

SINIX Open Desktop
Open Desktop

Administrator's Guide, Part 1

Edition April 1990 (SINIX Open Desktop V1.0)

Order No. U5745-J-295-1-7600
Printed in the Federal Republic of Germany
8950 AG 3900.45 (11190)

SINIX® Open Desktop
Copyright © Siemens AG 1990
All right reserved

Base:
OPEN DESKTOP™
©1983-1989 The Santa Cruz Operation, Inc.

Delivery subject to availability;
right of technica! moditications reserved.

Published by Bereich
Daten- und Informationstechnik

Postfach 83 09 51, D-8000 Miinchen 83

Siemens Aktiengesellschaft

OPEN DESKTOP™ Software

© 1983-1990 The Santa Cruz Operation, Inc. All Rights Reserved

The copyrighted software that accompanies this manual is licensed to the End User only for
use in strict accordance with the End User License Agreement, which License should be read
carefully before commencing use of the software.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES GOVERNMENT IS
SUBJECT TO RESTRICTIONS AS SET FORTH IN SUBPARAGRAPH (c)(1) OF THE
COMMERCIAL COMPUTER SOFTWARE -- RESTRICTED RIGHTS CLAUSE AT FAR
52.227-19 OR SUBPARAGRAPH (c)(1)(ii) OF THE RIGHTS IN TECHNICAL DATA AND
COMPUTER SOFTWARE CLAUSE AT DFARS 52.227-7013.
"CONTRACTOR/MANUFACTURER" IS THE SANTA CRUZ OPERATION, INC., 400
ENCINAL STREET, P.O. BOX 1900, SANTA CRUZ, CALIFORNIA 95061, U.S.A.

OPEN DESKTOP contains software licensed from a number of sources. The following are
copyright notices for the software from these contributors which is used in OPEN DESKTOP.

OPEN DESKTOP Operating System Software: © 1983-1990 The Santa Cruz Operation, Inc.;
© 1981-1990 Microsoft Corporation; © 1978-1990 AT&T; © 1988-1990 Secureware Inc.;
© 1990 Acer Corporation. All Rights Reserved.

OPEN DESKTOP Networking and Communication Software: © 1984-1990 Microsoft Cor-
poration; © 1987-1990 Lachman Associates, Inc.; © 1987 Convergent Technologies Inc.; ©
1986 Sun Microsystems Inc.; © 1986-1990 The Santa Cruz Operation, Inc. All Rights
Reserved.

OPEN DESKTOP Windowing and Graphic User Interface Software: © 1988-1990 Locus
Computing Corporation; © 1985-1990 Metagraphics Software Corporation; © 1989 Open
Software Foundation, Inc.; © 1988-1990 The Santa Cruz Operation, Inc. All Rights
Reserved.

OPEN DESKTOP MS-DOS Integration Software: © 1982-1990 Microsoft Corporation; ©
1985-1990 Locus Computing Corporation; © 1989 The Santa Cruz Operation, Inc. All
Rights Reserved.

OPEN DESKTOP Database Management Software: © 1981, 1989 Relational Technology,
Inc.; © 1988-1990 The Santa Cruz Operation, Inc. All Rights Reserved.

OPEN DESKTOP Administration and User Documentation

© 1983-1990 The Santa Cruz Operation, Inc.; © 1980-1990 Microsoft Corporation; © 1988
AT&T; © 1985-1990 Locus Computing Corporation; © 1987-1990 Lachman Associates,
Inc.; © 1987 Convergent Technologies, Inc.; © 1981, 1989 Relational Technology, Inc.; ©
1989 Open Software Foundation, Inc.; © 1989 Digital Equipment Corporation, Maynard,
Mass.; © 1987-1990 Hewlett-Packard Company; © 1988 Massachusetts Institute of Tech-
nology. All Rights Reserved.

No part of this publication may be reproduced, transmitted, stored in a retrieval system, nor
translated into any human or computer language, in any form or by any means, electronic,
mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written per-
mission of the copyright owner, The Santa Cruz Operation, Inc., 400 Encinal Street, Santa
Cruz, California, 95061, U.S.A. Copyright infringement is a serious matter under the United
States and foreign Copyright Laws.

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Santa Cruz Operation, Inc.

USE, DUPLICATION, OR DISCLOSURE BY THE UNITED STATES GOVERNMENT IS
SUBJECT TO RESTRICTIONS AS SET FORTH IN SUBPARAGRAPH (c)(1) OF THE
COMMERCIAL COMPUTER SOFTWARE -- RESTRICTED RIGHTS CLAUSE AT FAR
52.227-19 OR SUBPARAGRAPH (c)(1)(ii) OF THE RIGHTS IN TECHNICAL DATA AND
COMPUTER SOFTWARE CLAUSE AT DFARS 52.227-7013.
"CONTRACTOR/MANUFACTURER" IS THE SANTA CRUZ OPERATION, INC., 400
ENCINAL STREET, P.O. BOX 1900, SANTA CRUZ, CALIFORNIA 95061, U.S.A.

Open Desktop, the Open Desktop logo, SCO, The Santa Cruz Operation and The Santa Cruz
Operation logo are trademarks of The Santa Cruz Operation, Inc.

Lotus is a trademark and 1-2-3 is a registered trademark of Lotus Development Corporation.
4.2BSD is a trademark of the Board of Regents of the University of California at Berkeley.
Intel is a registered trademark and Intel 80386 is a trademark of Intel Corporation.

AT&T is a trademark and UNIX is a registered trademark of AT&T.

BASIC is a registered trademark of the Trustees of Dartmouth College.

dBASE and dBASE INI are registered trademarks of Ashton-Tate.

DEC is a registered trademark and XUI is a trademark of Digital Equipment Corporation.
Domain is a trademark of Apollo Corporation.

Etherlink is a trademark of 3 Com Corporation.

Ethernet is a trademark of Xerox Corporation.

Hercules is a registered trademark of Hercules Computer Corporation, Inc.

IBM is a registered trademark of International Busincss Machines Corporation.

2

/

ODT-DOS is based on technology developed for Merge 386 by Locus Computing Corpora-
tion.

12/21/89-1.0.0D
Processed: Wed Dec 20 11:42:11 PST 1989

Administrator's Guide Contents

Administering ODT-VIEW Part 1
Chapter 1: Introduction 1

Chapter 2: X Window System Overview 3
X Window System Organization 3
The Window Manager 4
Input Focus 7
Selecting Startup Clients 8

Chapter 3: The .Xdefaults Flle 9
.Xdefaults Overview 9
mwm Resource Descriptions and Syntax 11

Chapter 4: The .mwmrc Flle 33
.mwmrc Overview 33
Sample .mwmrc File 34
Window Manager Functions 36
Using Functions 44

Chapter 5: Desktop Manager Overview 51
Changing the Appearance of the Desktop Manager 51
Changing the Behavior of the Desktop Manager 53
Typical Applications 55

Chapter 6: Desktop Manager Tutorials 59
Determining the Appearance of Your Desktop 59
Building Intelligence into Your File lcons 62
Loading Files into a Program by Dragging 64
Building Intelligence into Directories 65

Table of Contents

Chapter 7: Desktop Manager Reference 69
Rule Files 69
Mapping Triggers 89
Desktop Command Language 93
Picture Files 97
Defaults Files 101
Message Files and Language Support 111
Command-Line Options 118
X.Deskware Support Utilities 119

Appendix A: Setting Streams Parameters 125
Overview 125
Displaying Parameters 125
Changing Parameters 127
Rebuilding and Rebooting 130

Appendix B: Monochrome Configuration File 131

Appendix C: Customizing Screen Colors 133
Defining Colors in the RGB Database 134

Appendix D: Changing Video Systems 137
Overview 137
Description of the Configuration Scripts 137
Running the Configuration Scripts 138
Examples 139

Administering ODT-0OS

Chapter 1: Introduction 1
The System Administrator and Administrative Roles
Making Administration Easier with the sysadmsh
The Super User Account 3
The Keyboard 4
About This Guide 5

ii Tableof Contents

2

1

Chapter 2: Using the System Administration Shell
Starting sysadmsh 7
How the Screen is Organized 8
Selecting Menu ltems 9
Using Forms 11
Using Scan Windows 17
GettingHelp 19
The Function Keys 22

Chapter 3: Starting and Stopping the System 23
Starting the System 23
Logging in as the Super User 28
Stopping the System 29
Understanding the Boot Display Information 31

Chapter 4: Using Fllesystems 33
What Is a Filesystem? 33
Maintaining Free Space in Filesystems 34
Filesystem Integrity 38

Chapter 5: Maintaining System Security 45
What Is a Trusted System? 46
Running a Trusted System 50
Using the Audit Subsystem 56
Filesystem Protection Features 90
Verifying System Integrity 96
Security-Related Error Messages 101
Adding Dial-in Password Protection 106

Chapter 6: Backing Up Fllesystems 107
Strategies for Backups Using sysadmsh 107
Preparations for Scheduled Backups 108
Performing a Scheduled Backup 114
Performing an Unscheduled Backup 117
Verifying a Backup 119
Getting a Backup Listing 120

7

Restoring Individual Files or Directories from Backups

Restoring an Entire Filesystem 124
An Explanation of Backup Levels 125

121

Table of Contents

Chapter 7: Adding Device Drivers with the Link Kit
Device Drivers 129

Chapter 8: Using DOS and OS/2 137
0sr2 Coexistence 138
Partitioning the Hard Disk Using fdisk 138
Installing a UNIX Partition on a DOS System 142
Using a UNIX System and DOS with Two Hard Disks
Removing an Operating System from the Hard Disk
DOS Accessing Utilities 144
Mounting DOS Filesystems on a UNIX System 146

Chapter 9: Administering User Accounts 151
Account Management 152
Default Account Configuration 164
Activity Report Generation 176

Chapter 10: UNIX Directories and Special Device Files
UNIX Directories 181
Log Files 187
Special Device Files 189

Chapter 11: Adding Ports and Modems 193
Adding and Configuring Serial Ports 193
Using a Modem on Your System 195

Chapter 12: Using Printers 209
Installing a Printer 211
Summary of User Commands 215
Summary of Administrative Commands 216
Starting and Stopping the LP Print Service 217
Canceling a Print Request 219
Enabling and Disabling Printers 219
Adding a Printer to a Class 220
Setting the System Default Destination 221
Mounting a Form or Print Wheel 222

iv. Tableof Contents

129

143
144

181

\—r

Removing a Printer or Class 223

Managing the Printing Load 224

Managing Queue Priorities 226

Troubleshooting the Print System 232
Customizing the Print Service 236

Specialized Configuration Options 250

Setting Up RTS/CTS Protocol Serial Printers 261
Using a Printer without the Spooler 264

Chapter 13: Using Floppy Disks and Tape Drives 265
Using Cartridge Tape Drives 265
Using Floppy Disks 274

Chapter 14: Using Bus Cards 279
Installing Bus Cards 279
Adding Additional Memory 281

Chapter 15: Using a Mouse 283
Installing the Hardware 283
Installing a Mouse 284
Using the Mouse 288

Chapter 16: Setting Up Electronic Mail 289
How MMDF Works 289
Configuring MMDF 297
Changing Your Machine or Site Name 309
Routing Example 309
Updating the Database 310
Maintaining Your MMDF System 310
Converting Existing Configuration Files 311

Chapter 17: Adding Hard Disks 315
Before You Stat 317
Installing the Hard Disk 321
Adding the New Filesystem 333
Relinking the Kernel 335

Table of Contents

Administering ODT-NET

Chapter 1: Overview 1
Networking Concepts 2
Common Network Administration Tasks 11

Chapter 2: TCP/1P Network Administration 13 «
Kernel Configuration 13
Runtime Configuration of STREAMS Drivers 16
Setting Interface Parameters 18
Local Subnetworks 18
internet Broadcast Addresses 19
Routing 20
Using UNIX System Machines as Gateways 21
Network Servers 21
Network Databases 22
Network Tuning and Troubleshooting 25

Chapter 3: Name Server Operations Guide for BIND
The Name Service 33
Types of Servers 34
Setting Up Your Own Domain 36
Remote Servers 39
Initializing the Cache 40
Standard Resource Records 40
Some Sample Files 48
Additional Sample Files 52
Domain Management 54

Chapter 4: Synchronizing Network Clocks 57
How a Time Daemon Works 57
Guidelines 58
Options 59
Daily Operation 60

vi Tableof Contents

Part

33

Chapter 5: Configuring NFS 61
Role of the Operating System in NFS 61
Introducing NFS 62
Setting Up an NFS Client 63
Starting and Stopping NFS 65
Debugging NFS 65
Adding a New User 74
Incompatibilities with Remote Filesystems 74
Handling Clock Skew in User Programs 76

Chapter 6: Managing the LAN Manager Cllent Network 79
Special Network Files 81
Starting and Stopping the Network 81
NetBIOS 82
Network Parameter Descriptions 83
Configuring for Performance 97

Chapter 7: Bullding a Remote Network with UUCP 103
What Is UUCP? 103
How to Use This Chapter 104
What You Need 104
UUCP Commands 105
Connecting Remote UUCP Systems with a Modem 111
Configuring UUCP on Your System 118
Administering Your UUCP System 137
Troubleshooting 140
Keeping Traffic and Congestion under Control 142
Complete UUCP Examples 143
UUCP Error Messages 149

Glossary 155

Tableof Contents vii

Administering ODT-DOS

Chapter 1 Introduction 1
Who Should Use This Guide 1
Organization of This Guide 1
ODT-DOS Guides 2
Installing ODT-DOS 2
Release Notes 2

Chapter 2 Administering ODT-DOS 3
Using the dosadmin Program 4
Adding And Deleting User Accounts 4
Administering DOS Applications 4
Administering the System Console 6
Administering COM Ports 11
Administering DQOS Printers 11
Backing Up the ODT-DOS Filesystem 15
Administering Disk and Diskette Drives 15
Administering the Physical DOS Partition 16
Administering Virtual DOS Partitions and Virtual Floppy Disks
Installing Plug-In Cards in Your Computer 25
Making New DOS Images 31
System Files Affected by System Administration 35

Chapter 3 Installing DOS Applications 37
Installing DOS Applications Using dosadmin 37
Installing Copy-Protected DOS Applications 50
Removing DOS Applications 54

Administering ODT-DATA

Chapter 1:introduction 1
Introduction to Release 6 2
Organization of This Document 2
Associated Publications 4

vii Table of Contents

19

Chapter 2: Overview of instaliation Tools 5
ODT-DATA Installation Utilitybuild 5
ODT-DATA Installation and DBMS Server Stat Up 5
The Installation Shut Down Utilityutserver 6

Chapter 3: Configuration Decisions 7
Configuration Requirements 7
General Suggestions for Avoiding Problems 11

Chapter 4: Installing ODT-DATA 13
Manual Initialization 13

Chapter 5: Maintenance Utilities 19
The Server (iidbms) Maintenance Utilitymonitor 19
Shared Memory and Semaphores Report Utilityreport 22
The Locking Facility Reportvckstat 24
The Logging Facility Reportvgstat 26

Chapter 6: Installation Reference Material 31
ODT-DATA Installation and Server Start Up Utility 31
ODT-DATA Installation Shutdown 41

Chapter 7: Troubleshooting with Log Flles 45
ODT-DATA Log Files 45

Appendix A: ODT-DATA Startup Files 47
Installation-Wide Startup Files 47
Database-Specific Startup File 47
User-Specific Startup File 48

Appendix B: Authorizing User Access to ODT-DATA and Databases 49
Database Access 49
Defining the Terminal 50
Invoking accessdb 51
Using accessdb 51
Functions in accessdb 52
Summary of Accessdb 59

Table of Contents

Appendix C: ODT-DATA Environment Variables 61
Setting Installation Wide Environment Variables 61
Setting User Defined Environment Variables 62
Environment Variable List 62

Appendix D: ODT-DATA System Recovery 71
Using finddbs 71

Appendix E: Running ODT-DATA under the Network File System
Configuration Scenarios 75

Glossary 81

Index

x Tableof Contents

75

Administering
ODT-VIEW

ODT-VIEW is based on technology developed for the X Window System by MIT, and tech-
nology developed for Motif by the Open Software Foundation, and technology developed for
Xsight and Xhibit by Locus Computing Corporation.

12/21/89-1.0.0D
Processed: Wed Dec 20 11:38:40 PST 1989

Contents

Chapter 1: introduction 1

M3IA-1a0

Chapter 2: X Window System Overview 3
X Window System Organization 3
The Window Manager 4
Input Focus 7
Selecting Startup Clients 8

Chapter 3: The .Xdefaults File 9
.Xdefaults Overview 9 .
mwm Resource Descriptions and Syntax 11

Chapter 4: The . mwmrc File 33
.mwmrc Overview 33
Sample .mwmrc File 34
Window Manager Functions 36
Using Functions 44

Chapter 5: Desktop Manager Overview 51
Changing the Appearance of the Desktop Manager 51
Changing the Behavior of the Desktop Manager 53
Typical Applications 55

Chapter 6: Desktop Manager Tutorials 59
Determining the Appearance of Your Desktop 59
Building Intelligence into Your File Icons 62
Loading Files into a Program by Dragging 64
Building Intelligence into Directories 65

Administering ODT-VIEW i

Chapter 7: Desktop Manager Reference 69
Rule Files 69
Mapping Triggers 89
Desktop Command Language 93
Picture Files 97
Defaults Files 101
Message Files and Language Support 111
Command-Line Options 118
X.Deskware Support Utilities 119

Appendix A: Setting Streams Parameters 125
Overview 125
Displaying Parameters 125
Changing Parameters 127
Rebuilding and Rebooting 130

Appendix B: Monochrome Configuration File 131

Appendix C: Customizing Screen Colors 133
Defining Colors in the RGB Database @ 134

Appendix D: Changing Video Systems 137
Overview 137
Description of the Configuration Scripts 137
Running the Configuration Scripts 138
Examples 139

ii Administering ODT-VIEW Administrator's Guide

Chapter 1
Introduction

o
S
D
<
m
=

When you first log in to Open Desktop™, the windows that you see on your screen are creat-
ed by the X Window System, which controls and coordinates a series of window-generating
programs. Whenever you open a new window, you start another program under the X Win-
dow System.

One such program, called the Desktop Manager, controls the appearance and behavior of the
Desktop and the directory windows. Some of the components controlled by the Desktop
Manager are: icon pictures and titles, mouse pointer appearance, and directory window frame
buttons. Because the Desktop and the directory windows behave differently from other win-
dows, you can configure the Desktop Manager separately from any other program running
under the X Window System. Another window-generating program that runs under the X
Window System is the Motif Window Manager. This program lets you control the aspects of
your windows’ appearance and behavior that are not controlled by the Desktop Manager.

You can change the characteristics of any Open Desktop window by changing the settings in
the WINDOW CONFIGURATION FILES. The first part of this guide explains how to edit the con-
figuration files for windows other than the Desktop and directory windows. This part con-
tains the following chapters:

m Chapter 1, “Introduction”
m Chapter 2, “X Window System Overview”
B Chapter 3, “The .Xdefaults File”
m Chapter 4, “The .mwmrc File”
These chapters explain how to specify overall window characteristics such as:
m Color, size, and shape
m Focus policies

B Key and button bindings

Chapter 1: Introduction Administering ODT-VIEW 1

Introduction

Chapter 2,“X Window System Overview,” also explains the steps that you must perform
before you can edit the window configuration files.

The second part of this guide explains how to configure the Desktop Manager to modify the
appearance and behavior of the Desktop and the directory windows. The following chapters
are in Part II:

@ Chapter 5, “Desktop Manager Overview”

@ Chapter 6, “Desktop Manager Tutorials”

@ Chapter 7, “Desktop Manager Reference”

These chapters explain how to control the following characteristics:
B How icons appear on the Desktop window
@ What happens when you drop an icon
B How icons are chosen and activated

B File selection and manipulation

The appendixes at the end of this guide are organized as follows:

@ Appendix A, “Setting Streams Parameters,” explains how to allocate operating
system resources for use with the X Window System.

@ Appendix B, “Monochrome Configuration File,” provides a sample Xdefaults
file for configuring a monochrome monitor. ‘

® Appendix C, “Customizing Screen Colors,” provides a sample Xdefaults file
for configuring a color monitor and describes how to modify screen display
colors.

@ Appendix D, “Changing Video Systems,” explains how to reconfigure Open
Desktop whenever you change monitors or video adaptor cards.

2 Administering ODT-VIEW Administrator's Guide

Chapter 2
X Window System Overview

M3IA-1A0

This chapter explains how the X Window System is organized and describes the steps you
need to take before actually editing the window configuration files. It also contains an over-
view of window frame construction and window focus policy. This chapter does not contain
information about the Desktop Manager. An explanation of the Desktop Manager begins
with Chapter 5, “Deskiop Manager Overview.”

X Window System Organization

The X Window System lets you communicate with Open Desktop through one or more
windows displayed on your screen. The characteristics of each window are controlled by a
set of default window configuration files. By changing the settings in these files, you can
control:
B Window size, color, and shape
Icon size, color, and shape
Button and key bindings

|

|

B Menu characteristics
B Mouse behavior

|

Focus policies

When you configure the X Window System, you are not limited to specifying just one set of
characteristics for all windows. If you want to, you can create a unique look and feel for
each application by giving each one a different set of window configuration settings.

Chapter 2: X Window System Overview Administering ODT-VIEW 3

XWindow System Organization

Servers and Clients

The two fundamental parts of the X Window System are SERVERS and CLIENTS.

An X Window System server is a program that contains information about a particular work-
station’s hardware, such as the display, the keyboard, and the mouse. The server provides
service; that is, it allows X Window System clients (applications) to open and close windows
on your display. It also processes your input from the keyboard and the mouse.

An X Window System client is an application program, such as an editor, a database, a clock
program, or the Desktop Manager.

Streams

The X Window System server and clients “talk” to each other using the UNIX® System V
STREAMS MECHANISM. Some of your UNIX operating system’s resources must be allocated to
the streams mechanism. The speed with which Open Desktop runs depends on how
economically its resources are used, so you should configure the streams parameters as
judiciously as possible. Appendix A, “Setting Streams Parameters,” explains how to
estimate how much memory to reserve for streams, and how to perform the necessary
adjustments.

The Window Manager

Because the server handles the specifics of a client’s display, each client is hardware
independent. In other words, a client’s appearance and behavior are the same no matter what
type of hardware you use. This adaptability is possible because client appearance and
behavior are controlled by a special type of client called the WINDOW MANAGER. The window
manager:

W Manages the resources that make up your windows

B Creates the frame around every window
The window manager included with the X Window System is the MOTIF WINDOW MANAGER,

or mwm. When you configure the X Window System, you are actually changing the contents
of the mwm configuration files.

4 Administering ODT-VIEW Administrator’s Guide

The Window Manager

Configuration Files

Mwm is configured from a database of resource specifications that control window
appearance and behavior. The default resources are listed in /usr/lib/X11/app-defaults/Mwm,
which runs automatically whenever you log in to Open Desktop. To customize your
windows, you must first copy /usr/lib/X11/app-defaultsiMwm to $HOME|! Xdefauits, and then
change the resource specifications as described in Chapter 3, “The .Xdefaults File.”

Most specifications are directly controlled by either the /usr/lib/X11/app-defaultssMwm or
SHOME/Xdefaults file. However, there are several window attributes that require
descriptions that are too detailed to be easily encoded in these files. A supplementary mwm
RESOURCE DESCRIPTION FILE called /usr/lib/X11/system.mwmrc describes these attributes,
which control BUTTON BINDINGS, KEY BINDINGS, and MENU PANE DESCRIPTIONS. To customize
this file, you must first copy it to $HOME/.mwmrc, and then change the resource specifica-
tions as described in Chapter 4, “The .mwmrc File.”

The .mwmrc file is referenced by Xdefaults whenever you log in to Open Desktop. It
provides a convenient way to store several alternate specifications for button bindings, key
bindings, or menu panes, which are then referenced by Xdefaults when you log in. For
example, you can define several styles of window panes in .mwmrc, and then specify in
Xdefaults which one is used when mwm starts up.

The configuration files that you create in your home directory have precedence over the
default configuration files. If you delete the configuration files in your home directory,
window control reverts back to lusr/lib/X11/app-defaultssMwm and
usr/lib/X11/system.mwmrc.

Chapter 3, “The .Xdefaults File,” describes each resource that can be set in Xdefaults,
provides syntax explanations for each resource group, and shows a sample Xdefaults file.

Chapter 4, “The .mwmrc File,” describes the attributes that you can set in .mwmrc, provides
syntax explanations, and shows a sample .mwmrc file.

Window Frame Components

Default mwm window frames have the following components:

Chapter 2: X Window System Overview Administering ODT-VIEW 5

®)
O
o
=
m
=

The Window Manager

Table 2.1.
Window Frame Components

Component Description

Title Area In addition to displaying the client’s title, the title area is used
to move the window. To move the window, place the pointer
over the title area, press the left mouse button and drag the
window to a new location. A wire frame is moved during the
drag to indicate the new location. When the button is released,
the window is moved to the new location.

Title Bar The title bar includes the title area, the minimize button, the
maximize button and the window menu button.

Resize Border Handles To change the size of a window, move the pointer over a
resize border handle (the cursor will change), press button 1,
and drag the window to a new size. When the button is
released, the window is resized. While dragging is being
done, a rubber-band outline is displayed to indicate the new

window size.

Minimize Button To tumm the window back into its icon, do a left-button click
on the minimize button (the frame box with a small square in
it). :

Maximize Button To make the window fill the screen (or enlarge to the largest

size allowed by the configuration files), do a left-button click
on the maximize button (the frame box with a large square in
it).

Window Menu Button ~ The window menu button is the horizontal bar in the frame
box. To pop up the window menu, press the left mouse button
while the pointer is on the horizontal bar. While pressing,
drag the pointer to your selection on the menu and then
release the button when your selection is highlighted.
Alternately, you can click the left button on the bar to pop up
the menu and then position the pointer and make your
selection.

Matte An optional matte decoration can be added between the client
area and the window frame. There is no functionality
associated with a matte.

6 Administering ODT-VIEW Administrator's Guide .

The Window Manager

Accelerator Keys

ACCELERATOR KEYS let you perform window manipulations from the keyboard. Most of the
actions described in the previous table can be performed with accelerator keys. The
accelerator keys and their functions are listed on the System menu.

M3IA-1dO

Input Focus

By default, mwm supports a keyboard input focus policy of explicit selection. This policy
specifies that when a window is selected to get keyboard input, it continues to get keyboard
input until one of the following occurs:

B The window is withdrawn from window management

W Another window is explicitly selected to get keyboard input

W The window is iconified

The client window with the keyboard input focus has a visually distinctive window and
frame. '

The following tables summarize the keyboard input focus selection behavior:

Table 2.2.
Setting Focus with Buttons

Button Action Object Function
Button 1 press | Window / window frame | Selects keyboard focus
Button 1 press | Icon Selects keyboard focus

Chapter 2: X Window System Overview Administering ODT-VIEW 7

Input Focus

Table 2.3.
Setting Focus with Keys
Key Action Function
[Alt])[Tab] Moves input focus to next window in window stack.
[Alt])[Shift]{Tab] | Moves input focus to previous window in window stack.

Selecting Startup Clients

When you log in to Open Desktop, the startx command is automatically invoked. This
command calls up /usr/lib/X11/sys.startxrc, which contains the default list of X clients that
are run every time you log in. To customize this list, you must first copy
lusr/libiX11/sys.startx to $SHOME! startxrc, and then change the list to include the desired
clients. Each line in .startxrc can contain only one client name, and you must place an
ampersand (&) after all but the last client name in the file. Placing an ampersand after a
client name specifies that that client is run in the background. Because the last client is not
followed by an ampersand, it is run in the foreground.

SHOME! startxrc must always contain “mwm,” which is the window manager client.

NOTE: If a client is in a directory other than /usr/bin/X11, you must give its full
pathname when you list it in .startxrc.

8 Administering ODT-VIEW Administrator's Guide

-« Chapter 3
The .Xdefaults File

M3IA-1A0

This chapter explains how the Xdefaults file is organized, which resources it controls, and
how you can reconfigure it.

— .Xdefaults Overview

The following two sections explain how Xdefaults resources are grouped, and how you can
control either a single resource or an entire class of resources with a single specification.

Chapter 3: The .Xdefaults File Administering ODT-VIEW 9

.Xdefaults Overview

Resource Organization

The mwm resources that are set in Xdefaults are divided into the following categories:

Table 3.1.

Mwm Resource Categories

Resource Description

Specific appearance and behavior Lets you specify overall mwm appearance and
behavior, such as keyboard and mouse behavior, icon
size and placement, focus policies, and window
frame size and shape. These resources do not control
individual mwm components such as color or font
style.

Component appearance Lets you control the appearance of window manager
menus, client window frames, and icons. Pixmaps,
colors, and fonts are the most commonly configured
component appearance resources.

Client specific Lets you control the appearance and behavior of the
windows associated with a client or class of clients.
You can use these resources to give a different look-
and-feel to each client that you run under Open
Desktop.

Instances and Classes

Every resource in the Xdefaults file belongs to a RESOURCE CLASS. Classes are composed of
one or more RESOURCE INSTANCES. For example, the Foreground class contains the following
resource instances: foreground, bottomShadowColor, activeBottomShadowColor, ac-
tiveForeground, iconlmageBottomShadowColor, iconImageForeground, matteBottom-
ShadowColor, and matteForeground.

Setting the Foreground class to blue automatically sets each instance to blue. To set an
instance to a value other than the one specified for its class, simply define the instance with
the desired value. Instance specifications have precedence over class specifications, so the
class setting is overridden in the case of an individually set instance. For example, setting the
matteForeground instance to yellow and the Foreground class to blue produces a yellow
matte foreground, with all other Foreground instances displayed in blue.

10 Administering ODT-VIEW Administrator’s Guide

mwm Resource Descriptions and Syntax

mwm Resource Descriptions and Syntax

The following is a sample Xdefaults file. It contains examples of specific, component, and
client appearance resources. It is not identical to your own Xdefaults file, but gives you a
general idea of what a Xdefaults file should look like. The sections following the file
describe the syntax for each type of appearance resource.

M3IA-1A0

Sample .Xdefaults File

SAMPLE .Xdefaults / app-defaults RESOURCE SPECIFICATIONS FOR MWM

L

Comment line

#
general appearance resources that apply to mwm (all parts)
[]

/Resoume names Resource vnlues\
Mwm*font : hp8.8x16b
Mwm*backgroundTile: background
Mwm*activeForeground: Black
Mwm*activeBackground: Cyan
Mwm*activeTopShadowColor: LightCyan
Mwm*activeBottomShadowColor: Black
Mwm*makeActiveColors: false
Mwm* foreground: Black
Mwm*background: Gray
Mwm*topShadowColor: LightCyan
Mwm*bottomShadowColor: Black
Mwm*makeColors: false
Mwm*Xm*foreground: Red
Mwm*Xm*background: Green
Mwm*Xm*topShadowColor: White
Mwm*Xm*bottomShadowColor: DarkSlateGray
Mwm*Xm*makeColors: false

Chapter 3: The .Xdefaults File

Administering ODT-VIEW 11

mwm Resource Descriptions and Syntax

general appearance resources that apply to specific parts of mwm
#

Mwm*menu*background: : LightCyan
Mwm*menu*topShadowColor Black
Mwm*menu*makeColors: false

#

mwm - specific appearance and behavior resources
#

#Mwm*keyboardFocusPolicy: pointer
Mwm*moveThreshold: 40
Mwm*useIconBox: true

#

xterm general appearance resources

#

xterm*background:White
xterm*foreground:Black

#

Xhibit general appearance resources

#

xhibit.geometry : +0+0
xhibit.desktop.geometry : +0+0
xhibit.desktop.icon.titleGravity : Top
xhibit.desktop.backgroundPixmap : White.px
xhibit.directory.backgroundPixmap : White.px
xhibit.desktop.directory.background : Cyan

¥

General appearance and behavior defaults

#

12 Administering ODT-VIEW Administrator’s Guide

mwm Resource Descriptions and Syntax

*topShadowTile: foreground

*bottomShadowTile: foreground (@)
*topShadowColor: LightCyan 3
*bottomShadowColor: Cyan '<
*foreground: Black ﬁ
*background: White E
*gselectColor: Gray

*invertOnSelect: true

*borderWidth: 1

*borderColor: LightCyan

4

END OF RESOURCE SPECIFICATIONS

L]

Specific Appearance and Behavior Resources
The syntax for selecting specific appearance and behavior resources is:
Mwm®*resource_id: value

For example, Mwm*keyboardFocusPolicy: pointer specifies that the keyboard focus moves
to the window that contains the pointer.

Refer to the sample Xdefaults file for more usage examples.

The following specific appearance and behavior resources can be specified:

Chapter 3: The .Xdetaults File Administering ODT-VIEW 13

mwm Resource Descriptions and Syntax

Table 3.2.
Specific Appearance and Behavior Resources

Name Class Value Type Default
autoKeyFocus AutoKeyFocus TF T
autoRaiseDelay AutoRaiseDelay millisec 500
bitmapDirectory BitmapDirectory directory fusrfinclude/X11/bitmaps
buttonBindings ButtonBindings string NULL
cleanText CleanText TF T
clientAutoPlace ClientAutoPlace TF T
colormapFocusPolicy ColommapFocusPolicy string keyboard
configFile ConfigFile file mwmrc
deiconifyKeyFocus DeiconifyKeyFocus TF T
doubleClick Time DoubleClick Time millisec. 500
enforceKeyFocus EnforceKeyFocus TF T
execShell ExecShell string SHELL
fadeNormallcon FadeNormallcon TF F
frameBorderWidth FrameBorderWidth pixels 5
iconAutoPlace IconAutoPlace TF T
iconBoxGeometry IconBoxGeometry string 6x1+0-0
iconBoxName IconBoxName string iconbox
iconBoxTitle IconBoxTitle string Icons
iconClick IconClick TF T
iconDecoration IconDecoration string varies
iconlmageMaximum IconImageMaximum wxh 50x50
iconlmageMinimum IconImageMinimum wxh 32x32
iconPlacement IconPlacement string left bottom
iconPlacementMargin IconPlacementMargin pixels varies
interactivePlacement InteractivePlacement TF F
keyBindings KeyBindings string system

(Continued on next page.)
14 Administering ODT-VIEW Administrator’s Guide

Table 3.2.

mwm Resource Descriptions and Syntax

Specific Appearance and Behavior Resources (Continued)

Name Class Value Type Default
keyboardFocusPolicy KeyboardFocusPolicy string explicit
limitResize LimitResize TF T
lowerOnlconify LowerOnIconify TF T
maximumMaximumSize MaximumMaximumSize wxh (pixels) 2X screen w&h
moveThreshold MoveThreshold pixels 4
passButtons PassButtons TF F
passSelectButton PassSelectButton TF T
positionIsFrame PositionIsFrame T/F T
positionOnScreen PositionOnScreen T/F T
quitTimeout QuitTimeout millisec. 1000
resizeBorderWidth ResizeBorderWidth pixels 10
resizeCursors ResizeCursors TF T
showFeedback ShowFeedback string all
startupKeyFocus StartupKeyFocus TF T
transientDecoration TransientDecoration string system title
transientFunctions TransientFunctions string -minimize -maximize
uselconBox UselconBox TF F
wMenuButtonClick ‘WMenuButtonClick TF T
wMenuButtonClick2 ‘WMenuButtonClick2 TF T

autoKeyFocus (class AutoKeyFocus)

This resource is only available when the keyboard input focus policy is explicit. If
autoKeyFocus is given a value of true, then when a window with the keyboard input focus is
withdrawn from window management or is iconified, the focus is set to the previous window
that had the focus. If the value given is false, there is no automatic setting of the keyboard
input focus. The default value is true.

autoRaiseDelay (class AutoRaiseDelay)

This resource is only available when the focusAutoRaise resource is true and the keyboard
focus policy is pointer. The autoRaiseDelay resource specifies the amount of time (in
milliseconds) that mwm waits before raising a window after it gets the keyboard focus. The
default value of this resource is S00 ms.

Chapter 3: The .Xdefaults File Administering ODT-VIEW 15

mwm Resource Descriptions and Syntax

bitmapDirectory (class BitmapDirectory)

This resource identifies a directory to be searched for bitmaps referenced by mwm resources.
This directory is searched if a bitmap is specified without an absolute pathname. The default
value for this resource is /usr/include/X 11/bitmaps.

buttonBindings (class ButtonBindings)

This resource identifies the set of button bindings for window management functions. The
named set of button bindings is specified in the mwm resource description file. These button
bindings are merged with the built-in default bindings. The default value for this resource is
NULL (that is, no button bindings are added to the built-in button bindings).

cleanText (class CleanText)

This resource controls the display of window manager text in the client title and feedback
windows. If the default value of true is used, the text is drawn with a clear (no stipple)
background. This makes text easier to read on monochrome systems where a
backgroundPixmap is specified. Only the stippling in the area immediately around the text
is cleared. If false, the text is drawn directly on top of the existing background.

clientAutoPlace (class ClientAutoPlace)

This resource determines the position of a window when the window has not been given a
user-specified position. With a value of true, which is the default value, windows are
positioned with the top left comers of the frames offset horizontally and vertically. A value
of false causes the currently configured position of the window to be used. In either case,
mwm attempts to place the windows completely on screen. The default value is true.

colormapFocusPolicy (class ColormapFocusPolicy)

This resource indicates the colormap focus policy that is to be used. If the resource value is
explicit, then a colormap selection action is done on a client window to set the colormap
focus to that window. If the value is pointer, then the client window containing the pointer
has the colormap focus. If the value is keyboard, then the client window that has the
keyboard input focus has the colormap focus. The default value for this resource is
keyboard.

configFile (class ConfigFile)

The resource value is the pathname for an mwm resource description file. The default is
.mwmrc in the user’s home directory (based on the SHOME environment variable) if this file
exists. Otherwise, it is /usr/lib/X11/system.mwmrc.

deiconifyKeyFocus (class DeiconifyKeyFocus)

This resource only applies when the KeyboardFocusPolicy is explicit. If a value of true is
used, a window receives the keyboard input focus when it is normalized (deiconified). True
is the default value.

16 Administering ODT-VIEW Administrator’s Guide

mwmResource Descriptions and Syntax

doubleClickTime (class DoubleClickTime)
This resource is used to set the maximum time (in milliseconds) between the clicks (button
presses) that make up a double-click. The default value of this resource is S00 ms.

enforceKeyFocus (class EnforceKeyFocus)

If this resource has a value of true, the keyboard input focus is always explicitly set to
selected windows even if there is an indication that they are “globally active” input
windows. (An example of a globally active window is a scroll bar that can be operated
without setting the focus to that client.) If the resource value is false, the keyboard input
focus is not explicitly set to globally active windows. The default value is true.

execShell (class ExecShell)
This resource lets you specify which shell is used when mwm executes programs from
menus. By default, mwm uses the shell listed in the SHELL environment variable.

fadeNormallcon (class FadeNormallcon)
If this resource has a value of true, an icon is displayed in gray whenever it has been nor-
malized (its window has been opened). The default value is false.

frameBorder Width (class FrameBorder Width)
This resource specifies the width (in pixels) of a client window frame border without resize
handles. The border width includes the 3-D shadows. The default value is 5 pixels.

iconAutoPlace (class IconAutoPlace)

This resource indicates whether icons are automatically placed on the screen by mwm, or are
placed by the user. Users may specify an initial icon position and may move icons after
initial placement; however, mwm adjusts the user-specified position to fit into an invisible
grid. When icons are automatically placed, mwm places them into the grid using a scheme
set with the iconPlacement resource. If iconAutoPlace has a value of true, mwm carries out
automatic icon placement. A value of false allows user placement. The default value of this
resource is true.

iconBoxGeometry (class IconBoxGeometry)
This resource indicates the initial position and size of the icon box. The value of the resource
is a standard window geometry string with the following syntax:

[=)(widthxheight]{ {+-}xo ffset{+-} yoffset]
If the offsets are not provided, the iconPlacement policy is used to determine the initial

placement. The units for width and height are columns and rows.

Chapter 3: The .Xdefaults File Administering ODT-VIEW 17

M3IA-140

mwm Resource Descriptions and Syntax

The actual screen size of the icon box window depends on the iconImageMaximum (size)
and iconDecoration resources. The default value for size is (6 * iconWidth + padding) wide
by (1 * iconHeight + padding) high. The default value of the location is +0 -0.

iconBoxName (class IconBoxName)

This resource specifies the name that is used to look up icon box resources. The default name
is iconbox.

iconBoxTitle (class IconBoxTitle)

This resource specifies the name that is used in the title area of the icon box frame. The
default value is Icons.

iconClick (class IconClick)

When this resource is given the value of true, the system menu is posted and left posted when
an icon is clicked. The default value is true.

iconDecoration (class IconDecoration)

This resource specifies the general icon decoration. The resource value is label (only the
label is displayed), image (only the image is displayed), or label image (both the label and
image are displayed). A value of activelabel can also be specified to get a label (not
truncated to the width of the icon) when the icon is selected. The default value for icon box
icons is label image. The default value for stand-alone icons is activelabel label image.

iconImageMaximum (class IconImageMaximum)

This resource specifies the maximum size of the icon image. The resource value is
widthxheight (for instance, 64x64). The maximum supported size is 128x128. The default
value of this resource is 50x50.

iconImageMinimum (class IconImageMinimum)

This resource specifies the minimum size of the icon image. The resource value is
widthxheight (for instance, 32x50). The minimum supported size is 16x16. The default
value of this resource is 32x32.

iconPlacement (class IconPlacement)
This resource specifies the icon placement scheme to be used. The resource value has the
following syntax:

primary_layout secondary layout

The layout values are shown in the following table:

18 Administering ODT-VIEW Administrator's Guide

mwm Resource Descriptions and Syntax

Table 3.3.
Icon Layout Values

Name Description

top Lay the icons out top to bottom.
bottom | Lay the icons out bottom to top.
left Lay the icons out left to right.
right Lay the icons out right to left.

A horizontal layout value should not be used for both the primary layout and the second-
ary_layout (for example, do not use top for the primary_layout and bottom for the second-
ary_layout). The primary layout indicates whether, when an icon placement is done, the
icon is placed in a row or a column and the direction of placement. The secondary layout
indicates where to place new rows or columns. For example, top right indicates that icons
should be placed top to bottom on the screen and that columns should be added from right to
left on the screen. The default placement is left bottom (icons are placed left to right on the
screen, with the first row on the bottom of the screen, and new rows added from the bottom of
the screen to the top of the screen).

iconPlacementMargin (class IconPlacementMargin)

This resource sets the distance between the edge of the screen and the icons that are placed
along the edge of the screen. The value should be greater than or equal to 0. A default value
is used if the value specified is invalid. The default value for this resource is equal to the
space between icons as they are placed on the screen (this space is based on maximizing the
number of icons in each row and column).

interactivePlacement (class InteractivePlacement)
This resource controls the initial placement of new windows on the screen. If the value is
true, then the pointer shape changes before a new window is placed on the screen to indicate
to the user that a position should be selected for the upper-left-hand comer of the window. If
the value is false, then windows are placed according to the initial window configuration
attributes. The default value of this resource is false.

keyBindings (class KeyBindings)

This resource identifies the set of key bindings for window management functions. If
specified, these key bindings replace the built-in default bindings. The named set of key
bindings is specified in the mwm resource description file. The default value for this resource
is the set of system-compatible key bindings.

Chapter 3: The .Xdefaults File Administering ODT-VIEW 19

mwm Resource Descriptions and Syntax

keyboardFocusPolicy (class KeyboardFocusPolicy)

If this resource is set to pointer, the keyboard focus is set to the client window that contains
the pointer (the pointer could also be in the client window decoration that mwm adds). If set
to explicit, the keyboard focus is set to a client window when the user presses button 1 with
the pointer on the client window or any part of the associated mwm decoration. The default
value for this resource is explicit.

limitResize (class LimitResize)
If this resource is true, the user is not allowed to resize a window to greater than the
maximum size. The default value for this resource is true.

lowerOnlconify (class LowerOnIconify)

If this resource has the value of true, which is the default value, a window’s icon appears on
the bottom of the window stack when the window is minimized (iconified). A value of false
places the icon in the stacking order in the same place as its associated window.

maximumMaximumSize (class MaximumMaximumSize)

This resource limits the maximum size of a client window as set by the user or client. The
resource value is widthxheight (for example, 1024x1024) where the width and height are in
pixels. The default value of this resource is twice the screen width and height.

moveThreshold (class MoveThreshold)

This resource controls the sensitivity of dragging operations that move windows and icons.
The value of this resource is the number of pixels that the locator is moved with a button
down before the move operation is initiated. This provision prevents window/icon
movement when a click or double-click is done and there is unintentional pointer movement
with the button down. The default value of this resource is 4 pixels.

passButtons (class PassButtons)

This resource indicates whether or not button press events are passed to clients after they are
used to do a window manager function in the client context. If the resource value is false,
then the button press is not passed to the client. If the value is true, the button press is passed
to the client window. The window manager function is done in either case. The default
value for this resource is false.

passSelectButton (class PassSelectButton)

This resource indicates whether or not the keyboard input focus selection button press (if
keyboardFocusPolicy is explicit) is passed on to the client window or is used to do a
window management action associated with the window decorations. If the resource value is
false, the button press is not used for any operation other than selecting the window that is to
have the keyboard input focus. If the value is true, the button press is passed to the client
window or used to do a window management operation, if appropriate. The keyboard input
focus selection is done in either case. The default value for this resource is true.

20 Administering ODT-VIEW ~ Administrator's Guide

mwm Resource Descriptions and Syntax

positionIsFrame (class PositionIsFrame)

This resource indicates how client window position information (from the
WM_NORMAL_HINTS property and from configuration requests) is to be interpreted. If
the resource value is true, the information is interpreted as the position of the mwm client
-window frame. If the value is false, it is interpreted as being the position of the client area of
the window. The default value of this resource is true.

positionOnScreen (class PositionOnScreen)

This resource indicates whether windows should initially be placed (if possible) so that they
are not clipped by the edge of the screen (if the resource value is true). If a window is larger
then the size of the screen, at least the upper left comner of the window is on-screen. If the
resource value is false, the windows are placed in the requested position even if they are
completely off-screen. The default value of this resource is true.

quitTimeout (class QuitTimeout)

This resource specifies the amount of time (in milliseconds) that mwm waits for a client to
update the WM_COMMAND property after mwm has sent the WM_SAVE_YOURSELF
message. This protocol is only used for those clients that have a WM_SAVE_YOURSELF
atom and no WM_DELETE_WINDOW atom in the WM_PROTOCOLS client window
property. The default value of this resource is 1000 ms. (Refer to the fkill function in
Chapter 4, “The .mwmrc File,” of this guide for additional information.)

resizeBorder Width (class ResizeBorder Width)
This resource specifies the width (in pixels) of a client window frame border with resize
handles. The specified border width includes the 3-D shadows. The default is 10 pixels.

resizeCursors (class ResizeCursors)

This resource indicates whether the resize cursors are always displayed when the pointer is in
the window size border. If the value is true, the resize cursors are shown. Otherwise, the
window manager cursor is shown. The default value is true.

showFeedback (class ShowFeedback)

This resource controls when feedback information is displayed. It controls both window
position and size feedback during move or resize operations and initial client placement. It
also controls window manager message and dialog boxes. The value for this resource is a list
of names of the feedback options to be enabled; the names must be separated by a space. The
names of the feedback options are shown in the following table:

Chapter 3: The .Xdefaults File Administering ODT-VIEW 21

M3IA-100

mwm Resource Descriptions and Syntax

Table 3.4.
Feedback Options
Name Description

all Shows all feedback. (Default value.)
behavior Confirms behavior switch.
move Shows position during move.
none Shows no feedback.
placement | Shows position and size during initial placement.
resize Shows size during resize.
restart Confirms mwm restart.

The following command line illustrates the syntax for showFeedback:
Mwm*showFeedback: placement resize behavior restart

This resource specification provides feedback for initial client placement and resize, and
enables the dialog boxes to confirm the restart and set behavior functions. It disables
feedback for the move function.

startupKeyFocus (class StartupKeyFocus)

This resource is only available when the keyboard input focus policy is explicit. When given
the default value of true, a window gets the keyboard input focus when the window is
mapped (that is, initially managed by the window manager).

transientDecoration (class TransientDecoration)

This resource controls the amount of decoration that mwm puts on transient windows. The
decoration specification is exactly the same as for the clientDecoration (client specific)
resource. Transient windows are identified by the WM_TRANSIENT_FOR property, which
is added by the client to indicate a relatively temporary window. The default value for this
resource is menu title (that is, transient windows have resize borders and a title bar with a
window menu button).

transientFunctions (class TransientFunctions)

This resource indicates which window management functions are applicable (or not
applicable) to transient windows. The function specification is exactly the same as for the
clientFunctions (client specific) resource.

22 Administering ODT-VIEW Administrator's Guide

mwm Resource Descriptions and Syntax

uselconBox (class UselconBox)
If this resource has a value of true, icons are placed in an icon box. When an icon box is not
used, the icons are placed on the root window (default value).

wMenuButtonClick (class WMenuButtonClick)

This resource indicates whether a click of the mouse when the pointer is over the window
menu button posts and leaves posted the system menu. If this resource has a value of true,
the menu remains posted. True is the default value for this resource.

wMenuButtonClick2 (class WMenuButtonClick2)
When this resource has a value of true, a double-click action on the window menu button
performs an f.kill function. The default value of this resource is true.

Component Appearance Resources

The syntax for specifying component appearance resources is:
Mwm®*resource_id: value

For example, Mwm*foreground: VioletRed specifies that VioletRed is the foreground color
for mwm menus, icons, and client window frames.

The syntax for specifying component appearance resources that apply to a particular mwm
component is:

Mwm*[menuliconiclientifeedback])*resource_id: value

If menu is specified, the resource applies only to mwm menus; if icon is specified, the
resource applies to icons; and if client is specified, the resource applies to client window
frames. For example, Mwm®*icon*foreground specifies the foreground color for mwm
icons; Mwm*menu*foreground specifies the foreground color for mwm menus; and
Mwm*client*foreground specifies foreground color for mwm client window frames.

The appearance of the title area of a client window frame (including window management
buttons) can be separately configured. The syntax for configuring the title area of a client
window frame is:

Mwm*client*title*resource_id: value

For example, Mwm*client*title*foreground: red specifies that red is the foreground color
for the title area. Defaults for title area resources are based on the values of the correspond-
ing client window frame resources.

Chapter 3: The .Xdefaults File Administering ODT-VIEW 23

M3IA-100

mwm Resource Descriptions and Syntax

The appearance of menus can be configured based on the name of the menu. The syntax for
specifying menu appearance by name is:

Mwm*menu*menu_name*resource_id: value

For example, Mwm*menu*my_| menu‘foreground. red specifies that red is the foreground
color for the menu named my_menu.

Refer to the sample Xdefaults file for more usage examples.
The following table lists the component appearance resources that apply to all window man-
ager parts.

Table 3.5.
Component Appearance Resources — All Window Manager Parts

Name Class Value Type Defauit
background Background color varies®*
backgroundPixmap BackgroundPixmap string** varies*
bottomShadowColor Foreground color varies*
bottomShadowPixmap BottomShadowPixmap string** varies*
fontList FontList string® ** "fixed”
foreground Foreground color varies*
saveUnder SaveUnder TF F
topShadowColor Background color varies*
topShadowPixmap TopShadowPixmap string** varies*

*The default is chosen based on the visual type of the screen.
**Pixmap image name.
. ***X11 R3 Font description.

background (class Background)
This resource specifies the background color. Any legal X color may be specified. The
default value is chosen based on the visual type of the screen.

backgroundPixmap (class BackgroundPixmap)

This resource specifies the background Pixmap of the mwm decoration when the window is
inactive (does not have the keyboard focus). The default value is based on the visual type of
the screen.

24 Administering ODT-VIEW Administrator’s Guide

mwm Resource Descriptions and Syntax

bottomShadowColor (class Foreground)

This resource specifies the bottom shadow color. This color is used for the lower and right
bevels of the window manager decoration. Any legal X color may be specified. The default
value is chosen based on the visual type of the screen.

bottomShadowPixmap (class BottomShadowPixmap)

This resource specifies the bottom shadow Pixmap. This Pixmap is used for the lower and
right bevels of the window manager decoration. The default is chosen based on the visual
type of the screen.

fontList (class Font)
This resource specifies the font used in the window manager decoration. The character
encoding of the font should match the character encoding of the strings that are used. The
default value is fixed.

foreground (class Foreground)
This resource specifies the foreground color. The default is chosen based on the visual type
of the screen.

saveUnder (class SaveUnder)

This resource indicates whether “save unders” are used for mwm components. For this
resource to have any effect, save unders must be implemented by the X server. If save unders
are implemented, the X server saves the contents of windows obscured by windows that have
the save under attribute set. If the saveUnder resource is true, mwm sets the save under
attribute on the window manager frame of any client that has it set. If saveUnder is false,
save unders are not used on any window manager frames. The default value is false.

topShadowColor (class Background)

This resource specifies the top shadow color. This color is used for the upper and left bevels
of the window manager decoration. The default is chosen based on the visual type of the
screen.

topShadowPixmap (class TopShadowPixmap)

This resource specifies the top shadow Pixmap. This Pixmap is used for the upper and left
bevels of the window manager decoration. The default is based on the visual type of the
screen.

Chapter 3: The .Xdefaults File Administering ODT-VIEW 25

M3IA-1a0

mwm Resource Descriptions and Syntax

The following table lists the component appearance resources that apply to frame and icon
components:

Table 3.6.
Component Appearance Resources — Frame and Icon Components

Name Class Value Type Defauit
activeBackground Background color varies*
activeBackgroundPixmap BackgroundPixmap string** varies*
activeBottomShadowColor Foreground color varies*
activeBottomShadowPixmap BottomShadowPixmap string** varies*
activeForeground Foreground color varies*
active TopShadowColor Background color varies*
active TopShadowPixmap TopShadowPixmap string* * varies*

*The default is chosen based on the visual type of the screen.
**See XmInstallimage(3X).

activeBackground (class Background)
This resource specifies the background color of the mwm decoration when the window is
active (has the keyboard focus). The default is based on the visual type of the screen.

activeBackgroundPixmap (class ActiveBackgroundPixmap)
This resource specifies the background Pixmap of the mwm decoration when the window is
active (has the keyboard focus). The default is based on the visual type of the screen.

activeBottomShadowColor (class Foreground)
This resource specifies the bottom shadow color of the mwm decoration when the window is
active (has the keyboard focus). The default is based on the visual type of the screen.

activeBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow Pixmap of the mwm decoration when the window
is active (has the keyboard focus). The default is based on the visual type of the screen.

activeForeground (class Foreground)
This resource specifies the foreground color of the mwm decoration when the window is
active (has the keyboard focus). The default is based on the visual type of the screen.

26 Administering ODT-VIEW Administrator’'s Guide

mwm Resource Descriptions and Syntax

activeTopShadowColor (class Background)
This resource specifies the top shadow color of the mwm decoration when the window is
active (has the keyboard focus). The default is based on the visual type of the screen.

activeTopShadowPixmap (class TopShadowPixmap)
This resource specifies the top shadow Pixmap of the mwm decoration when the window is
active (has the keyboard focus). The default is based on the visual type of the screen.

Client-Specific Resources

The syntax for specifying client-specific resources is:
Mwm*client_name_or_class*resource_id: value

For example, Mwm*mterm*windowMenu: ClientsMenu specifies that the menu called
“ClientsMenu” is the window menu used with mterm clients.

The syntax for specifying client-specific resources for all classes of clients is:
Mwm*resource_id: value

Specificclient specifications take precedence over the specifications for all clients. For
example, Mwm*windowMeénu: DefaultSystemMenu specifies that “DefaultSystemMenu”
is the window menu for all classes of clients that do not have a specified window menu.

The syntax for specifying resource values for windows that have an unknown name and class
is:

Mwm*defaults*resource_id: value

For example, Mwm*defaults*iconImage: /usr/lib/X11/generic.icon specifies that the icon
image in the file generic.icon is used for windows that have an unknown name and class.

Refer to the sample Xdefaults file for more usage examples.

Chapter 3: The .Xdefaults File Administering ODT-VIEW 27

(@)
O
D
=
m
=

mwm Resource Descriptions and Syntax

The following client-specific resources can be specified:

Table 3.7.

Client-Specific Resources

Name Class Value Type Default
clientDecoration ClientDecoration string all
clientFunctions ClientFunctions string all
focusAutoRaise FocusAutoRaise TF T
iconlmage Iconlmage pathname (image)
iconlmageBackground Background color icon background
iconlmageBottomShadowColor Foreground color icon bottom shadow
iconlmageBottomShadowPixmap BottomShadowPixmap color icon bottom shadow pixmap
iconlmageForeground Foreground color icon foreground
iconImage TopShadowColor Background color icon top shadow color
iconlmage TopShadowPixmap TopShadowPixmap color icon top shadow pixmap
matteBackground Background color background
matteBottomShadowColor Foreground color bottom shadow color
matteBottomShadowPixmap BottomShadowPixmap color bottom shadow pixmap
matteForeground Foreground color foreground
matte TopShadowColor Background color top shadow color
matte TopShadowPixmap TopShadowPixmap color top shadow pixmap
matteWidth MatteWidth pixels 0
maximumClientSize MaximumClientSize wxh fill the screen
useClientIcon UseClientIcon TFF F
windowMenu WindowMenu string string

clientDecoration (class ClientDecoration)

This resource controls the amount of window frame decoration. The resource is specified as
a list of decorations to specify their inclusion in the frame. If a decoration is preceded by a
minus sign, then that decoration is excluded from the frame. The sign of the first item in the
list determines the initial amount of decoration. If the sign of the first decoration is minus,
then mwm assumes all decorations are present and starts subtracting from that set. If the sign
of the first decoration is plus (or not specified), then mwm starts with no decoration and
builds up a list from the resource.

28 Administering ODT-VIEW Administrator's Guide

N’

mwm Resource Descriptions and Syntax

The following table describes the clientDecoration values:

Table 3.8.

Values for clientDecoration

Value Description
all Includes all decorations (default value).
border Window border.
maximize | Maximize button (includes title bar).
minimize | Minimize button (includes title bar).
none No decorations.
resizeh Border resize handles (includes border).
menu Window menu button (includes title bar).
title Title bar (includes border).

Examples:

Mwm*XClock.clientDecoration: -resizeh -maximize

This line removes the resize handles and maximize button from XClock windows.

Mwm*XClock.clientDecoration: menu minimize border

This line does the same thing as the first example. Note that eithcr menu or minimize

implies title.

clientFunctions (class ClientFunctions)

This resource indicates which mwm functions are applicable (or not applicable) to the client
window. The value for the resource is a list of functions. If the first function in the list has a
minus sign in front of it, mwm starts with all functions and subtracts from that set. If the first
function in the list has a plus sign in front of it, mwm starts with no functions and builds up a
list. Each function in the list must be preceded by the appropriate plus or minus sign and be
separated from the next function by a space.

Chapter 3: The .Xdefaults File

Administering ODT-VIEW 29

o
O
D
<
m
=

mwm Resource Descriptions and Syntax

The following table lists the functions available for this resource:

Table 3.9.
Values for clientFunctions

Value Description
all Includes all functions (default value)
none No functions
resize f.resize
move f.move

minimize | f.minimize
maximize | f.maximize
close fkill

focusAutoRaise (class FocusAutoRaise)

When the value of this resource is true, clients are made completely unobscured when they
get the keyboard input focus. If the value is false, the stacking of windows on the display is
not changed when a window gets the keyboard input focus. The default value is true.

iconImage (class IconImage)

This resource can be used to specify an icon image for a client (for example,
Mwm*myclock*iconImage). The resource value is a pathname for a bitmap file. The value
of the (client specific) useClientIcon resource determines whether or not user-supplied icon
images are used instead of client-supplied icon images. The default value is to display a
built-in window manager icon image.

iconImageBackground (class Background)

This resource specifies the background color of the icon image that is displayed in the image
portion of an icon. The default value of this resource is the icon background color (that is,
specified by Mwm*background or Mwm*icon*background).

iconImageBottomShadowColor (class Foreground)

This resource specifies the bottom shadow color of the icon image that is displayed in the
image portion of an icon. The default value of this resource is the icon bottom shadow color
(that is, specified by Mwm*icon*bottomShadowColor).

iconImageBottomShadowPixmap (class BottomShadowPixmap)
This resource specifies the bottom shadow Pixmap of the icon image that is displayed in the
image portion of an icon. The default value of this resource is the icon bottom shadow
Pixmap (that is, specified by Mwm*icon*bottomShadowPixmap).

30 Administering ODT-VIEW Administrator’s Guide

mwm Resource Descriptions and Syntax

iconImageForeground (class Foreground)

This resource specifies the foreground color of the icon image that is displayed in the image
portion of an icon. The default value of this resource is the icon foreground color (that is,
specified by Mwm*foreground or Mwm®*icon*foreground).

iconlmageTopShadowColor (class Background)

This resource specifies the top shadow color of the icon image that is displayed in the image
portion of an icon. The default value of this resource is the icon top shadow color (that is,
specified by Mwm®*icon*topShadowColor).

iconlmageTopShadowPixmap (class TopShadowPixmap)

This resource specifies the top shadow Pixmap of the icon image that is displayed in the
image portion of an icon. The default value of this resource is the icon top shadow Pixmap
(that is, specified by Mwm®*icon*topShadowPixmap).

matteBackground (class Background)

This resource specifies the background color of the matte when matteWidth is positive. The
default value of this resource is the client background color (that is, specified by
Mwm*background or Mwm*client*background).

matteBottomShadowColor (class Foreground)

This resource specifies the bottom shadow color of the matte when matteWidth is positive.
The default value of this resource is the client bottom shadow color (that is, specified by
Mwm *bottomShadowColor or Mwm*client*bottomShadowColor).

matteBottomShadowPixmap (class BottomShadowPixmap)

This resource specifies the bottom shadow Pixmap of the matte when matteWidth is
positive. The default value of this resource is the client bottom shadow Pixmap (that is,
specified by Mwm*bottomShadowPixmap or Mwm®*client*bottomShadowPixmap).

matteForeground (class Foreground)

This resource specifies the foreground color of the matte when matteWidth is positive. The
default value of this resource is the client foreground color (that is, specified by
Mwm*foreground or Mwm*client*foreground).

matteTopShadowColor (class Background)

This resource specifies the top shadow color of the matte when matteWidth is positive. The
default value of this resource is the client top shadow color (that is, specified by
Mwm*topShadowColor or Mwm*client*topShadowColor").

matteTopShadowPixmap (class TopShadowPixmap)

This resource specifies the top shadow Pixmap of the matte when matteWidth is positive.
The default value of this resource is the client top shadow Pixmap (that is, specified by
Mwm*topShadowPixmap or Mwm*client*topShadowPixmap).

Chapter 3: The .Xdefaults File Administering ODT-VIEW 31

M3IA-1a0

mwm Resource Descriptions and Syntax

matteWidth (class MatteWidth)
This resource specifies the width of the optional matte. The default value is 0, which
effectively disables the matte.

maximumClientSize (class MaximumClientSize)

This is a size specification that indicates the client size to be used when an application is
maximized. The resource value is specified as widthxheight. The width and height are
interpreted in the units that the client uses (for example, with terminal emulators this is
generally characters). If this resource is not specified, the maximum size from the
WM_NORMAL_HINTS property is used if set. Otherwise, the default value is the size
where the client window with window management borders fills the screen. When the
maximum client size is not determined by the maximumClientSize resource, the
maximumMaximumSize resource value is used as a constraint on the maximum size.

useClientIcon (class UseClientIcon)

If the value for this resource is true, a client-supplied icon image takes precedence over a
user-supplied icon image. The default value is false, making the user-supplied icon image
have higher precedence than the client-supplied icon image.

windowMenu (class WindowMenu)

This resource indicates the name of the menu pane that is posted when the window menu is
popped up (usually by pressing button 1 on the window menu button on the client window
frame). Menu panes are specified in the mwm resource description file. Window menus can
be customized on a client class basis by specifying resources of the form
Mwm*client_name_or_class*windowMenu. The default value of this resource is the name
of the built-in window menu specification.

32 Administering ODT-VIEW Administrator’s Guide

Chapter 4
The .mwmrc File

This chapter explains how the .mwmrc file is organized, which window attributes it controls,
and how you can reconfigure it.

.mwmrc Overview

The .mwmrec file is a supplementary resource description file that is referred to by Xdefaults.
It contains descriptions of resources that cannot be easily encoded in Xdefaults. Usually,
you only need one configurable supplementary resource description file (SHOME/.mwmrc) in
addition to the default supplementary file (/usr/lib/X11/system.mwmrc). If you create more
than one configurable supplementary file, you must use the configFile resource in Xdefaults
to specify which one is referenced when you log in to Open Desktop.

The .mwmrc file uses WINDOW MANAGER FUNCTIONS to define the behavior of the resource
types shown in the following table. When you configure a resource in .mwmrc, you do so by
assigning one or more window manager functions to it. These functions are explained in
detail later in this chapter.

The following types of resources can be described in .mwmrc:

Table 4.1.

Configuration of .mwmrc Resource Types

Resource Type How Resource Type Is Configured
Buttons Window manager functions can be bound to mouse button events.
Keys Window manager functions can be bound to key-press events.
Menu Panes The contents of menu panes and the key-press or button events
that post them can be defined.

Chapter 4: The.mwmrc File Administering ODT-VIEW 33

M3IA-100

.mwmrc Overview

Sample .mwmrc File

The .mwmrc is a standard text file containing items of information separated by blanks, tabs,
and new-line characters. The following guidelines apply to the .mwmrc file:

Blank lines are ignored.

Items or characters that have special meaning are interpreted literally when
quoted. For example, if you quote the comment character, it is not interpreted
as the comment character.

Items longer than one character are quoted with double quotes ().

A single character is quoted by preceding it with a backslash (V).

All text from an unquoted # to the end of the line is regarded as a comment.

If ! is the first character in a line, the line is regarded as a comment.

The following sample .mwmrc file contains examples of window manager functions that
control menu panes, key bindings, and button bindings. The sections following the file
describe the functions and the syntax for using them to control these resource types.

W A W M *

* =

{

menu pane descriptions

/ Henname
Menu DefaultWindowMenu MwmWindowMenu Accelerator Keys Functions

/Menu labcls/Mnemmia
Restore _R Alt<key>5

@ (#) system.mwmrc 1.2 89/04/04

ent Lines
DEFAULT mwm RESOURCE DESCRIPTION FILE (system.mwmrc)

f.normalize

Move M Alt<key>7 f.move
Size _S Alt<key>8 f.resize
Minimize _n Alt<key>9 f.minimize
Maximize x Alt<key>0 f.maximize

34 Administering ODT-VIEW Administrator’s Guide

Lower
no-label
Close

Menu RootMenu

{

"Root Menu"
"Clients"
"Xterm"
"Shuffle Up"
"Shuffle Down"
"Refresh"
no-label
"Restart"

Menu ClientsMenu

{

#
key binding descriptions
#

Keys _DefaultKeyBindings_

Chapter 4: The.mwmrc File

"xclock"
"xload"
"xcalc"
"xbiff"
"bitmap"
” ico"

Shift<Key>Escape

Meta<Key>Escape

Meta Shift<Key>Tab

Meta<Key>Tab

Sample.mwmrcFile

Alt<key>minus f.lower
f.separator (@]
Alt<key>4 £.kill 3
<
=
f.title
_C f.menu ClientsMenu
_x f.exec "xterm -sb &"
_u f.circle up
_D f.circle_down
_R f.refresh
f.separator
f.restart

f.exec "xclock &"

f.exec "xload &"

f.exec "xcalc &"

f.exec "xbiff &"

f.exec "bitmap $HOME/tmp_bitmap &"
f.exec "ico &"

IO lU 'H I)—‘ IO- IN‘

Key binding set name

Key events Contexts Functions

icon|window f.post_smenu

root |icon|window f.menu DefaultRootMenu
root|icon|window f.prev_key

root |icon|window f.next_key

Administering ODT-VIEW 35

Sample .mwmrcFlle

¥
button binding descriptions

* / Button binding set name
Buttons DefaultButtonBindings
Button events Contexts Functions
<BtnlDown> root f.menu DefaultRootMenu

<Btn3Down> root f .menu DefaultRootMenu
<BtnlDown> frame f.raise

<Btn3Down> frame|icon f.post_smenu
Meta<BtnlDown> icon|window f.move

Meta<Btn3Down> window f.minimize

*

END OF mwm RESOURCE DESCRIPTION FILE

Window Manager Functions

As shown in the sample file, window manager functions are key components in describing
menu panes, key bindings, and button bindings. The following three sections describe the
functions, their syntax, and their constraints.

Function Descriptions

Each type of resource (menu panes, keys, or buttons) uses one or more window manager
functions to control its behavior. For example, binding the left mouse button to a client
window with the f.raise function causes the window to be raised whenever you press the left
mouse button.

The following list describes each window manager function:

f.beep
This function causes a beep.

f.circle_down [icon | window]

This function causes the window or icon that is on the top of the window stack to be put on
the bottom of the window stack (so that it is no longer obscuring any other window or icon).

36 Administering ODT-VIEW Administrator’s Guide

Window Manager Functions

This function affects only those windows and icons that are obscuring other windows and
icons, or that are obscured by other windows and icons. Secondary windows (that is,
transient windows) are restacked with their associated primary window. Secondary windows
always stay on top of the associated primary window, and there can be no other primary
windows between the secondary windows and their primary window. If an icon function
argument is specified, the function applies only to icons. If a window function argument is
specified, the function applies only to windows.

fcircle_up [icon | window]

This function raises the window or icon on the bottom of the window stack (so that it is not
obscured by any other windows). This function affects only those windows and icons that are
obscuring other windows and icons, or that are obscured by other windows and icons. Sec-
ondary windows (that is, transient windows) are restacked with their associated primary
window. If an icon function argument is specified, the function applies only to icons. If a
window function argument is specified, the function applies only to windows.

f.exec or!
This function causes a command to be executed (using the value of the $SHELL environment
variable if it is set, otherwise /bin/sh). The ! notation can be used in place of the f.exec func-
tion name.

f.focus_color

This function sets the colormap focus to a client window. If this function is done in a root
context, then the default colormap (set up by the X Window System for the screen where
mwm is running) is installed and there is no specific client window colormap focus. This
function is treated as f.nop if colormapFocusPolicy is not explicit.

f.focus_key

This function sets the keyboard input focus to a client window or icon. This function is
treated as f.nop if keyboardFocusPolicy is not explicit or the function is executed in a root
context.

f.kill :

If the WM_DELETE_WINDOW protocol is set up, the client is sent a client message event
indicating that the client window should be deleted. If the WM_SAVE_YOURSELF
protocol is set up and the WM_DELETE_WINDOW protocol is not set up, the client is sent a
client message event indicating that the client needs to prepare to be terminated. If the client
does not have the WM_DELETE_WINDOW or WM_SAVE_YOURSELF protocol set up,
this function causes a client’s X connection to be terminated (usually resulting in termination
of the client). Refer to the description of the quitTimeout resource and the
WM_PROTOCOLS property.

f.lower [-clieni)
This function lowers a client window to the bottom of the window stack (where it obscures

Chapter 4: The.mwmrc File Administering ODT-VIEW 37

M3IA-13a0

Window Manager Functions

no other window). Secondary windows (that is, transient windows) are restacked with their
associated primary window. The client argument indicates the name or class of a client to
lower. If the client argument is not specified, the context that the function was invoked in
indicates the window or icon to lower.

f.maximize
This function causes a client window to be displayed with its maximum size.

f.menu

This function associates a cascading (pull-right) menu with a menu pane entry or a menu
with a button or key binding. The menu_name function argument identifies the menu to be
used.

f.minimize

This function causes a client window to be minimized (iconified). A window is minimized
when no icon box is used, and its icon is placed on the bottom of the window stack (such that
it obscures no other window). If an icon box is used, then the client’s icon changes to its
iconified form inside the icon box. Secondary windows (that is, transient windows) are
minimized with their associated primary window. There is only one icon for a primary
window and all its secondary windows.

f.move
This function allows a client window to be interactively moved.

f.next_cmap

This function installs the next colormap in the list of colormaps for the window with the
colormap focus.

f.next_key [icon | window | transient]

This function sets the keyboard input focus to the next window/icon in the set of
windows/icons managed by the window manager (the ordering of this set is based on the
stacking of windows on the screen). This function is treated as f.anop if
keyboardFocusPolicy is not explicit. The keyboard input focus is only moved to windows
that do not have an associated secondary window that is application modal. If the transient
argument is specified, then transient (secondary) windows are traversed (otherwise, if only
window is specified, traversal is done only to the last focused window in a transient group).
If an icon function argument is specified, then the function applies only to icons. If a window
function argument is specified, then the function applies only to windows.

38 Administering ODT-VIEW Administrator's Guide

Window Manager Functions

f.nop

This function does not cause any actions to be performed. When you want to include a
command line that temporarily causes no action, you can use f.nop to satisfy the syntax
requirement that a function of some type be named.

f.normalize

This function causes a client window to be displayed with its normal size. Secondary
windows (that is, transient windows) are placed in their normal state along with their
associated primary window.

f.pack_icons
This function redraws icons on the root window or in the icon box based on the layout policy
being used. In general, this causes icons to be "packed” into the icon grid.

f.pass_keys

This function is used to enables/disables (toggles) the processing of key bindings for window
manager functions. When it disables key binding processing, all keys are passed on to the
window with the keyboard input focus, and no window manager functions are invoked. If the
f.pass_keys function is invoked with a key binding to disable key binding processing, the
same key binding can be used to enable key binding processing.

f.post_wmenu

This function posts the window menu. If a key posts the window menu and a window menu
button is present, the window menu is automatically placed with its top-left corner at the
bottom-left corner of the window menu button for the client window. If no window menu
button is present, the window menu is placed at the top-left comer of the client window.

f.prev_cmap
This function installs the previous colormap in the list of colormaps for the window with the
colormap focus.

f.prev_key [icon | window | transient]

This function sets the keyboard input focus to the previous window/icon in the set of
windows/icons managed by the window manager (the ordering of this set is based on the
stacking of windows on the screen). This function is treated as f.nop if
keyboardFocusPolicy is not explicit. The keyboard input focus is only moved to windows
that do not have an associated secondary window that is application modal. If the transient
argument is specified, then transient (secondary) windows are traversed (otherwise, if only
window is specified, traversal is done only to the last focused window in a transient group).
If an icon function argument is specified, the function applies only to icons. If a window
function argument is specified, the function applies only to windows.

f.quit_mwm
This function terminates mwm (but not the X Window System).

Chapter4: The . mwmrc File Administering ODT-VIEW 39

Window Manager Functions

f.raise [-client]

This function raises a client window to the top of the window stack (where it is obscured by
no other window). Secondary windows (that is, transient windows) are restacked with their
associated primary window. The client argument indicates the name or class of a client to

raise. If the client argument is not specified, the context that the function was invoked in
indicates the window or icon to raise.

f.raise_lower
This function raises a client window to the top of the window stack if it is partially obscured
by another window; otherwise, it lowers the window to the bottom of the window stack. Sec-

ondary windows (that is, transient windows) are restacked with their associated primary
window.

f.refresh
This function causes all windows to be redrawn.

f.refresh_win
This function causes a client window to be redrawn.

f.resize
This function allows a client window to be interactively resized.

f.restart
This function causes mwm to be restarted (effectively terminated and re-executed).

f.send_msg message_number

This function sends a client message of the type _MOTIF_WM_MESSAGES with the mes-
sage_type indicated by the message_number function argument. The client message is only
sent if message_number is included in the client’s _MOTIF_WM_MESSAGES property. A
menu item label is grayed out if the menu item is used to do f.send_msg of a message that is
not included in the client’s _MOTIF_WM_MESSAGES property.

f.separator

This function causes a menu separator to be put in the menu pane at the specified location
(the label is ignored).

f.set_behavior

This function causes the window manager to restart with the default OSF behavior (if a
custom behavior is configured) or a custom behavior (if an OSF default behavior is config-
ured).

f.title
This function inserts a title in the menu pane at the specified location.

40 Administering ODT-VIEW Administrator’s Guide

Window Manager Functions

Function Syntax

There are two types of syntax described in this chapter: syntax for defining a resource type,
and syntax for naming a function. Functions are a common component of every .mwmrc
resource type description. Thus, while the syntax for describing resource types varies
between resources, the syntax for naming a function is the same no matter what resource type
the function describes. This section describes the syntax for naming a function. The different
syntaxes for each resource type are described later in this chapter. The syntax for naming a
function is:

Sfunction = function_name [function_args]
function_name = window manager function
function_args = {quoted_item | unquoted_item)

Refer to the sample .mwmrc file for examples of function usage.

Function Constraints

Some functions cannot be specified by certain resource types. For example, you cannot use
the f.title function to define a button or key binding; you can only use it to define a menu
pane. There are also constraints regarding the context in which a function can be used. For
example, the f.minimize function only applies to window panes; it does not work when the
pointer is on the root menu or an icon.

You can configure a function’s context as long as you stay within the limits of that function’s
constraints. For example, you can configure the f.kill function to work with icons, windows,
or both. However, because the root window is not an available context in which to use f.kill,
you cannot configure it in that context. The following table describes the three contexts in
which functions can be used:

Chapter 4: The . mwmrc File Administering ODT-VIEW 41

Window Manager Functions

Table 4.2.
Function Contexts

Context Description

root The function can be performed when:
1. The pointer is on the root menu, and
2. Neither a client window nor an icon is to be

acted upon by the function.
icon The function can be performed when the pointer
is on an icon.
window The function can be performed when the

pointer is on a client window, title bar, or frame.
Some functions, such as f.maximize, apply
only when the window is normalized. Others,
such as f.normalize, apply only

when the window is maximized.

The following list describes how resource type names are used in table 4.4:

Table 4.3.
Resource Types

Resource Type Definition
button The function can be specified in the button
bindings section of .mwmrc.
key The function can be specified in the key
bindings section of .mwmrc.
menu The function can be specified in the menu
pane description section of .mwmrc.

42 Administering ODT-VIEW Administrator’s Guide

WindowManager Functions

If a function is specified in an incompatible resource type, or if it is invoked in a context that

N’ does not apply, the function is treated as f.nop. The following table describes the contexts Ke)
and resource types that work with each function: 3
B
Table 4.4. g
Where Functions Can Be Used
Function Contexts Resource Types
f.beep root,icon,window button key,menu
f.circle_down | rooticon,window button,key,menu
~ f.circle_up root,icon,window button key,menu
f.exec root,icon,window button key,menu
f.focus_color root,icon,window button ,key,menu
f.focus_key root,icon,window button,key,menu
fkill icon,window button,key,menu
f.lower root,icon,window button key,menu
f.maximize icon,window(normal) button,key,menu
f.menu root,icon,window button key,menu
f.minimize window button key,menu
f.move icon,window button,key,menu
f.next_cmap root,icon,window button key,menu
f.next_key root,icon,window button key,menu
f.nop root,icon,window button key,menu
f.normalize icon,window(maximized) | button,key,menu
~ f.pack_icons root,icon,window button,key,menu
f.pass_keys root,icon,window button,key,menu
f.post_wmenu | root,icon,window button key
f.prev_cmap root,icon,window button key,menu
f.prev_key root,icon,window button,key,menu
f.quit_mwm root button,key,menu
(Continued on next page.)
~

Chapter4: The.mwmrc File

Administering ODT-VIEW 43

Window Manager Functions

Table 4.4.

Where Functions Can Be Used (Continued)

Function Contexts Resource Types
f.raise root,icon,window | buttonkey,menu
f.raise_lower icon,window button,key,menu
f.refresh root,icon,window | buttonkey,menu
f.refresh_win window button key,menu
fresize window button key,menu
f.restart root button,key,menu
f.send_msg icon,window button,key,menu
f.separator root,icon,window | menu
f.set_behavior | rooticon,window | buttonkey,menu
f.title root,icon,window | menu

Using Functions

The following sections describe how to use the window manager functions to configure menu
panes, key bindings, and button bindings. The concept of WINDOW MANAGER EVENTS is also
explained.

Window Manager Events

Events are another part of the specifications for menu pane descriptions, key binding sets,
and button binding sets. An event describes an action that you take (such as pressing a
mouse button) to execute a function. The next three sections explain how to link a function
to an event. This section explains the event syntax that is used in the sections that follow.

The button event specification used later in this chapter in “Configuring Button Bindings”
has the following syntax:

button =
modifier_list =

[modifier_listl<button_event_name>
modifier_name (modifier _name)

44 Administering ODT-VIEW Administrator’s Guide

Using Functions

All modifiers specified are exclusive; that is, only the specified modifiers can be present when
the button event occurs. The following table indicates the values that can be used for

modifier_name. The [Alt] key is frequently labeled [Extend] or [Meta). Alt and Meta can be 8‘
used interchangeably for an event specification. D
m
=3
Table 4.5.
Modifiers
modifier_name | Description
Cul Control Key
Shift Shift Key
Alt Alt/Meta Key
Meta Meta/Alt Key
Lock Lock Key
Modl Modifierl
Mod2 Modifier2
Mod3 Modifier3
Mod4 Modifier4
Mod5 ModifierS

The following table indicates the values that can be used for button_event_name.

Chapter 4: The.mwmrc File Administering ODT-VIEW 45

Using Functions

Table 4.6.

Button Event Definitions
button_event_name Description
Bm1Down Button 1 Press
Btn1Up Button 1 Release
Btn1Click Button 1 Press and Release
Btn1Click2 Button 1 Double Click
Btn2Down Button 2 Press
Bm2Up Button 2 Release
Btn2Click Button 2 Press and Release
Btn2Click2 Button 2 Double Click
Btn3Down Button 3 Press
Bmn3Up Button 3 Release
Btn3Click Button 3 Press and Release
Bm3Click2 Button 3 Double Click
Btn4Down Button 4 Press
Btn4Up Button 4 Release
Btn4Click Button 4 Press and Release
Btn4Click2 Button 4 Double Click
Btn5Down Button 5 Press
BmSUp Button S Release
Bm5Click Button 5 Press and Release
Btn5Click2 Button 5 Double Click

Key events are single key presses; key releases are ignored. The key event specification used
later in this chapter in “Configuring Key Bindings” has the following syntax:

key = [modifier listl<Key>key name
modifier list= modifier name {modifier name}

All modifiers are exclusive; that is, only the specified modifiers can be present when the key
event occurs. Modifiers for keys are the same as those that apply to buttons.

Refer to the sample .mwmrc file for examples of window manager event usage.

46 Administering ODT-VIEW Administrator's Guide

Using Functions

Configuring Menu Panes

Menus can be popped up with the f.post_wmenu and f.menu window manager functions. The
context for functions that are available through the newly displayed menu depends on how
the menu was popped up. If the menu was popped up with a key-press event or from another
menu, the function context is determined by the keyboard input focus. If the menu was
popped up with a button-press event, the context of the button binding dictates the context of
the menu.

o
o
D
=
m
=

The menu pane specification syntax is:

Menu menu_name

{
label [mnemonic] [accelerator] function
label [mnemonic] [accelerator] function

label [mnemonic] [accelerator] function

}

Each line in the Menu specification identifies the label for a menu item and the function to be
done if the menu item is selected. The label may be a string or a bitmap file. The label spe-
cification has the following syntax:

label = text | bitmap_file
text = quoted_item | unquoted_item
bitmap file= @file_name

The string encoding for labels must match the font that is used in the menu. Labels are
grayed out for menu items that perform the f.nop function, an invalid function, or a function
that is not available in the current context.

Mnemonics are functional only when the menu is posted. A mnemonic specification has the
following syntax:

mnemonic = _character

The first matching character in the label is underlined. If there is no matching character in
the label, no mnemonic is registered with the window manager for that label. The character
must exactly match a character in the label; the mnemonic cannot execute if any modifier
(such as Shift) is pressed with the character key.

Chapter 4: The . mwmrc File Administering ODT-VIEW 47

Using Functions

The accelerator is a key event specification with the same syntax as the window manager
function key bindings.

Refer to the “menu pane descriptions™ section of the sample .mwmrc file for examples of
menu pane descriptions.

Configuring Key Bindings

The keyBindings resource in Xdefaults refers to a set of key bindings in .mwmrc. These
bindings cause window manager functions to be performed when particular keys are pressed.
The context in which each key binding applies is indicated in the key binding specification.

The key binding syntax is:

Keys bindings_set_name
{

key context function
key context function

.

key context function

}

The syntaxes for key and function were explained earlier in this chaptcr in “Window Manag-
er Events” and “Function Syntax,” respectively.

The syntax for the context specification is:

context = object[|context]
object = root | icon | window | title | frame | border | app

The context specification indicates where the pointer must be for the key binding to be
effective. For example, a context of window indicates that the pointer must be over a client
window or window management frame for the key binding to be effective. The title context
is for the title area of the window management frame, the frame context is for the window
management frame around a client window (including the border and titlebar), the border
context is for the border part of the window management frame (not including the titlebar),

and the app context is for the application window (not including the window management
frame).

The context for a key event is the same as the context for the window or icon that has the
keyboard input focus. If no window or icon has the keyboard input focus, the context is set
toroot. The frame, title, border, and app contexts are the same as the window context.

48 Administering ODT-VIEW Administrator’s Guide

Using Functions

If an f.nop function is specified for a key binding, the key binding is not done. If an
N\ fpost_wmenu or f.menu function is bound to a key, mwm automatically uses the same key to
remove the menu from the screen after it has been popped up.

Refer to the “key bindings descriptions™ section of the sample .mwmrc file for examples of
key bindings.

@)
o
o
=
m
=

Configuring Button Bindings

The buttonBindings resource in Xdefaults refers to a set of button bindings in .mwmrc.
These button bindings cause window manager functions to be performed when a button press
occurs with the pointer over a framed client window, an icon, or the root window. The
contexts specified in the button binding definitions determine the contexts of the window
manager functions that are made available when you perform the button press. For example,
suppose that pressing the left mouse button pops up a menu. The context of each menu item’s
function is the same as the context of the function that bound the left mouse button to the
menu pop-up.

The button binding syntax is:

Buttons bindings _set_name
{

button context function
button context function

bution context function

}

The syntaxes for button and function were explained earlier in this chapter in “Window Man-
ager Events” and “Function Syntax,” respectively.

The syntax for the context specification is:

context = object[|context)
object = root | icon | window | title | frame | border | app

Chapter 4: The.mwmrc File Administering ODT-VIEW 49

Using Functions

The context specification indicates where the pointer must be for the button binding to be
effective. For example, a context of window indicates that the pointer must be over a client
window or window management frame for the button binding to be effective. The title
context is for the title area of the window management frame, the frame context is for the
window management frame around a client window (including the border and titlebar), the
border context is for the border part of the window management frame (not including the
titlebar), and the app context is for the application window (not including the window man-
agement frame).

If an f.nop function is specified for a button binding, the button binding is not done.

Refer to the “button binding description” section of the sample .mwmrc file for examples of
button bindings.

50 Administering ODT-VIEW Administrator’s Guide

~— Chapter 5
Desktop Manager Overview

o
O
D
<
m
=

The following three chapters describe how to:

B Reconfigure the Desktop Manager to modify the appearance and behavior of the
Desktop window and its components

~ m Customize the Desktop Manager to suit particular applications

The most powerful feature of the Desktop Manager is that its appearance and behavior are
not fixed, but are determined instead by rule files that can be edited to suit individual require-
ments. This chapter gives a general introduction to the DEFAULTS FILES and RULE FILES,
which determine the behavior and appearance of the Desktop Manager. It also describes
some typical applications in which these files are used.

Because the Desktop Manager is an X client, many of its rule and defaults files have names
that begin with an “x,” such as xdtuserinfo.

Changing the Appearance of the Desktop
— Manager

The defaults files determine the default appearance of the main components of the Desktop
Manager, as shown in the following figure:

Chapter 5: Desktop Manager Overview Administering ODT-VIEW 51

Changing the Appearance of the Desktop Manager

Figure 5-1. Desktop Manager Characteristics Specified by Defaults Files

lcon Pictures for
spacing directory controls
Menu line lcon
thickness fonts

Root Henu
Clients
‘of xterm
Shuffle Up
Shuffle Down
Refresh

1 Restart

Background
patterns

In addition, the defaults files specify the mapping between the mouse clicks and the triggers
used by the system. These can be altered to accommodate a mouse with a different number or
layout of buttons.

The system defaults file specifies the name of the startup environment file. This environment
file contains the desktop layout, which is updated each time you leave the Desktop Manager.
Normally, each computer running the Desktop Manager has a defaults file suited to the
particular machine on which it is being run. For example, machines with large screens use
larger pictures for window controls to improve legibility.

52 Administering ODT-VIEW Administrator’'s Guide

Changing the Appearance of the Desktop Manager

However, users can provide their own defaults files to give any desired appearance, or they
can switch between defaults files to provide different working environments for different
applications.

O
o
D
=
m
2

Changing the Behavior of the Desktop Man-
ager

A separate set of files called rule files determine the characteristics of the Desktop Manager
shown in the following figure:

Chapter 5: Desktop Manager Overview Administering ODT-VIEW 53

Changing the Behavior of the Desktop Manager

Figure 5-2. Desktop Manager Characteristics Specified by Rule Files

lcon Action when you

Icon titles Desktop double-click
plotures layout on an icon

Action when you drag Action when you drag an icon
an icon onto another into a directory window

The default behavior of the Desktop Manager is determined by a system rule file, but this can
be overridden by additional rule files provided by each user. Furthermore, you can create rule
files that are local to a specific directory. Rule files consist of a number of separate
components that determine the behavior of the Desktop Manager:

54 Administering ODT-VIEW Administrator’s Guide

Changing the Behavior of the Desktop Manager

B Icon appearance and title. The picture displayed for a file or group of files,
and the title displayed beside it.

B Icon activation. This occurs when the icon is activated, or double-clicked, by
the mouse, and when another icon is dropped onto it.

B Drop behavior. This happens when one or more icons are dragged into a
directory window.

B Desktop layout. The files that are on the desktop and what their positions are.

B Locked files. The files that are permanently locked onto the desktop.

Typical Applications

The following examples illustrate how the Desktop Manager can be configured in some
applications.

Simulating Familiar Environments

Users who are already familiar with other desktop-based systems, or who have to share their
work between the Desktop Manager and another desktop system, can configure the Desktop
Manager to match the appearance and behavior of the other system. Thus, they can minimize
the errors associated with transfer and reduce the amount of relearning needed.

Associating Data Files with Programs

By defining appropriate icon rules, each data file can be associated with the most relevant
program, so that double-clicking on the data file invokes the appropriate program with the
data file supplied to it.

Dragging a data file onto a program icon can be used as an alternate method of invoking the

program. For example, a rule file could be written such that compiler source files are edited
by dragging them onto the editor icon and compiled by double-clicking on them.

Chapter 5: Desktop Manager Overview Administering ODT-VIEW 55

M3IA-100

Typical Applications

Creating a Background Mail Server

The rule files are flexible enough to allow the creation of applications, such as a mail server
that posts new mail as an icon on the desktop. The mail server would run as a background
task, and when mail is received it would run a Desktop command language command to
place the mail file on the desktop. The rule file could specify that double-clicking on a mail
file opens it in a text editor and deletes the original file.

Waste Icon

The Waste icon is created by rule files with no additional programming. The Waste icon is a
directory, with an appropriate title and picture. It contains a rule file that causes any icon
either dropped into the directory window or onto the directory icon to be moved to the
directory. The Waste directory can be cleared by double-clicking its icon with the right-most
mouse button. The Waste icon is typically locked onto the desktop by including it in the
locked files list.

Encrypting and Decrypting Automatically

The drop rule files allow directories with special characteristics to be created within the
Desktop Manager. For example, a directory could be created such that all files dragged into it
are encrypted. They could be decrypted either by dragging them into another directory
window or by double-clicking on their icon.

Using Local Rule Files
Rule files can be local to one user, or even local to a specific directory. User-specific rule
files can take care of the different computers that different users on a UNIX system network

might be using. Each user can thus double-click on a program file on the network, and run it
on a computer appropriate to that program.

56 Administering ODT-VIEW Administrator’s Guide

Typical Applications

Changing Environments

The Desktop Manager is flexible enough to allow a single user to switch environments at
will, thus changing both the appearance and behavior of the desktop by double-clicking the
appropriate environment file. For example, a user might have two characteristic modes of
working, programming and documenting. In the first mode, the desktop might display
compilers and debuggers, and the rule files could specify that double-clicking source files
runs the appropriate compiler. In the documenting mode, the desktop might display word
processing and flow-charting programs, and double-clicking source files loads the appropri-
ate word processor.

The standard rules take any file ending in xde as an environment file. Double-clicking an
environment file with the left-hand mouse button changes the desktop to that environment.

Tailoring Message Files

The message file contains all the messages used by the Desktop Manager in a standard
editable form. You can alter this file to tailor the messages to specific applications: for
example, more explanatory messages in a teaching environment or terse messages in a devel-
opment environment. Or, you can change the file to cater to different languages.

Chapter 5: Desktop Manager Overview Administering ODT-VIEW 57

Typical Applications

58 Administering ODT-VIEW Administrator’s Guide

Chapter 6
Desktop Manager Tutorials

This chapter contains four examples that show how to configure the Desktop Manager to
make a file compression utility available from the Desktop. These examples illustrate most of
the main features of the Desktop Manager rule files and should serve as a useful basis for
creating other applications.

Determining the Appearance of Your
Desktop

By creating rule files, you can assign icons to specific files or directories, and you can specify
a title for the icon to be displayed instead of the usual file title. The following example
illustrates the use of rule files by defining a title and icon for the UNIX file compression
utility, compress. Make a copy of the compress program in a suitable directory in your user
file space.

Creating an Icon

First we need to define a suitable icon and put it into the picture file directory
lusrlinclude/X 11/bitmaps/desktop icons. The simplest procedure is to start with an existing
picture file, as follows:

1. Copy an existing picture file and rename it compress.px.

2. Double-click its icon to run the bitmap editor. You can then edit the icon with
the mouse pointer.

3. Exit from the bitmap editor by clicking Save and then Quit when you are
satisfied with the picture.

Chapter 6: Desktop Manager Tutorials Administering ODT-VIEW 59

Determining the Appearance of Your Desktop

In the bitmap editor, the mouse buttons have the following functions:

Table 6.1.
Bitmap Editor Button Bindings

Button Function
Left Sets pixel black.
Middle | Changes pixel.
Right Sets pixel white.

Defining an Icon Rule

The next step is to define an icon rule assigning the appropriate picture and title to the
compress utility. We give the utility the title Squash. Icon rules have the format:

ic { [file-spec { file-rules } 11)

where ic is a label identifying icon rules, and file-spec is a construct specifying the icons to
which the rules should apply. In this example only the file compress is to be affected. file-
rules gives a list of rules specifying the appearance and behavior of all the selected icons. In

this example the rules are:

ti =Squash; pi = desktop_icons/compress.px
The label ti introduces a title for the icon; in this case Squash. The label pi introduces the
picture to be displayed for the icon instead of its default picture; in this case, the one we
defined in the bitmap editor. The full icon rule is thus:

ic { compress { ti =Squash; pi = desktop_icons/compress.px } }

60 Administering ODT-VIEW Administrator’s Guide

Determining the Appearance of Your Desktop

Adding the Rule to a Rule File

Put this rule in a file named xdtdirinfo in the directory containing compress, and the icon
changes to display the picture and title you have designed. If this rule file already exists, you
must incorporate the new icon rule into the rules it already contains. If there are no other icon
rules in the file starting with ic, you can put this rule at the end of the file as it stands.
Otherwise, insert this rule at the end of the list of existing icon rules, so that they read:

ic {
existing-icon-rules ;
compress { ti =Squash; pi = compress.px }

)

Affecting a Group of icons

It might be useful if files compressed with the UNIX System V compress utility are given the
same icon as the utility itself or a related one if you prefer to design a new icon.

We can do this very simply by making use of the facility to define groups of files in the rule
files. The UNIX compress utility gives the compressed versions of files the suffix .Z after
their filenames. The rule file can assign an icon to all such files by giving the file specifica-
tion *.Z where * is a wildcard matching any filename.

The icons affected can be restricted to just files or just directories by the suffix /F or /D
respectively, so it would be better practice to give the file specification as:

*Z/F
The full rule then becomes:
ic{

*Z /F { pi = ixi/icons/compressed.px }

}

Files called filename.Z now automatically display the appropriate icon to identify them.

Chapter 6: Desktop Manager Tutorials Administering ODT-VIEW 61

(@)
O
D
=
m
=

Building Intelligence into Your File Icons

Building Intelligence into Your File Icons

The rule files also allow you to specify an action to be carried out when an icon, or group of
icons, is triggered. Usually, triggering means double-clicking with one of the mouse buttons.
In this example, we define a rule that automatically uncompresses a file that is in compressed
format if it is double-clicked with the left-hand mouse button.

Let’s assume that all compressed files have names with the suffix .Z as described above, and
that the uncompress program is available. By a simple extension of this example, you could
configure your system so that every text document or data file invokes the appropriate
program tool when double-clicked, according to its filename.

Using Mouse Triggers

The standard mouse triggers are double-clicks with one of the mouse buttons. To make the
Desktop Manager as portable as possible these triggers are normally pre-defined with names
as follows:

Table 6.2.
Standard Mouse Triggers
Trigger Name Function
sl Double-click on mouse button 1 (the left button).
s2 Double-click on mouse button 2 (the center button).
s3 Double-click on mouse button 3 (the right button).

The definitions of s1, s2 and s3 are given in the Desktop Manager defaults file, and they can
be altered to provide alternate ways of producing the three triggers on systems with fewer
than three mouse buttons.

62 Administering ODT-VIEW Administrator’s Guide

Building Intelligence into Your File Icons

Writing Trigger Rules

The action to be performed when an icon is double-clicked is defined in the rules file by a
trigger-action rule:

M3IA-1AO0

ta: trigger-id { action-list)

where the label ta identifies the clause as a trigger action. The trigger-id specifies one of
the pre-defined mouse triggers, as set in the defaults file. Here we will use s1, a double-click
with the left-most mouse button. The action-list specifies the commands that are actually run
when the specified trigger-id is applied to an icon in the specified file-spec. Each command
in the action-list has a prefix indicating whether it should be run either by the standard UNIX
system shell, or by Xhibit. Here the action is to run the program uncompress with the file to
create a new file of the same name, but without the .Z suffix. The full rule is:

ic{

*ZfF {ta:sl
{ac
{
b : uncompress <%P0 >%D0/‘basename %B0 Z* ;
d: ddw %D0
)
}
)
)

This rule illustrates substitutions, which can be used in rules to refer to the components of the
names of the files they apply to. The following substitutions are used:

Table 6.3.

Rule Substitutions

Substitution Definition
%P0 The absolute pathname of the file.
%B0 The basename of the file.
%DO The dimame of the file.

See “Rule Files” in Chapter 7, “Desktop Manager Reference,” for definitions of these terms.

Chapter 6: Desktop Manager Tutorials Administering ODT-VIEW 63

Building Intelligence into YourFile lcons

The first command in the action list uncompresses the double-clicked file to a file with the
same name but without a .Z suffix. It constructs this name out of the file’s dimame and
basename, using the UNIX system basename command to return a filename with the .Z
stripped off.

The second command in the action list runs the Desktop Manager command ddw to redraw
the directory window to show the changed file icons.

This rule can be combined with the rule in the previous tutorial defining the appearance of .Z
files. It should be included in the file xdtdirinfo in the directory containing the compressed
files.

These files then automatically run the uncompress utility, and they create an uncompressed
version of the file in the same directory when they are double-clicked with the left-most
mouse button.

Loading Files into a Program by Dragging

Another convenient way of telling the Desktop Manager to run a program with a file as data
is to drag the data file’s icon onto the program’s icon. This action can also be specified in the
rule files by making use of the drag triggers d1, d2, and d3. These triggers are sent to an icon
when another icon is dragged onto it, and dropped, with the corresponding mouse button.

Because potentially any type of file could be compressed, it is inappropriate to use double-
clicking to activate the compress utility. However, for this task we can make use of the
dynamic triggers. In the next example we define a rule so that any file dragged onto the
compress program with the left-most mouse button is automatically compressed to create a
Zfile.

64 Administering ODT-VIEW Administrator's Guide

A

Loading Files into a Programby Dragging

The full rule is:

ic
{compress/FX {ta:dl
{ ac
(
b : %P0 <%P1 >%P1.Z;
d:chk %P1.Z

)

Here we limit the action to an executable file called compress by giving the suffix /FX. The
pathname of the dragged file is substituted for %P1, and the first command in the action list
runs compress (%P0) on this to create a file of the same name with a .Z suffix. The Xhibit
command chk then updates the new icon.

This rule should be included in the xdtdirinfo file of the directory containing the compress
program.

Building Intelligence into Directories

It is often useful to organize files into directories on a functional basis, such that all files of
one type are kept together in one directory. The rule files conveniently allow actions to be
performed when files are dragged into a directory window, making it possible to give certain
directories in the filing system special attributes.

In the next part of the tutorial, we create a special directory called compact. Files dragged
into this directory are automatically compressed, and the original version of the file is deleted
to save the user’s file space.

Drop Rules

The action of dropping an icon into a directory is defined by the drop rules. These have a
similar form to the rules defining the action of double-clicking icons, except that there is no
file specification. To create a drop rule specific to one directory, you have to put the rule file,
named xdtdirinfo, into the directory. Drop rules in user or system rule files apply to all
directories.

Chapter 6: Desktop Manager Tutorials Administering ODT-VIEW 65

M3IA-1a0

Building Intelligence into Directories

The drop rule has the format:
dd { [td : dynamic-trigger-id { action-list } 11}

where the dynamic-trigger-id specifies one of the pre-defined mouse triggers. Here we use
d1, a drag using the left-most mouse button.

As before, the action-list specifies the commands to be carried out when the icon is dropped
into the directory window. In this case, the action is to compress on the file dropped, whose
pathname is given by %P1. Then we wish to move the resulting compressed file into the
directory and delete the original file:

dd{
td : d1 {
d : mvi %P0 %P1 ;
b : compress %P0/%B1 ;
d: ddw %P0
}
)

In this rule, we make use of the fact that %P1 contains the file’s pathname, and %P0 the
pathname of the directory into which it was dropped.

The first command in the action list moves the file into the directory and redisplays its icon
there. The second command compresses it, using the directory pathname %P0 to refer to the

file in its new location. Finally, the ddw command redraws the directory window to show the
file’s new icon.

This rule should be included in the xdtdirinfo file in directory compact, which is to have this
special action.

66 Administering ODT-VIEW Administrator’s Guide

Building Intelligence into Directories

An Extension

A final refinement is to have the same action take place if we simply drag a file icon on to the
icon of directory compact, rather than into its directory window. We can achieve this by
including an additional icon rule in the rule file:

ic {
compact/D {ta:dl
{ac
{
d : mvi %P0 %P1 ;

b : compress %P0/%B1 ;
d : ddw %P0

Chapter 6: Desktop Manager Tutorials Administering ODT-VIEW 67

68 Administering ODT-VIEW Administrator’s Guide

« Chapter 7
Desktop Manager Reference

M3IA-1a0

This chapter explains how to specify the appearance and behavior of the file icons that are
displayed in the Desktop window.

— Rule Files

Rule files control the behavior and appearance of the icons that represent files in the Desktop
Manager. For example, they enable you to associate a picture and special mouse click actions
with specific files or groups of files and to define what to do when one icon is dropped onto
another. Rule files are text files, and they can be edited with a normal text editor. Special
configuration tools may also be available to help with this task.

Components of Rule Files

A nule file consists of a number of components that can occur in any order, but each
component should only occur once in any one rule file. The different components in a rule
file are:

B Icon rules. They describe what the icon for each file looks like, which picture
file is used to display it, what its title should be, and what should happen when
the icon is triggered by double-clicking it or dragging another icon onto it.

B Drop rules. They describe what happens when icons are picked up and dropped
onto the background of a directory window.

B Desktop layout. This lists which icons are out on the desktop and their
positions. It is normally generated automatically.

B Locked files. Files that are locked out of the desktop and cannot be put back.

Chaptér 7: Desktop Manager Reference Administering ODT-VIEW 69

Rule Files

The Rule Hierarchy

There are four kinds of rule files, and they generally have the following precedence:

Local rule files. They can be found in any directory, and provide rules that
apply only to the files in that directory. They all have the name xdtdirinfo.

Environment rule files. They contain both rules and a list of files that are out
on the desktop. Environments allow users to have different rules for different
circumstances. For example, a user might have a programming environment
and a text editing environment. At any time, each user has one active
environment rule file, known as the “current environment.” When a user
changes environments, the icons currently on the desktop are saved in the old
environment rule file and put away, after which a new set is read from the new
environment rule file and placed on the desktop. Environment rule files can
have any name, though it is suggested that they should end in xde. The initial
environment rule file for a user is specified through the X defaults mechanism.

User rule files. Each user can have a user rule file called xdruserinfo stored in
the user’s home directory. It applies only to that user.

System rule file. This file applies to all desktops running on a given machine.
There is only one such file: /usr/lib/X11/xdt/xdtsysinfo. System and user rule
files are preloaded; therefore, any changes made to these only take effect when
Xhibit is next run.

Writing Rule Files

Rule files are pure text files, and so they can be created and edited using any suitable program
editor such as vi or xedit. In general, the layout is not critical, and spaces or new lines can be
inserted to improve readability and to make the structure of the rules clearer. For example,

the following two rule files are equivalent:

70 Administering ODT-VIEW

Administrator’s Guide

Rule Files

ic(*/D(pi=dir.px;}*/F(pi=file.px;})

and
ic(
» /D{
pi =dir.px;
)
* /F(
pi = file.px;

)
)

In general, spaces and new lines should be used to clarify the layout and function of rule files.

Specilal Characters

The following four characters have special meanings in rule files:

Character | Represents
% percent

{ open brace

} close brace

; semicolon

Braces group together similar items, semicolon terminates other items, and percent
introduces special phrases and instructions (the percent character was chosen to be distinct
from the characters used for this purpose in the UNIX operating system). When a semicolon
is followed by a close brace, the semicolon may be omitted.

There are a few places, such as when an icon title is specified, where spaces are significant.
For example, the three spaces in the title in the following rule are not ignored:

ic { * { ti =Title for all icons; }}

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 71

Rule Flles

If necessary, new lines and spaces can be included for formatting purposes in the icon title by
surrounding them with a pair of % signs, and they can then be ignored. So the following rule
is identical to the previous example:

ic { * { ti =Title %
Yfor all icons; }}

Escape Sequences

The four special characters can be included in rule files, such as in the title of a filename, by
preceding them with a % sign. Other characters can be included by preceding them with the
escape sequence:

%"

Control Characters

You can include a control code, or other special character, in a rule file using the following
sequence:

%# decimal-code #
%#0 octal-code #
%#0x (or %#0X) hexadecimal-code #

For example, the character double quote, character
code 34, can be written as:

D#34#

DHOA2# (34 decimal = 42 octal)
To#0x22# (34 decimal = 22 hexadecimal)
DHOX22#

72 Administering ODT-VIEW Administrator’s Guide

RuleFiles

Comments

Comments can be included in a rule file by prefixing them with the sequence %//, which
causes all characters up to the end of the line to be ignored. Long comments can be preceded
by the sequence %/* and followed by the sequence %*/, which causes all characters between
these two to be ignored. Note that comments introduced with the sequence %/* should
obviously not contain the character sequence %%*/, as this would indicate the end of the
comment.

o
o
D
=
m
=

Referring to Filenames

When a file is referred to, its name may be used in four ways. These four ways have special
(UNIX system) names:

Absolute pathname. This is the full name of the file, and it always begins with a slash.

Basename. This is the name of the file within its directory. It is the part of the absolute
pathname following the last slash.

Dirname. This is the name of the directory holding the file. It is the part of the absolute
pathname preceding the last slash.

Relative pathname If the file is in the desktop working directory or one of its subdirectories,
the relative pathname is the absolute pathname without the name of the working directory or
the slash that follows it. Otherwise, it is the same as the absolute pathname. For example,
the various names of the file /user/fred/worklletter are:

Absolute pathname: /user/fred/worklletter
Basename: letter
Dimame: luserlfred/work

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 73

The relative pathname depends on the working directory:

Table 7.1.

Pathnames
Working Directory | Relative Path Name
/ user{fred/workiletter
luser frediworkiletter
luserlfred worklletter
luser|fred/work letter
any other luserifred/workiletter

Note that there is one special case. The dimame of / is /. (slash-dot) and its basename is /
(slash). '

Components of Rule Files

This section describes the main components common to both icon rules and drop rules.

Triggers

To give the Desktop Manager the flexibility to work with any type of mouse with one to five
buttons, the rules are usually expressed in terms of triggers rather than physical buttons.

Each trigger is labeled with a trigger-id, which is the letter s or d followed by a number or *
that represents any mouse button.

Each trigger-id is assigned to a particular sequence of clicks, or presses, of the mouse buttons
according to the Xdefaults file.

The letter s is used for static triggers, where the mouse is not moved (e.g. double clicks),
while d is used for dynamic triggers, or drags (e.g. dropping one icon onto another). For
example, the usual assignment for a three button mouse is for the three trigger-ids sl, s2, and
s3 to be double-left, double-center, and double-right click.

Another user, with only two buttons on the mouse, could set them to double-left, double-
right, and double-both. Most users do not change the trigger to trigger-id mapping, because
this is optimized to the particular mouse supplied with the computer system.

74 Administering ODT-VIEW Administrator’s Guide

RuleFiles

Action Lists

Action lists specify the commands that the Desktop Manager runs when an icon or directory
window is triggered. The syntax for an action list item is:

{ac { [control : command ;]1} }

®)
O
D
s
m
£

An action list can be empty, or contain one or more commands separated by semi-colons.
Each command is prefixed by a control letter, specifying how the command is to be run.
These prefixes are explained in the following table.

Table 7.2.
Action List Control Letters

Control Letter Action
b Command should be executed by the standard UNIX
system shell /bin/sh.
t Command should be executed by the standard UNIX system shell
within the standard terminal emulator (normally xterm).
d The command should be executed by the Desktop Manager. The

command executes directly rather than via the shell. This is
more efficient, but it means that shell operations such as “<”
and “>" are not available. For more information,

see “Desktop Command Language™ later in this chapter.

Example:

ac{
t : vi myfile.1 ;
b : troff <myfile.1 >myfile.l.uf ;
d : chk myfile.1.uf
}

The commands are executed in order, with each being carried out after the previous one has
finished. However, while the Desktop Manager is waiting for one command to finish
executing, it can be doing other things, and several action lists can be executing at the same
time.

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 75

RuleFiles

Substitutions
Substitutions allow rules to make use of UNIX system environment variables and the
filenames that correspond to the icons triggered or dropped. The name of a file may be

substituted into the title of its icon, the icon’s picture file, and the names of any of the files
involved can be substituted into commands in action lists.

You can substitute UNIX system environment variables by surrounding the variable name
with dollar signs and preceding it all with a percent sign. For example:

$$variable_name$

This line in a rule file causes the value of the UNIX system environment variable to be
substituted at that point in the rule.

Filename substitutions are made by placing a substitution sequence in the rule file at the ap-
propriate point. A sequence consists of a percent sign, a letter indicating the information to
be substituted, and a number or asterisk. The number or asterisk determines the file or files
for which information is to be substituted. The permitted cases are:

In icon titles:

0 The file of the icon.

In action lists for static icon triggers:

0 The file of the icon.

In action lists for dynamic icon triggers:

0 The file of the icon dropped on to.
1-9 The appropriate file in the list of those dropped on to the icon.

b The files of each of the icons dropped in turn.

The values are separated by spaces. For example, if three icons are dropped, then %P* is the
same as %P1 %P2 %P3.

76 Administering ODT-VIEW Administrator’s Guide

In action lists for drop rules:
A
0 The directory of the directory window dropped into.
1 The file of one of the icons dropped into the window. For more
information, see “Drop Rules” later in this chapter.
The letter can be any of the following:
Table 7.3.
~ Icon Filename Abbreviations
Abbreviation Description
P The absolute pathname of the file.
B The basename of the file.
E The unextended basename; anything
after and including the last period (.)
in the basename is omitted.
D The dimame of the file.
R The relative pathname of the file,
except in the titles of icons within directory
windows, when it is the basename of the file.
C The class of the file (four capital letters).
For more information, see “Classes” later
in this chapter.
~ N When followed by an asterisk, it gives the
number of files dropped; for example, if three
icons are dropped %N* is 3. Suppose that the
local rule file for the directory /fred/jim is:
N

Chapter 7: Desktop Manager Reference

Rule Files

Administering ODT-VIEW 77

M3IA-1a0

Rule Files

ic

{

jane {ta:sl {ac b:%R0-z }}}
sarah {ta:dl { ac {
b: mv %P* %$DO;
b : echo %N* >%D?2/count

dd

td:dl { d: Ini %PO/new %R1 }
)

And suppose that the current working directory is /fred, then the following action lists are
generated by the indicated actions:

Trigger-id s1 on /fred/jim/jane :
b : jim/jane -z

When several icons are dropped into an icon, the trigger-action rule is executed once with the
full list of files dropped. For example, drop the icons /fred/one, /jim/two, and /ian/myldata
onto /fred/jim/sarah with trigger-id d1:

b : mv /fred/one /jim/two /ian/my/data /fred/jim ;
b : echo 3 >/jim/count

When several icons are dropped into a directory window, the drop rule is executed once for
each file dropped. For example, drop the same icons into the directory window for /fred/jim
with trigger-id d1:

d : Ini /fred/jim/new one

d : Ini /fred/jim/new /jim/two
d : Ini /fred/jim/new /ian/my/data

78 Administering ODT-VIEW Administrator’s Guide

RuleFiles

Ilcon Rules

Icon rules describe the behavior and appearance of files when represented by icons. They
include:

B the picture file used for the icon,

M3IIA-1LAdO

B the text for the icon’s title,
B the action when the icon is triggered (double-clicked), and
B the action when another icon is dragged onto the icon.
The syntax for specifying an icon rule is:
ic { [fle-spec { file-rules } 11}

The file-spec specifies a file, or group of files, to which the file-rules apply. It is usually
clearer to group all the rules that apply to one class of files together.

The File Specification

The file specification restricts the files to which a clause applies—the “ruled files.” The
syntax for file specification is:

filename or: filename / class

where filename is an ambiguous name; see the following section. If no class is specified the
rule applies to all classes.

Ambiguous Names

Ambiguous names are filenames that optionally contain certain special characters or
wildcards. The following characters can be used in ambiguous names:

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 79

Rule Files

Table 7.4.
Wildcard Characters

Character

Represents

?

[abc]

Any character. For example, a?c

includes the files abc and aac, but not the file abbc.

Any sequence of characters, including none.

For example, a*c includes the files

ac, abc, acbc , and asdhx..o6f,s:c.

Any of the specified set of characters.

The set of characters can be abbreviated

using a minus sign (-) to represent a range.

For example, A-D is equivalent to ABCD.

Ranges should only be between two letters of the same case, or two digits.

Prefixing the set with carat (") means not any character
specified. For example, [*A-Za-Z]* means any file beginning
with a character other than a letter.

NOTE: The special filename / may appear as a file-spec by writing it as //d (files

Classes

Classes represent the properties of files in a concise form. These properties fall into four sets,
and a file has exactly one property of each set. The properties are each represented by a letter
(of either case), so that the class of a file consists of exactly four letters. The properties are
file types, execute permissions, read/write permissions, and ownership. The letters used are

as follows:

80 Administering ODT-VIEW

called slash are directories).

Administrator’s Guide

Rule Flles

Table 7.5.
File Type

M3IA-1a0

Abbreviation Description

Block special file.

Character special file.

Directory.

Regular file.

Ghost (nonexistent) file.

Inaccessible file.

Pipe.

Symbolic link to nonexistent file; on machines
without symbolic links no files have this type.

nYy-~QOmMogaOw

Table 7.6.
Execute Permissions

Abbreviation Description

X The user can execute the file.
A The file has execute permission for someone, but not for the user.
N The file does not have execute permission for anyone.

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 81

Rule Files

Table 7.7.
Read/Write Permissions

Abbreviation Description

w The user can read and write the file.
v The user can read but not write the file,
and the file has write permission for someone.
K The user can read the file,
and the file does not have write permission for anyone.
H The user can not read the file.

Table 7.8.
Ownership

Abbreviation Description
M The user owns the file.
(0] The user does not own the file.

NOTE: The codes G, I, and S imply the codes H, N, and O.

The term “class,” in general, refers to a set of options, and it is described by a string of the
appropriate letters. The order of the letters is not significant, and redundant letters are
ignored.

For each set of properties, the letters of that set that appear should be viewed as being
separated by the word “or,” with the groups of letters from different sets being separated by
(land‘"

For example, class BCNWVOis T(B or C) and N and (W or V) and OU.

If no letters of a class appear, then the class is read as if they all appeared. For example, class
D is the same as DXANWVKHMO (both mean “all directories”). A number of extra codes
can also be used in classes. These each stand for a common combination of the standard
codes:

82 Administering ODT-VIEW Administrator’s Guide

RuleFlles

Table 7.9. 8
Class Descriptions 2
m
Class | Contents of Class Class Description S
Q G,LorS Not a real file.
E XorA Executable by somebody.
U AorN Not executable by the user.
L VorkK Readable but not writable by the user.
R Worl Readable by the user.

For example, DEO and DAXO have the same meaning. The following classes are the most
useful in rule files:

Table 7.10.
Commonly Used Classes

Description

Directories.

Files.

Executable files.

Files executable by the owner.
Data files.

Data files that the owner can alter.
Data files that the owner can read.

gg%?ﬂ%""g

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 83

RuleFiles

File Rules
The file-rules consist of a sequence of at most one picture specification, at most one title spe-

cification, and any number of trigger actions. If the picture specification or title specification
are not the last item in the list, they should be followed by a semicolon.

Picture Specification

The file specification assigns a picture file to the specified files. Picture specification syntax
is: :

Pi = picture-file
For example:
* /D { pi=dir.px }

means that all directories are to use the picture in the picture file dir.px.

Title Specification
The title specification assigns a title to the specified files. Title specification syntax is:
ti = title

All spaces are significant between the equals sign and the semicolon or closing bracket. For
example, the following clause sets the title of the xcalc program:

xcalc { ti =Calculator)

When using an ambiguous name, substitutions can be used to include the actual filename in
the title.

Trigger Actions

Trigger action rules specify an action to be carried out when a specific trigger occurs with the
mouse pointing to the icon. Trigger action syntax is:

ta: trigger-id { action-list)

84 Administering ODT-VIEW Administrator’s Guide

RuleFiles

The action-list specifies a list of commands to be carried out by the Desktop Manager or the
operating system of the computer. For example, the following trigger rules say that trigger-id
s1 on the appropriate icon causes the xclock program to be run:

ta:sl {ac { b:xclock }}

M3IA-100

Alternatively, the action list can be blank, in which case the trigger-id has no effect. For
example, the following clause says that trigger s3 on a directory should do nothing:

*/D{wa:s3({})
The following, more complex example illustrates the use of trigger actions:
ic {
*c { pi = csrc.px; }
* / D {
pi = dir.px;
ta:sl {ac {d:ddw %P0t }}

)
[ab]* { ti =AB file %B0; }
)

This has the following effect:
B All ending in .c use the picture found in the picture file csrc.px.
B All directories use the picture found in the picture file dir.px.

B When any directory is triggered with the trigger s1, then a directory window is
opened to show that directory in time order.

B Any file beginning with the lowercase letters a or b has the icon title AB file
followed by the basename of the file.

The rules take effect in the order in which they are specified, so the first rule in this example
only affects files that have not already been given a picture by a previous rule.

Likewise, the second clause (pictures for directories) does not apply to directories whose
names end with .c (though the third and fourth ones do).

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 85

Rule Files

Examples of lcon Rules

The following example defines icons and titles for the calculator, clock, and editor programs,
and it causes the editor to be run when a file icon is dragged onto its icon, with that file
loaded and ready for editing:

ic {

xcale { ti =Calculator; pi = xcalc.px }
xclock { ti=Clock; pi= xclock.px }
xedit ti =XEdit; pi= quill.px;

ta:sl{} ta:s2(} ta:d2 ()
ta:dl {ac (b: %P0 %P1 }}
)

The next example defines a rule that moves any file or files dropped onto a directory icon
with the left-most mouse button:

ic {
*/D {
ta: d1{ ac {d : mvi %P0 %P*}}
)
}

The final example shows the standard definition of the icon rules for the Waste icon. The
Waste icon is implemented as a directory with a suitable picture and title. For convenience,
dragging with the left-most mouse button moves a file to the Waste directory, rather than
copying it as is the usual default. The Waste directory can be emptied by double-clicking
with the third mouse button.The command rm -rf % P0/* deletes all files in the directory.

ic {

waste /d {
ti =Waste;
pi =waste.px;
ta:dl {ac { d: mvi %P0 %P* } }
ta:d2 { ac { d: mvi %P0 %P*) }
ta:s3 {ac { b: m -rf %P0/* } }
)

86 Administering ODT-VIEW Administrator’s Guide

Rule Flles

Drop Rules

Drop rules describe the effects of dropping icons into directory windows. Drop rule syntax
is:

©)
O
D
=
m
=

dd { [td : dynamic-trigger-id { action-list) 11}

Drop rules in local rule files apply to the directory window of the directory holding the rule
file. Drop rules in other rule files apply to all directories. Drop rules consist of a set of action
lists, each associated with a dynamic trigger-id. As with icon rules, the first match is used.
For example, the following drop rules cause dragging an icon into a directory window to
copy or move the file, depending on whether mouse button 1 or 2 is used. This is usually the
behavior of the Desktop Manager. In each case, %P1 is replaced by the pathname of the file
dropped, and %P0 is replaced by the pathname of the directory window into which it was
dropped.

dd(
td: dl { d: cpi %P0 %P1 }
td:d2 { d: mvi %P0 %P1 }

Multiple Drops

An important difference to note between drop rules and icon triggers is the action taken when
several icons are dropped into a directory window at the same time. The action list is
duplicated several times, one copy for each icon dropped, and then each copy is modified by
the substitution system to include details about that icon.

For example, suppose we have the action list:

{
d : mvi fwaste %P1 ;
b : echo %P1 >>/waste/ filelist

)

We drop the three icons /fred|fred, /fredljim, and /fred/sheila. Because %P1 is replaced by the
pathname of the icon dropped, the action list actually executed is:

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 87

RuleFiles

%]/ Spaces have been added to the commands in
%{/ order to make their meaning clearer.

d: mvi fwaste /fred/fred ;

b:echo /fred/fred >>/waste/ filelist ;
d:mvi /waste /fred/jim ;

b:echo [fred/jim >>/waste/ filelist ;
d: mvi /waste /fred/sheila s

b:echo [fred/sheila >>/waste/ filelist
}

Desktop Layout

The desktop layout list describes the files that are on the desktop, together with their
positions. It is normally generated automatically by the Desktop Manager, but it could be
modified by a program to alter the initial appearance and layout of a desktop. The desktop
layout list is ignored if it is not in an environment file. Layout syntax is:

dt { [filename [@ position];]1)
The position, if present, consists of one of the following:

G followed by the coordinates in tidying grid units,

P followed by the coordinates in pixels, or

F indicating the icon is to be placed at the first free position of the grid.

Omitting the position code is the same as specifying a code of F. For example:

dt { .
/ @GO, 0;
fusthin @ G 1, 0;
/fred @F ;
/fred/main @G 4, 7,
/bin @ P211,874;
/fred/data

88 Administering ODT-VIEW Administrator’s Guide

RuleFiles

Locked Files List
The locked files list allows icons to be locked on the desktop. Locked file syntax is:
If { [filename ;11)

(®)
O
D
=
m
=

Locked files lists in the system and user rule files apply whenever the Desktop Manager is
run. A locked files list in an environment file applies only while that environment file is
current. Locked files lists are ignored in local rule files. For example:

If
!/
foin
fusr/bin

Mapping Triggers

For easier portability, the Desktop Manager converts clicks on the mouse buttons first into
triggers, and then into trigger-ids. This mechanism is controlled by four items in the X
defaults mechanism; these are the mapping (a string), the maximum motion (a number of
pixels), a threshold down time, and a maximum up time (both times measured in
milliseconds). The trigger mapping setup when your system is supplied is normally optimum
for your mouse and configuration, but you can modify the actions to suit your own
requirements. The conversion is done in two stages. First, the motions and button presses are
converted into triggers. Second, the triggers are converted to trigger-ids through the mapping
string.

Triggers
A trigger is a set of closely spaced button presses and releases. The easiest way to think of a

trigger is as a series of “steps.” Each step starts when, with all the mouse buttons up, one of
the buttons is pressed. It ends the next time all the buttons are up.

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 89

Mapping Triggers

Trigger Steps
A step is labeled by giving the numbers of all the mouse buttons that are depressed at any
time during the step, no matter what order they are in, or how long they are down. For
example, all three of the following examples would be labeled as 1 and 3, or 13 for short:

W Press button 1, press button 3, release button 1, and release button 3.

B Press button 3, press button 1, release button 1, and release button 3.

W Press button 1, press button 3, release button 3, press button 3, release button 3,
and release button 1.

NOTE: “press” means press and hold down the button.

The three types of step are defined as follows:

Table 7.11.
Trigger Steps
Step Mouse Movement | Interval Between Events
short click | < maximum motion < threshold down time
long click | < maximum motion > threshold down time
drag > maximum motion —

A short click and a drag are described by giving the numbers of the mouse buttons: 13

A long click is described by giving the numbers of the mouse buttons followed by a plus
sign: 13+,

Triggers

A trigger is a sequence of steps, and is described by giving the steps, separated by commas.
For example, the trigger double-click on button 2U is described as 2,2. If the last step in the
sequence is a drag, the trigger is defined as a dynamic trigger, and the Desktop Manager
signifies detection of the drag by changing the cursor to the drag or multi-drag cursor. Other
triggers are defined as static triggers. A trigger ends when either no button is pressed for the
maximum up time after a step, or at the end of a drag, whichever comes first. All triggers
containing more than five steps are ignored by the Desktop Manager.

90 Administering ODT-VIEW Administrator's Guide

Mapping Triggers

Converting Triggers to Trigger-lds

All triggers that you want to be interpreted by the Desktop Manager must appear in the
mapping string. This consists of a sequence of mappings, separated by semicolons (spaces
anywhere in the mapping string are ignored). There are three things that can occur in the
mapping string:

W Static trigger mappings
B Dynamic trigger mappings

B Macro definitions

Static Trigger Mappings

Each static trigger mapping maps a static trigger to a trigger-id. Static trigger mapping
syntax is:

static-trigger = trigger-id
Static-trigger is a list of steps, separated by commas. Trigger-id is an s followed by a num-

ber. A static trigger can also be used to control the selection of icons. This is done by using
one of the following codes instead of a trigger-id:

Table 7.12.
Trigger Mapping Codes

Code Description
+s If the current icon
(the icon that is under the cursor) is not selected, then select it.
-s If the current icon is selected, then deselect it.
Is Deselect all selected icons, and then select the current icon.
S If the current icon is selected, then deselect it. Otherwise, select it.

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 91

Mapping Triggers

For example, the following says that a short click on button 1 selects the current icon in
addition to any icons already selected, while a long click selects it on its own. Either type of
click on button 2 deselects the icon:

I=+s; 1+=!s; 2=-s; 2+4=-s

Dynamic Trigger Mappings

Each dynamic trigger mapping maps a dynamic trigger to a dynamic trigger-id. Dynamic
trigger syntax is:

dynamic-trigger = trigger-id

Dynamic-trigger is a list of steps separated by commas. Trigger-id is a “d” followed by a
number.

For example, the following says that a drag with button 2 on its own generates trigger-id d2,
but if preceded by a short click on button 4, it generates trigger-id d6:

2=d2 ; 4,2=d6

Dynamic triggers cannot be used to control icon selection.

Macro Definitions

Macro definitions allow one or more buttons to be abbreviated to a single letter. This allows
mappings to be made more abstract, and so easier to convert for a different number of
buttons.

For example, suppose that you have designed a set of mappings for a three-button mouse, and
that you want to convert it to work on a two button mouse. One way might be to say that the
center button is represented by using both left and right buttons together. By specifying all
the mappings in terms of the letters L, C, and R, rather than the numbers 1, 2, and 3, they are
easier to change (especially as the right button changes from being number 3 to being num-
ber 2).

A macro definition consists of a set of button numbers, an equals sign, and then a single
letter. That letter can then be used in any future trigger description or macro definition.

92 Administering ODT-VIEW Administrator's Guide

Mapping Triggers

For example, a trigger mapping with three static trigger-ids, three dynamic trigger-ids, and
three selection control triggers, might be written as follows for a three-button mouse:

1=L ;2=C ;3=R ;2
L=!s ;C=+s ;R=-s ;2
Ll=sl ;C,C=s2;RR=s3;2
L=dl ;C=d2 ;R=d3

o
O
D
<
m
=

The backslashes indicate that the mapping is continued on the next line. To convert to the
two-button mouse, change the first line to:

1=L ;12=C ;2=R ;2
The mapping then becomes equivalent to:
I1=!s ;12=+s ;2=-s ;2

1,1=s1;12,12=52 ; 2,2=53 ;2
1=d1 ;12=d2 ;2=d3

Desktop Command Language

The Desktop command language, DCL, allows certain actions to be carried out within the
Desktop Manager. These actions are mainly concemned with icons, directory windows, and
copying and moving files.

DCL functions can be piped into the Desktop Manager or used in rule files. The advantages
of using DCL commands are that they automatically take care of updating the desktop, and
they do not rely on the availability of particular UNIX binary files.

Commands in DCL consist of words separated by spaces. The end of a command is marked
by the mechanism that initially generated the command. For example, within a rule file, the
end of a command is indicated by a semicolon.

A backslash causes the following character to be part of the current word, even if it is a space
character. For example, the following command contains only two words:

this\ is\a\ command with\ only\ two\ words

All valid commands begin with a word of three lowercase letters, followed in some cases by
a number or arguments. Some commands require an exact number of arguments, and the
effect of having the wrong number is undefined. Other commands accept any number of

arguments.

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 93

Desktop Command Language

The following notation is used for describing the arguments of commands:

file Represents a file name

dir Represents an existing directory.

Desktop Commands

Terminate execution - die
Syntax: die

Terminates the Desktop Manager.

Change environment - ndt

Syntax: ndt file

Changes the current Desktop Manager environment to the specified file.

Catalogue desktop - cdt
Syntax: cdt file

Writes a list of the icons on the desktop and their positions into the specified file, replacing
any such list already in that file. The Desktop Manager’s current environment is not changed.

New desktop -rdt
Syntax: rdt file

Switches to a new desktop environment without saving the old one.

Trigger action - act
Syntax: act static-trigger-id file

Executes the action list as if the specified trigger had been used on the specified file.

Note that in each case any commands following the act command in the action list are
executed immediately, independently of the triggered action list.

Syntax: act dynamic-trigger-id file [file] ...
Executes the action list as if the list of files had been dropped on the first file named. Note

that this command is completed as soon as the first command in the list starts executing.

94 Administering ODT-VIEW Administrator’s Guide

Desktop Command Language

Drop action - drp
Syntax: drp dynamic-trigger-id dir [file]

Executes the action list as if the list of files had been dropped on the open window of the
directory. The directory window does not need to be open. Note that this command is
completed as soon as the first command in the list starts executing.

)
o
D
=
m
=

Open directory window - ddw
Syntax: ddw dir [flags]

Opens the directory window for the directory, if it is not already open, brings it to the front,
and displays it in the format given by the flags. The following table lists the valid flag types:

Table 7.13.
Open Directory Window Flags

Flag Meaning

Display by icon (default).
Display by name.

Sort alphabetically (default).
Sort by time.

Sort by class.

Sort in extra order.

S| D=

This command can be used both for opening new windows and for altering the appearance of
existing ones.

Replace directory contents - rdw
Syntax: rdw dirl dir2 (flags]

If the directory window for directory dir! is open, its contents are replaced by directory dir2.
The flags have the same meanings as for the ddw command. If there is already an open
window for directory dir2, it is brought to the front, and the window for directory dirl is
closed.

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 95

Desktop Command Language

Close directory window - cdw

Syntax: cdw dir

Closes the specified directory window if it is open.

Bring window to front - btf
Syntax: btf dir

Brings the specified directory window to the front if it is open.

Get out icon - goi
Syntax: goi file [position]

Places the icon of the file on the desktop. If a position is specified, it should be one of the
following forms:

Px,y position in an exact number of pixels
Gx,y position in the standard tidying grid
F first free position on the grid

where x and y are numbers.

Put back icon - pbi
Syntax: pbi file

Puts back the icons of any of the specified files that are on the desktop (except locked ones).

Tidy desktop - tdf
Syntax: tdf

Tidies the desktop.

Reorganize desktop - tds
Syntax: tds

Reorganizes the desktop.

96 Administering ODT-VIEW Administrator’s Guide

Desktop Command Language
Copy file - cpi
Syntax: cpi dir file

Copies the specified files into the specified directory. If the directory window is open, new
icons appear in the window.

(@)
S
o
=
m
s

Link file - Ini
Syntax: Ini dir file

Links the files into the specified directory. If the directory window is open, new icons appear
in the window.

Move file - mvi
Syntax: mvi dir file I

Moves the files into the specified directory. If the directory window is open, new icons
appear in the window. If the icons of the specified files are on the desktop, their titles change
if necessary. If the icons of the specified files are visible in directory windows, they
disappear.

Update icons - chk
Syntax: chk [-R] file

Ensures that any icons visible for the specified files have the correct appearance, even if the
properties of the file, or any of the applicable rule files, have changed since the icon was first
made visible.

Options:

-R Removes the icon from the desktop and directories if the file does not exist.

Picture Files

The Desktop Manager icon pictures, background patterns, and control patterns are held in
picture files. These can be edited using a bitmap editor.

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 97

Picture Files

You can find picture files in /usr/include/X11/bitmaps, which contains several subdirectories:

Table 7.14.
Picture Files

File Context

ixi_cursors | Cursors used by the Desktop Manager.
ixi_icons Icon pictures used by the Desktop Manager.

ixi_keys Desktop Manager window-managing control boxes.
ixi_logos Company logos.
ixi_misc Large bitmaps for Desktop Manager waming boxes.

ixi_textures | Background pixmaps for the Desktop Manager.

When the name of a picture file begins with a slash, the file can be found without help. The
picture directory (looked up in the X defaults mechanism) is used by the Desktop Manager to
find picture files whose names do not begin with a slash.

If the name of the picture file does not begin with a slash, then it is looked up in two places.
First, the name of the picture directory, and a slash, are prefixed to the name of the file. If this
file is not found, or if there is no picture directory item in the X defaults, then the standard
prefix /usr/include/X11/bitmaps is used instead.

Suppose that the picture directory is set to /userifred/pictures and we are trying to find the
picture file core.pic. Then the Desktop Manager looks for these files:

luserlfred/picturesicore.pic
lusrlincludel/X 11/bitmapsi/ core.pic

It is permissible for the picture file to have a slash in its name, so that patterns/checked.pic
would be looked for in:

luserlfred|pictures/patternsichecked.pic
lusrlinclude/X11/bitmapsi patternsi/checked.pic

98 Administering ODT-VIEW Administrator’'s Guide

N’

Picture Flles

Format of Picture Files

Picture files are an extended form of X bitmap files, and X bitmap files are, therefore, always
legal picture files. Picture files can also be generated with the pixmap2c utility (if available
on your system). A picture file consists of two kinds of items: configuration items and data
items. The order of individual items is not constrained except that all configuration items
must occur before all data items.

Configuration Items
There are six kinds of configuration items.

Each item must be on a separate line, and consists of the prefix #define followed by a name
and a value, with spaces or tabs separating each of the three parts. The three parts of the item
must all occur on the same line, and the pound sign (#) must be in the first column.

The first part of each item name should correspond to the first part of the name of the picture
file, containing only the characters [A-Za-z0-9_]. In the following examples the items are
given for a picture file pic.px:

pic_width
pic_height

These two items must occur. Their values are numbers, and give the width and height of the
picture. If the picture is used for an icon, button, or cursor, this is the size of the object. If it is
used as a background, the picture is tiled across the area; these items are still required to
enable the data items to be interpreted.

pic_x_hot
pic_y_hot

These two items must both occur or both be omitted. They are only used if the picture is the
data portion of a cursor, and indicate the coordinates within the picture where the cursor is
actually located.

For example, if both values are zero, the actual point of the cursor would be the top left
comer of the picture. If the value is -1, both must be -1 and it is treated as if the entire item
was omitted. :

pic_fg
pic_bg

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 99

)]
O
D
=
m
=

Picture Flles

These two items are optional. Their values must be names of colors, surrounded by double
quotes, giving the foreground and background colors of the picture. If the color does not
begin with a hash sign, then its meaning depends on your X server. If it does begin with a
hash sign, then the remainder of the color name encodes the actual color.

Your implementation of the X system may interpret spaces in a name. Spaces are not
permitted in the encoding format.

The encoding gives the red, green, and blue components of the color, in that order, as one,
two, three, or four hexadecimal digits each. Components written 5, 50, S00, and S000 are all
the same, and differ from 05, 050, and 0005. Refer to the X(1) manual page for more infor-
mation. If these items are omitted, then the foreground is black and the background is white.

For example, black is "#000000000000" or "#000," white is "#{IffffH," and red is
"#{i00000000."

Data Items

There is one kind of data item—the picture data. It consists of the sequence
static unsigned char pic_bits [1 = { data)

where unsigned can be omitted and data represents the actual data, consisting of a sequence
of two- digit hexadecimal values, each prefixed with Ox and separated by commas.

There may be up to 20 such values per line, though it is usually 12.
If the width and height of the picture are W and H, respectively, there should be a total of
((W+7)/8)*H values, (W+7)/8 for each row of the picture (the division is rounded down,

rather than being an exact number). Each value represents eight consecutive pixels, except
that the last value in the row can represent less.

100 Administering ODT-VIEW Administrator’s Guide

Picture Files

Example

The following example shows a sample picture file:

M3IA-1d0

#define menu_d_width 16

#define menu_d_height 16

#define menu_d_x_hot 14

#define menu_d_y_hot 5

#define menu_d_bg "black”

#define menu_d_fg "white"

static char menu_m_bits[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0x00,
0Oxfa, Ox1f, 0x02, 0x20, Oxc2, Ox1f, 0x02, 0x02,
0xc2, 0x03, 0x02, 0x02, Oxfa, 0x01, Oxfe, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};

Defaults Files

The X defaults mechanism is used by many X utilities to obtain information about which
options they are to use. In particular, it is used by the Desktop Manager for a range of infor-
mation.

The X defaults mechanism works by reading a number of files and constructing a database
from them. The mechanism is described in Chapters 1 through 4 of this guide. The database
used by the Desktop Manager is built out of the following sources (in their order of
precedence):

The command line.

The file named in SXENVIRONMENT.

The X server’'s RESOURCE_MANAGER property (loaded by xrdb).
The file ${XAPPLRESDIR} Xhibit.

The file /usr/lib/X11/app-defaults/X hibit.

SXENVIRONMENT is the standard UNIX environment variable. If the file
SXENVIRONMENT does not exist, then it is replaced by:

SHOME/ X defaults-machine

where machine is the name of the machine that the Desktop Manager is running on, and
SHOME is the standard UNIX environment variable.

Chapter 7: Desktop Manager Reference Administering ODT-VIEW 101

Defaults Files

If the X server’s RESOURCE_MANAGER property is undefined, the file $§HOME/ Xdefaults
is used instead. If $XAPPLRESDIR is undefined, $HOME/Xhibit is used.

If this, or any of the other files does not exist, it is skipped (so that none of the files are

necessary). If the database does not contain any entries matching a particular item, it uses
built-in defaults.

Defaults items
Each item is listed in the form:
name name
class class
The following pair is prefixed to each item before it is looked up:
xhibit
Xhibit

Objects that are options should have values that are on or off. The words that are understood
by the Desktop Manager are given in the section titled “Message Files.”

Text
font

Font

This specifies the name of the font that is used by the Desktop Manager for text; there is a
default font. :

textMargin
TextMargin (number:2)

This specifies the amount of space that should appear around all text displayed by the
Desktop Manager.

102 Administering ODT-VIEW Administrator's Guide

Defaults Files

icon Layout
When the reorganize option is used, the icons can be spread out in rows or columns.

iconGrid horizontal

M3IA-1a0

IconGrid Horizontal (option:off)

The default specifies that the icons should be spread out in columns.
iconGrid spacing X
IconGrid Spacing X (number:120)

This specifies the number of pixels apart that icons should be arranged horizontally on the
desktop when it is tidied. This distance is measured from the center of each icon.

iconGrid spacing y
IconGrid Spacing Y (number:40)

This specifies the number of pixel<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>