PRELIMINARY

Technical Manual

July 1987

Z280™ MPU
Microprocessor Unit

NEUMULLER

ELEKTRONIK-BAUTEILE

Eschenstr.2 - 8028 Taufkirchen/Miinchen - Tel.089/612080 - Telex 522106

~ Table of Contents

Chepter 1.

1.1 Introduction

2280 Architectural Overview

1.2 MPU Architectural Features .

o o o o
)

.
NV ® NS WN -

.
- -
N

.
- 0o

N N Y I Gy
.

* Data Types

System and User Modes
Address Spaces . . .
Addressing Modes . .
Instruction Set . . .
Exception Conditions
Memory Management . .
Cache Memory
Refresh
On-Chip Peripherals .

Multiprocessor Mode
Extended Instruction Facility

"1.3 Benefits of the Architecture

_ High Throuwghput

Integration of System Functions

Operating. System Support

Code Density
Compiler Efficiency .

1.4 SUMMArY « ¢ o ¢ o o o o o o «

e o s o o s o o o

.

1-3
1-4
1-4
1-4
1-4
1-4

U
w W

- =
U
w o\

U
v

Chapter 2.

Introduction

Address Spaces

CPU Register File . .
CPU Control Registers
Memory Address Spaces
1/0 Address Space . :

.

2-1
2-1
2-2
2-3
2-4

Chepter 3.

3.1

Introduct ion

3.2.1
3.2.2
3.2.3
3.2.4

CPU Control Registers

D A)

3.2 System Configuration Registers

e o o o o s o @

.

Bus Timing'and Initialization Register
Bus Timing and Control Register
Local Address Register
Cache Control Register . . . « « « . «

3-1
3-1

3-1
3-2
3-3
3-3

iii

Table of Contents (Continued)

3.3 System Status Registers . . « « ¢ ¢ ¢ ¢ ¢ ¢ o &

3.3.1 Mﬂﬂsumshﬁuﬂ s e s e e s e s
3.3:2 Interrupt Status Register
3.3.3 Interrupt/Trap Vector Table Pointer . .
3.3.4 1/0 Page Register . « « ¢« ¢ ¢« &+ o o o &

" 3.3.5 Trap Control Register . . . « « « o« « &

3.3.6 System Stack Limit Register

3.4
3-4
3-5
3-5

3-5
3-6

Chepter 4. Addressing Modes and Data Types

4.1
4.2

Introduction . . ¢ ¢ ¢ o ¢ o ¢ et 0 6 o 0 0
Addressing Mode Descriptions . . « « ¢ ¢« ¢ o &

4.2.1 Register (Ry RX) '« v o ¢ ¢ ¢ o o s o «
4,2,2 Immediate (IM) .". o v o
4.2.3 Indirect Register (IR)
4.2.4 Direct Address (DA) ¢« « « ¢ ¢ ¢ o o o &
4.2.5 Indexed (X) « « o ¢ o ¢ ¢ o s o o o o o
4,2.6 Short Index (SX) + & ¢ ¢ ¢ o ¢ o o o @
4.2.7 Relative Address (RA) . « « &« &+ & o & &
4,2.8 Stack Pointer Relative (SR)
4.2.9 Base Index (BX) o« « o « s o ¢ o o o o »

4.3 Data Types « « o o o o o o o o o o o o o o o o

4-1
4-1

4-1
4-1
4-2
4-2
4-3
4-3
44
4-5
4-5

Chepter 5. Instruction Set

5.1
5.2

5.3

Introduction . &« o ¢ ¢ ¢ ¢ ¢ ¢ v 0 0 0 0 0 o e
Processor Flags . « ¢« ¢ ¢ ¢ ¢ ¢ o ¢ o o s o o

Carry Flag (C) « v o & v o o ¢ o o o o o
Add/Subtract Flag (N) ¢ ¢ ¢ &
Parity/Overflow Flag (P/V) « « ¢« « « « &

Zero F1ag (Z) o v v o o o o o o s o o o
Sign Flag (S) « o ¢ ¢ o o o o o o o o &
Condition Codes . « ¢« ¢« ¢ ¢ ¢ ¢ &« ¢ & &

5.2.1
5.2.2
5.2.3
5.2.4 Half-Carry Flag (H) « « « ¢ ¢ o ¢ & o &
5.2.5
5.2.6
5.2.7

Instruction Execution and Exceptions

5.3.1 Instruction Execution and Interrupts . .
5.3.2 Instruction Execution and Traps

5-1
5-1

5-1
5-1
5-2
5-2
5-2

5-2

5-2
5-3

5-3
5-3

iv

5.4

Instruction Set Functional Groups

5.4.7 8-bit Load Group .« ¢ ¢ ¢ o o o o«
5.4.2 16-bit Load and Exchange Group . .
5.4.3 Block Transfer and Search Group .
5.4.4 8-bit Arithmetic and Logic Group .
5.4.5 16-bit Arithmetic Group &
5.4.6 Bit Manipulation, Rotate and Shift
5.4.7 Program Control Group . . « « « &
5.4.8 ° Input/Output Instruction Group . .
5.4.9 CPU Control Group =« ¢ « ¢« o o o «

5.4.10 Extended Instruction Group . .

5-4
5-5
5-5
5-6
5-6
5-7
5-7
5-9
5-9
5-10

5-10
5-13

5.5 Notation and Binary Encoding
5.6 Instruction Set . . « ¢ o ¢ ¢ ¢ ¢ ¢ o o @
Chepter 6. Interrupts and Traps
6.1 Introduction . « ¢ ¢ ¢ o ¢ ¢ o o o o o @
6.2 Interrupts .« v ¢ o ¢ ¢ ¢ o o o s o o o o
6.2.1 Interrupt Mode 0
6.2.2 Interrupt Mode 1 . . « . « « . &
6.2.3 Interrupt Mode 2 . . ¢ ¢ ¢ & & &
6.2.4 interrupt Mode 3 &
64.3 Ireps...;...............
6.3.1 Extended Instruction Trap . « .
6.3.2 * Privileged Instruction Trap . . .
6.3.3 System Call Trap . « & o « o« &+ &
6.3.4 Access Violation Trap . « « « o o &
6.3.5 System Stack Overflow Warning Trap
6.3.6 Division Exception Trap . . « «
6.3.7 Single-Step Trap .« « ¢ ¢ o « o «
6.3.8 Breakpoint-on-ﬂalt Trap ¢« ¢ o o o
6.4 Interrupt and Trap Handling « . « « o o+ »
6.4.1 Interrupt A’cknowledge e o s s e e
6.4.2 Status Saving . « . ¢ s . e o o
6.4.3 Loading New Program Status . . .
6.4.4 Executing the Service Routine . .
6.4.5 Returning from a Service Routine
6.5 Interrupt/Trap Vector Table « . « « « & »
6.6

The Fatal Condition . ¢« « ¢ ¢ ¢ ¢ o o o &

6-1
6-1

6-2
6-2
6-2
6-3

6-4

6-4
6-4
6-5
65 .
6-5
6-5
6-5
6-6

6-6
6-7
6-7
-6-9
6-9

6-9
6-11

" Table of Contents (Continued)

Chepter 7. Memory Management Unit

7.1 Introduction . o ¢ ¢ ¢ ¢ o ¢ ¢ o o o o o 0 s o o s o 0 0 0 s o oo I-1
7.2 MMU Architecture . o o v o v ¢ o o « o o o o o s s s 0 0 o s s o s 1-1
7.3 Page Description Registers . . « ¢ ¢« ¢ ¢« o ¢ .o ¢ ¢ ¢ o o o ¢ o o o 1=2
7.4 Address Translation o o « o o o o ¢ o o o o o o a0 s o o s s oo T3

7.4.1 Address Translation without Program/Data Separation 7-3
7.4.2 Address Translation with Program/Data Separation 7-4

7.5 MMU COntrol ReQisterS o o v o o o o o o o o o o o s o o o s oo 15
7.6 Accessing Page Descriptor Registers 7-6

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

7.6.1 - Descriptor Select Port . o« ¢ « o ete o o o o s o o o o o o 1-6
7.6.2 Block Move POTt « &+ o ¢ ¢ ¢ o ¢ ¢ o o o s o s s s s o o s o I=6
7.6.3 Invalidation Port

T T I I I T T T T S [

7.7 Instruction ADOTtS . & ¢ v o ¢ o o o o o o o o s s o o s 0 o0 o8 1=

_Chapter 8. On-Chip Memory

8.1 Introduction . ¢ ¢ o o ¢ ¢+ o ¢ ¢ o ¢ ¢ o s o o 0 o o 0 0 0 0 e oo 81
8.2 Cache Memory Mode « « « ¢ ¢ o o ¢ ¢'o ¢ ¢ o o o o ¢ o o o o o o o« 81
8.3 Fixed-Address Mode . . « o ¢ ¢ ¢ ¢ ¢ ¢ e ¢ o o o o s o o o o o o o+ B-4

Chepter 9. On-Chip Peripherals

9.1 Introduction . o o o o ¢ o ¢ s o o o 6 s 6 6 s e s 6 e 0 0 e 0 s o 91
9.2 Clock 0Scillator « 4 ¢ o o o s o o s o o o o s s 0 o o s o s s oo 91
9.3 Refresh CONtTOLIEL « o o o o o o o o o o o o o o o o o o s o oo 91
9.4 Counter/TimMerS .« &+ o o o o o o o ¢ s o o o s o o 06 ¢ o 0 0 0 o o0 9=2

9.4.1 Comter/!imer' Operating Modes « « ¢ o o o ¢ o o o o o o o o 9=3
9.4.2 Gates and Triggers .« « « « o o ¢ o o o o o o s o o o o o o 93
9.4.3 Terminal Count Condition .« + & ¢ o ¢ o ¢ s ¢ o o o o o v o 9-4
9.4.4 Counter/Timer Registers « « « « ¢ o« o o ¢ ¢ o o s o o« o ¢ « 9-4
9.4.5 Linking Counter/Timers . « « « ¢ « o o o o o o o o o o o o 9=7
9.4.6 = Counter/Timer. Sequence of Events' . « « ¢« ¢ ¢ ¢« ¢ o o o o & 9-7

9.5 DMAChANNELIS « v o o o o o o o o s s o o o o s o ¢ s o o o o o s o 99

9.5.1 Types of DMA Operations « « « « « o o ¢ o o oo o o o o o o 9-10
9.5.2 . DMA Transfer Modes . « « « « o o ¢ o o o o o 000 o o s o o 9-10
9.5.3 ENd-of-Process . .« ¢« « ¢« ¢ o ¢ ¢ o o ¢ s ¢ o s 0 00 0 o 9-11
. 9.5.4. Priority Resolution . . ¢« ¢ ¢ ¢ v ¢ ¢ ¢ ¢ ¢ ¢ o o o o o o o 9212
" 9.5.5 DMALINKING o « o o o o o o o o o s o o o 0 o o 0 s o s oo 9-12
9.5.6 DMA Registers . « « + o o o s o o o s s o s o s 0 s e 4. . 9213
9.5.7 DMA Sequence of Events . o ¢ ¢ ¢ ¢ ¢ o ¢« ¢ o o 0 o s o o0 9-15
9.5.8 DMA Programming: Linked DMAS '+ « « ¢ ¢ ¢ o o o o o6 o « « 9-16
9.5.9 DMA Programming: DMAs Linked to UART . . . « ¢« s ¢ ¢ ¢ o . 9217

vi

966 UART. & & ¢ ¢ ¢ o ¢ ¢ o o o o s o 0 o s 0 0 s 000 0

9.6.1 Transmitter Operation « ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ o o o &

9.6.2 Receiver Operation . . « ¢ ¢ ¢ ¢ ¢ ¢ o ¢ o o &

9.6.3 UART RegiSters .+ « « « o« ¢ o o o o o o o o o »
9.6.4 UART Operation « ¢ ¢ o o o o o o o o o o o o o

9.7 UART Bootaitapping Option « o o o o ¢ o ¢ o ¢ o o 0 o o

9-17

9-17
9-18
9-18

- 9-21

9-21

Chapter 10. Multiprocessor Configurations

1001 INErOdUCtion « vv v v v oo v v b e e e e e e

10.2 Slave ProcesSsSorsS « « « « o o o ¢ o o o o o s o s o oo
10.3 Tightly -Coupled Multiple Processors . . « « « « o« & &

10.3.1 The Local Address Register . « « « ¢« « ¢ ¢ o &
10.3.2 Bus Request Protocols . . « « ¢« o« ¢ o o o o o
10.3.3 Examples of the Use of the Global Bus

10.4 Loosely Coupled Multiple CPUS . & ¢ o « o ¢ o o o o o
10.5 Coprocessors and the Extended Processing Architecture

10.5.1 Extended Instructions . . ¢« o ¢ o o 0 4 o o &
'10.5.2 Extended Instruction Execution Sequence . . .

10-1
10-1
10-2

10-2
10-2
10-4

10-6
10-6

10-6
10-7

Chapter 11. Reset ¢ ¢ ¢ ¢ ¢ ¢ o ¢ 0 o 0 o o o o »

111

11

Chapter 12. 280 Bus External Interface’

12,1 Introduction « o« « o o o ¢ o ¢ o o o o o ¢ o o o ¢ o s
12,2 Bus Operations « « o o ¢ o o o ¢ o o o ¢ o o o ¢ ¢ o o
12,3 Pin Descriptions « o« o o « o o o o o o o o s o o o o o
12.4 Bus Configuration and Timing « « « o o « o o o o o o
12.5 Transactions « o« o o o o o o o o o o o o o o o o o o o

12.5.1 Memory Transactions8 .« « ¢« « ¢ o ¢ o ¢ o ¢ 0.
12.5.2 RETI Transactions . « « o o o o o o o o & o &
12.5.3 Halt and Refresh Transactions . « « « « ¢ & &
12.5.4 1/0 Transactions « « « o« o ¢ o o o o ¢ o o o &
12.5.5 Interrupt Acknowledge Transactions . . « . . .
12.5.6 DMA Flyby Transactions « « « o ¢ ¢ ¢ o o s o o

12.6 ROQUEBLS « « o o o ¢ ¢ o o o o o s o o5 s 0 o s o oo
12.6.1 Interrupt Requests . . S L S

12.6.2 Local Bus Requests o« « « o« o ¢ ¢ s ¢ o o ¢ o«
12.6.3 Global Bus Requests « « « « o o « o o o o o o

12-1

12-2 -

12-3
12-4
12-4°

12-5
12-9
12-9
12-10
12-12

12-13 .

12-14

. 12-14

12-15
12-15

vii

Table of Contents (Continued)

mq)tet; 13. Z-BUS External Interface

13.1 Introduction « o ¢ ¢ ¢ v ¢ o o o 6 o o 6 0 0 0 0 o
13.2 Bus Operations « « « o ¢ o ¢ o o 6 o o s o o o o o »
13.3 Pin Descriptions . + ¢« ¢ ¢ ¢ ¢ o o o o o s o s o &
13.4 Bus Configuration and Timing . « « ¢ « ¢ ¢ ¢ ¢ ¢ o »
13.5 Transactions « ¢« ¢ o ¢ o o o o o s o o o o o o o o o

13.5.1
13.5.2
13.5.3
13.5.4
13.5.5
13.5.6

Memory Transactions . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ + &
Halt and Refresh Transactions
I/0 Transactions « « « « ¢ ¢ ¢ ¢ ¢ ¢ o s o &
Interrupt Acknowledge Transactions
Extended Processing Unit (EPU) Transactions
DMA Flyby Transactions . « + ¢« & ¢ o o o o &

13.6 Requests....'..................

13.6.1

Interrupt Requests . . . « v ¢ v ¢ ¢ o o o &

13.6.2 Local Bus Requests . ¢ o ¢« v v ¢ o s o o o «
13.6.3 Global Bus Requests . . « + ¢ ¢« v o ¢ o & &

13-1
13-2
13-3
13-4
13-4

13-5

13-10
13-11
13-13
13-14
13-17

13-18
13-19

13-19
13-19

Appendix
Appendix

A.
B.
C.
0.
E.

F.

780/2280 Compatibility
lmmlmtru:_tiov‘nfonatob. s s o0 0 s

Instructions in Alphebetic Order

Inetructions in Nmeric Order -

Instruction Timing

Compatible Peripheral Families

A-1

Glossary

Index

1-1

viii

LIST OF ILLUSTRATIONS AND TABLES

Figure Page
Number Number
1-1. Block DiBQram..eeeeeeeiocscoanscscsnsscsssssccssasssssannassal=l
2-1. Register File OrganizatioN..ceceececscoccsooccsscccoassasosessal=1

2-2. CPU Control RegiSterS...ececececesssoeccsscccocscscssncnsnsesl=3
2-3. Numbering of Bits Within a Byte....ccoeeeccceccccscscsssscsssl2=3
2-4. Formats, Multiple-Byte Data Elements in Memory...coceeceosssc2-4

3-1. Bus Timing and Initialization Register...cesecececrecccsansces3=1
3-2. Bus Timing and Control Register....ceceeececcccncscscscssesesd=2
3-3. Local Address RegiSter...c.ceeescsscecscccccccosoccsssssnsneeld=3
3-4. Cache Control RegiSter...eeececsscccssscoscssoscscssscasssocel=3
3-5. Master Status Register..ccceeeeeecesssscssccscscsscsccscccscsssald=l
3-6. Interrupt Status Register.....;.......;......................3-5
3-7. Interrupt/Trap Vector Table Pointer.ccecececcccccccccccscscasld=5
3-8, I/0 Page RegiSter.icesesesseesscecscscossssoasccasssssasascnsesld=d
3-9. ‘Trap Control Register..cccceeeceeeesccccesoccsnccccsossoscscasnsld=b
3-10. System Stack Limit Register..iceseececscescsscacccccssonsosasl=b
5-1. Flag RegisSterceeceeeseceeceeseesoseescsosscsccsccssacccssccssned=}
6-1. Mode 2 Interrupt Processingeccesecesescccesccccscsscccccsaseesb=3
6-2. Instruction Execution Sequence...c.seecececccccccccscccccncseb=b

6-3. Format of Saved Status on System Stack

Due to a Mode 3 Interrupt.ceecececececcccccccsccccsssssvesansab=B
7-1. Page Descriptor RegiSter..ceeeeeecesoasescsscssssssassncaneosl=2
7-2. Address Translation Without Program/Data Separation.....eeeee7=3
7-3. Address Translation With Program/Data Separation......eecc...7-4
7-4. MMU Master Control RegiSter..ccccececcceccccccsocscccscccnsnsl=5
8-1. Cache 0rganizatioN..ecececesccssssesscsacscssscscsassnscsosesB=l
9-1. Refresh Rate Register..cceeseececesceccccscscccscccsscsccncened=l
9-2. MPU Counter/Timer Block Diagram....cccceeccscecsccsccssscnssessd=2
9-3. Counter Operation With Gate Only...cceevceccccccoccccsosccccsasd=3
9=-4. Counter Operation With Trigger Only..cccececccccoconssscesssed=t
9-5. Counter Operation With Gate and Trigger...cccecccecsscccccassd=t

9-6. Counter/Timer Configuration Register....cccceeeecscessascsceed=5
9-7. Counter/Timer Command/Status Register...cceeessecssscsoscnceesd=b
9-8. Modes of OperatiofN..cecceececescesocscsssscsssconssssosssnnsssesd=ll

9-9. DMA Master Control RegiSter.c.evecceseossesesccsscnsassososesed=13
9-10. Transaction Descriptor Register.....ccceceececescsscscscsccceed=13
9-11. Source & Destination Address Registers Format.....ccceceeees 9-15
9-12. General Format, Asynchronous Transmission..cecececccecscessessd=17
9-13. Byte Assembled by Receiver for 5-bit Character with Parity...Y9-18
9-14. UART Configuration RegiSter...ceceeececcsossssssvosccscsnsess¥y¥=18
9-15. Transmitter Control/Status Register...cceccecccccccccccececeead9=19
Y9-16. Receiver Control/Status Register..ceccececccccscccnsscncccessd=20
18-1. Multiprogcesser ConfigurationS.cceecececcccecscccsscssocascasell=1
10-2. Local Address RegiSter..cceeeeeeceececsessosessssscssnasessasll-2
10-3., State Diagram for CPU Bus Request Protocol.....ccceceesescsssl0=-3
10-4. Tightly Coupled Processors With Shared Global MEMOrYeoeeassoo10-4
10-5. Tightly Coupled. Processors Without Global Memory......e......10-5
10-6. ,2280 MPU as @n I/0 PrOCESSOT.ccssseenssssesacccsnnsssassssaasll=h

ix

Table of Contents (Continued)

10-7.
10-8.
12-1.

12-2.
12-3.
12-4.
12-5.
12-6.
12-7.
12-8.
12-9.
12-10.
12-11.
12-12.
12-13,
12-14.
12-15.
13-1.

13-2.
13-3.
13-4.
13:5.
13-6.
13-7.
13-8.
13-9.
13-10.
13-11.
13-12.
13-13,
13-14.
13-15.
13-16.
13-17.
13-18.
13-19.

EPU Corinection in Z280 MPU System...cccececccsccccsscccsccsessl0=6
CPU-EPU Instruction Execution SequenCe....cceeeeoscscccsccessll=7
780 Bus Configuration (Input OPT tied to GND)

a) Pin Function8.cceeeeeeeenoseossoascsccocassssssssccssesl2=1

b) Pin ASSigNMeENtS...ceceececsccscsccscsssscsosssssasocsesesl2=1
Memory Read TimiNg..eeeceeeececccccssocsocssssscsscscssnvssncesl2=5
Memory Write Timing..cececceceecrccocsococtsscccsccccnscccssnsel2=6
Memory Read Timing W/One External Wait State.....ccceeeseceesl2-6
Memory Write Timing W/One External Wait State....ecseececcses 12-7
Memory Read Timing W/One Internal Wait State....c.eeeeeeeeeesl2-7
RETI Read Timinge.ssseeseesseeeesenocennesnncsnnssqocsonssnsesl2-8
Halt TimMinNg.eeeeoescosecssasocsccsosssscsessssosscscsscssssscscncsl2=9
Memory Refresh Timinge.ccecseoceececececscccocrocccscscscasseel2=10
I/0 Read TiMinNguieeeeeeececccccccosoosscacsccssssassssccssonaal2=11
I/0 Write Timingeeeeeeeceossooosoecasesasosooosenssssssssssosel2=11
Interrupt Acknowledge SeqUENCe..cccceccccscsssscscccncssssssaeal2=12
On-Chip DMA Channel Flyby Memory Read Transaction.....cceeeee12-13
On-Chip DMA Channel Flyby Memory Write Transaction...........12-14
Multiprocessor Mode Timingieceeeeceececcossesssnosssocscnsensesl2=-15
Z-BUS Configuration (Input OPT tied to +5V or not connected)

@) Pin FUNCLiONB..eeteereeeeeeescesoceecoacsassssonsassesssll=t

b) Pin ASSignmentsS..ceeeeeececcccccscccccsossssccssccsccsssld=l
Memory Read Timing.eecieececececcocccsossossscoossscscssonsscascelld=b
Memory Write Timinge.ccoeeescosececossscccccccccnssassascacoosnsasld=T
Memory Read Timing With External Wait Cycle..ceeececsccscceeal3=7
Memory Write Timing With External Wait Cycle...cceceevccsccessl3=-8
Memory Read Timing With Internal Wait Cycle....cccecseeceeeesl3-8
Burst Memory Read Timing..ceceeccceccccccccsscscscssscssscssseald=9
Halt Timingeecececceeeesosencocsoscossscossossossssscsccscssansssell=10
Memory Refresh Timing...eeeecececscccccecencesscscsosconsnsseslld=ll
I/0 Re@d TiMiNgGseeeeeeeosoessocsaoecsosasoesssssssssasscassesl3=12
I/0 Write Timingeeosoeseceecossasssccasasssssssssceassnsssssssl3=12
Interrupt Acknowledge TiminNg.eceeeseecsosscencscocssasasanossesl3=13
Memory to EPU Timingeeseeeeesoscoscescsssocessoscssansencasaeld=14
EPU Write To MemMOry.ceceeeooeeaeecoacossscoscacsssscasnoccosasl3=15
EPU To CPU TimingGeseoeeeeeoesosesccssccsssossccccsssossocsosssseelld=16
PAUSE Timingeecececeeooeecocsosoasooososcoasoscscsosnsccsscosscssl3=16
On-Chip DMA Channel Flyby Memory Read TransactioNeeececsceses13=17
On-Chip DMA Channel Flyby Memory Write Transaction....c..ees..13-18
Multiprocessor Mode Timing.eeeecececeocoscececccsscconcsancsssl3=19

Table
Number
3-1.

Page

Number

CS Field, Bus Timing & Initialization Register.....c.ccee'veceee3=1
LM Field, Bus Timing & Initialization Register.......ccceceee.3-1
1/0 Field of Bus Timing and Control Register..ccececcececccececel=-2
HM Field of Bus Timing and Control Redister...................3-2
DC Field of Bus Timing and Control Register....cccecccecececes3=2
CONition COESeeuseeeeancaceesocesacnasosscassosascassaanassed=3
8-Bit Load Group INStructionS.....eicecececcccnceccenatrecnanas=b
16-Bit Load and Exchange Group InstructionS...cccccccecceccees5=5
Block Transfer and Search GrouUp.c.cccececccccccccsssscsscasccsed=S
8-Bit Arithmetic and LogicC Group.ccicccecccccsccccccscssccccsceed=b
16-Bit Arithmetic Operation Instruction8.cceceecccccccccccnes 5=7

" Bit Manipulation, Rotate and Shift Groupeccscecsecececcncccsesd=8

Program Control Group Instructions...cccececcccacecccccsccccnse=8

Input/Output Instruction Group InstructionSeccceccceccccccceesd=9

CPU Control GroUpesesescecsscececcasossooscsencsssssssscsccsssscsed=10
Extended InStructioNS.ccecececccsccccscssssscccscsccccccccsansed=10
Encoding of 8-Bit Registers in Instruction Opcodes.....ccoeese5=11
Grouping of Maskable Interrupt RequestS.c.cceccccececscccccccesab=1

INterrupt MOdeS.cceececccesosesoseccccsncsossasssscccococnncasesball

Trap TypeSeececcesececocsssossssssossoscsssscsscscssccsscccssosnssebe?

Interrupt Acknowledge Encoding for Z80 Bus Parts....ccccceeeeeb=-7

Interrupt/Trap Vector Table Format....ccceeceescecccccccscscnesa6=10
Page Descriptor Register AddresseS...c.cccccecccscccsscccccsecel=d

MMU Invalidation POFPt ceeecesceosccasocsssscscccsasoccascscscccscel=6

1/0 Port Addresses for MMU Control Registers..ccececscececcccsss?-6

CPU Accesses to On-Chip Memory as Cache.ccceeccccocccceccccessB=2

On-Chip DMA Accesses (Both Flowthrough and Flyby) Effect

on On-Chip Memory as Cache...cceeeeceecssscccsssccccscccccesssB=3

DMA/CPU Accesses to On-Chip Memory as Fixed Memory lLocation...8-4

Encoding, IPA Field in C/T Configuration Registerccecececececeesd=5

1/0 Addresses of Counter/Timer Registers..cccececccccccccccecec¥9=7

Configuration and Command/Status Registers

for Linked Counter/Timers.ecececccscccsssoscescscscsscssccccnssssesd=B

Encoding of DAD & SAD Fields in DMA Transaction

Descriptor RegiSteleeeecsceccssscsscsscrsassoscssessosnecceseed=ll

" Encoding of Type Field in Transaction Descriptor Register.....9-14
Encoding of BRP Field in Transaction Descriptor Register......9-14.

Encoding of ST Field in Transaction Descriptor Register.......9-14
1/0 Addresses of DMA Registers....ceceessscecsscoccsssccsssees?d=15
CR Field of UART Configuration Register.............J-........9-19
BC Field of UART, Control Register.....cceceecccsscecsscccesssed=19
1/0 Addresses of UART RegisSters....cceeceesccacassocsonsscocnsssd=-20
Reset Value of UART and DMA Registers

When Bootstrap Mode Is Selectedeeeeseccoccocnssesccsseassosesesd=21

X1

Table of Contents (Continued)

10-1.

10-2.

1-1.
11-2.
13-1,
B-1.
B-2.
B-3.
B-4.
£-1.
E-2.
E-3.
E-4.
E-S.
E-6.
E=7.
E-8.
E-Y.
£-10.
F-1.
F-2.

Bus Transactions Involved in Fetch of

Extended Instruction Template......................:..........10—8
Sequence of Transactions for Data Transfers

Between an EPU and MemOTY..cceeeececccccccsssssoscsosaccoosssnssll=9y
Effect of a Reset on 2280 CPU & MMU Registers...ceoscecececsessesll=2
Effect of a.Reset on Z280 On-Chip Peripheral Registers........11-3
ST Status Line Decode.cceeeececeseccsceccoscosccacososcssascsnssll=li
Format 1 Instruction ENcodinNgS.cecececcecceccccscsscsssosnesesB=2

Format 2 Instruction ENCOdingS.cceecceccscssecccscsocsssosssseB=2

Format 3 Instruction EncodingS8..eccececcececccccssscccssnsenessB=2

Format 4 Instruction Encodings......cceeeececiecscccscensssneesB=2

Instruction Execution TimeS..eeeeeseesceccscccccccasscscscssosb=2

Extended Instruction Execution Times..eeeeeeseoescscnossesnsasb=11
Interrupt, Trap, and Special Condition Execution Times......:.E-12
Instruction Fetch and Decode TiminNg.ceececcececescsaoscosonsesab=13
Data Read TiMiNg..oecoeeeecossaososcocscecscocsassasssoansosnsssecE=1l
Data Write Timing.c.esoceeeeeeeeeccsscsoceccesacsosccscsessesescE=-18
I1/0 Read and Write Timing.cceeoeessscccccssccscoscssascssscnsesE=15
EPU Read and Write Timing.cececeeceasecccsosscsesessnssssnssssesb=15
Interrupt Acknowledge Timing..eceececcececcccescscccsscsssnssnncssE=15
Miscellaneous Transaction Timingecececcecscccceiccccnccccssessb=16
28400 Peripheral Family..ceoeeeeeecocecccosscsossasoscsscisoonsssef=1

78000/28500 Peripheral Family.ooeeesennacecnncecnnneessnnnssasF=1

xii

Chapteri.
Z280 Architectural Overview

1.1 INTRODUCTION

The Z280™ microprocessor unit (MPU) features an
advanced 16-bit CPU that is object-code compatible
with the Z80® CPU. The 2280 microprocessor unit
includes memory management, peripherals, memory
refresh logic, cache memory, wait state
generators, and a clock oscillator on the same
integrated circuit as the CPU. The on-chip
peripheral devices include 4 DMA (Direct Memory
Access) channels, 3 counter/timers, and' a UART
(Universal Asynchronous Receiver/Transamitter). A
block diagram of the 7280 MPU is shown in Figure

1-1. This chapter presents some of the features -

of the 2280 MPU family, with detailed descriptions

of the various aspects of the processor provided
in succeeding chapters.

The 2280 MPU has a multiplexed addreas/data bus
for communication with external wmemory and
peripheral devices. Two different bus structures
are supported by the Z280: an 8-bit data bus that
uses Z80 Bus control signals, and a 16-bit data
bus that uses Z-BUS® bus control signals. Zilog's
280 and 78500 families of peripherals are easily
interfaced to the Z80 Bus; Zilog's 2Z8000® family
of peripherals are easily interfaced to the Z-BUS.

__ZsocomeTeLE 3 3STAGE PPELINE
. | exscumonuvmr
. DATA CACHE ——
. X 5
l . PaaED §
. oost | ™ o 1 MANAGEMENT oness | e =1 seavencer sm.,‘"".
. ot H
T » .
use - .
[) ° .
i il g

—
=
=
-

= ot
-l
i

ST,
) B
xTu INTERRUPT
-y OMA CHANNELS Sunst]
OSCILLATOR MEMORY +— W
o g CONTROL 200 U8
TIMERS 24-81T SOURCE (16-81T)
sV —a) 24-81T DESTINATION EXTERNAL US SCALE ax
16-9T COUNTER TEace - warw
" aNp —-] CONTROL GENERATOR PASE
Lesadital
q
v ¥ ¥ ¥
naT ui ugu
CTN CcTI0 RV DHASTS 0P RO ™ E BB ArwAzs | ADy-ADy
AcAis
ADg-ADss
i definition depends on OPT.
+ W)
T o
- sheres W/CT 10,
Figure 11. Block Diagram

1.2 MPU ARCHITECTURAL FEATURES

The central processing unit of the Z280 MPU is a
binary-compatible extension of the Z80 ' CPU
architecture. High throughput rates for the 2280
CPU are achieved by a high clock rate, instruction
pipelining, and the use of on-chip cache memory.
The internal CPU clock can be: scaled down to
provide for slower speed bus transaction timing.
A programmable refresh mechanism for dynamic RAMs
and a clock oscillator are provided on-chip.

1.2.1 System and User Modes

Two modes of CPU operation, system and user, are
provided to facilitate operating system design.
In system mode, all of the instructions can be
executed and all of the CPU registers can be
accessed. This mode is intended for use by
programs performing operating system functions.
In user mode, certain instructions that affect the
state of the machine cannot be executed and the
control registers in the CPU are inaccessible. In
general, user mode is intended for use by
applications programs. This separation of CPU
resources promotes the integrity of the system,
since programs executing in ‘user mode cannot
access those agpects of the CPU that deal with
time-dependent. or system-interface events.

The register . structure has been extended to
include separate Stack Pointer registers, one for
a sgystem-mode stack and one for a user-mode
stack. The system-mode stack is used for saving
program status on the occurrence of an interrupt
or trap condition, thereby ensuring that the user
stack is free of system information. The
isolation of the system stack from user-mode
programs further promotes system integrity.

1.2.2 Address Spaces

Addressing spaces in the 2280 CPU include the CPU
register space, the CPU control register space,
the memory address space, and the I/0 address
space. The CPU register file is identical to the
780 register set, with the exception of the
separate system- and user-mode Stack Pointers.
- The A register acts as an B-bit accumulator; the
HL register is the 16-bit accumulator. These are

supplemented by four other 8-bit registeré (8, C,
D, E) and two other 16-bit registers (IX, 1IY);
the B8-bit registers can be paired for 16-bit
operation, and each 16-bit register can be treated
as two B-bit registers. The Flag register (F)
contains information about the result of the last
operation. The A, F, B, C, D, E, H, and L
registers are replicated in an auxiliary bank of
registers. These auxiliary registers can be
exchanged with the primary register bank for fast
context switching.

Several CPU control registers determine the
operation of the 7280 MPU. For example, the
contents of control registers determine the CPU
operating mode, which interrupts are enabled, and
the bus transaction timing. The control registers
are accessible in system-mode operation only.

The 7280 CPU's logical memory address space is the
same as that of the Z80 CPU: 16-bit addresses are
used to reference up to 64K bytes of memory.
However, the on-chip Memory Management Unit (MMU)
extends the 16-bit logical memory address to a
24-bit physical memory address. Two separate
logical address spaces, one for system mode and
one for user mode, are supported by the CPU and
MMU. Optionally, the MMU can be programmed to
distinguish between instruction fetches and data
accesses; thus, the 7280 CPU can have up to four
memory address spaces: system-mode program,
system-mode data, user-mode program, and user-mode
data. The logical address space is divided into
pages to facilitate controlled sharing of program
or data among separate processes.

The 7280 . CPU architecture also distinguishes
between the memory and 1/0. address spaces and,
therefore, requires specific I1/0 instructions.
I/0 addresses in the 2280 CPU are 24 bits long,
with the upper 8 bits provided by an 1/0 page
register in the CPU, '

1.2.3 Data Types

Many data types are supported by the 2280 CPU
architecture. The basic data type is the B8-bit
byte, which is also the basic addressable memory
element. The architecture also supports opera-
tions on bits, BCD digits, 2-byte words, and byte
strings. g

1.2.4 Addressing Modes

The operand addressing mode is the -method by which
a data operand's location is specified. The 7280
CPU supports nine addressing modes, including the
five modes available on the 2Z80 CPU. The
addressing modes of the Z280 CPU are:

® Register

o Immediate

e Indirect Register

e Direct Address

e Indexed (with a 16-bit displacement)

e Short Index (with an 8-bit displacement)
e Program Counter (PC) Relative
e Stack Pointer (SP) Relative
e Base Index

All addressing modes are available on the 8-bit
load, arithmetic, and logical instructions; the
8-bit shift, rotate, and bit manipulation
instructions are limited to the Register, Indirect
Register, and Short Index addressing modes. The

16-bit loads on the addressing registers support’

_all addressing modes except Short Index, while
other 16-bit operations are limited to the
Register, Immediate, Indirect Register, Index,
Direct Address, and PC Relative addressing modes.

1.2.5 Instruction Set

The 7280 CPU instruction set is an expansion of
the 280 instruction set; the enhancements include
support for additional addressing modes for the
280 instructions as well as the addition of new
instructions. The 2280 CPU instruction set
provides a full complement of 8- and 16<bit
arithmetic operations, including signed and
unsigned multiplication and division. Additional
8-bit computational instructions suppoi-t logical
and decimal operations. Bit manipulation, rotate,
and shift instructions round out the data
manipulation capabilities of the 7280 CPU. The
Jump, Call, and Return instructions have both
conditional and unconditional versions; Relative
addressing is provided for the Jump and Call

ingtructions to support position-independent
programs. Block move, search, and I/0
instructions provide powerful data movement
capabilities. In addition, special instructions

have been included to facilitate multitasking,

multiple processor configurations, and typical
high-level language and operating system
functions.

1.2.6 Exception Conditibns

The 7280 MPU supports three types of exceptions
(conditions that alter the normal flow of program '
execution): interrupts, traps, and resets.

Interrupts are asynchronous events typically -
triggered by peripherals requiring attention. The
2280 MPU interrupt structure has been signi-
ficantly enhanced by increasing the number of
interrupt request lines and by adding an efficient
means for handling nested interrupts. There are
four modes for handling interrupts:

- @ 8080 compatible, in which the intérrupting

device provides the first instruction of the
interrupt routine. ' '

® Dedicated interrupts, in which the CPU jumps to
a dedicated address when an interrupt occurs.

e Vectored interrupt mode, in- which the
interrupting peripheral provides a vector into.
a table of jump addresses.

e Enhanced vectored interrupt mode, wherein the.

" CPU handles traps and multiple interrupt
sources, saving control information as well as
the Program Counter when an interrupt occurs.

The first three modes are compatible with the Z80
CPU interrupt modes; the fourth mode provides more
flexibility, with support for nested interrupts
and a sophisticated vectoring scheme.

Trépe are synchronous events that trigger a
special CPU response when certain conditions occur
during instruction execution. The 12280 CPU

supports a sophisticated complement of traps
_including Division Exception, System ' C(all,
Privileged Instruction, Extended Instruction,
Single-Step, Breakpoint-on-Halt, Memory Access
Violation, and System Stack Overflow Warning
traps.

Hardware resets occur when the RESET 1line is
activated and override all other conditions. A
reset causes certain CPU control registers to be

" initislized.

1.2.7 Memory Management

Memory management consists primarily of dynamic
relocation, protection, and sharing of memory.

Proper memory management ‘can provide a logical
structure to the memory space that is independent
of the actual physical location of data, protect
the user from inadvertent mistakes (such as trying
to execute data), prevent unauthorized accesses to
memory, and protect the operating system from
disruption by users.)

The 16-bit addresses manipulated by the pro-
grammer, used by instructions, and output by the
CPU are called logical addresses. The on-chip
Memory Management Unit = (MMU) transforms the
logical addresses into the corresponding 24-bit
physical addresses required for accessing memory.
This address transformation process is called
relocation, and makes user software independent of
physical memory. Thus, the user is freed from
specifying where information is actually located
in physical memory. B

Status information generated by the CPU allows the
MMU to monitor the intended use of each memory
access. Illegal types of accesses, such as writes
to read-only memory, can be suppressed; thus,
areas of memory can be protected from unintended
or unwanted modes of use. Also, the MMU records
which memory areas have been modified and can
inhibit copies of data from being retained in the
on-chip cache.

When a memory access violation is detected by the
MMU, a trap condition is generated in the CPU arid
execution of the current instruction "is auto-
matically aborted. This mechanism facilitates the
eagy implementation of virtual memory systems
based on the Z280 MPU.

1.2.8 Cache Memory

Cache memories are small high-speed buffers
situated between the processor and main memory.
For each memory access, control logic checks to
see if the data at that memory location is
currently stored in the cache. If so, the access
is made to the high-speed cache; if not, the
access is made to main memory, and the cache
itself might be updated. Thus, use of a cache
leads to increased performance with fewer memory
transactions on the system bus.

The 7280 MPU includes on-chip memory that can be
used as a cache for programs, data, or both.
Cache operations, including updating, are
performed automatically and are completely trans-
parent to the user. Optionally, this on-chip
memory can be dedicated to a set of memory
locations that are specified under program
control, instead of being used as a cache.

1.2.9 Refresh

The 7280 MPU has an internal mechanism for
refreshing dynamic memory. This mechanism can be
enabled or disabled under program control., If
enabled, memory refresh operations are performed
periodically at a rate determined by the contents
of a refresh rate register. A 10-bit refresh
address is generated for each refresh operation.

1.2.10 On-Chip Peripherals

Several programmable peripheral devices are
included on-chip in the 7280 MPUs: four DMA
channels, three 16-bit counter/timers, and a
UART. Optionally, one of the DMA channels can be
used with the UART as a bootstrap loader for the
1280 MPU's memory after a reset.

1.2.11 Multiprocessor Mode

A special mode of operation allows the 2280 MPU to
operate in environments that have a global bus,
wherein the 7280 MPU is not the bus master of the
global bus. A set of memory addresses (determined
under program control) is dedicated to a local
bus, which is controlled by the 7280 MPU, and
another set of addresses is used for the global
bus. The 2280 MPU is required to make a bus
request and receive an acknowledgement before
making a memory access to an address on the global
bus. This mode of operation facilitates use of
the 7280 MPU in multiple-processor configura-
tions. For example, a 7280 MPU could be used as
an 1/0 processor in a Z80000-, Z8000-, ' or
7280-based system. ’

1.2.12 Extended Instruction Facility

The Z280 MPU architecture has a mechanism for
extending the basic instruction 'set through the
use of external devices called Extended Processing
Units (EPUs). Special opcodes have been set aside
to implement this feature. When the Z280 MPU
encounters an instruction with one of these

. opcodes, it performs any indicated address calcu-

lations and data transfers; otherwise, it treats
the "extended instruction" as if it were executed
by the EPU.

If an EPU is not present, the 7280 MPU can be
programmed to trap when an extended instruction is
encountered so that system software can emulate
the EPU's activity.

1.3 BENEFIVS OF THE ARCHITECTURE

The. features of the 7280 MPU architecture provide
several significant benefits, including increased
program throughput, ‘increased integration of
system functions, support for operating systems,
and improvements in compiler efficiency and code
density. T :

1.3.1 High Throughput

Very high throughput rates can be achieved with
, the 2280 MPU, due to the cache memory, instruction
pipelining, and high clock rates achievable with
this processor. The CPU clock rate can be scaled
down to provide the bus clock rate, allowing the
designer to use slower, less-expensive memory and
1/0 devices. Use of the on-chip cache memory
further increases throughput by minimizing the
number of accesses to the slower, off-chip memory
~ devices., The high code density achievable with
the 7280 CPU's expanded instruction set also
contributes to program throughput, since fewer
instructions are needed to accomplish a given
task.

1.3.2 Integration of System Functions

Besides a powerful CPU, the 2280 MPU includes
many on-chip devices that previously had to he
implemented in logic external to the micro-
processor chip. These devices include a clock
oscillator, memory refresh logic, wait state
generators, the MMU, cache memory, DMA channels,
counter/timers, and a UART.

reduced parts count in a system design, accom-
panied by -a resulting reduction in design and
debug time, power requirements, and printed
circuit board space. This increased level of
integration also contributes to system throughput,
since the on-chip devices can be accessed quickly
without the need of an external bus transaction.

1.3.3 Operating System Support

Several of the 7280 MPU's architectural features
facilitate the implementation of multitasking
operating systems for Z280-based systems.

The inclusion of user and system operating modes
improves operating system organization. User-mode
programs are automatically inhibited from per-
forming operating-system type functions. System-
mode memory can be separated from user-mode memory
and separate stacks can be maintained for system-
mode and user-mode operations. The System Call

Integration of all
these functions onto a single chip results in a -

instruction and the trap mechanism provide a
controlled means of accessing operating system
functions during user-mode execution..

" The interrupt- and trap-handling mechanisms are

well suited for operating system implementations.
Several levels of interrupts are provided,
allowing for separate control of various peripher-
al devices (both on and off the chip). A new
interrupt mode is provided, wherein status infor-
mation about the currently executing task is saved
on the stack and new program status information
for the service routine is automatically loaded
from a special memory -area. fYraps result in the
same type of program status saving. 'In both
cases, status is always saved on the system stack,
leaving the user stack undisturbed.

Allocation of resources within the operating
system can be accomplished using a special Test
and Set: instruction. Other instructions, such as
the Purge Cache instruction, are provided to aid
in task switching and other operating system
chores.

The on-chip MMU supports a multitasking environ- °
ment by providing both a means of quickly
allocating physical memory to tasks as they are
executed on the system and protection mechanisms
to enforce proper memory usage.

1.3.4 Code Density

Code density affects both processor speed and
memory utilization. Code compaction saves memory
space and improves processor speed by reducing the
number of instructions that must be fetched and
decoded. The largest reduction in program size
results from the powerful instruction set, where:
instructions such as Multiply and Divide help
substantially reduce the number of instructions
required to complete a task.

The efficiency of the instruction set is enhanced ~
by the addition of new addressing modes. For
example, all nine addressing modes are available
for all the 8-bit load, arithmetic, and logical
instructions.

1.3.5 Compiler Efficiency .
For microprocessor users, the transition from
asgembly language to high-level languages allows
greater freedom from architectural dependency and
improves ease of programming. For the 2280 MPUs,
high-level language support is provided through
the inclusion of features designed to minimize
typical compilation and code-generation problems.

1-5

Among these features is the variety and the power
of the 2280 instruction set, allowing the 7280 CPU
to easily handle a large amount and variety of
data types. The 7280 CPU's ability to manipulate
many different data types aids in compiler
efficiency; since data structures are high-level
constructs frequently used in programming,
processing performance is enhanced by providing
efficient mechanisms for manipulating them.

Examples of commonly used data structures include
arrays,- strings, and stacks. Arrays are supported
in the 7280 CPU by the Indirect Register, Index,
and Base Index addressing modes. Strings are
supported by those same addressing modes and the
Block Move, and Compare instructions; . since
compilers and assemblers often must manipulate
character strings, the Block Move and Block
Compare instructions can result in dramatic speed
improvements over software simulations of those
tasks. Numeric strings of BCD data can be
manipulated using the Decimal Adjust and Rotate
Digit instructions. Stacks are supported by the
Push and Pop instructions and the Stack Pointer
Relative, Index, and Base Index addressing modes;
“the Stack Pointer Relative addressing mode is

f
i

especially useful for accessing parameters- and
local variables stored on the stack.

1.4 SUMMARY

The 7280 MPU is a high-performance 16-bit micro-
processor, available with 8- and 16-bit external
bus interfaces. Code-compatible with the 780 CPU,
the 2280 MPU architecture has been expanded to
include features such as multiple memory address
spaces, efficient handling of nested interrupts,
system and user operating modes, and support for

multiprocessor configurations. Additional -
functions such as memory management, clock
generation, wait state generation, ‘and cache

memory are included on-chip, as well as a number
of peripheral devices. The benefits of this
architecture--including high throughput rates, a
high level of system integration, operating system
support, code density, and compiler efficiency--
greatly enhance the power and versatility of the

2280 MPU. Thus, the Z280 MPU provides both a -
growth path for existing Z80-based designs and a
high-performance processor for future
applications.

Chapter 2.

-~ Address Spaces

2.1 INTRODUCTION

The 2280 MPU supports four address spaces corre-
sponding to the different types of locations that
can be addressed, the method by which the logical
addresses are formed, and the translation mecha-

nisms wused to map the logical address into
' physical locations. These four address spaces
are:

e CPU register space. This consists of the
addresses of all registers in the CPU register
file, '

" @ CPU control register space. This consists of
the addresses of all registers in the CPU
control register file.

\
o Memory address space. This consists of the
addresses of all locations in the main memory.

o I/0 address space. This consists of the
addresses of all 1I/0 ports through "which

2.2 CPU REGISTER SPACE

The Z280 CPU register file is illustrated in
Figure 2-1. The primary register file, consisting
of the A, F, B, C, D, E, H, and L registers, is
augmented by an auxiliary file containing
duplicates of those registers. Only one set
(either the primary or auxiliary file) can be used
at any one time. Special exchange instructions
are provided for switching between the primary and
auxiliary registers.

The CPU register file is divided into five groups
of registers (an apostrophe indicates a register
in the auxiliary file): '

e Flag and accumulator registers (F, A, F'; A')

e Byte/word registers (8, C, D, E, H, L, B', C',
D', E'y H', L")

e Index registers (IX, IY)

Stack Pointers (SSP, USP)

peripheral devices are accessed, including e Program Counter, Interrupt register, and
on-chip peripherals and MU registers. Refresh register (PC, I, R)
PRINARY FiLE AUXILIARY FILE
A ACCUMULATOR F FLAG REGISTER A" ACCUMULATOR F' FLAG REGISTER

G‘ GENERAL PURPOSE C GENERAL PURPOSE

B’ GENERAL PURPOSE C' GENERAL PURPOSE

D GENERAL PURPOSE E GENERAL PURPOSE

D’ GENERAL PURPOSE €' GENERAL PURPOSE

J
1Y INDEX REGISTER
1

H QGENERAL PURPOSE L GENERAL PURPOSE H' GENERAL PURPOSE L' GENERAL PURPOSE
.) ,
fe———s BITS———|
. - NOTE: A is the 8-bit accumulator.
| HL is the 16-bit sccumulator.
1 INTERRUPT VECTOR [
1X INDEX REGISTER

* PC PROGRAM COUNTER
SP STACK POINTER .
l SYSTEM (S8P)
te 1e s —>| '
Figure 21. Register File Organization

2-1

Register addresses are either specified explicitly
in the instruction or are implied by the semantics
of the instruction. : .
.

The flag registers (F, F') contain eight status
flags. Four can be individually used for control
of program branching, two are used' to support
decimal arithmetic, and two are reserved (see
section 5-2). The accumulator (A) is the implied
destination (i.e., where the result is stored) for
the B8-bit arithmetic and logical instructions.
Two sets of flag and accumulator registers exist
in the 2280 CPU, with only one set accessible as
the flag register and the accumulator at any one
time. An exchange instruction allows switching to
the alternate flag register and accumulator.

The byte/word registers can be accessed either as
8-bit byte registers or 16-bit word registers.
Bits within these registers can also be accessed
individually. For 16-bit accesses, the registers
are paired B with C, D with E, and H with L. Two
sets of byte/word registers exist in the 2280 CPU,
although only one set is used as the current
byte/word registers; the other set is accessible
as the alternate group of byte/word registers via
an exchange instruction.

The index registers IX and IY can be accessed as’
16-bit registers or their upper and lower bytes
(IXH, IXL, IYH, and IYL) can be individually
accessed. :

The Z280 CPU has two hardware Stack Pointers, one
dedicated to system mode operation and one to user
mode operation. The System Stack Pointer (SSP) is
used for saving information when an interrupt or
‘trap occurs and for supporting . subroutine calls
and returns in system mode. The User Stack
Pointer (USP) is used for supporting subroutine
calls and returns in user mode.

The Program Counter is used to sequence through

instructions in the currently executing program

and for generating relative addresses. The Inter-
rupt register is used in interrupt mode 2 to
generate a 16-bit logical address from an 8-bit
vector returned by a peripheral during an inter-
rupt acknowledge. The Refresh register is used by
the 280 CPU to indicate the current refresh
address, but does not perform this function in the
2280 CPU; instead, it is another 8-bit register
available for the programmer.

- instructions. The

The explicit or implicit register specified by an
instruction is mapped into the CPU register file
based on the state of three control bits. One of
the three control bits is used to map the flag and
accumulator registers, selecting either F, A or
F', A' whenever the instruction specifies the flag
register or the accumulator. Another control bit
is used to map the byte/word registers, selecting
the B, C, D, E, H, L registers or the B', C', D',
E'y H', L' registers. These two control bits are
changed by the Exchange Flag and Accumulator and
the Exchange Byte/Word Registers instructions,
respectively. At any time the program can sense
the state of these control bits by special jump
third control bit, the
User/System control bit in the Master Status
register, specifies whether the System Stack

Pointer register or the User Stack Pointer
register is selected whenever an instruction
specifies the Stack Pointer register. In

addition, the User Stack Pointer register also has
an address in the CPU control register space via a
special Load Control instruction. ’

2.3 CPU CONTROL REGISTER SPACE

The 2280 CPU status and control registers govern
the operation of the CPU. They are accessible
only by the privileged Load Control (LDCTL)
instruction.

Control register addresses are specified by the
contents of the C register. No translation is
performed in mapping this 8-bit logical address
into the control register file location.

The Z280 CPU control registers are the Bus Timing
and Initialization register, the Bus Timing and
Control register, the Master Status register, the
Interrupt/Trap Vector Table Pointer, the I/0 Page
register, the System Stack Limit register, the
Trap Control register, the Interrupt Status
register, the Cache Control register, and the
Local Address register (Figure 2-2). The CPU
control registers are described in detail in
Chapter 3.

;

™~ 7~

svmusuﬂn{
REGISTERS

SYSTEM STACK LiMiT

Figure 22. CPU Control Registers

2.4 MEMORY SPACES

Two memory address spaces, one for system and one

for user mode operation, are supported by the 7280

MPU. They are selected by the User/System mode
control bit in the Master Status register, which
governs the selection of page descriptor registers
in the MMU during address translation.

Each address space can be viewed as a string of
64K bytes numbered consecutively in ascending
order. The B8-bit byte is the basic addressable
element in the 7280 MPU memory address spaces.
However, there are other addressable data ele-
ments: bits, 2-byte words, byte strings, and
multiple-byte EPU operands. :

The size of the data element being addressed
depends on the instruction being executed. A bit

can be addressed by specifying a byte and a bit

within that byte. Bits are numbered from right to
left, with the least significant bit being bit O,
as illustrated in Figure 2-3.

7

[TTTTTT]

Figure 23." Numbering of Bits within a Byte

The address of a multiple-byte entity is the same
as the address of the byte with the lowest memory
address within the entity. Multiple-byte entities
can be stored beginning with either even or odd
memory addresses.. A word (2-byte entity) is
aligned if its address is even; otherwise it is
unaligned. . Multiple bus transactions, which may
be required to access multiple-byte entities, can
be minimized if alignment is maintained.

The formats of multiple byte data types in memory
are given in Figure 2-4,

Note that when a word is stored in memory, the
least significant ' byte precedes the most

‘'significant byte of the word, as in the 280 CPU

architecture.

The 16-bit logical addresses generated by a
program can be translated into 24-bit’ physical
addresses by the on-chip MMU. When the
translation mechanism . is disabled, the 24-bit
physical address consists of the logical address
for bits Ag-Aqs and zeros for Aqg-A23.

2-3

60-bit floating-point (EPU instruction only) at address n:

16-bit word at address n:

sign,E10-4 address n

E3-0, F51-48 address n+1
F47-40 address n+2
F39-32 address n+3
F31-24 » address n+4
F23-16 _addressn+5
F15-8 address n+6
F7-0 address n+7
<-1byte -> ’

80-bit floating-point (EPU instructions only) at address n:

sign,E14-8 address n

E7-0 address n+1
F63-56 address n+2
F55-48 address n+3
F47-40 address n+4
F39-32 address'n+5
F31-24 address n+6
F23-16 address n+7
F15-8 address n+8
F7-0 address n+9

BCD digit strings (EPU insfruction only) at address n:
(up to 10 bytes in length; the illustration is for the
- maximum length string)

sign,D18 address n
D17,D16 address n+1
D15,D14 address n+2
D13,D12 address n+3
D11,D10 address n+4
D9,08 address n+5
D7,06 address n+6°
D5,D4 address n+7
D3,D2 address n+8
D1,00 address n+9
Figure 24,

2.5 1/0 ADDRESS SPACE

1/0 addtesses are ganaratid only by 1/0°

instructions. The B8-bit logical port address
specified in the instruction appears on ADg-ADy;
this is concatenated with the contents of the A

register on lines Ag-Aj5 for Direct addressing.

mode, or by the contents of the B register for
Indirect Register addressing mode or block 1/0
instructions. .The contents of the 1/0 Page
register are appended to this address on lines
Ajg-Az3. Thus, the 24-bit 1/0 port address

address n
address n+1

least significant byte
most significant byte

32-bit integer (EPU instruction only) at address n:
B31-24 (most significant byte) address n
B23-16 address n+1
B15-8 address n+2
B7-0 (least significant byte) address n+3
< 1 byte >

64-bit integer (EPU instruction only) at address n:
B63-56 (most significant byte) | address n
B55-48 address n+1
B47-40 address n+2
B39-32 address n+3
B31-24 address n+4
B23-16 addressn+5
B15-8 address n+6
B7-0 (least significant byte) address n+7
< 1 byte >

32-bit floating-point (EPU instruction only) at address n:

sign,E7-1 address n
EO,F22-16 address n+1
F15-8 address n+2
F7-0 address n+3
<-1byte-->

Formats of Muitiple-Byte Data Elements in Memory

\

consists of the B8-bit address specified in the
instruction, the contents of the A or B register,
and the contents of the 1/0 Page register.

An 1/0 read or write is always one transaction,
regardless of the bus size and the type of 1/0

instruction. On-chip peripherals with word
registers are always accessed with word
instructions, regardless of the size of the

external bus:

Chapter 3.
CPU Control Registers

3.1 INTRODUCTION

Several CPU control and status registers specif}
the operating mode of the 7280 MPU. There are two
types of CPU control registers: system
_configuration registers and system status regis-
ters. The system configuration registers contain
information about the physical configuration of
the Z280-based system, such as bus timing infor-
mation, Typically, the system configuration

registers are loaded once during system initial-

ization and are not altered during subsequent

operations. The system status registers contain
information that may change during system
operation, such as the current 1/0 page. Access

to the CPU control registers is restricted to
system mode operation only, using the privileged
Load Control (LOCTL) instruction. Resets ini-
tialize the control registers so that a Z80 object
program will execute successfully on the 2280
MPU. (Z80 programs do not affect these registers,
since the Load Control instruction is not part of
the Z80 CPU's instruction set.) Unused bits in
these registers should always be loaded with
zeros.

3.2 SYSTEM CONFIGURATION REGISTERS

There are four 8-bit system configuration regis-
ters: the Bus Timing and Initialization register,
the Bus Timing and Control register, the Local
Address register, and the Cache Control register.
3.2.1 Bus Timing and Initialization Register

The Bus Timing and Initialization register
controls the scaling of the processor clock for

bus. timing, the duration of bus transactions to

the lower half of physical memory, and the
enabling of the multiprocessor and bootstrap
modes. Figure 3-1 illustrates the bit fields in
this register.

(RIS

Figure 31. Bus Timing and Initialization Register

Clock Scaling (CS) Field. This 2-bit field
governs the scaling of the CPU clock for
generation of bus timing cycles. The state of the
CS field determines the bus clock frequency for
all bus transactions, as per Table 3-1. This
field is initialized during a reset operation, es
described below, and cannot be modified via
software.

Table 31. CS Fleld of Bus Timing and Initiailzation Reglster

CS Fleld

Bus Clock Frequency

00 Bus clock frequency equals 12 CPU clock frequency
(one bus clock cycle for every two CPU clock cycles)

01 Bus clock frequency equals CPU clock frequency
(one bus clock cycle for every one CPU clock cycle)

10 Bus clock frequency equals /4 CPU clock frequency
(one bus clock cycle for every four CPU clock
cycles)

1 Reserved

Low Memory Wait Insertion (LM) Field. This 2-bit
field specifies the number of automatic wait?
states to insert in memory transactions to the
lower 8 megabytes of physical memory (that is, all
memory locations where bit 23 of the physical
address is a 0), as per Table 3-2, Additional
wait states can still be added to any given memory
transaction via control of the WAIT input.

Table 3-2. LM Fleld of Bus Timing and Initialization Register

Number of Walt States for

LM Field Lower 8M Bytes of Memory
00 0
01 1
10 2
1) 3

Multiprocessor Configuration Enasble (MP) Bit.
This 1-bit field enables the multiproceasor mode
of operation, wherein the 7280 MPU is connected to
both a local and a global bus. Transactions to -

addresses on the global bus require a speciél bus
request and acknowledgement before the bus trans-
action can occur. (See Chapter 10 for details
concerning this mode .of operation.) Setting this
bit to 1 enables the multiprocessor mode, and
_ clearing this bit to 0 disables this mode.

Bootstrap Mode Ensble (BS) Bit. This 1-bit field
enables the bootstrap mode of operation. If the
bootstrap mode is selected during a reset oper-
‘ation, memory is automatically initialized via the
UART after ‘the reset; the UART receiver and DMA
channel 0 are used to transfer 256 bytes of. data
into the first 256 memory locations; e)'(ecution
then begins from memory location 0. (See Chapter
9- for further details.) Setting this bit to 1
enables the bootstrap mode and clearing this bit
to 0 disables this mode. The BS bit can be set to
1 only during a reset operation, as described
below. Writing to this bit via a software command
has no effect. This bit is always a 1 when this
register is read.

Bits 4 and 7 of the Bus Timing and Initialization
register are reserved for special use by Zilog and
should always be loaded with '‘a zero when writing
to this register. When this register is read,
bits 4 and 7 may return a 1,

The Bus Timing and Initialization register can be
* initialized with either of two methods during a
reset operation. If the MPU's WAIT input is not
asserted during reset, this register is auto-
matically = initialized to all =zeros, thereby
specifying a bus clock frequency of one-half the
internal CPU clock, no automatic wait states
during transactions to the lower 8M bytes of
memory, and disabling of the multiprocessor and
. bootstrap modes. If the WAIT input is asserted
during reset, the qu Timing and Initialization
register is set to the contents of the ADg-AD; bus
lines, ‘as read during the reset operation (see
Chapter 12); -this form of initialization is the
only way to specify the bootstrap.mode. Once the
CS field has been loaded during reset, it cannot
be modified via software; however, the LM and MP
_ fields can be written using the LDCTL instruction.

3.2.2 Bus Timing and Control Register

The 8-bit Bus Timing and Control register deter-
mines the timing of bus transactions to the upper
8M bytes of memory and to all 1/0 devices, and the
timing of interrupt acknowledge transactions.
Figure 3-2 indicates the format of this register.

7 ‘ 0
Loe [rfef o] w]

Figure 3-2. Bus Timing and Control Register

1/0 Wait Insertion (I/0) Field. This 2-bit field
specifies the number of automatic wait states (in
addition to the one wait state always present
during I/0 transactions) to be inserted during
each 1/0 read or write transaction, as per Table
3-3. The specified number of wait states is also
added to the vector read portion of an interrupt
acknowledge cycle.

Table 3-3. 1/0 Field of Bus Timing and Control Reglster

Number of Walit States
1/0 Fleld forl/O
00 0
01 1
10 2
1" 3

High Memory Wait Insertion (HM) Field. This 2-bit
field specifies the number of automatic wait
states to be inserted during memory transactions
to the wupper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1), as per Table 3-4.

Table 3-4. HM Fleld of Bus Timing and Control Register

Number of Walt States for
HM Field Upper 8M Bytes of Memory
00 0
01 1
10 2
1" 3

Daisy Chain Timing (DC). This 2-bit field
determines the number of automatic wait states to
be inserted during interrupt acknowledge
transactions while the interrupt acknowledge daisy
chain is settling, as per Table 3-5. Normally,
2.5 bus clock cycles elapse between the assertion
of Address Strobe and the assertion of Data Strobe
during an interrupt acknowledge (for the Z-BUS)

-or between the assertion of MT and 'the assertion

of TORQ (for the Z80 Bus). The value of the DC
field determines if any additional clocks are to

be added between the Address Strobe and Data
Strobe (or MT and TORQ) assertions.

Table 3-5. DC Field of Bus Timing and Control Register

Number of Walt States for
DC Fleld Interrupt Acknowledge
00, 0
o1 1
10 2
1 3

3-2

The contents of the Bus Timing and Contrel
register govern the number of automatic wait
states to be inserted during various bus trans-

actions. Additional wait states can be added to
any bus transaction via control of the WAIT
input.

The Bu§ Timing and Control register is set to 30H by a
reset. Bits 4 and 5 should always be written with 0.
when this register is.read, bits 4 and 5 may return a
1.

3.2.3 Local Address Register

The 8-bit Local Address register is used while in
multiprocessor mode to determine which memory
addresses are accessed via the local bus and which
memory addresses are accessed via the global bus.
If the multiprocessor mode is disabled (that is,
if there is a 0 in bit 5 of the Bus Timing and
Initialization register), the contents of the
Local Address register have no effect on MPU
operation. *

If multiprocessor mode is enabled, the MPU auto-
matically uses the Local Address register during
each memory access to determine if the global bus
is required. The Local Address register consists
of a 4-bit match field and a 4-bit base field that
are compared to the upper four bits of the

'phyaiéal memory address during memory trans-

actions. The 4-bit match field specifies which
bite of the physical memory address are of
interest; for those bit positions specified in
the match field, if all the corresponding address
" bits match the Local Address register's base field
bits, then the bus transaction can proceed on the
local bus. If there is a mismatch in at least one
of the specified bit positions; then the global
bus is -requested, and the transaction cannot
proceed until the global bus acknowledge signal is
asserted. (See Chapter 10 for further discussion
of the Multiprocessor mode.)

The * format of the Local Address register is
illustrated in Figure 3-3.

]

Figure 3-3. Local Address Register

Base bit (B,): For each ME, that is set to 1, the
corresponding value of B, must match the value of
address bit A, in order for the local bus to be
used; otherwise, the transaction requires the use
of the global bus.

.data fetches.

Match Ensble bit (ME,): If ME, is set to 1, then
the corresponding physical address bit A, is
compared to base bit B, to determine if the
address requires the use of the global bus. If
ME, is a zero, then any values for A, and By,
produce a match, signifying a local bus access.
If every ME, is cleared to 0, then all memory
transactions are performed on the local bus.

The Local Address register is cleared to all zeros
by a reset.

3.2.4 Cache Control Register

The 8-bit Cache Control register controls the
operation of the on-chip memory. The contents of
the Cache Control register determine if the
on-chip memory is to be used as a cache or as
fixed memory locations; if used as a cache, the
cache can be ensbled for instruction fetches only,
for data fetches only, or for both instruction and
This register is also used to
determine if burst-mode memory transactions are
supported. (See Chapter 8 for further discussion
of the on-chip memory and Chapter 13 for a
description of the burst mode memory transaction.)

The Cache Control register contains five control
bits, as described below. The format for this
register is shown in Figure 3-4.

EEoTzoen

Figure 3-4. Cache Control Roglst.or

Memory/Cache (WT) Bit. While this bit is set to
1, the on-chip memory is accessed as physical
memory with fixed memory addresses; the user can
programmably select the ranges of memory addresses
for which -the on-chip memory will respond. While
this bit is cleared to 0, the on-chip memory is
accessed associatively as a cache. :

Cache Instruction Dissble (I) Bit. While this bit
and the M/C bit are cleared to 0, the on-chip
memory is used as a cache during instruction
fetches. While this bit is set to 1, instruction
fetches do not use the cache. If the M/C bit is a
1, the state of this bit is ignored.

Cache Data Dissble (D) Bit. While this bit and
the M/C bit are cleared to 0, the on-chip memory
is used as a cache during data fetches. While
this bit is set to 1, data fetches do not use the
cache. (The cache can be enabled for both

3-3

instruction and data fetches by clearing both the
1 and D bits.) If the M/C bit is a 1, the state
of this bit is ignored.

Low Memory Burst Capability (LMB) Bit. This 1-bit
field specifies whether burst-mode memory
transactions will occur during memory transactions
to the 1lower 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 0). Setting this bit to 1 enables
burst-mode iransactions; clearing this bit to 0
disables burst mode transactions.

High Memory Burst Capability (HMB) Bit. This
1-bit field specifies whether burst-mode memory
transactions will occur during memory transactions
to the upper 8M bytes of physical memory
(locations where address bit 23 of the physical
address is a 1). Setting this bit to 1 enables

burst-mode transactions; clearing this bit to 0 .

disables burst-mode transactions.

The Cache Control register is set to a 20y
(hexadecimal) by a reset, enabling the on-chip
memory for use as a cache for instruction fetches
only and disabling burst mode transactions. Bits
0, 1, and 2 of this register are not used.

3.3 SYSTEM STATUS REGISTERS

There are six system status registers in the 2280
CPU: the Master Status register, Interrupt Status
register, Interrupt/Trap Vector Table Pointer, 1/0
Page register, Trap Control register, and System
Stack Limit register.

3.3.1 Master Status Register

-The 16-bit Master Status register (MSR) contains
status information about the currently executing
program. Typically, the MSR changes when a new
programming task is dispatched; it changes
automatically when an interrupt or trap occurs.
For all traps and for interrupts processed using
interrupt mode 3, the old value of the MSR is
saved on the system stack and a new MSR is loaded
along with the Program Counter to define the
service routine. (See Chapter 6 for a detailed
discussion of interrupt and trap processing).

The format of the Master Status register is shown
in Figure 3-5. -

15 0

DEONN0ZOORERRRER

Figure 3-5.

Master Status Register

User/System (U/5) Bit. While this bit is cleared
to 0, the 7280 MPU is in the system mode of
operation; while set to 1, the MPU is in the user
mode of operation. The current operating mode
determines which Stack Pointer is in use and which
instructions can be executed; privileged
instructions can be executed only while in system
mode.

Breakpoint-on-Halt Enable (BH) BRit. While this
bit is set to 1, the CPU generates a breakpoint
trap whenever a Halt instruction is encountered;
while cleared to 0, the Halt instruction is
executed nurinally.

Single-Step Pending (SSP) Bit. The CPU checks
this bit prior to the start of an instruction
execution and generates a Single-Step trap if this

bit is set to 1. The Single-Step bit is
automatically copied into this field at the
completion of an_ instruction. This bit is

automatically cleared when a Single-Step, Division
Exception, Access Violatien, Privileged
Instruction, or Breakpoint-on-Halt trap is
executed, so that the saved MSR has a 0 in this
bit position. (For these traps, the PC address of
the trapped instruction is saved for possible
re-execution.)

Single-Step (SS) Bit. This bit is the enable for
the single-step operating mode. While this bit is
set to 1, the CPU is in a single-step mode wherein
a Single-Step trap is generated for each
instruction; if cleared to 0, single-step mode is
disabled.

Interrupt Request Enable (E,) Bit. There are
seven interrupt enable bits in the MSR, one for
each type of maskable interrupt source. The 2280
MPU's interrupt sources, including both the
external interrupt requests and the on-chip
peripherals, are grouped into seven levels of
interrupt requests. While bit E, is set to 1,
interrupt requests from sources at level n are
accepted by the CPU; while E, is cleared to 0,
interrupt requests from sources at level n are not
accepted.

The Master Status register is loaded with all
zeros by a reset. Bits 7, 10, 11, 13, and 15 of
the MSR always should be written with zeros.

3.3.2 Interrupt Status Register

The 16-bit Interrupt Status register indicates
which interrupt mode is in effect, which interrupt
requests are pending, and which interrupt requests
are to be vectored. Only the interrupt vector

enable bits are writeable; all other bits in this
register are read-only status bits. The fields in
the Interrupt Status register are shown in Figure
3-6. '

ECRLT T rrEEEEw

Figure 3-6 Interrupt Status Register

Interrupt Vector- Ensble (I,) Bits. These four
bits indicate which of the four external interrupt
inputs are to be vectored. While I is set to 1,
interrupts on the Interrupt n line are vectored
when the CPU is in interrupt mode 3; while I, is
cleared to 0, that interrupt is not vectored.
These bits are ignored when not in interrupt mode
3.

Interrupt Mode (IM) Field. This 2-bit field
indicates the current interrupt mode in effect,
with a value n in this. field denoting interrupt
mode n. This field can be changed by executing
the IM instruction.

Interrupt Request Pending (IP,) Bits. When bit
IP, is a 1, an interrupt request from a source at

-level n is pending. ’

On reset, the Interrupt Vector Enable bits are
cleared to all zeros, interrupt mode 0 is in
effect, and the Interrupt Pending bits reflect the
state of the interrupt requests. Bits 7, 10, and
11 of this register are not used.

3.3.3 Interrupt/Trap Vector Table Pointer

The 16-bit Interrupt/Trap Vector Table Pointer

contains the twelve most significant bits of the
physical memory address of the start of the
Interrupt/Trap Vector Table. The Interrupt/Trap
Vector Table is a memory area that holds the
values that are loaded into the Master Status

register and Program Counter during trap and

interrupt processing under interrupt mode 3, as
described in Chapter 6. The twelve low-order bits
of the 24-bit physical address are assumed to be
all zeros: thus, the Interrupt/Trap Vector Table
must start on a 4K byte boundary in physical
memory. The low-order four bits of the
Interrupt/Trap Vector Table Pointer must be all
zeros (Figure 3-7).

15 0
l‘”l‘nlAz‘lA&IAulAIlIMYIA‘l]AuJAuJAulA‘zI 0] 0 I [} I 0 I

Figure 37. Interrupt/Trap Vector Table Pointer

Inhibit User 1/0 (I) Bit.

‘is set to 1,

The contents of the Interrupt/Trap Vector Table
Pointer are unaffected by a reset and are
undefined after power-up. When this register is
read, bits 3,2,1 and 0 may return a 1.

3.3.4 I/0 Page Register

The 8-bit I/0 Page register determines the upper
eight bits of the 24-bit peripheral address output
during execution of an I/0 transaction (Figure
3-8). 1/0 pages FEH and FFH are reserved for

on-chip peripheral addresses.

ITM:] le szllnl Aﬂl Aulhvlh.o

Figure 38. 1/0 Page Register
The contents of the I/0 Page register are
cleared to all zeros by a reset.
3.3.5 Il:q) Control Register
The 8-bit Trap Control register contains the
enables for the maskable traps. Figure 3-9

illustrates the format of this register.

Doooonon,

Figure 39. Trap Control Register

This bit determines
whether or not I/0 instructions are privileged
instructions. While this bit is set to 1, all‘I/0
instructions are treated as privileged
instructions, and an attempt to execute an I/0
instruction while in user mode results in a
Privileged Instruction trap. While this bit is
cleared to 0, I/0 instructions can be successfully
executed in user mode. 1/0 instructions can
always be executed in system mode, regardless of
the state of this bit.

EPU Enasble (E) Bit. This bit indicates whether or
not an Extended Processor Unit (EPU) is available
in the -system for execution of extended in-
structions. If this bit is cleared to 0,
indicating that no EPUs are present, ‘the. CPU
generates an Extended Instruction trap whenever an
extended instruction is encountered. If this bit
the CPU performs whatever data
transfers are indicated by the extended in-
struction opcode, and assumes that the EPU is
present to execute the instruction.

System Stack Overflow Warning (S) Bit. This is
the enable bit for the System Stack Overflow
Warning trap. While it is set to 1, Stack
Overflow Warning traps can occur during a stack
access while in system mode, as determined by the
contents of the Stack Limit register. While this
- bit is cleared to O, S,\tack Overflow Warning traps
are disabled. This bit is automatically cleared
when a System Stack Overflow Warning trap is
generated.

The Trap Control register is cleared to all zeros
by a reset, indicating that I/0 instructions are
not privileged, EPUs are not present in the
system, and Stack Overflow Warring traps are
disabled. Bits 3 through 7 of this register are
not used.

3.3.6 System Stack Limit Register

The 16-bit System” Stack Limit register determines
when a System Stack Overflow Warning trap is to be
generated. Pushes onto the system-mode stack
cause the 12 most significant bits of the logical
address of the System Stack Pointer to be compared
to the 12 most significant bits of this register;
a System Stack Overflow Warning trap is generated
if they match. The low-order four bits of this
register must be zeros (Figure 3-10). This
register has no effect on MPU operation if the
System Stack Overflow Warning enable bit in the
Trap Control register is cleared to O.

15 [
hwlh;[halhzlhdho[AolAaJ AleoIAsI Aol 1 I 1 I 1u

Figure 3-10. System Stack Limit Register

The contents of the System Stack Limit register
are cleared to zeros by a reset.

Chapter 4.
Addressing Modes and Data Types

© 4.1 INTRODUCTION

An instruction is a consecutive list of one or
more bytes in memory. Most instructions act upon
some data; the term operand refers to the data to
be operated upon. For 7280 CPU instructions,
operands can reside in CPU registers, memory
locations, or 1/0 ports.
designate the location of the operands for an
instruction are called addressing modes. The 7280
CPU supports nine addressing modes: Register,
Immediate, Indirect Register, Direct Address,
Indexed, Short Index, Program Counter Relative
Address, Stack Pointer Relative, and Base Index.

A wide variety of data types can be accessed using .

the§e addressing modes.

4.2 ADDRESSING MODE DESCRIPTIONS

The following pages contain descriptions of the
addressing modes ~ for the 2280 CPU. Each
.description explains how the operand's location is
calculated, indicates which address spaces can be
accessed with that particular addressing made, and
gives an example of an instruction using that
mode, illustrating the assembly language format

for the addressing mode. The examples using

_memory addresses use logical memory addresses; if -

the MU is enabled, these logical addresses can be
translated to physical addresses before the
physical memory is accessed, but this process is
not discussed or illustrated here.

4.2.1 Register (R, RX)

When this addressing mode is used, the instruction
processes data taken from one of the 8-bit
registers A, B, C, D, E, H, L, IXH, IXL, IYH, IVL,
or one of the 16-bit registers BC, DE, HL, IX, 1Y,
.SP, or one of the special byte registers I or R.

Storing data in a register allows shorter
instructions and faster execution than occur with
instructions that access memory.

The methods used to °

INSTRUCTION REGISTER
| oeramion | necister —={ orerano |

THE OPERAND VALUE IS THE CONTENTS OF THE REGISTER.

The operand is always in the register address
space. The register length (byte or word) is
specified by the instruction opcode.

Example of R wode:

LD BC,HL sload the contents of HL into BC

Before instruction execution: After instruction execution:

BC. |A 6 B 8 BC:
HL: - |9 A 2 0 HL:

9A20
9A20

4.2.2 Ismediste (IM)

When the Iﬁmediate addressing mode is used, the
data processed is in the instruction.

The Immediate addressing mode is the only mode

., that does not indicate a register or memory

address as the source operand.

INSTRUCTION
OPERATION

'OPERAND

THE QPERAND VALUE IS IN THE INSTRUCTION.

Because an imdiate‘operand is part of the
ingtruction, it is always located in the program
memory address space. Immediate mode is often

_ used to initialize registers.

Example of IMN mode:
LD A,55H ;load hex 55 into the accumulator

Before instruction execution: After instruction execution:

4.2.3 Indirect Register (IR)

In the Indirect Register addressing mode, the
register specified in the instruction holds the
address of the operand. The data to be processed
is at the location specified by the HL register
for memory accesses or the C register for I/0 and
control register space accesses. For the Load

Byte instruction, BC and DE can also be used in .

addition to HL.

DATA MEMORY,
1/0 PORT, OR
INSTRUCTION REGISTER CONTROL REGISTER

| operarion | meaisten | - avomess |- openano |

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE REGISTER.

Depending on the instruction, the operand
specified by IR mode is located in either the 1/0
address space (I/0 instructions), control register
space (Load Control instruction), or data memory
address space (all other instructions).

The Indirect Register mode can save space and
reduce execution time when consecutive locations
are referenced or one location is repeatedly
accessed. This mode can also be used to simulate
more complex addressing modes, since addresses can
be computed before the data is accessed.

Example of IR mode:

LD A,(HL) “sload the accumulator with the data

saddressed by the contents of HL

Before instruction execution: After instruction execution:

A 0 F A: 0 B|’
HL |1 7 0C HL: |1 7 0 C

Data memory: ‘ -

170C: 0B

4.2.4 Direct Address (DA)

When the Direct Address addressing mode is used,
the data processed is at the location whose memory
or 1/0 port address is in the instruction.

INSTRUCTION
DATA MEMORY
OPERATION OR /0 PORT
ADDRESS] —bl DPERAND—I

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS IN THE INSTRUCTION.

Deﬁending on the instruction, the operan;:l
specified by DA mode is either in the 1/0 address
space (1/0 instructions) or in the data memory
address space (all other instructions).

This mode is also used by Jump and Call
instructions to specify the address of the next
instruction to be executed. (Actually, the
address serves as an immediate value that 'is
loaded into the Program Counter.)

Example of DA mode:

LD BC,(5£22H) ;load BC with the data in

saddress 5£22

Before instruction execution: After instruction execution:

Data memory: -

5E22: 0 1
se23. o 3

4-2

4.2.5 Indexed (X)

For this addressing mode, the data processed is at
the location whose address is the address in the
instruction offset by the contents of HL, IX,. or
1Y.

The indexed address is computed by adding the
address specified in the instruction to a

INSTRUCTION

REGISTER

twos-complement "index" contained in the HL, IX or
1Y register, also specified by the instruction.
Indexed addressing allows random access to tables
or other complex data structures where the address
of the base of the table is known, but the
particular element index must be computed by the
program.

OPEM‘I’DODLI REGISTER '—>L INDEX

DATA
MEMORY

ADDRESS

E OPERAND VALUE IS THE DONTENTS OF THE LOCATION WHOSE ADDRESS IS THE
ADDNBS IN THE INSTRUCTION PLUS THE CONTENTS OF THE REGISTER.

Operands specified by X mode are always in the
data memory address space.

Example of X mode:
LD A,(IX 4 231AH) ;load into the accumulator
sthe contents of the memory

s location whose address
sis 231AH + the value in IX

Address calculation:

231A
+01FE
2518

4.2.6 Short Index (SX)

When the Short Index addressing mode is used, the
data processed is at the location whose address is
the contents of IX or IY offset by an 8-bit signed
displacement in the instruction. (Note that this
.addressing mode was called "Indexed" in the Z80
CPU literature.)

INSTRUCTION

Before instruction execution: After instruction execution:

A: 2 3 A 3D
IX: Jo 1 FE IX: 01 FE

Data memory:

2518:

The short indexed address is computed by adding
the B8-bit twos-complement signed displacement
specified in the instruction to the contents of
the IX or IY register, also specified by the
instruction. Short Index addressing allows random
access to tables or other complex data structures
where the address of the base of the table is
known, but the particular element index must be
computed by the program. ‘

REGISTER

openation | meaisten —= aporess]——09—0_

DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE ADDRESS IN THE INSTRUCTION,
OFFSET BY THE CONTENTS OF THE REGISTER.

Operands specified by SX mode asre always in the
data memory address space.

Example of SX mode:

sload into the accumulator the
scontents of the memory location
Iwhose address is one less than
sthe contents of IX

LD A,(IX - 1)

‘A 0 1 A
IX: 2 03A IX: -

" Data memory:

Before instruction execution: = After instruction execution:

3
+
203A

4

2039: *

. »

4-3

Address calculation: FF encoding in the instruc-
tion is sign-extended before

the address calculation.

203A
+FFFF
2039

4.2.7 Program Counter (PC) Relative Address (RA)

For Program Counter Relative Addressing mode, the
data processed is at the location whose address is
the contents of the Program Counter offset by an
8- or 16-bit displacement given in the
instruction.

The instruction specifies a twos-complement signed
displacement that is added to the Program Counter
to form the target address. Except for extended
instructions, the Progrgm Counter value used is
the address of the first instruction following the
currently executing instruction. For extended
instructions, the address used to calculate the
displacement is the address of the template.

s INSTRUCTION PC
PROGRAM
OPERATION l ADDRESS MEMORY
DISPLACEMENT (+) OPERAND

THE OPERAND VALUE IS THE CONTENTS OF THE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF PC OFFSET BY THE
DISPLACEMENT IN THE INSTRUCTION.

An operand specified by RA mode is’ a'lways in the
program memory address space.

The Program Counter Relative Addressing mode is
used by certain program control instructions to
specify the address of the next instruction to be
executed (specifically, the result of the addition
of the Program Counter value and the displacement
is loaded into the Program Counter). Relative
addressing allows references forward or backward
from the current Program Counter value; it is used
for program control instructions such as Jumps and
for Loads that access constants in the program
address space.

Example of RA mode:

LD A,<LABEL> sload the accumulator with the
scontents of the memory location

swhose address is LABEL

This format implies that the assembler will
calculate the displacement from the current PC
value to the specified label. Alternatively,
slightly different syntaxes can be used for the RA
mode if the actual displacement from the
instruction using this mode is known. Thus, this’
example can also be written in the following
manner :

LD A,<$ + 6> sload the accumulator with the
scontents of the memory location
swhose address is six more than
sthe address of the start of this
sLD instruction

or

LD A,(PC + 2) ;load the accumulator with the
scontents of the memory location
swhose address is two more than
sthe current PC, which now points

sto the next instruction
Because the Program Counter is advanced to point
to the next instruction when the address

calculation is performed, the constant that occurs
in the instruction is +2.

Before instruction execution: After instruction execution:

A 23 A 76
Pc: 020 2 pc: [0 2 0 6]

Program memory:

0202:
0203:
0204:
0205:
0206:
0207:
LABEL: 0208:

instruction

olo|vjo]|O

Nlo|=]o]lo]|~N]|™M

Addresé calculation:

0206
+ 2
0208

4.2.8 Stack Pointer Relstive (SR)

For the Stack Pointer Relative addressing mode,
the data processed is at the location whose
address is. the contents of the Stack Pointer

offset by a 16-bit displacement in the
instruction.
The = instruction specifies a twos-complement

digplacement that is added to the contents of the
Stack Pointer register to form the address. An
operand specified by. SR mode is always in the data
memory address space.

INSTRUCTION

The SR addressing mode is used to specify data
items to be found in the stack such as parameters
passed to subroutines. The System Stack Pointer
or User Stack Pointer is selected depending on the
state of the User/System bit in the Master Status
register.

4.2.9 Base Index (BX)

For the Base Index addi‘essing mode, the data
processed is at the location whose address is the

INSTRUCTION

<P .
OPERATION | aooress i+
e | () orewo]

Example of SR mode:.

LD A,(SP +2) sload into the accumulator

. sthe contents of the memory
slocation whose address is
stwo more than the contents
.3of SP

Before instruction execution: After instruction execution:

A |69 A F 3
SP: |8 200 sP: |s 200
Data memory:
Top of stack 8200 |A B
8201: [0 1
8202: |F 3
8203 |2 8

Address calculation:

8200
+ 2
8202

contents of HL, IX, or IY, offset by the contents
of another of these three registers.

l OPERATION I REGISTER 1T REGISTER2

DATA
REGISTERS
e}
DISPLACEMENT

THE OPERAND VALUE IS THE CONTENTS O

IE LOCATION
WHOSE ADDRESS IS THE CONTENTS OF TI'IE ONE REGISTER
OFFSET BY THE DISPLACEMENT IN THE SECOND REGISTER.

This mode allows access to memory locations whose
physical addresses are computed at run time and
are not fully known at assembly time. An operand
specified by BX mode is always in the data memory
address space.

Example of BX mode:

;load into the accumulator the
scontents of the memory location
swhose address is the sum of the
scontents of the HL and IX
sregister

LD A,(HL + IX)

Before instruction execution: After instruction execution:

A: B CI A: A 2[

HL |1 502 HL |1 5 0 2
X: |F F FE IX: FFFF
Data memory:

1500;

Address calculation:

1502°
+FFFE
1500

4.3 DATA TYPES

Many data types are supported by the 2280 MPU
architecture; that is, many data types have a
hardware representation in a 7280 MPU system and
instructions that directly apply to them. The
7260 MPU supports operations on bytes, words,
bits, BCD digits, and byte strings.

The basic data type is a byte, which is also the
basic addressable element in the register, memory,
and I/0 address spaces. The 8-bit load,
arithmetic, logical, shift, and rotate
instructions operate on bytes in registers or
‘memory. Bytes can be treated as logical, signed
numeric, or unsigned numeric values.

Operations on two-byte words are also supported.
Sixteen-bit load and arithmetic ' instructions
operate 'on words in registers or memory; words
can be treated as signed or unsigned numeric
values. I/0 reads and writes can be B8-bit or
16-bit operations. Sixteen-bit logical memory
addresses can be held and manipulated in 16-bit
registers.

Bits are fully supported and addressed by number
within a byte (see Figure 2-2). Bits within byte
fegisters or byte memory locations can be tested,
set, or cleared,

Operations on binary-coded decimal (BCD) digits

are supported by the Decimal Adjust Accumulator
and Rotate Digit instructions. BCD digits are
stored in byte registers or memory locations, two
per byte. The Decimal Adjust Accumulator in-
struction is used after a binary addition "or
subtraction of BCD numbers. The Rotate Digit
instructions are used to sMift BCD digit strings
in memory.

Strfngs of up to 65,536 bytes can be manipulated
by the 7280 CPU's block move, block search, and
block 1/0 instructions. The block. move
instructions allow strings of \bytes in memory to
be moved from one location to another. Block
search instructions provide for scanning strings

" of bytes in memory to locate a particular value,

The block I/0 instructions. allow strings of bytes
or words to be transferred between memory and a

_peripheral device.

Arrays are supported by the Indexed, Short Index,
and Base Index addressing modes. Stacks are
supported by those same modes -and the Stack
Pointer Relative addressing mode, and by special
instructions such as Call, Return, Push, and Pop.
A special stack write warning feature aids in the
allocation of system stack memory space.

Strings of up to 16 bytes can be transferred
between memory and an Extended Processing Unit
(EPU) during execution of an extended imstruction,

4-6

Chapter 5.
Instruction Set

5.1 INTRODUCTION

The Z280 CPU's instruction set is a superset of
the Z80's; the 7280 CPU is opcode compatible with
the 780 CPU. Thus, a Z80 program can be executed
on a 7280 MPU without modification, The
instruction set is divided into ten groups by
function:

8-bit load

16-bit load and exchange

Block transfer and search

8-bit arithmetic and logical

16~bit arithmetic

Rotate, shift, and bit manipulation
Program control

Input/Output

CPU control

Extended instructions

’

This chapter describes the instruction set of the
2280 CPUs. First, flags and condition codes are
discussed in relation to the instruction set.
Then, interruptibility of instructions is
discussed and traps are described. The last part
of this chapter is a detailed description of each
instruction, 1listed in alphabetic order by
mnemonic. This section is intended to be used as
a reference for 7280 MPU programmers. The entry
for each instruction contains a complete
description of the instruction,
addressing modes, assembly language mnemonics,
instruction opcode formats, and simple examples
illustrating the use of the instruction.

5.2 PROCESSOR FLAGS

The Flag register _contains six bits of status
information. that are set or cleared by CPU
operations (Figure 5-1). Four of these bits are
testable (C, P/V, Z, and S) for use with
conditional jump, call, or return instructions.
Two flags are not testable (H, N) and are used for
binary-coded decimal (BCD) arithmetic.

' is[z[o‘l‘n | o [pwv] N]Ti

Figure 51. Flag Register

including -

The flags provide a 1link between sequentially
executed instructions, in that the result of
executing one instruction may alter the flags, and
the resulting value of the flags can be used to
determine the operation of a subsequent
instruction. The program control instructions
whose operation depends on the state of the flags
are the Jump, Jump Relative, subroutine Call, and
subroutine Return instructions; these instruct ions
are referred to as conditional instructions.

5.2.1 Carry Flag (C)

The Carry flag is set or cleared depending on the
operation being performed. For add instructions
that generate a carry and subtract instructions
that generate a borrow, the Carry flag is set to
1. The Carry flag is cleared. to 0 by an add that .
does not generate a carry or a subtract that
generates no borrow. This saved carry facilitates
software routines for extended precision
arithmetic. The multiply and divide instructions
use the Carry flag to signal information about the
precision of the result. Also, the Decimal Adjust
Accumulator instruction leaves the Carry flag set
to 1 if a carry occurs when adding BCD quantities.

For the rotate instructions, the Carry flag is
used as a link between the least significant and
most significant bits for any register or memory
location. During shift instructions, the Carry
flag contains the last value shifted out of any
register or memory location. = For logical in-
structions the Carry flag is cleared. The Carry
flag can also be set and complemented with

- explicit instructions.

5.2.2 Add/Subtract Flag (N)

The Add/Subtract flag is used for ECD arithmetic.
Since the algorithm for correcting BCD operations

"is different for addition and subtraction, this

flag is used to record whether an add or subtract
was last executed, allowing a subsequent Decimal
Adjust Accumulator instruction to perform
correctly. See the discussion of the DAA. in-
struction for further information.

5-1

. can be

5.2.3 Parity/Overflow Flag (P/V)

This flag is set to a particular state depending
on the operation being performed.

For signed arithmetic, this flag, when set to 1,
indicates that the result of an operation on
twos-complement ‘numbers has exceeded the largest
number, or is less than the smallest number, that
. represented using twos-complement
notation. This overflow condition can be
determined by examining the sign bits of the
operands and the result.

The P/V flag is also used with logical operations
and rotate instructions to indicate the parity of
the result. The number of bits set to 1 in a byte
are ¢ounted. If the total is odd, odd parity (P =
0) is flagged. If the total is even, even parity
is flagged (P = 1).

During block search and block transfer
instructions, the P/V flag monitors the state of
the byte count register (BC). When decrementing
the byte counter results in a zero value, the flag
is cleared to 0, otherwise the flag is set to 1.

During the Load Accumulator with I or R register
instructions, the P/V flag is loaded with the
contents of the I'nterrupt‘ A enable bit in the
Master Status register.

When inputting a byte to a register from an 1/0
device addressed by the C register, the flag is
adjusted to indicate the parity of the data.

5.2.4 Half-Carry Flag (H)

The Half-Carry flag (H) is set to 1 or cleared to
0 depending on the carry and borrow status between
bits 3 and 4 of an 8-bit arithmetic operation and
between bits 11 and 12 of a 16-bit arithmetic
operation. This flag is used by the Decimal
Adjust Accumulator instruction to correct the
result of an addition or subtraction operation on
packed BCD data.

5.2.5 Zero Flag (2)

The Zero flag (Z) is set to 1
generated by the execution of certain instructions
is a zero. '

For arithmetic and logical operations, -the Zero
flag is set to 1 if the result is zero. If the
result is not zero, the Zero flag is cleared to O.

if the result

For the block search instructions, the Zero flag
is set to 1 if a comparison is found between the
value in the Accumulator and the memory location.
pointed to by the contents of the register pair
HL.

When testing a bit in a register or memory
location, the Zero flag contains the complemented
state of the tested bit (i.e., the Zero flag is
set to 1 if the tested bit .is a 0, and
vice-versa), -

For the block I/0 instructions, if the result of
decrementing B is zero, the Zero flag is set to 1;
otherwise, it is cleared to O. Also for byte
inputs to registers from I1/0 devices addressed by
the C register, the Zero flag is set to 1 to
indicate a zero byte input.

5.2.6 Sign Flag (S)

The Sign flag (S) stores the state of the most
significant bit of the result. When the 7280 CPU
performs arithmetic operations on signed numbers,
binary twos-complement notation is used to
represent and process numeric information. A
positive number is identified by a zero .ip the
most significant bit. A negative number is
identified by a 1 in the most significant bit.

When inputting a byte from an I/0 device addressed
by the C register to a CPU register, the Sign flag
indicates either positive (S = 0) or negative (S =
1) data.

For the Test and Set instruction, the Sign bit is
set ‘to 1 if the tested bit is 1, otherwise it is
cleared to O.

5.2.7 Condition Codes

The Carry, Zero, Sign, and Parity/Overflow flags
are used to control the operation of the con-
ditional instructions. The operation of these in-
structions is a function of the state of one of
the flags. Special mnemonics called condition
codes are used to specify the flag setting to be
tested during execution of a conditional
instruction; the condition codes are encoded into
a 3-bit field in the instruction opcode itself.

Table 5-1 lists the condition code mnemonic, the
flag setting it represents, and the binary
encoding for each condition code.

5-2

[]

Table 5-1. c«;ndmoﬁ Codes

. Flag Binary
Mnemonic . Meaning Setting Code
Condition Codes for Jump, Call, and Retum Instructions
NZ Not Zero Z=0 000
z Zero Z=1 001
NC No Carry C=0 010
c Carry C=1 o
NV No Overflow V=0 100
PO Parity Odd V=0 -100
v "Overflow V=1 101
PE - Parity Even V=1 101
NS No Sign S=0 110
P Plus S=0. 110
S Sign -S=1 i1
M Minus S=1 11

-Condition Codes for Jump Relative Instruction
NZ . Not Zero Z=0 100
z Zero Z=1 101
NC No Carry C=0 110
C Carry C=1 111

5.3 INSTRUCTION EXECUTION AND EXCEPTIONS

Two types of exception conditions, interrupts and
traps, can alter the normal flow of. program
execution, Interrupts are asynchronous events
generated by a device external to the CPU;
peripheral devices use interrupts to request
service from the CPU. Traps are synchronous
events generated internally in the CPU by
particular conditions that occur during
instruction execution. Interrupts and traps are
discussed in detail in Chapter 6. This section
examines the relationship between instructions and
the exception conditions.

5.3.1 Instruction Execution and Interrupts

When the CPU receives an interrupt request, and it
is enabled for interrupts of that class, the
interrupt is normally processed at the end of the
current instruction. However, the block transfer
and search instructions are désigned to be inter-
ruptible so as to minimize the length of time it
takes the CPU to respond to an interrupt. If an
interrupt request is received during a block move,
block search, or block I/0 instruction, the in-
struction is suspended after the current iter-
ation. The address of the instruction itself,
rather than the address of the following in-
struction, is saved on the system stack, so that
the same instruction is executed again when the
interrupt handler executes an interrupt return

instruction. The contents of the repetition
counter and the registers that index into the
block operands. are such that, after each iter-
ation, when the instruction is reissued upon
returning from an interrupt, the effect is the
same as if the instruction were not interrupted.
This assumes, of course, that the interrupt
handler preserved the registers. '

5.3.2 Instruction Execution and Traps

Trsbs are synchronous events that result from the
execution of an instruction. The action of the
CPU in response to a trap condition is similar to
the case of an interrupt in interrupt mode 3 (see
Chapter 6). All traps except for Extended
Instruction, System Stack Overflow Warning,
Single Step and Breakpoint-on-Halt are nonmask-
able.

The 2280 MPU supports eight kinds of t‘rapa:‘

Divisian Exception

Extended Instruction

Privileged Instruction

System Call

Access Violation (page fault and write protect)
System Stack Overflow Warning

Single Step

Breakpoint-on-Halt

The Division Exception trap occurs when executing
a divide instruction if either the divisor is zero
or the result cannot be represented in the
destination (overflow).

The Extended Instruction trap occurs when an
extended instruction ' is encountered, but the
Extended Processor Architecture is disabled,
(the EPA bit in the Trap Control register should
be cleared to 0 if there is no EPU in the system
or if the 2280 MPU is configured with an 8-bit
bus). This allows the same software to be run on
7280 MPU system configurations with or without
Extended Processing Units (EPUs). For systems
without EPUs, the desired extended instructions
can be emulated by software that is invoked by the
Extended Instruction trap. For systems with an
8-bit ‘data bus that also have an EPU, the software
invoked by the Extended Instruction trap can use
I/0 instructions to _access the EPU, The
information saved on the system stack during this
trap is designed to facilitate ‘the 8-bit 1/0
interface to an EPU by providing ‘address
calculation for the operands and by pushing
addresses onto the system stack in the reverse
order from which they will be used by an 1/0
interface trap handler.

5-3-

The Privileged Instruction trap serves to protect
the integrity of a system from erroneous or
unauthorized actions of user mode processes.
Certain instructions, called privileged
instructions, can be executed only in system
mode. An attempt to execute one of these
instructions in user mode causes a Privileged
Instruction trap.

The System Call instruction always causes a trap.
This instruction is used to transfer control to
gystem mode software in- a controlled way,
typically to request operating system services.

The Access Violation trap occurs whenever the 7280
MPU's on-chip MMU detects an illegal memory
access. Access Violation traps cause instructions
to be aborted. When Access Violation traps occur,
the logical address of the instruction is pushed
onto the system stack along with the Master Status
register; part of the logical address that caused
the page fault is latched in the MMU to indicate
which page frame' caused the fault; and the CPU
registers are umodif'ied, i.e., their contents are
the same as just before the instruction execution
began. (For block move, block search, or block
1/0 instructions, the registers are the same as
just before the iteration in which the page fault
occurred.)

The System Stack Overflow Warning trap arises
when pushing information onto the system stack
causes the Stack Pointer to reference a specified
16-byte area of memory. Use of this facility
protects the system from system stack overflow
errors.

The Single Step trap occurs with the execution of
each instruction, provided the Single-Step control
bit in the Master Status register is set to 1.
This facilitates software debugging of programs.

The Breakpoint-on-Halt trap occurs whenever the
Halt instruction is encountered and the
Breakpoint-on-Halt control bit in the Master
Status register is set to 1. This facilitates
software debugging of programs. ‘

5.4 INSTRUCTION SET FUNCTIONAL GROUPS

This section presents an overview of the 2280
instruction set, arranged by functional groups.
(See Section 5.5 for an explanation of the
notation used in Tables 5-2 through 5-11,)

5.4.1 8-Bit Load Group

This group of instructions (Table 5-2) includes
load instructions for transferring data between
byte registers, transferring data between a byte
register and memory, and loading immediate data
into byte registers or memory. All addressing
modes are supported for loading between the
accumulator and memory or for loading immediate
values into memory. Loads between other registers
and memory use the IR and SX addressing modes. An
exchange instruction is available for swapping the
contents of the accumulator with another register
or with memory.

The LDUD and LDUP instructions are available for
loading to or from the user-mode memory address
space while executing in system mode. The CPU
flags are used to indicate if the transfer was
successfully completed. LDUD and LDUP are
privileged instructions. The other instructions
in this group do not affect the flags, nor can
their execution cause exception conditions.

Table 5-2. 8-Bit Load Group Instructions

Addressing Modes Available
Instruction Name Format RX IM IR DA X SX RA SR BX
Exchange Accumulator EX A,src . o . . . o i *
Exchange H,L EXH,L
Load Accumulator LD Ajsrc . . . L . . A . .
LD dSt. A [[° (] L] L] . L]
Load Immediate LD dst,n * A ° i 4 o * *
Load Register (Byte) LD R,src d . . .
LD dst,R . . 4
Load in'User Data Space LDUD A,src . .
" LDUD dst,A . .
Load in User Program Space LDUP Asrc L .
LDUP dst,A . .

reqisters and memory and immediate loads of
registers or memory. The Load Address instruction
facilitates the loading of the address registers
with a calculated address. The Push.and Pop stack
instructions are also included in this group.
None of these instructions affect the CPU flags,
“except for EX AF , AF', The Push instruction can
cause a System Stack Overflow Warning trap;
otherwise, no exceptions can arise from the
execution of these instructions.

5.8.2 16-8it Load and Exchange Group

This group of load and exchange instructions
(Table 5-3) allows words of data (two bytes equal
one word) to be transferred between registers and
memory. - The exchange instructions allow for
switching between the primary and' alternate
reqister files, exchanging the contents of two
16-bit registers, or exchanging the contents of an
addressing register with the top word on the

these instructions, a block of up to 65,536 bytes
can bé moved in memory or a byte string can be
searched until a given value is found. All the
operations can proceed through the data in either
direction. Furthermore, the operations can be
repeated automatically while decrementing a length
counter. until it reaches zero, or they can operate

on one storage unit per execution with the length -

counter decremented by one and the source and
destination pointer reqisters properly adjusted.
The latter form is useful for implementing more
complex operations in software by adding other
instructions within a loop containing the block
instructions.

Various 2280 MPU registers are dedicated to
specific functions for these instructions: the BC

~register for a counter, the DE' and HL registers -

for memory pointers, and the accumulator for
holding the byte value being sought. The repeti-
tive forms of these instructions are

stack. The 16-bit loads include transfers between
Table 5-3. 16-Bit Load and Exchange Group Instructions
Addressing Modes Avallable
" Instruction Name Format R M IR DA X SX RA SR BX
Exchange HL with Addressing Register EX DE,HL
EX XYHL
Exchange Addressing Register with Top of Stack EX (SP),XX
Exchange Accumulator/Flag with Alternate Bank EX AFAF'
‘Exchange Byte/Word Registers with Alternate Bank EXX
Load Addressing Register ’ LD XX,src o . . . » .
» LD dst,XX ¢ e . .
Load Register (Word) LD RR,src U . .
LD dst,RR . . .
Load Immediate Word LD dst,nn . . . 4 i
Load Stack Pointer LD SPRsrc *
: LD dst,SP . . .
Load Address LDA XX,src . o . . .
Pop POP dst U U . .
Push PUSH src
" *Restricted to an addressing register (HL, IX, or IY).
5.4.3 Block Transfer and Search Group interruptible; this is essential since the
repetition count can be as high as 65,536, The
This group of instructions (Table 5-4) supports instruction can be - interrupted after any
block transfer and string search functions. Using iteration, in which case the address of the .

instruction itself, rather than the next one, is
saved on the system stack; .the contents of the
operand pointer registers, as well as the
repetit,ion counter, are such that the instruction
can simply be reissued after returning from the
ihterrupt without any visible difference in the
instruction execution.

Table 5-4. Block Transfer and Search Group

Instruction Name Format
Compare and Decrement CPD
Compare, Decrement and Repeat CPDR
Compare and Increment CPI
Compare, Increment and Repeat CPIR
Load and Decrement LDD
Load, Decrement and Repeat LDDR
Load and Increment s
Load, Increment,and Repeat LDIR |

5.4.4 B8-Bit Arithmetic and Logic Group

This group of instructions (Table 5-5) performs
8-bit arithmetic and logical operations, The Add,
Add with Carry, Subtract, Subtract with Carry,
And, Or, Exclusive Or, Compare, and signed and
unsigned Multiply take one input operand from the
accumulator and the other from a register, from
immediate data in the instruction itself, or from
memory . All memory addressing modes are
supported: Indirect Register, Short Index, Direct
Address,PC Relative Address, Stack -Pointer
Relative, Indexed, and Base Index. FExcept for the

multiplies, which return the 16-bit result to the’

HL register, these instructions
computed result to the accumulator.

return the
Both signed

" and unsigned division are provided. All memory

addressing modes except Indirect Register can be
used to specify the divisor.)

The Increment and Decrement instructions operate
on data in a register or in memory; all memory
addressing modes are supported. Three
instructions operate only on the accumulator:
Decimal Adjust, Complement, and Negate. The final
instruction in this group, Extend Sign, takes its
8-bit input from the accumulator and returns its
16-bit result to the HL register.

All these instructions except Extend Sign set the
CPU flags according to the computed result. Only
the Divide instructions can generate an exception.

Table 5-5. 8-Bit Arithmetic and Logic Group

Addressing Modes Available
Instruction Name Format RX IM IR DA X SX RA SR BX
Add With Carry (Byte) ADC A,src
Add (Byte) ' ADD A src e o e e e o o e e
And AND A,src . . . ° . . ° . .
Compare (Byte) CP Asrc
Complement Accumulator CPLA
Decimal Adjust Accumulator DAA A
Decrement (Byte) DEC dst
Divide (Byte) DIV A,src
Divide Unsigned (Byte) DIVU A,src
Extend Sign (Byte) EXTS A
Increment (Byte) INC dst
Multiply (Byte) MULT A,src
Multiply Unsigned (Byte) MULTU A,src o .
Negate Accumulator NEG A
Or ' OR A,src . ° o .] [[. °
Subtract With Carry (Byte) SBC A,src
Subtract (Byte) SUB A,src
Exclusive OR XOR A,src

5.4,5 16-Bit-Arithmetic Operations

This group of instructions (Table 5-6) provides
16-bit arithmetic operations. The Add, Add with
Carry, Subtract with Carry, and Compare
instructions take one input operand from an
addressing register and the other from a 16-bit
register or from the instruction itself; the
result is returned to the addressing register.
The 16-bit Increment and Decrement instructions
operate on data found in a register or 'in memory;
the Indirect Register, Direct Address or PC
Relative addressing mode can be used to specify
the memory operand. The instruction that adds the
contents of the accumulator to an addressing
register supports the use of signed byte indices
into tables or arrays in memory.

The remaining 16-bit instructions provide general
arithmetic capability using the H.L register as one
of the input operands. The word Add, Subtract,
Compare, and signed and wunsigned Multiply
instructions take one input operand from the HL
register and the other from a 16-bit register,
from the instruction itself, or from memory using
Indexed, Direct Address, or Relative addressing
mode. The 32-bit result of a multiply is returned
to the DE and HL registers, with the DE register
containing the most significant bits. The signed
and unsigned divide instructions take a 32-bit
dividend in the DE and HL registers (the DE
register containing the most significant bits) and
a 16-bit divisor from a rcegister, from the
instruction, or from memory using the Indexed,
Direct Address, or Relative addressing mode. The

5-6

16-bit quotient is returned to the HL register and
the 16-bit remainder- is returned to the OE
register. The Extend Sign instruction takes the
contents of ‘the HL register and delivers the
32-bit result to the DE and HL registers, with the
DE register containing the most significant bits
of the result. The Negate HL instruction negates

the contents of the HL register.

Except. for Increment, Decrement, and Extend Sign,
all the instructions in this group set the CPU
flags to reflect the computed result. The only
instructions that can generate exceptions are the
Divide instructions.

Table 56. 16-Bit Arithmetic Operation Instructions

Addressing Modes Available

Instruction Name Format R IM IR DA X RA

‘Add With Carry (Word) ADC XX,src .

Add (Word) ADD XX,src .

Add Accumulator to Addressing Register ADD XX,A

Add Word ADDW HL,src o,

Compare (Word) CPW HL,src] .) . . [

Decrement (Word) DECW dst . . . ° .
. Divide (Word) DIV DEHL,src. . . . L .

Divide Unsigned (Word) DIVU DEHL,src U . L [L

Extend Sign (Word) EXTS HL

Increment (Word) INCW dst U] . . .

Multiply (Word) MULT HL,src . . . o .

Multiply Unsigned (Word) MULTU HL,src . . e . .

Negate HL NEG HL

Subtract With Carry (Word) SBC XX,src .

Subtract (Word) SUBW HL,src . U . .]

5.4.6 Bit Menipulation, Rotste and Shift Group

Instructions in this group (Table 5-7) test, set,
and reset bitg within bytes and rotate and shift
byte data one bit position. Bits to be
manipulated are specified by a field within the
instruction. -Rotation can optionally concatenate
the Carry flag to the byte to be manipulated.
Both left and right shifting is supported. Right
shifts can either shift 0 into bit 7 (logical
shifts) or can replicate the sign in bits 6 and 7
(arithmetic shifts). The Test and Set instruction
is useful in multiprogramming and multiprocessing
environments for implementing synchronization
mechanisms between processes. All these
instructions except Set Bit and Reset Bit set the
CPU flags according ta the calculated result; the
operand can be a register or a memory location
specified by the Indirect Register or Short
Index addressing modes.

. The RLD and RRD instructions are provided for
manipulating strings of BCD digits; these rotate
4-bit quantities in memory specified by the
indirect register. The low-order four bits of the
accumulator are used as a link between rotations
¢ of successive bytes. !

None of these instructions generate exceptions.

5.4.7 Program Control Group

This group (Table 5-8) consists of the
instructions that affect the Program Counter (PC)
and thereby control program flow. The CPU
registers and memory are not altered except for
the Stack Pointer and the stack, which play a
significant role in procedures and gntetrupté.
(An exception is Decrement and Jump if Non-Zero
[DINZ], which uses a register as a loop counter.)
The flags are also preserved except for the two
instructions specifically desiqnad‘ to set and
complement the Carry flag.

The Jump (JP) and Jump Relative (JR) instructions
provide a conditional transfer of control to a new
location if the processor flags satisfy the
condition specified in the instruction. Jump
Relative is a 2-byte instruction that jumps to any
instruction within the range -126 to +129 bytes
from the location of this instruction. Most
conditional jumps in programs are made to
locations only a few bytes away; the Jump
Relative instruction exploits this fact to improve
code compactness and efficiency.

A special Jump instruction tests whether the:.
primary or auxiliary register file is being used
and branches if the auxiliary file is in use. In

5-7

Table 5-7. Bit Manipulation, Rotate and Shift Group

Addressing Modes Available
Instruction Name Format R IR SX
Bit Test - BIT dst . . .
Reset Bit RES dst . . .
Rotate Left) RL dst . . .
Rotate Left Accumulator RLA
Rotate Left Circular RLC dst . . .
Rotate Left Circular (Accumulator) RLCA
Rotate Left Digit RLD
Rotate Right RR dst L . o
Rotate Right Accumulator RRA
Rotate Right Circular RRC dst . . *
Rotate Right Circular (Accumulator) RRCA
Rotate Right Digit RRD .
Set Bit SET dst . 4 L
Shift Left Arithmetic SLA dst . L d
Shift Right Arithmetic SRA dst . . .
Shift Right Logical SRL dst i i .
Test and Set TSET dst . . .

systems that reserve the auxiliary register file
for interrupt handlers only (via a software
convention), this instruction can be used to
decide whether registers must be saved.

Call and Restart are used for calling subroutines;
the current contents of the PC are pushed onto the
processor stack and the effective address
indicated by the instruction is loaded into the
PC. The use of a procedure address stack in this
manner allows straightforward implementation of
nested -and recursive procedures. Call, Jump, and
Jump Relative can be unconditional or based on the
setting of a CPU flag.

Jump and Call instructions are available with the
Indirect Register and PC Relative Address modes in
addition to the Direct Address mode. These can be
useful for implementing complex control structures
such as dispatch tables. ¥hen using Direct
Address mode for a Jump or Call, the operand is
used as an immediate value that is loaded into the
PC to specify the address of the next instruction
to be executed.

The conditional Return instruction is a companion
to the Call instruction; if the conditiaon
specified in the instruction is -satisfied, it
loads the PC from the stack and pops the stack.

Table 5-8. Program Control Group Instructions

Addressing Modes Available
Instruction Name Format IR DA RA
Call CALL cc,dst . . .
Complement Carry Flag CCF
Decrement and Jump if Non-Zero DJNZ dst .
Jump on Auxiliary Accumulator/Flag _ JAF dst .
Jump on Auxiliary Register File in Use JAR dst .
Jump JP cc,dst . . .
Jump Relative JR cc,dst .
Return RET cc
Restart RST p
System Call SCnn
Set Carry Flag SCF

5-8

A special instruction, Decrement and Jump if
Non-Zero (DINZ), implements the control part of
the basic Pascal. FOR loop in a one-word
instrhctiqn.

System Call (SC) is used for controlled access to
facilities provided by the operating system. It
is implemented identically to a trap or interrupt
in interrupt mode 3: the current program status
is pushed onto the system stack, and a new program
status is loaded from a dedicated part of memory.

5.4.8 Input/Output Instruction Growp

This group .(Table 5-9) consists of instructions
for transferring a byte, a word, or a string of
bytes or words between peripheral devices and the
CPU registers or memory. Byte 1/0 port addresses
transfer bytes on ADg-AD7 only. Thus in a 16-bit
data bus environment, beit peripherals must be
connected to bus lines ADg-AD7. In an B8-bit data
bus environment, word I/0 instructions to external
peripherals should not be used; however, on-chip
peripherals can still be accessed by word 1/0
instructions.

The instructions for transferring a single byte
(IN, OUT) can ‘transfer data between any 8-bit CPU
register or memory address specified in the
.instruction and the peripheral port specified by
the contents of the C register. The IN
instruction sets the CPU flags according to the
input data; however, special cases of ‘these
instructions, restricted to using the CPU
accumulator and Direct Address mode, do not affect
the CPU flags. Another variant tests an input
port specified by the contents of the C register
and sets the CPU flags without modifying CPU
registers or memory.

The instructions for transferring a single word
(INW, OUTW) can transfer data between the HL
register and the peripheral port specified by the
contents of the C register. For word I/0, the
contents of H appear on ADg-AD7 and the contents
- of L appear as ADg-ADq5. These instructions do
] not affect the CPU flags.

The remaining instructions in this group form a
powerful and complete complement of instructions
for transferring blocks of data between I/0 ports
and memory. The operation of these instructions
is very similar to that of the block move instruc-
tions described earlier, with the exception that
one operand is always an I/0 port whose address

remains unchanged while the address of the other '

operand (a memory location) is incremented or
decremented. Both byte and word forms of these
instructions are available. The automatically

" instructions.

repeating forms of these instructions are inter-
ruptible.

I/0 instructions are not privileged if the Inhibit
User I/0 bit in the Trap Control register is
clear; they can be executed in either system or
user mode, so that I/0 service routines can
execute in user mode. The Memory Management Unit
and on-chip peripherals' control. and _status
registers are accessed using the 1/0
The contents of the I/0 Page
register are output on AD23-ADqg with the 1/0 port
address and can be used by external decoding to
select specific devices. Pages FF and FE are
reserved for on-chip I/0 and no external bus
transaction idg generated. 1/0 devices can be
protected from unrestricted access by using the
1/0 Page register to select among 1/0 peripherals.

Table 59. Input/Output Instruction Group Instructions

Instruction Name Format
Input IN dst,(C) .
Input Accumulator IN A(n)
Input HL INW HL,(C)
Input and Decrement (Byte) IND

Input and Decrement (Word) INDW
Input, Decrement and Repeat (Byte) INDR
Input, Decrement and Repeat (Word) INDRW
Input and Increment (Byte) INI

Input and Increment (Word) ' INIW

Input, Increment and Repeat (Byte) INIR

Input, Increment and Repeat (Word) INIRW
Output OUT (C),src
Output Accumulator OUT (n),A
Output HL OUTW (C),HL
Output and Decrement (Byte) OuUTD
Output and Decrement (Word) ouTDW
Output, Decrement and Repeat (Byte) OTDR
Output, Decrement and Repeat (Word) OTDRW
Output and Increment (Byte) ouTI
Output and Increment (Word) OTIRW
Output, Increment and Repeat (Byte) OTIR
Output, Increment and Repeat (Word) OTIRW
Test Input TSTI (C)

5.4.9 CPU Control Group

The instructions in this group (Table 5-10) -act
upon the CPU control and status registers or
perform other functions that do not fit into any
of the other instruction groups. There are three
instructions used for returning from an interrupt
or trap service routine. Return from Nonmaskable
Interrupt (RETN) and Return from Interrupt (RETI)

5-9

are used in interrupt modes 0, - 1, and 2 to pop the
Program Counter from the stack and manipulate the
Interrupt Mask reqister, or to signal .a reset to
28400 Family peripherals. The Return from
Interrupt Long (RETIL) instruction pops a 4-byte
program status from the System stack, and is used
in interrupt mode 3 and trap processing. -

Two of these instructions are'not privileged: No

Operation (NOP) and Purge Cache (PCACHE). The
remaining instructions are privileged.

Table 510. CPU Control Group

Instruction Name Format
Disable Interrupt DI mask
Enable Interrupt El mask
Halt , HALT
Interrupt Mode Select IMp
Load Accumulator From | or R Register LD A,src
" LoadlorR Register From Accumulator LD dst,A
Load Control LDCTL dst,src
No Operation NOP
Purge Cache PCACHE
Return From Interrupt RETI
Return From Interrupt Long " RETIL
Return From Nonmaskable interrupt RETN

5.4.10 Extended Instruction Group

The 2280 MPU architecture contains a powerful
mechanism for extending the basic instruction set
through the use of external co-processors called
Extended Processing Units (EPUs). A group of 22
opcodes is dedicated for the implementation of
extended instructions using this facility., The
extended instructions (Table 5-11) are intended
for use on a 16-bit data bus; thus, this facility
is available only on the Z-BUS configuration of
the 2280 MPU.

There are four types of -extended instructions in
the 2280 MPU instruction set: EPU internal
operations, data transfers from an EPU to memory,
data transfers from memory to an EPU, and data
transfers- between an EPU and the CPU's
accumulator. © The extended instructions that
access memory can use any of the six basic memory
addressing modes (Indexed, Base Index, PC
Relative, SP Relative, Indirect Register, and
Direct Address). Transfers between the EPU and
CPU accumulator are useful when the program must
branch based on conditions generated by an EPU
operation.

A 4-byte long "template" is embedded in each - of
the extended instruction opcodes. These templates
determine the operation to.be performed in the EPU
itself. The formats of these templates are
described in the following pages. The
descriptions are from the point of view of the
CPU; that is, only CPU activities are described.
The operation of the EPU is implied, but the full
specification of the instruction template depends
on the implementation of the EPU, and is beyond
the scope of this manual. Fields in the template
that are ignored by the CPU are indicated by
estei‘isks, and would typically contain opcodes
that determine any operation to be performed by
the EPU in addition to the data transfers
gpecified. by the instruction. A 2-bit
identification field is included in each template,
for use in selecting one of up to four EPUs in a
multiple~-EPU system.

The action taken by the CPU upon encountering an
extended instruction depends upon the EPA control
bit in the CPU's Trap Control register. When this
bit is set to 1, indicating that EPUs are included
in the system, extended instructions are
executed. If this bit is cleared to 0, indicating
that there are no EPUs in the system, the CPU
executes an extended instruction trap whenever an
extended instruction is encountered; this allows a
trap service routine to emulate the desired
operation in software.

Table 5-11. Extended Instructions

Instruction Name Format
Load EPU From Memory. EPUM src
Load Memory From EPU MEPU dst
Load Accumulator From EPU EPUF
EPU Internal Operation EPUI

5.5 NOTATION AND BINARY ENCODING

The rest of this chapter consists of detailed
descriptions of the Z280 MPU instructions,
arranged in alphabetical order by mnemonic. This
section describes the notational conventions used
in the instruction descriptions and the binary
encoding for register fields within instruction's
dperation codes (opcodes). -

The description of each instruction begins on a
new page. The instruction mnemonic end name is
printed in bold letters at the top of esch page to
enable the reader to - easily locate & desired

5-10

.description. The assembly langusge syntax is then
given in 8 single generic form that covers all the
variants of the instruction, slong with a list of
applicable addressing modes. This is followed by
a description of the operation performed by the
instruction, a listing of all the flags that are
affected by the instruction, a 1listing of ex-
ception conditions that may be caused by execution
of the instruction, illustrations of the opcodes
for all variants of the instruction, and a simple
example of the use of the instruction.

The following notation is used throughout the
descriptions of the instructions:

(addr) A direct sddress i

<addr> An address to be encoded using relative
addressing

b A 3-bit . field specifying the position of
a bit within a byte

8X .Base Index addressing mode)

cc A condition code specifying whether a
flag is set to 1 or cleared to 0

d An 8-bit signed displacement

DA Direct Address addressing mode *

dd A 16-bit signed displacement

disp The displacement csalculated from the
' address in relstive addressing

dst Destinstion location or contents

IM Immediste addressing mode

IR Indirect Register addressing mode

MSR The Master Status register

n B-bit immediate data

nn 16-bit immediste data

P An interrupt mode

PC The Program Counter

PS The progrem status registers (the Program

Counter and Master Status register)
R A single
(A,8,C,D,E,H,L); also, R1 and R2 are used
when two different registers are
specified in the same instruction.
that the R register itself is accessed by
N a single instruction snd violates this

convention.)

R’ The corresponding 8-bit or 16-bit
register in the alternate register file
such as A' :

RA PC Relative Address addressing mode

RR A 16-bit register of the set (BC,DE,
. HL,SP); also, RRA and RRB are used when

two different registers are specified in
the same instruction

RX A single byte in the IX or IY registers;
thet is, a register in the set (IXH,IXL,
IYH,IVL); also, RXA and RXB are used when
two different registers are specified in
the same instruction

SP ~ The current Stack Pointer in use

SR Stack Pointer Relstive addressing mode

8-bit . register of the set .

(Note

src Source location or contents

SX Short Index addressing mode-

usp The User Stack Pointer

X Indexed addressing mode)
XX One of the 16-bit addressing registers

HL, IX, or 'IY; also XXA and XXB are used
when two different registers are speci-
fied in the same instruction

XY One of the 16-bit index registers IX or
1y

In the binary encoding of the instruction, lower
case is used for the corresponding encoding of the
assembler syntax. '

Brackets ([and]) are used in the assembly
language syntax to indicate an optional field.
For example, the 16-bit addition instruction for
adding word data to the HL register is described
as:

ADDW [HL,]src

This format means the instruction cen be written
8s:

ADDW HL,src
or
ADDW src ;

Assignment of a value is indiceted by the symbol
"<--". For example,

dst <-- dst + src

indicstes thast the source dats is added to the
destinstion data and the result is stored in the
destination location.

The notation "addr(n)" is used to refer to bit "n"
of a given location, for example, dst(7).

The register field in the binary encoding of an
instruction opcode is encoded as shown in Table
5-12.)

+ Table 5-12. Encoding of 8-Bit Registers in
Instruction Opcodes

Encoding

A 11
000
001
010
on
100
101

Register

rImMOoOO®

The remainder of this chapter consists of the
individual descriptions of each 7280 MPU
instruction.

5-11

ADC

Add with Carry (Byte)
ADC [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A<A+sc+C
The source operand together with the Carry flag is added to the accumulator and the
sum is stored in the accumulator. The contents of the source are unaffected. Twos-
complement addition is performed.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: ADC AR (10001 r |
RX: ADC ARX [11]e11]101] [10]001] x]
IM: ADC An [11]oo1]110][. n |
IR: ADC A(HL) [10001 [110]
DA: ADC A (addr) [11]Jo11]101] [10]o01 [111] [addriow) | [[addrhigh) |
~ X ADC A,(XX +dd) [1311]101] [10]001 [xx | [dtlowy | [omighy]
sX: ADC AXY + d) [11][e11]101][10Jo01[110][o |
RA: ADC A<addr> [11]111]101] 70]oo1]000] [dispfiow) | [disphigh) |
SR: ADC A(SP + dd) [11]ot1T101] [10]oo1]o00] [dfow)] [dmigh]
- .BX: ADC A,(XXA + XXB) | 11]o11]101] [10]001] bx |
Fleld Encodings: o: o0forix, 1forly
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: ADC A(HL) .
Before instruction execution: After instruction execution:
AF: 4 8 . saxhxvni AF: 6 1 00x1x000
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:

sk 18 |

" ADC

Add With Carry (Word)
ADC dst,src dst = HL
’ sr¢ = BC, DE, HL, SP
or
~dst = IX
src = BC, DE, IX, SP
or
dst = 1Y
src = BC, DE, Y, SP
Operation: dst < dst + src + C

The source operand together with the Carry flag is added to the destination and the sum
is stored in the destination. The contents of the source are unaffected. Twos-complement |
addition is performed.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise v
V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the
result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise.
Exéeptions: None
Addressing) . .
Mode Syntax Instruction Format
ADC HLRR [1[101]101] [01] w [ot0]
ADC XY,RR [#9]e11]101] [11]101]101] [01] rr [010]
Field Encodings: &: oforiX, 1for Iy .
m: 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP
Example: ADC HL,BC
Before instruction execution: After instruction execution:
F: szxhxvni ' F: 00x0x001
BC: 2 3 0 8 BC: 2 3 0 8
HL: F O 3 8 HL: 13 4 1

‘

ADD

Add Accumulator to Addressing Register

 Operation:

4

ADD dstA

dst = HL, IX, IY
dst < dst + A

The contents of the accumulator are added to the contents of the destination and the
result is stored in the destination. The contents of the accumulator are unaffected. The
contents of the accumulator are treated as a signed binary integer and are sign-
extended to 16 bits; twos-complement addition is performed.

Flags:

S: Set if the result is negative; cleared otherwise

Z: Set if the result is zero; cleared otherwise

H: Set if there is a carry from bit 11 of the result; cleared otherwise

V: Set if arithmetic overflow occurs, that is, if the operands are of the same sign and the
result is of the opposite sign from the operands; cleared otherw1se

N: Cleared

C: Set if there is a carry from the most significant bit of the result cleared otherwise

Exceptions:

None

Addressing
Mode

Instruétlon Format

Syntax

ADD HLA
ADD XYA

[11]101]101] [01]101]101]

[11]e11]101] [11]101]101] [01] 101] 101 |

Fleld Encoding:

[H 0 for IX, 1 for IY

Example:

ADD HLA

Before instruction execution: After instruction execution:

AF: E 2 soxhxvne AF:
HL: 2 3 8 4 HL:

E 2
2 3

. 00x1x001
6 6

Computation: accumulator is sign-extended.

FFE2 -
+2384
2366

ADD

Add (Byte)
ADD [A]src src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A< A + src
The source operand is added to the accumulator and the sum is stored in the ac-
cumulator. The contents of the source are unaffected. Twos- complement addition is
performed.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise
N: Cleared ‘
C:- Set if there is a carry from the most significant bit of the result cleared otherwise
Exceptions: None
Addressing . :
Mode ~ Syntax - Instruction Format
R ADD AR [10]000] r |
RX: ADD ARX ‘ [11]#11]101] [10]o00 [m | ,
IM: ADD An [11]ooo]110][m |
IR: ADD A(HL) [10]000[110] .
DA: ADD A, (addr) [11]o11]101] [10]000 [111] [addr(low) | [addr(high) |
X ADD A(XX +dd) [11|111|101][10!000|xx][dilow) | [dihigh) |
SX:. ADD A(XY + d) [11]e11101][F0Joc0 [110] [d |
RA: : ADD A<addr> [11]111]101] [10]o00 [000] [disp(iow) | [disp(high) |
SR: "ADD A(SP + dd) [11]o11]101] [10]000 [000] [d(low)] [dihigh) |
BX: ADD A(XXA + XXB) [F3]o11]101] [10]000 [bx |

Fleld Encodings: &: oforix, 1forly
x: 100 for high byte, 101 for low byte
XX 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

Example: ADD "A,(HL)
Before instruction execution: : After instruction execution:
AF: 4 8 szxhxvne AF: 6 0 ~ 00x1x000
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:

e[18] ue| 18]

ADD

Add (Word)
ADD dst,src dst = HL'
src = BC, DE, HL, SP
or
. dst = IX
src = BC, DE, IX, SP
or
dst = IY
src = BC, DE, lY, SP
Operation: dst < dst + src '
The source operand is added to the destination and the sum is stored in the destination.
The contents of the source are unaffected. Twos-complement addition is performed.
Flags: S: Unaffected

Z: Unaffected

H: Set if there is a carry from bit 11 of the result; cleared otherwise

V: Unaffected

N: Cleared

C: Set if there is a carry from the most significant bit of the result; cleared otherwise

Exceptions: - None
Addressing
Mode Syntax Instruction Format
ADD HL,RR [00| r | 001] :
ADD XY,RR [11]e11]101] [00| m [001]
Fleld Encodings: o: oforiX,1forly . .
) m: 001 for BC, 011 for DE, 101 for add register to itself, 111 for SP
Example: ADD HL,BC ‘
Before instruction execution: After instruction execution:
F: - szxhxvne F: s2x0xv01
BC: 2 3 0 8 BC: 2 3 0 8
HL: F O 3 8 HL: 13 4 0

ADDW

Add Word
ADDW [HL Jsrc src = R, IM, DA, X, RA
Operation: . HL <HL + src
The source operand is added to the HL register and the sum is stored in the HL register.
The contents of the source are unaffected. Twos-complement addition is performed.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 11 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and
the result is of the opposite sign; cleared otherwise
N: Cleared
C: Set if there is a carry from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing
Mode Syntax : Instruction Format
R: ADDW HL,RR [11]101]101][11] = [110]
ADDW HLXY [11]e11]101] [11[101] 101] [11] 100] 110] -
IM: ADDW HL,nn [11]111]101]] 11]101] 101][11]110]110] [n(low byte) | [n(high byte) |
DA: ADDW HL,(addr) [11]011]101][11]101] 101] [11[010]110] [addr(low) |[addrthigh) |
X ADDW HL,(XY + dd) [11]111]101][11]101]101] [11] xy [110] [dlow)][dmnigh) - |
RA: ADDW HL<addr> [11]o11]101][11]101] 101] [11]110]110] [dispflow)][dispthigh) | -
IR: ADDW HL,(HL) [Tot Jeo1] [¥1]701 [101 | [Ti]o0o]1i0 |
Fleld Encodings: o: oforix 1forly
(] 000 for BC, 010 for DE, 100 for HL, 110 for SP
xy: 000 for (IX + dd), 010 for (IY + dd)
Example: ADDW HL,DE N
Before instruction execution: After instruction execution:
F. saoxhxvne F: 10x0x000
DE: 00 10 DE: 00 10
HL: A 1 2.3 HL{ A 1 3 3

AND

AND
AND [A Jsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: A ‘—'A AND src
A logical AND operation is berformed between the corresponding bits of the source
operand and the accumulator and the result is stored in the accumulator. A 1 bit is
stored wherever the corresponding bits in the two operands are both 1s; otherwise a 0
bit is stored. The contents of the source are unaffected.
_ Flags: S: Set if the most significant bit of the result is set; cleared otherwise
Z: Set if all bits of the result are zero; cleared otherwise
H: Set
P: Set if the parity is even; cleared otherwise
N: Cleared
C: Cleared-
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: AND AR [1ol100l ¢]
RX: AND ARX [11]e11]101] [10]100]]
IM: AND An [11]100]110][n]
IR: AND A(HUL) [10[100]10].
DA: AND A (addr) [11]o11]101] [10]100]111] [addriiow) | [addrihigh) |
X: AND A(XX +dd) (14]111]101] {10[100] xx | [diow)] [dmigh)]
sX: AND AXY + d) [31]e11]701] [10[100]110] [a | '
RA: AND A<addr> [11]111]101] [10] 100]000] [dispiow) | [dispmigh)]
SR: " AND A(SP + dd) [11]o11]01] [10]100]000] [atow) | [amigny |
BX: AND A,(XXA + XXB) [11]o11]101] [10]100] bx]
Fleld Encodings: ®: oforix, 1forly
rx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + IY)
Example: AND AHL)
' Before instruction execution: After ingtruction execution:
AF: 4 8 szxhxpne AF: 0 8 00x1x000
HL: 2 4 5 4 HL: 2 4 5 4
Data memory: Data memory:

use[18 |

Vv

BIT

Bit Test

BIT b,dst . dst = R, IR, SX

Operation: Z < NOT dst(b)
The specified bit b within the destination operand is tested, and the Zero flag is set to 1 if
the specified bit is zero, otherwise the Zero flag is cleared to 0. The contents of the
destination are unaffected. The bit to be tested is specified by a 3-bit field in the instruc-
tion; this field contains the binary encoding for the bit number to be tested. The bit
number must be between 0 and 7.

Flags: S: Unaffected
Z: Set if the specified bit is zero; cleared otherwise
H: Set
P: Unaffected
N: Cleared
C: Unaffected

Exceptions: None

Addressing
Mode Syntax Instruction Format
R: BIT bR . [11]oo1]o11] [0t b [r]
IR: BIT b,(HL) © [11]oo1{o11][01] b [110]
SX: BIT b,(XY + d) [11][e11]101] [11]oo1]011] | d 1{01] b [110]
- Fleld Encoding: ®: OforiX, 1forly

Example: BIT 1,A

Before instruction execution: After instruction execution: .

AF: | 00010110 | saxxpnc | AF: | 00010110 | sOxixpoc |

CALL

Call

Operation:

CALL [cc,Jdst dst = IR, DA,RA

If the cc is satisfied then: SP < SP — 2
(SP) < PC
PC <« dst

A conditional call transfers program control to the destination address if the setting of a
selected flag satisfies the condition code ‘‘cc’’ specified in the instruction; an uncondi-
tional call always transfers control to the destination address. The current contents of
the Program Counter (PC) are pushed onto the top of the stack; the PC value used is the
address of the first instruction byte following the Call instruction. The destination address
is then loaded into the PC and points to the first instruction of the called procedure. At
the end of a procedure a return instruction (RET) can be used to return to the original
program.

Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a can
performed conditionally on the setting of the flag.

When using DA mode with the CALL instruction, the operand is not enclosed in paren-
theses.

Flags:

No flags affected

Exceptions:

System Stack Overflow Warning

Addnsslnﬁ
Mode

Syntax ' Instruction Format

DA:

RA:

CALL cc,(HL) [11 011 101][11 cc 100} ' \

CALL (HL) [31 011 101] [11 001 101] ,
CALL cc,addr [11_cc_100|| addrilow) || addr(high) | ‘ ,
CALL addr [11_001 101] [addriiow) | [addriigh) | -
CALL cc,<addr> (31111 101][11_cc_100] [dispiow) | [dispigh) |

CALL <addr> [11°111 101][11 001 101][dispflow) |[dispthigh) | [“unconditional call” |

Fleld Encoding:

cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100!orPOorNV 101 for PEor V,
110!orPorNs 111 forMor S

Example:

CALL 2520H '
Before instruction execution: - After instruction execution:

PC: 1 86
SP: F F

NN
o

3 0 ’ PC: 25
2 6

s F F

Data memory: Data memory:

FF24: 0.0 FF24: | - 3 3
FF25: 00 FF2s: 1 6

CCF

Complement Carry Flag
CCF
Operation: C<NOTC

The Carry flag is inverted.

Flags: S: Unaffected
Z: Unaffected
H: The previous state of the Carry flag
P: Unaffected
N: Cleared
C: Set if the Carry flag was clear before the operation; cleared otherwise
Exceptions: None’
Addressing
Mode Syntax ~ Instruction Format
CCF (oo 111]
Example: CCF

Before instruction execution: " After instruction execution:

r [somom R

L " CP

- Compare (Byte)
CP [A]src. src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operatlonﬁ A — src
The source operand is compared with the accumulator and the flags are set according-
ly. The contents of the accumulator and the source are unaffected. Twos-complement
subtraction is performed.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise)
H: Set if there is a borrow from bit 4 of the result; cleared otherwise -
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and
the result is the same sign as the source; cleared otherwise
N: Set ’
C: Set if there is a borrow from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing ‘
Mode Syntax Instruction Format
R: CP AR [10]111] ¢ |
RX: CP ARX L1tfer1f101][10]191] m |
IM: CP An [1f111]110][m |
IR: CP A(HL) [10]111]110]
DA: CP A,(addr) [11]o11]101] [10[111]111] [addrtiow) | [addrtnigh) |
X CP AX +dd) L1111]101][10f111| xx || dtow) || dmigh)]
SX: CP AXY + d) [11]e11]101] [10[111]110] [d |
RA: CP A<addr> [11]111]101][10[111]000] [dispiow) | [disp(high)]
SR: CP A(SP + dd) [11]o11]101][10[111]000|[dllow) || dinigh) |
BX: CP A(XXA + XXB) [11]o11]101]{ 10]111] bx |
Fleld Encodings: o: oforix, 1forly
x: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (X + IY)
Example: CP A(HL)
Before instruction execution: After instruction execution:
AF: 4 8 szxhxvne AF: 4 8 00x0x010
HL: 2 4 5 4] HL: 2 4 5 4
Data memory: Data memory:

uee[16]

CPD

Compare and Decrement
CPD
Operation: A-(HL
HL < HL — 1
BC < BC - 1

This instruction is used for searching strings of byte data. The byte of data at the loca-
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed. Next the HL register is decremented by one, thus moving the pointer to the
previous element in the string. The BC register, used as a counter, is then decremented
by one. oL

Flagéz S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the
memory byte are equal; cleared otherwise
"H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise -
N: Set
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
CPD) ' |11|1o1|1o1||io|1o1|oo1]
Example:
Before instruction execution: : After instruction execution:
AF: 3 B szxhxvnc AF: 3 B 01x0x01c
HL: 1 2 1 HL: 1 2 1 4
BC:- 00 BC: 00 00
Data memory: Data memory:

- CPDR

Compare, Decrement and Repeat

CPDR
Operation: Repeat until BC = 0 or match: A = (HL)
HL<HL — 1
BC < BC - 1
This instruction is used for searching strings of byte data, The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac-
cumulator until either an exact match is found or the string length is exhausted. The Sign
and Zero flags are set to reflect the result of the last comparison. The contents of the
accumulator and the memory bytes are unaffected. Twos-compiement subtraction is per-
formed.
After each comparison, the HL register is decremented by one, thus moving the pointer
to the previous element in the string. The BC register, used as a counter, is then de-
cremented by one. If the resuit of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register-are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.
This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction.can be properly resumed. '
Flags: S: Set if the last result is negative; cleared otherwise
Z: Set if the last result is zero, indicating that the contents of the accumulator and
the memory byte are equal; cleared otherwise
" H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise:
N: Set .
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
CPDR . [11/ 101]101] [10]111] 001]
Example: CPDR
Before instruction execution: After instruction execution:
AF: F 3 szxhxvne AF: F 3 01x0x11c
HL: 11 18 HL: 11 15
BC: 00 07 BC: 00 0 4
Data memory: Data memory::
1118: F 3 : 1116:
117: 00 | 117:
1118: 5 2 b 1118 5 2

CPI

Compare and Increment
CPI
Operation: A-(HL)
HL < HL + 1
BC < BC - 1

! 1

This instruction is used for searching strings of byte data. The byte of data at the loca-
tion addressed by the HL register is compared with the contents of the accumulator and
the Sign and Zero flags are set to reflect the result of the comparison. The contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed.

Next the HL register is incremented by one, thus moving the pointer to the next element
in the string. The BC register, used as a counter, is then decremented hy one.

Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero, indicating that the contents of the accumulator and the
, memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set i
C: Unaffected
Exceptions: ~ None -
Addressing
Mode Syntax Instruction Format
CPI {11]101] 101] | 10[100] 001 |
Example: CPI
Before instruction execution: _After instruction execution:
AF:[3 B soxhxvne AF:[3 B 0ix0x01c
HL: 1 2 1 HL: 1 2 1.6
BC: 00 BC: 00 00
Data memory: Data memory:

CPIR

Compare, Increment and Repeat

CPIR
Operation: Repeat until BC = 0 or match: A - (HL)
HL<HL + 1
BC+<BC -1
This instruction is used for searching strings of byte data. The bytes of data starting at
the location addressed by the HL register are compared with the contents of the ac-
cumulator until either an exact match is found or the string length is exhausted. The
Sign and Zero flags are set to reflect the result of the comparison. The last contents of
the accumulator and the memory bytes are unaffected. Twos-complement subtraction is
performed.)
After each comparison, the HL register js incremented by one, thus moving the pointer
to the next element in the string. The BC register, used as a counter, is then de-
cremented by one. If the result of decrementing the BC register is not zero and no
match has been found, the process is repeated. If the contents of the BC register are
zero at the start of this instruction, a string length of 65,536 bytes is indicated.
This instruction can be interrupted after each execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.
Flags: 'S: Set if the last result is negative; cleared otherwnse
Z: Set if the last result is zero, indicating that the contents of the accumulator and
the memory byte are equal; cleared otherwise
H: Set if there is a borrow from bit 4 of the last result; cleared otherwise
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Set
C: Unaffected
Exceptions: None
Addressing
Mode Syntax Instruction Format
CPIR o [11]101]101][10]110] 001 }
Example: CPIR
‘ Before instruction execution: ~ Afterinstruction execution: '
' AF: F 3 soxhxvne AF: F 3 01x0x11c
HL: 11 18 HL: 11 1B
BC:| 0 0 0 7 BC: 00 : 0 4
Data memory: Data memory:
1118: 25 1118: 25
1119: 00 ' 1M19: | 0.0
1MA | F 3 111A:- F

CPL

Complement Accumulator
CPL [A] ’
Operation: A< NOTA

The contents of the accumulator are complemented (ones cbmplement); all 1 bits are
changed to 0 and vice-versa.

Flags: S: Unaffected v : '
. Z: Unaffected) : /
H: Set
V: Unaffected
N: Set
C: Unaffected
Exceptions: None -
" Addressing .
Mode Syntax Instruction Format
CPL A. [00[101] 111]
Example: CPL A
Before instruction execution: . After instruction execution:
AF:| 2 8 | sxtwne | AR D 7 | sxixvic |

- CPW

Compare (Word)
~ CPW [HL,Jsrc src = R, IM, DA, X, RA
Operation: HL - src ‘
The source operand is compared with the HL register and the flags are set accordingly.
The contents of the source and HL are unaffected. Twos-complement subtraction’is
performed.
Flags: . S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise -
H: Set if there is a borrow from bit 12 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the operands are of different signs and the -
- result is the same sign as the source; cleared otherwise :
N: Set -
C: ‘Set if there is a borrow from the most significant bit of the result; cleared otherwise
Exceptions: None
Addressing .
Mode Syntax Instruction Format
R: CPW HL,RR [11]101]101] [11] w 111}
CPW HLXY [11]e11]101] [11]101]101] [11]100]111] *
IM: CPW HL,nn [11[111]101] [11]101]101] [11]110]117] [nlow byte) | [nMigh byte)]
DA: CPW HL,(addr) . [11Jo11]101] [11]101]101] [11]010]111]| addrilow) || addr(high) |
X CPW HL,XY + dd) [1a[in]101] [11]r01]101] [11Joso[191] [agowy |[ammighy }
RA: CPW HL,<addr> ~ [a1JonTr01] [11]101]701] [11]110]191] [dispfiow)][dispmigh) |
IR CPW HL,(HL) . TiJon [401] [F[01 [%01 | [fi[o00]TH
Field Encodings: o: oforiX 1for Iy
. r: 000 for BC, 010 for DE, 100 for HL, 110 for SP -
anmple: CPW HL,DE
Before instruction execution: After instruction execution:
F: szxhxvne - F: 10x0x010
DE: 00 10 DE: 00 10
{ HL: A1 2 3 HL: A1 .2 3

5-29

DAA

Decimal Adjust Accumulator

DAA

Operation: A < Decimal Adjust A

The accumulator is adjusted to form two 4-bit BCD digits following a binary,
twos-complement addition or subtraction on two BCD-encoded bytes. The table below
indicates the operation performed for addition (ADD, ADC, INC) or subtraction (SUB, SBC,

DEC, NEG).
Operation of DAA Instruction
Hex Value in Hex Valuein Number
C Before Upper Digit H Before Lower Digit Added C After H After
Operation DAA ' (Bits 7-4) DAA (Bits 3-0) toByte DAA . DAA
' 0 09 0 09 00 0 0
0 0-8 0 AF 06 0 1
ADD 0 0-9 1 0-3 06 0 0
ADC 0 A-F 0 0-9 60 1 0
INC 0 9-F 0 AF 66 1 1
(N =0) 0 A-F 1 0-3 66 1 0
. 1 0-2 0 09 60 1 0
1 0-2 0 A-F 66 1 1
1 0-3 1 0-3 66 1 0
SUB 0 0-9 0 0-9 00 0] 0
SBC 0 0-8 1 6-F FA 0 1
DEC 1 7-F 0 0-9 A0 1 0
NEG . 1 6-F 1 6-F 9A 1 1
(N=1)
The operation is uhdefined if the accumulator was not the result of a binary addition or sub-
traction of BCD digits.
Flags: + 8: Set if the most significant bit of the result is set; cleared otherwise
Z: Setifthe result is zero; cleared otherwise .
H: See table above , '
P: Setif the parity of the result is even; cleared otherwise
N: Not affected
C: Seetable above
Exceptions: None
Addressing
Mode Syntax Instruction Format

DAA @[l

‘Example:

DAA

Before instruction execution:

AFR:[2 8 |

s2x0xp01

1

‘ After instruction exegution:

AF:[8 8 |

00x0x001

DEC

- Decrement (Byte)
DEC dst ‘dst = R, RX, IR, DA, X, SX, RA, SR, BX
Operation: dst < dst — 1

The destination operand is decremented by one and the result is stored in the destina-
tion. Twos-complement subtraction is performed.

Flags:

S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise ‘
H: Set if there is a borrow from bit 4 of the result; cleared otherwise
V: Set if arithmetic overflow occurs, that is, if the destination was 80y; cleared otherwise
N: Set.
C: Unaffected
Exceptions: None
Addressing ‘ :
Mode Syntax Instruction Format
R: DEC R [00] ¢ [101] .
RX: DEC RX [11]e11]101][00] x [101]
IR: DEC (HL) L 0of110] 101]
DA: DEC (addr) (11]o11]101][00]111] 101] [addr(low)][addr(high) |
X: DEC (XX +dd) D[] 101][o0]xxT101] [dilowy][dmigh |
SX: DEC (XY + d) [11]e11]101][00]110] 101] | d]
RA: DEC <addr> [14]111]101][00 Jooo] 101] [disp(low)][disp(high) |
SR: DEC (SP + dd) [11]o11]101][00]ooo[101][dilowy][dnigh |
BX: DEC (XXA + XXB) [11]o11]101]} 00 bx [101]
Field Encodings: ®: 0foriX, 1for iy
’ m™: 100 for high byte, 101 for low byte
XX : 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: DEC (HL)
Before instruction execution: \ After instruction execution:
F: saxhxvne F: 10x0x01¢c
H:| 2 4 5 4 Hu:| 2 4 5 4
Data memory: Data memory:

e[53]

us[87 |

DEC[W]

Decrement (Word)
'DEC[W] dst dst =R
or : .
DECW dst dst = IR, DA, X, RA '
Operation: dst «dst — 1
The destination operand is decremented by one. Twos-complement subtraction is
performed. :
Flags: No flags affected _
Exceptions: None
A Addressing
Mode Syntax Instruction Format
R: DECW RR [oo] e [011]

E DECW XY |11|011|1o1||oo|1o1|011|

IR: DECW (HL) [11]o11f 101] [00[001] 011

DA: DECW (addr) [11[011] 101] [00fo11[011] ["adartiow) | ["addrtmigh) |

X DECW (XY + dd) (3111101} (0T xy Tor1] [etow)] [—amighy]

RA: DECW <addr> [11[011]101] [Go[i11]011] [dispiiow | [dispiigh |

Fleld Encodings: ®: oforix 1forty »
. rr: 001 for BC, 011 for DE, 101 for HL, 111 for SP
xy: 001 for (X + dd), 011 for (IY + dd)
Example: DECW HL)

Before instruction execution: After instruction execution:

H: [2 3 038] He [23 07]

DI

Disable Interrupt
DI mask Mask = Hex value between 0 and 7Fy
Operation: If mask() = 1 then MSR(i) < 0

The designated interrupt control bits in the Master Status register (MSR) are cleared to
0, thus disabling all interrupts on these inputs; all other interrupt enables in the MSR are
unaffected. If no mask is present then all interrupts are disabled.

Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven mterrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i.

Flags: No flags affected -

Exceptions: ~ Privileged Instruction

Addressing

Mode Syntax Instruction Format
DI [11]110]011]
DI mask [11]101]101] [o1]110[111][mask |
‘Mask = byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i

mask(7) must be zero.

Example: DI 23H
Before instruction execution: After instruction execution:
MSR:[00 [7 F | MsR:[00 | 5 cCc |

DIV

Divide (Byte)
DIV [HL Jsrc : src = R, RX, IM, DA, X, SX, RA, SR, BX
, Operatlon:‘ A< HL + src
L < remainder
The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H registet are unaffected. Both operands are treated as
signed, twos-complement integers and division is performed so that the remainder is of
the same sign as the dividend.
" There are three possible outcomes of the DIV instruction, depending on the division and
the resulting quotient:
CASE 1: If the quotient is within the range —27 to 27— 1 inclusive, then the quotient is
left in the accumulator, the Overflow flag is cleared to 0, and the Sign and Zero flags are
set according to the value of the quotient.
CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag |s cleared to 0 Then the Division Exception
trap is taken.
CASE 3: If the quotient is outside the range —27 to 27—1, the accumulator remains un-
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.
Flags: S: Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected :
V: Set if the divisor is zero or if the computed quotient lies outside the range from —27
to 27—1; cleared otherwise
N: Unaffected
C: Unaffected
- Exceptions: Division Exception
Addressing :
Mode Syntax Instruction Format
R: DIV HLR ' [11]101]101][11] r T100]
RX: DIV HL,RX - [1]e11]101][14]101] 101] [11] = T100]
IM: DIV HL,n - [11]111]101] [11]101] 101] [11]111]100] | n |
DA: DIV HL,(addr) [11]o11] t01] [11]101]101] [11]111]100] [addr{iow)][-mj
X: DIV HL,(XX +dd) [11]111]101][11]101] 101} [11] xx J100] [dilow)][dmigh) |
SX: DIV HL(XY + d) [11fe11]101] [11]101] 101] [11]710]100] | d |
RA: DIV HL<addr> - [11]111]101][11]101] 101 | [11]o00]100] [dispiow)]| [dispmigh) |
SR: DIV HL,(SP + dd) [11]o11]101][11]101] 101] [11]oo0]100] [dlowy][amigh) |
BX: DIV HL,OXXA + XXB) [11]o11{101][11]101] 101] [11] bx J100]
IR: DIV HL/(HL) [1]701T101] []100] %00

Fleld Encodings: ®: OforiX 1forlY
’ ™: 100 for high byte, 101 for low byte
xx: 001 tpr (X + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + IY), 011 for (X + IY)
Example: DIV HLC
Before instruction execution: After instruction execution:
"AF:[5 5 szxhxvnc ‘AF:[0 1 00xhxOnc
C: F E C: F E
HL:[FF F D, HI.:[FF F F

DIVU

Divide Unsigned (Byte)

DIVU [HL]src src = R, RX, IM, DA, X, SX, RA, SR, BX
3
Operation: A< HL + src
L < remainder
The contents of the HL register (dividend) are divided by the source operand (divisor) and
the quotient is stored in the accumulator; the remainder is stored in the L register. The
contents of the source and the H register are not affected. Both operands are treated as
unsigned, binary integers.
There are three possible outcomes of the DIVU instruction, depending on the division
and the resulting quotient:
CASE 1: If the quotient is less than 28, then the quotient is left in the accumulator, the
Overflow and Sign flags are cleared to 0 and the Zero flag is set according to the value
of the quotient.
CASE 2: If the divisor is zero, the accumulator remains unchanged, the Zero and
Overflow flags are set to 1 and the Sign flag is cleared to 0. Then the Division Exception
trap is taken. ,
CASE 3: If the quotient is greater than or equal to 28, the accumulator remains un-
changed, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to 0.
Then the Division Exception trap is taken.
Flags: S: Cleared
Z: Set if the quotient or divisor is zero; cIeared otherwise
H: Unaffected
V: Set if the divisor is zero or if the computed quotient |s greater than or equal to
28; cleared otherwise
N: Unaffected
C: Unaffected
Exceptions: Division Exception
Addressing
Mode Syntax o " Instruction Format
R: DIVU HLR [11]101]101][11] r J101]
RX: DIVU HL,RX [11]e11f101][11]101]101][11] x J101]
IM: DIVU HL,n . [11]111]101][11]101]101] [11]111]101]| n]
DA: DIVU HL,(addr) [11]o11]701] [11]104 101] [13]111]101] [acdriiow] Mm_]
X: DIVU HL,(XX + dd) [1ffror][11]101]101] [11]xx J101][ditow) |[dmigh) |
SX: DIVU HL(XY + d) [¥1Je11[101] 11101101][00] @]
RA: DIVU HL<addr> [11]111]101][11]101]101] [11]o0o]101] [disptiow)][disp(high) |
SR: DIVU HL/SP + dd) " [31Jo11]101] [11]101T107] [11]oo0 101] [atlow) | [omighy]
BX: DIVU HL,(XXA + XXB) [11]o11]101][11]101]101] [11] bx J101]
IR:

DIVU HL,(HL) | 11]101 1101 | [11 [t10 [101 |

Fleld Encodings: o: oforIx, 1for Y
. ~: 100 for high byte, 101 for low byte -
xX: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + 1Y)
Example: DI‘&U HLC
Before instruction execution: After instruction execution:
AR:[5 5 saxthxme AR [8 0 00xhxOnc
C 0 2 C 0 2
HE[o0 1 | 0 1 H:| o0 1 0 1

DIVUW

Divide Unsigned (Word)

DIVUW [DEHL,Jsrc src = R, IM, DA, X, RA

Operation: HL <= DEHL -+ src
DE < remainder
The contents of the DE and HL registers (with the most significant bits of the dividend in
the DE register) are divided by the source operand (divisor) and the quotient is stored in
the HL register and the remainder-in the DE register. The contents of the source are
_unaffected. Both operands are treated as unsigned, binary integers.
There are three possible outcomes of the DIVUW instruction, depending on the division
. and the resulting quotient:
CASE 1: If the quotient is less than 216, then the quotient is left in the HL register and
the remainder is left in the DE register, the Overflow and Sign flags are cleared to O, and
the Zero flag is set according to the value of the quotient.
CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.
CASE 3: If the quotient is greater than 216 — 1, then the DE and HL registers remain un-
changed, the Overflow flag is set to 1, and the Zero and Sign flags are cleared to 0.
Then the Division Exception trap is taken. '
Flags: S: Cleared
: Z: Set if the quotient or divisor is zero; cleared otherwise
H: Unaffected '
V: Set if the divisor is zero or if the computed quotient is greater than or equal to 216;
cleared otherwise
- Nt Unaffected ,
. C: Unaffected
Exceptions: Divisjon Exception
Addressing
Mode - - Syntax : Instruction Format
R: DIVUW DEHL,RR [11] 101 UMJ {11f rr Jo11]
DIVUW DEHLXY |_|o11|1o1 J[11]101]101] L1L101[o1J .
IM: DIVUW DEHL,nn (11[11]1o1][19]101]101 | [11]119]011] [mowy |[nihign) |
DA: DIVUW DEHL,(addr) [11]o11]101][11]101] 101] [11]011]011 | [addr(low) | [addrnigh) |
X DIVUW DEHL(XY + dd) [11]111]101][11]101]101] [11] xy Jo11] [displow) |[disp(migh)]
RA: DIVUW DEHL, <addr> {11]o11]101][11]101]101] [11]111] 011] [_disptiow) || disp(high) |
IR: DIVUW DEHL,(HL) |1t ot] 101] [+1 J101 | 101] [t]o01 [o11]
Fleld Encodings: ®: Oforix, 1foriy

m: 001 for BC, 011 for DE, 101 for HL, 111 for SP
xy: 001 for (IX + dd), 011 for (IY + dd) *

Example: DIVUW DEHL6

Before instruction execution: » After instruction execution:
F: - sazxhxvne F:
DE: 00 00 DE: 00
HL: 00 2 2 HL: 00

L NE

oo

DIVW

Divide (Word)
DIVW. [DEHL Jsrc - src = R, IM, DA, X, RA
Opomtldn: HL < DEHL + src
DE < remainder
The contents of the DE and HL registers (with-the DE register containing the most signifi-
cant bits of the dividend) are divided by the source operand (divisor) and the quotient is
stored in the HL register. The contents of the source are unaffected. Both operands are -
treated as signed, twos-complement integers and division is performed so that the re-
mainder is of the same sign as the dividend.
There are three possible outcomes of the DIVW instruction, depending on the division
and the resulting quotient:
CASE 1: If the quotient is within the range — 215 to 215— 1 inclusive, then the quotient is
left in the HL register and the remainder is left in the DE register, the Overflow flag is
cleared to 0, and the Sign and Zero flags are set according to the value of the quotient.
CASE 2: If the divisor is zero, the DE and HL registers remain unchanged, the Zero and
Overflow flags are set to 1, and the Sign flag is cleared to 0. Then the Division Exception
trap is taken.
CASE 3: If the quotient is outside the range — 215 to 215— 1, the DE and HL registers re-
main unchanged, the Overflow flag is set to 1, and the Sign and Zero flags are cleared to
0. Then the Division Exception trap is taken.
Flags: -8t Cleared if V flag is set; else set if the quotient is negative, cleared otherwise
Z: Set if the quotient or divisor is zero; cleared otherwise
" H: Unaffected ’
V: Set if the divisor is zero or if the computed quotient lies outside the range from —215
to 215 1, cleared otherwise
N: Unaffected
C: Unaffected
Exceptions: Division Exception
Addressing
Mode Syntax Instruction Format
R: DIVW DEHL,RR ([0 701] (1] w [oi0]
5 DIVW DEHLXY | 11]e11] 101]| 11]101] 101]| 11]101] 010]
IM: DIVW DEHL,nn © [1[11fro1][11]101]101] [11]111]010] [nflow) || nmigh) |
DA: DIVW DEHL(addr) - [A[on[701] [13] 701 101] [11]611] 010] [_addrtlow] [addrmih |
) & DIVW DEHL,XY + dd) [1]111]101][11]101]101][11] xy Jo10][dow)]| dmigh) |
RA: DIVW DEHL <addr> [11fo11]101][11]101] 101][11]111]010] [dispflow) |{ disp(high) |
IR DIVW DEHL,(HL) [n]onT101] [[r01 01] [#]oo1Jow]
Field Encodings: o: 0forix, 1 for IY

n: 001 forBC 011 for DE, 101 for HL, 111 forSP
xy: 00110!(D(+dd)011for(lY+dd)

Example: DIVW DEHL,6

Before instruction execution: After instruction execution:
F: szxhxvne F:
DE 00 00 DE 00
HL: 00 -2 2 HL: 00

oo
o |-

5-42

DJNZ

Decrement and Jump if Non-Zero

Oboratlon: v

DJNZ dst dst = RA

B+B -1
if B # O then PC <+ dst

The B register is decremenfed by one. If the result is non-zero, then the destination ad-

. dress is calculated and theh loaded into the Program Counter (PC). Control then passes

to the instruction whose address is pointed to by the PC. When the B register reaches

.zero, control falls through to the instruction following DJNZ. This instruction provudes a

simple method of loop control.

‘The destination address is calculated using Relative addressing. The displacement inthe

instruction is added to the PC; the PC value used is the address of the instruction following
the DJNZ instruction. The 8-bit displacement is treated as a signed, twos-complement
integer. Thus the branching range from the location of this instruction is — 126 to + 129
bytes.

Flags:

No flags affected

Exceptions:

None

Addressing
Mode

Syntax Instruction Format

DJNZ addr [oofot0foo0|| disp |

" Example:

DJNZ 1050H

Before instruction execution: After instruction execution:

B . 1 2 B:
PC: 10 7 86 PC: 10 5 0

El

Enable Interrupt
El mask ~ Mask = Hex value between 0 and 7Fy
Operation: If mask(i) = 1 then MSR(i) < 1

The designated control bits in the Master Status register (MSR) are set to 1, thus enabl-
ing interrupts on these inputs; all other interrupt enables in the MSR are unaffected.
Note that during the execution of this instruction and the following instruction, all
maskable interrupts (whether previously enabled or not) are automatically disabled for
the duration of these two instructions. ‘

Any combination of interrupt enables in the MSR can be specified. The seven bits in the
mask field in the instruction correspond to the seven interrupt enable bits in the MSR,
mask bit i corresponding to MSR bit i. If no mask is present, all interrupts are enabled.

Flags: No flags affected .
Exceptions: Privileged Instruction
Addressing)
Mode Syntax Instruction Format
El [11]111]o11]
El mask ; [11|1q1|1o1]|o1|111]11ﬂ[mask . | -

Mask = byte specifying which interrupts to disable: mask(i) corresponds to interrupt source i;
mask(7) must be zero.

Example: El 49H ‘
Before instruction execution: After instruction execution:

MSR:{ 00 | o0 o0 | MSR:| 00 | 49 |

EX

Exchange Accumulator/Flag with Alternate Bank

EX AF,AF’
Operation: - AF = AF’
The control bit mapping the accumulator and flag registers into the primary bank or the
auxiliary bank is complemented, thus effectively exchanging the accumulator and flag
registers between the two banks.
Flags: Loaded from F’
Exceptions: None
Addressing
Mode Syntax Instruction Format
EX AFAF’ [00[001] 000
Example: EX AFAF’
Before instruction execution: After instruction exgcutlon:
AF: 2 3 F 3 AF: 1 0B O
AF" 1 08B0 AF" 2 3 F 3

EX

Exchange Addressing Register with Top of Stack

EX (SP),dst . dst = HL, IX, IY

Operation: (SP) < dst
The contents of the destination register are exchanged with the contents of the top of -
stack. That is, the low-order byte contained in the register is exchanged with the con-
tents of the memory address specified by the Stack Painter (SP), and the high-order byte
of the register is exchanged with the contents of the next highest memory address
(SP + 1). . .

Flags: No flags affected

Exceptions: None

Addressing
Mode - Syntax Instruction Format

EX (SP),HL [11]100{011]
EX (SP),XY [11]e11]101]1[11]100]011]

Fleld Encoding: ®: Oforix, tforly

Example: EX (SP),HL
Before instruction execution: After instruction execution:

HL: 2 19 3 HL: B 3 2 A
SP: 8 2 0 O SP: 8 2 0 0

Data memory: Data memory:
a200: [2 A 8200: [9 3
8201: B 3 8201: 2 1

EX

- Exchange Hand L

EX"H,L

Operation: HeL
The contents of the H and L registers are exchanged. .

Flags: No flags affected

Exceptions: None

Addressing i
Mode Syntax Instruction Format

EX H,L . [11]101]101][11]101[111]

Example: EX HL
Before instruction execution: After instruction execution:

5-47

EX A

Exchange HL with Addressing Register

EX src,HL src = DE, IX, IY
Operation: src < HL

The contents of the HL register are exchanged with the contents of the source.

Flags: No flags affected
Exceptions: None
Addressing
Mode ~ Syntax Instruction Format
EX DEHL [11]101]011]

EX XY,HL [11]e11]101] [11]101]011]

Field Encoding: o OforiX, 1forIY

Ei(ample: EX DE,HL
Before instructioh execution: After instruction execution:
DE: 8 2 E O DE: 3 8 F F
HL: 3 8 F F HL: 8 2 EO

EX

Exchange with Accumulator

. EX Asrc src = R, RX, IR, DA, X, SX, RA, SR, BX
Operation: src« A
The contents of the accumulator are exchanged with the contents of the aourde. ’
Flags: No flags affected
L]
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: EX AR | 11]101] 101]{ 00| ¢ [111]
RX: EX ARX : | 11]e11] 101] 11]101[101} [00] mx [111]
IR: EX A,(HL) | 11]101] 101] [00]110] 111]
DA: EX A,(addr) | 11]o11] 101][11]101] 101] [00]111]111] | addr(low) || addrhigh) |
- X EX A(XX + dd) (11]111]101][11]101] 101] {00 xx [111][daow)][dmmighy]
sX: EX AXY + d) - [a1]e11]301] [11]101]101] [00]110]111] | d |
RA: EX A,<addr> [31[111]101] [71]01]101] [00]oo0]111] [disptiow)][clspmigh) | -
SR: EX A(SP + dd) [11]o11]161] [11]101]701] [00Jooo]111] [daowy [amighy |
BX: EX A,(XXA + XXB) [11]o11] 101] [11]101] 101] [00] bx [111] .
Field Encodings: o: oOforix, 1forly ¢
™: 100 for high byte, 101 for-low byte
xx: 001for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
- bx: -001for (HL + 1X), 010 for (HL + IY), 011 for (IX + IY)
Example: . EX AB
Before instruction execution: After instruction execution:
A 0 3 A 8 2
B: 8 2 B: 0 3

5-49

EXTS

Extend Sign (Byte)
EXTS [A]
Operation: vL «A

If A(7) = 0, then H <00 else H < FF

The contents of the accumulator, considered as a signed, twos-complement integer, are
sign-extended to 16 bits and the result is stored in the HL register. The contents of the
accumulator are unaffected. This instruction is useful for conversion of short signed

operands to longer signed operands. ’

Flags: _ No flags affected

Exceptions: None

Addressing
Mode Syntax : Instruction Format

EXTS A . [11]101]101]| 01]100] 100 |

Example: EXTS A
Before instruction execution: After instruction execution:

A: 8 2 A: 8 2

. HL: 5§ 5 5§ 5 HL: F F 8 2

EXTS .

Extend Sign (Word)
‘EXTS HL
Operation: If H(7) = 0O, then DE < 0000 else DE < FFFF
The contents of the HL register, considered as a signed, twos-complement integer, are
sign-extended to 32 bits and the result is stored in the DE and HL registers, with the DE
register containing the most significant bits. This instruction is useful for conversion of -
signed operands to larger signed operands.
‘Flags: No flags affected
Exceptions: None
Addressing :
Mode Syntax °* Instruction Format
EXTS HL [i1|1o1|1m|[m[1o1[1oo|
Example: EXTS HL
Before instruction execution: After instruction execution:
DE: 0 3 2 F DE: F F F F
HL: E F 30 HL: E F 3 0

EXX

Exchange Byte/Word Registers with Alternate Bank

EXX

Operation: BC < BC'
DE <« DE’
HL < HL'
The control bit mapping the byte/word registers into the primary or auxiliary bank of the
CPU registers is complemented, thus effectively exchanging the B, C, D, E, H, and L
registers between the two banks. ,

Flags: No flags affected

Exceptions: None

Addressing !

Mode Syntax Instruction Format

EXX [11]o11]001]

Example: EXX
Before instruction execution: " After instruction execution:
BC: 2 3 A0 BC: 3 8 0 F
DE: 1 6 5 3 DE: E 2 00
H: |2 4 F F HL: 1 FA S
BC” 380 F BC" 3 A0
DE* E 2 00 DE" 1 6 5 3
HL" 1 F A3 HL" 24 F F

HALT

HALT
HALT .
Operation: CPU Halts
The CPU operation is suspended until an interrupt or reset request is received. This in-
struction is used to synchronize the Z280 MPU with external events, preserving its state
until an interrupt or reset request is accepted. After an interrupt is serviced, the instruc-
tion following HALT is executed. While halted memory refresh cycles still occur, and bus
requests are honored.
For the Z80 Bus configuration of the 2280 MPU, the HALT signal is asserted when the
Halt instruction is executed and remains asserted until an interrupt or reset request is
accepted. For the Z-BUS configurations of the Z280 MPU, a special Halt bus transaction is
performed when the hatt instruction is executed.
If the Breakpoint-on-Halt control bit in the Master Status register is set to 1, the Halt
instruction is not executed, and Breakpoint-on-Halt trap is taken instead.
Flags: No flags affected
Exceptions: Breakpoint, Privileged Instruction
Addressing
Mode Syntax Instruction Format
HALT [01]110{110]

Interrupt Mode Select .
M p p=20123
Operation: Interrupt Mode < p

The interrupt mode of operation is set to one of four modes (see Chapter 6 for a descrip-
tion of the various modes for responding to interrupts). The current interrupt mode can
be read from the Interrupt Status register.

Flags: No flags affected
Exceptions: Privileged Instruction
Addresélng
Mode Syntax Instruction Format
IM p [11]101]101]{01] t 110]
P t
’ mode encoding
0 000
1 010
2 011
3 001
Example: IM 3
- Before instruction execution: After instruction execution:
Interrupt Status register:) Interrupt Status register:
[Fo [oo] [F38 | oo |

Input

\

Operation:

IN dst,(C) dst = R, RX, DA, X, RA, SR, BX
dst < (C)

The byte of data from the selected peripheral is loaded into the destination. During the I/O
transaction, the peripheral address from the C register is placed on the low byte of the
address bus, the contents of the B register are placed on address lines Ag-Ay5 and the
contents of the I/O Page register are placed on address lines Ayg-Az3. The byte of data from
the peripheral is then Ioaded into the destination.

Flags:

S: Set if the input data is negative; cleared otherwise

Z: Set if the input data is zero; cleared otherwise

H: Cleared

V: Set if the input data has even parity; cleared otherwise
N: Cleared

C: Unaffected

Exceptions:

Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode

Syntax Instruction Format

DA:

2P x

BX:

IN- R,(C) (11]101[101][01] r Jooo]

IN RX,(C) - [11]e11]101]{ 11]101]101] [01] x Jo00] ,
IN (addr),(C) {11]011] 101] [11]101]101] [01]111] 000 [MJ[MJ
IN (X + dd)(C) [W[n11]%01] [T]101]701] [01] xx J00o] [_atow] [_amigh]
IN <addr>,(C) “[11]111] 101] [11]101] 101] [01]000] 000 [cisptiow)] [dispimigh) |
IN (SP + dd),(C) [11[e11]701] [11]101]01] [01]o00[000] [dtiow)] [_dighy]
IN (XXA + XXB),(C) [11jo11]101]| 11]101]101] [01] bxJ000]

Fleld Encodings:

0 for IX, 1 for IY

100 for high byte, 101 for low byte

001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)

THRe

Examble:

"IN L©)

Before instruction execution: After instruction execution:

F: szxhxvne F: 00x0x00c
BC: 1 6 50 BC:
HL: 00 2 3 HL:

of=
ol
~N|on
N O

1/0 Page register:

Byte 76 available at I/O port 111650y

5-55

IN

Input Accumulator
IN A(n)
Operation:

A< (n)

The byte of data from the selected peripheral is loaded into the accumulator. During the
110 transaction, the 8-bit peripheral address from the instruction is placed on the low
byte of the address bus, the contents of the accumulator are placed on address lines
Ag-Aj5 and the contents of the I/O Page register are placed on address lines A1g—Ag3.
The byte of data from the selected port is written into the accumulator.

Flags: No flags affected ’
Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)
Addressing .
Mode Syntax Instruction Format |

INAM [11]o11]o11][m]

Example: IN A,(66H)
Before instruction execution: After instruction execution:

a4z] x

1/0 Page register:

[]

Byte FDy available at I/O port 114266

INC

- Increment (Byte)
INC dst dst = R,RX, IR, DA, X, SX, RA, SR, BX
' J '
Operation: dst+dst + 1
The destination operand is incremented by one and the sum is stored in the destmanon
Twoscomplement addition is performed.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Set if there is a carry from bit 3 of the result; cleared otherwise =~ .
V: Set if arithmetic overflow occurs, that is, if the destination was 7Fy; cleared
otherwise
N: Cleared
C: Unaffected
Exceptions: None '
Addressing
Mode Syntax Instruction Format
R: INC R [00] r [100]
" RX: INC RX [11]e11]101] [00] = [100]
IR: INC (HL) [00[110] 100] ‘
DA: INC (addr) [11]o11] 101][00 111]100] | addriow) | [addr(high) |
X, INC (XX +dd) - [a1]111]101][00] xx [100][dow) | [amign |
sX: INC (XY + d) [11]e11]101][oo[110]100][a4]
~ RA INC <addr> {11]111]101] [00]000] 100] | displow) | [dispmhigh)]
SR: INC (SP + dd) (11]o11] 101] [00f000100] [diow)] [amigh |
BX: INC (XXA + XXB) [11]o11] 101 IonoI bx [100]
Fleld Encodings: o: oforix, 1forly
' r: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (IX + 1Y)
Example: INC (HL)
Before instruction execution: _ After instruction execution:
F: szxhxvnc F: 10x0x00c
HE| 2 4 5 4 HE[2 4 5 4
Data memory: Data memory:

soe [55 e 55]

5-57

INC[W]

Increment (Word)
INC[W] dst dst = R
or ,
INCW dst dst = IR, DA, X, RA
Operation: dst «dst + 1

The destination operand is incremented by one. Twos-complement addition is performed.

Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: INCW RR [00] rr [o11]
INCW XY {11]e11] 101][00[100] 011]
IR: INCW (HL) [11]o011]101][oofo00]011]
DA: INCW (addr) [11]011] 101]] 0o]o10[011] [addrlow) || addrmigh)]
X INCW (XY + dd) [11[111]101][00] xy Jot1] [dflow)][anigh) |
RA: INCW <addr> _[11]o11]101][00]110[011] [disp(iow)] [dispihigh) |
Fleld Encodings: o: oforiX, 1forly
rr: 000 for BC, 010 for DE, 100 for HL, 110 for SP
Xy : 000 for (IX + dd), 010 for (IY + dd)
INCW BC

Example:

Before instruction execution: After instruction execution:

BC:[3F|1v2] BC::| 3 F |

1.3 |

IND

Input and Decrement (Byte, Word)

IND
INDW
Operation: (HL) < (C)
B<B-1
HL < AUTODECREMENT HL (by one if byte, by two if word)
This instruction is used for block input of strings of data. During the 1/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag—A1s, and the contents of the
IO Page register are placed on address lines A1g—Ag3. The byte or word of data from
the selected peripheral is then loaded into the memory location addressed by the HL
register. The HL register is then decremented by one for byte transfers or by two for -
word transfers, thus moving the memory pointer to the next destination for the input. The
B register, used as a counter, is then decremented by one.
Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected
V: Unaffected
N: Set
C: Unaffected
Exceptlons: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format
IND A [11]101]101] [10]101] 010]
INDW [11]101]101] [10]001]010]
Example: INDW
Before instruction execution: After instruction execution:
F: szxhxvne F: sOxhxvic
BC: 15 6 4 ' BC: 1 4 6
HL: 5 0 0 2 HL: 5 0 . 0
/O Page register: ' Data memory:
o
' 5003: 8 D

Word 8D07 available at /O port 331564

Note: Example assumes that a 16-bit data bus configuration of the Z280 MPU is used.

it

INDR

Input, Decrement and Repeat (Byte, Word)

INDR
INDRW

Operation: Repeat until B = 0: (HL) + ()
BB - 1 :
HL « AUTODECREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the
location addressed by the HL register and decreasing. During the 1/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-Aqs, and the contents of the
I/O Page register are placed on address lines Ajg—Agz3: The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then decremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains O at the start of the execution of this in-
struction, 256 bytes are input.

=~ Thisinstruction can be interrupted after each execution of the basic operation. The Program
Counter value of the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

Flags: S: . Unaffected
Z: Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)
Addressing
Mode Syntax Instruction Format
INDR [11]101]101] [1ol1i1lo1o]
INDRW [11]101]101 | {10]011] 010 |

e —i

| Example:

INDR

Before instruction execution:

F:

BC: 03
HL: 5§ 2

EYFS
®| o

110 Page register:

L7]

Byte 9A available at
110 port 170346y,
then byte 3B, available at
11O port 170246y,
then byte FFy, available at
1/O port 170146y,

-

After instruction execytion:

)

sixhxvic

4 6

1 65

Data memory

Y
serr:
521

5-61

Input and Increment (Byte, Word)

INI
INIW

Operation: (HL) < (©C)-

B« B -1

HL < AUTOINCREMENT HL (by one if byte, by two if word)
This instruction is used for block input of strings of data. During the 1/O transaction, the
peripheral address from the C register is placed on the low byte of the address bus, the
contents of the B register are placed on address lines Ag-A1s, and the contents of the
110 Page register are placed on address lines Ajg—Aq3. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one.

Flags: S: Unaffected
Z: Set if the result of decrementing B is zero; cleared otherwise
H: Unaffected .
V: Unaffected
N: Set
C: Unaffected

Exceptions: Privileged Instruction (if the Inhibit User I/O bit in the Trap Control register is set to 1)

Addressing
Mode - Syntax Instruction Format

INI [11]101]101][10]100]010] -
INIW) [11]101]101][10]000]010 |

Example: INI
Before instruction execution: After instruction execution:

F: szxhxvne F: sOxhxvic
BC: 15 6 4 BC: 1 4 6. 4
HL: 50 0 2 HL: 50 0 3

1/0 Page register: Data mémory:

[2a] 0z [7 A]

Byte 7A, available at
1/O port 331564y

Inp@;t, Increment and Repeat .

Operation:

INIR_
INIRW

Repeat until B = 0: (HL) < (C)
B«<B -1)
HL < AUTOINCREMENT HL (by one if byte, by two if word)

This instruction is used for block input of strings of data. The string of data from the
selected peripheral is loaded into memory at consecutive addresses, starting with the .
location addressed by the HL register and increasing. During the |/O transactions, the
peripheral address from the C register is placed on the low byte of the address bus, the

. contents of the B register are placed on address lines Ag—A1s, and the contents of the

I/O Page register are placed on address lines A1g—A23. The byte or word of data from
the selected peripheral is loaded into the memory location addressed by the HL register.
The HL register is then incremented by one for byte transfers or by two for word
transfers, thus moving the memory pointer to the next destination for the input. The B
register, used as a counter, is then decremented by one. If the result of decrementing
the B register is zero, the instruction is terminated, otherwise the input sequence is
repeated. Note that if the B register contains 0 at the start of the execution of this in-
struction, 256 bytes are input.

This instruction can be interrupted after each execution of the basic operation. The Program
Counter value at the start of this instruction is saved before the interrupt request is accepted,
so that the instruction can be properly resumed.

’

Flags:

S: Unaffected
Z Set
H: Unaffected
V: Unaffected
N: Set
C: Unaffected

Exceptions:

Privileged Instruction (if the Inhibit User 110 bit in'the Trap Control register is set to 1)

Addressing
Mode

Syntax Instruction Format

INIR [11]101] 101 [10]110] 010]
INIRW [11]101]101] [10]010]010]

’

Example: INIRW
Before instruction execution: After instruction execution:
F: [soxwome F: sixhxvic
BC: 0 2 5§65 BC: 00 55
HL: 4 0 0 2 HL: 4 0 0 6
/O Page reéister: . Data memory:
[+] woz [7
‘ - 4003: 6 6
Word 66D7y available at 4004: F F
/O port 310255y 4005: A 8

then word A8BFF available
at /O port 3101554.
Note: Example assumes that a 16-bit data bus configuration of the 2280 MPU is used.

IN[W]

o : Input HL

IN[W] HL,C)

Operation: HL < (C)
The word of data from the selected peripheral is loaded into the HL register. During the
I/O transaction, the 8-bit peripheral address from the C register is placed on the low byte
of the address bus, the contents of the B register are placed on address lines Ag—Ass
and the contents of the I/O Page register are placed on address lines Ajg—Agz3. Then one
word of data from the selected port is written into the HL register. For 8-bit data buses,
the contents of L are undefined for external peripherals.

Flags: No flags affected

Exceptions: Privileged Instruction (if the Inhibit User 1/O bit in the Trap Control register is set to 1)

Addressing :
Mode Syntax Instruction Format

IN HL,C) [11]101]101] [10]110]111]

Example: INW HL,(C)
Before instruction execution: After instruction execution:

BC:| 2 6 50 BC: 2 6 50
HL: 3 3 3 3 HL: 8 7 4 D

11O Page register:
Word 4D87,, available at I/O port 102650y
Note: Example assumes that a 16-bit data bus configuration of the zéao MPU isused. N

JAF

Jump On Auxiliary Accumulator/Flag :

JAF dst dst = RA
Operation: If auxiliary AF then PC < dst

A conditional jump is performed if the auxiliary Accumulator/Flag registers are in use. If
the jump is taken, the Program Counter is loaded with the destination address; otherwise
the instruction following the JAF instruction is executed. This instruction employs an 8-bit
signed, twos-complement displacement from the Program Counter to permit jumps
within the range —125 to +130 bytes from the location of this instruction.

Flags: No flags affected
Exceptions: None
Addressing .
Mode - Syntax Instruction Format
RA: JAF addr [71]on]701] [00]101]000] [disp |
Example: JAF 5000H
Before instruction execution: After instruction exechtion:

Auxiliary Accumulator/Flag in use

pc:[4 F | E 6 | pc:[50 | oo |

JAR

Jump On Auxiliary Register File In Use

JAR dst - » dst = RA
Operation: If auxiliary file then PC < dst
A conditional jump is performed if the auxiliary register file is in use. If the jump is taken,
the Program Counter is loaded with the destination address;y otherwise the instruction
following the JAR instruction is executed. This instruction employs an 8-bit signed, twos-
complement displacement from the Program Counter to permit jumps within the range
—125 to +130 bytes from the location of this instruction.
Flags: No flags affected
Exceptions: None
" Addressing
Mode Syntax Instruction Format
RA: JAR addr [11]o11] 101 [o0[100{000]| disp |
Example: JAR 42DOH
» Before instruction execution: After instruction execution:

Auxiliary file in use

pc:[42 | F 6 | PG:[42 | Do] A

JP.

Jump
JP [cc,Jdst dst = IR, DA, RA
Operation: If cc is satisfied then PC < dst
A conditional jump transfers program control to the destination address if the setting of a
selected flag satisfies the condition code *‘cc” specified in the instruction; an uncondi-
tional jump always transfers control to the destination address. If the jump is taken, the -
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump instruction is executed. For the Relative Address mode, the PC value
used to calculate the destination address is the address of the next instruction following
the Jump instruction; a 16-bit signed twos-complement displacement from the PC per-
mits jumps within the range —32764 to +32771 bytes from the location of this instruc-
tion.
Each of the Zero, Carry, Sign, and Overflow flags can be individually tested and a jump
performed conditionally on the setting of the flag.
When using DA mode with the JP instruction, the operand is not enclosed in paren-
theses. .
Flags: No flags affected
Exceptions: None
Addressing)
Mode Syntax Instruction Format
IR: JP CC,(HL) [11]o11] 101] [11] cc Jo10]
JP (HL) [1701]001]
TP (XY) [11]e11]701] [11]101]001]
DA: JP CC,addr [11] ecJo10] [addr(low)][addr(nigh)] ‘
JP addr [11]o00[011] [addr(low)][addr(high)] “unconditional jump”
RA: JP CC<addr> [13[111]701] [11] ce [010] [disptiow)] [cispthigh)]
. JP <addr> [11]111] 101] [11]ooo]011][displow)][dispthigh)][“unconditional jump” |
Fleld Encodings: o: oforIX, 1for 1y _
cc: 000 for NZ, 001 for Z, 010 for NC, 011 for C, 100 for PO or NV, 101 for PE or V,
* 110for Por NS, 111 forMor S
Example: JP C,5000H-
Bgfore instruction execution: After instruction execution:
F: szxhxvn1 F:) sz2xhxvn1
PC:[2 6 8 4 PC:| 5 0 00

JR

Jump Relative
* JR [cc Jdst dst = RA

Operation: If the cc is satisfied then PC + dst
A conditional jump transfers program control! to the destination address if the setting of a '
selected flag satisfies the condition code *‘cc” specified in the instruction; an uncondi-
tional jump always transfers control to the destination address. If the jump is taken, the
Program Counter (PC) is loaded with the destination address; otherwise the instruction
following the Jump Relative instruction is executed. These instructions employ an 8-bit
signed, twos-complement displacement from the PC to permit jumps within the range
—126 to +129 bytes from the location of this instruction.
Either the Zero or Carry flag can be tested and a jump performed conditionally on the
setting of the flag.

Flags: No flags affected

Exceptions: None

Addressing .
Mode Syntax Instruction Format
RA: . JR CC,addr {00 ccJooo]| __ disp]

JR addr . [ooJo11Jooo] [disp | [“unconditional jump”}

Field Encoding: ec: 100 for NZ, 101 for Z, 110 for NC, 111 for C

Example: JR NZ,6000H
Before instruction execution: ’ After instruction execution:

. F: 80xhxvnc F: s0xhxvne
PC:| 5 F D 4 PC:| 6 0O 00

LD

Load Accumulator
LD dst,src dst = R, RX, IR, DA, X, SX, RA, SR, BX
src = A
or
dst = A
src = R, RX, IM, IR, DA, X, SX, RA, SR, BX

Operation: , dst < src

The contents of the source are loaded into the destination. The contents of the source
are not affected. Special instructions are provided so that the BC and DE registers can
also be used in the IR addressing mode.

Flags: No flags affected
Exceptions: None
Load into Accumulator
Addressing
Mode Syntax Instruction Format
R: LD AR Lo1[111] r]
RX: LD ARX [11]e11]101][01]111] = |
IM: LD An [oo[111]110][" m] '
IR: LD A(HL) Lo1]111]110]
LD ARR) [00] ra [010]
DA: LD A(addr) [00]111]010] " addrilow)] [addr(high) |
X LD A(XX + dd) [11[111]101][o1]111]xxa][_dtow) - |[dehigh) |
SX: LD AXY + d [11Je11[101][o1]111]110] [d |
RA: LD A<addr> [11]111]101] [01]111] 000 | [_disp(iow) | [disp(high) |
SR: LD A(SP + dd) [11Jo11]101] 01119000 | [dtow)][dnigh) |
BX: LD A(XA + XXB) [A1]o1i]01] [01[719] bx |

Load from Accumulator

Addressing S
Mode . Syntax Instruction Format
R LD RA : [01] r [111]
RX: - LD RXA [11]e11]101][01] x [111]
R LD (HLA [o1]110]111]
LD RR)IA [00] w010
‘DA LD. (addr),A [0o[110]010] [addrlow)][addrihigh) |
X LD (XX + dd)A [11[101]101][00[ob[011][dllow)][dhigh) |
sXx: LD XY + dA [1]erJro1][o1]10]111][4 |
RA: LD <addr>A [11]101]101][00]100]011] [dispfiow) | [dispigh) |
SR: LD (SP + dd)A ~ [11[101]701] [00]oo0]o11] [ddow)][dthigh) |
BX: LD (XXA + XXB)A [11]101]101][00] bx Jo11]
Fleld Encodings: ®: Ofor X, 1forlY
rx: 100.for high byte, 101 for iow byte
rma: 001 for BC, 011 for DE
rmb: 000 for BC, 010 for DE
xxa: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
xxb: 101 for IX + dd), 110 for IY + dd), 111 for (HL + dd)
bx: 001 for (HL + X), 010 for (HL + IY), 011 for (X + IY)
Examples: LD AHL)
Before instruction execution: After instruction execution:
A [oF ' A [oB
HL: 170¢C - HL 1700¢C
Data memory: ' Data memory:

, me [08] we [0e]

LD

Load from | or R Register
LD Asrc src = |,R
Operation: A<src’ .

The contents of the source are loaded into the accumulator. The contents of the source
are not affected. The Sign and Zero flags are set according to the value of the data
transferred; the Overflow flag is set according to the state of the Interrupt A Enable bit in
the Master Status register. Note: The R register does not contain the refresh address
and is not modified by refresh transactions.

Flags: S: Set if the data loaded into the accumulator is negative; cleared otherwise
Z: Set if the data loaded into the accumulator is zero; cleared otherwise
H: Cleared :
V: Set when loading the accumulator if the interrupt A Enable bit is set; cleared
otherwise
N: Cleared -
C: Unaffected
Exceptions: Privileged Instruction
Addressing i
‘Mode Syntax Instruction Format
LD Al - [11]101]101][01]010]111]
LD AR [11]101]101][01]011] 111]
Example: LD AR
Before instruction execution: After instruction execution:
AF: | 1 0 [szxome AF: [4 2 00x0x10c
R: 4 2 R: 4 2
MSR: | 4 0 7 F MSR: | 4 0 7 F

LD

Load Immediate (Byte)
LD dst,n dst = R, RX, IR, DA, X, SX, RA, SR, BX
Operation: dst < n
The byte of immediate data is loaded into the destination.
Flags: No flags affected
Exceptions: None
Addressing ‘ .
Mode Syntax) Instruction Format
R: LD Rn [oof r [110][_n__]
RX: LD RX,n (11]e11]101][00] m [110][n]
IR: LD (HL\n [oo[110[110][n])
DA:. LD (addr),n _[11]011] 101} [00]111] 110] [addrlow) | [adartmigh] | n |
X LD (XX + dd)n (11]111]101] [00[xx [110] [dow) | [dmighy J [o]
sX: LD XY + d)n [11]e11]101][0of110]110][@ J1[n]
RA: LD <addr>n [11111]101] [0ofooo[110] [steptow] [ctepmigh] [n]
SR: LD (SP + dd)n [11]o11] 101] [00]o00[110][dow)][amigh [n |
BX: LD (XXA + XXB),n [11]o11]101|[o0[bx [110][n]
" Fleld Encodings: o: . 0OforiX, 1forly
mx: 100 for high byte, 101 for low byte
xx: 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y); 011 for (IX + 1Y)
Example: LD A55H

Before instruction execution: ‘ After instruction execution:

Mcwal x [55]

LD

Load Register (Byte)
LD dst,src dst = R
src = R, RX, IM, IR, SX
or
dst = R, RX, IR, SX
src = R
Operation: dst < src

The contents of the source are loaded into the destination.

Flags: No flags affected
Exceptions: None
Load into Register
Addressing ‘ .
Mode Syntax Instruction Format
R: LD R1,R2 [oi[ri]2]
RX: LD R*RX [11]et1f101][01]r [m |
LD RXARXB [11]e11]101] [01 [rxa [b |
; LD RXR* - [ferfro1][ot [] |
IM: ‘LD Rn [oo] r J110][n]
LD RXn [11]en1]101][00]m [110][n]
IR: LD R(HL) _ [o1] r [110]
sX: LD RXY + d) (1i]ettf101]{o1 [r [110|[d |
Load from Register
IR: LD (HLR [ofwelr]
SX: LD XY + d)\R [11]e11]101][o1]110] r][o]
Field Encodings: ®: OforX, 1forly
rx: 100 for high byte, 101 for low byte
rxa: 100 for high byte, 101 for low byte
rxb: 100 for high byte, 101 for low byte |
rxa and rxb refer to the same index register
r*: Only registers A, B, C, D, and E can be accessed
ri,r2: See Table 5-12
Example: LD AB
Before instruction execution: . After instruction execuﬂoﬁ:
AY .
A 0 3) A 8 2
B: 8 2 B: 8 2

LD

. Load to I or R Register
LD. dst,A dst = LR
Operation: - dst < A
The contents of the accumulator are loaded into the destination. Note: the R register
does not contain the refresh address and is not modified by refresh transactions.
Flags: No flags affected
Exceptions: Privileged Instruction
Addressing : .
Mode Syntax Instruction Format
LD LA [11]101]101][01]o00]111]
LD RA . | 11]101]101][01]001{111]
Example: LD LA
Before instruction execution: After instruction execution:
A oD A 0D
k 2 2 ok 0D

LDA

Load Address

Operation:

LDA dst,src

dst < address(src)

dst
src

HL, IX, IY
DA, X, RA, SR, BX

The address of the source operand is computed and loaded into the destination. The
contents of the source are not affected. The address translation mechanism in the MMU
is not used to determine if the address is valid.

\

Before instruction execution:

HL: 2 3 08

IX: E 3 2 4

Address calculation:

E324
+ 4

E328

Flags: No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
DA: LDA HL,(addr) [00[100]001] [_addrgiow; | [addrigh)]
" LDA XY (addr) [11]®11]101][00]100[001] [addr(low) || addr(high) |
X LDA HL,(XX + dd) [11]101]101][00] xx Jo10] | _d(low) 1[_dmigh)]
LDA XY, (XX + dd) [11]e11]101] [11]101]701] [00] xx [010] [dgow) }[dhigh) |
RA: LDA HL,<addr> [11]101]101][00]100] 010 | [disptiow)][disp(nigh) |
LDA XY, <addr> [11]e11]101][11]101]101] [00]100] 010 [displiow)][dispthigh) |
SR: LDA HL,(SP + dd) [11]101]101][00]oo0[o10][diow)][dehigh) |
» LDA XY,(SP + dd) [11]e11]101] [11]101]101] [00]00o]010] [diow)][dthigh) |
BX: LDA HL,(XXA + XXB) [11[101]701] [00] bx [010]
LDA XY,(XXA + XXB) [AA]@T1] 101 | [11]701] 107 | [00] bx [010
Fleld Encodings: o: 0forIX, 1for I »
xx: 101 for (X + dd), 110 for (IY + dd), 111 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + 1Y), 011 for (X + IY)
Example: LDA HL/(IX + 4)

After instruction execution:

HL: |[E 3 2 8
IX: E 3 2 4

. LDCTL

Load Control
LDCTL dst,src dst = (C), USP
: - src = HL, IX, IY
or .
dst = HL, IX, IY
src = (C), USP
" Operation: dst « src
This instruction loads the contents of a CPU control register into an addressing register,
or the contents of an addressing register into a CPU control register. The contents of the
source are loaded into the destination; the source register is unaffected. The address of
the control register is specified by the contents of the C register, with the exception of
the User Stack Pointer. The various CPU control registers have the following addresses:
: Address

Register ' (Hexadecimal)

Master Status register (MSR) o 00

Interrupt Status register ' 16

Interrupt/Trap Vector Table Pointer 06

/O Page register * 08 -

Bus Timing and Initialization register* FF

Bus Timing and Control register * 02

Stack Limit register 04

Trap Control register * 10

Cache Control register * i 12

Local Address register * 14

*8-bit control register
When writing to an 8-bit CPU control register, only the low-order byte of the specified
source addressing register is written to the control register. When reading from an 8-bit
CPU control register, the control register\contents are loaded into the low-order byte of
the destination addressing register, and the upper byte of the destination is undefined.
Note that the User Stack Pointer control register is accessed using special opcodes; the
contents of the C register are not used for these opcodes. This form of the Load Control
instruction allows the user-mode Stack Pointer to be accessed while in system-mode
operation.

Flags: No flags affected
Exceptions: Privileged Instruction

5-77

Mode Syntax Instruction Format
LDCTL HL,(C) [11]101]101][01]100[110] :
LDCTL XY,(C) [11]e11]101][11]101T101] [01]100[110]
LDCTL (C)HL [11]101]101][01]101]110]
LDCTL (C)XY {11]e11]101][11]101] 101 | [01]101]110]
LDCTL HL,USP [11]101]101] [10]000] 111]
. LDCTL XY,USP [11]e11]101][11]101] 101] [10]000]111]

LDCTL USPHL [11]101[101][10]001]111]
LDCTL USPXY [11]e11]101][11]101]101][10]001]111]

Field Encoding: ®: 0forIX, 1forIY ”

Example: LDCTL (C)HL

Before instruction execution:

After instruction execution:

G 0 8 C: 0 8
HL: [5 5 3 A HL: | 5 5 3 A
110 Page regAister: 1/O Page register:

LDD

Load and Decrement . _

LDD
Operation: - (DE) < (HL)
‘ DE.«<DE — 1~
HL<HL - 1
BC < BC — 1

This instruction is used for block transfers of strings of data. The byte of data at the loca-
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then decremented by one, thus moving the
pointers to the preceding elements in the string. The BC register, used as a counter, is
then decremented by one.

Flags: S: Unaffected
Z: Unaffected
'H: Cleared)
V: Set if the result of decrementing BC is not equal to zero; cleared otherwise
N: Cleared
C: Unaffected
Exceptions: ~ None
Addressing -
. Mode Syntax Instruction Format
LDD [11]101]101] [10]101]000]
Example: LDD .
' Before instruction execution: Affer instruction execution:
F: szxhxvne F: s2x0x00c
HL: 11 11 HL: 11 10
DE: 2 2 2 2 DE: 2 2 2 1
BC:| o0 0 07 BC: 06
Data memory:) Data memory:
M1:| 8 8 M111: | 8 8
2222 6 6 _ . 2222; 8 8

LDDR

Load, Decrement and Repeat

~-LDDR
Operation: Repeat until BC = 0: (DE) « (HL)
DE < DE - 1
HL+HL — 1
BC < BC - 1
This instruction is used for block transfers of strings of data. The bytes of data starting at the
location addressed by HL are loaded into memory starting at the location addressed by
the DE register. The number of bytes moved is determined by the contents of the BC
register. If the BC register contains zero when this instruction is executed, 65,536 bytes are
transferred. The effect of decrementing the pointers during the transfer is important if the
source and destination strings overlap with the source string starting at a lower memory
address. Placing the pointers at the highest address of the strings and decrementing the
pointers ensures that the source string is copied without destroying the overlapping area.
This instruction can be interrupted after éach execution of the basic operation. The Pro-
gram Counter value of the start of this instruction is saved before the-interrupt request is
accepted, so that the instruction can be properly resurhed.
Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared
N: Cleared
C: Unaffected
Exceptions: None
Addressing :
Mode Syntax Instruction Format
~ LDDR [11]101]101] [10]111]000|
Example: LDDR
Before instruction execution: : After instruction execution:
F: soxhxvne F: s2x0x00c
HL: 11 17 HL: 11 14
DE: 2 2 25 DE: 2 2 2 2
BC: 00 0 3 BC: 00 00
Data memory: Data memory:
1115: 8 8 1115: 8 8
1116: 3 6 1116: 3 6
1117: A S 1117: A S5
2223: 6 2223: 8 8
2224: 1 1 2224: 3 6
2225; 6 2225: AS

LDI

Load and increment

LDI

(DE) « (HL)

DE < DE + 1
HL<HL + 1
BC+BC - 1

This instruction is used for block transfers of strings of data. The byte of data at the loca-
tion addressed by the HL register is loaded into the location addressed by the DE
register. Both the DE and HL registers are then incremented by one, thus moving the

decremented by one.

pointers to the next elements in the strings. The BC register, used.as a counter, is then

Flags:

S: Unaffected
Z: Unaffected
H: Cleared

V: Set if the result of decrementing BC is not equal to zero; cleared otherwise

N: Cleared
C: Unaffected

Exceptions:

None

Mode

Syntax

Instruction Format

LDI

[11]101] 101][10]100] 000 |

EXampIo:

LDI

Before instruction execution:

After instruction execution:.

F: szxhxvne F: s2x0x00c
HL: 11 11 HL 11 1 2
DE: 2 2 2 2 DE 2 2 2 3
BC: [} 07 BC: 00 0 6
Data memory: Data memory:
1111 8 8 111 8 8
2222 6 6 2222: 8 8

LDIR

Load, Increment and Repeat

LDIR
Operation: Repeat until BC = 0: (DE) <« (HL)
-DE < DE + 1
HL<HL + 1
BC < BC - 1
This instruction is used for block transfers of strings of data. The bytes of data starting at
the location addressed by the HL register are loaded into memory starting at the location
addressed by the DE register. The number of bytes moved is determined by the contents
of the BC register. If the BC register contains zero when this instruction is executed,
685,536 bytes are transferred. The effect of incrementing the pointers during the transfer
is important if the source and destination strings overlap with the source string starting
at a higher memory address. Placing the pointers at the lowest address of the strings
and incrementing the pointers ensures that the source string is copied without destroy-
ing the overlapping area.
This instruction can be interrupted after each execution of the basic operation. The Pro-
* gram Counter value of the start of this instruction is saved before the interrupt request is
accepted, so that the instruction can be properly resumed.
Flags: S: Unaffected
Z: Unaffected
H: Cleared
V: Cleared:
N: Cleared.
C: Unaffected
Exceptions: None
Addressing
Mode Syntax * Instruction Format
LDIR : [11]101] 101} [10]110] 000]

After instruction execution:

Data memory:

1125
1126:
127

2210:

2211:

2212

Before instruction execution:
1
2
0

LDIR

Example:

Data memory: -

1125:
1126:
1127:

2210:

2211:

2212

5-83

LDUD

Load in User Data Space (Byte)

LDUD dst,src dst = A
src = IR or SX in user data space
or
dst = IR or SX in user data space
src = A
Operation: dst « src
The destination is loaded with the contents of the source. In loading from the user data
space into the accumulator, the memory-mapping mechanism used in translating logical
addresses for data in user mode operation is used to translate the source address. In
loading into the user data space from the accumulator, the memory-mapping mechanism
used in translating |ogical addresses for data in user-mode operation is used to translate
- the destination address. See Chapter 7 for an explanation of this mechanism. The con-
tents of the source are unaffected.
The flags are set to reflect the success or failure of the transfer. If the transfer is un-
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared to O; if the transfer is unsuccessful, the Carry flag
is set to 1. The other flags are unaffected if the transfer is successful. If the transfer is
unsuccessful, the value of the Write Protect (WP) bit in the Page Descriptor register.
used by the MMU .is loaded into the Z flag and the value of that Page Descriptor’s Valid
bit is loaded into the V flag.
Flags: S: Unaffected
Z: For unsuccessful accesses, loaded with the value of the WP bit used by the MMU; .
unaffected otherwise
H: Unaffected
V: For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;
unaffected otherwise
N: Unaffected
C: Setif the transfer is unsuccessful; cleared otherwise
Exceptions: Privileged Instruction
Load from User Data Space
Addressing '
Mode Syntax Instruction Format
IR:. LDUD A(HL) [11[101]101] [10]o00[110 |
‘SX: LDUD AXY + d) » [11]e11]101][11]101]101] [10]000]110][~d]

Load into User Data Space

IR
SX:

LDUD (HL)A [11]101]101] [10[001]110]
LDUD (XY + d)A [11]e11]101]|[11]101]101] [10J001 110][@]

Fleld Encoding:

[H 0 for IX, 1 for IY

. Example:

LDUD A,(HL)
Before instruction execution:
AF: 0 F saxhxvne
HL: 8 D 0 7
User data memory:

soor: [55]

After instruction execution:

AF: 5 5 szxhxvn0
HL: 8 D 0 7
User data memory:

soor: [55

LDUP

Load in User Program Space (Byte)

Operation:

LDUP dst,src - dst
src

A

IR or SX in user program space
or

IR or SX in user program space

A

dst
src

dst < src

The destination is loaded with the contents of the source. In loading from the user pro-
gram space into the accumulator, the memory-mapping mechanism used in translating
logical addresses for program fetches (instructions or data using PC Relative adddress-

.ing mode) in user-mode operation is used to translate the source address. When loading

into the user program space from the accumulator, the memory-mapping mechanism

- used in translating logical addresses for program accesses (instructions or data using

PC Relative addressing mode) in user-mode operation is used to translate the destination
address. See Chapter 7 for an explanation of this mechanism. The contents of the
source are unaffected.

The flags are set to reflect the success or failure of the transfer. If the transfer is un-
successful, no trap is generated and no information is saved in the MMU. If the transfer
is successful, the Carry flag is cleared; if the transfer is unsuccessful, the Carry flag is
set. The other flags are unaffected if the transfer is successful. If the transfer is unsuc-
cessful, the value of the Write Protect (WP) bit in the Page Descriptor register used by
the MMU is loaded into the Z flag and the value of that Page Descriptor’s Valid bit is
loaded into the V flag.)

Flags:

i

S: Unaffected

For unsuccessful accesses, loaded with the value of the WP bit used by the MMU;
unaffected otherwise

Unaffected

For unsuccessful accesses, loaded with the value of the Valid bit used by the MMU;
unaffected otherwise

: Unaffected ‘

: Set if the transfer is unsuccessful; cleared otherwise

0Z <I N

Exceptions:

Privileged Instruction

Load from User Program Space

Addressing :
Mode Syntax Instruction Format
IR: LDUP A,HL) [11]101]101] [10]010] 110]
SX: LDUP AXY + d) [11]e11]101] [11]101] 101] [10]010]110][d |

Load into User Program Space

Addressing .
Mode - Syntax Instruction Format
IR LDUP (HLA [11]101]101][10]011]110]
sX: LDUP (XY + d)A [1e11[701] [11T101] 101 | [lofori[110] [a]
Fleld Encoding: ®: OforIX, 1forly
Example: LDUP A(HL) .
" Before instruction execution: After instruction execution:
AF: 0 F soxhxvne AF: F F s2xhxvn0
HL: 5§ 3 9 0 HL: 5 3 9 0
User program memory: . User program memory:

soo0: [F]

swo:[FF]

LDW

Load Immediate Word
LD[W] dst,nn dst = R
or dst = IR, DA, RA
LDW dst,nn o
‘Operation: dst < nn

The two bytes of immediate data are loaded into the destination. For register destina-
tions, the low byte of the immediate operand is loaded into the low byte of the register
and the high byte of the operand is loaded into the high byte of the register. For memory
destinations, the low byte of the operand is loaded into the addressed location and the
high byte of the operand is loaded into the next higher memory byte (addressed location
incremented by one).

Flags: - No flags affected
Exceptions: None
Addressing
Mode Syntax Instruction Format
R: LDW RR.nn (oo rr Joot][ngow |[nmigh | .
LDW XY,nn [11]e11]101] [00[100[001][nflow) | nehigh |
IR: LDW (HL),nn [11]o11[701] [00]oo0]001] [nflow) [nehigh)]
DA: LDW (addr),nn [11]o11]701] [0o]o10[001] [addrtiow) | [addrimigh)][ntow) |[nehigh |
RA: ~ LDW <addr>,nn [11]o11]101] [0o[110[001] [disp(iow) |[dispihigh)][ntlow) || nhigh) |

Fleld Encodings: rr: 000 for BC, 010 for DE, 100 for HL, 110 for SP
[H 0 for IX, 1 for IY

Example: LDW (HL),3825H
Before instruction execution: After instruction execution:
Data memory: Data memory:
2391: |1 E . 2391: 2 5
23922 | A 3 2392 3 8

LD[W]

Load Addressing Register

Operation: A

LD[W] dst,src

dst < src

dst
src

HL, IX, IY

IM, DA, X, RA, SR, BX
or.

dst = DA, X, RA, SR, BX

src = HL, IX, IY

The contents of the source are loaded into the destination. The contents of the source
are unaffected. For register-to-memory transfers, the effective address of the memory
operand corresponds to the low byte of the register and the memory byte at the effective
address incremented by one corresponds to the high byte of the register.

Flags:

No flags affected

Exceptions:

None

Load into Addressing Register

Mode Syntax Instruction Format _
M LDW HLnn [00[100]001] [_ngiow)][nehign] ~
LDW XY,nn [11]e11]101][00]100]001][ngow)][neigh) |
DA: LDW HL (addr) {oo[101[010][addrgow) | [addrmigh) |
LDW XY ,(addr) [11]e11]101]]00{101]010 || addrglow) || addr(high) |
X © LDW HL(XX + dd) [11]101]101] (00 xx T100] [dtlow) | [dmigh) |
LDW XY,XX + dd) [11]et1]101][11]101{101] [00]xx [100] [dlow)][dihigh) |
RA: LDW HL.<addr> [11]101]101][00]100]100] [disptiow)][disp(high) |
LDW XY <addr> {11]e11]101][11]101]101 | [00]100]100] [disptlow)][dispmigh)]
-~ SR LDW HL(SP + dd)’ [11]101]101][00Jooo]100] [dgow)][dmigh) |
LDW XY,(SP + dd) [11]e11]101] [13]101] 101] [00]000[100] [ddow |[amigh |
_BX: LDW HL, (XA + XXB) [11]101]101][00] bx [100] ‘

LDW XY, (XXA + XXB)

[11]e11]101][11]101]101] [00] bx [100]

Load from Addressing Register

Addressing

Mode Syntax Instruction Format

DA LDW (addr)HL [0o]100[010] [_addriow) | ["addr
LDW (addr), XY . {11]e11]101][00]100] 010] [_addr(ow)][addrmigh) |

X LDW (XX + dd)HL [11[101]101] [00[xx [101] [_dgow) [demigh) |

LDW (XX + dd),XY [11]e11]101] [11]101]101] [00] xx [101] [daiow) |

RA: LDW <addr>,HL [11]101]101] [00] 100 101] [dispiow) | [dispmigh)]
LDW <addr>XY . 11{o11]101][11]101]101] [00]100] 101] [disptiow) |

SR: LDW (SP + dd),HL [11]101]101][00[o0o101] [dqow) |[dinigh)] _
LDW: (SP + dd)XY [11]e11]101][11]101]101] [00]000]101][daow)][dmigh) |

BX: LDW (XXA + XXB), HL [11]101]101][00] bx [101]

LDW (XXA + XXB), XY {11]et1]101][11]101] 101] [00] bx [101]

Field Encodings: &: 0forX, 1for Iy
XX : 101 for (IX + dd), 110 for (IY + dd), 111 for (HL + dd)
bx: 001 for (HL + IX), 010 for (HL + IY), 011 for (X + IY)

Example: LDW HL,HL + IX)

Before instruction execution: After instruction execution:
HL: 1560 2 HL: 0 3 A 2
X F F FE IX: F F F E|

Data memory: Data memory:

1500: A 2 1500: A 2

1501: 0 3 1501: 0 3

Address calculation:

1502

+FFFE

1500

LD[W]

Load Register Word
LD{W] dst,src dst = BC, DE, HL, SP
src = IM, IR, DA, SX
or)
dst = IR, DA, SX
src = BC, DE, HL, SP
Operation: dst < src | '

The contents of the source are loaded into the destination. The contents of the source
are unaffected. For transfers between a register and memory, the effective address of
the memory operand corresponds to the low byte of the register and the memory byte at
“the effective address incremented by one corresponds to the high byte of the register.

Flags: No flags affected
Exceptions: None
Load into Register
Addressing
Mode Syntax Instruction Format
- IM: LDW RR,nn [oo] rrl.Imllimow)][omigh)]
IR LDW RR,(HL) [11]101]101][o0] rra[110]
DA: LDW RR(addr) [11]101]101][01]rrbJ011] [addr(low)][addrhigh) | (except HL)
SX: LDW RR/(XY + d) [11]e11]101] [11]101]101] [00]rra[110] [da |
Load from Register
IR LDW (HL)RR [11[101]101] [0 mb [110] A
DA: LDW (addr),RR [11]101]101] [01]rra]011] [addrjiow)] [addrnigh)] (exceptHL)
SX: LDW (XY + d)RR [11]e11]101][11]101] 101] [00]rrD[110] [d]

Fleld Encodings: rra: 000 for BC, 010 for DE, 100 for HL, 110 for SP
rrb: 001 for BC, 011 for DE, 101 for HL, 111 for SP
$: 0 for IX, 1 for IY

Example: LDW BC,3824H

Before instruction execution: After instruction execution:

BC: BC:

LD[W]

Load Stack Pointer
LD[W] dstsrc dst = SP
src = HL, IX, 1Y, IM, IR, DA, SX
or
dst = IR, DA, SX
src = SP
Operation: dst < src

The contents of the source are loaded into the destination, where the source or destina-
tion is the Stack Pointer.

Flags: No flags affected
Exceptions: None
Load into Stack Pointer
Addressing
Mode Syntax Instruction Format
R: LDW SPHL [11]111]o01]
LDW SPXY [11]e11]101][11]111]001]
IM: LDW SP,nn [oo[110]0a1] [nlow)][nmigh)]
IR: LDW SP,(HL) [11]101]101][00]110]110]
DA LDW SP(addr) [(11[101]701] [01]111]011] [addrow) | [addrhigh) |
sX: LDW SP(XY + d) [A1[eti[707] [13]701 01| [0o[110]110] [_d |
Load from Stack Pointer
IR: LDW (HL),SP L11]101]101][00]111]110]
DA:’ LDW (addr),SP ~ [11]101]401] [01]110]011] ["addriow) | [addrinigh |
sx: LDW (XY + d),SP [11[e11]101] [11]101101] [00]111]110] [d |

Fleld Encoding: ©: Ofor IX, 1for Iy

Example: LDW SP,IX ‘
Before instruction execution: After instruction execution:
SP: 2 3 8 D SP; F F FO
X F FFO IX: F FFO

MULT

e

Multiply (Byte)
MULT [AJsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: HL < A X src
The contents of the accumulator are multiplied by the source operand and the product is
stored in the HL register. The contents of the accumulator and the source are unaffected.
Both operands are treated as signed, twos-complement integers. .
The initial contents of the HL register are overwritten by the result. The Carry flag is set
to 1 to indicate that the H register is required to represent the result; if the Carry flag is
cleared to 0, the product can be correctly represented in eight bits and the H register
merely holds sign-extension data.
Flags: S: Set if the result is negative; cleared otherwise
Z: Set if the result is zero; cleared otherwise
H: Unaffected
V: Cleared
N: Unaffected :
C: Set if the product is less than — 27 or greater than or equal to 27; cleared otherwise
Exceptions: None
Addressing .
Mode Syntax Instruction Format
R: MULT AR [11]101]101]{11] r [o00]
RX: MULT ARX . [11]e11] 101] [11]101][101] [11] mx J000]
IM: MULT An (11]111[101] [11]101] 101 | [11]111] 000] | n |
IR: MULT A(HL) ~ [11]101] 101]{11]110{ 000 |)
DA: MULT A,(addr) [11]o11]101][11]101] 101] [11][111] 000 | [addr(low) || addr(nigh) |
- X MULT A(XX + dd) (11]111]101][11]{101]101 | [11]xx Jooo |[d@low)][d(nigh)]
sX: MULT A(XY + d) - [11]e11]101][11]101]101][11]110] 000] | d]
RA: MULT A<addr> [11]111]101][11]101] 101] [11]o00] 000 | [disp(iow)][dispthigh) |
SR: MULT A(SP + dd) [11fo11]101][11]101]101][11]o00]000] [d(low)][dehigh]
BX: MULT A,(XXA + XXB) [11]o11]101][11]101] 101] [11]bx 000]
Field Encodings: o: oforix, 1forly
rx: 100 for high byte, 101 for low byte
xx: . 001 for (IX + dd), 010 for (IY + dd), 011 for (HL + dd)
bx: 001 for (HL + 1X), 010 for (HL + 1Y), 011 for (IX + 1Y)
Example: MULT AH
Before instruction execution: After instruction execution:
AE:[F E szxhxvne AR F E 10xhx0n0
HL: 12 00 HL: F F D C

MULTU

Multiply Unsigned (Byte)

MULTU [A]Jsrc src = R, RX, IM, IR, DA, X, SX, RA, SR, BX
Operation: HL < A X src

The contents of the accumulator are mul<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>