEY$ function returns one character of
the string each time it is called. If the program­
mable function key is disabled, INKEY$ returns
a string of length 2. The first character is binary
zero, and the second is the key scan code.

In the following example, the statement in line 10
assigns the string ‘MENlT<carriage return> to
key FI. This assignment might be used in a
program to select a menu display when entered
by the user. Line 20 disables the key.

10 KEY 1,“MENU” + CHR$(13)
20 KEY 1,“”

The following routine initializes the first 5
programmable function keys:

4-96 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler

10
20
30
40
50
60

KEY OFF
DATA KEY1,KEY2,KEY3,KEY4,KEY5
FOR 1 = 1 to 5:READ FUNCTIONKEYS$(I)
KEYI,FUNCTIONKEYS$(I)
NEXT I
KEY ON

With the compiler, programmable function key
string values are not preserved across chains.

GW-BASIC REFERENCE MANUAL 4-97

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.62 KEY(N) STATEMENT

Syntax KEY(n) ON
KEY(n) OFF
KEY(n) STOP

where (n) is the number of a programmable
function key or cursor direction key. (See “KEY
Statement/' Section 4.61, for information on
assigning programmable function key values to
function keys.) The cursor direction keys are
numbered sequentially after the function keys in
the following order: up, left, right, down.

Purpose To enable or disable event trapping of
programmable function key or cursor direction
key activity for the specified function key.

Remarks Note that the KEY statement described in
Section 4.61 assigns programmable function key
and cursor direction values to function keys and
displays the values. Do not confuse KEY ON and
KEY OFF, which display and erase these values,
with the event trapping statements described in
this section.

The KEY(n) ON statement enables
programmable function key or cursor direction
key event trapping by an ON KEY statement (see
“ON KEY Statement," Section 4.90). While
trapping is enabled, and if a non-zero line number
is specified in the ON KEY statement,
GW-BASIC checks between every statement to
see if a programmable function key or cursor
direction key has been used. If it has, the ON KEY
statement is executed.

KEY(n) OFF disables the event trap. If an event
takes place, it is not remembered.

KEY(n) STOP disables the event trap, but if an
event occurs, it is remembered and an ON KEY
statement will be executed as soon as trapping is
enabled.

4-98 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Note

Example

GW-BASIC
Compiler

For additional information on key event
trapping, see “Event Trapping,” Section 1.6, and
“ON KEY Statement,” Section 4.90.

10 KEY 4,SCREEN 0,0 ’ assigns programmable
function key 4
20 KEY(4) ON ’enables event trapping

70 ON KEY(4) GOSUB 200

key 4 pressed

200 ’Subroutine for screen

See compiler note under “ON KEY Statement,”
Section 4.90.

GW-BASIC REFERENCE MANUAL 4-99

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.63 KILL STATEMENT

Syntax KILL <filespec>

Purpose To delete a file from disk.

Remarks If a KILL statement is given for a file that is
currently OPEN, a “File already open” error
occurs.

KILL is used for all types of disk files: program
files, random data files, and sequential data files.
The filespec may contain question marks (?) or
asterisks (*) used as wildcards. A question mark
will match any single character in the filename
or extension. An asterisk will match one or more
characters starting at its position.

WARNING: Be extremely careful when
using wildcards with this com­
mand.

Examples 200 KILL “DATA1?.DAT”

The position taken by the question mark can
contain any valid filename character.

210 KILL “DATA1.*”

Kills all files named DATA1.

4-100 GW-BASIC REFERENCE MANUAL

4.64 LCOPY STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

LCOPY

Prints the screen memory (1, 2, 4) established
with the GW-BASIC configuration routine.(See
“Configuring for GW-BASIC” in your User's
Guide.)

You may use LCOPY to print both graphics
images and text if the text is also in graphics
mode.

With a monochrome model LCOPY prints the
entire graphics image (and text in graphics
mode).

The GW-BASIC Interpreter disk contains an
object module which you may use for program
control of color graphics printing. The module is
called DUMPCL (dump color) and allows you to
specify within a program a color memory (1,2,4)
to be printed.

Before you can use DUMPCL, it must be
established as a separate file on your GW-BASIC
disk. This is accomplished by using MS-LINK
(see MS-DOS User's Guide) and DEBUG, which
allows you to read the address of the DUMPCL
module. These are on your MS-DOS disk. If you
have a single flexible disk drive, follow the
sequence below to establish DUMPCL as a file. If
you have 2 flexible disk drives, note the
instructions in parentheses in each step.

1. Insert the MS-DOS disk. (For 2 disk drives,
insert the MS-DOS disk and the GW-BASIC
disk.)

2. The system displays A>. Enter LINK. (For 2
disk drives, move operations to drive B. Enter
B:, and when the system displays B>, enter
A:LINK.)

3. The system displays:

GW-BASIC REFERENCE MANUAL 4-101

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Microsoft Object Linker V2.00
(c) Copyright 1982 by Microsoft Inc.

Object Modules [.OBJ]:

Insert the GW-BASIC disk. Enter DUMPCL.
(For 2 disk drives, simply enter DUMPCL.)

4. The system displays:

Run File [DUMPCL.EXE]:

Enter /H to specify the highest address in
memory. (For 2 disk drives, enter B: /H.)

5. The system displays:

List File [NUL.MAP]:

Press RETURN.
6. The system displays:

Libraries [.LIB]:

Press RETURN.
7. The system displays:

Warning: No STACK segment

There was 1 error detected.

A>

The warning and error detected do not affect
the procedure. Insert the MS-DOS disk and
enter DEBUG. (For 2 disk drives, the prompt
will be B>. Enter A:DEBUG DUMPCL.EXE.
The DUMPCL.EXE file is loaded directly into
DEBUG.)

8. The system displays a dash (-). Insert the
GW-BASIC disk and enter NDUMPCL.EXE.
This specifies the new DUMPCL.EXE file to
DEBUG. (For 2 disk drives, enter R to display
all registers. Then go to step 11.)

9. The system displays a dash (-). Enter L to
load DUMPCL.EXE into DEBUG.

4-102 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

AX = FFFF BX-0000
DS=OAAO ES-OAAO
1FE0:0000 55

10. The system displays a dash (-). Enter R to
display all registers.

11. The system displays the following:

CX-0026 DX = 0000 SP = 0000 BP = 0000 Sl = 0000 Dl = 0000
SS= 1FE0CS= 1FE0IP = 0000 NV UP Dl PL NZ NA PO NC

PUSH BP

Note the address CS = 1FE0. CS represents
the address of the DUMPCL module. The
address given here (1FE0) is only an example.
You should note the address for CS on your
machine. Write it down for later use.

12. The system displays a dash (-). Enter
NGWBASIC.EXE. This specifies the
GWBASIC.EXE file.

13. The system displays a dash (-). Enter L to
load GWBASIC.EXE to memory.

14. The system displays a dash (-). Enter G to go
to GWBASIC.EXE.

You are now in GW-BASIC.

15. Enter the following lines:

DEF SEG = &H1FE0
BSAVE “DUMPCL.COM”,&H0,&H30

Note that the DEF SEG value entered is the
address of the DUMPCL module. You should
insert the value for CS that was displayed on
your machine (Step 11). DUMPCL.COM in
the second line is the new file name to be
saved. The last two entries of the second line
are the offset address from the address given
in the DEF SEG statement and the length in
bytes of the file to be saved (the DUMPCL file
always has the length given here). Refer to
the BSAVE statement in the MS-DOS
Extension, Section 2.

The file is now saved on your disk. Exit
GW-BASIC by entering SYSTEM. Exit
DEBUG by entering Q. You may now load
GW-BASIC.

GW-BASIC REFERENCE MANUAL 4-103

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Example

GW-BASIC
Compiler

Now that you have your DUMPCL.COM file
on disk, you may use it for program control of
color graphics printing. To use your file, you
must include the following BASIC
statements in your program:

10 DEF SEG = &H1FE0
20 BLOAD“DUMPCL.COM”,&HO
30 A%=1
40 CALL &H0(A%)
50 LCOPY

In line 10 you will enter the address of the
DUMPCL module which was displayed with
step 11. In line 30, specify the color memory
your want printed. Enter 1 for blue
foreground, 2 for green, and 4 for red.

For an example of selecting screen images for
printing, see “Color Selection” in Chapter 1.

The compiler uses GWCONF only to set-up
memory print; consequently, the program control
of color graphics printing mentioned above does
not apply. For monochrome machines, however,
you must select green foreground color dump
before executing your program.

4-104 GW-BASIC REFERENCE MANUAL

4.65 LEFTS FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

LEFT$(X$,I)

To return a string comprising the leftmost I
characters of X$.

I must be in the range 0 to 255. If I is greater than
the number of characters in X$ (LEN(X$)), the
entire string (X$) will be returned. If I = 0, the
null string (length zero) is returned.

10 A$ = “BASIC”
20 B$ = LEFT$(A$,5)
30 PRINT B$
will yield
BAS

Also see the MID$ and RIGHT$ functions,
Sections 4.82 and 4.116, respectively.

GW-BASIC REFERENCE MANUAL 4-105

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.66 LEN FUNCTION

Syntax LEN(X$)

Purpose To return the number of characters in X$.
Nonprinting characters and blanks are counted.

Example 10 X$ = “PORTLAND, OREGON”
20 PRINT LEN(X$)
will yield
16

4-106 GW-BASIC REFERENCE MANUAL

4.67 LET STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

[LET]<variable> = <expression>

To assign the value of an expression to a variable.

Notice that the word LET is optional; i.e., the
equal sign is sufficient for assigning an
expression to a variable name.

110 LET D = 12
120 LET E = 12 a2
130 LET F = 12 a4
140 LET SUM = D + E + F

or

110 D = 12
120 E = 1 2 a 2

130 F = 12a4
140 SUM =D+E+F

GW-BASIC REFERENCE MANUAL 4-107

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.68 LINE STATEMENT

Syntax LINE [(xl,yl)]-(x2,y2)[,[color][b[f]]

Purpose Draws a line, box, or filled-in box on the
screen.

(xl,yl),(x2,y2)
Specifies the coordinates in either absolute or
offset form (see X and Y coordinates in Chapter
1). If (xl,yl) point coordinates are not specified,
the beginning point of the line is the last point
specified by (x2,y2) in a previous statement.

color
Specifies color of line, box, or filled-in box (0-7,
see Color statement, Section 4.18). If not
specified, color is foreground color.

b or bf
Specifies box or filled-in box. The b tells BASIC to
draw a rectangle with the points (xl,yl) and
(x2,y2) as opposite corners. This avoids having to
give four LINE commands which perform the
same function:

LINE (xl,yl)-(x2,yl)
LINE (xl,yl)-(xl,y2)
LINE (x2,yl)-(x2,y2)
LINE (xl,y2)-(x2,y2)

The bf tells BASIC to draw the same rectangle as
b and also to fill in the interior points in the same
color as b.

Remarks The offset coordinate form can be used wherever
a coordinate is used. Note that all of the graphics
statements and functions update the most recent
point used. If the offset form is used with the
second coordinate, the coordinate is offset from
the first coordinate in the statement. For
example, the following draws a line from (60,40)
to 70,50):

4-108 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Examples

LINE (60,40)-STEP(10,10)

If you specify a coordinate which is out of range,
the coordinate is given the closest valid value. In
other words, negative values become 0, y values
greater than 399 become 399, and x values greater
than 639 become 639.

Draw a line from the last point specified to the
point (x2,y2):

LINE -(x2,y2)

Include a starting point for a line diagonally
down the screen:

LINE (0,0)-(639,399)

Draw a line across the screen:

LINE (0,200)-(639,200)

Draw a line in color number 2:

LINE (10,0)-(20,20),2

Draw a box in foreground color:

LINE (0,0)-(100,100)„b

Draw a box and fill it in with color number 2:

LINE (0,0)-(200,200),2,bf

Draw lines continuously using random colors:

10 SCREEN 1
20 CLS
30 LINE -(rnd*639,rnd*399),rnd*7
40 GO TO 20

Draw alternating pattern - line on, line off:

GW-BASIC REFERENCE MANUAL 4-109

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 SCREEN 1
20 FOR X=0 TO 639
30 LINE (X,0)-(X,399),X AND 1
40 NEXT

Draw random filled boxes in random colors:

10 SCREEN 1
20 CLS
30 LINE -(rnd*639,rnd*399),rnd*7,bf
40 GO TO 20

4-110 GW-BASIC REFERENCE MANUAL

4.69 LINE INPUT STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

LINE INPUT[;] [< “prompt string”>;]
<string variable>

To input an entire line (up to 254 characters) to a
string variable, without the use of delimiters.

< “prompt string”> is a string literal that is
printed at the terminal before input is accepted.
A question mark is not printed unless it is part of
< “prompt string”> . All input from the end of
< “prompt string”> to the carriage return is
assigned to <string variable>. However, if a
linefeed/carriage return sequence (this order
only) is encountered, both characters are echoed;
but the carriage return is ignored, the linefeed is
put into <string variable>, and data input
continues.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input line does not echo a carriage
return/linefeed sequence at the terminal.

A LINE INPUT statement may be aborted by
typing Control-C. GW-BASIC will return to
command level. If you are using the interpreter,
typing CONT resumes execution at the LINE
INPUT.

See “LINE INPUT# Statement/’ Section 4.70.

GW-BASIC REFERENCE MANUAL 4-111

CHAPTER 4 COMMANDS, STATEMENTS, ^ A-» f L "> 2S"H (
AND FUNCTIONS ^ t

4.70 LINE INPUT# STATEMENT ^ ° •

Syntax
Co u~f.jUj : Sf«-**- Crr

LINE INPUT#<file number>,<string ^ ^
variable>

Purpose To read an entire line (up to 254 characters),
without delimiters, from a sequential disk data
file to a string variable.

Remarks <file number> is the number under which the
file was OPENed. <string variable> is the
variable name to which the line will be assigned.
LINE INPUT# reads all characters in the
sequential file up to a carriage return. It then
skips over the carriage return/linefeed sequence.
The next LINE INPUT# reads all characters up
to the next carriage return. (If a
linefeed/carriage return sequence is
encountered, it is preserved.)

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
GW-BASIC program saved in ASCII format is
being read as data by another program. (See
“SAVE Command,” Section 4.119.)

Example 10 OPEN “0 ”,1,“LIST”
20 LINE INPUT “CUSTOMER
INFORMATION? ”;C$
30 PRINT #$1, C$
40 CLOSE 1
50 OPEN “I”,1,“LIST”
60 LINE INPUT #1, C$
70 PRINT C$
80 CLOSE 1
will yield
CUSTOMER INFORMATION? LINDA
JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

^AiOTrt f ^AA", r ' i) ■ " ‘J<3 “

^ ! y & } ß, {
<? 1

4- W - i ^

L t
t a a O r " M „ GW-BASIC REFERENCE MANUALA l - A & v - L \ i • , •

4.71 LIST STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

LIST [[d ine number>[- [d in e number>]]]
[,<dev<]]

line number
Specifies the line number in the range 0 to 65529.

dev
String expression for one of the following devices:

“SCRN:” Screen
“LPT1:” Line printer

Allows a program to be listed to the screen or line
printer.

If you omit the device argument, the device is the
screen.

If you omit the line argument, the software lists
the entire program.

You may interrupt any listings to either the
screen or the printer by pressing CONTROL-S.

If you use the dash (-) in the line argument, the
following three options are available:

If you specify only the first line number, the
software lists that line and all higher numbered
lines.

If you specify only the second line number, the
software lists all lines from the beginning of the
program through the specified line.

If you specify both line numbers, the software
lists the inclusive range.

LIST ,“LPT1:” is the same as LLIST in
MS-BASIC. If “LPT1:” is specified, the last valid
width command entered for the line printer will
be used.

GW-BASIC REFERENCE MANUAL 4-113

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Examples

LIST ,“SCRN:” is the same as LIST in
MS-BASIC.

List program to the line printer:

LIST ,“LPT1:”

List lines 10 through 20 to the screen:

LIST 10-20

List lines 10 through the last line to the screen:

LIST 10- ,“SCRN:”

List the first line through line 200 to the line
printer:

LIST -200,“LPT1:”

List lines 35 through 65 to the screen:

LIST 35-65,“SCRN:”

GW-BASIC
Compiler The LIST command is not supported by the

GW-BASIC Compiler.

4-114 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.72 LOAD COMMAND

Syntax LOAD <filespec>[,R]

Purpose To load a file from disk into memory.

Remarks The <filespec> must include the filename that
was used when the file was saved. (Your
operating system may append a default filename
extension if one was not supplied in the SAVE
command.)

The R option automatically runs the program
after it has been loaded.

LOAD closes all open files and deletes all
variables and program lines currently residing in
memory before it loads the designated program.
However, if the R option is used with LOAD, the
program is RUN after it is LOADed, and all open
data files are kept open. Thus, LOAD with the R
option may be used to chain several programs (or
segments of the same program). Information
may be passed between the programs using their
disk data files.

Example LOAD “STRTRK”,R

Loads and runs the program STRTRK.

LOAD “B:MYPROG”

Loads the program MYPROG from the disk in
drive B, but does not run the program.

GW-BASIC
Compiler The LOAD command is not supported by the

GW-BASIC Compiler.

GW-BASIC REFERENCE MANUAL 4-115

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.73 LOC FUNCTION

Syntax LOC(<file number>)

where <file number> is the number under
which the file was opened.

Purpose With random disk files, LOC returns the record
number of the last record read or written.

With sequential files, LOC returns the number of
records read from, or written to, the file since it
was opened.

Remarks

, ' . f > f

When a file is opened for sequential input,
GW-BASIC reads the first sector of the file, so
LOC will return a 1 even before any input from
the file occurs.

For a communications file, LOC(X) is used to
determine if there are any characters in the input
queue waiting to be read. If there are more than
255 characters in the queue, LOC(X) returns 255.
Since interpreter strings are limited to 255
characters, this practical limit alleviates the
need for an interpreter user to test for string size
before reading data into it.

If fewer than 255 characters remain in the queue,
the value returned by LOC(X) depends on
whether the device was opened in ASCII or
binary mode. In either mode, LOC will return the
number of characters that can be read from the
device. However, in ASCII mode, the low level
routines stop queueing characters as soon as
end-of-file is received. The end-of-file itself is not
queued and cannot be read. An attempt to read
the end-of-file will result in an “Input past end”
error.

Example 200 IF LOC(1)>50 THEN STOP

4-116 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.74 LOCATE STATEMENT

Syntax LOCATE [row] [,[col] [,[cursor]]]

row
Specifies screen line number. Optional. Specify a
numeric expression which must result in an
unsigned integer in the range 1 to 24.

col
Specifies screen column number. Optional.
Specify a numeric expression which must result
in an unsigned integer in the range 1 to 80.

cursor
A boolean value indicating whether the cursor is
visible. Optional. Specify 0 for off, non-zero for
on.

Purpose Moves cursor to specified position on the active
screen. Subsequent PRINT statements begin
placing characters at this location. Optional
cursor argument turns the blinking cursor on and
off.

Remarks If you enter values outside the ranges for row and
column, an “Illegal Function Call” error occurs.
Previous values are retained.

You may omit any argument. Omitted arguments
assume the previous value.

You cannot select cursor blink frequency.

The 25th line is reserved for the programmable
function key display. As a recommendation, do
not write over the line, even if the display is off.

Example In the following example, the statement in line 10
moves the cursor to the home position in the
upper left hand corner. The statement in line 20
makes the blinking cursor visible without
changing its position.

GW-BASIC REFERENCE MANUAL 4-117

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 LOCATE 1,1
20 LOCATE „1

4-118 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.75 LOF FUNCTION

Syntax LOC(<file number>)

Purpose To return the length of the file in bytes.

Example 110 IF REC*RECSIZ>LOF(l)
THEN PRINT “INVALID ENTRY”

In this example, the variables REC and RECSIZ
contain the record number and record length,
respectively. The calculation determines whether
the specified record is beyond the end-of-file.

GW-BASIC REFERENCE MANUAL 4-119

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.76 LOG FUNCTION

Syntax LOG(X)

Purpose To return the natural logarithm of X. X must be
greater than zero.

Example PRINT LOG(45/7)
will yield
1.860752

4-120 GW-BASIC REFERENCE MANUAL

4.77 LPOS FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

LPOS(X)

where X is the number assigned to the line
printer.

To return the current position of the line
printer’s print head within the line printer
buffer.

LPOS does not necessarily give the physical
position of the print head.

100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

GW-BASIC REFERENCE MANUAL 4-121

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.78 LPRINT AND LPRINT USING STATEMENTS

Syntax LPRINT [c lis t of expressions>]

LPRINT USING <string exp>;<list of
expressions>

Purpose To print data at the line printer.

Remarks Same as PRINT and PRINT USING, except
output goes to the line printer. See Sections 4.103
and 4.104, respectively.

LPRINT assumes a 132-character-wide printer.
However, the width may vary according to your
implementation.

Examples See Sections 4.103 and 4.104.

4-122 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.79 LSET AND RSET STATEMENTS

Syntax LSET <string variable> = <string
expression>
RSET <string variable> = <string
expression>

Purpose To move data from memory to a random file
buffer (in preparation for a PUT statement).

Remarks If <string expression> requires fewer bytes
than were fielded to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to pad
the extra positions.) If the string is too long for
the field, characters are dropped from the right.
Numeric values must be converted to strings
before they are LSET or RSET. See “MKI$,
MKS$, MKD$,” Section 4.83.

Examples 150 LSET A$ = MKS$(AMT)
160 LSET D$ = DESC($)

Note LSET or RSET may also be used with a
nonfielded string variable to left-justify or
right-justify a string in a given field. For
example, the program lines

110 A$ = SPACE$(20)
120 RSET A$ = N$

right-justify the string N$ in a 20-character field.
This can be very handy for formatting printed
output.

GW-BASIC REFERENCE MANUAL 4-123

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.80 MERGE COMMAND

Syntax MERGE <filespec>

Purpose To merge a specified disk file into the program
currently in memory.

Remarks The <filespec> must include the filename used
when the file was saved. (Your operating system
may append a default filename extension if one
was not supplied in the SAVE command.) The file
must have been saved in ASCII format. If it was
not, a “Bad file mode” error occurs.

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may
be thought of as “inserting” the program lines on
disk into the program in memory.)

GW-BASIC always returns to command level
after executing a MERGE command.

Example MERGE “NUMBERS”

Inserts, by sequential line number, all lines in the
program NUMBRS into the program currently in
memory.

GW-BASIC
Compiler The MERGE command is not supported by the

GW-BASIC Compiler.

4-124 GW-BASIC REFERENCE MANUAL

4.81 MID$ STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

MID$(<string expl>,n[,m]) = <string exp2>

where n and m are integer expressions and
<string expl> and <string exp2> are string
expressions.

To replace a portion of one string with another
string.

The characters in <string expl>, beginning at
position n, are replaced by the characters in
< string exp2>. The optional “m” refers to the
number of characters from <string exp2> that
will be used in the replacement. If “m” is omitted,
all of <string exp2> is used. However,
regardless of whether “m” is omitted or included,
the replacement of characters never goes beyond
the original length of <string expl>.

10 A$=“KANSAS CITY, NO”
20 MID$(A$,14) = “KS”
30 PRINT A$
will yield
KANSAS CITY, KS

MID$ is also a function that returns a substring
of a given string. See Section 4.82.

GW-BASIC REFERENCE MANUAL 4-125

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.82 MID$ FUNCTION

Syntax MID$(X$,n[,m])

Purpose To return a string of length m characters from
X$, beginning with the nth character.

Remarks n and m must be in the range 1 to 255. If m is
omitted or if there are fewer than m characters to
the right of the nth character, all rightmost
characters beginning with the nth character are
returned. If n is greater than the number of
characters in X$ (LEN(X$)), MID$ returns a null
string.

Example 10 A$ = “GOOD ”
20 B$=“MORNING EVENING AFTERNOON”
30 PRINT A$;MID$(B$,9,7)
will yield
GOOD EVENING

Also see the LEFT$ and RIGHT$ functions,
Sections 4.65 and 4.116, respectively.

4-126 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.83 MKI$, MKS$, MKD$ FUNCTIONS

Syntax MKI$ (cinteger expression>)
MKS$ (<single precision expression>)
MKD$ (<double precision expression>)

Purpose To convert numeric values to string values.

Remarks Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer to
a 2-byte string. MKS$ converts a single precision
number to a 4-byte string. MKD$ converts a
double precision number to an 8-byte string.

Example 90 AMT = (K + T)
100 FIELD #1,8 AS D$,20 AS N$
110 LSET D$ = MKS$(AMT)
120 LSET N$ = A$
130 PUT #1

See also “CVI, CVS, CVD Functions,” Section
4.25.

GW-BASIC REFERENCE MANUAL 4-127

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.84 NAME STATEMENT

Syntax NAME Cold filename> AS <new filename>

Purpose To change the name of a disk file.

Remarks Cold filename> must exist and Cnew
filename> must not exist; otherwise, an error
will result.

A file may not be renamed with a new drive
designation. If this is attempted, a “Rename
across disks” error will be generated. After a
NAME command, the file exists on the same disk,
in the same area of disks space, with the new
name.

Example NAME “ACCTS” AS “LEDGER”

In this example, the file that was formerly named
ACCTS will now be named LEDGER.

4-128 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.85 NEW COMMAND

Syntax NEW

Purpose To delete the program currently in memory and
clear all variables.

Remarks NEW is entered in direct mode to clear memory
before entering a new program. GW-BASIC
always returns to command level after a NEW is
executed.

NEW closes all files and turns tracing off.

Example NEW

GW-BASIC
Compiler The NEW command is not supported by the

GW-BASIC Compiler.

GW-BASIC REFERENCE MANUAL 4-129

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.86 OCT$ FUNCTION

Syntax OCT$(X)

Purpose To return a string that represents the octal value
of the decimal argument. X is rounded to an
integer before OCT$(X) is evaluated.

Example PRINT OCT$(24)
will yield
30

See the HEX$ function, Section 4.52, for details
on hexadecimal conversion.

4-130 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.87 ON COM(n) STATEMENT

Syntax ON COM(n) GOSUB <line>

n
Communications channel number (1 or 2).

line
Line number of the beginning of the trap routine.
A line number of 0 disables trapping for the
specified channel.

Function Allows the software to trap a line number when
information comes into the communications
buffer.

Remarks The following statements control the activation
or deactivation of the trapping routine:

COM(n) ON
Must be performed to activate the ON COM(n)
statement. If you specify a non-zero line in the
ON COM (n) statement, every time the program
starts a new statement, the software checks to see
if any characters have come into the specified
channel. If there are no characters, the software
performs a GOSUB to the specified line.

COM(n) OFF
If performed, no trapping takes place for the
channel. Even if there are communications, the
characters received by the channel are not saved
in memory.

COM(n) STOP
If performed, no trapping takes place for the
channel. However, any characters received by the
channel are saved in memory so that an
immediate trap takes place when COM(n) ON is
performed.

When a trap occurs, the trap automatically
causes a COM(n) STOP on that routine so that
recurring traps can never take place. The

GW-BASIC REFERENCE MANUAL 4-131

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler

RETURN from the trap routine automatically
performs COM(n) ON unless an explicit COM(n)
OFF has been performed within the trap routine.

Trapping never takes place unless the software is
executing a program.

When an error trap takes place, all trapping is
automatically disabled.

Typically, the communications trap routine reads
an entire message from the communications
channel before returning back. It is not
recommended to use the communications trap for
single character messages because at high baud
rates the overhead of trapping and reading for
each individual character may cause the
interrupt buffer for communications to overflow.

RETURN <line>
This form of RETURN is optional. Use it to go
back to the software program at a fixed line
number. This action eliminates the GOSUB entry
which the trap created. Use RETURN <line>
with care! Any other GOSUB, WHILE, or FOR
which was active at the time of the trap will
remain active. If a trap returns from a
subroutine, any attempt to continue loops outside
the subroutine will result in a “NEXT without
FOR” error.

With the compiler, the /V or /W switch must be
given in the compiler command line if a program
contains an ON COM statement. These switches
allow the compiler to function correctly when
event trapping routines are included in a
program. See your GW-BASIC Compiler User’s
Guide for an explanation of these switches.

4-132 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.88 ON ERROR GOTO STATEMENT

Syntax ON ERROR GOTO d in e number>

Purpose To enable error handling and specify the first line
of the error handling routine.

Remarks Once error handling has been enabled, all errors
detected, including direct mode errors (e.g.,
syntax errors), will cause a jump to the specified
error handling routine. If d in e number> does
not exist, an “Undefined line” error results.

To disable error handling, execute an ON ERROR
GOTO 0. Subsequent errors will print an error
message and halt execution. An ON ERROR
GOTO 0 statement that appears in an error
handling routine causes GW-BASIC to stop and
print the error message for the error that caused
the trap. It is recommended that all error
handling routines execute an ON ERROR GOTO
0 if an error is encountered for which there is no
recovery action.

Note If an error occurs during execution of an error
handling routine, that error message is printed
and execution terminates. Error trapping does
not occur within the error handling routine.

Example 10 ON ERROR GOTO 1000

GW-BASIC
Compiler With the compiler, the /E compilation switch

must be given in the compiler command line if a
program contains ON ERROR GOTO and
RESUME d in e number> statements. If the
RESUME, RESUME NEXT, or RESUME 0 form
is used, thee /X switch must be specified instead.

The purpose of these switches is to allow the
compiler to function correctly when error
handling routines are included in a program. See
the NCR GW-BASIC Compiler User's Guide for an
explanation of these switches.

GW-BASIC REFERENCE MANUAL 4-133

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.89 ON...GOSUB AND ON...GOTO STATEMENTS

Syntax ON <expression> GOTO c lis t of line
numbers>

ON <expression> GOSUB c lis t of line
numbers>

Purpose To branch to one of several specified line
numbers, depending on the value returned when
an expression is evaluated.

Remarks The value of <expression> determines which
line number in the list will be used for branching.
For example, if the value is three, the third line
number in the list will be the destination of the
branch. (If the value is a noninteger, the
fractional portion is rounded.)

In the ON...GOSUB statement, each line number
in the list must be the first line number of a
subroutine.

If the value of <expression> is zero or greater
than the number of items in the list (but less than
or equal to 255), Microsoft GW-BASIC continues
with the next executable statement. If the value
of < expression> is negative or greater than 255,
an “Illegal function call” error occurs.

Example 100 ON L-l GOTO 150,300,320,390

GW-BASIC
Compiler The compiler does not check the value of

expression, except to make sure that it does not
exceed the number of items in the c lis t of line
numbers>. If that is the case, erroneous results
will be produced.

4-134 GW-BASIC REFERENCE MANUAL

4.90 ON KEY(N) STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

ON KEY(n) GOSUB <line>

n
Specifies a function key numbered 1 through 24
as follows:

1-20 Softkeys FI through F20
21 Cursor up
22 Cursor left
23 Cursor right
24 Cursor down

line
Specifies the line number where BASIC will
begin the trapping routine for the specified key.
A line number of 0 disables trapping of the key.

Allows the software to trap a line number when
you press the specified function key or cursor key.

The following statements control the activation
or deactivation of the trapping routine:

KEY(n) ON
Must be performed to activate the ON KEY(n)
statement. If you specify a non-zero line for the
trap with ON KEY(n), every time the program
starts a new statement, the software checks to see
if the specified key was pressed. If you pressed
the key, the software performs a GOSUB to the
specified line.

KEY(n) OFF
If performed, no trapping takes place for the
specified key. Even if you press the key, the trap
routine is not remembered.

KEY(n) STOP
If performed, no trapping takes place for the
specified key. However, if you press the specified
key, an immediate trap takes place when KEY(n)
ON is performed.

GW-BASIC REFERENCE MANUAL 4-135

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler

When a trap occurs, the trap automatically
causes a KEY(n) STOP on that routine so that
recurring traps can never take place. The
RETURN from the trap routine automatically
performs a KEY(n) ON unless an explicit KEY(n)
OFF has been performed within the trap routine.

Trapping never takes place unless the software is
executing a program.

When an error trap takes place, all trapping is
automatically disabled.

No type of trapping is activated when the
software is in direct mode. In particular, function
keys resume their standard expansion meaning
during input.

A key that causes a trap cannot be tested with the
INPUT or INKEY$ statements, so the trap
routine for each key must be different if you want
a different function.

RETURN <line>
This form of RETURN is optional. Use RETURN
< line> to go back to the software program at a
fixed line number. This action eliminates the
GOSUB entry which the trap created. Use
RETURN <line> with care! Any other GOSUB,
WHILE, or FOR which was active at the time of
the trap will remain active. If a trap returns from
a subroutine, any attempt to continue loops
outside the subroutine will result in a “NEXT
without FOR” error.

With the compiler, the /V or /W switch must be
given in the compiler command line if a program
contains an ON KEY statement. These switches
allow the compiler to function correctly when
event trapping routines are included in a
program. See the GW-BASIC Compiler User's
Guide for an explanation of these switches.

4-136 GW-BASIC REFERENCE MANUAL

4.91 ON STRIG STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

ON STRIG(n) GOSUB d in e number>

where (n) is the number of the joystick trigger.

where d in e number> is the number of the first
line of a subroutine that is to be performed when
the joystick trigger is pressed.

To specify the first line number of a subroutine to
be performed when the joystick trigger is
pressed.

A d in e number> of zero disables the event trap.

The ON STRIG statement will only be executed if
a STRIG ON statement has been executed (see
“STRIG Statement/Function,” Section 4.131) to
enable event trapping. If event trapping is
enabled, and if the < line number> in the ON
STRIG statement is not zero, GW-BASIC checks
between statements to see if the joystick trigger
has been pressed. If it has, a GOSUB will be
performed to the specified line.

If a STRIG OFF statement has been executed (see
“STRIG Statement,” Section 4.131), the GOSUB
is not performed and is not remembered.

If a STRIG STOP statement has been executed
(see “STRIG Statement,” Section 4.131), the
GOSUB is not performed, but will be performed
as soon as a STRIG ON statement is executed.

When an event trap occurs (i.e., the GOSUB is
performed), an automatic STRIG STOP is
executed so that recursive traps cannot take
place. The RETURN from the trapping
subroutine will automatically perform a STRIG
ON statement unless an explicit STRIG OFF was
performed inside the subroutine.

GW-BASIC REFERENCE MANUAL 4-137

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler

The RETURN Cline number> form of the
RETURN statement may be used to return to a
specific line number from the trapping
subroutine. Use this type of return with care,
however, because any other GOSUBs, WHILEs,
or FORs that were active at the time of the trap
will remain active, and errors such as “FOR
without NEXT” may result.

Event trapping does not take place when
GW-BASIC is not executing a program, and event
trapping is automatically disabled when an error
trap occurs.

With the compiler, the /V and /W switch must be
given in the compiler command line if a program
contains an ON STRIG statement. These
switches allow the compiler to function correctly
when event trapping routines are included in a
program. See your GW-BASIC Compiler User's
Guide for an explanation of these switches.

4-138 GW-BASIC REFERENCE MANUAL

4.92 OPEN STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntaxes OPEN <mode>,[#]<file
number>,cfilespec> [,<record length>]

OPEN <filespec>[FOR <mode>] AS [#]<file
number> [LEN=<record length>]

<mode> is a string expression whose first
character is one of the following:

0 Specifies sequential output mode.

1 Specifies sequential input mode.

R Specifies random input/output mode.

A Specifies sequential output mode and
sets the file pointer at the end of file and
the record number as the last record of
the file. A PRINT# or WRITE#
statement will then extend (append) the
file.

If <mode> is omitted, the default random
access mode is assumed.

<file number> is an integer expression whose
value is between 1 and 15. The number is then
associated with the file for as long as it is OPEN
and is used to refer other disk I/O statements to
the file.

<filespec> is a string expression containing a
name that conforms to your operating system’s
rules for disk filenames.

Crecord length> is an integer expression that, if
included, sets the record length for random files.
Do not use this option with sequential files.

With the interpreter, the Crecord length>
cannot exceed the maximum set with /S: at
start-up. If the Crecord length> option is not
used, the default length is 128 bytes.

GW-BASIC REFERENCE MANUAL 4-139

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Purpose To allow I/O to a file or device.

Remarks A disk file must be opened before any disk I/O
operation can be performed on that file. OPEN
allocates a buffer for I/O to the file or device and
determines the mode of access that will be used
with the buffer.

Note A file can be opened for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however,
on only one file number at a time.

Examples 10 OPEN “I”,2,“INVEN”

10 OPEN “MAILING.DAT” FOR APPEND AS
1

o p c f j
it ^ * w _ b

Ö , ? £C\uJ ;

4-140 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.93 OPEN COM STATEMENT

Syntax OPEN “<dev>:[<speed>],[<parity>],
[<data>],
[< stop >][,RS][,CS[< n >]][,DS[< n >]][,
CD[<n>]] [,LF]” AS [#]<file number>

Purpose Opens a communications file. Allocates a buffer
for I/O in the same manner as OPEN for disk
files. Supports RS-232 asynchronous
communication with other computers and
peripherals.

Remarks dev
Specifies one of the following communications
devices: COM1 or COM2.

speed
An integer constant which specifies the transmit
or receive baud rate. Valid speeds are: 50,75,100,
134, 150, 300, 600, 1200, 1800, 2400, 3600, 4800,
7200, 9600, 19200. Baud rate 134 includes 134.5.
Default is 300 bps.

parity
A one-character constant which specifies the
parity for transmit and receive, as follows:

S SPACE: parity bit is always transmitted
and received as a space (0 bit).

0 ODD: odd transmit and receive parity
checking.

M MARK: parity bit is always transmitted
and received as a mark (1 bit).

E EVEN: even transmit and receive parity
checking.

N NONE: no transmit or receive parity
checking.

The default for parity is even (E).

GW-BASIC REFERENCE MANUAL 4-141

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

data
An integer constant which indicates the number
of transmit or receive data bits. Valid values are:
4, 5, 6, 7, and 8. The default is 7. If you specify 4,
you must also specify mark (M) or space (S)
parity. If you do not specify M or S, a “Bad File
Name” error occurs. If you specify 8 bits, you
must specify N (none) parity.

stop
An integer constant which indicates the number
of stop bits. Valid values are 1 and 2. The default
stop bit for 50,75 and 110 bps is 2. The default for
all others is 1. If you specify 4 or 5 for < data> , a
2 entered for <stop> will mean 1 1/2 stop bits.

RS
Suppresses Request To Send (RTS) line signal. If
you enter RS, the RTS line is not turned on when
an OPEN COM statement is run.

CS<n>
Controls Clear To Send (CTS) line signal. If you
enter CS, the system waits for the line signal
without returning an error. If you enter CSn, n
specifies the amount of time to wait before the
system returns a “Device Timeout” error. Setting
n equal to zero is the same as entering CS. If you
omit the option, the default is 1 second.

D S<n>
Controls Data Set Ready (DSR) line signal. If you
enter DS, the system waits for the line signal
without returning an error. If you enter DSn, n
specifies the amount of time to wait before the
system returns a “Device Timeout” error. Setting
n equal to zero is the same as entering DS. If you
omit the option, the default is 1 second.

CD<n>
Controls Carrier Detect (CD) line signal, also
known as Received Line Signal Detect (RLSD). If
you enter CD, the line signal is not checked. If you
enter CDn, n specifies the amount of time to wait

4-142 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Example

before the system returns a “Device Timeout”
error. If you set n equal to zero or you omit the
option, the line signal is not checked.

n
Specifies the number of milliseconds the system
will wait before returning a “Device Timeout”
error, n may range from 0 to 65535.

LF
Sends a line feed following each carriage return.
Specify LF when using communication files to
print to a serial line printer. Note that INPUT#
and LINE INPUT#, when used to read from a
communications file which was opened with the
LF option, ignore the line feed and stop when
they detect a carriage return.

file number
Specifies an integer expression which returns a
valid file number. The number is associated with
the file for as long as it is open and is used by
other communications I/O statements to refer to
the file.

Any coding errors within the string expression
from <speed> through LF result in a “Bad File
Name” error. An indication of which parameter
is in error is not given.

If the com munications adapter is not correctly in
place, a “Device Timeout” error occurs when DSR
is not detected. Refer to the hardware
documentation for proper cabling instructions.

See the Communications chapter for information
on communications I/O. Error messages for
communications are included in the Error
Messages appendix.

In the following example, file number 1 is opened
for communication with all defaults: 300 bps,
even parity, and 7 data bits with 1 stop bit.

GW-BASIC REFERENCE MANUAL 4-143

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 OPEN “COM1:” AS #1

The following opens file number 2 for
communication at 2400 bps. Defaults are: even
parity, 7 data bits, and 1 stop bit.

10 OPEN “COM1:2400” AS #2

The following opens file number 1 for
asynchronous I/O at 1200 bps. No parity is
produced or checked. 8-bit bytes will be sent and
received. The stop bit is defaulted to 1.

10 OPEN “COM2:1200,N,8” AS #1

4-144 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
0 \D K j a n d fu n c tio n s

4.94 OPEN BASE STATEMENT

Syntax OPTION BASE n

where n is 1 or 0

Purpose To declare the minimum value for array
subscripts.

Remarks The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript
may have is 1.

The OPTION BASE statement must be coded
before you define or use an arrays.

Example 10 OPTION BASE 1

GW-BASIC
Compiler The compiler does not “execute” an OPTION

BASE statement, as it does a PRINT statement,
for example. An OPTION BASE statement takes
effect as soon as it is encountered in the program
during compilation. This option base then
remains in effect until the end of the program or
until another OPTION BASE statement is
encountered.

GW-BASIC REFERENCE MANUAL 4-145

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.95 OUT STATEMENT

Syntax OUT I,J

where I is the port number. It must be an integer
expression in the range 0 to 65535.

J is the data to be transmitted. It must be an
integer expression in the range 0 to 255.

Purpose To send a byte to a machine output port.

Example 100 OUT 12345,255

In 8086 assembly language, this is equivalent to:

MOV DX,12345
MOV AL,255
OUT DX,AL

4-146 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.96 PAINT STATEMENT

Syntax Fills in an area on the screen with the specified
color.

x,y
Specify the coordinates of the point where
painting begins. The point, which may be given in
absolute or offset form (see Chapter 1 for an
explanation of x and y coordinates), may be inside
or outside a figure, but not a boundary.

paint color
Specifies the color to be painted (the “fill” color).
Enter a value from 0-7 (see Color statement,
section 4.18).

boundary color
Specifies the boundary color of the figure. Enter a
value from 0-7.

Remarks The starting point may be inside or outside a
figure. If the point is outside, the screen is
painted with the color, except for the area inside
the boundary..

If you do not specify a paint color, the currently
active foreground color is used; if you do not
specify a boundary color, the entire screen is
painted.

For monochrome screens, you may specify only
black or green. If you specify any other color,
green is automatically used.

Example The following example draws a circle and then
paints it first with yellow and then with black.
With the GOTO statement, the sequence is
repeated, causing an animated effect.

GW-BASIC REFERENCE MANUAL 4-147

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 COLOR 7,0
20 CIRCLE (300,200),10,1
40 PAINT (300,191),6,1
50 PAINT (300,209),0,0
60 GOTO 20

Note that the boundary color on the second
statement is black, which covers the previous
blue boundary and “erases” the circle.

4-148 GW-BASIC REFERENCE MANUAL

4.97 PEEK FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

PEEK(I)

To return the byte read from the indicated
memory location (I).

The returned value is an integer in the range 0 to
255.1 must be in the range -32768 to 65535.1 is the
offset from the current segment, which was
defined by the last DEF SEG statement (see
Section 4.31). For the interpretation of a negative
value of I, see “VARPTR Function,” Section
4.142.

PEEK is the complementary function of the
POKE statement.

A = PEEK(&H5 A00)

GW-BASIC REFERENCE MANUAL 4-149

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.98 PLAY STATEMENT

Syntax PLAY <string expression>

Remarks With the Play statement, you can generate or
create a tune by defining its characteristics in the
string expression. The expression may consist of
any of the following commands, which you may
specify in any order unless stated otherwise in
the description.

A-G [#, + ,-] - Music Scale
Plays the specified notes, A-G. A# or + after a
note specifies a sharp (a half step higher in
pitch); a - after a note specifies a flat (a half step
lower in pitch).

L < n > - Length
Sets the length of the note (or notes), where n
may be from 1 to 64. As examples, LI specifies a
hole note, L2 specifies a half note...and L64
specifies a sixty-fourth note. You may specify the
length before a group of notes or after a single
note to change only its length. In the latter case,
for example, A16 is the same definition as L16A.

MB - Music Foreground
Sets music or any sound to run in the foreground.
Each subsequent note or sound is not started
until the previous note or sound is finished. MF is
the initial default value.

MN - Music Normal
Plays each note 7/8ths. of the time specified in L
(length).

ML - Music Legato
Plays each note the full length (as specified in L).

MS - Music Staccato
Plays each note 3/4ths. of the time specified in L
(length).

4-150 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

N < n > - Note
Plays the note specified by n. n may range from
22 to 63. (See table of notes under the sound
statement.) n may equal 0 to specify a pause.
Using this command provides an alternative way
to specify the note other than by name (A-G) and
octave.

0 < n > - Octave
Sets the octave, where n may range from 1 to 5.

P < n > - Pause
Sets the length of the pause, where n may range
from 1 to 64. The n value is the same as the n value
in the Length command; for example, PI causes a
pause the length of a whole note, P2 causes a
pause the length of a half note, and so on.

T < n > - Tempo
Sets the number of quarter notes (n) that can be
played in a minute, n may range from 32 to 255;
the default value is 120.

. - dot or period
Used after a note, plays the note as a dotted note;
that is, its length is multiplied by 3/2. More than
one dot may be used after the note, in which case
its length is adjusted accordingly. As examples,
A., plays 9/4 as long as L specifies, A... plays 27/8
as long, etc. Dots may also be used after a pause
(P) to scale the pause length in the same way.

X variable;
Executes specified string. (Not available with
GW-BASIC Compiler.)

In all commands, the n value can be a constant or
= variable; where variable is the name of a
variable. The semicolon (;) is required when you
use a variable in this way, and when you use the X
command; otherwise, a semicolon is optional
between commands, except it is not allowed after
MF, MB, MN, ML, or MS. Blanks in a string are
ignored.

GW-BASIC REFERENCE MANUAL 4-151

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Examples

Example

You can also specify variables in the form
VARPTR$ (variable), instead of = variable;. This
method is useful in programs that will later be
compiled.

The following two examples are equivalent; the
first is used with the interpreter, the second with
the compiler.

PLAY “XA#;”

PLAY “X” -h VARPTR$(A$)

You can use X to store a “subtune” in one string
and call it repetitively with different tempos or
octaves from another string.

10 MARY$ = “GFE-FGGG”
20 PLAY “MB T100 03 L8;XMARY$;P8 FFF4”
30 PLAY “GB-B-4;XMARY$;GFFGFE-.”

4-152 GW-BASIC REFERENCE MANUAL

4.99 POINT FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

V = POINT(x,y)

V
Specifies color. Valid returns are 0 through 7 (see
Color statement).

x,y
Specify coordinates of a point. Coordinates must
be in absolute form (see Chapter 1 for
explanation of x and y coordinates).

Allows user to read the color of a point from the
screen.

If you specify a point which is out of range -32768
to 32767, a -1 is returned.

10 SCREEN 1
20 FOR C==0 TO 7
30 PSET (10,10),C
40 IF POINT(10,10) < > C THEN PRINT
“Broken Basic!’"
50 NEXT C

10 SCREEN 1
20 IF POINT(i,i) < > 0 THEN PRESET (i,i)
ELSE
PSET (i,i)

In the second example, BASIC checks the color of
a point. If the point is not black, the color changes
to black. If the point is black, the color changes to
the foreground color. Another way to do this
follows:

10 SCREEN 1
20 PSET (i,i),l-POINT(i,i)

GW-BASIC REFERENCE MANUAL 4-153

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.100 POKE STATEMENT

Syntax POKE I,J

where I and J are integer expressions.

Purpose To write a byte into a memory location.

Remarks I and J are integer expressions. The expression I
represents the address of the memory location
and J is the data byte. I must be in the range
-32768 to 65535. I is the offset from the current
segment, which was set by the last DEF SEG
statement (see Section 4.31). For interpretation
of negative values of I, see “VARPTR,” Section
4.142.

The complementary function to POKE is PEEK.
The argument to PEEK is an address from which
a byte is to be read. (See Section 4.97.)

WARNING: Use POKE carefully. If it is
used incorrectly, it can cause
GW-BASIC to crash.

Example 10 POKE &H5A00,&HFF

4-154 GW-BASIC REFERENCE MANUAL

4.101 POS FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax POS(I)

Purpose To return the current horizontal (column)
position of the cursor

Remarks The leftmost position is 1. I is a dummy
argument. To return the current line position of
the cursor, use the CSRLIN function. (Section
4.24).

Example IF POS(X)>60 THEN BEEP

Also see “LPOS Function/' Section 4.77.

GW-BASIC REFERENCE MANUAL 4-155

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.102 PRESET STATEMENT

Syntax PRESET (x coordinate^ coordinate) [,color]

x coordinate^ coordinate
Sets the point coordinates in either absolute or
offset form (see Chapter 1 for explanation of x
and y coordinates).

color
Optional. Specifies the color of the point (0-7, see
Color statement). If not specified, color is the
background color.

Purpose Sets a point on the screen from which to begin
drawing.

Remarks PRESET and PSET have identical syntaxes. The
only difference is that if you do not specify color
in PRESET, the background color 0 is selected. In
PSET, if you do not specify a color, the color is the
foreground color. Line 60 in the example under
PSET could be:

60 PRESET (i,i)

BASIC allows coordinate values to be beyond the
edge of the screen and no action is taken nor is an
error given. However, values outside the integer
range -32768 to 32767 cause an overflow error.

4-156 GW-BASIC REFERENCE MANUAL

4.103 PRINT STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

PRINT [<list of expressions>]

To output data on the screen.

If c lis t of expressions> is omitted, a blank line
is printed. If c lis t of expressions> is included,
the values of the expressions are printed at the
terminal. The expressions in the list may be
numeric and/or string expressions. (Strings
must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. GW-BASIC divides the line into print
zones of 14 spaces each. In the list of expressions,
a comma causes the next value to be printed at
the beginning of the next zone. A semicolon
causes the next value to be printed immediately
after the last value. Typing one or more spaces
between expressions has the same effect as
typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly. If
the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed at the end of the line. If the printed line is
longer than the terminal width, GW-BASIC goes
to the next physical line and continues printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space. Nega­
tive numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unsealed format no
less accurately than they can be represented in
the scaled format, are output using the unsealed
format. For example, IE-7 is output as .0000001
and IE-8 is output as IE-08. Double precision

GW-BASIC REFERENCE MANUAL 4-157

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Example 1

Example 2

numbers that can be represented with 16 or fewer
digits in the unsealed format no less accurately
than they can be represented in the scaled
format, are output using the unsealed format.
For example, ID-15 is output as .000000000-
0000001 and ID-16 is output as ID-16.

With the interpreter, a question mark may be
used in place of the word PRINT in a PRINT
statement.

10 X = 5
20 PRINT X+5,X-5,X*(-5),Xa5
30 END
will yield
10 0 -25 3125

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

10 INPUT X
20 PRINT X “SQUARED IS” Xa2 “AND”;
30 PRINT X “CUBED IS” Xa3
40 PRINT
50 GOTO 10
will yield
? 9
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of line
20 causes both PRINT statements to be printed
on the same line. Line 40 causes a blank line to be
printed before the next prompt.

4-158 GW-BASIC REFERENCE MANUAL

Example 3

CHAPTER 4 COMMANDS. STATEMENTS,
AND FUNCTIONS

10 FOR X = 1 TO 5
20 J = J + 5
30 K = K + 10
40 ?J;K;
50 NEXT X
will yield
5 10 10 20 15 30 20 40 25 50

In this example, the semicolons in the PRINT
statement cause each value to be printed immedi­
ately after the preceding value. (Don't forget, a
number is always followed by a space.) In line 40,
a question mark is used instead of the word
PRINT.

GW-BASIC REFERENCE MANUAL 4-159

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.104 PRINT USING STATEMENT

Syntax PRINT USING <string exp>;<list of
expressions>

Purpose To print strings or numbers using a specified
format.

Remarks/
Examples < list of expressions> is comprised of the string

expressions or numeric expressions that are to be
printed, separated by semicolons.

<string exp> is a string literal (or variable)
composed of special formatting characters. These
formatting characters (see below) determine the
field and the format of the printed strings or
numbers.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

“!” Specifies that only the first character in the given
string is to be printed.

“\n spaces\

“Specifies that 2 + n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, three characters will be printed,
and so on. If the string is longer than the field, the
extra characters are ignored. If the field is longer
than the string, the string will be left-justified in
the field and padded with spaces on the right.

Example:

10 A$ = “LOOK”:B$ = “OUT”
30 PRINT USING “!”;A$;B$
40 PRINT USING “\ \ “;A$;B$

4-160 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

50 PRINT USING “\ \
will yield
LO
LOOKOUT
LOOK OUT !!

Specifies a variable length string field. When the
field is specified with the string is output
without modification.

GW-BASIC REFERENCE MANUAL 4-161

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Example:

10 A$ = “LOOK”:B$= “OUT”
20 PRINT USING “!”;A$;
30 PRINT USING
will yield
LOUT

Numeric Fields

When PRINT USING is used to print numbers,
the following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are always filled. If the
number to be printed has fewer digits than
positions specified, the number will be right-
justified (preceded by spaces) in the field.

A decimal point may be inserted at any position
in the field. If the format string specifies that a
digit is to precede the decimal point, the digit will
always be printed (as 0, if necessary). Numbers
are rounded as necessary.

PRINT USING “# # .# # ”;.78
0.78

PRINT USING “# # # .# # ”;987.654
987.65

PRINT USING “# # .# # “;10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted at
the end of the format string to separate the
printed values on the line.

+ A plus sign at the beginning or end of the format
string will cause the sign of the number (plus or
minus) to be printed before or after the number.

4-162 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

— A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING “■+ # # .# # “;-68.95,2.4,55.6,-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING “## .##- “;-68.95,22.449,-7.01
68.95- 22.45 7.01-

** A double asterisk at the beginning of the format
string causes leading spaces in the numeric field
to be filled with asterisks. The ** also specifies
positions for two more digits.

PRINT USING “**#.# “;12.39,-0.9,765.1
*12.4 *-0.9 765.1

$$ A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit posi­
tions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the
minus sign trails to the right.

PRINT USING “$$###.# # ”;456.78
$456.78

**$ The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a dollar
sign will be printed before the number. **$
specifies three more digit positions, one of which
is the dollar sign.

The exponential format cannot be used with
When negative numbers are printed, the minus
sign will appear immediately to the left of the
dollar sign.

PRINT USING “$## .##”;2.34
***$2.34

GW-BASIC REFERENCE MANUAL 4-163

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

A comma that is to the left of the decimal point in
a formatting string causes a comma to be printed
to the left of every third digit to the left of the
decimal point. A comma that is at the end of the
format string is printed as part of the string. A
comma specifies another digit position. The
comma has no effect if used with exponential
(A A A A) format.

PRINT USING “# # # # ,,# # ”;1234.5
1,234.50

PRINT USING “# # # # .# # ,“;1234.5
1234.50,

A A A A Four carets (or up-arrows) may be placed after
the digit position characters to specify exponen­
tial format. The four carets allow space for E+xx
to be printed. Any decimal point position may be
specified. The significant digits are left-justifies,
and the exponent is adjusted. Unless a leading +
or trailing + or - is specified, one digit position
will be used to the left of the decimal point to
print a space or a minus sign.

PRINT USING “# # .# # A A A A ”;234.56
2.35E+02

PRINT USING “.# # # # A A A A -”;888888
.8889E+06

PRING USING “ + .## aaa A ”;123
+ .12E+03

An underscore in the format string causes the
next character to be output as a literal character.

PRINT USING “ !##.## !”;12.34
112.34!

The literal character itself may be an underscore
by placing “ ” in the format string.

4-164 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

% If the number to be printed is larger than the
specified numeric field, a percent sign is printed
in front of the number. If rounding causes the
number to exceed the field, a percent sign will be
printed in front of the rounded number.

PRINT USING “# # .# # ”;111.22
% 111.22

PRINT USING 999
% 1.00

If the number of digits specified exceeds 24, an
“Illegal function call” error will result.

GW-BASIC REFERENCE MANUAL 4-165

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.105 PRINT# AND RETURN PRINT# USING STATEMENTS

Syntax PRINT#<file number>,[USING <string
exp>;] < list of expressions>

Purpose To write data to a sequential file.

Remarks/
Examples <file number> is the number used when the file

was opened for output. <string exp> consists of
formatting characters as described in “PRINT
USING Statement,” Section 4.104. The
expressions in < list of expressions> are the
numeric and/or string expressions that will be
written to the file.

PRINT# does not compress data. An image of the
data is written to the file, just as it would be
displayed on the terminal screen with a PRINT
statement. For this reason, care should be taken
to delimit the data, so that it will be input
correctly.

In the list of expressions, numeric expressions
should be delimited by semicolons. For example:

PRINT#1,A;B;C;X;Y;Z

(If commas are used as delimiters, the extra
blanks that are inserted between print fields will
also be written to the file.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly in the file, use explicit
delimiters in the list of expressions.

For example, let A$ = “CAMERA” and
B$ = “93604-1”.
The statement

PRINT#1,A$;B$

4-166 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

would write CAMERA93604-1 to the file. Because
there are no delimiters, this could not be input as
two separate strings. To correct the problem,
insert explicit delimiters into the PRINT#
statement as follows:

PRINT#1, A$;“,”;B$

The image written to the file is

CAMERA,93604-1

which can be read back into two string variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or linefeeds, write them to the file
surrounded by explicit quotation marks,
CHR$(34).

For example, let A$ = "CAMERA, AUTOMATIC”
and B$ = ” 93604-1”. The statement

PRINT#1,A$;B$

would write the following image to file:

CAMERA, AUTOMATIC 93604-1

And the statement

INPUT#1,A$,B$

would input "CAMERA” to A$ and
"AUTOMATIC 93604-1” to B$. To separate these
strings properly in the file, write double
quotation marks to the file image using
CHR$(34), The statement

PRINT#!,CHR$(34);A$;CHR$(34);CHR$(34);B$
;CHR$(34)

writes the following image to the file:

GW-BASIC REFERENCE MANUAL 4-167

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

“CAMERA, AUTOMATIC”” 93604-1”

And the statement

INPUT#1,A$,B$

would input “CAMERA, AUTOMATIC” to A$
and “ 93604-1” to B$.

The PRINT# statement may also be used with
the USING option to control the format of the
file. For example:

PRINT#1,USING”$$###.##,”;J;K;L

See also “WRITE# Statement,” Section 4.148.

* Cco. «1 A r — * VJ ö

(*l) C'T̂ J ^

4-168
GW-BASIC REFERENCE MANUAL

4.106 PSET STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

PSET (x coordinate^ coordinate) [,color]

x coordinate, y coordinate
Specifies point coordinates in either absolute or
offset form (see Chapter 1 for explanation of x
and y coordinates).

color
Optional. Specifies the color of the point (0-7, see
Color statement). If you do not specify, color is
foreground color.

Sets a point on the screen from which to begin
drawing.

Note that BASIC allows coordinate values to be
beyond the edge of the screen and no action is
taken nor is an error given. However, values
outside the integer range -32768 to 32767 cause an
overflow error.

If black is set as the background color, lines 10
through 40 of the example draw a diagonal line
from point (0,0) to point (100,100). Lines 50
through 70 clear the line by setting each point to
0, black.

10 SCREEN 1
20 FOR i = 0 TO 100
30 NEXT
40 FOR i=100 TO 0 STEP -1
50 PSET (i,i),0
60 NEXT

GW-BASIC REFERENCE MANUAL 4-169

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.107 PUT STATEMENT

Syntax 1 PUT [#]<file number >[,<record number>]

Purpose To write a record from a random buffer to a
random access file.

Remarks <file number> is the number under which the
file was opened. If Crecord number> is omitted,
the record will assume the next available record
number (after the last PUT). The largest possible
record number is 32,767. The smallest record
number is 1.

The GET and PUT statements allow fixed-length
input and output for GW-BASIC COM files.
However, because of the low performance
associated with telephone line communications,
we recommend that you do not use GET and PUT
for telephone communication.

See “GET AND PUT STATEMENT” in this
chapter, for discussion of PUT with screen
capabilities.

Note PRINT#, PRINT# USING, and WRITE# may be
used to put characters in the random file buffer
before executing a PUT statement.

In the case of WRITE#, GW-BASIC pads the
buffer with spaces up to the carriage return. Any
attempt to read or write past the end of the buffer
causes a “Field overflow” error.

Syntax 2 PUT (xl,yl),<array name>[,<action verb>

This form of the PUT statement is used with
graphics capabilities.

4-170 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.108 RANDOMIZE STATEMENT

Syntax RANDOMIZE [<expression>]

Purpose To reseed the random number generator.

'—" Remarks If <expression> is omitted, GW-BASIC
suspends program execution and asks for a value
by printing

Random Number Seed (-32768 to 32767)?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is run.
To change the sequence of random numbers every
time the program is run, place a RANDOMIZE
statement at the beginning of the program and
change the argument with each run.

Example 10 RANDOMIZE
20 FOR I==l TO 5
30 PRINT RND;
40 NEXT 1
will yield
Random Number Seed (-32768 to 32767)? 3

(user types 3)
will yield
.885982 .4485668 .586328 .1194246 .7039225

Random Number Seed (-32768 to 32767)? 4
(user types 4 for new sequence)

will yield
.803506 .1625462 .929364 .2924443 .322921

Random Number Seed (-32768 to 32767)? 3
(same sequence as first run)

will yield
.885982 .4845668 .586328 .1194246 .7039225

Note that the numbers your program produces
may not be the same as the ones shown here.

GW-BASIC REFERENCE MANUAL 4-171

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.109 READ STATEMENT

Syntax READ Clist of variables>

Purpose To read values from a DATA statement and
assign them to variables. (See “DATA
Statement,” Section 4.26.)

Remarks A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a “Syntax error”
will result.

A single READ statement may access one or
more DATA statements (they will be accessed in
order), or several READ statements may access
the same DATA statement. If the number of
variables in c lis t of variables> exceeds the
number of elements in the DATA statement(s),
an “Out of data” error message is printed. If the
number of variables specified is fewer than the
number of elements in the DATA statement(s),
subsequent READ statements will begin reading
data at the first unread element. If there are no
subsequent READ statements, the extra data is
ignored.

To reread DATA statements from the start, use
the RESTORE statement (see “RESTORE
Statement,” Section 4.113)

4-172 GW-BASIC REFERENCE MANUAL

Example 1

Example

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

80 FOR 1 = 1 TO 10
90 READ A(I)
100 NEXT I
110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values from
the DATA statements into the array A. After
execution, the value of A(l) will be 3.08, and so on.

10 PRINT “CITY”, “STATE”, “ZIP”
20 READ C$,S$,Z
30 DATA “DENVER,”, COLORADO, 80211
40 PRINT C$,S$,Z
will yield
CITY STATE ZIP
DENVER, COLORADO 80211

This program reads string and numeric data
from the DATA statement in line 30.

GW-BASIC REFERENCE MANUAL 4-173

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.110 REM STATEMENT

Syntax REM <rem ark>

Purpose To allow explanatory remarks to be inserted in a
program.

Remarks REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into from a
GOTO or GOSUB statement. Execution will
continue with the first executable statement
after the REM statement.

Remarks may be added to the end of a line by
preceding the remark with a single quotation
mark instead of :REM.

Important Do not use this in a data statement, because it
would be considered legal data.

Example

120 REM CALCULATE AVERAGE VELOCITY
130 FOR 1 = 1 TO 20
140 SUM = SUM + V(I)

or

120 FOR 1 = 1 TO 20 ‘CALCULATE AVERAGE
VELOCITY
130 SUM = SUM + V(I)
140 NEXT I

4-174 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.111 RENUM COMMAND

Syntax RENUM [[<new number>][,[<old number>]
[,< increment >]]]

Purpose To renumber program lines.

Remarks <new number> is the first line number to be
used in the new sequence. The default is 10. <old
number> is the line in the current program
where renumbering is to begin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.

RENUM also changes all line number references
following GOTO, GOSUB, THEN, ON...GOTO,
ON...GOSUB, and REL statements to reflect the
new line numbers. If a nonexistent line number
appears after one of these statements, the error
message “Undefined line number in xxxxx” is
printed. The incorrect line number reference is
not changed by RENUM, but line number yyyyy
may be changed.

Note RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when
the program has three lines numbered 10, 20 and
30) or to create line numbers greater than 65529.
An “Illegal function call” error will result.

Examples RENUM
Renumbers the entire program. The first new
line number will be 10. Lines will be
numbered in increments of 10.

RENUM 300„50
Renumbers the entire program. The first new
line number will be 300. Lines will be
numbered in increments of 50.

RENUM 1000,900,20
Renumbers the lines from 900 up so they
start with line number 1000 and are
numbered in increments of 20.

GW-BASIC REFERENCE MANUAL 4-175

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler The RENUM command is not supported by the

GW-BASIC Compiler.

4-176 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.112 RESET COMMAND

Syntax RESET

Purpose To close all files on all drives.

Remarks RESET closes all open files on all drives and
writes the directory track to every disk with open
files.

All files must be closed before a disk is removed
from its drive.

GW-BASIC REFERENCE MANUAL 4-177

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.113 RESTORE STATEMENT

Syntax RESTORE [<line number>]

Purpose To allow DATA statements to be reread from a
specified line.

Remarks After a RESTORE statement is executed, the
next READ statement accesses the first item in
the first DATA statement in the program. If
<line number> is specified, the next READ
statement accesses the first item in the specified
DATA statement.

Example 10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

4-178 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.114 RESUME STATEMENT

Syntaxes RESUME

RESUME 0

RESUME NEXT

RESUME <line number>

Purpose To continue program execution after an error
recovery procedure has been performed.

Remarks Any one of the four syntaxes shown above may be
used, depending upon where execution is to
resume:

RESUME or RESUME 0
Execution resumes at the statement that
caused the error.

RESUME NEXT
Execution resumes at the statement
immediately following the one that caused
the error.

RESUME Cline number> Execution resumes
at Cline number>.

A RESUME statement that is not in an error
handling routine causes a “RESUME without
error” message to be printed.

Example 10 ON ERROR GOTO 900

900 IF (ERR = 230)AND(REL = 90) THEN
PRINT “TRY
AGAIN”:RESUME 80

GW-BASIC REFERENCE MANUAL 4-179

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

GW-BASIC
Compiler In GW-BASIC Compiler, if an error occurs in a

single-line function, RESUME and RESUME
NEXT will attempt to resume execution at the
line containing the function.

4-180 GW-BASIC REFERENCE MANUAL

4.115 RETURN STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

RETURN [<line>]

line
Specifies program line number you want to
return to.

Returns program from a subroutine.

The optional line argument has been added to the
Return statement to allow non-local returns from
event trapping routines. You may want to go back
to the BASIC program at a fixed line number
while still eliminating the GOSUB entry the trap
created. Use RETURN <line> with care! Any
other GOSUB, WHILE, or FOR which was active
at the time of the trap remains active.

GW-BASIC REFERENCE MANUAL 4-181

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.116 RIGHTS FUNCTION

Syntax RIGHT$(X$,I)

Purpose to return the rightmost I characters of string X$.

Remarks If I is equal to the number of characters in X$
(LEN(X$)), returns X$. If I = 0, the null string
(length zero) is returned.

Example 10 A $=“DISK BASIC”
20 PRINT RIGHT$(A$,5)
will yield
BASIC

Also see the LEFT$ and MID$ functions, Sections
4.65 and 4.81, respectively.

4-182 GW-BASIC REFERENCE MANUAL

4.117 RND FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

Note

RND[(X)]

To return a random number between 0 and 1.

The same sequence of random numbers is
generated each time the program is run unless
the random number generator is reseeded (see
“RANDOMIZE Statement,” Section 4.108.
However, X 0 always restarts the same sequence
for any given X.

X > 0 or X omitted generates the next random
number in the sequence. X = 0 repeats the last
number generated.

10 FOR I==l TO 5
20 PRINT INT(RND*100);
30 NEXT
will yield
24 30 31 51 5

The values produced by the RND function may
vary with different implementations of
GW-BASIC.

GW-BASIC REFERENCE MANUAL 4-183

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.118 RUN STATEMENT/COMMAND

Syntax 1 RUN [Cline number>]

Purpose To execute the program currently in memory.

Remarks If Cline number> is specified, execution begins
on that line. Otherwise, execution begins at the
lowest line number. GW-BASIC always returns
to command level after a RUN statement is
executed.

Example RUN

Syntax 2 RUN cfilespec>[,R]

Purpose To load a file from disk into memory and run
it.

Remarks The cfilespec> must include the filename used
when the file was saved. (Your operating system
may append a default filename extension if one
was not supplied in the SAVE command.)

RUN closes all open files and deletes the current
contents of memory before loading the
designated program. However, with the “R”
option, all data files remain open.

Example RUN “NEWFIL”,R

GW-BASIC
Compiler NCR GW-BASIC Compiler supports the RUN

and RUN Cline number> forms of the RUN
statement. GW-BASIC Compiler does not
support the “R” option with RUN. If you want
this feature, the CHAIN statement should be
used.

Note that RUN executes EXE files created by the
GW-BASIC Compiler; it does not support the
execution of GW-BASIC source files, as does the
interpreter.

4-184 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Other EXE files not created with the GW-BASIC
Compiler are also executable with the RUN
<filespec> statement. These may be EXE files
created in other languages besides GW-BASIC.

GW-BASIC REFERENCE MANUAL 4-185

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.119 SAVE COMMAND

Syntax SAVE <filespec>[{,A i ,P}]

Purpose To save a program file on disk.

Remarks <filespec> is a quoted string that conforms to
your operating system's requirements for
filenames. Your operating system will append a
default filename extension if one was not
supplied in the SAVE command. If a filename
already exists, the file will be written over.

The A option saves the file in ASCII format. If
the A option is not specified, GW-BASIC saves
the file in a compressed binary format. ASCII
format takes more space on the disk, but some
disk access requires that files be in ASCII format.
For instance, the MERGE command requires an
ASCII format file, and some operating system
commands such as LIST may require an ASCII
format file.

The P option protects the file by saving it in an
encoded binary format. When a protected file is
later RUN (or LOADed), any attempt to list or
edit it will fail.

Examples SAVE “COM2”,A

Saves the program COM2 in ASCII format.

SAVE “PROG”,P

Saves the program PROG as a protected file
which cannot be altered.

GW-BASIC
Compiler The GW-BASIC Compiler does not support the

SAVE command.

4-186 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.120 SCREEN FUNCTION

Syntax SCREEN mode.

Mode must be either a 0 or 1:

0=text mode
1= graphics mode

Purpose Selects the software to handle either text or
graphics mode. (See Chapter 1 for an explanation
of screen modes.)

Remarks If the value of the mode parameter is valid, the
software stores the new screen mode, and erases
the screen. It does not change the foreground and
background colors.

If the parameter value is invalid (not 0,1, or 2 — 2
for compatibility and conversion), an “Illegal
Function Call” message is displayed. The screen
mode remains as it was before the statement was
entered.

If the new screen mode is the same as the
previous mode, the software only erases the
screen.

Examples 10 SCREEN 0 Selects text mode
20 SCREEN 1 Switches to graphics mode

GW-BASIC REFERENCE MANUAL 4-187

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.121 SCREEN STATEMENT

Syntax SCREEN [< sped >][, < spec2>]...

Purpose To set the specifications for the display screen.

7

4-188 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.122 SGN FUNCTION

Syntax SGN(X)

Purpose To indicate the value of X, relative to zero:

If X>0, SGN(X) returns 1.
If X=0, SGN(X) returns 0.
If X<0, SGN(X) returns -1.

Example ON SGN(X)+2 GOTO 100,200,300

Branches to 100 if X is negative, 200 if X is 0, and
300 if X if positive.

GW-BASIC REFERENCE MANUAL 4-189

CHA PTER 4 COMMA NDS, S TA TEMENTS,
AND FUNCTIONS

4.123 SIN FUNCTION

Syntax SIN(X)

Purpose To return the sine of X, where X is in radians.

Remarks COS(X) = SIN(X + 3.14159/2).

Example PRINT SIN(1.5)
will yield

.9974951

See also “COS Function,” Section 4.22.

4-190 GW-BASIC REFERENCE MANUAL

4.124 SOUND STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax SOUND <frequency,diiration>

frequency
Specifies desired frequency in Hertz (cycles per
second). Enter the desired number from 220 to
32767.(See also table of notes and frequencies.)

duration
Specifies desired length of the sound measured in
clock ticks. (1 clock tick = 55 ms.) Enter the
number of clock ticks. (See also table of typical
tempos.)

Purpose Generates sound through the speaker.

The following table correlates notes with their
frequencies. The tuning note A has a frequency of
440.

Note Freq. No.* Note Freq. No.

Pause 32767 F# 740 43
A 220 22 G 784 44
A# 233 23 G# 830 45
B 247 24 A 880 46
C 262 25 A# 930 47
C# 277.2 26 B 987.8 48
D 293.6 27 C 1046.4 49
D# 311.6 28 C# 1106 50
E 329.6 2:9 D 1174.6 51
F 349.2 30 D# 1244 52
F# 370 31 E 1318.6 53
G 392 32 F 1397 54
G# 416 33 F# 1480 55
A 440 34 G 1568 56
A# 466 35 G# 1660 57
B 493.2 36 A 1760 58

**C 523.2 37 A# 1864 59
C# 554.8 38 B 1975.6 60
D 587.4 39 C 2093 61
D# 622 40 C# 2217.4 62
E 659.2 41 D 2349.4 63
F 698.4 42

* See the Play statement for use of these numbers.
* Middle C

GW-BASIC REFERENCE MANUAL 4-191

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Remarks The Sound statement produces a sound that
continues until another Sound statement is
reached. If a Sound statement with a duration of
0 is encountered, any currently running Sound
statement is turned off. (If no Sound statement is
running, SOUND freq,0 has no effect.)

You can cause sounds to be buffered so program
execution does not stop when a new Sound
statement is encountered. (See the MB command
explained under the Play statement.)

To create periods of silence, use SOUND 32767,
duration.

The duration for one beat is calculated from beats
per minute. Divide the beats per minute into 1092
(the number of clock ticks in a minute). The
following table shows typical tempos in terms of
clock ticks (duration).

Tempo Beats/
Minute

Ticks/
Beat

(Duration)

very slow Larghissimo
Largo 40-60 27.3-18.2
Larghetto 60-66 18.2-16.55
Grave
Lento

r Adagio 66-76 16.55-14.37
slow Adagietto
t Andante 76-108 14.37-10.11

medium Andantino 108-120 10.11-9.1

JL Moderato

fast Allegretto
Allegro 120-168 9.1-6.5
Vivace
Veloce

11 Presto 168-208 6.5-5.25
very fast Prestissimo

Example The following program creates a glissando up and
down.

4-192 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

10 FOR 1 = 220 TO 2200 STEP 20
20 SOUND I, 0.5
30 NEXT
40 FOR 1=2200 TO 220 STEP -20
50 SOUND I, 0.5
60 NEXT

GW-BASIC REFERENCE MANUAL 4-193

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.125 SPACES FUNCTION

Syntax SPACE$(X)

Purpose To return a string of spaces of length X.

Remarks The expression X is rounded to an integer and
must be in the range 0 to 255.

Example 10 FOR 1 = 1 TO 5
20 X$=SPECE$(I)
30 PRINT X$,I
40 NEXT I
will yield
1
2
3
4
5

Also see “SPC Function,” Section 4.126.

4-194 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.126 SPC FUNCTION

Syntax SPC(I)

Purpose To skip spaces in a PRINT statement. I is the
number of spaces to be skipped.

Remarks SPC may only be used with PRINT and LPRINT
statements. I must be in range 0 to 255. A‘;’ is
assumed to follow the SPC(I) command.

Example PRINT “OVER” SPC(15) “THERE”
will yield
OVER THERE

Also see “SPACE$ Function,” Section 4.125.

GW-BASIC REFERENCE MANUAL 4-195

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.127 SQR FUNCTION

Syntax SQR(X)

Purpose To return the square root of X.

Remarks X must be > = 0.

Example 10 FOR X=10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT
will yield
10 3.162278
15 3.872984
20 4.472136
25 5

4-196 GW-BASIC REFERENCE MANUAL

4.128 STICK FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

x = STICK(n)

x is a numeric variable for storing the result of
the function.

(n) is a numeric expression returning an
unsigned integer in the range 0 to 3.

To return the x and y coordinates of the two
joysticks.

The values returned for n can be:

0 — returns the x coordinate for joystick A. Also
stores the x and y values for both joysticks
for the following function calls:

1 — Returns the y coordinate of joystick A.

2 — Returns the x coordinate of joystick B.

3 — Returns the y coordinate of joystick B.

10 CLS
20 LOCATE 1,1
30 PRINT “X = %”;STICK(0)
40 PRINT “Y = 5”;STICK(1)
50 GOTO 20

This example creates an endless loop to display
the value of the x,y coordinate for joystick A.

GW-BASIC REFERENCE MANUAL 4-197

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.129 STOP STATEMENT

Syntax STOP

Purpose To terminate program execution and return to
command level.

Remarks STOP statements may be used anywhere in a
program to terminate execution. STOP is often
used for debugging. When a STOP is encountered,
the following message is printed:

Break in line nnnnn

With GW-BASIC Interpreter, the STOP
statement does not close files. With GW-BASIC
Compiler, all open files are closed.

GW-BASIC always returns to command level
after a STOP is executed. Execution is resumed
by issuing a CONT command, (see Section 4.21).

Example 10 INPUT A,B,C
20 K= A A 2*5.3L= B A 3/.26
30 STOP
40 M = C*K+100:PRINT M
will yield
? 1,2,3
BREAK IN 30

PRINT L
30.76923

CONT
115.9

Note that because the CONT command is
included here, this particular example works only
with the interpreter.

GW-BASIC
Compiler If the /D, /E, or /X compiler switches are turned

on, the STOP message prints the line number at
which execution has stopped.

4-198 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.130 STR$ FUNCTION

Syntax STR$(X)

Purpose To return a string representation of the value of
X.

Example 5 REM ARITHMETIC FOR KIDS
10 INPUT “TYPE A NUMBER”;N
20 ON LEN(STR$(N)) GOSUB
30,100,200,300,400,500

Also see “VAL Function, Section 4.141.

GW-BASIC REFERENCE MANUAL 4-199

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.131 STRIG STATEMENT/FUNCTION

Syntax STRIG ON
STRIG OFF
STRIG STOP
x = STRIG(n)

where x is a numeric variable for storing the
result of the function.

(n) is a numeric expression returning an
unsigned integer in the range 0 to 3, designating
which trigger is to be checked.

Purpose The STRIG ON statement enables event trapping
of joystick activity.

The STRIG OFF statement disables event
trapping of joystick activity.

The STRIG STOP statement disables event
trapping of joystick activity, but if the joystick is
pressed, that event will be remembered and will
be trapped as soon as event trapping is enabled.

The x = STRIG(n) function returns the status of a
specified joystick trigger.

Remarks The STRIG ON statement enables joystick event
trapping by an ON STRIG statement (see “ON
STRIG Statement/' Section 4.91). While trapping
is enabled, and if a non-zero line number is
specified in the ON STRIG statement,
GW-BASIC checks between every statement to
see if the joystick trigger has been pressed.

The STRIG OFF statement disables event
trapping. If an event occurs (i.e., if the trigger is
pressed), it will not be remembered.

The STRIG STOP statement disables event
trapping, but if an event occurs it will be
remembered, and the event trap will take place as
soon as trapping is enabled.

4-200 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Example

GW-BASIC
Compiler

In the X = STRIG(n) function, the values
returned for (n) can be:

0 — Returns -1 if trigger A was pressed
since the last STRIG(O) statement;
returns 0 if not.

1 — Returns -1 if trigger A is currently
down, 0 if not.

2 — Returns -1 if trigger B was pressed
since the last STRIG(2) statement, 0 if
not.

3 — Returns -1 if trigger B is currently
down, 0 if not.

When a joystick event trap occurs, that
occurrence of the event is destroyed. Therefore,
the x = STRIG(n) function will always return
false inside a subroutine, unless the event has
been repeated since the trap. So if you wish to
perform different procedures for various
joysticks, you must set up a different subroutine
for each joystick, rather than including all the
procedures in a single subroutine.

10 IF STRIG(O) THEN BEEP
20 GOTO 20

In this example an endless loop is created to beep
whenever the trigger button on joystick 0 is
pressed.

See compiler note under “ON STRIG Statement,"
Section 4.91.

GW-BASIC REFERENCE MANUAL 4-201

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.132 STRINGS FUNCTION

Syntaxes STRING$(I,J)
STRING$(I,X$)

Purpose To return a string of length I whose characters all
have ASCII code J or the first character of X$.

Example 10 X$=STRING$(10,45)
20 PRINT X$ “MONTHLY REPORT” X$
will yield
.............MONTHLY REPORT.............

4-202 GW-BASIC REFERENCE MANUAL

4.133 SWAP STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

SWAP <variable>,<variable>

To exchange the values of two variables.

Any type variable may be swapped (integer,
single precision, double precision, string), but the
two variables must be of the same type or a “Type
mismatch” error results.

If the second variable is not already defined when
SWAP is executed, an “Illegal function call”
error will result.

10 A$ = “ ONE ” : B$ = “ ALL”
: C$ = “FOR”

20 PRINT A$ C$ B$
30 SWAP A$, B$
40 PRINT A$ C$ B$
will yield
ONE FOR ALL
ALL FOR ONE

GW-BASIC REFERENCE MANUAL 4-203

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.134 SYSTEM COMMAND

Syntax SYSTEM

Purpose To close all open files and return control to the
operating system.

Remarks When a SYSTEM command is executed, a “warm
start” is performed (i.e., all open files are closed,
and the operating system is reloaded without
deleting any existing programs or memory except
GW-BASIC itself).

GW-BASIC
Compiler The GW-BASIC Compiler does not support this

command.

4-204 GW-BASIC REFERENCE MANUAL

4.135 TAB FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

TAB(I)

To move the print postion to I.

If the current print position is already beyond
space I, TAB goes to that position on the next line.
Space 1 is the leftmost position, and the
rightmost position is the width minus one. I must
be in the range 1 to 255. TAB may only be used in
PRINT and LPRINT statements.

10 PRINT “NAME” TAB(25) “AMOUNT” :
PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) B$
40 DATA “G. T. JONES”, “$25.00”
will yield
NAME AMOUNT

G. T. JONES $25.00

GW-BASIC REFERENCE MANUAL 4-205

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.136 TAN FUNCTION

Syntax TAN(X)

Purpose To return the tangent of X. X should be given in
radians.

Remarks With the interpreter, if TAN overflows, the
“Overflow” error message is displayed, machine
infinity with the appropriate sign is supplied as
the result, and execution continues.

Example 10 Y = Q*TAN(X)/2

4-206 GW-BASIC REFERENCE MANUAL

4.137 TIMES STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

TIME$= <string expression>

<string expression> returns a string in one of
the following forms:

hh (sets the hour; minutes and seconds
default to 00)

hh:mm (sets the hour and minutes; seconds
default to 00)

hh:mm:ss (sets the hour, minutes, and
seconds)

To set the time. This statement complements the
TIME$ function, which retrieves the time.

A 24-hour clock is used; 8:00 p.m., therefore,
would be entered as 20:00:00.

10 TIME$ = “08:00:00”

The current time is set at 8:00 a.m.

GW-BASIC REFERENCE MANUAL 4-207

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.138 TIMES FUNCTION

Syntax TIME$

Purpose To retrieve the current time. (To set the time, use
the TIME$ statement, described in Section 4.137.)

Remarks The TIME$ function returns an eight-character
string in the form hh:mm:ss, where hh is the hour
(00 through 23), mm is minutes (00 through 59),
and ss is seconds (00 through 59). A 24-hour clock
is used; 8:00 p.m., therefore, would be shown as
20:00:00.

Example 10 PRINT TIME$

Prints the time, calculated from the time set with
the TIME$ statement.

4-208 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.139 TRON/TROFF STATEMENTS/COMMANDS

Syntax TRON

TROFF

Purpose To trace the execution of program statements.

Remarks As an aid in debugging, the TRON statement
(executed in either direct or indirect mode)
enables a trace flag that prints each line number
of the program as it is executed. The numbers
appear enclosed in square brackets. The trace
flag is disabled with the TROFF statement (or
when a NEW command is executed).

Example TRON

10 K = 10
20 FOR J=1 TO 2
30 L=K + 10
40 PRINT J;K;L
50 K=K + 10
60 NEXT
70 END

will yield
[10][20][30][40] 1 10 20
[50][60][30][40] 2 20 30
[50][60][70]

TROFF

Note that this example is for the interpreter only.

GW-BASIC
Compiler In order to use TRON/TROFF, the compiler

debug switch /D must be turned on. Otherwise,
TRON and TROFF are ignored and a warning
message is generated.

GW-BASIC REFERENCE MANUAL 4-209

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.140 USR FUNCTION

Syntax USR[<digit>][(<argument>)]

where <digit> specifies which USR routine is
being called. See the DEF USR statement,
Section 4.32, for rules governing <digit> . If
<digit> is omitted, USRO is assumed.

<argument> is the value passed to the
subroutine. It may be any numeric or string
expression.

Purpose To call an assembly language subroutine.

Remarks In this implementation, if a segment other than
the default segment (data segment DS) is to be
used, a DEF SEG statement must be executed
prior to a USR function call. The address given in
the DEF SEG statement determines the segment
address of the subroutine.

For each USR function, a corresponding DEF
USR statement must be executed to define the
USR call offset. This offset and the currently
active DEF SEG segment address determine the
starting address of the subroutine.

Example 100 DEF SEG = &H8000
110 DEF USR0=0
120 X = 5
130 Y .= USR0(X)
140 PRINT Y

The type (numeric or string) of the variable
receiving the function call must be consistent
with the argument passed.

GW-BASIC
Compiler The USR function is implemented in the compiler

to call machine language subroutines. However,
there is no way to pass parameters with the USR
function, except by using POKE statements to
protected memory locations that are later
accessed by the machine language routine.

4-210 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

If this method is used, the USR function must
preserve the values of all registers except BX. The
USR function must return the integer result in
the BX register.

There are two alternatives to using POKE
statements to pass parameters:

1. If the machine language routine is short
enough, it can be stored by making a string
containing the ASCII values corresponding
to the hexadecimal values of the routine. Use
the CHR$ function to insert ASCII values in
the string. The start of the routine can then
be found by using the VARPTR function. For
example, for the string A$, VARPTR(A$) will
return the address of the low byte of the
string length. The next address contains the
high byte of the string length. The next two
addresses are: first, the least significant byte,
and second, the most significant byte, of the
actual address of the string.

This setup of the string space differs from
that of the interpreter. Thus, to find the
actual starting address of the routine, use the
following instructions:

10 A$ = “String containing routine”
20 1% = VARPTR(A$)
30 AD = PEEK(I% +3) * 256 +
PEEK(I% + 2)
40 REM AD is the start address
50 of the routine

String contents move around in the string
space, so any absolute references must be
adjusted to reflect the current memory
location of the routine.

2. A better alternative is to use MS-Macro
Assembler to assemble your subroutines. The
subroutines can be linked directly to the
compiled program and referenced using the
CALL statement.

GW-BASIC REFERENCE MANUAL 4-211

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.141 VAL FUNCTION

Syntax VAL(X$)

Purpose To return the numerical value of string X$. The
VAL function also strips leading blanks, tabs,
and linefeeds from the argument string. For
example,

VAL(“ -3”)

returns -3.

Example 10 READ NAME$,CITY$,STATE$,ZIP$
IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699

THEN PRINT NAME$ TAB(25) “OUT OF
STATE”

30 IF VAL(ZIP$)> =90801 AND
VAL(ZIP$)<=90815
THEN PRINT NAME$ TAB(25) “LONG
BEACH”

See the STR$ function, Section 4.130, for details
on numeric-to-string conversion.

4-212 GW-BASIC REFERENCE MANUAL

4.142 VARPTR FUNCTION

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax 1

Syntax 2

Purpose

Note

Example

VARPTR(<variable name>)

VARPTR(#<file number>)

Syntax 1

Returns the address of the first byte of data
identified with <variable name>. A value must
be assigned to Cvariable name> prior to
execution of VARPTR. Otherwise an “Illegal
function call” error results. Any type variable
name may be used (numeric, string, array). For
string variables, the address of the first byte of
the string descriptor is returned (see “Assembly
Language Subroutines,” in the NCR GW-BASIC
User's Guide for discussion of the string
descriptor). The address returned will be an
integer in the range 32767 to -32768. If a negative
address is returned, add it to 65536 to obtain the
actual address.

VARPTR is usually used to obtain the address of
a variable or array so that it may be passed to an
assembly language subroutine. A function call of
the form VARPTR(A(0)) is usually specified
when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Syntax 2

For sequential files, returns the starting address
of the disk I/O buffer assigned to <file
number>. For random files, returns the address
of the FIELD buffer assigned to <file number>.

100X = USR(VARPTR(Y))

GW-BASIC REFERENCE MANUAL 4-213

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.143 VARPTR$ FUNCTION

Syntax VARPTR$(<variable name>)

where Cvariable name> is the name of a
variable in the program.

Purpose To return a character form of the memory
address of the variable.

Remarks VARPTR$ is primarily used with the DRAW and
PLAY statements (Sections 4.35 and 4.98
respectively) in programs that will be compiled.

A value must be assigned to Cvariable name>
prior to execution of VARPTR$. Otherwise, an
‘Illegal function call” error results. Any type
variable (numeric, string, or array) may be used.

VARPTR$ returns a three-byte string in the
form:

byte 0 = type
byte 1 = low byte of address
byte 2 = high byte of address

Note, however, that the individual parts of the
string are not considered characters.

Note Because array addresses change whenever a new
variable is assigned, always assign all simple
variables before calling VARPTR$ for an array
element.

Example 10 PLAY “X” + VARPTR$(A$)

Uses the subcommand X, plus the address of A$,
as the string expression in the PLAY statement.

4-214 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.144 WAIT STATEMENT

Syntax WAIT <port number>,I[,J]

where I and J are integer expressions.

Purpose To suspend program execution while monitoring
the status of a machine input port.

Remarks The WAIT statement causes execution to be
suspended until a specified machine input port
develops a specified bit pattern. The data read at
the port is exclusive OR’ed with the integer
expression J, and then AND’ed with I. If the
result is zero, GW-BASIC loops back and reads
the data at the port again. If the result is nonzero,
execution continues with the next statement. If J
is omitted, it is assumed to be zero.

Warning It is possible to enter an infinite loop with the
WAIT statement, in which case it will be
necessary to manually restart the machine. To
avoid this, WAIT must have the specified value at
<port number> during some point in the
program execution.

Example 100 WAIT 32,2

GW-BASIC REFERENCE MANUAL 4-215

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.145 WHILE...WEND STATEMENTS

Syntax WHILE <expression>

[<loop statements >]

Purpose

WEND

To execute a series of statements in a loop as long
as a given condition is true.

Remarks If <expression> is not zero (i.e., true), cloop
statements> are executed until the WEND
statement is encountered. GW-BASIC then
returns to the WHILE statement and checks
<expression>. If it is still true, the process is
repeated. If is is not true, execution resumes with
the statement following the WEND statement.

WHILE/WEND loops may be nested to any level.
Each WEND will match the most recent WHILE.
An unmatched WHILE statement causes a
“WHILE without WEND” error, and an
unmatched WEND statement a “WEND without
WHILE” error.

Example 90 ‘BUBBLE SORT ARRAY A$
100 FLIPS = 1 ‘FORCE ONE PASS THRU

LOOP
110 WHILE FLIPS
115 FLIPS=0
120 FOR 1 = 1 TO J-l
130 IF A$(I)>A$(I + 1) THEN

SWAP A$(I),A$(I + 1):FLIPS = 1
140 NEXT I
150 WEND

Note Do not direct program flow into a
WHILE/WEND loop without entering through
the WHILE statement.

4-216 GW-BASIC REFERENCE MANUAL

GW-BASIC
Compiler

CHAPTER COMMANDS, STATEMENTS,
AND FUNCTIONS

With GW-BASIC Compiler, WHILE/WEND
constructions must be statically nested, even
within FOR/NEXt or other WHILE/WEND
loops. Static nesting means that each
WHILE/WEND pair cannot reside partly in, and
partly outside, the nesting pair. For example, the
following construction is not allowed:

FOR I = 1 to 10
A = COUNT
WHILE A = 1

NEXT I
A = A — 1
WEND

GW-BASIC REFERENCE MANUAL 4-217

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.146 WIDTH STATEMENT

Syntax WIDTH <file number>,<size>
WIDTH <device>,<size>
WIDTH <size>

file number
Numeric expression in the integer range 1 to 255.
This is the number of a file opened.

size
Numeric expression in the integer range 1 to 255.
This is the new width.

device
String expression which identifies the device.
Valid devices are SCRN: and LPT1:.

Purpose Sets the printed line width in number of
characters.

Remarks WIDTH <file number>,<size>
If the file is open to LPT1:, the line printer's
printed line width is immediately changed to the
new size specified. This statement allows you to
change the width at will while the file is open.
This form of the WIDTH statement has meaning
only for LPT1:.

WIDTH “LPTl:”,<size>
Used as a deferred width assignment for the line
printer, this form of the WIDTH statement
stores the new width value without actually
changing the current width setting. A subsequent
OPEN“LPTl:” FOR OUTPUT AS <number>
will use the new size specified while the file is
open.

WIDTH <size>
or
WIDTH “SCRN:”,<size>
This command has no effect because the NCR
DECISION MATE V always has a screen width of
80 columns. However, NCR GW-BASIC will

4-218 GW-BASIC REFERENCE MANUAL

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

accept this command without displaying an error
message.

If you enter any value outside the range 1 to 255
for width or file number, an “Illegal Function
Call” error occurs. The width or file number
remains as it was before the illegal value was
entered.

No data is lost by using the WIDTH statement.
The software simply adds a carriage return after
sending the indicated number of characters. For
example, if you have a 60-character line and a
40-character printer, and if you issue WIDTH 40,
the first 40 characters will be printed on one line
and the next 20 characters on the next line.

GW-BASIC REFERENCE MANUAL 4-219

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

4.147 WRITE STATEMENT

Syntax WRITE [<list of expressions>]

Purpose To output data to the screen.

Remarks If < list of expressions> is omitted, a blank line
is output. If < list of expressions> is included,
the values of the expressions are output to the
screen. The expressions in the list may be
numeric and/or string expressions. They must be
separated by commas.

When the printed items are output, each item is
separated from the last by a comma. Printed
strings are delimited by quotation marks. After
the last item in the list is printed, GW-BASIC
inserts a carriage return/linefeed.

WRITE outputs numeric values using the same
format as the PRINT statement. (See Section
4.103.)

Example 10 A = 80:B = 90:C$ = “THAT’S ALL”
20 WRITE A,B,C$
will yield
80, 90,“THAT’S ALL’

4-220 GW-BASIC REFERENCE MANUAL

4.148 WRITE# STATEMENT

CHAPTER 4 COMMANDS, STATEMENTS,
AND FUNCTIONS

Syntax

Purpose

Remarks

Example

WRITE#<file number>,<list of
expressions>

To write data to a sequential file.

<file number> is the number under which the
file was OPENed in “0 ” mode (see “OPEN
Statement,” Section 4.92). The expressions in the
list are string or numeric expressions. They must
be separated by commas.

The difference between WRITE# and PRINT# is
that WRITE# inserts commas between the items
as they are written to the file and delimits strings
with quotation marks. Therefore, it is not
necessary for the user to put explicit delimiters in
the list. A carriage return/linefeed sequence is
inserted after the last item in the list is written to
the file.

Let A$ = “CAMERA” and B$ = “93604-l”

The statement:

WRITE#1,A$,B$

writes the following image to disk:

“CAMERA”,“93604-1”

A subsequent INPUT$ statement, such as

INPUT#1,A$,B$

would input “CAMERA” to A$ and “93604-1”
to B$.

GW-BASIC REFERENCE MANUAL 4-221

Appendix A

Error Codes And Error Messages

GW-BASIC error messages include:

Runtime error messages
Compiler invocation error messages
Compiletime error messages
MS-LINK error messages

The compiler invocation and compiletime error messages apply only
to GW-BASIC Compiler.

A.1 RUNTIME ERROR MESSAGES

Code Number Message

NF 1 NEXT without FOR

A variable in a NEXT statement does not
correspond to any previously executed,
unmatched FOR statement variable.

SN 2 Syntax error

A line is encountered that contains some
incorrect sequence of characters (such as
unmatched parenthesis, misspelled com­
mand or statement, incorrect punctuation,
etc.).

With GW-BASIC, the incorrect line will be
part of a DATA statement.

GW-BASIC Interpreter automatically enters
edit mode at the line that caused the error.

GW-BASIC REFERENCE MANUAL A-1

APPENDIX A
ERROR CODES/MESSAGES

RG 3 Return without GOSUB

A RETURN statement is encountered for
which there is no previous, unmatched
GOSUB statement.

A READ statement is executed when there
are no DATA statements with unread data
remaining in the program.

A parameter that is out of range is passed to
a math or string function. An FC error may
also occur as the result of:

1. A negative or unreasonably large sub­
script.

2. A negative or zero argument with LOG.

3. A negative argument to SQR.

4. A negative mantissa with a non-integer
exponent.

5. A call to a USR function for which the
starting address has not yet been given.

6. An improper argument to MID$, LEFT$,
RIGHT$, INP, OUT, WAIT, PEEK,
POKE, TAB, SPC, STRINGS SPACE$,
INSTR, or ON...GOTO.

7. A negative record number used with GET
or PUT.

8. Concatenation of strings that creates a
string greater than 32767 characters in
length (compiler error).

OD 4 Out of data

FC 5 Illegal function call

A-2 GW-BASIC REFERENCE MANUAL

APPENDIX A
ERROR CODES/MESSAGES

ov

OM

UL

BS

DD

/0

6 Overflow

The result of a calculation is too large to be
represented in GW-BASIC number format. If
underflow occurs, the result is zero and
execution continues without an error.

7 Out of memory

A program is too large, or has too many FOR
loops or GOSUBs, too many variables, or
expressions that are too complicated for a file
buffer to be allocated.

8 Undefined line

A nonexistent line is referenced in a GOTO,
GOSUB, IF...THEN... ELSE, or DELETE
statement.

9 Subscript out of range

An array element is referenced either with a
subscript that is outside the dimensions of
the array or with the wrong number of
subscripts.

10 Duplicate definition

Two DIM statements are given for the same
array; or, a DIM statement is given for an
array after the default dimension of 10 has
been established for that array.

11 Division by zero

A division by zero is encountered in an
expression; or, the operation of involution
results, in zero being raised to a negative
power. Machine infinity with the sign of the
numerator is supplied as the result of the
division, or positive machine infinity is sup­
plied as the result of the involution, and
execution continues.

GW-BASIC REFERENCE MANUAL A-3

APPENDIX A
ERROR CODES/MESSAGES

ID

TM

OS

LS

ST

CN

With the compiler, this error may occur if the
integer -32768 is divided by 1 or -1, or if -32768
is MODed by 1 or -1.

12 Illegal direct

A statement that is illegal in direct mode is
entered as a direct mode command.

13 Type mismatch

A string variable name is assigned a numeric
value or vice versa; a function that expects a
numeric argument is given a string argument
or vice versa.

14 Out of string space

String variables have caused BASIC to
exceed the amount of free memory remain­
ing. GW-BASIC will allocate string space
dynamically, until it runs out of memory.

15 String too long

An attempt is made to create a string more
than 255 characters long.

16 String formula too complex

A string expression is too long or too com­
plex. The expression should be broken into
smaller expressions.

17 Can't continue

An attempt is made to continue a program
that:

1. Has halted due to an error.

2. Has been modified during a break in
execution.

A-4 GW-BASIC REFERENCE MANUAL

APPENDIX A
ERROR CODES/MESSAGES

UF

3. Does not exist.

18 Undefined user function

A USR function is called before the function
definition (DEF statement) is given.

19 No RESUME

An error handling routine is entered but
contains no RESUME statement.

20 RESUME without error

A RESUME statement is encountered before
an error handling routine is entered.

21 Unprintable error

An error message is not available for the
error condition that exists.

22 Missing operand

An expression contains an operator with no
operand following it.

23 Line buffer overflow

An attempt has been made to input a line
that has too many characters.

24 Device Timeout

Occurs if one of the signals to be tested (CTS,
DSR, or CD) is missing when a file is opened
or if the host computer loses CTS, DSR, or CD
while waiting to put data in the output
buffer.

25 Device fault

Occurs if host computer loses DSR or CD.

GW-BASIC REFERENCE MANUAL A-5

APPENDIX A
ERROR CODES/MESSAGES

26 FOR without NEXT

A FOR statement was encountered without a
matching NEXT.

27 Out of paper

The printer device is out of paper.

28 Unprintable error

An error message is not available for the
condition which exists.

29 WHILE without WEND

A WHILE statement does not have a match­
ing WEND.

30 WEND without WHILE

A WEND statement was encountered with­
out a matching WHILE.

31-49 Unprintable error

An error message is not available for the
condition which exists.

Disk Errors

50 Field overflow

A FIELD statement is attempting to allocate
more bytes than were specified for the record
length of a random file.

51 Internal error

An internal malfunction has occurred in
GW-BASIC.

52 Bad file number

A-6 GW-BASIC REFERENCE MANUAL

APPENDIX A
ERROR CODES/MESSAGES

A statement or command references a file
with a file number that is not OPEN or is out
of the range of file numbers specified at
initialization.

53 File not found

A LOAD, KILL, NAME, or OPEN statement/
command references a file that does not exist
on the current disk.

54 Bad file mode
Loc l

An attempt is made to use PUT, GET, or LOF
with a sequential file, to LOAD a random file,
or to execute an OPEN statement with a file
mode other than I, 0, or R.

With the compiler, this error may also occur
when an attempt is made to read from a file
opened for output or appending.

55 File already open

A sequential output mode OPEN statement is
issued for a file that is already open; or a
KILL statement is given for a file that is
open.

56 Unprintable error

An error message is not available for the
condition that exists.

57 Device I/O error

An I/O error occurred on a disk I/O operation
for overrun, parity, or framing errors in
communication. It is a fatal error; i.e., the
operating system cannot recover from the
error.

58 File already exists

GW-BASIC REFERENCE MANUAL A-7

APPENDIX A
ERROR CODES/MESSAGES

The filename specified in a NAME statement
is identical to a filename already in use on the
disk.

59-60 Unprintable error

An error message is not available for the
condition that exists.

61 Disk full

All disk storage space is in use.

62 Input past end

An INPUT statement is executed after all the
data in the file has been INPUT, or for a null
(empty) file. To avoid this error, use the EOF
function to detect the end-of-file.

63 Bad record number

In a PUT or GET statement, the record
number is either greater than the maximum
allowed (32,767) or equal to zero.

64 Bad file name

An illegal form is used for the filename with
a LOAD, SAVE, KILL, or OPEN statement
(e.g., a filename with too many characters).

65 Unprintable error

An error message is not available for the
condition that exists.

66 Direct statement in file

A direct statement is encountered while
LOADing änd ASCII-format file. The LOAD
is terminated.

A-8 GW-BASIC REFERENCE MANUAL

APPENDIX A
ERROR CODES/MESSAGES

67 Too many files

An attempt is made to create a new file (using
SAVE or OPEN) when all 255 directory
entries are full.

68 Device Unavailable

An attempt was made to open a file to a
non-existent device. It may be that hardware
did not exist to support the device, such as
LPT2: or LPT3:, or was disabled. This occurs
if an OPEN COM1 statement is executed but
RS-232 support was disabled via the /C:0
switch directive on the command line.

69 Communication Buffer Overflow

Occurs when a communication input state­
ment is executed and the input buffer is
already full. Use an ON ERROR GOTO
statement to retry the input when this
condition occurs. Subsequent inputs will
attempt to clear this fault unless characters
continue to be received faster than the
program can process them. In this case
several options are available:

Increase the size of the communications
receive buffer via the /C:switch.

Implement an XON/XOFF protocol with the
host/satellite to turn transmit off long
enough for characters in the input buffer to
be processed.

Use a lower baud rate for transmit and
receive.

70 Disk Write Protect

Occurs when an attempt is made to write to a
disk that is write-protected. Use an ON
ERROR GOTO statement to recover.

GW-BASIC REFERENCE MANUAL A-9

APPENDIX A
ERROR CODES/MESSAGES

71 Disk not ready

Could be caused by a number of problems.
The most likely is that the disk is not inserted
properly.

72 Disk Media Error

Occurs when the FDC controller detects a
hardware or media fault. This usually indi­
cates damaged media. Copy any existing files
to a new disk and reformat the damaged disk.
FORMAT flags the bad tracks and places
then in a bad-track file. The remainder of the
disk is now usable.

74 Rename across disks

An attempt was made to rename a file with a
new drive designation. This is not allowed.

The following error messages are received only with GW-BASIC
Compiler. They are “severe” errors which cannot be trapped.

Cannot find A:BASRUNG.EXE
Enter new drive letter:

This message appears if the runtime module is not available in
the default drive or in drive A:. The second line prompts for input
of the correct drive letter.

Internal Error — No Line Number
Occurs when the error address cannot be found in the line number
table during error trapping. This occurs if there are no integer
line numbers between 0 and 65527. It may also occur if the line
number table has been accidentally overwritten by the user
program.

Internal Error — String Space Corrupt

This occurs when an invalid string in string space is being
deallocated, usually in a string assignment statement. See the
listing following the next error message, “Internal Error —
String Space Corrupt during G.C.” for additional causes.

A-10 GW-BASIC REFERENCE MANUAL

APPENDIX A
ERROR CODES/MESSAGES

Internal Error — String Space Corrupt during G.C.
This occurs when an invalid string in string space is being deleted
during garbage collection. (G.C. stands for garbage collection.)
The probable causes for either of the “String Space Corrupt”
errors are:

1. A string descriptor or string back pointer has been improp­
erly modified. This may occur if you use an assembly
language subroutine to modify strings.

2. Out-of-range array subscripts are used and string space is
inadvertently modified. The /D switch may be used to ensure
that array subscripts do not exceed the array bounds.

3. Improper use of the POKE and/or DEF SEG statements that
may modify string space improperly.

4. Mismatched COMMOM declarations between two chained
programs. n .

Error in EXE file '
Occurs when a file is not of the correct type. It must be an
executable file if it is to be executed with RUN or CHAIN.

Program too large
Not enough memory is available to load BASRUNG.EXE.

A.2 COMPILER INVOCATION ERROR MESSAGES
Invocation errors occur when illegal input is given on the command
line or in response to prompts during invocation. The messages that
may occur when the compiler is invoked are listed below:

Bad filename
File specification has been entered incorrectly.

Bad switch: / < s >
Illegal compiler switch < s >

Can’t create file
Disk is write protected or the disk is full.

GW-BASIC REFERENCE MANUAL A-11

APPENDIX A
ERROR CODES/MESSAGES

Command error: ‘< c > ’

An error has occurred at the character specified by the character
< c >

A-12 GW-BASIC REFERENCE MANUAL

APPENDIX A
ERROR CODES/MESSAGES

Disk < d > full
The disk in the drive < d > has no more directory entries. If no
< d > appears, the disk in the default drive is full.

File not found
The file does not exist on the specified disk.

A.3 COMPILETIME ERROR MESSAGES
For errors that occur at compiletime, the compiler outputs the line
containing the error, an arrow beneath that line pointing to the place
in the line where the error occurred, and a two-character code for the
error. In some cases, the compiler reads ahead on a line to determine
whether an error has actually occurred. In those cases, the arrow
points a few characters beyond the error, or to the end of the line. The
GW-BASIC compiletime errors described below are divided into
severe errors and warning errors. When a severe error occurs, the
compiler will attempt to continue so that any additional errors will
also be detected. However, in general, the resulting code will not be
usable. On the other hand, when a warning error occurs, compilation
continues, but warning errors are printed on the screen to point out
poorly constructed program statements.

A.3.1 Severe Errors
Severe compiletime errors are indicated either by a long message or
by a two-letter code. Long messages are described first.

Long Messages
Long errors describe general conditions that are not associated with a
particular line number.

Binary source file
The file you have attempted to compile is not an ASCII file. All
source files SAVEd from within the Interpreter should be saved
with the “,A” option.

Internal error
An internal error has occurred in the Compiler.

Line < n > is undefined
A GOTO or GOSUB statement refers to a nonexistent line
number.

GW-BASIC REFERENCE MANUAL A -13

APPENDIX A
ERROR CODES/MESSAGES

Memory overflow
Available memory has been exhausted. Try compiling with the /S
switch or without any of the debug switches. If memory is still
exhausted, break your program into parts and use the CHAIN
command.

Missing NEXT for variable
No NEXT was found for a FOR statement.

Two-letter Codes

Code Meaning

BS Bad Subscript

Illegal dimension value
Wrong number of subscripts

CD Duplicate COMMON variable

CN COMMON array not dimensioned

CO COMMON out of order

DD Array Already Dimensioned

More than one DIM statement for same array
DIM statement after initial use of array
OPTION BASE after array dimensioned

FD Function Already Defined

FN FOR/NEXT Error

FOR loop index variable already in use
FOR without NEXT
NEXT without FOR

IN INCLUDE Error

$INCLUDE file not found

A -14 GW-BASIC REFERENCE MANUAL

APPENDIX A
ERROR CODES/MESSAGES

LL Line Too Long

LS String Constant Too Long

OM Out of Memory

Array too big
Data memory overflow
Too many statement numbers
Program memory overflow

OV Math Overflow

SN Syntax error — caused by one of the following:

Illegal argument name
Illegal assignment target
Illegal constant format
Illegal debug request
Illegal DEFxxx character specification
Illegal expression syntax
Illegal function name
Illegal function formal parameter
Illegal separator
Illegal format for statement number
Invalid character
Missing AS
Missing equal sign
Missing GOTO or GOSUB
Missing comma
Missing INPUT
Missing line number
Missing left parenthesis
Missing minus sign
Missing operand in expression
Missing right parenthesis
Missing semicolon
Name too long
Expected GOTO or GOSUB
String assignment required
String expression required
String variable required
Illegal syntax

GW-BASIC REFERENCE MANUAL A -15

APPENDIX A
ERROR CODES/MESSAGES

SQ

TC

TM

UC

UF

WE

/0

Variable required
Wrong number of arguments
Formal parameters must be unique
Single variable only allowed
Missing TO
Illegal FOR loop index variable
Illegal COMMON name
Missing THEN
Missing BASE
Illegal subroutine name

Sequence Error

Duplicate statement number
Statement out of sequence

Too Complex

Expression too complex
Too many arguments in function call

(limit of 60)
Too many dimensions (limit of 255)
Too many variables for LINE INPUT (limit of
1)
Too many variables for INPUT (limit of 60)

Type Mismatch

Data type conflict
Variable must be of same type

Unrecognizable Command
Statement unrecognizable
Command not implemented

Function Not Defined

WHILE/WEND Error

WHILE without WEND
WEND without WHILE

Division by Zero

A-16 GW-BASIC REFERENCE MANUAL

APPENDIX A
ERROR CODES/MESSAGES

Also occurs if the integer -32768 is divided by 1
or -1, or if -32768 is MODed by 1 or -1.

/E Missing “/E ” Switch

/X Missing “/X” Switch

A.3.2 Warning Errors
Warning errors will not terminate a compilation. However, they often
indicate a situation in which a program will not operate as intended.
The warning messages are:

CODE MESSAGE

MC Metacommand error

ND Array not Dimensioned

SI Statement Ignored

Statement ignored
Unimplemented command

A.4 MS LINK ERROR MESSAGES
A listing of MS-LINK error messages may be found in the manuals
that are supplied with your MS-DOS software. For your convenience,
we have also listed them here.
All errors cause the link session to abort. After the cause has been
found and corrected, MS-LINK must be rerun. The following error
messages are displayed by MS-LINK.
Attempt to access data outside of segment bounds, possibly bad
object module

There is probably a bad object file.

Bad numeric parameter
Numeric value is not in digits.

Cannot open temporary file
MS-LINK is unable to create the file VM.TMP because the disk
directory is full. Insert a new disk. Do not remove the disk that
will receive the LIST.MAP file.

GW-BASIC REFERENCE MANUAL A -17

APPENDIX A
ERROR CODES/MESSAGES

Error: DUP record too complex
DUP record in assembly language module is too complex.
Simplify DUP record in assembly language program.

Error: Fixup offset exceeds field width
An assembly language instruction refers to an address with a
short instruction instead of a long instruction. Edit assembly
language source and reassemble.

Input file read error
There is probably a bad object file.

Invalid object module
An object module(s) is incorrectly formed or incomplete (as when
assembly is stopped in the middle).

Symbol defined more than once
MS-LINK found two or more modules that define a single symbol
name.

Program size or number of segments exceeds capacity of linker
The total size may not exceed 384K bytes and the number of
segments may not exceed 255.

Requested stack size exceeds 64K
Specify a size greater than or equal to 64K bytes with the STACK
switch.

Segment size exceeds 64K
64K bytes is the addressing system limit.

Symbol table capacity exceeded
Very many and/or very long names were entered, exceeding the
limit of approximately 25K bytes.

Too many external symbols in one module
The limit is 256 external symbols per module.

A-18 GW-BASIC REFERENCE MANUAL

APPENDIX A
ERROR CODES/MESSAGES

Too many groups

the limit is 10 groups.

Too many libraries specified

The limit is 8 libraries.

Too many PUBLIC symbols

The limit is 1024 PUBLIC symbols

Too many segments or classes

The limit is 256 (segments and classes taken together).

Unresolved externals: < lis t>

The external symbols listed have no defining module among the
modules of library files specified

VM read error

This is a disk error; it is not caused by MS-LINK.

Warning: No stack segment

None of the object modules specified contains a statement
allocating stack space, but the user typed the STACK switch.

Warning: Segment of absolute or unknown type

There is a bad object module or an attempt has been made to link
modules that MS-LINK cannot handle (e.g., an absolute object
module).

Write error in TMP file

No more disk space remains to expand VN.TMP file.

Write error on run file

Usually, there is not enough disk space for the run file.

GW-BASIC REFERENCE MANUAL A -19

Appendix B

Mathematical Functions

Derived Functions
Functions that are not intrinsic to Microsoft GW-BASIC may be
calculated as follows.
Function Microsoft GW-BASIC Equivalent

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE
INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

SEC(X) = l/COS(X)
CSC(X) = 1/SIN(X)
COT(X) = l/TAN(X)
ARCSIN(X) = ATN(X/SQR(—X*X + 1))
ARCCOS(X) = — ATN(X/SQR(— X*X +1)) +1.5708
ARCSEC(X) = ATN(X/SQR(X*X —1))

+ SGN(SGN(X)-1)*1.5708
ARCCSC(X) = ATN(X/SQR(X*X —1))

+ (SGN(X) —1)*1.5708
ARCCOT(X) = ATN(X) + 1.5708
SINH(X) = (EXP(X) - EXP(- X))/2
COSH(X) = (EXP(X) + EXP(—X))/2

TANH(X) = (EXP(X) - EXP(- X))/
(EXP(X) + EXP(—X))

SECH(X) = 2/(EXP(X) + EXP(—X))
CSCH(X) = 2/(E X P (X)-E X P (-X))

COTH(X) = (EXP(X) + EXP(—X))/
(E X P (X)-E X P (-X))

ARCSINH(X) = LOG(X + SQR(X*X + l))

ARCCOSH(X) = LOG(X + SQR(X*X-l))

ARCTANH(X) = LOG((l + X)/(l —X))/2

ARCSECH(X) = LOG((SQR(—X*X + l) + lj)/X)

ARCCSCH(X) = LOG((SGN(X)*SQR(X*X + l)
+ 1)/X)

ARCCOTH(X) = LOG((X + l)/(X —1))/2

GW-BASIC REFERENCE MANUAL B-1

Appendix C

ASCII Character Codes

Dec Hex CHR Dec Hex CHR Dec Hex CHR

000 OOH NUL 043 2BH + 086 56H V
001 01H SOH 044 2CH ’ 087 57H w
002 02H STX 045 2DH 088 58H X
003 03H ETX 046 2EH 089 59H Y
004 04H EOT 047 2FH 090 5AH Z
005 05H ENQ 048 30H 0 091 5BH [
006 06H ACK 049 31H 1 092 5CH \
007 07H BEL 050 32H 2 093 5DH [
008 08H BS 051 33H 3 094 5EH A

009 09H HT 052 34H 4 095 5FH
010 OAH LF 053 35H 5 096 60H 7
011 OBH VT 054 36H 6 097 61H a
012 OCH FF 055 37H 7 098 62H b
013 ODH CR 056 38H 8 099 63H c
014 OEH SO 057 39H 9 100 64H d
015 OFH SI 058 3AH 101 65H e
016 10H DLE 059 3BH ; 102 66H f
017 11H DC1 060 3CH < 103 67H g
018 12H DC2 061 3DH = 104 68H h
019 13H DC3 062 3EH > 105 69H i
020 14H DC4 063 3FH 9 106 6AH j
021 15H NAK 064 40H @ 107 6BH k
022 16H SYN 065 41H A 108 6CH 1
023 17H ETB 066 42H B 109 6DH m
024 18H CAN 067 43H C 110 6EH n
025 19H EM 068 44H D 111 6FH 0
026 IAH SUB 069 45H E 112 70H p
027 1BH ESCAPE 070 46H F 113 71H q
028 ICH FS 071 47H G 114 72H r
029 1DH GS 072 48H H 115 73H s
030 1EH RS 073 49H I 116 74H t
031 1FH US 074 4AH J 117 75H u
032 20H SPACE 075 4BH K 118 76H V
033 21H \ 076 4CH L 119 77H w
034 22H " 077 4DH M 120 78H X
035 23H # 078 4EH N 121 79H y
036 24H $ 079 4FH 0 122 7AH z
037 26H & 081 51H Q 124 7CH
038 27H ’ 082 52H R 125 7DH

GW-BASIC REFERENCE MANUAL

APPENDIX C
ASCII CHARACTER CODES

039 28H < 083 53H S 126 7EH
040 29H) 084 54H T 127 7FH DEL
041 2AH * 085 55H U
042

Dec = decimal, Hex = hexadecimal (H), CHR = character,
LF = Linefeed, FF = Formfeed, CR = Carriage Return,
DEL = Rubout

C-2 GW-BASIC REFERENCE MANUAL

Appendix D

GW-BASIC Reserved Words

The following is a list of reserved words used in GW-BASIC.

ABS DEFSNG INPUT$
AND DEFSTR INSTR
ASC DEF FN INT
ATN DEF USR KEY
AUTO DELETE KILL
BEEP DIM LEFT$
BLOAD DRAW LEN
BSAVE EDIT LET
CALL ELSE LINE
CDBL END LIST
CHAIN EOF LLIST
CHR$ ERASE LOAD
CINT ERL LOC
CIRCLE ERR LOCATE
CLEAR ERROR LOF
CLOSE END LOG
CLS EXP LPOS
COLOR FIELD LPRINT
COM FILES LSET
COMMON FIX MERGE
CONT FOR MID$
COS FRE MKD
CSNG GET MKI$
CVD GPSUB MKS$
CVI HEX$ MOD
CVS IF MOTOR
DATA IMP NAME
DATE$ INP NEW
DEFDBL INPUT NEXT
DEFINT INKEY$ NOT
DEFSNG INPUT# OCT$

ON SIN
OPEN SOUND
OPEN COM SPACE
OPTION SPC
OR SQR
PAINT STICK
PALETTE STOP
PALETTE USING STR$
PEEK STRIG
PEN STRING$
PLAY SWAP
POINT SYSTEM
POKE TAB
POS TAN
PRESET THEN
PRINT TIME$
PRINT# USING TO
PSET TROFF
PUT TRON
RANDOMIZE USING
READ USR
REM VAL
RENUM VARPTR
RESET VARPTR$
RESTORE WAIT
RESUME WEND
RIGHT$ WHILE
RND WIDTH
RSET WRITE
RUN WRITE#
SAVE XOR
SBN

GW-BASIC REFERENCE MANUAL D-1

INDEX

ABS function, 4-4
Active page, 3-2
Addition, 3-12
Arctangent, 4-6
Arithmetic operators, 3-11
Array variables, 3-8, 4-33, 4-51
Arrays, 3-8, 4-26, 4-33, 4-60
ASC function, 4-5
ASCII

codes, C-l
format, 4-5, 4-18, 4-124

Assembly language subroutines, 4-13, 4-49, 4-210, 4-213
ATN function, 4-6
AUTO command, 4-7

BACKSPACE editor function, 2-5
BEEP statement, 4-8
BLOAD statement, 4-9
Boolean operators, 3-16
BREAK editor function, 2-5
BSAVE statement, 4-11

CALL statement, 4-13
CALLS statement, 4-15
CARRIAGE RETURN editor function, 2-4
CDBL function, 4-16
CHAIN statement, 4-17, 4-30
Character set, 3-2
CHR$ function, 4-21
CINT function, 4-22
CIRCLE statement, 4-23
CLEAR LOGICAL LINE key, 2-5
CLEAR SCREEN editor function, 2-5

1

CLEAR statement, 4-26
CLOSE statement, 4-28
CLS statement, 4-29
Color selection, 1-4
COLOR statement, 4-30
COM as event specifier, 1-7
COM statement, 4-32
COM trapping, 1-7
Command

definition, 4-1
Command level, 3-1
COMMON statement, 4-33
Communications, 1-7
Compiler invocation error messages, A-ll
Compiler severe errors, A-13
Compiletime error messages, A-13
Concatenation, 3-18
Constants

defined, 3-4, 3-5
numeric, 3-5
string, 3-5

CONT command, 4-36, 4-111
Continuation of a line, 3-2
Control characters, 3-4
COS function, 4-37
CSNG function, 4-38
CSRLIN function, 4-39
CURSOR DOWN editor function, 2-4
CURSOR HOME editor function, 2-4
CURSOR LEFT editor function, 2-4
CURSOR position, 2-4 to 2-6
CURSOR RIGHT editor function, 2-4
CURSOR UP editor function, 2-4
CVD function, 4-40
CVI function, 4-40
CVS function, 4-40

DATA statement, 4-41, 4-172
DATE$ function, 4-43
DATE$ statement, 4-42
Declaration characters, 3-7
DEF FN statement, 4-44
DEF SEG statement, 4-48

2

DEF USR statement, 4-49, 4-210
Default device, 3-2
DEFDBL statement, 3-8, 4-46
DEFINT statement, 3-8, 4-46
DEFSNG statement, 3-8, 4-46
DEFSTR statement, 3-8, 4-46
DELETE command, 4-50
DELETE editor function, 2-1
Device-independent I/O, 1-8
DIM statement, 4-51
Direct mode, 2-2, 3-1, 4-84, 4-133,
Display page, 3-2
Division, 3-12
Double precision, 3-6, 4-16, 4-46, 4-157
DRAW statement, 4-53

EDIT command, 2-1, 3-1, 4-56
Editing programs, 2-1
Editor, 2-1
Editor functions, 2-4 to 2-6
END statement, 4-57
EOF function, 4-58
ERASE statement, 4-60
ERL variable, 4-61
ERR variable, 4-61
Error codes, 3-19, 4-61, 4-62, A-l
Error handling, 4-61, 4-62, 4-133
Error messages, 3-19, A-l to A-19
ERROR statement/command, 4-62
Error trapping, 4-61, 4-179
Errors - Warning, A-17
Escape, 3-3
Evaluation of operators

arithmetic, 3-11
logical, 3-16

Event trapping, 1-7
EXP function, 4-64
Exponentiation, 3-13
Expressions, 3-11

FIELD statement, 4-65
Files

protected, 4-186
random, 4-65, 4-74, 4-100, 4-116, 4-123, 4-127, 4-139, 4-170
sequential, 4-58, 4-91, 4-100, 4-112, 4-116, 4-139, 4-166, 4-221

FILES statement, 4-68
Filespec, definition of, 4-2
FIX function, 4-69
FOR...NEXT statement, 4-70
FRE function, 4-73
Full screen editor, 2-1

advantages, 2-2
cursor position, 2-4

Function, definition of, 4-1
Function key display, 2-5
Functional operators, 3-18
Function of special keys, 2-4
Functions, 4-44

GET statement, 4-74
GET and PUT statements, 4-75
GOSUB statement, 4-80
GOTO statement, 4-82
Graphics, 1-1
Graphics mode, 1-2

HEX$ function, 4-83
Hexadecimal, 3-6, 4-83

IF...GOTO statement, 4-84
IF...THEN statement, 4-84
IF...THEN...ELSE statement, 4-84
Indirect mode, 3-1, 2-2
INKEY$ function, 4-87
INP function, 4-88
INPUT statement, 4-36, 4-65, 4-89
INPUT# statement, 4-91
INPUT$ function, 4-92
INSERT editor function, 2-5
INSTR function, 4-93
INT function, 4-94
Integer, 4-22, 4-69, 4-94
Integer division 3-12 to 3-14

Joystick, 1-7

KEY as event specifier, 1-7
KEY statement, 4-95
KEY trapping, 1-7
KEY (n) statement, 4-198
KILL statement, 4-100

LEFT$ function, 4-105
LEN function, 4-106
LET statement, 4-107
Line continuation, 3-2
Line editing, 2-1
Line format, 3-1
LINE INPUT statement, 4-111
LINE INPUT# statement, 4-112
Line length, 3-2
Line number generation, 4-7
Line numbers, 3-1, 3-2
Line printer, 4-112 to 4-114, 4-218
LINE statement, 4-108
LIST statement, 3-2, 4-113
LCOPY statement, 4-101
LOAD command, 4-115, 4-186
LOC function, 4-116
LOCATE statement, 4-117
LOF function, 4-119
LOG function, 4-120
Logical line, 2-2
Logical line definition with INPUT, 2-1
Logical operators, 3-16 to 3-18
Loops, 4-70, 4-216
LPOS function, 4-121
LPRINT statement, 4-122
LPRINT USING statement, 4-122
LSET statement, 4-123

Mathematical functions, B-l
MERGE command, 4-124
MID$ function, 4-126
MID$ statement, 4-125
MKD$ function, 4-127

MKI$ function, 4-127
MKS$ function, 4-127
MOD operator, 3-13
Modes of operation, 3-1
Modulus arithmetic, 3-13
MS-LINK error messages, A-17
Multiplication, 3-12
Music, 1-6

NAME statement, 4-128
Negation, 3-12
NEW command, 4-129
NEXT WORD editor function, 2-4
Numeric constants, 3-5
Numeric variables, 3-7

OCT$ function, 4-130
Octal, 3-6, 4-130
ON COM statement, 4-131
ON ERROR GOTO statement, 4-133
ON GOSUB, in event trapping, 1-7
ON GOSUB statement, 4-134
ON GOTO statement, 4-134
ON KEY statement, 4-135
ON STRIG statement, 4-137
OPEN BASE statement, 4-145
OPEN COM statement, 4-141
OPEN statement, 4-139
Operators, 3-12, 3-16 to 3-18

Boolean, 3-16
functional, 3-18
string, 3-18

OPTION BASE statement, 4-145
Order of evaluation

arithmetic operators, 3-11
logical operators, 3-16

OUT statement, 4-146
Overflow, 3-14, 4-64, 4-206

PAINT statement, 4-147
PEEK function, 4-149, 4-154
Peripherals support, 1-7

6

Pixels, 1-2
PLAY statement, 4-150
POINT function, 4-153
POKE statement, 4-154
POS function, 4-155
Precedence

arithmetic operators, 3-11
logical operators, 3-16

PRESET statement, 4-156
PREVIOUS word editor function, 2-4
PRINT statement, 4-157
PRINT USING statement, 4-160
PRINT# statement, 4-166
PRINT# USING statement, 4-166
Protected files, 4-186
PSET statement, 4-169
PUT statement, 4-65, 4-170

Random files, 4-65, 4-74, 4-100, 4-116, 4-123, 4-127, 4-139, 4-170
Random numbers, 4-171, 4-183
RANDOMIZE statement, 4-171, 4-183
READ statement, 4-172
Relational operators, 3-15
REM statement, 4-174
RENUM command, 4-17, 4-61, 4-175
Reserved words, D-l
RESET command, 4-177
RESTORE statement, 4-178
RESUME statement, 4-179
RETURN,

in event trapping, 1-7
RETURN statement, 4-80, 4-181
RETURN PRINT$, 4-166
RIGHT$ function, 4-182
RND function, 4-183
RSET statement, 4-123
RUN command, 4-184
RUN statement/command, 4-184
Runtime error messages, A-l

SAVE command, 4-115, 4-186
SCREEN function, 4-187

Screen modes, 1-1
SCREEN statement, 4-188
Sequential files, 4-58, 4-91, 4-100, 4-112, 4-116, 4-139, 4-166, 4-221
Severe errors, compiler, A-12
SGN function, 4-189
SIN function, 4-190
Single precision, 3-6, 4-38, 4-46, 4-157
Sound, 1-6
SOUND statement, 4-191
Space requirements for variables, 3-9
SPACE$ function, 4-194
SPC function, 4-195
Special characters, 3-2
Special keys, 2-4
SQR function, 4-196
Statement, definition of, 4-1
STICK function, 4-197
STOP statement, 4-36, 4-57, 4-80, 4-198
STR$ function, 4-199
STRIG

as event specifier, 1-7
function, 4-200
statement, 4-200
trapping, 1-7

String and numeric constants, 3-5
String functions, 4-40, 4-93, 4-105, 4-126, 4-182, 4-199, 4-212
String operators, 3-18
String space, 4-26, 4-73
String variables, 3-7, 4-46, 4-111
STRING$ function, 4-202
Subroutines, 4-13, 4-80, 4-134
Subscripts, 3-8, 4-51, 4-145
Subtraction, 3-12
SWAP statement, 4-203
SYSTEM command, 4-204

Tab, 3-4
TAB editor function, 2-6
TAB function, 4-205
TAN function 4-206
Text mode, 1-1
TIME$ function, 4-208
TIME$ statement, 4-207

8

Transcendental functions, 3-12
TROPF statement/command, 4-209
TRON statement/command, 4-209
Type conversion, 3-9

USR function, 4-49, 4-210

VAL function, 4-212
Variables, 3-7

array, 4-30, 4-51
order of, 4-33
passing with COMMON, 4-18
string, 4-46, 4-111 to 4-112

Variables in edited lines, 2-2
VARPTR function, 4-213
VARPTR$ function, 4-214
Visual page, 3-2

WAIT statement, 4-215
Warning errors, A-17
WEND statement, 4-216
WHILE statement, 4-216
WIDTH statement, 4-218
WRITE statement, 4-220
WRITE# statement, 4-221
Writing programs, 2-1

X and Y coordinates, 1-3

N C

GW'“-BASIC Compiler
User’s Guide

For MS™-DOS

COPYRIGHT NOTICE
Copyright® 1983 by Microsoft Corporation, all rights reserved. No part of this
publication may be reproduced, transmitted, transcribed, stored in a retrieval system,
or translated into any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without the
prior written permission of Microsoft Corporation.

TRADEMARKS
Microsoft and the Microsoft logo are registered trademarks of Microsoft Corporation.
MS, GW, Music Macro Language, and Graphics Macro Language are trademarks of
Microsoft Corporation. Teletype is a registered trademark of Teletype Corporation.

DISCLAIMER OF WARRANTY
NCR Corporation and Microsoft Corporation make no representations or warranties
with respect to the contents hereof and specifically disclaim any implied warranties of
merchantability or fitness for any particular purpose. Further, NCR Corporation and
Microsoft Corporation reserve the right to revise this publication and to make changes
from time to time in the content hereof without obligation to notify any person or
organization of such revisions or changes.
The GW-BASIC Compiler Software and Manual are sold AS IS and without warranty as
to performance. While NCR Corporation and Microsoft Corporation firmly believe this
to be a high quality product, the user must assume all risks of using the program.

INTRODUCTION

INTRODUCTION

NCR GW-BASIC Compiler is an optimizing compiler designed to
complement NCR GW-BASIC Interpreter. GW-BASIC Compiler
allows you to create programs that in most cases:

1. Execute faster than the same interpreted programs.

2. Require less memory than the same interpreted programs.

3. Provide source-code security.

These benefits can be critical in:

Graphics applications. Execution speed can often make or break
an application.

Business applications. Several chained programs can be sup­
ported by a main menu.

Commercial applications. Software is sold in a competitive
marketplace and source-code security is essential.

Another major benefit is that GW-BASIC Compiler has been created
to support most of the interpreted GW-BASIC language. Thus, the
interpreter and the compiler complement each other, providing you
with an extremely powerful GW-BASIC programming environment.
In this environment, you can quickly run and debug a program from
within the GW-BASIC Interpreter, and then later compile the same
program to increase its speed of execution and decrease its space in
memory.

An additional GW-BASIC Compiler feature is a runtime module
named BASRUNG.EXE. This module contains most of the facilities
you need to run a program. The runtime module is loaded when
program execution begins, and you can later run a chained program
without reloading. This allows you to save disk space by developing a
system of related programs that can all be run using the same
runtime environment. For example, with a system of four programs,
you can save at least 48K of disk space.

Note that language, operational, and implementation differences
between GW-BASIC Compiler and GW-BASIC Interpreter are
described in Chapter 9, “A Compiler/Interpreter Comparison”.
Review the information in that chapter before compiling any of your

GW-BASIC COMPILER USER’S GUIDE

INTRODUCTION

programs, even those that already run without problems under the
GW-BASIC Interpreter.

System Requirements
The minimum memory requirements for GW-BASIC Compiler
running under the MS™-DOS operating system is 128K.

One disk drive is required. We recommend two disk drives, however,
for easier operation.

Use of GW-BASIC Compiler requires the Microsoft LINK Linking
Loader, (MS™-LINK). MS-LINK is a standard MS-DOS utility.

HOW TO USE THIS MANUAL

The NCR GW-BASIC Compiler User’s Guide is designed for users
who are not familiar with the compiler as a programming tool.
Therefore, this User’s Guide provides a step-by-step introduction to
the GW-BASIC Compiler and its use. However, it also contains the
technical information needed for more advanced compiling, linking,
and execution of programs.

This manual assumes that the user has a working knowledge of the
GW-BASIC language. For reference information, consult the NCR
GW-BASIC References Manual.

This User’s Guide contains the following information:

Introduction
Describes the NCR GW-BASIC Compiler and provides a Syntax
Notation for your reference.

Chapter 1 Introduction to Compilation
Introduces you to the vocabulary associated with compilers and
presents an overview of program development with GW-BASIC
Compiler.

Chapter 2 Demonstration Run
Takes you step by step through compiling, linking, and running a
demonstration program.

Chapter 3 Editing a Source Program
Describes how to create a GW-BASIC source program for later
compilation.

/'/ GW-BASIC COMPILER USER’S GUIDE

INTRODUCTION

Chapter 4 Debugging With GW-BASIC Interpreter
Describes how to debug your BASIC source file with GW-BASIC
Interpreter.

Chapter 5 Compiling
Gives you technical details about using GW-BASIC Compiler,
including descriptions of the command line syntax and the compiler
options.

Chapter 6 Linking
Describes how to use Microsoft LINK Linking Loader (MS-LINK) to
link your programs to runtime support. (See the “Important” note
following this listing.)

Chapter 7 Running a Program
Describes how to run your final executable program.

Chapter 8 Metacommands
Describes the metacommands that are used to control source listing
file information. Also describes use of the $INCLUDE
metacommand, which lets you switch source files during compilation.

Chapter 9 A Compiler/lnterpreter Comparison
Describes the operational and implementation differences between
the NCR GW-BASIC Compiler and the GW-BASIC Interpreter. It is
important to study these differences and to make the necessary
editing changes in your GW-BASIC program before you use the
compiler.

Chapter 10 Communications
Describes the GW-BASIC statements required to support RS-232
asynchronous communication with other computers and peripherals.

The appendices show you how to create a system of programs with the
runtime module, provide memory and segment maps, describe the use
of assembly language subroutines, and explain how to use disk files.

Important

The NCR GW-BASIC Compiler User's Guide occasionally refers to
the MS-DOS utilities, MS-LINK and MS™-MACRO. In addition
to the information provided in this manual, these utilities are
described in the manuals that are supplied with your MS-DOS
software.

HiGW-BASIC COMPILER USER’S GUIDE

INTRODUCTION

Syntax Notation

Square brackets indicate that the enclosed entry is
optional.

< > Angle brackets indicate user-entered data. When the
angle brackets enclose lowercase text, the user must
type in an entry defined by the text; for example,
<filename>. When the angle brackets enclose
uppercase text, the user must press the key named by
the text; for example, <RETURN>.

{ } Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the entries
are also enclosed in square brackets.

! Vertical bars separate choices within braces. At least
one of the entries separated by bars must be chosen
unless the entries are also enclosed in square
brackets.

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

CAPS Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs, must be entered, exactly as shown.

iv GW-BASIC COMPILER USER'S GUIDE

INTRODUCTION

GW-BASIC Compiler User’s Guide

Contents

Introduction
System Requirem ents.. ii
How to Use This M anual.. ii
Syntax N o ta tio n ... iv

Chapter 1 Introduction to Compilation
1.1 Compilation vs. In te rp re ta tio n 1-1
1.2 V ocabulary ... 1-2
1.3 The Program Development P r o c e s s 1-4

Chapter 2 Demonstration Run

Chapter 3 Editing a Source Program
3.1 $Include Metacommand ... 3-1
3.2 Compiler/Interpreter D ifferences........................... 3-2
3.3 Line L en g th ... 3-3

Chapter 4 Debugging With GW-BASIC Interpreter

Chapter 5 Compiling
5.1 Default File S pec ifica tio n s 5-1
5.2 Compiler Invocation.. 5-2
5.3 Compiler S w itc h e s .. 5-5
5.4 Configuring for GW -BASIC..5-12

Chapter 6 Linking
6.1 Linking to BASRUNG.LIB Runtime Library . . . 6-1
6.2 Linking to BASCOMG.LIB Runtime Library . . . 6-3

Chapter 7 Running a Program

Chapter 8 Metacommands
8.1 Syn tax ... 8-1
8.2 D escrip tion .. 8-2

Chapter 9 A Compiler/Interpreter Comparison
9.1 Operational D iffe re n c e s ... 9-1
9.2 Implementation D ifferences.................................... 9-1

GW-BASIC COMPILER USER’S GUIDE v

INTRODUCTION

Chapter 10 Communications
10.1 Opening a Communications F i l e 10-1
10.2 Communication I/O ..10-1
10.3 Control S ig n a ls ...10-3
10.4 Sample Program ...10-4

Appendix A Creating a System of Programs With the
Runtime Module

Appendix B Source Listing Format

Appendix C Memory Maps

Appendix D Runtime Segment Maps

Appendix E Assembly Language Subroutines

W GW-BASIC COMPILER USER’S GUIDE

Chapter 1

Introduction to Compilation

1.1 COMPILATION vs. INTERPRETATION
A microprocessor can execute only its own machine instructions; it
cannot execute GW-BASIC statements directly. Therefore, before a
program can be executed, statements in a GW-BASIC program must
be translated into the machine language of your NCR Decision Mate
V. Compilers and interpreters are two types of programs that
perform this translation. This discussion explains the difference
between these two translators.

1.1.1 INTERPRETATION
NCR GW-BASIC Interpreter translates your GW-BASIC program
line-by-line at runtime. To execute a GW-BASIC statement, the
interpreter analyzes the statement, checks for errors, then performs
the GW-BASIC function requested.

If a statement must be executed repeatedly (inside a FOR/NEXT
loop, for example), this translation process must be repeated each
time the statement is executed.

A GW-BASIC program is stored as a list of numbered lines; the lines
are not available as absolute memory addresses during interpreta­
tion. Therefore, branches such as GOTO and GOSUB statements
cause the interpreter to examine the line numbers in the list, starting
with the first, until the referenced line is found.

Similarly, a list of all variables is maintained by the interpreter.
When a reference to a variable is made in a GW-BASIC statement,
this list must be searched from the beginning until the referenced
variable is found. Thus, absolute memory addresses are not associ­
ated with the variables in your program.

1.1.2 COMPILATION
A compiler, on the other hand, translates a source program and
creates a new file called an object file. The object file contains
relocatable machine code (see Section 1.2, “Vocabulary,” for defini-

GW-BASIC COMPILER USER’S GUIDE 1-1

CHAPTER 1
INTRODUCTION TO COMPILATION

tions). All translation takes place before runtime; no translation of
your GW-BASIC source file occurs during the execution of your
program. In addition, absolute memory addresses are associated with
variables and with the targets of GOTO and GOSUB statements, so
that lists of variables or of line numbers does not have to be searched
during execution of your program.

GW-BASIC Compiler is an optimizing compiler. Optimizations such
as reordering expressions and eliminating subexpressions increase
the speed of execution and decrease the size of your program.
These factors combine to measurably increase the execution speed of
your program. The amount of execution time you save with the
compiler depends on the makeup of your program. If your program
includes a great deal of input/output or many floating-point
calculations, for example, it may not run noticeably faster with the
compiler. But in most cases, execution of compiled GW-BASIC
programs is 3 to 10 times faster than execution of the same program
under the interpreter. If maximum use of integer variables is made,
execution can be up to 30 times faster.

1.2 VOCABULARY
This section reviews some of the vocabulary that is commonly used
when discussing compilers.

First, a GW-BASIC program is commonly called a GW-BASIC
“source.” The source file is the input file to the compiler. It must be in
ASCII format. The compiler translates this source and creates, as
output, a new file called a “relocatable object” file. These two files
have the default extensions .BAS and .OBJ, respectively.

Other terms that you will see in this manual are related to stages in
the development and execution of a compiled program. These stages
are listed below.

Compile time — The time during which the compiler is executing,
and during which it compiles a GW-BASIC source file and creates a
relocatable object file.

Link time — The time during which MS-LINK is executing, and
during which it loads and links together relocatable object files and
library files.

Runtime — The time during which a compiled and linked program is
executing. By convention, runtime refers to the execution time of your

1-2 GW-BASIC COMPILER USERS GUIDE

CHAPTER 1
INTRODUCTION TO COMPILATION

program rather than to the execution time of the compiler or the
linker.

You should also be familiar with the following linking and runtime
terms.

Module — A fundamental unit of code. There are several types of
modules, including relocatable and executable modules. The compiler
creates relocatable modules that are later manipulated by MS-LINK.
Your final executable program is an executable module.

Executable — A module is executable if the code within it is in a
form that can be used, without further translation, by the computer.

Relocatable — A module is relocatable if the code within it can be
placed and run at different locations in memory. The relocatable
modules created by the compiler are an intermediate stage between
source code and executable code; they are changed into executable
modules by MS-LINK.

Global reference — A variable name or label in a given module
that is referenced by a routine in another module. Global labels are
entry points into modules.

Unbound global reference — A global reference in a module that
is not declared in that module. MS-LINK tries to resolve this
situation by searching for the declaration of that reference in other
modules. If such a declaration is found in a module, that module is
loaded into memory (if it is not yet in memory) and becomes part of
your load file. These other modules are usually library modules in the
runtime library.

If the variable or label is found, the address associated with it is
substituted for the reference in the first module, and is then said to be
“bound.” When a variable is not found in any module, it is said to be
“undefined.”

Routine — Executable code residing in a module. More than one
routine may reside in a module. The runtime module contains a
majority of the library routines needed to implement the GW-BASIC
language. A library routine usually corresponds to a feature or
subfeature of the GW-BASIC language.

GW-BASIC COMPILER USER’S GUIDE 1-3

CHAPTER 1
INTRODUCTION TO COMPILATION

Runtime support — The body of routines that may be linked to your
compiled .OBJ file. These routines implement various features of the
GW-BASIC language. The BASCOMG.LIB, BASRUNG.LIB, and the
runtime module all contain runtime support routines. See Chapter 6,
“Linking”, for more information on runtime support.

Runtime module — A module containing most of the routines
needed to implement the GW-BASIC language. It is a peculiarity of
the runtime module that it is an executable .EXE file. The runtime
module is named BASRUNG.EXE. The runtime module is, for the
most part, a library of routines: it is made executable so that you can
see the version number of the module.

BASRUNG.LIB runtime library — A few modules used to load
BASRUNG.EXE at runtime and to move segments around in memory
to permit chaining.

BASCOMG.LIB runtime library — A collection of modules con­
taining routines almost identical in function to similar routines
contained in the runtime module. However, this library does not
support COMMOM between CHAINed subprograms. It does support
a version of CHAIN that is equivalent to the simple RUN
<filename> command. See Chapter 6, “Linking”, for discussion of
the runtime libraries.

Linking — The process in which the linker (MS-LINK) computes
absolute addresses for labels and variables in relocatable modules,
and then resolves all global references by searching the
BASRUNG.LIB or BASCOMG.LIB runtime library. After loading
and linking, MS-LINK saves the modules that it has loaded into
memory as a single .EXE file on your disk. This entire process is
called linking.

Complete understanding of all the above terms is not essential for
continued reading. You may want to refer back to these terms later,
as you become familiar with the compiler and with MS-LINK.

1.3 THE PROGRAM DEVELOPMENT PROCESS
This discussion of the process development process is keyed to Figure
1. Use the figure for reference when reading this text. The
development process described here uses the BASRUNG.EXE
runtime module and the BASRUNG.LIB runtime library.

1-4 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 1
INTRODUCTION TO COMPILATION

Program development begins with (1) the creation of a GW-BASIC
source file. The best way to create a GW-BASIC source file is with the
editing facilities of GW-BASIC Interpreter, although you can use any
general purpose text editor if you wish. Note that files must be
SAVEd from GW-BASIC with the ,A option.

We recommend that you use GW-BASIC Interpreter (2) to debug your
programs by running them to check for syntax and program logic
errors. There are a few differences in the languages understood by the
compiler and the interpreter, but for the most part they are identical.
Because of this similarity, running a program with the interpreter
runs a much quicker syntactic and semantic check of your program
than compiling, linking, and finally executing it.

After you have debugged your program with the interpreter, or if you
do not have GW-BASIC Interpreter, (3) compile the program to check
out differences that may exist between interpreted and compiled
GW-BASIC. The compiler flags all syntax errors as it reads your
source file. If compilation is successful, the compiler creates a
relocatable .OBJ file.

The .OBJ file is not executable, or needs to be linked to the
BASRUNG.LIB or BASCOMG.LIB runtime library. You may want to
include your own assembly language routines to increase the speed of
execution of a particular algorithm, or to handle more complex
microprocessor operations. For these cases, use the Microsoft
MACRO Assembler (4) to assemble routines that you may later link
to your program. See the description of MS-MACRO in the manuals
that are supplied with your MS-DOS software for more information.

Microsoft LINK Linking Loader (5) links all modules needed by your
program, and produces as output an executable object file with .EXE
as the default extension. This file can be (6) executed like any .EXE
file by simply entering the file’s base name (the file name less its
.EXE extension).

This program development process is demonstrated in the following
chapter, Chapter 2, “Demonstration Run.”

GW-BASIC COMPILER USER’S GUIDE 1-5

CHAPTER 1
INTRODUCTION TO COMPILATION

.EXE file

V

The runtime module

6. Execute .EXE file
(The runtime module and .EXE file

y are loaded into memory from disk)

Figure 1 The Program Development Process

1-6 GW-BASIC COMPILER USER’S GUIDE

Chapter 2

Demonstration Run

This chapter provides step-by-step instructions for GW-BASIC
Compiler. We strongly recommend that you compile the demonstra­
tion program before compiling any other programs. For more
technical information, read Chapters 3 through 9 of this manual. If
you enter commands exactly as described in this chapter, you should
have a successful session with GW-BASIC Compiler. If a problem
does arise, carefully perform each step again.

IMPORTANT:
Before you begin this demonstration run, make back-up copies of your
disks. After making copies, copy the operating system onto each one,
so that each disk can be used to start up the operating system. In
addition, copy the MS-DOS utility file, LINK.EXE, along with
BASCOMG.LIB and BASRUNG.LIB, to a blank, formatted system
disk. These three files will be used when linking your program.
The five steps in developing a program with GW-BASIC Compiler
are:

1. Editing (entering and correcting the GW-BASIC program).

2. Debugging with the interpreter (using GW-BASIC Interpreter to
run your program; this step is optional).

3. Compiling (creating a relocatable object file).

4. Linking (creating an executable program).

5. Running (executing the program).
Because we have prepared a debugged demonstration program on
disk, you do not have to perform the first two steps in the program
development process. Therefore, the demonstration run begins with
compilation. Note that we have SAVEd the demonstration program
on disk with the ,A option, since all files must be in ASCII format to
be readable by the compiler.

GW-BASIC COMPILER USER'S GUIDE 2-1

CHAPTER 2
DEMONSTRATION RUN

In the following procedure, two disk drives are assumed. They are
called A: and B:, and the procedure begins with A: as the default drive.
In general, GW-BASIC Compiler system disks are in drive A:, and a
single work disk in drive B: contains all user created files.
In the following discussion, all prompts are in bold face type.
User-entered data are in regular face type. The symbol <RETURN>
is indicated where only a carriage return is entered. Otherwise,
carriage returns are assumed at the end of each user-entered line.
To create an executable compiled program, take the following steps:

1. Start up your system.
With the disk containing GWBCOM.COM in drive A: and an
empty work disk in drive B:, start up your system.

2. Log on to drive B:.
From A:, log onto drive B: by entering:

A> B:
Now B: is the default drive. All files that are created will be placed
there unless specified otherwise.

3. Create a GW-BASIC source file.
GW-BASIC programs can be created with any available text
editor. However, for this demonstration run we will use the
program provided on disk, DEMO.BAS. For consistency, GW-
BASIC source files should always be given the .BAS extension.

4. Invoke the compiler by entering:

B > A:GWBCOM
5. Input filenames

The compiler then prints an informative heading and prompts
you for the name of your GW-BASIC source program.
Enter:

Source filename [.BAS]: A:DEMO
The default extension .BAS is assumed. Drive A: is specified
because DEMO.BAS is located there. After you have entered the
name of a legal filename for the source file, you are prompted to
enter the name of the relocatable object file that you want to
create.

2-2 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 2
DEMONSTRATION RUN

Enter:

Object filename [DEMO.OBJ]: DEMO

The default name is enclosed in brackets in the prompt. This
default name can be selected by simply entering a <RETURN>.
It can also be selected by entering DEMO as we have done.

The object file is placed on drive B: because we may later have to
swap disks in drive A:. Remember that all files created in this
demonstration run are written to B:.

The final prompt is for the name of the source listing file. The
source listing file is created during compilation, and lists your
GW-BASIC source and any compilation errors or warnings as
they occur. By default, the listing file is sent to the null file, NUL,
and no file is created. Writing to the NUL file is equivalent to not
writing a file at all. However, error messages are always
displayed on the screen.

To specify this default, you need only enter <RETURN>.
However, if any part of a file specification is entered after the
prompt, the default extension is .LST and the default device is the
currently logged drive. For this demonstration, we want to send
this file to the console.

Therefore, we enter:

Source listing [NUL.LST]: CON

After you have completed your input, compilation begins and the
source listing file is sent to the console screen as the source file is
read.

6. Look for error messages.

As your program is compiled, error messages are displayed on the
terminal screen. For the demonstration program, there should be
no error messages displayed. When the compiler has finished, it
displays the message:

20574 Bytes Available
17726 Bytes Free

0 Warning Error(s)
0 Severe Error(s)

GW-BASIC COMPILER USER’S GUIDE 2-3

CHAPTER 2
DEMONSTRATION RUN

(The number of bytes available and bytes free varies with a
particular system.) Program control is then returned to the
operating system.

At this point, you should see one new file (DEMO.OBJ) listed in
the B: directory:

7. Link routines in the runtime library to your .OBJ file.

After compilation, you are ready to link your program. To do this,
make sure that a disk containing MS-LINK and the
BASRUNG.LIB runtime library is in drive A:. (See the “Impor­
tant” note at the beginning of this chapter if you do not have such
a disk.)

To begin linking, enter:

B: A:LINK

MS-LINK prompts you for the name of your relocatable object
file:

Object Modules [.OBJ]: DEMO

The .OBJ extension is assumed for the object file. You are next
prompted for the names of the run file and the linker list file.
Simply enter < RETURN> after each prompt to specify the
default files given in brackets:

Run File [B:DEMO.EXE]: < RETURN>
List File [B:DEMO.MAP]: < RETURN>

Note that .MAP is the default extension for the linker's list file.

The next prompt is for the library that you wish to link. Several
options are available at this point, but for this demonstration run, we
will indicate default values for all remaining parameters. This is done
by entering a semi-colon.

Therefore, when the “Libraries” prompt appears, enter:

Libraries [.LIB]:A:;

The result is that MS-LINK searches the BASRUNG.LIB library and
invokes the BASRUNG.EXE runtime module.

The run file DEMO.EXE will rely on the runtime module
BASRUNG.EXE for all routines that it needs at runtime.

2-4 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 2
DEMONSTRATION RUN

Run you program.

To run your final program, enter:

B: DEMO

Normally, the runtime system loads the BASRUNG.EXE runtime
module from the default drive. Since it is not there in this example, it
is looked for and found in the A: drive. Once the runtime module is
loaded, execution of the file named B:DEMO.EXE begins.

This completes the demonstration run. When you exit the demonstra­
tion run, the system returns to MS-DOS. Refer to the manuals that
are supplied with your MS-DOS software as well as Chapter 6,
“Linking” in this manual for more information on MS-LINK.

GW-BASIC COMPILER USER’S GUIDE 2-5

Chapter 3

Editing a Source Program

You need a text editor to create a GW-BASIC source program. Any
text editor will do, but the most efficient choice is the full-screen
editor available with NCR GW-BASIC Interpreter. If you have
previous experience with GW-BASIC Interpreter, there is little need
to learn how to use a new editor.

It is important to note that the compiler expects its source file in
ASCII format. If you edit a file from within GW-BASIC Interpreter,
it must be SAVEd with the ,A option; otherwise, the interpreter
encodes the text of your program into special tokens. These tokens
cannot be read by the compiler.

3.1 INCLUDE METACOMMAND
GW-BASIC Compiler supports a useful feature that is not available
when you run a GW-BASIC program under the interpreter. This is
the $INCLUDE compiler metacommand. $INCLUDE is not part of an
editing facility. It is a feature of the compiler that may affect the way
you structure your programs. It is called a metacommand rather than
a GW-BASIC command because it is not really a part of the
GW-BASIC language. Rather, it is a command to the compiler,
denoted by the prefix. In order to avoid syntax conflicts with
GW-BASIC Interpreter, always embed metacommands in comments.
$INCLUDE and other metacommands are discussed in Chapter 8.

3.2 COMPILER/INTERPRETER DIFFERENCES
The interpreter supports a number of editing and file manipulation
commands that are useful mainly when creating a program. LOAD,
SAVE, LIST, and EDIT are examples of these commands. These
operational commands are not supported by the compiler. Some
differences also exist for some of the other statements and functions.
Language differences must be accounted for during editing. See
Chapter 4 in your NCR GW-BASIC Reference Manual for a full
description of these differences.

GW-BASIC COMPILER USER’S GUIDE 3-1

CHAPTER 3
EDITING A SOURCE PROGRAM

3.3 LINE LENGTH
With the interpreter, maximum line length is 254 characters. (Line
length is the number of characters from the beginning of the line up
to the carriage return at the end. The line number is not included in
the line length.) A line may be contiguous or “broken by inserting
linefeeds which do not count as characters. Breaking lines is
sometimes useful for readability.

With the compiler, maximum line length is 253 characters, to “break”
a line, you must be using an external editor. The underscore character
(__) may be used to create “logical” lines of greater than 253
characters. Using this feature, program structure and readability can
be improved in some cases (the IF/THEN/ELSE statements, particu­
larly). At the point where you want to break the line, enter an
underscore as the last character before you press < RETURN> to
drop down to the next line. The underscore removes the significance
of the carriage return in the <RETURN> <LINEFEED> sequence
that ends each line (underscore characters in quoted strings do not
count in the length of characters or in significance). This results in
just a linefeed being presented to the compiler. The linefeed is the line
continuation character understood by the compiler and the inter­
preter. The ASCII key code for a linefeed is <CONTROL-J>.

3-2 GW-BASIC COMPILER USER’S GUIDE

Chapter 4

Debugging with NCR GW-BAS 1C
Interpreter

If you have NCR GW-BASIC Interpreter, use it to debug your
GW-BASIC source, i.e. to check for syntax and program logic errors.
Debugging with the interpreter is an optional step. If you do not have
GW-BASIC Interpreter, you must edit your program with any
general purpose text editor and check for errors at compile time. We
strongly urge you to complement the compiler with GW-BASIC
Interpreter because the combination of the two gives you an
extremely powerful and flexible GW-BASIC programming environ­
ment.

The main advantage to using the interpreter for debugging it that it
stops execution of a program when an error is encountered. The
program will not run and any subsequent errors are not caught until
the first detected error is corrected and the program is rerun. This
differs from the compiler, where all lines are scanned and all dete -,ted
errors are reported at compile time. In addition, the RUN, CONT, and
TRON/TROFF statements make GW-BASIC Interpreter a very
powerful interactive debugging tool. See the NCR GW-BASIC Refer­
ence Manual for more information on these statements.

You may use some commands or functions in your compiled program
that execute differently with the interpreter. In those cases, you need
to use the compiler for debugging. The compiler metacommands are
the only statements supported by the compiler that are not supported
in some form by GW-BASIC Interpreter. In addition, the interpreter
does not support double precision loop control variables and
transcendental functions as does GW-BASIC Compiler.

Despite these differences, the language supported by the compiler has
been made as similar as possible to GW-BASIC Interpreter. This can
make GW-BASIC Interpreter your prime debugging tool, saving you
debugging time by avoiding lengthy compilations and links.

GW-BASIC COMPILER USER'S GUIDE 4-1

Chapter 5

Compiling

After creating a GW-BASIC source program and debugging it, your
next step is to compile it. This chapter discusses GW-BASIC default
file specifications, command line syntax, compiler invocation, com­
piler switches, and configuration.

5.1 DEFAULT FILE SPECIFICATIONS
This section describes the rules for the file specifications used when
the compiler is invoked. A “default” drive or filename is the one
assumed by the compiler unless otherwise specified by the user. The
default file specification consists of the following:

1. A default device designation
2. A default filename extension
3. The base name of the source file parameter

The base name is the file specification less its extension and its device
designation.

Table 5.1 shows how default file specifications are formed.

Device Extension File Specification

Source file dev: .BAS dev:base.BAS

Object file dev: .OBJ dev:base.OBJ

Source dev: .LST dev:NUL.LST
listing dev: .LST dev:base.LST

Table 5.1 Default File Specifications

The word “base” indicates the base name.

“dev:” indicates the currently logged drive.

Capital letters are used to spell out explicit default extensions or
device designations.

GW-BASIC COMPILER USER’S GUIDE 5-1

CHAPTER 5
COMPILING

If the default source listing is taken, the source listing file defaults to
NUL. However, if the dev: or base portion of the specification is given
by the user, the default is dev:base.LST, as shown in the second
example above.
Note: Specifying the NUL file is equivalent to creating no file at all.

Therefore, the listing file is not created unless explicitly specified.

5.2 COMPILER INVOCATION
After you load the MS-DOS operating system, the GW-BASIC
Compiler can be invoked at the command level in one of three ways:

1. Without command line options
2. With all command line options
3. With only some command line options

Each form of invocation is discussed in the following sections.

5.2.1 INVOCATION WITHOUT COMMAND LINE OPTIONS
To invoke the compiler without command line options, simply enter:

A:GWBCOM

(A: is the default drive.) The compiler then prompts for three entries.
For example:

Source filename [.BAS]: B:MYFILE
Object filename [MYFILE.OBJ]: B:
Source listing [NULLST]: < RETURN>

In the previous example, the bracketed file specifications show the
defaults. Explicit filename extensions or device designations override
these defaults, as is shown for the object filename prompt. The device
designation for the currently logged drive is the default.

By entering just a <RETURN> the user accepts the default file
specification. Thus, the <RETURN> entered for the source listing
file causes no file to be generated, since the default file specification is
the null file (NUL.LST). (See rule 6 in the following list for more
information on source listing responses.)

The rules governing input for these prompts are:

1. All lowercase letters in filenames are mapped to uppercase
letters. For instance, the following three names are all considered
equivalent to ABODE.FGH:

5-2 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 5
COMPILING

abcde.fgh AbCdE.FgH ABCDE.fgh
2. You must enter the source filename. It has no default. Remember

that the base name is the file specification less its device
designation and extension.

3. To enter a file specification that contains no extension, enter the
name followed by a period.

Examples

Source filename [.BAS]: ABC

(ABC.BAS taken as name)

Source filename [.BAS]: ABC.

(ABC taken as name)
4. Entering a <RETURN> is the same as entering the default

name. For example, if the currently logged drive is A:, then:

Object filename [ABC.OBJ]: <RETURN>

(A.'ABC.OBJ taken as specification)

5. Device designations and extensions may be given to override the
defaults for any prompt. For example, if the currently logged
drive is A:, then:

Object filename [ABC.OBJ]: B:

(B:ABC.OBJ is full specification)

6. For listing files that default to null, there are two cases. In the
first case, the default is specified by entering a <RETURN>. In
the second case, a file is specified by entering any part of a legal
file specification. In the latter case, a file is created with the same
default rules that apply to other files. In particular, if a drive or
extension is given, then the default base name is the base name of
the source file. For example:

Source listing [NUL.LST]: < RETURN>

(NUL: is taken as default)

GW-BASIC COMPILER USER’S GUIDE 5-3

CHAPTER 5
COMPILING

Source listing [NUL.LST]: A:
(A: ABC.LST is taken as specification, when ABC is the source
filename)

7. Entry of a semicolon (;) indicates that all remaining parameters
should assume their default filenames. Thus, the quick way to
specify a compilation with the default options is:

Source filename [.BAS]: ABC;
Note, however, that a semicolon cannot be used to specify a default
source file, since the source file has no default file specification.

8. Trailing and leading spaces are permitted. Therefore, the
following is permitted:

Source filename [.BAS]: ABC ; *

L 3 trailing spaces

------2 trailing spaces

----------------- 3 leading spaces

However, spaces cannot occur within filenames.

9. Switches, described in Section 5.3, “Compiler Switches/' can be
specified along with filenames. Switches can be placed anywhere
that spaces can go.

5-2.2 INVOCATION WITH ALL COMMAND LINE OPTIONS
GW-BASIC Compiler can be invoked with command line options that
make prompting unnecessary. The syntax is:

A:GWBCOM<source>,<object>,<sourcelist>
The default naming conventions that applied to the prompted
responses in Section 5.2.1, “Invocation Without Command Line
Options," also apply to these command line options. Options must be
separated by commas. If no option is given after a comma, then the
base name of the source, the default device designation, and the
default extension are assumed.
For example, the invocation

A: GWBCOM DATABASE,DATABASE,DATABASE

5-4 GW-BASIC COMPILER USER'S GUIDE

CHAPTER 5
COMPILING

is equivalent to:

GWBCOM DATABASE,,
Source listing [DATABASE.LST]: < RETURN>

If the normal defaults are desired with null listing files, then the
semicolon (;) is used. Thus, the form

A: GWBCOM YOYO,YOYO,NUL

is equivalent to:

A: GWBCOM YOYO;

Spaces may occur before or after filenames, but not within them.

5.2.3. INVOCATION WITH SOME COMMAND LINE OPTIONS
Command line options and prompted input can be combined. This
makes the compiler relatively failsafe. If options are not specified on
the command line, they are requested with prompts instead.

Example

A: GWBCOM TEST,TEST
Source listing [NUL.LST]: < RETURN>

5.3 COMPILER SWITCHES
You may direct GW-BASIC Compiler to perform additional or
alternate functions by adding switches to the command line.

Switches signal special instructions to be used during compilation.
The switch tells the compiler to “switch on” a special function or to
alter a normal compiler function. More than one switch may be used,
but all must begin with a slash (/).

Examples:

A: GWBCOM DEMO/N„NUL

A: GWBCOM DEMO„/D
Source listing [DEMO.LST]: <RETURN>

A:GWBCOM DEMO/O
Object filename [DEMO.OBJ]: B:/X/N
Source listing [NUL.LST]: DEMO

GW-BASIC COMPILER USER'S GUIDE 5-5

CHAPTER 5
COMPILING

Compiler switches fall into one of three categories:

1. Convention Switches

2. Exception Handling Switches

3. Special Code Switches

Table 5.3 summarizes the function of each compiler switch. Following
the table, you will find detailed descriptions of each compiler switch
category and compiler switches.

Category Switch Action

Convention /4 Uses Microsoft 4.51 lexical conventions (not
allowed with /N).*

IT Uses 4.51 execution conventions.*

Exception /E Indicates ON ERROR GOTO with RESUME Cline
handling number> in program.

/x Indicates ON ERROR GOTO with RESUME,
RESUME 0, or RESUME NEXT in program.

/v Enables event trapping for communications (COM),
joystick (STRIG), and function keys (KEY). Checks
between lines for occurrence of an event.

/W Enables event trapping for communications (COM),
joystick (STRIG), and function keys (KEY). Checks
between statements to see if an event has
occurred.

Special /A Includes listing of disassembled object code in the
code

/C :<size>
source listing.
Allocates communication buffer size.
Generates debug code for runtime error checking.
Indicates line numbers not needed for all lines.

/ /0 Substitutes the BASCOMG.LIB runtime library for
BASRUNG.LIB as the default runtime library
searched by the linker.

/ /R Stores arrays in row major order (as does
/

1 IS
MS-Pascal).
Writes quoted strings to OBJ file on disk and not to
compiler symbol table in memory.

*Use /jli and /T together for 4.51 lexical and execution conventions. Do not use /4
and / i J together.

Table 5.3 Compiler Switches

K a.,. 4 ^ ' "Vi: ; ‘ ",?j
v / . . . , GW-BASIC COMPILER USER'S GUIDEr a / '• >■<. • >

5-6

CHAPTER 5
COMPILING

5.3.1 CONVENTION SWITCHES
The convention switches specify use of MS-BASIC Version 4.51 lexical
(language) and execution conventions during compilation. If these
switches are not specified, MS-BASIC Version 5.0 conventions are
used.

Switch Action

/4 The /4 switch directs the compiler to use the lexical
conventions of MS-BASIC Interpreter version 4.51.
Lexical conventions are the rules that the compiler
uses to recognize the MS-BASIC language. The
following lexical conventions are observed with /4:

1. Spaces are not significant.

2. Variables with embedded reserved words are
illegal.

3. Variable names are restricted to two significant
characters.

The /4 switch is needed to correctly compile a source
program in which spaces do not delimit reserved
words, as in the following statement:

FORI = ATOBSTEPC
Without the /4 switch, the compiler would assign the
variable “ATOBSTEPC” to the variable “FORI”.
With the /4 switch set, the compiler recognizes the
line as a FOR statement.
NOTE: The /4 and /N switches may not be used

together.

/T The /T switch tells the compiler to use MS-BASIC
version 4.51 execution conventions. Execution con­
ventions govern the implementation of MS-BASIC
functions and commands and what they actually do
at runtime.
With the /T switch specified, the following 4.51
execution conventions are switched on:

1. FOR/NEXT loops are always executed at least
one time.

GW-BASIC COMPILER USER’S GUIDE 5-7

CHAPTER 5
COMPILING

2. TAB, SPC, POS, and LPOS functions perform
according to 4.51 conventions. For the other
functions, no convention differences exist
between versions 4.51 and 5.0.

3. Automatic floating-point to integer conversions
truncate numbers rather than rounding them,
except in the case where a floating-point number
is being converted to an integer in an INPUT
statement.

4. The INPUT statement does not affect the varia­
bles in the input list if only a carriage return is
entered. If a “?Redo from start” message is
issued, then a valid input list must be given. A
carriage return in this case generates another
“?Redo from start” message.

Note that a “?Redo from start” message can only
be generated following an INPUT statement; it is
not a standard GW-BASIC error message.

5.3.2 EXCEPTION HANDLING SWITCHES
The /E and /X switches are error handling switches that allow use of
ON ERROR GOTO and RESUME statements in your program. The
/V and /W switches are event trapping switches that enable the event
trapping facility and check between lines or statements to see
whether an event has occurred. Note that these switches add extra
code to your program and cause more time to be used for compilation.

/E The /E switch tells the compiler that the program
contains an ON ERROR GOTO/RESUME <line
number> construction. To handle ON ERROR GOTO
statements properly, the compiler must generate
extra code for the GOSUB and RETURN statements.
Also, a line number address table (one entry per line
number) must be included in the binary file, so that
each runtime error message can include the number
of the line in which the error occurs.

This switch should not be used unless the program
contains an ON ERROR GOTO statement.
NOTE: If a RESUME statement other than

RESUME Cline number> is used with the

5-8 GW-BASIC COMPILER USER S GUIDE

CHAPTER 5
COMPILING

ON ERROR GOTO statement, the /X
switch should be used, rather than /E.

/X The /X switch tells GW-BASIC Compiler that the
program contains one or more RESUME, RESUME
NEXT, or RESUME 0 statements. The /X switch
performs all the functions of the /E switch, so the two
need never be used at the same time. For instance, the
/X switch, like the /E switch, causes a line number
address table to be included in the binary object file,
so that each runtime error message can include the
number of the line in which the error occurs. Note,
however, that /X provides one table entry per
statement, whereas /E provides one entry per line
number.
In order that RESUME statements may be handled
properly, the compiler cannot optimize across state­
ments. Therefore, /X should not be used unless the
program contains RESUME statements other than
RESUME d in e number>.

/V The /V switch enables event trapping for communi­
cations (COM), joystick (STRIG), and function keys
(KEY). It also checks between every line in the
program to see whether an event has occurred.

/W Like the /V switch, /W enable event trapping, but it
checks between every statement, including multiple
statements on a line, to see whether an event has
occurred.

5.3.3 SPECIAL CODE SWITCHES
The special code switches enable particular compiler options.

/ A The /A switch generates a listing of the disassembled
object code for each source line, and shows precisely
the code that is being generated by the compiler; This
switch can greatly increase the length of a listing. It
has no effect on the actual code generated by the
compiler.

/C:<size> The /C:<size> switch will allocate the <size> for
the communication buffer of a GW-BASIC program.
The default is 256 bytes if /C:<size> is not used.

GW-BASIC COMPILER USER’S GUIDE 5-9

CHAPTER 5
COMPILING

/D The /D switch causes debugging and error handling
code to be generated at runtime. Use of /D allows use
of TRON and TROFF in the compiled file. Without /D
set, TRON and TROFF are ignored.
With /D, GW-BASIC Compiler generates somewhat
larger and slower code that checks the following:

1. Arithmetic overflow
All arithmetic operations, both integer and
floating-point, are checked for overflow and
underflow.

2. Array bounds
All array references are checked to see if the
subscripts are within the bounds specified in the
DIM statements.

3. Line numbers
The generated binary code includes line numbers
so that the runtime error listing can indicate on
which line each error occurs.

4. RETURN
Each RETURN statement is checked for a prior
GOSUB statement.

Without the /D switch set, array bound errors,
RETURN without GOSUB errors, and arithmetic
overflow errors do not generate error messages at
compile time or runtime. The result may be erroneous
program execution.

/N The /N switch relaxes line numbering constraints.
When /N is specified, line numbers in the source file
may occur in any order, or they may be eliminated
entirely.
With /N, lines are compiled normally, but unnum­
bered lines cannot be targets for GOTO or GOSUB
statements. While /N is set, the underline character
causes the remainder to the physical line to be
ignored. Also, /N causes the underline character to
act as a linefeed so that the next physical line
becomes a continuation of the current logical line.

5-10 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 5
COMPILING

There are three advantages to using the /N switch:
1. Elimination of line numbers increases program

readability.

2. GW-BASIC Compiler optimizes over entire
blocks of code rather than single lines (for
example in FOR/NEXT loops.)

3. GW-BASIC source code may more easily be
included in a file with the $INCLUDE
metacommand.

NOTE: /N should not be used with /4.

/0 The /0 switch tells the compiler to substitute the
BASCOMG.LIB runtime library for BASRUNG.LIB
as the default runtime library searched by the linker.
This switch cannot be used with the runtime module.
Any EXE files created by linking to BASCOMG.LIB
do not need the runtime module on disk at runtime.

/R The compiler normally stores arrays in column major
order. The /R switch instructs the compiler to store
arrays in row major order. This permits languages,
such as Microsoft Pascal Compiler, which normally
store arrays in row major order, to access such
arrays. Note that the GW-BASIC Interpreter and
Microsoft FORTRAN Compiler store and access
arrays in column major order.

/S The /S switch forces the compiler to write quoted
strings that exceed four characters to an OBJ file on
disk as they are encountered, rather than retaining
them in memory during the compilation of the
program. If this switch is not set, and the program
contains a large number of long quoted strings, the
user may run out of memory at compile time.
Although the /S switch reduces the amount of
memory used at compile time, it may increase the
amount of memory needed in the runtime environ­
ment, since multiple instances of identical strings
will exist in the program. Without /S, references to
multiple identical strings are combined so that only

GW-BASIC COMPILER USER'S GUIDE 5-11

CHAPTER S
COMPILING

one instance of the string is necessary in the final
compiled program.

5.4 CONFIGURING FOR GW-BASIC
Before you execute a compiled GW-BASIC program, you may need to
first run the GW-CONF routine. GWCONF, which is on the
GW-BASIC Compiler disk, is used to define configuration informa­
tion to GW-BASIC. Specifically, you must run GWCONF if any of the
following conditions apply to your compiled GW-BASIC program:

• You are using a printer to print graphics.
• You want to print either red or blue memory.
• You are using communications.

You must define your printer even if you’ve already defined it with
the MS-DOS Configure routine: GW-BASIC requires additional
information.

The following table summarizes what information you can specify
with GWCONF. Note that if you select a printer with a serial
interface, certain definitions are automatically set up.

Initial Definition With GWCONF

Printer None EPSON FX80
ITOH M8510A (bi-directional)
ITOH M8510A (one-directional)
None

Serial Printer
Interface:
— Stop Bits 1 1 1/2 or 2
— Parity even disabled or odd
— Character 7 bits 5, 6, or 8

length
— Baud rate 9600 50 - 19200

Memory
Printout

Green Red or blue

Communication Port 1 = 00 hex 30, 38,60,68,(70(78,
Port Addresses Port 2 = 00 hex B0, B8, CO, C8.

To use GWCONF, insert the GW-BASIC Compiler disk. (MS-DOS
must already be loaded.)

NOTE: The GW-BASIC Compiler disk may be inserted either in
drive A or drive B. On single flexible disk drive systems,
disk “swapping” must be performed.

5-12 GW-BASIC COMPILER USER S GUIDE

CHAPTER 5
COMPILING

Type GWCONF; you see the following screen:

1) Select Printer
2) Modify Color for Screendump
3) Modify Communication Ports
4) Exit Program

* Enter Your Selection

For each entry, further screens guide you through your definition.
Although the screens are self-explanatory, some usage conventions
may be helpful. (This description, however, assumes you know the
communications port addresses for your configuration. This informa­
tion is detailed in the “System Technical Manual, Part 1, Hardware/')

You can select any of the three memories for your screen dump, but
you can only print one at a time; therefore, if you want to print all
three images, you must use GWCONF before each print run.

If you have a monochrome machine, you must select green foreground
color dump before executing your program.

The Exit Program function is used after you complete your
modifications. When specified, the software displays:

1) Update O.S. disk in drive A
2) Return to main program
3) Exit CONFIG

* Enter Function

Function 1 is used to have the new configuration information written
to MS-DOS master disk; be sure the MS-DOS is in drive A. If the
modifications are only temporary (for the current run), use function
3; the changes are only made in memory.

After you run GWCONF, you are ready to execute your GW-BASIC
program.

GW-BASIC COMPILER USER’S GUIDE 5-13

Chapter 6

Linking

Compiled object files must be linked to one of the runtime libraries
before they can be executed. This section explains the differences
between the two runtime libraries available with GW-BASIC. For
discussion of how to use the linker, see your MS-DOS documentation.

There are two ways to link an object file:

1. Link to the BASRUNG.LIB runtime library.

2. Link to the BASCOMG.LIB runtime library.

In the first case, the runtime module (BASRUNG.EXE) is used at
runtime. The runtime module contains the routines most commonly
used during runtime. In the second case, selected routines are linked
to the OBJ file to create a single EXE file that does not need the
runtime module.

The default and preferred method is to link to the BASRUNG.LIB
runtime library. In some cases (described below), the second method
may be preferable. In either case, the goal is to produce an executable
EXE file by processing a compiler-produced OBJ file with MS-LINK.

6.1 LINKING TO BASRUNG.LIB RUNTIME LIBRARY
MS-LINK links programs, assembly language routines, and library
routines. This allows you to incrementally develop large programs by
separately compiling or assembling parts of a program and then
linking those parts together.

For example, assume that you have created a GW-BASIC program
named PROG.BAS that uses two external assembly language
procedures, ASM1.ASM and ASM2.ASM. Assume also that the
program has already been compiled, and that the assembly language
routines have already been assembled. The files created from the
compilation and assemblies are:

GW-BASIC COMPILER USER'S GUIDE 6-1

CHAPTER 6
UNKING

PROG.OBJ
ASM1.0BJ
ASM2.0BJ

To link these all together, first invoke MS-LINK:

A: LINK

MS-LINK prompts you for the names of the .OBJ files that you want
to link together. At this point, respond to the prompts as follows:

Object Modules [.OBJ]: PROG+ASM1 + ASM2
Run File [A:PROG.EXE]:;

MS-LINK automatically links your .OBJ file to routines in
BASRUNG.LIB. (If you want to link to BASCOMG.LIB, you must use
the /0 compiler switch. This is described in Section 6.2, “Linking to
BASCOMG.LIB Runtime Library.”) Not using the /0 switch means
that MS-LINK searches the runtime library for the routines that are
to be linked to the final load module.

In very rare cases, you might want to explicitly specify a search of
BASRUNG.LIB. If you wish to link object modules without any
library modules (which is also a very rare circumstance), you must
give MS-LINK an empty library to search. Refer to the manuals that
are supplied with your MS-DOS software if you need additional
information on these special applications.

Linking with the BASRUNG.LIB runtime library provides the
following advantages:

1. COMMON and CHAIN statements can be used to support a
system of programs sharing common data. With BASCOMG.LIB,
COMMON is not supported, and CHAIN is the semantic equiva­
lent of RUN.

2. The BASRUNG.EXE runtime module resides in memory, and
therefore does not need to be reloaded for each program in a
system of chained programs.

3. The routines in BASRUNG.EXE are not incorporated into your
EXE file. Therefore, for a system of several EXE files on a disk,
considerably less disk space will be required than with
BASCOMG.LIB.

4. Code generated by linking with BASRUNG.LIB can be as much as
15 to 20 percent shorter than the code generated by linking with
BASCOMG.LIB.

6-2 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 6
LINKING

6.2 LINKING TO BASCOMG.LIB RUNTIME LIBRARY
When BASCOMG.LIB is selected as the library to be searched, the
program does not use the runtime module, BASRUNG.EXE.

This is because linking with BASCOMG.LIB produces a single EXE
file that already contains the library routines needed for execution.

If the program is to be linked to the BASCOMG.LIB library, the /0
switch must be specified at compile time. When /0 is specified, the
alternate runtime library (BASCOMG.LIB) is substituted for
BASRUNG.LIB as the default library to be searched at link time.

In the following cases, it might be advantageous to link with
BASCOMG.LIB rather than with BASRUNG.LIB:

1. For small, simple programs that do not require all the routines in
the runtime module, you may save space by linking with
BASCOMG.LIB.

2. With BASCOMG.LIB, execution of a compiled and linked EXE
file does not require that the runtime module be on disk at
runtime.

3. With BASCOMG.LIB, programs execute slightly faster than
programs linked with BASRUNG.EXE because the runtime
routines are invoked through 8086 intersegment calls. With
BASRUNG.LIB, the runtime routines are invoked through
software interrupts.

Three precautions should be taken when linking GW-BASIC pro­
grams:

1. The /DSALLOCATION switch should always be set (this is the
default).

2. Your programs should always be loaded low (i.e., the /HIGH
switch should not be used.)

3. The name of the GW-BASIC program should always be given as
the first .OBJ file to be loaded; otherwise (e.g., if an assembly
language module is loaded first), segments may be ordered
incorrectly.

GW-BASIC COMPILER USER’S GUIDE 6-3

Chapter 7

Running a Program

To run a program that has been compiled and linked, enter the
filename without its .EXE filename extension. For example:

B: DEMO
This command executes the program DEMO.EXE. If the program
DEMO.EXE was linked to BASRUNG.LIB, the BASRUNG.EXE
runtime module is loaded from the default drive (drive B: in this
example). If BASRUNG.EXE is not on the default drive, then the
runtime system looks for it in the A: drive. If it is still not found, the
following message is displayed:

Cannot find A:BASRUNG.EXE
Enter new drive letter:

At this point, enter the drive where the file is located, followed by a
<RETURN>. Once the runtime module is loaded, execution of the
file named B:DEMO.EXE begins.
The executable binary file can also be executed from within a
program, as in the following statement:

10 RUN ‘TROG”
The default extension is .EXE. Note that an .EXE file can be a binary
file created in any programming language. The CHAIN statement is
used similarly. In either case, an executable binary file is loaded. The
runtime module is not reloaded when you use CHAIN; it is when you
use RUN.
The bulk of the runtime environment is taken up by the runtime
module. This module is automatically loaded when you initially
invoke an .EXE file requiring the runtime module. When you RUN a
program, the .EXE file is loaded into memory. Both the program and
the runtime module files reside in memory simultaneously. See
Appendix C, “Memory Maps,” for a diagram of a runtime memory
map.

GW-BASIC COMPILER USER’S GUIDE 7-1

Chapter 8

Metacommands

Metacommands are compiler directives that control source files and
listing files. The available metacommands are listed in Table 8, below,
and are described in the text following the table.

Name Description

$INCHJDE:‘<filenam e>’ Switches compilation from current source file to
source file given by <filename>.

$LIST{ + |-} Turns on/off source file listing.
Errors are always listed.

$‘OCODE{ +| -} Turns on or off disassembled object code listing.

$TITLE:‘< te x t> ’ Sets page title.

$SUBTITLE:'<text>’ Sets page subtitle.

$LINESIZE:n Sets width of listing.
Default is 80 characters.

$PAGESIZE:n Sets length of listing in lines.
Default is 66 ; 60 are printable.

$PAGE Skips to next page. Line number is reset.

$PAGEIF:n Skips to next page if less than (n) lines left.

$SKIP:n Skips (n) lines or to end of page.

Table 8 The Metacommands

8.1 SYNTAX
One or more metacommands can be given at the start of a comment.
Multiple metacommands are separated by the whitespace characters
space, tab, or linefeed. Whitespace between parts of a metacommand
is ignored. Therefore, the following metacommands are equivalent:

GW-BASIC COMPILER USER'S GUIDE 8-1

CHAPTER 8
METACOMMANDS

REM $PAGE:12
REM $PAGE : 12

Note, however, that no space may appear between the dollar sign and
the rest of the metacommand.

Except for $INCLUDE, the metacommands affect the source listing
only. Many metacommands can be turned on and off within a listing.
For example, most of a program might use $OCODE-, with a few
sections using $OCODE+ as needed. However, some metacommands,
due to their nature, apply to an entire compilation.

The following rules apply to the use of metacommands:

1. A metacommand followed by a plus sign (+) or minus sign (-) is
an on/off switch.

2. A metacommand followed by :n requires an integer (0 < n > 256).

3. A metacommand followed by :‘< te x t> ’ requires a string of
characters enclosed in single quotation marks.

8.2 DESCRIPTIONS

$INCLUDE:‘< file n a m e > ’
The $INCLUDE:‘<filenam e>, metacommand tells the compiler to
switch processing from the current source file to the GW-BASIC file
given by the <filename> parameter. When the end-of-file is reached
in the included source file, the compiler switches back to the original
source file and continues compilation. Resumption of compilation in
the original source file begins with the line of text that follows the
line in which the $INCLUDE occurred. Therefore, REM $INCLUDE
should always be the last statement on its line, since the remainder of
the line is always treated as part of a comment.

Included files may be subroutines, single lines, or partial programs.
<filename> must be surrounded by single quotation marks. The
default extension is BAS.

Take care that any variables in the included files match their
counterparts in the main program, and that included lines do not
contain erroneous code such as GOTO statements to nonexistent lines
or END statements.

These further restrictions must be observed:

8-2 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 8
METACOMMANDS

1. Included files must be in ASCII format; i.e., they must have been
saved with the ,A option if they were created from within the
GW-BASIC Interpreter.

2. Included lines must be numbered in ascending order.

3. The lowest line number of the included lines must be higher than
the line number of the $INCLUDE metacommand in the main
program.

4. The range of line numbers in the included file must numerically
precede subsequent line numbers in the main program. This and
the two previous restrictions are removed if the main program is
compiled with the /N switch set, since line numbers need not be in
ascending order in this case.

5. $INCLUDE metacommands can be nested to five levels, counting
the main source program.

6. The $INCLUDE metacommand must be the last statement on a
line, and must be part of a comment statement, as in the following
statement:

999 DEFINT I-N : REM $INCLUDE: ‘COMMON.BAS’

All other metacommands are designed to control the source file
listing (see below). Note, however, that none of the remaining
metacommands have any effect if NUL.LST is the name of the source
listing file.

$LIST{+ I -}
The $LIST+ metacommand turns on the source listing; $LIST turns
it off. Metacommands themselves appear in the listing, except for
$LIST-.

$OCODE{+ I -}
Controls listing of the generated code in the listing file.

For each GW-BASIC source line, code addresses and operation
mnemonics are listed. $OCODE- turns off listing of the generated
code, even if the /A switch is used when the compiler is invoked.
$OCODE+ turns on the generated code listing, regardless of the use
of /A.

GW-BASIC COMPILER USER S GUIDE 8-3

CHAPTER 8
METACOMMANDS

$TITLE:‘< te x t> ’
Prints the title specified by < tex t> at the top of each page of the
source file listing. The string < tex t> must not exceed 59 characters.

$SUBTITLE:‘< te x t> ’
Prints the subtitle specified by < tex t> beneath the title at the top of
each page of the source file listing. The string < tex t> must not
exceed 59 characters.

$LINESIZE:n
Sets the maximum length of lines in the source listing file. The
default length is 80 characters. The number of characters printed per
line is (n -1). The integer n must be greater than 40.

$PAGESIZE:n
Sets the maximum size of a page in the source file listing. The default
size is 66 lines. In order to allow space for the page header, a page has
(n-6) lines printed on it. The integer n must be 15 or greater.

$PAGE
Forces a new page in the source file listing. The page number of the
listing file is automatically incremented.

$PAGEIF:n
Conditionally performs $PAGE, above, if there are fewer than n
printed lines left on the page. If there are n or more lines left on the
page, no action is taken.

$SKIP:n
Skips n lines in the source listing file. If there are fewer than n lines
left on the current page, the listing skips to the start of the next page.

8-4 GW-BASIC COMPILER USER S GUIDE

Chapter 9

A Compiler/lnterpreter Comparison

The differences between the languages supported by the GW-BASIC
Compiler and the GW-BASIC Interpreter fall into three categories:
operational differences, implementation differences, and language
differences. This section describes operational and implementation
differences. Compiler metacommands are described in Chapter 8.
Other language differences (commands, statements, and functions)
are described in the NCR GW-BASIC Reference Manual.

9.1 OPERATIONAL DIFFERENCES
Certain commands are designed for the interactive programming
environment of GW-BASIC Interpreter and are not used with the
GW- BASIC Compiler. These commands are:

AUTO
CONT
DELETE
EDIT
LIST
LLIST
LOAD
MERGE

I NEW
RENUM
SAVE

Other commands, however, are used with the compiler but not with
the interpreter. These commands are called “metacommands.”

9.2 IMPLEMENTATION DIFFERENCES
Implementation differences include:

1. Floating-Point Calculations

Numeric calculations involving numbers with a large number of
decimal places may not exactly produce the same results as the

GW-BASIC COMPILER USER’S GUIDE 9-1

CHAPTER 9
COMPILER/INTERPRETER

same calculations performed with the interpreter. This differ­
ence affects only calculations involving very precise numbers.

2. Expression Evaluation

During expression evaluation, the GW-BASIC Compiler converts
operands of different types to the type of the more precise
operand.

For instance, the following expression causes J% to be converted
to single precision and added to A!:

QR=J% + A! + Q#

The resultant sum is then converted to double precision and
added to Q#.

Note that the GW-BASIC Compiler is more limited than the
interpreter in handling numeric overflow. For example, when run
on the interpreter, the following statements yield 40000 for A%:

1% =20000
J % =20000
A% =1% +J%

That is, J% is added to 1%. Because the number is too large for an
integer representation, the interpreter converts the result into a
floating-point number. The result (40000) is found and converted
back to an integer and saved as A%.

The GW-BASIC Compiler, however, must make type conversion
decisions during compilation. It cannot defer until actual values
are known. Thus, the compiler generates code to perform the
entire operation in integer mode and arithmetic overflow occurs.
If the /D (Debug) switch is set, the error is detected. Otherwise,
an incorrect answer is produced.

When the above example is executed with the compiler, the 1%
+ J% yields the integer value -25536, which is then converted to a
floating-point value and saved in A%.

Besides these type conversion decisions, the compiler performs
certain valid optimizing algebraic transformations before gener­
ating code. For example, the following program could produce an
incorrect result when run:

9-2 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 9
COMPILER/INTERPRETER

1% =20000
J% =-18000
K% =20000
M%=I%+J%+K%

If the compiler actually performs the arithmetic in the order
shown, no overflow occurs. However, if the compiler performs
I%+K% first and then adds J%, overflow does occur. The
compiler follows the rules of operator precedence. But no other
guarantee of evaluation order can be made; even the use of
parentheses may not always direct the order of evaluation.

3. Integer Variables
To produce the fastest and most compact object code possible, use
integer variables whenever possible. For example, the following
program executes approximately 30 times faster when the loop
control variable “I” is replaced with “I%”, or when I is declared
an integer variable with DEFINT.

FOR 1 = 1 TO 10
A(I) = 0
NEXT I

It is especially advantageous to use integer variables to compute
array subscripts. The generated code is significantly faster and
more compact.

4. Double Precision Arithmetic Functions
The GW-BASIC Compiler allows use of double precision floating­
point numbers as operands for arithmetic functions, including all
of the transcendental functions (SIN, COS, TAN, ATN, LOG,
EXP, and SQR). Only single precision arithmetic functions are
supported by the interpreter.

5. Double Precision Loop Control Variables
The compiler, unlike the interpreter, allows the use of double
precision loop control variables. This lets you increase the
precision of the increment of increase the range of loops.

6. String Size
The compiler supports strings of up to 32767 characters. To
support such an implementation, each string descriptor requires
4 bytes of memory. (

^ / v v t L V V*' ?
7. String Space Implementation V'

(r\ f (. £* C . t I C t-vA—

GW-BASIC COMPILER USER'S GUIDE 9-3

CHAPTER 9
COMPILER/INTERPRETER

The compiler and interpreter differ in their implementation and
maintenance of string space. Using either POKE with PEEK and
VARPTR, or using assembly language routines to change string
descriptors may cause a “String Space Corrupt” error message.

9-4 GW-BASIC COMPILER USER’S GUIDE

Chapter 10

Communications

This chapter describes the BASIC statements required to support
RS-232 asynchronous communication with other computers and
peripherals (with or without XON-XOFF Protocol). Note that the
NCR GW-BASIC Compiler also supports K211 and K215 asynchro­
nous interfaces.

10.1 OPENING A COMMUNICATIONS FILE
The OPEN COM statement allocates a buffer for input/output in the
same manner as the OPEN statement for disk files. Refer to the
OPEN COM statement in Chapter 4 of the NCR GW-BASIC Reference
Manual.

10.2 COMMUNICATION I/O
Because the communications buffer is opened as a file, all sequential
input/output statements which are valid for disk files are valid for
communications.

Communications sequential input statements are the same as those
for disk files. They are:

INPUT#
LINE INPUT#
INPUT$

Communications sequential output statements are also the same as
those for disk files. They are:

PRINT
PRINT USING
WRITE#

Refer to your NCR GW-BASIC Reference Manual for details on format
and usage of the above statements and functions.

GW-BASIC COMPILER USER'S GUIDE 10-1

CHAPTER 10
COMMUNICATIONS

10.2.1 I/O FUNCTIONS
The most difficult aspect of asynchronous communication is process­
ing characters as fast as they are received. At rates above 2400 bps it
is necessary to suspend character transmission from the host long
enough for characters already received to be processed. This can be
done by sending XOFF (CONTROL-S and XON (CONTROL-Q) to the
host computer. XOFF tells the host to stop sending, and XON tells it
to resume sending.

There are three functions which help to determine when an overrun
condition may occur:

LOC(x) Returns the number of characters in the input buffer
which are waiting to be read. If more than 255
characters are in the buffer, LOC(x) returns 255. (The
input buffer can hold more than 255 characters, as
determined by the /C: option on the BASIC com­
mand.) If fewer than 255 characters remain in the
buffer, LOC(x) returns the actual amount.

LOF(x) Returns the amount of free space in the input buffer.
This is the same as /C:<size>-LOC(x), where size is
the size of the communications buffer as set by the
/C: option. The default size of the buffer is 256.

EOF(x) Returns true (-1) if the input buffer is empty; returns
false (0) if there are any characters waiting to be
read.

10.2.2 INPUTS FUNCTION
As a recommendation, use the INPUT$ function instead of the
INPUT# and LINE INPUT# statements when reading communica­
tions files, because it allows all characters read to be assigned to a
string. INPUT# stops input when it detects a comma or carriage
return.

INPUT# returns a string of x characters read from the file number Y.
The following statements are efficient in reading a communications
buffer:

10-2 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 10
COMMUNICATIONS

10 WHILE NOT EOF(l)
20 A$ = INPUT$(LOC(l),#l)
30 ...
40 ...
50 ...
60 WEND

If there are characters in the input buffer, the above statements
return the characters in the buffer into A$ and process them (lines 30,
40, 50, etc.). If there are more than 255 characters, only 255 at a time
will be returned to prevent string overflow. Further, if there are more
than 255 characters, EOF(l) is false, and input into A$ continues until
the buffer is empty.

10.2.3 GET AND PUT STATEMENTS FOR
COMMUNICATIONS
GET and PUT are only slightly different for communications files
than for disk files.

Syntax GET <file number>,<nbytes>
PUT <file number>,<nbytes>

file number
Specifies file number under which the file was
opened.

nbytes
Specifies number of bytes to be transferred into or
out of the communications file.

Purpose Allows for fixed length I/O to or from the communi­
cations file.

Remarks Because of the low performance associated with
telephone line communication, it is recommended
that GET and PUT not be used in such applications.

10.3 CONTROL SIGNALS
This section contains information about control signals which you
may need to know in order to communicate with another computer or
peripheral.

GW-BASIC COMPILER USER S GUIDE 10-3

CHAPTER 10
COMMUNICATIONS

10.3.1 OUTPUT SIGNALS
When you start BASIC on the NCR Decision Mate V, the Request to
Send (RTS) and Data Terminal Ready (DTR) signal lines are not
turned on until an OPEN COM statement is performed. You can
suppress the RTS signal by specifying the RS option in the OPEN
COM statement (refer to Chapter 4 of your GW-BASIC Reference
Manual). Unless suppressed, the line stays on until the communica­
tions file is closed by CLOSE, END, NEW, RESET, SYSTEM, or RUN
without the R option. If an OPEN COM statement fails, the lines
remain on. You may then retry the OPEN COM statement without
using a CLOSE statement.

10.3.2 INPUT SIGNALS
If either the Clear To Send (CTS) or Data Set Ready (DSR) signal
lines are off, you cannot run an OPEN COM statement. BASIC
returns a “Device Timeout” error after one second. You can, however,
specify if and how you want these lines tested by using the CS and DS
options in the OPEN COM statement.
If the CTS or DSR line signals are off while a program is running, I/O
statements associated with the communications file will not work,
and a “Device Fault” or “Device Timeout” error occurs.
If the host computer is running a program and the satellite computer
sends characters, only one character will be saved in the host’s
hardware interface. Then the next time a communications statement
is run by the host computer, a “Device I/O” error occurs. This
indicates an overrun on the host’s hardware interface.

10.4 SAMPLE PROGRAM
The following program enables the NCR DECISION MATE V to be
used as a conventional terminal. In addition to full-duplex communi­
cation with a host, the program allows data to be downloaded
(written) to a file, and conversely, a file may be up-loaded (transmit­
ted) to another machine.
In addition to demonstrating the elements of asynchronous commu­
nications, this program should be useful in transferring BASIC
programs and data to and from the NCR DECISION MATE V.

Notes on the Sample Program

Line No. Comments

When starting GW-BASIC, set the /F: switch
to 3.

10-4 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 10
COMMUNICATIONS

10

20

NOTE:

30

35-40

50

70

100-130

200-280

Sets the screen to normal alpha mode.

Turns off the programmable function key dis­
play, clears the screen, and makes sure that all
files are closed.

Asynchronous implies character I/O as opposed to line or
block I/O. Therefore, all PRINTs (either to the communica­
tions file, the screen, or a disk file) are terminated with a
semicolon (;). This stops the carriage return normally
issued at the end of a PRINT statement.

Defines all numeric variables as integers. This is
primarily for use in the subroutine at lines
500-660. Any program looking for speed optimi­
zation should use integer counters in loops
wherever possible.

Clears the 23rd line starting at column 1.

Defines Boolean true and false.

Defines the ASCII XON and XOFF characters.

Prints program identification and asks for baud
rate (speed). Opens communications to file num­
ber 1 with even parity, 7 data bits, and a line feed
(LF) following every carriage return.

This section gives you a menu for receiving data
at your screen or on a file, or for transmitting
data from your keyboard or from one of your
files.

1. You are asked how many characters have to be
received on your communication line before
they are displayed on the screen.

2. Reads one or more characters from the key­
board into A$ and transmits A$. You are
guided by the menu to continue.

3. If only a space is entered, wait for n characters
and print them when received.

GW-BASIC COMPILER USER’S GUIDE 10-5

CHAPTER 10
COMMUNICATIONS

4. If the character was M only, then the user is
ready to down-load a file, so get file name.

5. If you entered an E only, the program will stop
at 9000-9040.

6. If the input (A$) is not M, E, or space, send it by
writing to the communication file (PRINT
#1...), as described in step 2, and at line 230 go
back to menu.

7. At lines 250-260, read and display contents of
communications buffer (as much as selected by
n) on screen. Continue with 1.

300-310 Get disk file name to be used

400-430 Asks if file name is to be transmitted (up-loaded)
or received (down-loaded) and opens file.

490-540 The received data will fill an array of 126
positions unless an end-of-file character (line
530) was received, which closes the file.

550-620 Before writing to the selected disk file, an XOFF
is sent to the transmitter. Two additional charac­
ters (lines 560-590) may be read after the 126
positions are filled and before the transmitter
gets the XOFF.

625 When the array is completely written to disk file
and XON is sent to the transmitter, the transmit­
ter continues sending.

630 Continue receiving as at line 500.

640-680 For end-of-file, write last characters to file and
close it. Continue again at the menu.

800-880 This is a waiting routine used when the transmit­
ter also receives characters. If the transmitter
receives an XOFF, wait until XON is received
before continuing transmission.

10-6 GW-BASIC COMPILER USER’S GUIDE

CHAPTER 10
COMMUNICATIONS

1000-1060

9000-9040

1 0 S C R E E N 0
2 0 KEY O F F : C L S : C L O S E
3 0 D E F I N T A - Z
3 5 L OC A T E 2 3 , 1
4 0 P R I N T S T R I N G S (6 0 . " ")
5 0 F A L S E = 0 : T R U E = NOT F A L S E
7 0 X 0 F F $ = C H R $ (1 9) : X O N $ = C H R $ (1 7)
1 0 0 L OC A T E 2 3 , 1 : P R I N T " A s y n c T T Y P r o g r a m
1 1 0 L OC A T E 1 , 1 : L I N E I N P U T " s p e e d ? " ; S P E E D $
1 2 0 C O M F I L $ = " c o m l : ” + S P E E D S + " , e , 7 , , L F
1 3 0 OP E N C O M F I L S AS # 1
1 4 0 OP E N ” s c r n : " FOR OU T P U T AS # 2
2 0 0 L OC A T E 1 , 1 : L I N E I N P U T " o n r e c e i v i n g , w a i t f o r n c h a r , n = ” ; N $
2 0 3 N % = V A L (N S)
2 0 5 L OC A T E 3 , 1 : P R I NT " p r e s s a n y k e y s f o r t r a n s m i s s i o n "
2 0 6 P R I N T " e x c e p t : M f o r f i l e i / o "
2 0 7 P R I N T " o r s p a c e f o r r e c e i v i n g "
2 0 8 P R I N T " o r E f o r e n d i n g p r o g r a m "
2 0 9 L I N E I N P U T : AS
2 1 0 I f AS =" " T HE N 2 5 0
2 1 1 I F AS = ”M" T HE N 3 0 0
2 1 2 I F A $ = ” E ” T HE N 9 0 0 0
2 2 0 P R I N T # 1 . A S ;
2 3 0 GOTO 2 0 0
2 5 0 A $ = I N P U T S (N % , # 1)
2 6 0 P R I N T # 2 , A S :
2 8 0 GOTO 2 0 0
3 0 0 L OC A T E 8 . 1
3 1 0 L I N E I N P U T " f i l e ? " ; D S K F I L $
4 0 0 L OC A T E 9 . 1
4 1 0 L I N E I N P U T " (T) r a n s m i t o r (R e c e i v e ? " ; T X R X $
4 2 0 I F T X R X S = " T " T HE N O P E N D S K F I L $ FOR I N P U T AS # 3 : G O T O 1 0 0 0
4 3 0 O P E N D S K F I L $ F OR O U T P U T A S # 3
4 9 0 D I M B U F S (1 2 8)
5 0 0 FOR J = 1 TO 1 2 6
5 2 0 B U F S (J) = I N P U T S (1 . # 1)
5 3 0 I F B U F S (J) = C H R $ (2 6) THE N GOTO 6 4 0
5 4 0 N E X T J

This is a transmit routine. Until the end of the
disk file:
Read one character into A$ with INPUT$ state­
ment. Send character to communications device
in 1015. (If a character is received, the waiting
routine for XON in case of XOFF is called, line
1015.) Send a CONTROL-Z at the end-of-file in
line 1040 in case the receiving device needs one to
close its file. Finally, in lines 1050 and 1060, close
disk file, print completion message, and go back
to conversation mode in line 200.

These lines are run if you enter E in response to
your menu. These lines close the communications
file and the screen output file, restore the
programmable function key display, and end the
program.

GW-BASIC COMPILER USER S GUIDE 10-7

CHAPTER 10
COMMUNICATIONS

5 5 0 P R I N T # 1 . X O F F $;5 6 0 I F L O C (1) = 0 T H E N K = 1 2 6 : G O T O 6 0 0 5 7 0 B U F $ (1 2 7) = I N P U T $ (1 . # 1)5 8 0 I F L O C (1) = 0 T H E N K = 1 2 7 : G O T O 6 0 0 5 8 5 B U F $ (1 2 8) = I N P U T $ (1 . # 1)5 9 0 K = 1 2 86 0 0 F O R 1 = 1 T O K6 1 0 P R I N T # 3 , B U F $ (I) :6 2 0 N E X T I6 2 5 P R I N T #1 , X O N $;6 3 0 G O T O 5 0 06 4 0 F O R 1 = 1 T O J6 5 0 P R I N T ft 3 , B U F $ (I) :6 6 0 N E X T I6 7 0 C L O S E # 3 : C L S : L O C A T E 2 4 , 1 0 : P R I N T ” * d o w n l o a d c o m p l e t e * ”6 8 0 G O T O 2 0 08 0 0 B $ = I N P U T S (1 . # 1)8 1 0 I F B $ = X O F F $ T H E N G O T O 8 5 0 8 2 0 P R I N T #2 . B $;8 3 0 I F L O C (1) = 0 T H E N R E T U R N8 4 0 G O T O 8 0 08 5 0 B $ = I N P U T S (1 . # 1)8 6 0 I F B $ = X O N $ T H E N R E T U R N 8 7 0 P R I N T # 2 , B $;8 8 0 G O T O 8 5 01 0 0 0 W H I L E N O T E O F (3)1 0 1 0 A $ = I N P U T S (1 . ffS)1 0 1 5 P R I N T # 1 . A S ;1 0 2 0 I F L O C (1) > 0 T H E N G O S U B 8 0 0 1 0 3 0 WE N D1 0 4 0 P R I N T # 1 , C H R $ (2 6) ; c t r l - z t o m a k e c l o s e f i l e .1 0 5 0 C L O S E # 3 : C L S : L O C A T E 2 3 , 1 0 : P R I N T ” * * u p l o a d c o m p l e t e * * * ;1 0 6 0 G O T O 2 0 09 0 0 0 C L O S E #19 0 1 0 C L O S E ft29 0 3 0 K E Y ON9 0 4 0 E N D
NOTE: In the above example, for baud rates of 4800 bps and above,

you must include the following line:

1014 FOR 1=1 TO 10:NEXT

As mentioned earlier, when developing a communications
program, you should consider both the host computer’s and
satellite computer’s baud rates. If a “Device I/O” error
occurs, this usually indicates an overrun on the hardware
interface, and you should adjust your program.

10-8 GW-BASIC COMPILER USER'S GUIDE

Appendix A

Creating a System of Programs with
the Runtime Module

The CHAIN with COMMON feature and the runtime module are
designed for creating large systems of GW-BASIC programs that
interact with each other. In this appendix, a hypothetical system will
be described to show the interactions in a large system design.

The following integrated accounting system contains separate
packages for general ledger, accounts payable, and accounts receiva­
ble. Entry into each package is controlled by a main menu program.
The system structure is shown in Figure A-l.

GL01 GL02 GL03 AP01 AP02 AP03 AR01 AR02 AR03

Figure A-1 Sample Program Structure

In order to use CHAIN with COMMON features effectively, it is
important to logically structure the system and the COMMON
information. In the system pictured above, COMMON information
exists within each of the packages GL, AP, and AR. Each package
contains a system of three separately compiled programs. Further­
more, there may be COMMON information between MENU and each
of the packages. There may be overlapping sets of COMMON

GW-BASIC COMPILER USER’S GUIDE A-1

APPENDIX A
RUNTIME MODULE

information in the lower level programs if the different application
systems always transfer to each other through a main menu.
For the preceding diagram, the use of CHAIN in each of the major
programs is outlined in the following program fragments:

MENU.BAS

10
1000
1010
1020

REM $INCLUDE: ‘SYSCOM’
IF MENU=1 THEN CHAIN “GL”
IF MENU=2 THEN CHAIN “AP”
IF MENU=3 THEN CHAIN “AR”

GL.BAS General Ledger

10
100
1000
1010
1020
1030

REM $INCLUDE: ‘SYSCOM’
REM $INCLUDE: ‘GLCOMDEF’
CHAIN “GL01”
CHAIN “G102”
CHAIN “GL03”
IF MENU= YES THEN CHAIN “MENU”

AP.BAS Accounts Payable

10
100
1000
1010
1020
1030

REM $INCLUDE: ‘SYSCOM’
REM $INCLUDE: ‘APCOMDEF’
CHAIN “AP01”
CHAIN “AP02”
CHAIN “AP03”
IF MENU = YES THEN RUN “MENU”

AR.BAS Accounts Receivable

10
100
1000
1010
1020
1030

REM $INCLUDE: ‘SYSCOM’
REM $INCLUDE: ‘ARCOMDEF’
CHAIN “AR01”
CHAIN “AR02”
CHAIN “AR03”
IF MENU= YES THEN RUN “MENU”

Each of the lower level programs XXXY
(XX = GL,AP,AR,YY=01,02,03) should CHAIN back to the package
main program XX. During the execution of a CHAIN statement, the
runtime module remains in memory and is not reloaded for each
CHAINed program.

A-2 GW-BASIC COMPILER USER’S GUIDE

APPENDIX A
RUNTIME MODULE

Unless the COMMON values are changed, modifying one program in
the system requires that only that program be recompiled. For
example, program GL01 can be changed and recompiled without
recompiling GL02 and GL03.

GW-BASIC COMPILER USER S GUIDE A-3

Appendix B

Source Listing Format

The source listing file format is described and illustrated in this
appendix. The discussion is keyed to the illustrated sample listing
program. In this sample listing program:

Every page has a heading at the top.
The left portion of the first two lines contains the user-assigned
title and subtitle, set with the metacommands $TITLE and
$SUBTITLE, respectively. If these metacommands appear on the
first source line, they take effect on the first page.
The right portion of the first line has the page number.
In some versions, the right side of the second line contains the
date, and the right side of the third line contains the time.
The “Offset” column specifies the hexadecimal offset from the
start of the .EXE file for each line of source.
The “Data” column specifies the hexadecimal offset from the
start of the data segment for any data values generated by the
source line.
The “Source Line” column contains a source line's line number,
along with the line itself. This line number and the source file
name identify runtime errors if appropriate error checking
options have been used.

Two kinds of compiler messages appear in the listing: errors and
warnings. A compilation with severe errors should not be linked. One
with only warnings can be used to generate code, but the result may
not execute correctly. Errors and warnings are listed in Appendix A
of your NCR GW-BASIC Reference Manual. Usually, the location of the
error in the source line is indicated with an up arrow (*), followed by
a two-character code. At times, however, an error in a line is not
immediately detected and the error indicator may point to the end of
a statement or the end of a line. This is normally the case with
TC(“too complex”) errors.

GW-BASIC COMPILER USER S GUIDE B-1

APPENDIX B
SOURCE LISTING FORMAT

GW-BASIC
Program

Offset Data

Page 1
01-01-84
12:00:00

Source Line Microsoft GW-BASIC Compiler V5-33

001A 0002 10 ‘ $TITLE: ‘MS-BASIC’ $SUBTITLE: ‘Program’
001A 0002 20 DEFINT A-Z
001A 0002 30 DIM A(10,10),B(10,10),C(10,10)
001A 0002 40 PRINT “ Start of program’’
0034 02D8 50 ‘ $OCODE+
0034 02D8 60 FOR 1 = 1 TO 10
0034 ** L00050:
0034 * * L00060: MOV AX,0001H
0037 ** JMP 100002
003A 02D8 70 FOR J = 1 TO 10
003A * ★ I00003:
003A * ★ L00070: MOV AX,0001H
003D * * JMP 100004
0040 02D8 80 A(I,J) = A(I-1,J-1) + B(I,J)*C(I,J)
0040 ** I00005:
0040 * * L00080: MOV AX,000BH
0043 ★ ★ IMUL J%
0047 * ★ XCHG AX,Dl
0048 ** ADD Dl,!%
004C ** SAL Dl,1
004E ** MOV BX,A%-0018H[DI]
0052 ** MOV AX,B%[DI]
0056 * * IMUL C%[DI]
005A ★ ★ ADD AX,BX
005C * * MOV A%[DI],AX
0060 02DC 90 NEXT
0060 * * L00090: MOV AX,J%
0063 * * INC AX
0064 ★ * 100004: MOV J%,AX
0067 ** CMP WORD PTR J%,0AH
006C ** JNG $-2EH
006E 02DC 100 NEXT
006E ** L00100: MOV AX,I%
0071 ★ * INC AX
0072 * * I0002: MOV l%,AX
0075 * * CMP WORD PTR l%,0AH
007A * * JNG $-42 H
007C 02 DC 110 ‘ $OCODE-
007C 02DC 120 PRINT “ End of program’’
0085 02DC 130 END

19216 Bytes Available
18411 Bytes Free

0 Warning Error(s)
0 Severe Error(s)

B-2 GW-BASIC COMPILER USER’S GUIDE

Appendix C

Memory Maps

This section contains illustrations of runtime memory maps for
programs linked to the two runtime libraries: BASRUNG.LIB and
BASCOMG.LIB. Linking to BASRUNG.LIB causes the runtime
module to be used at runtime.

GW-BASIC COMPILER USER'S GUIDE C-1

APPENDIX C
MEMORY MAPS

RUNTIME MODULE MEMORY MAP

space for EXE loader

BASRUNG.EXE

User stack

File buffers

String space

BC_DS
BC_CN
BC FT

BC_DATA
(user variables)

DATA
CONST

(subroutines)

COMMON (BLANK)

DATA
CONST

(RT_DATA)

CODE
(assembly language

or other subroutines)

BC_CODE
(compiled program)

MS-DOS area

Interrupt vectors

Top of user area

Top of DS,ES,SS
(64K maximum)
(default is 512 bytes)

Top of string space

(dynamic boundary)

Bottom of string space
Data statements
Numeric and string constants
Floating-point temporaries

GW-BASIC program
variables

Optional data area for
assembly language or
other subroutines

COMMON area (varies with program)

Runtime module data and constants
(fixed size is approx. 3K)

DS,ES,SS:0000
(if available)

Additional code
(no size restriction)

Compiled GW-BASIC code
(64K maximum)

Bottom of user area

0000:0000

C-2 GW-BASIC COMPILER USER’S GUIDE

APPENDIX C
MEMORY MAPS

ALTERNATE (BASCOMG.LIB) MEMORY MAP

Space for EXE loader

BC_CN
BC FT

BC_DATA
(user variables)

DATA
CONST

(subroutines)

COMMON (BLANK)

DATA
CONST

(RT_DATA)

CODE
(assembly language
or other subroutines)

BC_CODE
(compiled program)

MS-DOS area

Interrupt vectors

Top of memory
Top of DS,ES,SS

(64K maximum) (default is 512 bytes)
Top of string space

(dynamic boundary)

Bottom of string space
EXE file loader data (64 bytes)

Data statements
Numeric and string constants
Floating-point temporaries

GW-BASIC program
variables

Optional data area for
assembly language or
other subroutines

COMMON area (variable per program)

Runtime module data and constants
(fixed size is approx. 3K)

DS,ES,SS:0000
(if available)

Additional code
(no size restriction)

Compiled GW-BASIC code
(64K maximum)

Bottom of user area

0000:0000

GW-BASIC COMPILER USER’S GUIDE C-3

Appendix D

Runtime Segment Map

The segment maps for compiled programs under NCR GW-BASIC are
almost the same for versions with and without the runtime module.
The table below shows both versions.

Address With RT Module Without RT Module

Segment Class Segment Class

Low BC_CODE CODE BC_CODE CODE
CS CODE CODE

BC_INC IN IT BC_ICN I NIT
BC_IDS I NIT BC_IDS I NIT
I NIT I NIT I NIT I NIT

Low CONST RT_DATA CONST RT_DATA
DS DATA RT_DATA DATA RT_DATA

COMMON BLANK COMMON BLANK
CONST CONST CONST CONST
DATA DATA DATA DATA
BC_DATA DATA BC_DATA DATA
BC__FT DATA BC_FT DATA
BC_CN DATA BC_CN DATA
BC_DS DATA BC_DS DATA
RUN DATA RUN DATA

High STACK STACK STACK STACK
DS

Highest BASRUNG.EXE
memory Runtime module code

RUNTIME SEGMENT MAP

The segments BC ICN and BC IDS are block transferred to the
segments BC CN and BC DS at program initialization. Just before
the user program itself executes, the DS segment is moved down in

GW-BASIC COMPILER USER’S GUIDE D-1

APPENDIX D
RUNTIME SEGMENT MAP

physical memory over the segments of class INIT. If the runtime
module is used, then the data segment is moved to high memory under
the runtime module.

All the classes and segments in the data segment (DS) are in the
group DGROUP. The contents of the segments are as follows:

BC_CODE
CODE
BC_ICN
BC_IDS

INIT
CONST
DATA
COMMON
CONST

DATA

BC_DATA
BC_FT
BC_CN
BC_DS
RUN

STACK

Compiled user program
GW-BASIC runtime routines
User program constants (moved to BC_CN)
User program data statements (moved to
BC_DS)
Disposable runtime initialization code
Runtime initialized data values
Runtime uninitialized data values
User program COMMON area
User initialized data variables (assembly, MS-
Pascal, MS-FORTRAN)
User data variables (assembly, MS-Pascal, MS-
FORTRAN)
User program data variables
User program floating-point temporaries
User program constants
User program data statements
Relocatable data segment used by the RUN
statement
Stack segment required by loader (not used)

The string space and stack space are set up at initialization time. The
string space uses all the available space not occupied by code and data
(up to the 64K total for DS segment), except for 512 bytes reserved for
the stack. In general, while an GW-BASIC Compiler program is
running, the segment registers (DS, ES, and SS) are the same. CS
varies depending on whether the program or runtime code is
executing.

D-2 GW-BASIC COMPILER USER’S GUIDE

Appendix E

Assembly Language Routines

Note that the procedure for calling assembly language subroutines
from compiled programs differs slightly from the procedure used
with interpreted programs.

CALL STATEMENT
Invoking the CALL statement is the same as for the interpreter. The
format is:

CALL Cvariable name> [(argument list>)]

Cvariable name> contains the entry point of the subroutine
being called. (The entry point must be declared as PUBLIC
within the assembly language program that contains the
subroutine.)

<argument list> contains the variables or constants,
separated by commas, that are to be passed to the subroutine.

Routines written for the interpreter may be used with the compiler if
they take into account the difference in string descriptors (described
below) and declare the code segment as follows:

CODE SEGMENT BYTE PUBLIC ‘CODE’

. user code here

CODE ENDS

If an argument that is passed to the routine is a string, the
argument’s offset points to 4 bytes called the “string descriptor.”
Bytes 0 and 1 of the string descriptor contain the length of the string
(0 to 32767). Bytes 2 and 3, respectively, are the lower and upper 8 bits
of the string starting address in string space.

The string start address points to the first character in the string.

GW-BASIC COMPILER USER’S GUIDE E-1

APPENDIX E
ASSEMBLY LANGUAGE ROUTINES

WARNING

Do not tamper with the compiler string descriptors, or a
“String Space Corrupt77 error may result.

The following demonstration program shows how an assembler
routine should be written to be usuable from the compiler or the
interpreter. This routine may serve as a template for user's assembler
routines. If the routine is only going to be used with the compiler, then
the code under interpreter switches may be removed (or vice-versa).
The differences are:

1. String descriptors (see descriptions above).

2. Variables — Should be in DATA SEGMENT, GROUP DGROUP
for the compiler, and CODE SEGMENT for the interpreter. The
variables may be in the CODE SEGMENT for the compiler as
well, but less efficient code will result because of the need for
segment overrides.

title SAMPLE — Convert 16 bit integer to string

comment *

Demonstration program to show how to write assembler routines
callable from BASIC in either the interpreter or the compiler
implementation.

E-2 GW-BASIC COMPILER USER’S GUIDE

APPENDIX E
ASSEMBLY LANGUAGE ROUTINES

*

bascom = 1 ; = 0 if this is for the interpreter

code segment byte public ‘code’ ;enter exactly as shown

if bascom ;if compiler, put variables in DATA
;segment, otherwise it goes in
;the CODE segment — MASM puts in
;the segment overrides automatically

DATA segment byte public ‘rtdata’ ;enter exactly as shown

endif ;bascom
;any needed variables go here

flag db ?
separator db for US version

for European version
if bascom

DATA ends
DGROUP GROUP DATA ;if you have DATA this must be
present

assume ds:DGROUP, es:DGROUP

endif ;bascom

assume cs:code

publics proc far ;procs called from basic get far calls

;makstr —
y

; usage:

; entry:
y

; exit:

convert 16 bit integer to string, with commas
properly inserted.
ANS$ = SPC$(7)
‘must be a temporary string, not
‘a constant, don't do: ans$ = ”
CALL makstr (INT% , ANS$)
[SP + 4] - string descriptor of ANS$
[SP + 6]- value of INT%
number is right justified in string
SS,DS,ES,BP are preserved
SP is cleaned up
all others may be used

GW-BASIC COMPILER USER S GUIDE E-3

APPENDIX E
ASSEMBLY LANGUAGE ROUTINES

PUBLIC MAKSTR
makstr:

push bp
;Must be saved, subtracts 2 from SP
mov bp,sp
indexing off BP uses SS, not DS
add bp,4 + (2*2)
;4 byte rtn addr, 2 byte saving bp, 2 args
; ARGO at [bp]
; ARG1 at [bp-2]
; ARGn at [bp-(2*n)]
;** get the string descriptor
mov si,[bp-2] ;si has string descriptor

if bascom ;get string length in ax
lodsw ;length is word in compiler

else
lodsb
cbw

;length is byte in interpreter

endif
mov di,ax
lodsw ;ax - first char in string
dec di
add di,ax ;di - last char in string

mov byte ptr [di],“0”
;just in case it's zero

;** get the integer data to be converted
mov bx,[bp] ;bx - int%
mov ax,[bx] :ax = value to be print

xor cx,cx initialize char counter
mov bx,10d ;want base 10.

mov flag,ah
or ax,ax
jns ptrloop
neg ax

;is int% negative?

ptrloop: ;** get digits one at a time
xor dx,dx ;clear high word
idiv bx ;ax = quotient, dx = digit

E-4 GW-BASIC COMPILER USER’S GUIDE

APPENDIX E
ASSEMBLY LANGUAGE ROUTINES

or dl,dl ;is it zero?
jnz printit

or ax,ax ;yes, is it a leading 0?
jz done ;yes, done

printit:
call docomma ;put a comma if needed,
add dl,“0” ;make into ASCII char
mov byte ptr [di],dl
jmp short ptrloop

done:
test byte ptr flag, 080H ;was it negative?
jz reallydone
mov byte ptr [di],“-”

;yes - put in a minus sign

reallydone:
pop bp
ret 4 ;2 args, 2 bytes/arg

publics endp

locals proc near ;for short calls

docomma: ;do we need to put in a comma?
inc cl ;cl counts chars printed
test cl,3 ;are we on a multiple of 4?
jnz nocomma ;no
mov ch,byte ptr separator
mov [di],ch
inc cl
dec di

nocomma:ret

locals endp

code ends
end

GW-BASIC COMPILER USER’S GUIDE E-5

APPENDIX E
As s e m b l y l a n g u a g e r o u tin e s

CALLS STATEMENT
CALLS works the same with the compiler as with the interpreter. See
your NCR GW-BASIC Reference Manual for a description of CALLS.

USR FUNCTION
With the compiler's USR function, there is no way to pass arguments
except by using POKE statements to protected memory locations that
are later accessed by the assembly language subroutine. See your
NCR GW-BASIC Reference Manual for complete information on the
USR function.

E-6 GW-BASIC COMPILER USER’S GUIDE

$INCLUDE metacommand, 3-1, 8-2
$LINESIZE metacommand, 8-4
$LIST metacommand, 8-3
$OPCODE metacommand, 8-3
$PAGE metacommand, 8-4
$PAGEIF metacommand, 8-4
$PAGESIZE metacommand, 8-4
$SKIP metacommand, 8-4
^SUBTITLE metacommand, 8-4
$TITLE metacommand, 8-4

/4 switch, 5-7
/A switch, 5-9
/C:<size> switch, 5-9
/D switch, 5-10
/E switch, 5-8
/N switch, 5-10
/0 switch, 5-11
/R switch, 5-11
/S switch, 5-11
/T switch, 5-7
/V switch, 5-9
/W switch, 5-9
/X switch, 5-9

Arithmetic overflow check, 5-10
Array bounds check, 5-10
Assembly language subroutines, E-l

BASCOMG.LIB runtime library, 1-4
BASRUNG.LIB runtime library, 1-4

CALL statement, E-l
CALLS statement, E-6
CHAIN, A-l
COMMON, A-l
Communications, 10-1

Control Signals, 10-3
Get and Put functions, 10-2
Input/Output, 10-1
Input/Output functions, 10-2
Sample Program, 10-4

Compiler switches, 5-5
Configuration, 5-12
Convention switches, 5-7

/4, 5-7
/T, 5-7

Default file specification, 5-1
Differences between interpreter and compiler, 9-1
Double precision arithmetic functions, 9-3
Double precision loop control variables, 9-3

Error handling switches, 5-8
/E, 5-8
/X, 5-9

Event trapping switches, 5-9
/V, 5-9
/W, 5-9

Exception handling switches, 5-8
/E, 5-8
/X, 5-9
/V, 5-9
/W, 5-9

Expression evaluation, 9-2

Filenaming conventions, 5-1
Floating-point calculations, 9-1

Implementation differences, 9-1
double precision arithmetic functions, 9-3
double precision loop control variables, 9-3
expression evaluation, 9-2

2

floating-point calculations, 9-1
integer variables, 9-3
string size, 9-3
string space implementation, 9-3

Integer variables, 9-3
Invocation, 5-2

Line length, 3-2
Line number check, 5-10

Memory maps for compiler, C-l
Metacommands, 8-1

$INCLUDE, 3-1, 8-2
$LINESIZE, 8-4
$LIST, 8-3
$OCODE, 8-3
$PAGE, 8-4
$PAGEIF, 8-4
$PAGESIZE, 8-4
$SKIP, 8-4
$SUBTITLE, 8-4
$TITLE, 8-4

Operational differences, 9-1

Redo message, 5-8
RESUME statement, 5-8
RETURN check, 5-10
Runtime libraries, 6-1

BASCOMG.LIB, 6-1
BASRUNG.LIB, 6-1

Runtime module, A-l
Runtime segment map, D-l

Special code switches, 5-9
/A, 5-9
/C:<size>, 5-9
/D, 5-10
/N, 5-10
/0 , 5-11
/R, 5-11

3

/S, 5-11
String

descriptor, E-l
size, 9-3
space implementation, 9-3

Syntax notation, iv
System requirements, ii

TROFF statement, 5-10
TRON statement, 5-10

USR function, E-6

4

N w /

w

m m
CUSTOMER PROGRAM LICENSE AGREEMENT

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS
BEFORE OPENING THIS DISKETTE(S) PACKAGE. OPENING THIS DISKETTE(S)
PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND CONDITIONS. IF
YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACK­
AGE UNOPENED; AND YOUR MONEY WILL BE REFUNDED.

NCR provides this Program(s) and licenses its use under these terms and conditions and
under Copyright Law: You assume responsibility for the selection of the Program(s) to
achieve your intended results, and for the installation, use and results obtained from the
Program(s). This program is confidential, proprietary to and a trade secret of the owner,
and should be safeguarded by you as such.

LICENSE

You may:

a. use the Program(s) only on a single machine at a single location;

b. copy the program into any machine readable or printed form for backup or modification
purposes only, to support your use of the Program(s) on the single machine (Certain
programs, however, may include mechanisms to limit or inhibit copying. They are
marked “copy protected.”);

c. modify the Program(s) and/or merge it into another program for your use on the single
machine (Any portion of this Program(s) merged into another program will continue to
be subject to the terms and conditions of this Agreement.); and

d. transfer the Program(s) and license to another party only if the other party agrees to
accept the terms and conditions of this Agreement. You must advise NCR of the name
and address of the other party and the other party must sign a copy of the NCR
Customer Program License Agreement and have the same received by NCR. If you
transfer the Program(s), you must at the same time either transfer all copies whether in
printed or machine readable form to the same party or destroy any copies not trans­
ferred; this includes all modifications and portions of the Program(s) contained or
merged into other programs.

You must reproduce and include any copyright notice and serial number on any copy,
modification or portion merged into another program.

TERM

The license is effective until terminated. You may terminate it at any time by destroying the
program together with all copies, modifications and merged portions in any form. It will
also terminate upon conditions set forth elsewhere in this Agreement or if you fail to
comply with any term or condition of this Agreement. You agree upon such termination to
destroy the Program(s) together with all copies, modifications and merged portions in any
form.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE PROGRAM(S), OR ANY
COPY, MODIFICATION OR MERGED PORTION, IN WHOLE OR IN PART, EXCEPT AS
EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY, MODIFICATION OR MERGED POR­
TION OF THE PROGRAM TO ANOTHER PARTY, YOUR LICENSE IS AUTOMATICALLY
TERMINATED.

EXCLUSION OF WARRANTY

THE PROGRAM(S) IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED INCLUDING BUT NOT LIMITED TO THE IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM(S) PROVE DEFECTIVE, YOU (AND NOT NCR OR
ITS DEALER OR DISTRIBUTOR) ASSUME THE ENTIRE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION. NCR does not warrant that the functions con­
tained in the Program(s) will meet your requirements or that the operation of the program
will be uninterrupted or error free.

LIMITED WARRANTY

NCR warrants the diskette(s) on which the program is furnished to be free from defects in
materials and workmanship under normal use for a period of ninety (90) days from the date
of delivery to you as evidenced by a copy of your receipt.

NCR’s entire liability and your exclusive remedy shall be:

1. the replacement of any diskette(s) not meeting NCR’s “Limited Warranty” and which is
returned to NCR or an authorized NCR dealer or distributor, with a copy of your receipt,
or

2. if NCR or its authorized dealer or distributor is unable to deliver a replacement
diskette(s) and repair is not practicable or cannot be timely made, you may terminate
this Agreement by returning the program and your money will be refunded.

IN NO EVENT WILL NCR BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING ANY
LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE DISKETTE(S) EVEN
IF NCR OR AN AUTHORIZED NCR DEALER OR DISTRIBUTOR HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER
PARTY.

Some states do not allow limitations on how long an implied warranty lasts, so the above
exclusion may not apply to you.

Some states do not allow the limitation or exclusion of liability for incidental or consequen­
tial damages so the above limitation or exclusion may not apply to you.

This warranty gives you specific legal rights and you may also have other rights which vary
from state to state.

MISCELLANEOUS

You may not sublicense, assign or transfer the license or the Program(s) except as
expressly provided in this Agreement. Any attempt otherwise to sublicense, assign or
transfer any of the rights, duties or obligations hereunder is void, and will automatically
terminate your license and right to use this program.

This Agreement will be governed by the laws of the State of Ohio where NCR Corporation
has its principal office.

YOU ACKNOWLEDGE THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT
AND AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER
AGREE THAT IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREE­
MENT BETWEEN US WHICH SUPERSEDES ANY PROPOSAL OR PRIOR AGREEMENT,
ORAL OR WRITTEN, AND ANY OTHER COMMUNICATIONS BETWEEN US OR
BETWEEN YOU AND ANY DEALER OR DISTRIBUTOR RELATING TO THE SUBJECT
MATTER OF THIS AGREEMENT.

Should you have any questions concerning this Agreement, you may contact NCR by
writing to: NCR CORPORATION

P.O. Box 507
Dept. CSP-5
Dayton, Ohio 45409
USA

I--

NCR CORPORATION
CUSTOMER PROGRAM LICENSE AGREEMENT ACKNOWLEDGEMENT CARD

[Please complete and return this card. Keep the Customer Program License Agreement in your files.
| I have read the NCR Corporation Customer Program License Agreement and agree to abide by the
, terms contained in it.

P R O D U C T NAME
P A R T N U M B E R
V E R S I O N N U M B E R
S E R I A L N U M B E R

GW (T M) B A S I C C O M P I L E R
D Q 0 6 - 0 1 5 7 - Q 0 0 0
5 . 5 0 (M S - D O S)
MS 5 5 7

Name --Signature(Please type or print)

Company _______________________________________

Address_________ ______________________________

City___

Country

_ State_ _Zip_

. Date

COMPLETE AND MAIL
THE CARD BELOW

SO T H A T YO U W ILL BE PLACED ON OUR

SO FTW ARE C U STO M ER LIST.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 3 DAYTON, OHIO

POSTAGE WILL BE PAID BY ADDRESSEE

NCR CORPORATION
P . O . B O X 5 0 7

D A Y T O N , O H I O 4 5 4 0 9

U S A

DEPT CSP-5

