

PMB HARDWARE MANUAL
03-3007-01 REV. A

3 October 1978

Price: $\$ 4.50$
03-3007-01
Revision A

Copyright (c) 1978 by Zilog, Inc All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of Zilog.

Zilog assumes no responsibility for the use of any circuitry other than circuitry embodied in a Zilog product No other circuit patent licenses are impiled.

PMB USER'S GUIDE

TABLE OF CCNTENTS
SECTION PAGE
1.0 GENERAL INFORMATION
1.1 Product Description 1
1.2 Block Diagram 2
2.0 INSTALLATION
2.1 Introduction 3
2.2 Initial Unpacking and Inspection 3
2.3 Installation (MCZ-1) 3
2.4 Power and Signal Connections 4
3.0 OPERATION
3.1 Introduction. 5
3.2 PROM Type Selection 5
3.3 PROM Address Selection. 6
3.4 I/O Address Modification 9
3.5 FIO Input/Output Configuration 10
4.0 PROGRAMMING AND INITIALIZATION
4.1 Introduction 12
4.2 PIO Programming 12
4.3 Loading the Interrupt Vector. 12
4.4 Selecting an Operating Mode (PIO) 13
4.5 Setting the Interrupt Control word (PIO) 16
4.6 CTC Programming 17
4.7 Loading the Channel Control Register (CTC) 17
4.8 Loading the Time Constant Register (CTC) 21
4.9 Loading the Interrupt Vector Register (CTC) 23
5.0 STANDARD FACTORY STRAPPING CONFIGURATION
5.1 Introduction 25
5.2 Component Carrier Jl 25
5.3 Component Carrier J2 25
5.4 Component Carrier J3 25
5.5 Component Carrier Kl 26
5.6 Component Carrier K2 26
6.0 TECHNICAL DESCRIPTION
6.1 Introduction 27
6.2 Detailed Description ofBoard Schematics27
6.3 Schematics 31
6.4 Assembly Drawings 39
6.5 PME Specification 40
6.6 PMB Parts List. 42
6.7 Pin Out for PROM Memory Board 43

PMB USER'S MANUAL

SECTION 1: GENERAL INFORMATION
1.1 Product Description

The $280-\mathrm{PMB}$ provides the 280 Microcomputer Board Series with additional $P R O M$ or $R O M$ memory and I / O capability.

The board contains sixteen, 24 -pin sockets to accommodate up the 32 K bytes of program memory using 2716 EPROMS or 2316 ROMs. The PMB will also accommodate 2708 EPROMS, or 6381 (82 Sl 181) PROMs for 16 K bytes of program memory. Program memory addressing is implemented by using a PROM-based memory address decoder.

The PMB also contains a $280-P I O$ and CTC providing 15 lines of parallel I / O with four control lines for byte operation, and four 8-bit counter/timers. The I/O devices are mapped anywhere into the I / O address space by strapping selections.

SECTION 2. INSTALLATION

2.1 Introduction

The following section contains information on initial unpacking and inspection, power and signal connections to the MCB, and installation of the PMB in the MCZ-l series systems.
2.2 Initial Unpacking and Inspection

Inspect the product for shipping damage as soon as it is unpacked. Check for any physical damage that may be attributed to abuse and handling during shipment. If the product is damaged in any way, notify the carrier immediately.

2.3 Installation (MCZ-1)

The PMB may be installed in either of the prewired memory board positions in the MCZ-1/20 or MCZ-1/25 systems. These positions are J6 and J7 as described in the MCZ-1 Hardware User's Manual. In the MCZ-1/30 System, Jб and J7 of each card cage, may be used in the identical manner as previously described. In the $\mathrm{MCZ}-1 / 05,-1 / 10$ and PDS, Jl (User's Option) and J4 (Video Display Eoard) will directly accommodate the PME.
2.4 Power and Signal Connections

The $280-\mathrm{PMB}$ is pin-compatible with the 280 MCB bus structure. For convenience, the wire list for interconnection between the $M C B$ and the PROM Memory Board is provided:

TO

PME:1-3, 59-61
PMB: 4
PMB: 5
PME: 7
PMB: 8
PMB: 12
PMB: 1.3
PME: 26
PMB: 27
PMB: 29
PMB: 30
FMB: 32
PME: 36
PMB: 37
Next IEI
Next IEI
FME:62-64, 120-122
PMB:66, 67
PMB: 68
PME:69, 70
FMB: 71
PME: 73
PMB: 75
PME:79
FMB: 85
PMB: 89
PMB:91
PMB:94
PMB:97
PMB:98
PMB:99
PMB: 100
PMB:101
PMP:102
PMB:103
PME: 115
PMB:116
PMB:117

FRCM
MCB:1-3, 59-61
MCB: 4
MCB: 5
Last used IEO
MCB: 8
MCB: 12
MCB: 13
MCB: 2 б
MCB: 27
MCB: 29
MCE : 30
MCB: 32
MCB: 36
MCB: 37
PMB: 50
PMB:58
MCB:62-64, 120-122
MCB: 66, 67
MCB: 68
MCB:69, 70
MCB: 71
MCB:73
MCB: 75
MCE : 79
MCB: 85
MCB: 89
MCB:91
MCB:94
MCB:97
MCB:98
MCB:99
MCB: 100
MCB:101
MCB:102
MCB:103
MCE:115
MCB: 116
MCB: 83

EESCRIPTION
+5 V P.S.
IORQ-
DATA BIT (5)
IEI Of PIO
DATA EIT (3)
DATA BIT (6)
DATA BIT (0)
ADDR. BIT (7)
ADDR. EIT (8)
ADDR. BIT (5)
ADDR. BIT (6)
ADDR. BIT (15)
ADER. BIT (13)
ADDR. EIT (11)
IEC of PIO
IEO Of CTC
CCMMCM
-5V P.S.
DATA BIT (4)
+l2V P.S.
DATA BIT (2)
DATA BIT (7)
DATA BIT (1)
INT-
MRC-
ADDR. BIT (9)
ADDR. BIT (10)
ADDR. BIT (14)
ADDR. BIT (12)
ADDR. BIT (4)
PHI-
ADDR. BIT (3)
ACDR. BIT (2)
ADER. BIT (I)
ADDR BIT (0)
M1-
RD-
ROM EISABLE-

TABLE 2.3.1: MCB TO PME WIRE LIST

SECTION 3: OPERATION

3.1 Introduction

This section contains a general description of the PROM Memory Board's operation, and provides some application software for initializing and communicating to the PIO and CTC.

3.2 PRCM Type Selection

Jumper area J3 is used to configure the PMB for a particular type of PROM. The following table shows the pin assignments which differ between the three PMB-compatiole PRCMs:

Pin	2708	2716	6381	(82S181)
18	PRGM	PD/PGM	\cdot	CE4
19	VDE	AIO		CE3
21	VBB	VPP		CE1-

For a 2708, the following jumpers are to be connected at J3:
J3-1 to J3-16 PRGM = GND
J3-2 to J3-15 Disable Bank A during Eank B access J3-3 to J3-14 Disable Eank B for lower lK of 2 K page J3-4 to J3-13 VED $=+12 \mathrm{~V}$ J3-7 to J3-10 VBB $=-5 \mathrm{~V}$

For a 2716 and (2316), the following jumpers are to be connected at J3:

```
J3-1 to J3-16 PD/PGM = GND
J3-3 to J3-13 A10 = IABl0
J3-6 to J3-1l VPP = +5V
```

For a 6381, the following jumpers are to be connected at J3:

```
J3-2 to J3-l5 Disable Bank A during Bank B access
J3-3 to J3-14 Disable Bank E for lower lK of 2K page
J3-5 to J3-12 CE3 = +5V
J3-5 to J3-16 CE4 = +5V
J3-8 to J3-10 CEl- = GND
```


3.3 PROM Address Selection

FROM address selection is accomplished by programming particular bit maps into the decoder PROMS AlO and All. Inputs to the decoder PROMs are IABl5-IABll, which address the 32 PROM locations. Each of the 32 PROM locations represents a 2 K byte segment of memory space. To place a PRCM in a particular 2 K segment, program the appropriate data byte at the address corresponding to the desired $2 k$ segment. See Figure 3.3.1 for the data bytes associated with each PROM socket, and Figure 3.3.2 for the correspondence between 2 K memory segments and control PROM locations. Unused locations in the address decoder PROMs, Al0 and All, should be programed with OFFH. The following two examples illustrate the address selection procedure:

Example 1 - Assume that two 2716's are to be used, one located at 0 to 7 FFH , and the other at F 800 H to FFFFH. Also assume that the 2716's are placed in PROM sockets 0 (A24) and l5 (A22), respectively. Decoder PROM Al0 should enable PROM socket 0 (A24) when the addresses 0 to 7FFH are being accessed. For this address range, Figure 3.3.2 shows that address 0 in the decoder PROM should be programmed. Figure 3.3 .1 shows that the data byte corresponding to PRCM socket 0 (A24) is OFEH. Therefore, data byte OFEH should be programmed into address of Alo. Decoder PROM All should enable PROM socket 15 (A22) when the addresses F800H to FFFFH are being accessed. Again, using Figures 3.3.1 and 3.3.2, data byte 07 FH should be programmed into address lFH of All.
Example 2 - The above example is now repeated
using 2708's. The PROM select logic is such that
when using 1 K PROMs, the least significant Kbyte
of a 2 K byte page resides in PROM Bank A. The
most significant kbyte resides in the
corresponding socket in PRCM Bank B. Shown below
is the correspondence between PROM sockets and
memory segments. For this example:
PROM SOCKET MEMORY SEGMENT

0	(A24)	0 to $3 F F H$
8	(A15)	400 H to 7 FFH
7	(A31)	F 800 H to $\mathrm{F3FFH}$
15	(A22)	FCOOH to FFFFH

Using Figures 3.3 .1 and 3.3 .2 , it can be seen that data bytes FEH and 7 FH should be programmed into locations 0 and 1 FH , respectively, in both Alo and All.
DATA BYTE TO BE PROGRAMMEL INTO
PROM SOCKET AlO OR All

0	(A24)	, 8	(A15)	OFEH
1	(A25)	, 9	(A16)	OFDH
2	(A26)	, 10	(A17)	OFBH
3	(A27)	11	(A18)	0F7H
4	(A28)	, 12	(A19)	OEFH
5	(A29)	13	(A20)	ODFH
6	(A30)	, 14	(A21)	OBFH
7	(A31)	, 15	(A22)	07 FH

FIGURE 3.3.1: PROM ENABLE PROGRAMMING

MEMORY SEGMENT
0000-07FFH OH
0800-0FFFH 1H
1000-17FFH 2H
$1800-1 \mathrm{FFFH} \quad 3 \mathrm{H}$
2000-27FFH 4H
2800-2FFFH 5H
3000-37FFH 6H
3800-3FFFH 7H
4000-47FFH 8H
$4800-4 \mathrm{FFFH} \quad 9 \mathrm{H}$
5000-57FFH OAH
$5800-5 \mathrm{FFFH}$ 0BH
6000-67FFH OCH
6800-6FFFH ODH
7000-77FFH OEH
7800-7FFFH 0FH
8000-87FFH 10H
8800-8FFFH 11H
9000-97FFH 12H
9800-9FFFH 13H
A000-A7FFH 14 H
A800-AFFFH 15H
B000-B7FFH 16H
B800-BFFFH $\quad 17 \mathrm{H}$
$\mathrm{COOO-C7FFH}$. 18H
C800-CFFFA 19H
D000-D7FFH 1AH
D800-DFFFH 1BH
E000-E7FFH ICH
E800-EFFFH 1DH
FOOO-F7FFH 1EH
F800-FFFFH 1FH

FIGURE 3.3.2: PROM ENABLE ADDRESS MAPPING

3.4 I/O Adaress Modification

Jumper areas Jl and J2 are used to assign I/O port ādresses to the CTC and PIO. These two devices have the following ports which are addressed in the order indicated:

PIO DATA PORT A	0	
PIO DATA PORT B	1	
PIO CONTROL PORT A	2	
PIO CONTROL PORT B	3	
CTC CHANNEL 0	0	
CTC CHANNEL	1	1
CTC CHANNEL 2	2	
CTC CHANNEL 3		

Jumper area J2 selects into which range of 32 I/O ports the above eight ports will be located. See Figure 3.4.1 for the possible jumper selections for $J 2$. Once the port range has been established, jumper area Jl is used to position the two groups of four ports at specific locations within the range. See Figure 3.4.2 for the possible jumper selections for Ji.

For example, assume that the four PIO ports are to be 6CH, $6 \mathrm{DH}, 6 \mathrm{EH}$, and 6 FH , and that the four CTC ports are to be 74 H , 75H, 76 H , and 77 H . All of these ports are in the range of 60-7FH. Figure 3.4.1 shows that the following jumpers at J2 are to be connected:

$$
\begin{array}{lll}
\mathrm{J} 2-9 & \text { to } & \mathrm{J} 2-7 \\
\mathrm{~J} 2-10 & \text { to } & \mathrm{J} 2-4 \\
\mathrm{~J} 2-11 & \text { to } & \mathrm{J} 2-2
\end{array}
$$

Within this range, the four PIO ports are located from OCH to 0FH. Figure 3.4 .2 shows that jumper Jl-l3 to Jl-5 should be connected. The four CTC ports are located from 14 H to 17 H within the range 60-70H. Therefore, a jumper is connected from Jl-l4 to Jl-7.

J 2-9 TO	$\begin{gathered} \text { J 2-10 } \\ \text { TO } \end{gathered}$	$\begin{gathered} \mathrm{J} 2-11 \\ \mathrm{TO} \end{gathered}$	I/O FCRT RANGE
J 2-7	J2-5	J 2-3	0-1FH
J2-7	J 2 -5	J 2-2	20-3FH
J 2-7	J 2-4	J2-3	40-5FH
J2-7	J2-4	J2-2	60-7FH
J2-6	J 2-5	J 2-3	80-9FH
J2-6	J2-5	J 2-2	A0-BFH
J2-6	J 2-4	J2-3	C0-DFH
J 2-6	J2-4	J 2-2	E0-FFH

FIGURE 3.4.1: I/C PORT ADDRESS RANGE

JUMPER CONNECTION
TO Jl3(PIO) OR Jl4 (CTC)

Jl-2	0 H to 3 H
$\mathrm{Jl}-3$	4 H to 7 H
$\mathrm{Jl}-4$	8 H to 0 BH
$\mathrm{Jl}-5$	0 CH to 0 FH
$\mathrm{J} 1-6$	10 H to 13 H
$\mathrm{Jl}-7$	14 H to 17 H
$\mathrm{Jl}-8$	18 H to 1 BH
$\mathrm{Jl}-9$	1 CH to 1 FH

FIGURE 3.4.2: PORT GROUP ADDRESS ASSIGNMENT

3.5 PIO Input/Output Configuration

Each of the PIO ports A and B may be configured for input or output.

When port A is used as an input port, jumpers are to be connected at Kl as shown in Table 3.5.l. The bus drivers A5, A6, and A7 should either be disabled or removed. (Note that A6 and A7 are also used for port B.) The termination resistors may also be installed, depending on the application. In the output mode, the jumpers at $K l$ are removed, and the bus drivers are enabled.

When port B is used as an input port, jumpers are to be connected at K 2 , as shown in Table 3.5.2. As with Port A, the appropriate bus drivers must be disabled or removed. The termination resistor network, Al2, may also be installed. In the output mode, the jumpers at $k 2$ are removed, and the bus drivers are enabled.

Connection
Kl-5 to Kl-6
Kl-10 Kl-9
Kl-ll Kl-7
Kl-12 Kl-8
Kl-13 Kl-1
Kl-14 Kl-2
Kl-15 Kl-3
Kl-16 Kl-4
TABLE 3.5.1 PIO PORT A JUMPER

Connection

K2-1 to $\mathrm{K} 2-16$
K2-2 K2-15
K2-3 K2-14
K2-4 K2-13
K2-5 K2-12
K2-6 K2-11
K2-7 K2-10
K2-8 K2-9

Signal
A0
A1
A2
A 3
A4
A5
A6
A 7

TABLE 3.5.2 PIC PORT B JUMPER

4.1 Introduction

The following section contains information and programming examples for on-board PIO and CTC operation.

4.2 Reset (PIO)

The Z80-PIO automatically enters a reset state when power is applied. The reset state performs the following functions:

- Both port mask registers are reset to inhibit all port data bits.
- Port data bus lines are set to a high impedance state and the Ready 'handshake' signals are inactive (low). Mode l is automatically selected.
- The vector address registers are not reset.
- Both port interrupt enable flip flops are reset.
- Both port output registers are reset.

In addition to the automatic power-on reset, the PIO can be reset by applying an Ml- signal without the presence of a RDor IORQ- signal. If no RD- or IORQ- is detected during Ml-, the FIO- will enter the reset state immediately after the Mlsignal goes inactive. The purpose of this reset is to allow a single external gate to generate a reset without a power down seguence. This approach was required due to the $40-\mathrm{pin}$ packaging limitation.

Once the PIO has entered the internal reset state, it is held there until the PIO receives a control word from the CFU.

4.3 Loading the Interiupt vector (PIO)

The PIO has been designed to operate with the $280-C P U$ using the mode 2 interrupt response. This mode requires that an interrupt vector be supplied by the interrupting device. This vector is used by the CPU to form the address for the interrupt service routine of that port. This vector is placed on the $z-80$ data bus during an interrupt acknowledge
cycle by the highest priority device requesting service at that time. (Refer to the Z80-CPU Technical Manual for details on how an interrupt is serviced by the CFU.) The desired interrupt vector is loaded into the PIO by writing a control word to the desired port of the PIC with the following format:
D7 D6 D5 D4 D3 D2 D1 D0
V7 V6 V5 V4 V3 V2 V1 0*

* Signifies this control word is an interrupt vector

D0 is used in this case as a flag bit which, when low, causes V7 through Vl to be loaded into the vector register. At inter rupt acknowledge time, the vector of the interrupting port will appear on the $Z-80$ data bus exactly as shown in the format above.
4.4 Selecting an Operating Mode (PIO)

Port A of the PIO may be operated in any of four distinct modes: Mode 0 (output mode), Mode 1 (input mode), Mode 2 (bidirectional mode), and Mode 3 (control mode). Note that the mode numbers have been selected for mnemonic significance; i.e., $0=0$ ut, $l=I n, 2=$ Bidirectional. Port B can operate in any of these modes except Mode 2 .

The mode of operation must be established by writing a control word to the PIO in the following format:

D7	D6	D5	D4	D3	D2	D1	D0		$:$
M1	M0	X	X	1.	1	1	1	\cdots	\therefore
mode word	not used	signifies mode word to be set	\cdots						

Bits D7 and D6 form the binary code for the desired mode according to the following table:

D7	D6	Mode
0	0	0 (output)
0	1	1 (input)
1	0	2 (bidirectional)
1	1	3 (control)

Bits D 5 and D 4 are ignored. Bits D3-D0 must be set to 1111 to indicate "Set Mode".

Selecting Mode 0 enables any data written to the port output register by the CPU to be enabled onto the port data bus. The contents of the output register may be changed at any time by the CPU simply by writing a new data word to the port. Also, the current contents of the output register may be read back to the $280-C P U$ at any time through the execution of an input instruction.

With Mode 0 active, a data write from the CPU causes the Ready handshake line of that port to go high to notify the peripheral that data is available. This signal remains high until a strobe is received from the peripheral. The rising edge of the strobe generates an interrupt (if it has been enabled) and causes the Ready line to go inactive. This very simple handshake is similar to that used in many peripheral devices.

Selecting Mode l puts the port into the input mode. To start handshake operation, the CPU merely performs an input read operation from the port. This activates the Ready line to the peripheral to signify that data should be loaded into the empty input register. The peripheral device then strobes data into the port input register using the strobe line. Again, the rising edge of the strobe causes an interrupt request (if it has been enabled) and deactivates the Ready signal. Data may be strobed into the input register regardless of the state of the keady signal if care is taken to prevent a data overrun condition.

Mode 2 is a bidirectional data transfer mode which uses all four handshake lines. Therefore, only Port A may be used for Mode 2 operation. Mode 2 operation uses the Port A handshake signals for output control and the fort B handshake signals for input control. Thus, both A RDY and B RDY may be active simultaneously. The only operational difference between Mode

0 and the output portion of Mode 2 is that data from the port A output register is allowed on to the port data bus only when A STB- is active in order to achieve a birdirectional capabilty.

Mode 3 operation is intended for status and control applications and does not utilize the handshake signals. when Mode 3 is selected, the next control word sent to the PIO must define which of the port data bus lines are to be inputs and which are outputs. The format of the control word is shown below:

D7	D6	D5	D4	D3	D2	D1	D0
I/O7	I/O6	I/O5	I/O4	I/O3	I/O2	I/O1	$I / O 0$

If any bit is set to a one, then the corresponding datá bus line will be used as an input. Conversely, if the bit is reset, the line will be used an an output.

During Mode 3 operation, the strobe signal is ignored and the Ready line is held low. Data may be written to a port or read from a port by the $280-C P u$ at any time during mode 3 operation. When reading a port, the data returned to the CPU will be composed of input data from fort data bus lines assigned as inputs plus port output register data from those lines assigned as outputs.

4.5 Setting the Interrupt Control word (PIO)

The interrupt control word for each port has the following format:
$\left.\begin{array}{llllllll}\text { D7 } & \text { D6 } & \text { D5 } & \text { D4 } & \text { D3 } & \text { D2 } & \text { D1 } & \text { D0 } \\ \begin{array}{lll}\text { Enable } \\ \text { Interrupt }\end{array} & \text { AND/ } & \text { High/ } & \text { Masks } & 0 & 1 & 1 & 1 \\ & \text { LOW follows }\end{array}\right)$

If bit $D 7=1$, the interrupt enable flip flop of the port is set and the port may generate an interrupt. If bit $D 7=0$, the enable flag is reset and interrupts may not be generated. If an interrupt is pending when the enable flag is set, it will then be enabled onto the CPU interrupt request line. Bits D6, D5, and D4 are used only with Mode 3 operation. However, setting bit D4 of the interrupt control word during any mode of operation will cause any pending interrupt to be reset. These three bits are used to allow for interrupt operation in Mode 3 when any group of the $1 / O$ lines go to certain defined states. Bit C 6 (AND/OR) defines the logical operation to be performed in port monitoring. If bit $D 6=1$, an AND function is specified, and if $D 6=0$, an $O R$ function is specified. For example, if the AND function is specified, all bits must go to a specified state before an interrupt will be generated, while the $O R$ function will generate an interrupt if any specified bit goes to the active state.

Bit $D 5$ defines the active polarity of the port data bus line to be monitored. If bit $D 5=1$, the port data lines are monitored for a high state while if $D 5=0$, they will be monitored for a low state.

If bit $\mathrm{C} 4=1$, the next control word sent to the PIO must define a mask as follows:

D7	D 6	D 5	D 4	D 3	D 2	D 1	D 0

MB7 MB6 MB5 MB4 MB3 MB2 MB1 MB0
Only those port lines whose mask bit is zero will be monitored for generating an interrupt.

4.6 CTC Programming

Eefore a $280-C T C$ channel can begin counting or timing operations, a Channel Control word and a Time Constant data word must be written to it by the CPU. These words will be stored in the Channel Control Register and the Time Constant Register of that channel. In addition, if any of the four channels have been programmed with bit 7 of their Channel Control Words to enable interrupts, an Interrupt vector must be written to the appropriate register in the CTC. Due to automatic features in the Interrupt Control Logic, one.. pre-programmed Interrupt Vector suffices for all four channels.

4.7 Loading the Channel Control Register (CTC)

To load a Channel Control word, the CPU performs a normal I/O Write sequence to the port address corresponding to the desired CTC channel. Two CTC input pins, namely CSO and CSl, are used to form a 2 -bit binary address to select one of four channels within the device. In many system architectures, these two input pins are connected to Address Bus lines AC and Al, respectively, so that the four channels in a CTC device will occupy contiguous I/O port addresses. A word written to a CTC channel will be interpreted as a Channel Control word, and loaded into the Channel Control Register, its bit 0 is a logic l. The other seven bits of this word select oferating modes and conditions as indicated in Figure 4.9.1.

D7.	D6	D5	D4	D3	D2	D1	D0
INTERRUPT					LOAD		
ENABLE	MODE	RANGE	SLOPE	TRIGGER	$\begin{array}{r} \text { TIME } \\ \text { CONSTA } \end{array}$	RESET	1
NOTE: RANGE and TRIGGER used in Timer Mode only							
Bit $7=1$							
The channel is enabled to generate an interrupt request sequence every time the Down Counter reaches a zero-count condition. To set this bit to l in any of the four							
Channel Control Registers necessitates that an Interrupt							
Vector also be written to the CTC before operation begins							
Channel interrupts may be programmed in either Counter							
Mode or Timer Mode. If an updated Channel Control Nord i							
written to a channel already in operation, with bit 7 set the interrupt enable selection will not be retroactive to							
a prec	ing	O-C	con	ition.			

Bit $7=0$
Channel interrupts disabled.

Bit $6=1$
Counter Mode selected. The Down Counter is decremented by each triggering edge of the External Clock (CLK/TRG) input. The Prescaler is not used.

```
Bit 6=0
Timer Mode selected. The Prescaler is clocked by the
System Clock D, and the output of the Prescaler, in turn,
clocks the Down Counter. The output of the Dcwn Counter
(the channel's ZC/TC output) is a uniform pulse train of
periods given by the product
t *P*TC
where t is the period of System Clock D, P is the
Prescaler factor of l6 or 256, and TC is the time constant
data word.
Bit 5=1
    (Defined for Timer Mode only.) Prescaler factor is 256.
Eit 5=0
    (Defined for Timer Mode only.) Prescaler factor is 16.
Bit 4=1
    TIMER MODE - positive edge trigger starts timer operation.
    CCUNTER MODE - positive edge decrements the down counter.
```

Bit $4=0$
TIMER MODE - negative edge trigger starts timer operation. COUNTER MODE - negative edge decrements the down counter.

Bit 3=1
Timer Mode only - External trigger is valic for starting timer operation after rising edge of $T 2$ of the machine cycle following the one that loads the time constant. The Prescaler is decremented 2 clock cycles later if the setup time is met, otherwise, 3 clock cycles.

Bit $3=0$
Timer Mode only - Timer begins operation on the rising edge of $T 2$ of the machine cycle following the one that loads the time constant.

Bit $2=1$
The time constant data word for the Time Constant Register will be the next word written to this channel. If an updated Channel Control Word and time constant data word are written to a channel while it is already in operation, the Down Counter will continue dcrementing to zero before the new time constant is loaded into it.

Bit 2=0
No time constant data word for the Time Constant Register should be expected to follow. To program bit 2 to this state impiies that this Channel Control word is intended to update the status of a channel already in operation, since a channel will not operate without a correctly programmed data word in the Time Constant Register, and a set bit 2 in this Channel Control Word provides the only way of writing to the Time Constant Register.

Bit $1=1$
Reset channel. Channel stops counting or timing. This is not a stored condition. Upon writing into this bit, a reset pulse discontinues current channel operation, however, none of the bits in the channel control register are changed. If both bit $2=1$ and bit $l=1$, the channel will resume operation upon loading a time constant.

Eit $1=0$
Channel continues current operation.
4.8 Loading the Time Constant kegister (CTC) ..

A channel may not begin operation in either Timer mode or Counter Mode unless a time constant data word is written into the Time Constant Register by the CPU. This data word will be expected on the next I / O Write to this channel following the I/O write of the Channel Control word, provided that bit 2 of the Channel Control word is set. The time constant data word may be any integer value in the range l-256. If all eight bits in this word are zero, it is interpreted as 256. If a time constant data word is loaded to a channel already in operation, the Down Counter will continue decrementing to zero before the new time constant is loaded from the Time Constant Register to the Down Counter.

TIME CCNSTANT REGISTER

D7	D6	D5	D4	D3	D2	D1	D0	\cdots	\cdots
TC7	TC6	TC5	TC4	TC3	TC2	TC1	TC0		
MSB							LSB		

FIGURE 2.0-2
CHANNEL BLOCK DIAGRAM

Figure 4.9.1: Channel Block Diagram

4.9 Loading the Interrupt Vector Register (CTC)

The 280-CTC has been designed to operate with the $280-C P U$ programmed for Mode 2 interrupt response. Under the requirements of this mode, when a CTC channel requests an interrupt and is acknowleaged, a l6-bit pointer must be formed to obtain a corresponding interrupt service routine starting address from a table in memory. The upper 8 bits of this pointer are provided by the CPU's I register, and the lower 8 bits of the pointer are provided by the CTC in the form of an Interrupt Vector unique to the particular channel that requested the interrupt.

MODE 2 INTERRUPT CPERATICN

Desired starting address pointed to by:

I REG	7 BITS FROM	0
CONTENTS	PERIPHERAL	

The high order 5 bits of this Interrupt Vector must be written to the CTC in advance as part of the initial programing sequence. To do so, the CPU must write to the I/O port address corresponding to the CTC channel 0 , just as it would if a Channel Control Word were being written to that channel, except that bit 0 of the word being written must contain an 0. (As explained above in Section 4.7, if bit 0 of a word written to a channel were set to l, the word would be interpreted as a Channel Control Word, so a 0 in bit 0 signals the CTC to load the incoming word into the Interrupt Vector Register.) Bits 1 and 2, however, are not used when loading this vector. At the time when the interrupting channel must place the interrupt Vector on the 280 Data Bus, the Interrupt Control Logic of the CTC automatically supplies a binary code in bits 1 and 2 identifying which of the four CTC channels is to be serviced.

INTERRUPT VECTOR PEGISTER

[7	D6	D 5	D4	D3	D2	DI	DO	
V7	V6	V5	V4	V3	X	X	0	
SUPPLIED BY USER					0	0	CHANNEL	(Highest Priority)
					0	1	CHANNEL	
					1	0	CHANNEL	
					1	1	CHANNEL	(Lowest Priority)
					Automaticallly inserted by280-CTC			

SECTION 5: STANDARD FACTORY STRAPPING CONFIGURATION

5.1 Introduction

The following sections show how the PIO and CTC port address component carriers are strapped as provided by zilog. All other required component carriers are provided but are left unstrapped.

5.2 Component Carrier Jl

Component carrier Jl (Fart No. 33-0173-17) for PIO and CTC port selects: (This part should be supplied with the board)

$$
\begin{array}{cll}
\text { J1-13 } \\
\text { J1-14 }
\end{array} \text { TO } \begin{array}{ll}
\text { J1-2 } & \text { PIO }=0,1,2,3 \\
\text { J1-2 } & \text { CTC }=4,5,6,7
\end{array}
$$

5.3 Component Carrier J2

Component carrier J2 (Part No. 33-0173-18) for I/O port range select: (This part should be supplied with the board) (PIO ports begin at AOH)

$$
\begin{array}{ll}
\text { J2-9 } & \text { TO } \\
\text { J2-10 } 2-6 \\
\text { J2-11 } & \text { J2-5 } \\
\text { J2-2 }
\end{array}
$$

5.4 Component Carrier J3

Component carrier J3 to select 2708 PROMS:
J3-1 TO J3-16
J3-2 J3-15
J3-3 J3-14
J3-4 J3-13
J3-7 J3-10
5.5 Component Carrier Kl

Component carrier $K 1$ to configure PIO port A / O ines.

K1-1	TO	Kl-13
K1-2		K1-14
K1-3		Kl-15
K1-4		K1-16
K1-5		K1-6
K1-7		K1-11
K1-8		K1-12
K1-9		K1-10

5.6 Component Carrier K2

Component Carrier K 2 to configure PIO port I / O lines:

K2-1	TO	K2-16
K2-2		K2-15
K2-3		K2-14
K2-4		K2-13
K2-5		K2-12
K2-6		K2-11
K2-7	K2-10	
K2-8	K2-9	

SECTION 6. TECHNICAL DESCRIPTION

6.1 Introduction

The following section contains a detailed description of the operation and logical throughput of the PMB. The reader is directed to use the accompanying schematic at the end of the manual as a reference. The board's specification is also included in this section.
6.2 Detailed Description of Board Schematics

Sheet 1
Sheet l consists of the bi-directional data bus buffers, through which data bytes pass between the system data bus and the PMB internal data bus. The direction of the buffers is determined by control PROM Al whose bit map is shown in Figure 6.2.1. Some address and control lines buffers are also included on this sheet.

	FF															
050	FF					F			F			F		E		
060	E	FF	F	F	FE	F	F	F	F	F	F	F	FE			
070	FF	FE	FF	FE	F	FE	F	F	F	F	F		F			F
080	FF	FF	FF	FF	EF	F	F	F		F						
090		FF	F		FE	F							FE			
		FF			FE											
			F													
													FF			
	FF	FE			F		F			F				FE		
		FE			F											
130	FF	FE	FF							F			FF	E		
140	FE	FE	FE				FE					F				
150		FE											F	E		
160																
		FF														
		FE		F												
		FF		F												
		FE		FE											FF	
LD		F		FF	F		FF	FF		FF		FE		FF	FF	
EO		EE	FE		FE		EF	F	E	FE		FF	FE	F	FF	
Fo	FE	F	$F E$	F	F	FF	F	F		FF		F	F			

Figure 6.2.1. BIT MAP FOR DATA RUS CCNTROL PROM

Sheet 2

The I/O port select logic for the CTC and FIC is shown on Sheet 2. Jumper area J2 selects one out of eight possible I/O groups, with each group consisting of 32 I/O port addresses. Jumper area Jl is used to located the CTC and PIO ports within the group selected by J2. The two least significant address bits determine which one of the four I/O ports is being addressed in either the PIO or CTC.

Sheet 3

Sheet 3 contains the $280-P I C$ and $280-C T C$. They both communicate with the $280-C P U$ via the PMB internal data and control busses. The clock/trigger inputs and zero count/time out outputs of the CTC are brought to the PMB card edge connector. The I / O lines of the PIO are connected to a jumper/buffer area shown on Sheets 4 and 5. Interrupts are ${ }^{\text {² }}$ daisy-chained such that PIO interrupts have priority over those of the CTC.

Sheet 4

I/O options for PIO channel A are shown on Sheet 4. When port A is in the input mode, jumpers are connected at $k 1$, output buffers are disabled and termination resistors are connected. In the output mode, the jumpers at $k l$ are removed and the output buffers are enabled. Depending upon the application, several different types of I / O buffers may be used.

Sheet 5
I/O options for PIO channel B are shown on Sheet 5. When port B is in the input mode, jumpers are connected at K 2 , output buffers are disabled, and termination resistors are connected. In the output mode, the jumpers at $k l$ are removed and the output buffers are enabled.

Sheet 6
Sheet 6 contains the first bank of eight PROMs and an address decoder PROM. IAB15-IABll are input to the decoder FROM and select the location of each of the PROMs on 2 K boundaries. Output SEL A indicates to the data bus buffer direction control (Sheet 1) that one of the PROMs in this bank has been selected. Sheet 6 also contains the logic to generate the FMB interrupt enable out.

Sheet 7
Sheet 7 contains the second bank of eight PROMs and an address decoder PRCM. Output SEL B indicates to the data bus buffer direction control (Sheet l) that one of the PROMS in this bank has been selected. Sheet 7 also contains buffers for the four most significant address bits.

Sheet 8

Sheet 8 contains the logic for PRCM bank selection, and the jumper area for selecting a particular type of PROM. For PROMs requiring +5 V and -12 V , backplane connections must be made to the $M C Z$ power supply or other external supplies. See Jumper Table 1 (Sheet 8) for a description of the required jumpers for each type of PROM.

MEMORY SIZE:
Sixteen 24 -pin sockets for up to 32 KBYTES of PROM/EPROM

MEMORY TYPE: 2708, 2716, 6381

INTERFACE:
TTL interface, with $M C Z$ series data, address, and control signals.

ADDRESS SELECTION:
PROM programmable for unique addressing of each PROM socket.

PARALLEL I/O:
16 programmable bidirectional I/O lines.

COUNTER/TIMER:
4 programmable counter/timer channels.

ELECTRICAL SPECIFICATIONS: DC POWER

	WITHOUT	.					
	MEMORY	WITH	2708	WITH	2716	WITH	6381
			TYP	MAX	TYP	MAX	TYP
		$0.70 A$	$0.84 A$	$1.59 A$	$2.28 A$	$2.84 A$	MAX
$+5 V$	$0.60 A$	$0.40 A$					
$-5 V$	---	$0.48 A$	$0.96 A$	---	---	--	--
$+12 V$	---	$0.80 A$	$1.28 A$	--	---	---	---

CONNECTOR:
122-pin edge (l00 mil spacing) available from:
VENDOR PART NO.
GARRY MFG. CO. AUGAT

4000-2
14005-19P1

PHYSICAL CHARACTERISTICS:
LENGTH: 7.7 in/l9.6cm
DEFTH: $7.5 \mathrm{in} / 19.1 \mathrm{~cm}$
THICKNESS: . $062 \mathrm{in} / 0.16 \mathrm{~cm}$
SPACING BETWEEN CARDS: 0.5 in/l. 27 cm centers
MAX COMPONENT HEIGHT: $0.4 \mathrm{in} / 1.02 \mathrm{~cm}$
ETCH LAYERS: TWC

ENVIRCNMENT:
0 to 50 degrees centigrade

BURN IN REQUIREMENTS:
Prior to final test, the PMB shall burn in for 96 hours at 45 degrees C, and VCC at $5.3 V+/-2 \%$. (5.2 V to 5.4 V) If any component is replaced after burn in, either component or the entire board must undergo an additional 48 hours at temperature and voltage.
6.6 PMB Parts List

1	PCB, BLANK, REV. ${ }^{\text {a }}$	10-0041-01	1	
2	I.C., PROM	33-0053-24	1	Al
3	I.C., 74LSl33	33-0170-01	2	A 2,4
4	I.C.,74367	33-0008-01	3	A5,6,7
5	I.C., PIO	33-0057-01	1	A 8
6	I.C., 74LSII	33-0061-01	1	A9
7	I.C.,7603	33-0164-00	2	Al0,11
8	I.C.,74125	33-0035-01	1	Al 3
9	I.C., 74LS00	33-0058-01	1	Al4
10	I.C., 74LS04	33-0059-01	1	A23
11	I.C., CTC	33-0078-01	1	A 32
12	I.C., 74LS 367	33-0055-01	4	A $33,34,35,36$
13	I.C.,3216	33-0089-01	2	A 37,38
14	I.C., 74LS138	33-0068-01	1	A39
15	I.C., 7420	33-0026-01	1	A 40
16	RES.NET.1K	47-0000-01	1	A 3
17	RES.NET, 220/330	47-0000-02	0	A 12 (NOT SUPPLIED)
18	SOCKET,I.C.,14-PIN	21-1000-06	1	A13
19	SOCKET,I.C.,16-PIN	21-1000-02	12	$\begin{aligned} & \text { A1,5,6,7,10,11,12, } \\ & \text { J1,J2,J3,K1,K2 } \end{aligned}$
20	SOCKET,I.C., 24-PIN	21-1000-03	16	A15-22,A24-31
21	SOCKET,I.C.,28-PIN	21-1000-04	1	A 32
22	SCCKET,I.C.,40-PIN	21-1000-01	1	A8
23	RES, 1/4W, $5 \%, 1 \mathrm{~K}$	47-1000-63	7	R9,10,11,12,13,18,19
24	RES,1/4W, $5 \%, 220$	47-1000-47	0	R2, 3,5,7,14,16 (NOT SUPPLIED)
25	RES, 1/4W, 5\%, 330	47-1000-51	0	R1,2,6,8,15,17 (NOT SUPPLIED)
26	CAF,22UF,15V	15-0003-25	4	C1,2,3,4
27	CAP,0.1UF,50V	15-0000-50	25	C5-C29
28	DIODE, 1N4001	48-1000-01	1	CR1
29	EJECTOR,BLANK	24-0001-01	2	
30	PIN,EJECTOR	91-3000-01	2	
31	COMPONENT CARRIER	33-0173-17	1	Jl:PIO\&CTC PORT SELECT
32	COMPONENT CARRIER	33-0173-18	1	J2:I/O PORT RANGE SELECT

6.7 Pinout for PROM Memory Board

PIN \#	SIGNAL NAME
001	+5V
002	+5V
003	+5V
004	IORQ-
005	DB5
006	-
007	IEI.FMB.PIO
008	DB3
009	PIO.0.A0
010	PIO.O.Al
011	PIO.0.A 2
012	EB6
013	DE0
014	PIO.0.A3
015	PIO.0.A 4
016	PIO.0.A5
017	PIO.0.A6
018	PIC.0.A7
019	PIO.0.A.RDY
020	PIO.0.A.STRB-
021	PIO.O.B.RDY
022	PIC.O.E.STRB-
023	.
024	PIO.0.B0
025	PIO.0.Bl
026	AB7
027	AB8
028	PIO.0.B2
029	AB5
030	AB6
031	PIO.0.B3
032	ABl 5
033	PIO.0.B4
034	PIO.0.B5
035	.
036	ABI 3
037	ABll
038	PIO.0.B6
039	PIO.0.B7
040	.
041	.
042	-

PIN	SIGNAL NAME
043	-
044	.
045	.
046	-
047	.
048	.
049	.
050	IEO.PMB.PIO
051	.
052	.
053	-
054	.
055	.
056	-
057	-
058	IEO.PMB.CTC
059	+5V
060	+5V
061	+5V
062	GND
063	GND
064	GND
065	-
066	-5V
067	-5V
068	DB4
069	+12V
070	+12V
071	DB2
072	-
073	DB7
074	.
075	DBI
076	.
077	-
078	.
079	INT-
080	-
081	-
082	-
083	-
084	.
085	MRQ-
086	
087	-
088	.
089	AB9
090	-

```
PIN % SIGNAI NNME
091 ABIO
092 .
0 9 3
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
\begin{tabular}{|c|c|}
\hline PIS & SIGNAI NAME \\
\hline & \\
\hline 091 & ABIO \\
\hline 092 & . \\
\hline 093 & - \\
\hline 094 & AS14 \\
\hline 095 & . \\
\hline 096 & . \\
\hline 097 & AB12 \\
\hline 098 & AB4 \\
\hline 099 & PHI-. (SYSTEM CLOCK-) \\
\hline 100 & AB3 3 \\
\hline 101 & AB2 \\
\hline 102 & AB1 \\
\hline 103 & \(A B O\) \\
\hline 104 & - \\
\hline 105 & . \\
\hline 106 & . \\
\hline 107 & . \\
\hline 108 & . \\
\hline 109 & - \\
\hline 110 & CK/T0 \\
\hline 111 & CK/TI \\
\hline 112 & \(\mathrm{CK} / \mathrm{T} 2\) \\
\hline 113 & \(\mathrm{CR} / \mathrm{T} 3\) \\
\hline 114 & 2C/TCO \\
\hline 115 & M1- \\
\hline 116 & PD- \\
\hline 117 & FOM. DISABLE-. (IN) \\
\hline 118 & ZC/TO2 \\
\hline 119 & ZC/TCI \\
\hline 120 & GND \\
\hline 121 & GNE \\
\hline 122 & GID \\
\hline
\end{tabular}
```

-2

Zilog

10340 Bubb Road
Cupertino, California 95014
Telephone: (408) 446-4666
TWX: 910-338-7621

