
Z80-RIO
Text Editor User's Manual

TABLE OF CONTENTS

1. INTRODUCTION 2

2. EDITING COMMANDS 8

2.1 RIO EDITOR COMMAND SUMMARY 10

3. COMMAND DEFINITIONS 11

3.1 Again 1 1
3.2 Bottom 12
3.3 Brief 13
3.4 Change 14
3.5 Delete 15
3.6 Find 16
3.7 Get 17
3.8 Goto 19
3.9 Input 20
3.10 Join 21
3.11 Lineno 22
3.12 Locate 23
3.13 Macro 24
3.14 Next 25
3.15 Print 26
3.16 Put 27
3.17 Putd 28
3.18 Quit 29
3. 19 Replace 30
3.20 Top 31
3.21 Up 32
3.22 Verify 33
3.23 Window 34
3.24 Xecute 35

r

Other pertinent documentation with which the reader
may want to become familiar include:

RIO Operating System User's Manual

1. INTRODUCTION

The RIO Text Editor is a line-oriented editor with string
handling capability and automatic interface to the disk.
It uses a memory paging technique which allows any size
text file to be edited. The Editor automatically determines
the work space available, and brings blocks of text into
its memory buffer as required by the command issued.

The portion of the user's file which is contained within
this memory buffer is called the 'window'. If a command is
issued that operates on text which is not in the window,
the Editor will write out the memory buffer onto disk and
read the next sequential block of text into the window.
This action is referred to as 'rolling'. The Editor rolls
blocks of text in and out of the window until the required
one is found.

The Editor maintains a 'current line pointer' which points
to the line last referenced. At the beginning of the
editing session this pointer points to a null line at the
top of the file,
will respond with
command should be

After executing each command the Editor
a prompt '>' to indicate that a new
issued. Note that in Input mode no

prompt is output,
maximum length of

The Editor can
512 characters.

handle lines up to a

The Editor can be used to create a new text file or to
modify an already existing one. If the Editor is given a
file name which does not exist in the disk directory it
will create a new file with the specified name, and then
automatically enter Input mode (see Input command
definition). This file will be created with a record
length of 128 bytes unless otherwise specified in the 'RL'
option.

If the specified file already exists, a backup file is
created before the editing session begins. This file is a
duplicate of the user file, thus if the user file should
get damaged during editing, the user still has a copy of
the original file. This backup file is created with the
same name as the user file but with an extension of 'OLD'.
This extension will be in upper or lower case depending on
the first letter of the user file name, i.e., editing a
file called 'MYFILE' would cause the creation of a backup
file 'MYFILE.OLD', whereas editing 'myfile' would cause the

creation of a backup file 'myfile.old'. One of two options
may be used when invoking the editor to either override the
default name for the backup file or to suppress its
creation entirely. These options are called the OLD option
(0) and No backup option (N), respectively.

The Editor is invoked from the RIO executive via the
command:

EDIT filename [options]

where: filename is a standard RIO file name which
may be fully or partially qualified;

where: option is one of the following:

0=filename1 specifying a name for the
backup file

N specifying that no backup file
should be created

RL=record length specifying that the new file
(in hex) should be created with the

given record length

If no filename is given the Editor will respond with:

NAME?

In this case, the user should name a file to edit or enter
a carriage return to return to the RIO executive.

If the specified file is not of type ASCII (20H) the
message :

INVALID ATTRIBUTES: filename

will be output to the console. This message is also output
if a file specified in the GEt command has an invalid type
or record length.

If the named file does not exist, it will be created and
the Editor will output the message:

NEW FILE ,
INPUT

and enter Input mode.

If the file already exists, the Editor will create the
backup file and then output the message:

EDIT

EXAMPLES:

Creating a new file with the Editor:

5&EDIT M Y F I L E R L = 4 0 0

NEW FILE
INPUT

EDIT
>QUIT

;MYFILE does not exist and is
created with a record length
of 400 hex

;input text

;null line
;edit mode
jupdate and close user file

Editing an already existing file with a default backup
file:

5&EDIT M Y F I L E
EDIT

>QUIT

jMYFILE exists
jbackup MYFILE.OLD created

;edit session

;update and close user file

Editing an already existing file, using the Old option:

5&EDIT MYFILE 0 = $YDOS : 2/BACKUP
EDIT

;MYFILE exists
jbackup file BACKUP
is created under
file system YDOS
on drive 2

>QUIT

;edit session

jupdate and close
user file

Editing an already existing file, using the No backup
option :

2EDIT MYFILE N
EDIT

;MYFILE exists
;no backup file created

>QUIT

;edit session
i

jupdate and close MYFILE

If a disk error occurs during an operation on either the
user file or backup file, the Editor closes the files and
returns to the RIO Executive. At this time a message:

I/O ERROR xx ON UNIT yy I '

will be output to the console, where xx is the error return
code (see RIO Software User's Manual), and yy is the
logical unit number: 04 for the user file, 05 for the
backup file. i -•

The editor environment is exited via the QUIT command.
This command will cause the user file to be updated and
closed and will then return to the RIO Executive.

If the user file was damaged during the editing session
(via disk errors or misuse of editing commands), the user
may wish to QUIT and begin again. This can be done in
several ways. Following is a description of three methods
with an example for each.

One method is to QUIT from the Editor environment, DELETE
the user file, and then RENAME the backup file:

56EDIT MYFILE
EDIT

jinvoke Editor

>QUIT
^DELETE MYFILE
DELETE 2/MYFILE (Y/N/A/Q)?Y
^RENAME MYFILE.OLD MYFILE
MYFILE.OLD > MYFILE

;edit session

;quit edit environment
jdelete the user file

;rename backup file

Another method is to remain in the Editor environment,
DElete all of the lines in the user file, and then GEt the
backup file:

5SEDIT M Y F I L E
E D I T

;invoke Editor

>T

T > D E *

>GE MYFILE.OLD

last line

;edit session

;go to the top of the
file
;delete all of the lines
in the file
jinsert contents of the
backup file

>QUIT

%

jcontinue edit session

;close and update user
file

If a disk error occurs while operating on the user file,
the Editor will automatically return to the RIO Executive
In this case the user may wish to DELETE the damaged user
file, create a new file with the Editor, and then GEt the
backup file:

5SEDIT MYFILE
EDIT

;invoke Editor

I/O ERROR C4 ON UNIT 04

5&DELETE MYFILE
DELETE 2/MYFILE (Y/N/A/Q)Y
5&EDIT M Y F I L E

NEW F I L E
I N P U T

EDIT
>GE M Y F I L E . OLD

last line

;edit session

;disk error C4 on user
file

jdelete user file
;create new file with
Ed itor

;null line

jinsert contents of
backup file

>QUIT

%

;edit session

jupdate and close user
file

2. EDITING COMMANDS

The Editor currently offers 24 commands which are executed
via a one or more letter code. The commands may be issued
in either upper case or lower case characters. In the
following summary, the capital letter (or letters)
indicates the minimum call for each command:

Again
Bottom
BRief
Change
DElete

Find
GEt
Goto
Input
Join

LIneno
Locate
Macro
Next
Print

PUt
PUTD
QUIT
Replace
Top

Up
Verify
Window
Xecute

There are two general forms of command modifiers which are
used with many of the edit commands: a number n, or a
string.

The first form, a decimal number n, indicates the number of
times the command operation is to be repeated. For
example, Print 15 would output 15 lines to the console.
The symbol '*' can be used to indicate that the operation
should be repeated over the entire range of the file
beginning with the current line. " j i

The second form is a string of characters between
delimiters. This form indicates that the command should
repeat until the string is found. For example, Print /LD
A,B/ would print the current line and each following line
until it printed the line containing the first occurrence
of the string 'LD A,B'. A delimiter is defined as the
first nonblank, nonnumeric character in the modifier. The
string may contain any character except for the delimiter.
The second delimiter is optional. In the following
discussion, the character / is used to represent any valid
delimiter.

If the string is not found in the current window, the
message :

STRING NOT IN BLOCK
PROCEED?

will be output to the console. If a 'Y' is entered the
command will execute on the current window and the next
block will be brought in from the disk. Otherwise, the
command will terminate, leaving the pointer pointing to
the current line. When using the string modifier with the
Up command, only the first message will be output and the
option to proceed will not be given. The pointer will
be left on the current line.

These modifiers are used with the following commands:

i Delete, Next, Print, PUt. PUTD, Upv—/

In general, commands and modifiers must be separated by at
least one or more blanks.

The Editor has two modes - Brief and Verbose - which affect
the Bottom, Change, Find, Goto, Get, Locate, Next, and Up
commands. When in Verbose mode (the default mode) a line of
text is output following each of these commands. When in
Brief mode this printing is suppressed.

« Brief mode can be entered in two ways. The first way is
via the BRief command and will affect all commands until
Brief mode is exited via the Verbose command.

V

Brief suppression can also be obtained for a single command
by issuing a dot '.' immediately after the command (i.e.,
F. /LOOP1/).

When a '?' is entered during the execution of the Change or
Print commands, execution will stop until another '?' is
entered. If an ESC is entered, the command will abort and
the editor will return to Edit mode. The commands check
for a '?' or ESC after processing each line. After an ESC
is recognized, the pointer is left at the last line
processed. Note: this feature does not apply to the ZDS
system.

i i
The following notation is used in the command definitions
in section 3:

Portions of a modifier that are optional are
enclosed in brackets []. :

The symbol for logical or, ', is used if either
option can be used, i.e., DE [n/string[/]] can
be expanded as DE n or DE /string/.

Parameters which can be repeated more than once
are followed by an asterisk * - i.e.,
J &command&[command&]* .

2.1 RIO EDITOR COMMAND SUMMARY

COMMAND
ABBREVIATION

COMMAND COMMAND
NAME PARAMETERS

A

B

BR

C

DE

F

GE

G

I

J

LI

L

M

N

P

PU

PUTD

Q

R

T

U

V

W

X

Again

Bottom

Brief

Change

Delete

Find

Get

Goto

Input

Join

Lineno

Locate

Macro

Next

Print

Put

Put and
Delete

Quit

Replace

Top

Up

Verify

Window

Xecute

[# of times]

i '
I '

/old string/new string/[# of
lines[# of times per line]]

[# of lines ! /string/]

/string/
i

[filename] f

line # i

[text line]

&command&command& . . .

i ii

/string/

&command&command& . . .

[line # ! /string/]

[# of lines ! /string/]

[# of lines ' /string/f filename
[record length]]]

[# of lines ! /string[filename
[record length]]]

[text line]

[# of lines ! /string/]

10

3. COMMAND DEFINITIONS

3.1 Again [n]

Function:

Repeats the previous command n times. If n is not
specified the previous command is repeated once. When the
Again command is issued after a Join or Xecute command,
only the last specifed single command will be repeated.

Examples :

>P 3
line
line
line
>A
line
line
line
>J &U
line
line
line
line
line
>A
line
line
line
line

4&P 4&

1
2
3

3
4
5

1
1
2
3
4

4
5
6
7

;print 3 lines

jprint another 3 lines

;join command (up 4, print 4)
;up 4 lines
jprint 4 lines

jrepeat last command (print 4)

11

3.2 Bottom - I
<•"

Function: x

Moves the current line pointer to the last line of the file
and prints the line on the console. If Brief mode has been
set the printing of the last line will be suppressed.

i '
Examples: _ , :

i t

>B ;move pointer to bottom of file
last line *
>N ;next line
EOF

12

3.3 Brief

Function:

Causes the editor to enter Brief mode in which the normal
printing of the line of text following the Bottom, Change
Find, Goto, Get, Locate, Next, and Up command is
suppressed.

Examples :

>P
This is line 10
>C /10/11
This is line 11

>BR
>C /11/10/

>P
This is line 10

jprint 1 line

jchange 10 to 11
;in Verbose mode - line is
printed after change
;enter Brief mode
;change 11 to 10, in Brief mode
change does not print line
jprint 1 line

13

3.4 Change /old string/new string[/["n1[n2]]]

Function:

Locates 'old string' within the range specified by n1 and
n2, and replaces it with 'new string'. n1 specifies the
number of lines in which 'old string' should be looked for
and changed. n2 specifies the number of occurrences per
line to be changed. The Change command begins its search
in the current line (unlike the Find and Locate commands
which begin the search in the next line). If n1 and/or n2
is not specified, the default is one. A '*' can be used
for n1, specifying that all lines from the current line on
be changed, or for n2 specifying that all occurrences in
the specified lines be changed. When in Verbose mode the
line will be printed after the change
is suppressed in Brief mode. If 'new
(i.e., C /old string//), 'old string'
'old string' is not found the message

has been made. This
string' is not given
will be deleted. If

NO CHANGE

will be output to the console and the command will
terminate. Upon termination of the Change command, the
current line pointer is left on the last line in which 'old
string1 was looked for. The execution of the Change
command may be temporarily or permanently halted (on MCZ
systems) via the ? or ESC mechanism described in section 2.

Examples:

>P
A D D A , B

> C / A , B / H L , D E
ADD HL,DE

>P 4

;print 1 line

;change string 'A,B' to 'HL,DE'

;print 4 lines

line
line
line
line
>U 3
line

110
1 11
112
113

1 10
>C /1/2/3 2

line 220
line 221
line 222

>T
T>C /IX/IY/* *

;up 3 lines

jchange first 2 occurrences of '1' to '2
in next 3 lines

;note only 2 occurrences changed

;go to top of file
jchange every occurrence of IX to IY

14

3.5 DElete [n!/string[/]]

Function

Deletes lines from the file beginning with the current
line. If n is specified, n lines will be deleted. If a
string is specified, all lines up to but not including the
line containing the specified string will be deleted. After
deleting, the current line pointer is left on the line
after the last line deleted.

Examples

>P 5
line 1
line 2
line 3
line 4
line 5
>U 4
line 1
>DE 2
>P
line 3

>P 5
line
line
line
line
line
>U 4
line
>DE /
>P
line

1
2
3
4
5

1
'2

2

;print 5 lines

;up 4 lines

jdelete 2 lines
jprint 1 line

;print 5 lines

;up 4 lines

jdeletes up to first line containing '2'
;print 1 line

15

3.6 Find /stringC/]

Function:

Moves the current line pointer to the first line following
the current line which contains the specified string
beginning in column one. This command is a special case of
the Locate command and is useful in locating labels in
assembly language source. i

Examples :

>P 5
LD A,B
ADD A,C
JR Z,LOOP1
INC A

LOOP1: LD D,A
>U *l

LD A,B
>F /LOOP1/
LOOP1: LD D,A
>U 4

LD A,B
L /LOOP1

JR Z,LOOP1

;print 5 lines

;up 4 lines

;find LOOP1 beginning in column 1

;up 4 lines

;locate LOOP1 in any column

16

3.7 GEt [filename]

Function:

Reads a disk file and inserts its contents into the user
file after the current line. If no filename is specified,
the temporary PUT/GET file created by a PUT or PUTD command
is inserted. If a filename is specified, the entire
contents of this file will be inserted. The current line
pointer is moved to the last line of the inserted file.
Note that it is not possible to insert just a part of a
file with the GEt command. This can be done, however, by
•PUT'ting the desired portion onto a separate file and then
'Get'ting this new file. If a file name is specified, the
file must be of type ASCII with a record length of less
than or equal to 512. If it is not, the message:

INVALID ATTRIBUTES: filename

will be output to the console.

Examples

1
2
3
4
5

2
2

>P 5
line
line
line
line
line
>U 3
line
>PUT
>P
line 4
>B
line 5
>GET
line 3
>T
T>P *
line 1
line
line
line
line
line
line
EOF

jprint 5 lines

;go up 3 lines

;put 2 lines into temporary file
jprint 1 line j

; go to the bottom of the file

;insert contents of the temporary file

;go to the top of the file
;print all of the file

2
3
4
5
2
3

>P 3 ;print 3 lines
line 1
line 2
line 3
>GET EXTFILE.TEXT ;insert the contents of file
external line 5
>T ;go to the top of the file
T>P * ;print all of the file ,
line 1 •• i
line 2 i
line 3
external line 1
external 1ine 2 . . • <
external line 3 '
external line 4 '
external line 5
EOF •

18

3.8 Goto n

Function

Moves the current line pointer to point to the line with
the specified decimal line number n

Examples

>P 5
line 1
line 2
line 3
line 4
line 5
>T
>G 3
line 3

;print 5 lines

;go to the top of the file
;go to the third line in the file

19

3-9 Input [text line]

Function:

Inputs text into the file after the current line. If a line
of text is given, it will be inserted. Note that the text
line must be separated from the command 'I' by one blank.
Any additional blanks will be treated as part of the text
line, i.e., I line 1A will cause 'line 1A' to be inserted,
whereas I line 1A will cause ' line 1A' to be inserted.
If no line is specified, the Editor will enter Input mode.
In this mode, all text that is entered from the console is
inserted after the current line. Input mode is terminated
when a null line is entered (by typing just a carriage
return). Upon termination of the Input command the current
line pointer points to the last line input.

Examples :

>P
line 1
>I line 1A
>P
line 1A
>I
INPUT
line 1B
line 1C
line 1D

EDIT
>T
T>P *
line 1
line 1A
line 1B
line 1C

;print 1 line

;insert 'line 1A' into text
jprint 1 line

jenter Input mode

;null line

;go to top of file
jprint all of file

line
EOF

1D

20

3.10 Join &command&[command&]

Function:

Causes the specified sequence of commands to be executed as
soon as the carriage return is received. Join is similar
to the Macro command immediately followed by an Xecute
command. Any number of commands can be concatenated as
long as they fit on a single line (512 characters). Spaces
are not allowed between the commands and delimiters. Any
delimiter may be used, however, it must not occur in any of
the commands.

Examples :

>J #T#L /LOOPUC
T
LOOP1:
LOOP2:

LD A,B
LD A,B
DEC B
JR Z,LOOPS

LOOP2:
DEC BC

>A
DEC BC
LD A,(HL)
CP ASCICR
JR NZ,LOOP2
JR END

/1/2#U 3#P 5
;Top command
;Locate command
;Change command
;Up command
;Print command

jrepeat last command
;Print command

21

3.11 LIneno

Function :

Prints the line number of the current line. This command
can be used with the Goto command to operate the editor on
a line number concept.

Examples :

>P ;print 1 line
line number 10
>LI ;determine line number
10

22

3.12 Locate /string[/]

Function:

Moves the current line pointer to the first line, following
the current line which contains the specified string.

Examples:

>L /200
LD HL,200H

>A
STRING NOT IN BLOCK
PROCEED?
>Y

LD DE,200H
>A
STRING NOT IN BLOCK
PROCEED?
>N

ADD HL,DE

jlocate string '200'

jlocate it again

;look in next block

;and again

;terminate command
;last line of block

23

3.13 Macro &command&[command&]*

Function: 4

Causes the specified sequence of commands to be loaded into
the macro buffer to be executed each time the Xecute
command is issued. Any number of commands can be
concatenated as long as they fit on a single line (512
characters). Note that spaces are not allowed between
commands and the delimiting character. Any character may be
used as a delimiter, however, it may not occur in any of
the commands. When the editor is first initialized, the
macro buffer contains the commands: $U. 6$P 12$. Thus
issuing the Xecute command before a Macro command will
cause these commands to be executed.

Examples :

>M &T&L /A,B/&C /A,B/A,C/
>P 5
LOOP:

LD A, (HL)
ADD A,B
INC HL
DEC B
10>U

>X
T

JR NZ,LOOP

ADD A,B
ADD A,C

;initialize macro buffer
;print 5 lines

;up 10 lines

jXecute contents of macro buffer
;Top command
;Locate command
;Change command

24

3. 14 Next [n!/string[/]]

Function:

Causes the current line pointer to be moved down n lines or
to the first line which contains the specified string.

Examples

>P
line 3
>N 5
line 8
>T
T>P 2
line 0
line 1
>N /3/
line 3

;print 1 line

;go down 5 lines

;go to top of file
;print 2 lines

;go down to line containing '3'

25

3.15 Print [n|/string[/]]

Function:

Prints, beginning at the current l:'ie, the next n lines or
until the first occurrence of the specified string. Upon
termination of the command the current line pointer is left
on the last printed line. The Print command can be
temporarily or permanently halted via the ? and ESC
mechanism described in section 2.

Examples

>P 3
line
line
line
>P
line
line
line
line
line

1
2
3

3
4
5
6
7

;print 3 lines

jprint until the string '7' is found

26

3.16 P U t [n ! / s t r i n g [/ [fi lename!! R L r m]]]]

Func t ion :

Writes onto a disk file, starting with the current line, n
lines or lines up to but not including the first occurrence
of the specified string. If a file name is specified the
PUt will be made to a file of this name. If one already
exists it will be erased and replaced by the new file.
If the file exists it must have a record length of less
than or equal to 512. If it does not exist, it will be
created with a record length of 128, unless otherwise
specified via the RL option. Note: m is specified in
hex. If the RL option is used, m must be less than or
equal to 200H. If no name is specified, the PUt will be
made to the temporary Put/Get file, thus overwritting any
text previously PUt there. Note that there must be a
space between the second string delimiter and the file
name. Upon termination of the PUt command the current
line pointer is left at the line following the last line
written.

Examples:

>PU 3

>PU /A,B/

>PU 6 PUT.FILE

;puts 3 lines into
PUt/GEt disk file

the temporary

'A,B';puts all lines until string
is located into the temporary
Put/Get disk file

;puts 6 lines into a file called
PUT.FILE which is created with
a record length equal to 128.

>PU 6 PUT.FILE RL=200 ;puts 6 lines into a file called
PUT.FILE which is created with
a record length equal to 512.

27

3.17 PUTD [ni/string[/[filename]]]

Function: t

Writes onto a disk file, starting with the current line, n
lines or lines up to the first occurrence of the specified
string and deletes those lines from the user file. If
a file name is specified, the PUt will be made to a file of
this name. If one already exists it will be erased and
replaced by the new file. If the file exists it must have
a record length of less than or equal to 512. If it does
not exist it will be created with a record length of 128,
unless otherwise specified via the RL option. Note: m is
specified in hex. If the RL option is used, m must be
less than or equal to 200 hex. If no name is specified,
the PUt will be made to the temporary Put/Get file, thus
overwriting any text previously PUt there. Note that
there must be a space between the second string delimiter
and the file name. Upon termination of the PUt command
the current line pointer is left at the line following
the last line written. I

Examples

>T
T>P 5
1 ine 1
line
line
line
line
>T
T>PUTD
>B
line 5
>GE
line 3
>T
T>P *
line 4
line
line
line
line
EOF

5
1
2
3

;go to the top of the file
jprint 5 lines

;go back to the top
;put and delete 3 lines into temporary file
;go to bottom of file

jinsert temporary file
i

; go to the top of the file
;print all of the file

28

3. 18 QUIT

Function:

Updates and closes the user file and returns control to the
RIO executive. ; - ' : • ; : :; " r ̂ -̂ : 3 ,: • ; x ;

Examples: ;

5&EDIT MYFILE
EDIT :-. ; P - .

>QUIT

;edit session - : ; • '•<

jupdate and close MYFILE
jreturn to RIO Executive

3.19 Replace [text line]

Function

Replaces the current line with the specified text. If a
line of text is given, it will replace the line. Note that
the text line must be separated from the command 'R' by one
blank. Any additional blanks will be treated as part of
the text line, i.e., R line 4A will cause 'line 4A ' to be
inserted whereas R line 4A will cause ' line 4A' to be
inserted. If no line is specified, the Editor will enter
Input mode. In this mode, all text that is entered from
the console is inserted, replacing the current line. Input
mode is terminated when a null line is entered (by typing
just a carriage
pointing to the

return) .
last line

The current
input.

line pointer is left

Examples :

>P 2
line 4
line 5
>r line 4A
>U
line 4
>P 2
line 4
line 4A
>R
INPUT
line 4AA
line 4AB
line 4AC

>U 4
line 3
>P 5
line 3
line 4
line 4AA
line 4AB
line 4AC

jprint 2 lines

;replace current line with string 'line 4A'
;go up 1 line

;print 2 lines

jreplace the current line with what follows

;null line
;go up 4 lines

jprint 5 lines

30

3.20 Top

Function:

Moves the current line pointer to the null line just above
the first line of the user file.

Examples :

>P 3
line 1
line 2
line 3
>T
T>I line 0
>P 4
line 0
line 1
line 2
line 3

jprint 3 lines

;go to the top
;insert string
;print 4 lines

of
at

the
top

file

31

3.21 Up [ni/string[/]]

Function: • i - >,i.'

Moves the current line pointer to the line that is up n
lines from the current line, or the first line (moving up)
which contains the specified string. Note that Up will
only work within the current window when using a string
parameter. If a line containing that string is not found,
the message:

STRING NOT IN BLOCK *

will be output to the console, and the command will '*
terminate leaving the pointer at the first line of the
current window.

Examples:

>P jprint 1 line c -
line 10
>U 4 ;up 4 lines
line 6
>U /3 ;up to line containing '3'
line 3
>B ;go to bottom of file
line 900
w>U /line 3/ ;up to line containing 'line 3'
STRING NOT IN BLOCK jstring not found
>P jprint 1 line
line 504

32

3.22 Verify

Function :

Exits Brief mode and resumes the normal printing of the
line of text following the Bottom, Change, Find Get,
Locate, Next, and Up commands.

Examples:

>BR
>N 3
>V
>N 3
line 20

;enter Brief mode
;go down 3 lines
;exit Brief mode
;go down 3 lines

33

3.23 Window

Function:

Displays on the console the line numbers of the top and
bottom lines of the current window. This is useful because
it allows the user to complete all editing in this window
before editing lines that are not yet in memory, thus
reducing the need for unnecessary disk I/O and therefore
speeding up the editing function.

Examples :

0001
0500

34

3.24 Xecute

Function :

Causes the commands in the macro buffer to be executed

Examples:

>M &U 3&P 6&
>P
line 30
>X
line 27
line 27
line 28
line 29
line 30
line 31
line 32

;initialize macro buffer
;print 1 line

jexecute the commands in the macro buffer
;up 3
jprint 6

35

